Science.gov

Sample records for abundant water ice

  1. A New Model for Water Vapor/Ice Abundance in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    Water is a unique substance in the protoplanetary nebula since both solid and gaseous phases coexist in large quantities. Quantitative estimates of their relative abundances are important parameters regarding the physical state of the nebula and planet formation processes. This new model is based on computing the chemical evolution of water molecules until its partial pressure is sufficient to pierce the vapor pressure curve for water. The point at which this occurs relative to its steady state values determines final gas/ice ratios. The wide range of temperatures and densities in typical protoplanetary disks result in a range of gadice ratios. It is found that although ice dominates the mid and far nebula, water vapor is predominant in the centerplane region of the near nebula and above the disk photosphere. An interesting near nebula effect is the appearance of a cloud of water ice at the temperature inversion elevation surrounded by vapor above and below. This work is partially supported by the NASA Astrobiology Institute.

  2. Spectroscopic Variation of Water Ice Abundance Across Mimas and Tethys' Surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Paul

    2014-11-01

    We present results from our ongoing work mapping the variation of the main water ice absorption bands across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). Mimas and Tethys are Enceladus’ orbital neighbours, lying inside and outside Enceladus’ orbit respectively. It is therefore likely that Mimas and Tethys surfaces interact with icy particles from the E-ring, resulting in a spectral, color modification. For all pixels in the selected VIMS cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak, whose value relates to grain size. To characterize the global variation of water-ice band depths across Mimas and Tethys, we divided the surface into a 1°x1° grid and then averaged the band depths and peak values inside each square cell. The most prominent feature on Mimas surface is the crater Herschel with a diameter of 130 km, one-third of the satellite's one. Mimas has the most uniform surface among Saturn's principal satellites, with its trailing side just 10% brighter and redder than the leading one. The uniformity of Mimas extends on spectral appearance too. The 1.52 and 2.02 μm H2O-ice absorption bands are ˜10% deeper on trailing hemisphere.On Tethys' leading hemisphere a 400 km in diameter crater, Odysseus, is present. Its dimension represents ˜40% of Tethys diameter.For both moons we find that large geologic features, such as the Odysseus and Herschel impact basin, do not correlate with water ice’s abundance variation.For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas the selected dataset covers just the leading hemisphere and a portion of the trailing side. From the analysis, the two hemispheres appear to be quite similar in water ice abundance, the trailing

  3. The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT Herschel Key Program

    NASA Astrophysics Data System (ADS)

    Min, M.; Bouwman, J.; Dominik, C.; Waters, L. B. F. M.; Pontoppidan, K. M.; Hony, S.; Mulders, G. D.; Henning, Th.; van Dishoeck, E. F.; Woitke, P.; Evans, Neal J., II; Digit Team

    2016-08-01

    Context. The presence or absence of ice in protoplanetary disks is of great importance to the formation of planets. By enhancing solid surface density and increasing sticking efficiency, ice catalyzes the rapid formation of planetesimals and decreases the timescale of giant planet core accretion. Aims: In this paper, we analyze the composition of the outer disk around the Herbig star HD 142527. We focus on the composition of water ice, but also analyze the abundances of previously proposed minerals. Methods: We present new Herschel far-infrared spectra and a re-reduction of archival data from the Infrared Space Observatory (ISO). We modeled the disk using full 3D radiative transfer to obtain the disk structure. Also, we used an optically thin analysis of the outer disk spectrum to obtain firm constraints on the composition of the dust component. Results: The water ice in the disk around HD 142527 contains a large reservoir of crystalline water ice. We determine the local abundance of water ice in the outer disk (i.e., beyond 130 AU). The re-reduced ISO spectrum differs significantly from that previously published, but matches the new Herschel spectrum at their common wavelength range. In particular, we do not detect any significant contribution from carbonates or hydrous silicates, in contrast to earlier claims. Conclusions: The amount of water ice detected in the outer disk requires ~80% of oxygen atoms. This is comparable to the water ice abundance in the outer solar system, comets, and dense interstellar clouds. The water ice is highly crystalline while the temperatures where we detect it are too low to crystallize the water on relevant timescales. We discuss the implications of this finding.

  4. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars.

    PubMed

    Mitrofanov, I G; Zuber, M T; Litvak, M L; Boynton, W V; Smith, D E; Drake, D; Hamara, D; Kozyrev, A S; Sanin, A B; Shinohara, C; Saunders, R S; Tretyakov, V

    2003-06-27

    Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south.

  5. High Abundance of Ions in Cosmic Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Water-rich, mixed molecular ices and polycyclic aromatic hydrocarbons (PAHs) are common throughout interstellar molecular clouds and the Solar System. Vacuum ultraviolet (VUV) irradiation and particle bombardment of these abiotic ices produces complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs which may have played a role in the origin of life. This ability of such water-rich, oxygen dominated ices to promote production of complex organic species is surprising and points to an important, unusual, but previously overlooked mechanism at play within the ice. Here we report the nature of this mechanism using electronic spectroscopy. VUV-irradiation of PAH/H2O ices leads to an unprecedented and efficient (greater than 70 %) conversion of the neutral PAHs to their cation form (PAH+). Further, these H2O/PAH+ ices are stabile at temperatures below 50 K, a temperature domain common throughout interstellar clouds and the Solar System. Between 50 and 125 K they react to form the complex organics. In view of this, we conclude that charged PAHs and other molecular ions should be common and abundant in many cosmic ices. The chemical, spectroscopic and physical properties of these ion-rich ices can be of fundamental importance for objects as diverse as comets, planets, and molecular clouds and may account for several poorly understood phenomena associated with each of these object classes.

  6. Microbial abundance in surface ice on the Greenland Ice Sheet

    PubMed Central

    Stibal, Marek; Gözdereliler, Erkin; Cameron, Karen A.; Box, Jason E.; Stevens, Ian T.; Gokul, Jarishma K.; Schostag, Morten; Zarsky, Jakub D.; Edwards, Arwyn; Irvine-Fynn, Tristram D. L.; Jacobsen, Carsten S.

    2015-01-01

    Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS. PMID:25852678

  7. Spectral modeling of water ice-rich areas on Ceres' surface from Dawn-VIR data analysis: abundance and grain size retrieval

    NASA Astrophysics Data System (ADS)

    Raponi, Andrea; De Sanctis, Maria Cristina; Ciarniello, Mauro; Tosi, Federico; Combe, Jean-Philippe; Frigeri, Alessandro; Zambon, Francesca; Ammannito, Eleonora; Giacomo Carrozzo, Filippo; Magni, Gianfranco; Capria, Maria Teresa; Formisano, Michelangelo; Longobardo, Andrea; Palomba, Ernesto; Pieters, Carle; Russell, Christopher T.; Raymond, Carol; Dawn/VIR Team

    2016-10-01

    Dawn spacecraft orbits around Ceres since early 2015 acquiring a huge amount of data at different spatial resolutions during the several phases of the mission. VIR, the visible and InfraRed spectrometer onboard Dawn [1] allowed to detect the principal mineralogical phases present on Ceres: a large abundance of dark component, NH4-phillosilicates and carbonates.Water has been detected in small areas on Ceres' surface by the Dawn-VIR instrument. The most obvious finding is located in Oxo crater [2]. Further detections of water have been made during the Survey observation phase (1.1 km/pixel) and High-Altitude Mapping Orbit (400 m/px) [3]. During the LAMO phase (Low Altitude Mapping Orbit), the data with increased spatial resolution (100 m/px) coming from both regions have improved the detection of water, highlighting clear diagnostic water ice absorption features. In this study, we focused on spectral modeling of VIR spectra of Oxo and another crater (lon = 227°, lat 57°), near Messor crater.The Hapke radiative transfer model [4] has been applied in order to retrieve the water ice properties. We consider two types of mixtures: areal and intimate mixing. In areal mixing, the surface is modelled as patches of pure water ice, with each photon scattered within one patch. In intimate mixing, the particles of water ice are in contact with particles of the dark terrain, and both are involved in the scattering of a single photon. The best fit with the measured spectra has been derived with the areal mixture. The water ice abundance obtained is up to 15-20% within the field of view, and the grain size retrieved is of the order of 100-200 μm. Phyllosilicates and carbonates, which are ubiquitous on Ceres surface [5], have been also detected and modeled in correspondence with the icy regions. The water ice is typically located near and within the shadows projected by the crater rims. Further analysis is required to study the thermal state of the ice and its origin

  8. Production of O2 through dismutation of H2O2 during water ice desorption: a key to understanding comet O2 abundances

    NASA Astrophysics Data System (ADS)

    Dulieu, F.; Minissale, M.; Bockelée-Morvan, D.

    2017-01-01

    Context. Detection of molecular oxygen and prediction of its abundance have long been a challenge for astronomers. The low abundances observed in few interstellar sources are well above the predictions of current astrochemical models. During the Rosetta mission, an unexpectedly high abundance of O2 was discovered in the comet 67P/Churyumov-Gerasimenko's coma. A strong correlation between O2 and H2O productions is observed, whereas no such correlation is observed between O2 and either of CO or N2. Aims: We suggest that the O2 molecule may be formed during the evaporation of water ice. We propose a possible reaction: the dismutation of H2O2 (2 H2O2-→ 2 H2O + O2), a molecule which should be co-produced during the water ice mantle growth on dust grains. We aim to test this hypothesis under realistic experimental conditions. Methods: We performed two sets of experiments. They consist of producing a mixture of D2O and D2O2 via the reaction of O2 and D on a surface held at 10 K. The first set is made on a silicate substrate, and explores the limit of thin films, in order to prevent any complication due to trapping during the desorption. The second set is performed on a pre-deposited H2O ice substrate and mimics the desorption of mixed ice. Results: In thin films, O2 is produced by the dismutation of H2O2, even at temperatures as low as 155 K. Mixed with water, H2O2 desorbs after the water ice sublimation and even more desorption of O2 is observed. Conclusions: H2O2, synthesised during the growth of interstellar ices (or by later processing), desorbs at the latest stage of the water sublimation and undergoes the dismutation reaction. Therefore an O2 release in the gas phase should occur at the end of the evaporation of ice mantles. Temperature gradients along the geometry of clouds, or interior of comets, should blend the different stages of the sublimation. Averaged along the whole process, a mean value of the O2/H2O ratio of a few percent in the gas phase seems

  9. Ice nucleation properties of the most abundant mineral dust phases

    NASA Astrophysics Data System (ADS)

    Zimmermann, Frank; Weinbruch, Stephan; Schütz, Lothar; Hofmann, Heiko; Ebert, Martin; Kandler, Konrad; Worringen, Annette

    2008-12-01

    The ice nucleation properties of the nine most abundant minerals occurring in desert aerosols (quartz, albite, microcline, kaolinite, montmorillonite, illite, calcite, gypsum, and hematite) were investigated by environmental scanning electron microscopy (ESEM). In this instrument, the pure minerals are exposed to water vapor at variable pressures and temperatures. The crystallization of ice on the mineral particles is observed by secondary electron imaging, and the supersaturation for an activated particle fraction of 1-3% is determined as function of temperature. In all experiments, condensation of water prior to ice formation was not observed within detectable limits, even at water supersaturation. The highest temperatures for 1-3% activation vary between -10°C and -16°C for the nine minerals investigated, and the corresponding onset relative humidities relative to ice RHi between 107 and 117%. Supersaturation temperature curves for initial ice formation (1-3% activation) in the temperature range typical for mixed-phase clouds were measured for all nine minerals. The temperature dependence of the onset relative humidity is strongly dependent on mineralogy. Kaolinite, montmorillonite, and hematite show a strong increase in RHi with decreasing temperature, whereas RHi is almost constant for illite, albite, quartz, and calcite. The highly variable ice nucleation properties of the various mineral dust components should be considered for parameterization schemes. Illite and kaolinite are the most important minerals to consider, as they have high ice nucleation efficiency and are common components of desert aerosols.

  10. Pyroelectricity of water ice.

    PubMed

    Wang, Hanfu; Bell, Richard C; Iedema, Martin J; Schenter, Gregory K; Wu, Kai; Cowin, James P

    2008-05-22

    Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial approximately 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 Vx(T/150 K)2. This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (approximately 10 MV/m) that can influence their chemistry, ion trajectories, or binding.

  11. Sensitivity of Cirrus Properties to Ice Nuclei Abundance

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2014-01-01

    The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.

  12. Water Ice on Triton

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Schmitt, Bernard; Roush, Ted L.; Owen, Tobias C.; Quirico, Eric; Geballe, Thomas R.; de Bergh, Catherine; Bartholomew, Mary Jane; Dalle Ore, Cristina M.; Douté, Sylvain; Meier, Roland

    2000-09-01

    We discuss the spectroscopic detection of H 2O ice on Triton, evidenced by the broad absorption bands in the near infrared at 1.55 and 2.04 μm. The detection of water ice on Triton reconfirms earlier preliminary studies (D. P. Cruikshank et al. 1984, Icarus58, 293-305). Although crystalline H 2O ice has a distinctive spectral band at 1.65 μm, and our new models slightly favor the presence of this phase, we cannot unambiguously determine whether Triton's water ice is crystalline or amorphous. Both phases might be present, and special conditions in the surface microstructure may affect the spectroscopic signature of water ice in such a way that crystalline ice is present and its 1.65 μm spectral band is masked. Our spectra (1.87-2.5 μm) taken at an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti et al. 1999, Nature397, 219), or in Triton's surface pressure (J. L. Elliot et al. 1998, Nature393, 765-767).

  13. Hugoniot of water ice

    SciTech Connect

    Gaffney, E.S.

    1984-01-19

    Hugoniot data for water ice are available for pressures ranging from about 150 MPa to about 50 GPa from initial states near 260 K. Limited data on porous ice (snow) at the same initial temperatures are available from 3.5 to 38 GPa and initial densities of 600 and 350 Mg/m/sup 3/. Above about 5 GPa, the data are fairly well-fit by a linear relation between shock and particle velocity: D(km/s) = 1.79 + 1.42u. However, a quadratic form fits the data better: D(km/s) = 1.32 + 1.68u - 0.035u/sup 2/. At lower stresses the velocity is a very complicated function of particle velocity due to elastic propagation, yielding and several possible phase changes. The Hugoniot elastic limit (HEL) of ice at these temperatures is about 180 +- 20 MPa with the elastic waves travelling at about 3900 m/s. The mean stress at the HEL is 115 +- 14 MPa. Comparison with strength measurements at lower strain rate indicates that failure at the HEL probably involves fracture and is almost independent of both temperature and strain rate. Ice V has been reported at about 600 MPa, and ice VI at 1.9 GPa and possibly at 3.7 GPa. Transition to ice III probably commences at the HEL at 200 MPa. Relations between volume, enthalpy and internal energy indicate that states below about 1 GPa maintain their shear strength even after undergoing complete transition to a high pressure phase. Time-resolved stress measurements indicate that equilibrium is achieved in about three microseconds for a 695 MPa shock. Melting is definitely complete below 10 GPa.

  14. Cladoceran zooplankton abundance under clear and snow-covered ice

    USGS Publications Warehouse

    DeBates, T.J.; Chipps, S.R.; Ward, M.C.; Werlin, K.B.; Lorenzen, P.B.

    2003-01-01

    We described the distribution of cladoceran zooplankton under the ice in a natural, glacial lake. Local light availability apparently altered the spatial distribution of cladocerans. Light levels measured under snow-covered areas (0.178 lux) were an order of magnitude less than those measured at the same depth under clear ice (1.750 lux). Cladoceran density under snow-covered areas was significantly higher (Bosmina spp.=3.34/L; Daphnia spp.=0.61/L) than cladoceran abundance under clear ice (Bosmina spp.=0.91/L; Daphnia spp.=0.19/L).

  15. Water Freezing and Ice Melting.

    PubMed

    Małolepsza, Edyta; Keyes, Tom

    2015-12-08

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to the freezing of liquid water and the melting of hexagonal and cubic ice. It is confirmed that coexisting states are well-sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice ↔ liquid and cubic ice ↔ liquid with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. Pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  16. Water Ice and Life's Roots in Space

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic

  17. Optical Spectroscopy of Radiation Processed Cosmic Ices & PAH-doped Water-rich Ices

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    Water-rich, mixed molecular ices and polycyclic aromatic hydrocarbons (PAHs) are common throughout interstellar molecular clouds and the Solar System. Vacuum ultraviolet (VUV) irradiation and particle bombardment of these abiotic ices produces complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs. This ability of such water-rich, oxygen-dominated ices to promote production of complex organic species is important. We will present studies on cosmic ices that include PAH-impurities upon vacuum ultraviolet (VUV) irradiation using electronic spectroscopy. VUV-irradiation of PAH / H2O ices leads to efficient conversion of the neutral PAHs to their cation form (PAH+). Further, these H2O / PAH+ ices are stable at temperatures below 50 K, a temperature domain common throughout interstellar clouds and the Solar System. In view of this, we conclude that charged PAHs and other molecular ions should be common and abundant in many cosmic ices.

  18. Martian north polar water ice clouds

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Bass, D.

    2000-01-01

    The Viking Orbiter determined that the surface of Mars' northern residual cap consists of water ice. An examination of north polar water-ice clouds could lend insight into the fate of the water vapor during this time period.

  19. Water Ice on Triton

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Roush, Ted L.; Owen, Tobias C.; Schmitt, Bernard; Quirico, Eric; Geballe, Thomas R.; deBergh, Catherine; Bartholomew, Mary Jane; DalleOre, Cristina M.; Doute, Sylvain

    1999-01-01

    We report the spectroscopic detection of H2O ice on Triton, evidenced by the broad absorptions in the near infrared at 1.55 and 2.04 micron. The detection on Triton confirms earlier preliminary studies (D. P. Cruikshank, R. H. Brown, and R. N. Clark, Icarus 58, 293-305, 1984). The spectra support the contention that H2O ice on Triton is in a crystalline (cubic or hexagonal) phase. Our spectra (1.87-2.5 micron) taken over an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti, M. D. Hicks, and R. L. Newburn, Jr., Nature 397, 219, 1999), or in Triton's volatile inventory (J. L. Elliot et al., Nature 393, 765-767, 1998).

  20. Water freezing and ice melting

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid,more » with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.« less

  1. Water freezing and ice melting

    SciTech Connect

    Malolepsza, Edyta; Keyes, Tom

    2015-10-12

    The generalized replica exchange method (gREM) is designed to sample states with coexisting phases and thereby to describe strong first order phase transitions. The isobaric MD version of the gREM is presented and applied to freezing of liquid water, and melting of hexagonal and cubic ice. It is confirmed that coexisting states are well sampled. The statistical temperature as a function of enthalpy, TS(H), is obtained. Hysteresis between freezing and melting is observed and discussed. The entropic analysis of phase transitions is applied and equilibrium transition temperatures, latent heats, and surface tensions are obtained for hexagonal ice↔liquid and cubic ice↔liquid, with excellent agreement with published values. A new method is given to assign water molecules among various symmetry types. As a result, pathways for water freezing, ultimately leading to hexagonal ice, are found to contain intermediate layered structures built from hexagonal and cubic ice.

  2. The Ice Nucleation Ability of Selected Atmospherically Abundant Fungal Spores

    NASA Astrophysics Data System (ADS)

    Iannone, R.; Chernoff, D. I.; Bertram, A. K.

    2010-12-01

    Ice clouds are widely recognized for their roles in the earth’s radiation budget and climate systems. However, their formation mechanisms are poorly understood thus constituting an uncertainty in the evaluation of the global radiation budget. An important mechanism of ice cloud formation is heterogeneous nucleation on aerosol particles. The surface properties of these particles, called ice nuclei (IN), directly affect the temperature at which ice nucleation occurs. There is a growing emphasis on the study of bioaerosols (e.g., bacteria, fungi, pollen) as IN since they are ubiquitous in the atmosphere. The focus of the current study is to determine the ice nucleation properties of spores obtained from a variety of fungi. Aerosolized spores were impacted onto a hydrophobic glass substrate and immersed in ultrapure water. A technique involving an optical light microscope coupled to a flow cell was used to precisely control temperature and humidity within the cell. A digital camera captured high-resolution video of the particles undergoing ice nucleation, allowing for the analyses of freezing events and particle sizes. The first experimental results using spores obtained from the fungal genera Cladosporium and Penicillium reveal an average temperature increase of ~1-5 K in the ice nucleation temperature compared to homogeneous nucleation (i.e., freezing of pure liquid water). Furthermore, there appears to be a relationship between the amount of spores present per droplet and the freezing temperature of water. These results are presented and discussed, and the potential contribution of these data to further the understanding of heterogeneous nucleation in the atmosphere is provided. Box plot summarizing freezing data for homogeneous nucleation experiments (leftmost box) and binned data from heterogeneous nucleation experiments involving spores of Cladosporium. Freezing data are distributed into 200 µm2 bins that represent the total area of all observable inclusions

  3. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  4. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  5. Characteristics of basal ice and subglacial water at Dome Fuji, Antarctica ice sheet

    NASA Astrophysics Data System (ADS)

    Motoyama, H.; Uemura, R.; Hirabayashi, M.; Miyake, T.; Kuramoto, T.; Tanaka, Y.; Dome Fuji Ice Core Project, M.

    2008-12-01

    (Introduction): The second deep ice coring project at Dome Fuji, Antarctica reached a depth of 3035.22 m during the austral summer season in 2006/2007. The recovered ice cores contain records of global environmental changes going back about 720,000 years. (Estimation of basal ice melt): The borehole measurement was carried out on January 2nd in 2007 when the temperature disturbance in the borehole calmed down by the rest of drilling for 2 days. Temperature measurement was performed after 0 C thermometer test was done in the ground. The temperature sensor of pt100 installed in the skate-like anti-torque was used. We did not have the enough time until the temperature of thermometer was matched with the temperature of ice sheet. Some error was included in ice temperature data. The resistance of pt100 sensor was converted to temperature in the borehole measurement machine. But we used only two electrical lines for pt100 sensor. Rate of heat flow in the ice sheet was calculated using the vertical temperature gradient of the ice sheet and rate of heat conductivity of ice. The deepest part of heat flux using temperatures at 3000m and 3030m was about 45mW/m2. We assumed that this value was the heat flux from the bedrock in the ice sheet. Heat flux to the bedrock surface in the ground was assumed 54.6mW/m2 adopted by ice sheet model (P. Huybrechts, 2006). Then the heat flux for basal ice melt was about 10mW/m2. This value was equaled to melting of 1.1mm of ice thickness per year. On the other hand, the annual layer thickness under 2500m was not changed so much and its average was 1.3mm of ice thickness. So the annual layer thickness and melting rate of basal ice was the same in ordering way. Or ice equivalent in annual layer is melting every year. The age of the deepest part of ice core is guessed at 720,000 years old and the ice older than basal ice has melted away. (The state of basal ice): When the ice core drilling depth passed 3031.44m, amount of ice chip more abundant

  6. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  7. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  8. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  9. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  10. 21 CFR 135.160 - Water ices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Water ices. 135.160 Section 135.160 Food and Drugs... CONSUMPTION FROZEN DESSERTS Requirements for Specific Standardized Frozen Desserts § 135.160 Water ices. (a) Description. Water ices are the foods each of which is prepared from the same ingredients and in the...

  11. Limits on the Abundance and Burial Depth of Lunar Polar Ice

    NASA Technical Reports Server (NTRS)

    Elphic, Richard C.; Paige, David A.; Siegler, Matthew A.; Vasavada, Ashwin R.; Teodoro, Luis A.; Eke, Vincent R.

    2012-01-01

    The Diviner imaging radiometer experiment aboard the Lunar Reconnaissance Orbiter has revealed that surface temperatures in parts of the lunar polar regions are among the lowest in the solar system. Moreover, modeling of these Diviner data using realistic thermal conductivity profiles for lunar regolith and topography-based illumination has been done, with surprising results. Large expanses of circum-polar terrain appear to have near-subsurface temperatures well below 110K, despite receiving episodic low-angle solar illumination [Paige et al., 2010]. These subsurface cold traps could provide areally extensive reservoirs of volatiles. Here we examine the limits to abundance and burial depth of putative volatiles, based on the signature they would create for orbital thermal and epithermal neutrons. Epithermals alone are not sufficient to break the abundance-depth ambiguity, while thermal neutrons provide an independent constraint on the problem. The subsurface cold traps are so large that even modest abundances, well below that inferred from LCROSS observations, would produce readily detectable signatures in the Lunar Prospector neutron spectrometer data [Colaprete et al., 2010]. Specifically, we forward-model the thermal and epithermal neutron leakage flux that would be observed for various ice concentrations, given the depth at which ice stability begins. The LCROSS results point to a water-equivalent hydrogen abundance (WEH) in excess of 10 wt%, when all hydrogenous species are added together (except for H2, detected by LAMP on LRO [Gladstone et al., 2010]). When such an ice abundance is placed in a layer below the stability depth of Paige et al., the epithermal and thermal neutron leakage fluxes are vastly reduced and very much at odds with orbital observations. So clearly an environment that is conducive to cold trapping is necessary but not sufficient for the presence of volatiles such as water. We present the limits on the abundances that are indeed consistent

  12. Electrons In Water-ices At Outer Solar System Temperatures

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy; Allamandola, L. J.

    2006-09-01

    Solid water-rich ice is an important constituent of our Solar System. The importance of both laboratory and in-situ observational work to make advances in this field cannot be overstated. Over the past several years, we have been studying VUV-radiation processing of organic impurities such as the extraterrestrially abundant polycyclic aromatic hydrocarbons (PAHs) embedded in water-ices between 20 K and 180 K. During these in-situ studies we discovered several counter-intuitive phenomena (See Gudipati and Allamandola, J. Phys. Chem. A 110, 9020, 2006 and references therein for details): 1) PAHs embedded in cryogenic water-ice are easily and efficiently ionized (>80%, i.e., near quantitative ion yields) to the cation form by VUV photons. 2) In water ice, PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions. 3) PAH cations are stabilized in water ice to temperatures as high as 120 K. 4) Sequential photoionization leading to the formation and stabilization of doubly positively charged organic (PAH) species in water ice has also been found. Our recent laboratory studies have focused on the fate of electrons that are produced during PAH photoionization in the ice. Careful warm-up experiments suggest that indeed some electrons are stored over several hours in these ices. During warm-up of these ices between 20 K and 70 K, these stored electrons become mobilized and react with positively charged PAH ions in the ice. Taken together, these laboratory findings strongly suggest that ice rich trans-Saturnian icy objects including moons, comets, and KBOs, as well as some of Saturn's rings, can host ionized organic impurities and free electrons. These species have physical and chemical properties that can fundamentally alter ice properties such as color, strength, structure, energy-budget, reaction networks etc. Acknowledgments: Funded by NASA's Exobiology, Astrobiology, LTSA, and PG&G Programs

  13. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  14. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  15. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of μm-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ∼210 K), μm-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup –1}, which is approximately 10 times higher than the sticking threshold of μm-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup –1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  16. Scattering and Optical Properties of Water Ice

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, P. A.

    2003-01-01

    Light scattering by planetary ices of interest such as water, methane, clathrated species, will provide insight into the nature of the Jovian moons targeted by the JIMO mission - Europa, Callisto and Ganymede - composition, surface properties and thickness of ice mantles. Although much remote sensing data exists, theoretical models lag the data. We highlight the current state of theoretical and experimental models for water ice and highlight areas of study necessary to address the JIMO goals regarding surface and subsurface properties.

  17. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  18. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  19. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  20. Separations on water-ice. Final report

    SciTech Connect

    Dasgupta, P.K.

    1998-07-01

    This report focuses on processes to separate water frozen into ice. Research topics include the following: normal phase columnar chromatography; electrophoresis in a planar format; and zone melting type separations on a solid column of ice. Attempts were made to dope the emulsion with {beta}-cyclodextrin in order to separate commercially important chiral drugs such as Inderal.

  1. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  2. Water Accommodation on Bare and Coated Ice

    NASA Astrophysics Data System (ADS)

    Kong, Xiangrui

    2015-04-01

    A good understanding of water accommodation on ice surfaces is essential for quantitatively predicting the evolution of clouds, and therefore influences the effectiveness of climate models. However, the accommodation coefficient is poorly constrained within the literature where reported values vary by up to three orders of magnitude. In addition, the complexity of the chemical composition of the atmosphere plays an important role in ice phase behavior and dynamics. We employ an environmental molecular beam (EMB) technique to investigate molecular water interactions with bare and impurity coated ice at temperatures from 170 K to 200 K. In this work, we summarize results of water accommodation experiments on bare ice (Kong et al., 2014) and on ice coated by methanol (Thomson et al., 2013), butanol (Thomson et al., 2013) and acetic acid (Papagiannakopoulos et al., 2014), and compare those results with analogous experiments using hexanol and nitric acid coatings. Hexanol is chosen as a complementary chain alcohol to methanol and butanol, while nitric acid is a common inorganic compound in the atmosphere. The results show a strong negative temperature dependence of water accommodation on bare ice, which can be quantitatively described by a precursor model. Acidic adlayers tend to enhance water uptake indicating that the system kinetics are thoroughly changed compared to bare ice. Adsorbed alcohols influence the temperature dependence of the accommodation coefficient and water molecules generally spend less time on the surfaces before desorbing, although the measured accommodation coefficients remain high and comparable to bare ice for the investigated systems. We conclude that impurities can either enhance or restrict water uptake in ways that are influenced by several factors including temperature and type of adsorbant, with potential implications for the description of ice particle growth in the atmosphere. This work was supported by the Swedish Research Council and

  3. Modelling water isotopes in polar ice sheets

    NASA Astrophysics Data System (ADS)

    Lhomme, Nicolas

    2005-07-01

    Concentrations of water isotopes in marine sediments and ice cores are a key indicator for estimating global and regional fluctuations of past temperatures. Interpreting these concentrations requires an understanding of the storage capacity and exchanges among the ocean, atmosphere and cryosphere as well as an understanding of the dynamical behaviour of these reservoirs. The contribution of the latter remains poorly established because of the paucity of deep ice cores in Greenland and Antarctica and the difficulty of interpreting these cores. To obtain the water isotope composition of polar ice sheets and gain an understanding of their stratigraphy, I develop a tracer transport method first proposed by Clarke and Marshall (2002) and significantly improve it by introducing an interpolation technique that accounts for the particular age-depth relationship of ice sheets. I combine the tracers with numerical models of ice dynamics to predict the fine layering of polar ice masses such that it is locally validated at ice core sites, hence setting a new method to constrain reconstructions of ice sheets' climatic and dynamic histories. This framework is first applied and tested with the UBC Ice Sheet Model of Marshall and Clarke (1997). I predict the three-dimensional time-evolving stratigraphy of the Greenland Ice Sheet and use the ice core records predicted at GRIP, Dye 3 and Camp Century to better determine the minimal ice extent during the Eemian, 127 kyr ago, when the Earth's climate was somewhat similar to the present. I suggest that 3.5--4.5 m of sea level rise could be attributed to melting in Greenland. Tracers are also applied to Antarctica with the LGGE Ice Sheet Model of Ritz et al. (2001). The three-dimensional model is compared to simple flow models at the deep ice core sites of Dome C, Vostok and Dome Fuji to test the hypotheses on depositional and dynamical conditions used for interpreting ice cores. These studies lead to a well-constrained stratigraphic

  4. Ice nucleation by water-soluble macromolecules

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.

    2015-04-01

    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.

  5. The formation, destruction and chemical influence of water ice: a review of recent laboratory results

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.

    2015-08-01

    Water ice is ubiquitous in dense molecular clouds, the stellar nurseries of the Galaxy. Recent theoretical investigations (Cleeves et al. 2014) suggest that much of this pre-stellar ice survives disk formation and thus takes part in forming of planets and planetesimals. Interstellar and circumstellar ice abundances thus affect the compositions of planets. The presence of water ice is also important for the formation of other molecules on grains. Water is the most abundant ice constituent and therefore sets the ice diffusion environment, which regulates for example the organic photochemistry proposed to drive the complex chemical evolution during star formation.The processes that regulate the formation, destruction and chemical influence of water have all been explored in laboratory experiments. One of the most significant advances in recent years is the arrival of laboratory experiments on hydrogen additions to condensed O, O2 and O3 — the proposed main formation pathways of water ice. These experiments have revealed how the interplay between diffusion and reaction barriers together regulate the water formation chemistry as well as the chemistry of closely related carbon-bearing species such as CO2. A very different set of laboratory experiments have in the same time period constrained the efficiency of non-thermal water desorption, especially UV-induced ice photodesorption. Laboratory work on other non-thermal desorption pathways, e.g. chemical desorption, has also advanced, though more experiments are needed to quantify the importance of these desorption pathways relative to photodesorption. There are also an increasing number of experiments aimed at constraining the diffusion environment of water-dominated ices and its effects on the formation of organics when ice mixtures are exposed to UV photons or other kinds of energetic radiation.I will review the many significant laboratory water ice experiments that has been relaized in the past few years and how they

  6. Mars water-ice clouds and precipitation.

    PubMed

    Whiteway, J A; Komguem, L; Dickinson, C; Cook, C; Illnicki, M; Seabrook, J; Popovici, V; Duck, T J; Davy, R; Taylor, P A; Pathak, J; Fisher, D; Carswell, A I; Daly, M; Hipkin, V; Zent, A P; Hecht, M H; Wood, S E; Tamppari, L K; Renno, N; Moores, J E; Lemmon, M T; Daerden, F; Smith, P H

    2009-07-03

    The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.

  7. Rheology of water ices V and VI

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    1996-01-01

    We have measured the mechanical strength (??) of pure water ices V and VI under steady state deformation conditions. Constant displacement rate compressional tests were conducted in a gas apparatus at confining pressures from 400 250 K. Ices V and VI are thus Theologically distinct but by coincidence have approximately the same strength under the conditions chosen for these experiments. To avoid misidentification, these tests are therefore accompanied by careful observations of the occurrences and characteristics of phase changes. One sample each of ice V and VI was quenched at pressure to metastably retain the high-pressure phase and the acquired deformation microstructures; X ray diffraction analysis of these samples confirmed the phase identification. Surface replicas of the deformed and quenched samples suggest that ice V probably deforms largely by dislocation creep, while ice VI deforms by a more complicated process involving substantial grain size reduction through recrystallization.

  8. Thermodynamics of ice nucleation in liquid water.

    PubMed

    Wang, Xin; Wang, Shui; Xu, Qinzhi; Mi, Jianguo

    2015-01-29

    We present a density functional theory approach to investigate the thermodynamics of ice nucleation in supercooled water. Within the theoretical framework, the free-energy functional is constructed by the direct correlation function of oxygen-oxygen of the equilibrium water, and the function is derived from the reference interaction site model in consideration of the interactions of hydrogen-hydrogen, hydrogen-oxygen, and oxygen-oxygen. The equilibrium properties, including vapor-liquid and liquid-solid phase equilibria, local structure of hexagonal ice crystal, and interfacial structure and tension of water-ice are calculated in advance to examine the basis for the theory. The predicted phase equilibria and the water-ice surface tension are in good agreement with the experimental data. In particular, the critical nucleus radius and free-energy barrier during ice nucleation are predicted. The critical radius is similar to the simulation value, suggesting that the current theoretical approach is suitable in describing the thermodynamic properties of ice crystallization.

  9. Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea.

    PubMed

    Renner, Martin; Salo, Sigrid; Eisner, Lisa B; Ressler, Patrick H; Ladd, Carol; Kuletz, Kathy J; Santora, Jarrod A; Piatt, John F; Drew, Gary S; Hunt, George L

    2016-09-01

    Timing of spring sea-ice retreat shapes the southeast Bering Sea food web. We compared summer seabird densities and average bathymetry depth distributions between years with early (typically warm) and late (typically cold) ice retreat. Averaged over all seabird species, densities in early-ice-retreat-years were 10.1% (95% CI: 1.1-47.9%) of that in late-ice-retreat-years. In early-ice-retreat-years, surface-foraging species had increased numbers over the middle shelf (50-150 m) and reduced numbers over the shelf slope (200-500 m). Pursuit-diving seabirds showed a less clear trend. Euphausiids and the copepod Calanus marshallae/glacialis were 2.4 and 18.1 times less abundant in early-ice-retreat-years, respectively, whereas age-0 walleye pollock Gadus chalcogrammus near-surface densities were 51× higher in early-ice-retreat-years. Our results suggest a mechanistic understanding of how present and future changes in sea-ice-retreat timing may affect top predators like seabirds in the southeastern Bering Sea.

  10. WATER ICE IN THE KUIPER BELT

    SciTech Connect

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2012-06-15

    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice-perhaps mixed with ammonia-that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the {approx}20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  11. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  12. Water-ice clouds on Mars: Location and seasonal variation

    NASA Astrophysics Data System (ADS)

    Christensen, P. R.; Jaramillo, L.; Greeley, R.

    1985-04-01

    Water-ice clouds were located on Mars using Viking infrared thermal mapper (IRTM) broadband spectral observations. The IRTM instrument had 5 thermal bands centered at 7, 9, 11, 15, and 20 microns. Clouds and hazes were consistently observed in four northern hemisphere regions centered over Tharsis, Arabia, Elysium, and along the boundary between the crater uplands and the northern plains. During the northern spring and summer when the atmosphere is relatively free of dust, there is a distinct difference between the cloud abundance in the Northern and Southern Hemispheres, with clouds and hazes being rare in the south. A second important class of water-ice clouds are those observed along the boundary of the retreating north polar cap. These clouds occur at all longitudes around the cap and are generally confined to within +/- 5 deg of the cap boundary. The cloud opacities can be estimated using a delta-Eddington radiative transfer model which incorporates Mie scattering and the electrical properties of water-ice. Assuming realistic, but non-unique, values for the ice particle size and cloud temperature, the derived opacities range from near-zero to 1.

  13. Water-ice Clouds on Mars: Location and Seasonal Variation

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Jaramillo, L.; Greeley, R.

    1985-01-01

    Water-ice clouds were located on Mars using Viking infrared thermal mapper (IRTM) broadband spectral observations. The IRTM instrument had 5 thermal bands centered at 7, 9, 11, 15, and 20 microns. Clouds and hazes were consistently observed in four northern hemisphere regions centered over Tharsis, Arabia, Elysium, and along the boundary between the crater uplands and the northern plains. During the northern spring and summer when the atmosphere is relatively free of dust, there is a distinct difference between the cloud abundance in the Northern and Southern Hemispheres, with clouds and hazes being rare in the south. A second important class of water-ice clouds are those observed along the boundary of the retreating north polar cap. These clouds occur at all longitudes around the cap and are generally confined to within +/- 5 deg of the cap boundary. The cloud opacities can be estimated using a delta-Eddington radiative transfer model which incorporates Mie scattering and the electrical properties of water-ice. Assuming realistic, but non-unique, values for the ice particle size and cloud temperature, the derived opacities range from near-zero to 1.

  14. An Overview of Ionization of Organics in Water Ices: Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy

    2008-05-01

    Water-rich ices are ubiquitous throughout our solar system and interstellar medium. While interstellar ices (DMCs, ISM, circumstellar disks etc) are mostly amorphous and exist at temperatures as low as 10 K, majority of Solar System ices (comets, icy satellites, Mars and Earth's polar regions, KBOs etc) are crystalline and occur at much higher temperatures (>100; K) with minor amorphous components. Our recent findings have shown that ionization of impurities, in the present case polycyclic aromatic hydrocarbons (PAHs), is the most prominent process in both amorphous and crystalline ices under radiation. These studies have further shown that: • PAHs embedded in cryogenic ice are easily and efficiently ionized (>80%, i.e., near quantitative ion yields) to the cation form by VUV photons. • PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions. • Some of the PAH cations are stabilized in these ices to temperatures as high as 120 K. • Multiple ionization of aromatic molecules to generate closed-shell PAH dications occurs in water ice, generating and stabilizing PAH2+. Spitzer observations have reaffirmed PAH abundance in our Galaxy. Water ice being equally abundant, coexistence of PAHs and water ice should be more common. Some of the implications of ionization of PAHs in ices are listed below. • Ionization of PAH impurities in ices results in charge separation in the ice particles. Stronger Coulomb forces between the charged particles can initiate nucleation of particle accretion, which ultimately leads to the formation of large macroscopic bodies. • PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons become important to be included in the modeling of regions of lower energy radiation fields than normally considered for ion-driven chemistry and physics.

  15. SURVIVAL OF AMORPHOUS WATER ICE ON CENTAURS

    SciTech Connect

    Guilbert-Lepoutre, Aurelie

    2012-10-01

    Centaurs are believed to be Kuiper Belt objects in transition between Jupiter and Neptune before possibly becoming Jupiter family comets. Some indirect observational evidence is consistent with the presence of amorphous water ice in Centaurs. Some of them also display a cometary activity, probably triggered by the crystallization of the amorphous water ice, as suggested by Jewitt and this work. Indeed, we investigate the survival of amorphous water ice against crystallization, using a fully three-dimensional thermal evolution model. Simulations are performed for varying heliocentric distances and obliquities. They suggest that crystallization can be triggered as far as 16 AU, though amorphous ice can survive beyond 10 AU. The phase transition is an efficient source of outgassing up to 10-12 AU, which is broadly consistent with the observations of the active Centaurs. The most extreme case is 167P/CINEOS, which barely crystallizes in our simulations. However, amorphous ice can be preserved inside Centaurs in many heliocentric distance-obliquity combinations, below a {approx}5-10 m crystallized crust. We also find that outgassing due to crystallization cannot be sustained for a time longer than 10{sup 4}-10{sup 4} years, leading to the hypothesis that active Centaurs might have recently suffered from orbital changes. This could be supported by both observations (although limited) and dynamical studies.

  16. The abundance of ice nuclei during airborne measurements over Germany and the Caribbean

    NASA Astrophysics Data System (ADS)

    Danielczok, A..; Bingemer, H.; Curtius, J.; DeMott, P. J.

    2012-04-01

    The tropospheric abundance of ice nuclei (IN) acting at -8 to -18 °C in the deposition and condensation nucleation modes was investigated during series of research flights on board a Learjet over northern Germany in June 2011 and on board of the NSF/NCAR C-130 during the ICE IN CLOUDS EXPERIMENT - TROPICAL (ICE-T) over the Caribbean in July 2011. Ice nuclei were collected from the air by electrostatic precipitation of aerosol onto silicon substrates. Samples were subsequently analyzed in the laboratory by the isothermal static vapor diffusion chamber FRIDGE (FRankfurt Ice Nuclei Deposition FreezinG Experiment). IN abundance in the free and upper troposphere varied between < 1 and 50 IN L-1 in the upper troposphere over Germany, and between < 1 to 40 IN L-1 in the lower and middle troposphere in the Caribbean. A few dust layers were encountered. The results will be presented and discussed in the light of trajectory analysis and other supporting information.

  17. Influence of sea ice on ocean water vapor isotopes and Greenland ice core records

    NASA Astrophysics Data System (ADS)

    Klein, Eric S.; Welker, Jeffrey M.

    2016-12-01

    A warming climate results in sea ice loss and impacts to the Arctic water cycle. The water isotope parameter deuterium excess, a moisture source proxy, can serve as a tracer to help understand hydrological changes due to sea ice loss. However, unlocking the sea ice change signal of isotopes from ice cores requires understanding how sea ice changes impact deuterium excess, which is unknown. Here we present the first isotope data linking a gradient of sea ice extents to oceanic water vapor deuterium excess values. Initial loss of sea ice extent leads to lower deuterium excess moisture sources, and then values progressively increase with further ice loss. Our new process-based interpretation suggests that past rapid (1-3 years) Greenland ice core changes in deuterium excess during warming might not be the result of abrupt atmospheric circulation shifts, but rather gradual loss of sea ice extent at northern latitude moisture sources.

  18. The effect of ice-cream-scoop water on the hygiene of ice cream.

    PubMed

    Wilson, I G; Heaney, J C; Weatherup, S T

    1997-08-01

    A survey of unopened ice cream, ice cream in use, and ice-cream-scoop water (n = 91) was conducted to determine the effect of scoop water hygiene on the microbiological quality of ice cream. An aerobic plate count around 10(6) c.f.u. ml-1 was the modal value for scoop waters. Unopened ice creams generally had counts around 10(3)-10(4) c.f.u. ml-1 and this increased by one order of magnitude when in use. Many scoop waters had low coliform counts, but almost half contained > 100 c.f.u. ml-1. E. coli was isolated in 18% of ice creams in use, and in 10% of unopened ice creams. S. aureus was not detected in any sample. Statistical analysis showed strong associations between indicator organisms and increased counts in ice cream in use. EC guidelines for indicator organisms in ice cream were exceeded by up to 56% of samples.

  19. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  20. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  1. CYANATE ION IN COMPACT AMORPHOUS WATER ICE

    SciTech Connect

    Mate, Belen; Herrero, Victor J.; Rodriguez-Lazcano, Yamilet; Moreno, Miguel A.; Escribano, Rafael; Fernandez-Torre, Delia; Gomez, Pedro C.

    2012-11-10

    The 4.62 {mu}m infrared (2164.5 cm{sup -1}) absorption band, observed in ice mantels toward many young stellar objects, has been mostly attributed to the {nu}{sub 3} (CN stretch) band of OCN{sup -} ions. We present in this work a spectroscopic study of OCN{sup -} ions embedded in compact amorphous ice in a range of concentrations and temperatures relevant to astronomical observations together with quantum mechanical calculations of the {nu}{sub 3} band of OCN{sup -} in various H{sub 2}O environments. The ice samples containing the ions are prepared through hyperquenching of liquid droplets of K{sup +}OCN{sup -} solutions on a substrate at 14 K. The {nu}{sub 3} OCN{sup -} band appears as a broad feature peaking at 4.64 {mu}m with a secondary maximum at 4.54 {mu}m and is much weaker than the corresponding peak in the liquid solution or in the solid salt. A similar weakening is observed for other OCN{sup -} absorption peaks at 7.66 {mu}m (2{nu}{sub 2}) and 8.20 {mu}m ({nu}{sub 1}). The theoretical calculations for the {nu}{sub 3} vibration lead to a range of frequencies spanning the experimentally observed width. This frequency spread could help explain the pronounced drop in the band intensity in the ice. The OCN{sup -} {nu}{sub 3} band in the present compact ices is also broader and much weaker than that reported in the literature for OCN{sup -} ions obtained by variously processing porous ice samples containing suitable neutral precursors. The results of this study indicate that the astronomical detection of OCN{sup -} in ice mantels could be significantly impaired if the ion is embedded in a compact water network.

  2. Freshwater ice as habitat: partitioning of phytoplankton and bacteria between ice and water in central European reservoirs.

    PubMed

    McKay, Robert M L; Prášil, Ondrej; Pechar, Libor; Lawrenz, Evelyn; Rozmarynowycz, Mark J; Bullerjahn, George S

    2015-12-01

    Abundant phytoplankton and bacteria were identified by high-throughput 16S rRNA tag Illumina sequencing of samples from water and ice phases collected during winter at commercial fish ponds and a sand pit lake within the UNESCO Třeboň Basin Biosphere Reserve, Czech Republic. Bacterial reads were dominated by Proteobacteria and Bacteroidetes. Despite dominance by members of just two phyla, UniFrac principal coordinates analysis of the bacterial community separated the water community of Klec fish pond, as well as the ice-associated community of Klec-Sand Pit from other samples. Both phytoplankton and cyanobacteria were represented with hundreds of sequence reads per sample, a finding corroborated by microscopy. In particular, ice from Klec-Sand Pit contained high contributions from photoautotrophs accounting for 25% of total reads with reads dominated by single operational taxonomic units (OTUs) of the cyanobacterium Planktothrix sp. and two filamentous diatoms. Dominant OTUs recovered from ice were largely absent (< 0.01%) from underlying water suggestive of low floristic similarity of phytoplankton partitioned between these phases. Photosynthetic characterization of phototrophs resident in water and ice analysed by variable chlorophyll a fluorescence showed that communities from both phases were photosynthetically active, thus supporting ice as viable habitat for phytoplankton in freshwater lakes and reservoirs.

  3. Mass Balance Estimates of Louth Crater Water Ice and Climatic Implications

    NASA Astrophysics Data System (ADS)

    Bapst, J.; Byrne, S.

    2016-09-01

    We estimate the mass balance of the most-equatorward water ice mound on Mars, located in Louth crater (70N). It is expected to be ablating in the current climate. Our estimates include a wide range of atmospheric water abundances.

  4. The ancient heritage of water ice in the solar system.

    PubMed

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems.

  5. Heterogeneous nucleation of ice from supercooled water

    NASA Astrophysics Data System (ADS)

    Seeley, Lane Howard

    The relaxation of a metastable phase via the formation of a critical domain of the corresponding stable phase is a phenomenon that has been studied extensively in condensed matter physics. This dissertation describes laboratory studies of this phenomenon in the context of ice nucleation from undercooled liquid water. Such a study presents unique experimental challenges because the formation of a critical embryo is a statistical event, and once it occurs the entire sample relaxes to the stable phase. In order to study this statistical process it is necessary to create a large ensemble of separate, yet identical, domains of the metastable phase. The design of an apparatus is described which creates such an ensemble, in time, by repeatedly freezing and thawing a single water drop. This apparatus allows for the collection of a large data set and therefore can identify subtle changes in nucleation statistics that are produced by external controls. This dissertation describes a series of experiments intended to probe several aspects of ice nucleation. Results are presented for homogeneous ice nucleation as well as heterogeneous ice nucleation by; silanized and unsilanized glass, aliphatic alcohol Langmuir films, ionizing radiation, electric fields and motion at the three phase contact line. These experiments are analyzed largely in the context of classical nucleation theory. The unique experimental technique described here allows for sensitive tests of the temperature dependent nucleation rates, R( T), in these systems. Analysis of the R( T) within the context of classical nucleation theory constrains thermodynamic parameters and provides insight into these nucleation processes.

  6. Masking water ice on small icy bodies

    NASA Astrophysics Data System (ADS)

    Brunetto, R.

    2011-10-01

    Additional clues on the surface composition of small icy bodies come from the laboratory study of cometary grains, such as some interplanetary dust particles collected in the Earth's stratosphere. These studies indicate the presence of refractory carbonaceous units that are usually sub-micron in size, i.e. smaller than the wavelength commonly used in remote sensing spectral observations of icy bodies. Based on this evidence, it has been suggested [2] that reddening of small icy bodies may be caused by submicron particles of organic material of pre-solar origin trapped in ice. According to this model, the amount of reddening varies with the concentration of organics to ice. To extend these results, we are developing a space weathering spectral model for small icy bodies that is compatible with laboratory measurements of collected cometary particles [3], and that takes into account the surface processing by solar and cosmic ions. Following the approach of Grundy [2], our model makes use of the Hapke scattering theory and of the Maxwell-Garnett effective medium theory to approximate the effect of carbon subwavelength inclusions. Preliminary results will be presented and discussed in view of their application to icy body surfaces. The conditions for the NIR spectral detection of water ice will be estimated. We will show that up to ~50% of water ice can be spectroscopically masked at 10% detection sensitivity due to the strong absorption of the sub-micron carbonaceous component, similarly to what previously found in the case of carbon-enriched crusts [4].

  7. Competition between ices Ih and Ic in homogeneous water freezing.

    PubMed

    Zaragoza, Alberto; Conde, Maria M; Espinosa, Jorge R; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2015-10-07

    The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

  8. Competition between ices Ih and Ic in homogeneous water freezing

    NASA Astrophysics Data System (ADS)

    Zaragoza, Alberto; Conde, Maria M.; Espinosa, Jorge R.; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2015-10-01

    The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

  9. Mars: northern summer ice cap--water vapor observations from viking 2.

    PubMed

    Farmer, C B; Davies, D W; Laporte, D D

    1976-12-11

    Observations of the latitude dependence of water vapor made from the Viking 2 orbiter show peak abundances in the latitude band 70 degrees to 80 degrees north in the northern midsummer season (planetocentric longitude approximately 108 degrees ). Total column abundances in the polar regions require near-surface atmospheric temperatures in excess of 200 degrees K, and are incompatible with the survival of a frozen carbon dioxide cap at martian pressures. The remnant (or residual) north polar cap, and the outlying patches of ice at lower latitudes, are thus predominantly water ice, whose thickness can be estimated to be between 1 meter and 1 kilometer.

  10. Mars - Northern summer ice cap - Water vapor observations from Viking 2

    NASA Technical Reports Server (NTRS)

    Farmer, C. B.; Davies, D. W.; Laporte, D. D.

    1976-01-01

    Observations of the latitude dependence of water vapor made from the Viking 2 orbiter show peak abundances in the latitude band 70 to 80 deg N in the northern midsummer season (planetocentric longitude about 108 deg). Total column abundances in the polar regions require near-surface atmospheric temperatures in excess of 200 K and are incompatible with the survival of a frozen carbon dioxide cap at Martian pressures. The remnant (or residual) north polar cap and the outlying patches of ice at lower latitudes are thus predominantly water ice, whose thickness can be estimated to be between 1 meter and 1 kilometer.

  11. Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Filacchione, G; De Sanctis, M C; Capaccioni, F; Raponi, A; Tosi, F; Ciarniello, M; Cerroni, P; Piccioni, G; Capria, M T; Palomba, E; Bellucci, G; Erard, S; Bockelee-Morvan, D; Leyrat, C; Arnold, G; Barucci, M A; Fulchignoni, M; Schmitt, B; Quirico, E; Jaumann, R; Stephan, K; Longobardo, A; Mennella, V; Migliorini, A; Ammannito, E; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M I; Carlson, R; Carsenty, U; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, T; Federico, C; Fink, U; Fonti, S; Ip, W H; Irwin, P; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Moroz, L; Mottola, S; Orofino, V; Schade, U; Taylor, F; Tiphene, D; Tozzi, G P; Beck, P; Biver, N; Bonal, L; Combe, J-Ph; Despan, D; Flamini, E; Formisano, M; Fornasier, S; Frigeri, A; Grassi, D; Gudipati, M S; Kappel, D; Mancarella, F; Markus, K; Merlin, F; Orosei, R; Rinaldi, G; Cartacci, M; Cicchetti, A; Giuppi, S; Hello, Y; Henry, F; Jacquinod, S; Reess, J M; Noschese, R; Politi, R; Peter, G

    2016-01-21

    Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.

  12. Predicting abundance and variability of ice nucleating particles in precipitation at the high-altitude observatory Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy E.; Herrmann, Erik; Henne, Stephan; Steinbacher, Martin; Alewell, Christine

    2016-07-01

    Nucleation of ice affects the properties of clouds and the formation of precipitation. Quantitative data on how ice nucleating particles (INPs) determine the distribution, occurrence and intensity of precipitation are still scarce. INPs active at -8 °C (INPs-8) were observed for 2 years in precipitation samples at the High-Altitude Research Station Jungfraujoch (Switzerland) at 3580 m a.s.l. Several environmental parameters were scanned for their capability to predict the observed abundance and variability of INPs-8. Those singularly presenting the best correlations with observed number of INPs-8 (residual fraction of water vapour, wind speed, air temperature, number of particles with diameter larger than 0.5 µm, season, and source region of particles) were implemented as potential predictor variables in statistical multiple linear regression models. These models were calibrated with 84 precipitation samples collected during the first year of observations; their predictive power was successively validated on the set of 15 precipitation samples collected during the second year. The model performing best in calibration and validation explains more than 75 % of the whole variability of INPs-8 in precipitation and indicates that a high abundance of INPs-8 is to be expected whenever high wind speed coincides with air masses having experienced little or no precipitation prior to sampling. Such conditions occur during frontal passages, often accompanied by precipitation. Therefore, the circumstances when INPs-8 could be sufficiently abundant to initiate the ice phase in clouds may frequently coincide with meteorological conditions favourable to the onset of precipitation events.

  13. Detection of water ice on Nereid.

    PubMed

    Brown, M E; Koresko, C D; Blake, G A

    1998-12-01

    We report the detection of the 1.5 and 2.0 micrometers absorption bands of water ice in the near-infrared reflection spectrum of Neptune's distant irregular satellite Nereid. The spectrum and albedo of Nereid appear intermediate between those of the Uranian satellites Umbriel and Oberon, suggesting a surface composed of a combination of water ice frost and a dark and spectrally neutral material. In contrast, the surface of Nereid appears dissimilar to those of the outer solar system minor planets Chiron, Pholus, and 1997 CU26. The spectrum thus provides support for the hypothesis that Nereid is a regular satellite formed in a circumplanetary environment rather than a captured object.

  14. Distribution, density, and abundance of pack-ice seals in the Amundsen and Ross Seas, Antarctica

    NASA Astrophysics Data System (ADS)

    Bengtson, John L.; Laake, Jeff L.; Boveng, Peter L.; Cameron, Michael F.; Bradley Hanson, M.; Stewart, Brent S.

    2011-05-01

    We made three sets of population surveys of the four species of ice-inhabiting phocid pinnipeds in the Ross and Amundsen Seas between 26 December 1999 and 24 March 2000 using icebreakers and helicopters deployed from those icebreakers. We used line transect methods to survey 23,671 km by helicopter and 3,694 km by ship accounting for a total coverage of 53,217 km 2. We detected and identified 11,308 seals in 7,104 groups and estimated their abundance from estimates of densities using distance sampling methods and corrections for probability of haul out of seals derived from satellite telemetry of tagged seals. Crabeater seals were most abundant (ca 1.7 million) followed by Weddell seals (330,000), Ross seals (22,600), and leopard seals (15,000). Our estimates of abundance are difficult to directly compare with earlier estimates because of geographic areas covered and by our improvements in survey and analytical methods. Notwithstanding these limitations and with some adjustments for differences in methods, we found that our estimates of abundance for crabeater seals are similar to those from the most recent surveys in the Ross and Amundsen Seas and along the George-Oates Coast. Our estimates for Weddell seals are the first for the broad areas of pack ice that we surveyed in the Ross and Amundsen Seas but indicate that these habitats are ecologically important to this species. Our estimates of abundance of Ross seals were relatively similar to estimates for surveys in these areas in the 1970s and 1980s whereas our estimates of abundance of leopard seals were substantially lower.

  15. Water Ice Clouds over the Northern Plains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 May 2002) The Science This image, centered near 48.5 N and 240.5 W, displays splotchy water ice clouds that obscure the northern lowland plains in the region where the Viking 2 spacecraft landed. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water and carbon dioxide ice clouds that form over the Martian north pole. As Mars progresses into northern spring, the persistent north polar hood ice clouds will dissipate and the surface viewing conditions will improve greatly. As the season develops, an equatorial belt of water ice clouds will form. This belt of water ice clouds is as characteristic of the Martian climate as the southern hemisphere summer dust storm season. Seasons on Mars have a dramatic effect on the state of the dynamic Martian atmosphere. The Story Muted in an almost air-brushed manner, this image doesn't have the crispness that most THEMIS images have. That's because clouds were rising over the surface of the red planet on the day this picture was taken. Finding clouds on Mars might remind us of conditions here on Earth, but these Martian clouds are made of frozen water and frozen carbon dioxide -- in other words, clouds of ice and 'dry ice.' Strange as that may sound, the clouds seen here form on a pretty regular basis at the north Martian pole during its winter season. As springtime comes to the northern hemisphere of Mars (and fall comes to the southern), these clouds will slowly disappear, and a nice belt of water ice clouds will form around the equator. So, if you were a THEMIS camera aimer, that might tell you when your best viewing conditions for different areas on Mars would be. As interesting as clear pictures of Martian landforms are, however, you wouldn't want to bypass the weather altogether. Pictures showing seasonal shifts are great for scientists to study, because they reveal a lot about the patterns of the Martian climate and the

  16. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice.

    PubMed

    Del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-11-07

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis.

  17. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

    NASA Astrophysics Data System (ADS)

    Del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-11-01

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis.

  18. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

    PubMed Central

    del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-01-01

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis. PMID:27819265

  19. Mezozooplankton Beneath the Summer Sea Ice in McMurdo Sound, Antarctica: Abundance, Species Composition, and DMSP content

    EPA Science Inventory

    The Ross Sea Phaeocystis antarctica bloom contributes to a summer increase in under-ice planton biomass in McMurdo Sound, Antarctica. Due to difficulties of under-ice sampling, information on the mesozooplankton in McMurdo Sound is limited. We measured the abundance of mesooopl...

  20. The physical properties of water ice in comets: a comparative study

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Kelley, Michael S. P.; Yang, Bin; Keane, Jacqueline; Sunshine, Jessica; A'Hearn, Michael F.; Kolokolova, Ludmilla

    2015-11-01

    Detections of water ice in comets are notably scarce (~10 comets) and our knowledge of cometary ice remains poor. As such, we are not able to consider water-ice characteristics in the evaluation of comet nuclei formation scenarios, despite water ice being the major component of comets. To overcome this deficiency, we have begun a systematic, low-resolution near-infrared spectroscopic survey to look for and characterize water-ice grain halos in cometary comae. The ultimate goal is to survey a large sample of Jupiter-family and Oort cloud comets to understand the conditions that favor the detectability of a comet's water-ice grain halo and the factors, if any, that may control the observed water-ice properties. We report on the modeling approach to determine the relative abundances of the major components within the coma, their grain sizes, and the type of mixing (mixed within the coma, or mixed within each aggregate). We present results on a selected set of comets that were observed prior and during our survey.

  1. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1988-01-01

    Microvideo observations of glaze ice accretions on 1-in-diameter cylinders in a closed-loop refrigerated wind tunnel were obtained to study factors controlling the behavior of unfrozen surface water during glaze ice accretion. Three zones of surface water behavior were noted, each with a characteristic roughness. The effect of substrate thermal and roughness properties on ice accretions was also studied. The contact angle and hysteresis were found to increase sharply at temperatures just below 0 C, explaining the high resistance to motion of water beads observed on accreting glaze ice surfaces. Based on the results, a simple multizone modification to the current glaze ice accretion model is proposed.

  2. Mixing of the immiscible: hydrocarbons in water-ice near the ice crystallization temperature.

    PubMed

    Lignell, Antti; Gudipati, Murthy S

    2015-03-19

    Structural changes in hydrocarbon-doped water-ice during amorphous to crystalline phase conversion are investigated using polycyclic aromatic hydrocarbons (PAHs) as probes. We show that aggregation of impurity molecules occurs due to the amorphous-crystalline transition in ice, especially when they are hydrophobic molecules such as PAHs. Using ultraviolet-visible (UV-vis), Fourier-transform Infrared (FTIR), and laser-induced-fluorescence (LIF) spectroscopic techniques, we show that, although ice infrared absorption features change from a broad structureless band corresponding to amorphous ice to a sharp structured crystalline ice bands, simultaneously, sharper isolated PAH UV absorption features measured in the amorphous ice host turn broad upon ice crystallization. A simultaneous decrease in the monomer fluorescence and increase in the excimer emission band is observed, a clear indication for the formation of PAH molecular aggregates when amorphous ice is converted to crystalline ice at higher temperatures. Similar to the irreversible amorphous-crystalline phase transitions, the UV, fluorescence, and excimer emissions indicate that PAHs undergo irreversible aggregation. Our studies suggest that organic impurities exist as aggregates rather than monomers trapped in crystalline water-ice when cycled through temperatures that convert amorphous ice to crystalline ice, rendering a better insight into phenomena such as the formation of cometary crust. This aggregate formation also may significantly change the secondary reaction pathways and rates in impurity-doped ices in the lab, on Earth, in the solar system, and in the interstellar medium.

  3. Martian North Polar Water-Ice Clouds During the Viking Era

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Bass, D. S.

    2000-01-01

    The Viking Orbiters determined that the surface of Mars' northern residual cap consists of water ice. Observed atmospheric water vapor abundances in the equatorial regions have been related to seasonal exchange between reservoirs such as the polar caps, the regolith and between different phases in the atmosphere. Kahn modeled the physical characteristics of ice hazes seen in Viking Orbiter imaging limb data, hypothesizing that ice hazes provide a method for scavenging water vapor from the atmosphere and accumulating it into ice particles. Given that Jakosky found that these particles had sizes such that fallout times were of order one Martian sol, these water-ice hazes provided a method for returning more water to the regolith than that provided by adsorption alone. These hazes could also explain the rapid hemispheric decrease in atmospheric water in late northern summer as well as the increase during the following early spring. A similar comparison of water vapor abundance versus polar cap brightness has been done for the north polar region. They have shown that water vapor decreases steadily between L(sub s) = 100-150 deg while polar cap albedo increases during the same time frame. As a result, they suggested that late summer water-ice deposition onto the ice cap may be the cause of the cap brightening. This deposition could be due to adsorption directly onto the cap surface or to snowfall. Thus, an examination of north polar waterice clouds could lend insight into the fate of the water vapor during this time period. Additional information is contained in the original extended abstract.

  4. Aquifer water abundance evaluation using a fuzzy- comprehensive weighting method

    NASA Astrophysics Data System (ADS)

    Wei, Z.

    2016-08-01

    Aquifer water abundance evaluation is a highly relevant issue that has been researched for many years. Despite prior research, problems with the conventional evaluation method remain. This paper establishes an aquifer water abundance evaluation method that combines fuzzy evaluation with a comprehensive weighting method to overcome both the subjectivity and lack of conformity in determining weight by pure data analysis alone. First, this paper introduces the principle of a fuzzy-comprehensive weighting method. Second, the example of well field no. 3 (of a coalfield) is used to illustrate the method's process. The evaluation results show that this method is can more suitably meet the real requirements of aquifer water abundance assessment, leading to more precise and accurate evaluations. Ultimately, this paper provides a new method for aquifer water abundance evaluation.

  5. Physical and biological control of protistan community composition, distribution and abundance in the seasonal ice zone of the Southern Ocean between 30 and 80°E

    NASA Astrophysics Data System (ADS)

    Davidson, Andrew T.; Scott, Fiona J.; Nash, Geraldine V.; Wright, Simon W.; Raymond, Ben

    2010-05-01

    Protists are critical components of the Antarctic marine ecosystem as they comprise most of the living carbon and are the base of the Antarctic food web. They are also key determinants of vertical carbon flux and mediate draw-down of atmospheric CO 2 by the ocean. The community composition, abundance and distribution of marine protists (phytoplankton and protozoa) was studied during the Baseline Research on Oceanography, Krill and the Environment-West (BROKE-West) survey, in the seasonal ice zone during the 2005-2006 austral summer between 30°E and 80°E. Light and electron microscopy were used to determine the protistan composition and abundance in samples obtained at 30 sites from surface waters and at 26 sites from the depth of the maximum in situ chlorophyll fluorescence (Chl max). Cluster analysis was used to identify 5 groups of sample sites at the surface and 5 at the Chl max that were of similar protist composition and abundance. The physical characteristics, taxonomic composition, indicator taxa, and taxonomic diversity were determined for each group. In the southwest, a bloom of colonial Phaeocystis antarctica dominated the protistan community composition and biomass amongst the receding ice, but this was replaced by the flagellate life stage/s of this haptophyte in waters to the north. In the southeast, a diatom bloom had the highest diversity of protist taxa observed during the survey and centric diatoms dominated the biomass. Outside these blooms, grazing by krill probably reduced the composition and abundance of large diatoms and autotrophic dinoflagellates in coastal to mid-inshore waters. Only in offshore waters did large diatoms and dinoflagellates increase in abundance and diversity, despite low concentrations of iron and silicate at many of these sites. This increase was probably due to reduced top-down control by krill and other large zooplankton. Large diatoms dominated in offshore waters, despite other coincident studies showing that the

  6. Water Ice Albedo Variations on the Martian Northern Polar Cap

    NASA Technical Reports Server (NTRS)

    Hale, A. S.; Bass, D. S.; Tamppari, L. K.

    2003-01-01

    The Viking Orbiters determined that the surface of Mars northern residual cap is water ice. Many researchers have related observed atmospheric water vapor abundances to seasonal exchange between reservoirs such as the polar caps, but the extent to which the exchange between the surface and the atmosphere remains uncertain. Early studies of the ice coverage and albedo of the northern residual Martian polar cap using Mariner 9 and Viking images reported that there were substantial internannual differences in ice deposition on the polar cap, a result which suggested a highly variable Martian climate. However, some of the data used in these studies were obtained at differing values of heliocentric solar longitude (L(sub s)). Reevaluation of this dataset indicated that the residual cap undergoes seasonal brightening throughout the summer, and indicated that this process repeats from year to year. In this study we continue to compare Mariner 9 and Viking Orbiter imaging observations and thermal data of the north residual polar cap to data acquired with Mars Global Surveyor s Mars Orbiter Camera (MOC) instrument. In the current study, our goal is to examine all released data from MGS MOC in the northern summer season, along with applicable TES data in order to better understand the albedo variations in the northern summer and their implications on water transport. To date, work has focused primarily on the MOC dataset. In 1999, data acquisition of the northern polar regions began at L(sub s) = 107, although there was little north polar data acquired from L(sub s)= 107 to L(sub s) = 109. We examined a total of 409 images from L(sub s) = 107 to L(sub s)=148. We have also examined data from 2000 from L(sub s)= 93 to L(sub s)= 110; additional progress is ongoing. Here we present a progress report of our observations, and continue to determine their implications for the Martian water cycle.

  7. ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS

    SciTech Connect

    Smith, R. G.; Wright, C. M.; Robinson, G.; Charnley, S. B.; Pendleton, Y. J.; Maldoni, M. M. E-mail: c.wright@adfa.edu.au E-mail: Steven.B.Charnley@nasa.gov

    2011-12-20

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  8. Survival of water ice in Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, A.

    2013-09-01

    Jupiter Trojans are asteroids trapped into the L4 and L5 Lagrangian clouds of the Jupiter-Sun system. Their origin is still a matter of debate, and their study could bring a critical test between different models of the solar system dynamical evolution. Trojans could have formed where they are, in which case they could bring crucial clues on the formation of Jupiter itself [1, 2]. It is not clear however, how this primordial population of Trojans could have survived the great shaking suggested in the Grand Tack model [3]. The Nice model indicates that Trojans might have been supplied from the outer parts of the solar system [4], in which case they could highlight the properties of their far less accessible parents, the Kuiper Belt Objects. Understanding the composition of Trojans could thus put strong constraints on the conditions (temperature, pressure and chemical composition) prevailing at the time and place of their formation. In particular, models of the solar system dynamical evolution suggest that Trojans had a cometary part. As of today, a large observational effort has provided spectra, which are very similar to spectra of cometary dust [4, 5, 6, 7, 8, 9, 10, 11, 12]. Their low albedos and surface colors are also consistent to those of comets [13]. Their rotation period distribution indicates a possible past outgassing [14]. Although Trojans can be regarded as dead or dormant comets, no water ice has ever been reported, nor any coma ever detected. In this work, we investigate the possibility for Jupiter Trojans to maintain water ice in subsurface layers, using a 3D thermal evolution model. The influence of several parameters, like the albedo, the obliquity, the rotation period, or the thermal inertia, are studied. The survival of water ice is tested against sublimation, and bulk heating due to the decay of radioactive nuclides.

  9. HOT WATER DRILL FOR TEMPERATE ICE.

    USGS Publications Warehouse

    Taylor, Philip L.

    1984-01-01

    The development of a high-pressure hot-water drill is described, which has been used reliably in temperate ice to depths of 400 meters with an average drill rate of about 1. 5 meters per minute. One arrangement of the equipment weighs about 500 kilograms, and can be contained on two sleds, each about 3 meters long. Simplified performance equations are given, and experiments with nozzle design suggest a characteristic number describing the efficiency of each design, and a minimum bore-hole diameter very close to 6 centimeters for a hot water drill. Also discussed is field experience with cold weather, water supply, and contact with englacial cavities and the glacier bed.

  10. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area.

    PubMed

    Gustafsson, O; Andersson, P; Axelman, J; Bucheli, T D; Kömp, P; McLachlan, M S; Sobek, A; Thörngren, J-O

    2005-04-15

    To evaluate the two hypotheses of locally elevated exposure of persistent organic pollutants (POPs) in ice-associated microenvironments and ice as a key carrier for long-range transport of POPs to the Arctic marginal ice zone (MIZ), dissolved and particulate polychlorinated biphenyls (PCBs) were analyzed in ice, snow, ice-interstitial water (IIW), seawater in the melt layer underlying the ice, and in ice-rafted sediment (IRS) from the Barents Sea MIZ to the high Arctic in the summer of 2001. Ultra-clean sampling equipment and protocols were specially developed for this expedition, including construction of a permanent clean room facility and a stainless steel seawater intake system on the I/B ODEN as well as two mobile 370 l ice-melting systems. Similar concentrations were found in several ice-associated compartments. For instance, the concentration of one of the most abundant congeners, PCB 52, was typically on the order of 0.1-0.3 pg l(-1) in the dissolved (melted) phase of the ice, snow, IIW, and underlying seawater while its particulate organic-carbon (POC) normalized concentrations were around 1-3 ng gPOC(-1) in the ice, snow, IIW, and IRS. The solid-water distribution of PCBs in ice was well correlated with and predictable from K(ow) (ice log K(oc)-log K(ow) regressions: p<0.05, r2=0.78-0.98, n=9), indicating near-equilibrium partitioning of PCBs within each local ice system. These results do generally not evidence the existence of physical microenvironments with locally elevated POP exposures. However, there were some indications that the ice-associated system had harbored local environments with higher exposure levels earlier/before the melting/vegetative season, as a few samples had PCB concentrations elevated by factors of 5-10 relative to the typical values, and the elevated levels were predominantly found at the station where melting had putatively progressed the least. The very low PCB concentrations and absence of any significant concentration

  11. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    SciTech Connect

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B.; Désert, Jean-Michel; Line, Michael R.; Fortney, Jonathan J.; Madhusudhan, Nikku; Showman, Adam P.; Kataria, Tiffany; Charbonneau, David; McCullough, Peter R.; Seager, Sara; Burrows, Adam; Henry, Gregory W.; Williamson, Michael; Homeier, Derek

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  12. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  13. Research Spotlight: Evidence for water ice near the Martian equator

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2011-02-01

    When one looks for water on Mars, the most obvious targets are the ice-capped polar regions. However, Shean found what appears to be buried water ice or an ice-debris mix within 38 craters in the Sinus Sabaeus region near the Martian equator. While previous research has suggested that water was historically present near the equator, Mars's current climate is supposed to be inhospitable to equatorial water ice. Using satellite imagery, the author found material at the bottom of equatorial craters that is visually similar to material thought to be buried ice found elsewhere on Mars, especially in midlatitude craters (­30°- 60/N/S). He also found 30 additional craters where this material has been partially or completely removed, leaving traces that suggest it is composed of buried ice. (Geophysical Research Letters, doi:10.1029/2010GL045181, 2010)

  14. Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2014-01-01

    Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.

  15. Structure of Water Ice in the Solar System

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.

  16. ORTHO-TO-PARA ABUNDANCE RATIO OF WATER ION IN COMET C/2001 Q4 (NEAT): IMPLICATION FOR ORTHO-TO-PARA ABUNDANCE RATIO OF WATER

    SciTech Connect

    Shinnaka, Yoshiharu; Kawakita, Hideyo; Kobayashi, Hitomi; Boice, Daniel C.; Martinez, Susan E.

    2012-04-20

    The ortho-to-para abundance ratio (OPR) of cometary molecules is considered to be one of the primordial characteristics of cometary ices, and contains information concerning their formation. Water is the most abundant species in cometary ices, and OPRs of water in comets have been determined from infrared spectroscopic observations of H{sub 2}O rovibrational transitions so far. In this paper, we present a new method to derive OPR of water in comets from the high-dispersion spectrum of the rovibronic emission of H{sub 2}O{sup +} in the optical wavelength region. The rovibronic emission lines of H{sub 2}O{sup +} are sometimes contaminated by other molecular emission lines but they are not affected seriously by telluric absorption compared with near-infrared observations. Since H{sub 2}O{sup +} ions are mainly produced from H{sub 2}O by photoionization in the coma, the OPR of H{sub 2}O{sup +} is considered to be equal to that of water based on the nuclear spin conservation through the reaction. We have developed a fluorescence excitation model of H{sub 2}O{sup +} and applied it to the spectrum of comet C/2001 Q4 (NEAT). The derived OPR of water is 2.54{sup +0.32}{sub -0.25}, which corresponds to a nuclear spin temperature (T{sub spin}) of 30{sup +10}{sub -4} K. This is consistent with the previous value determined in the near-infrared for the same comet (OPR = 2.6 {+-} 0.3, T{sub spin} = 31{sup +11}{sub -5} K).

  17. Ice mechanics, basal water and the stagnation of Kamb Ice Stream, Antarctica

    NASA Astrophysics Data System (ADS)

    Fried, M.; Hulbe, C. L.; Fahnestock, M. A.

    2012-12-01

    Several of the ice streams that move ice from the interior of the West Antarctic Ice Sheet (WAIS) to the Ross Ice Shelf are documented to stagnate and reactivate on multi-century time scales. Once such event may now be underway on the downstream ice plain of the Whillans Ice Stream (WIS), a stream that stopped and started between about 850 and 450 years ago. Kamb Ice Stream (KIS) ceased its rapid flow about 150 years ago in an event that appears to have initiated in the downstream reach of the ice stream. These switches from fast to slow and back again produce major changes in mass balance of the ice sheet and ice shelf system. Ice stream stagnation must in some way involve changes in the basal water that facilitates fast flow. Here, transients in ice thickness and surface slope, which together steer basal water, are examined in the context of the recent stagnation of KIS. Transients have both regional—changes in WIS flux and in Crary Ice Rise, for example—and local causes. A mechanical analysis of high-resolution surface elevation and ice velocity data sets on the now-active WIS is used as a proxy for past conditions on KIS and an ice flow model is used to place those local conditions in a regional context. We argue that thickness transients associated with stagnation of WIS required the KIS grounding line to retreat far upstream of its present location while reactivation of WIS led to regional thickening, grounding of floating ice, and advance of the KIS grounding line toward its present location. The present work examines the role of lateral margins near the grounding line, in particular the broad, flat, "Duckfoot" on the right lateral side of the KIS outlet and Lake Englehardt, which occupies the same postion at the outlet of WIS. Lake Englehardt diverts water away from the main trunk of the ice stream. In the past, the Duckfoot may have played a similar role and that diversion may have been associated with KIS stagnation. Overall, our aim is to understand

  18. Formation and stability of cubic ice in water droplets.

    PubMed

    Murray, Benjamin J; Bertram, Allan K

    2006-01-07

    There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.

  19. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  20. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  1. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  2. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.86 Water for making ice. Only potable...

  3. Water in low-mass star-forming regions with Herschel. The link between water gas and ice in protostellar envelopes

    NASA Astrophysics Data System (ADS)

    Schmalzl, M.; Visser, R.; Walsh, C.; Albertsson, T.; van Dishoeck, E. F.; Kristensen, L. E.; Mottram, J. C.

    2014-12-01

    Aims: Our aim is to determine the critical parameters in water chemistry and the contribution of water to the oxygen budget by observing and modelling water gas and ice for a sample of eleven low-mass protostars, for which both forms of water have been observed. Methods: A simplified chemistry network, which is benchmarked against more sophisticated chemical networks, is developed that includes the necessary ingredients to determine the water vapour and ice abundance profiles in the cold, outer envelope in which the temperature increases towards the protostar. Comparing the results from this chemical network to observations of water emission lines and previously published water ice column densities, allows us to probe the influence of various agents (e.g., far-ultraviolet (FUV) field, initial abundances, timescales, and kinematics). Results: The observed water ice abundances with respect to hydrogen nuclei in our sample are 30-80 ppm, and therefore contain only 10-30% of the volatile oxygen budget of 320 ppm. The keys to reproduce this result are a low initial water ice abundance after the pre-collapse phase together with the fact that atomic oxygen cannot freeze-out and form water ice in regions with Tdust ≳ 15 K. This requires short prestellar core lifetimes ≲0.1 Myr. The water vapour profile is shaped through the interplay of FUV photodesorption, photodissociation, and freeze-out. The water vapour line profiles are an invaluable tracer for the FUV photon flux and envelope kinematics. Conclusions: The finding that only a fraction of the oxygen budget is locked in water ice can be explained either by a short pre-collapse time of ≲0.1 Myr at densities of nH ~ 104 cm-3, or by some other process that resets the initial water ice abundance for the post-collapse phase. A key for the understanding of the water ice abundance is the binding energy of atomic oxygen on ice. Herschel is an ESA space observatory with science instruments provided by European

  4. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    PubMed

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine.

  5. The abundance and isotopic composition of water in eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; TartèSe, R.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-06-01

    Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of -34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H-isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.

  6. Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations.

    PubMed

    Milbury, Coren A; Li, Jin; Makrigiorgos, G Mike

    2011-01-01

    Identifying low-abundance mutations within wild-type DNA is important in several fields of medicine, including cancer, prenatal diagnosis and infectious diseases. However, utilizing the clinical and diagnostic potential of rare mutations is limited by sensitivity of the molecular techniques employed, especially when the type and position of mutations are unknown. We have developed a novel platform that incorporates a synthetic reference sequence within a polymerase chain reaction (PCR) reaction, designed to enhance amplification of unknown mutant sequences during COLD-PCR (CO-amplification at Lower Denaturation temperature). This new platform enables an Improved and Complete Enrichment (ice-COLD-PCR) for all mutation types and eliminates shortcomings of previous formats of COLD-PCR. We evaluated ice-COLD-PCR enrichment in regions of TP53 in serially diluted mutant and wild-type DNA mixtures. Conventional-PCR, COLD-PCR and ice-COLD-PCR amplicons were run in parallel and sequenced to determine final mutation abundance for a range of mutations representing all possible single base changes. Amplification by ice-COLD-PCR enriched all mutation types and allowed identification of mutation abundances down to 1%, and 0.1% by Sanger sequencing or pyrosequencing, respectively, surpassing the capabilities of other forms of PCR. Ice-COLD-PCR will help elucidate the clinical significance of low-abundance mutations and our understanding of cancer origin, evolution, recurrence-risk and treatment diagnostics.

  7. The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko.

    PubMed

    De Sanctis, M C; Capaccioni, F; Ciarniello, M; Filacchione, G; Formisano, M; Mottola, S; Raponi, A; Tosi, F; Bockelée-Morvan, D; Erard, S; Leyrat, C; Schmitt, B; Ammannito, E; Arnold, G; Barucci, M A; Combi, M; Capria, M T; Cerroni, P; Ip, W-H; Kuehrt, E; McCord, T B; Palomba, E; Beck, P; Quirico, E

    2015-09-24

    Observations of cometary nuclei have revealed a very limited amount of surface water ice, which is insufficient to explain the observed water outgassing. This was clearly demonstrated on comet 9P/Tempel 1, where the dust jets (driven by volatiles) were only partially correlated with the exposed ice regions. The observations of 67P/Churyumov-Gerasimenko have revealed that activity has a diurnal variation in intensity arising from changing insolation conditions. It was previously concluded that water vapour was generated in ice-rich subsurface layers with a transport mechanism linked to solar illumination, but that has not hitherto been observed. Periodic condensations of water vapour very close to, or on, the surface were suggested to explain short-lived outbursts seen near sunrise on comet 9P/Tempel 1. Here we report observations of water ice on the surface of comet 67P/Churyumov-Gerasimenko, appearing and disappearing in a cyclic pattern that follows local illumination conditions, providing a source of localized activity. This water cycle appears to be an important process in the evolution of the comet, leading to cyclical modification of the relative abundance of water ice on its surface.

  8. Rheology of water and ammonia-water ices

    NASA Technical Reports Server (NTRS)

    Goldsby, D. L.; Kohlstedt, D. L.; Durham, W. B.

    1993-01-01

    Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates.

  9. Snow-borne nanosized particles: Abundance, distribution, composition, and significance in ice nucleation processes

    NASA Astrophysics Data System (ADS)

    Rangel-Alvarado, Rodrigo Benjamin; Nazarenko, Yevgen; Ariya, Parisa A.

    2015-11-01

    Physicochemical processes of nucleation constitute a major uncertainty in understanding aerosol-cloud interactions. To improve the knowledge of the ice nucleation process, we characterized physical, chemical, and biological properties of fresh snow using a suite of state-of-the-art techniques based on mass spectrometry, electron microscopy, chromatography, and optical particle sizing. Samples were collected at two North American Arctic sites, as part of international campaigns (2006 and 2009), and in the city of Montreal, Canada, over the last decade. Particle size distribution analyses, in the range of 3 nm to 10 µm, showed that nanosized particles are the most numerous (38-71%) in fresh snow, with a significant portion (11 to 19%) less than 100 nm in size. Particles with diameters less than 200 nm consistently exhibited relatively high ice-nucleating properties (on average ranged from -19.6 ± 2.4 to -8.1 ± 2.6°C). Chemical analysis of the nanosized fraction suggests that they contain bioorganic materials, such as amino acids, as well as inorganic compounds with similar characteristics to mineral dust. The implication of nanoparticle ubiquity and abundance in diverse snow ecosystems are discussed in the context of their importance in understanding atmospheric nucleation processes.

  10. Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

    2003-01-01

    On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

  11. Hydrate sulfuric acid after sulfur implantation in water ice

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Leto, G.; Gomis, O.

    2007-12-01

    For many years an ongoing research program performed at our laboratory has had the aim to investigate the implantation of reactive ions in ices relevant to planetology by using IR spectroscopy. We present new results obtained by implanting 200 keV sulfur ions into water ice at 80 K. We have looked at the formation of sulfur-bearing molecules such as sulfuric acid, sulfur dioxide and hydrogen sulfide. We find that hydrated sulfuric acid is formed with high yield ( 0.65±0.1 molecules/ion). An upper limit to the production yield of SO 2 ( Y⩽0.025 molecules/ion) has been estimated; no hydrogen sulfide has been detected. The formation of hydrogen peroxide is confirmed. Ozone is not detected. The results are discussed relevant to the inquiry on the radiolytic sulfur cycle considered responsible for the formation of sulfur-bearing molecules on the surfaces of the Galilean satellites. We demonstrate that sulfur implantation efficiently forms hydrated sulfuric acid whose observed abundance is explained as caused by an exogenic process. It is more difficult to say if the observed sulfur dioxide is quantitatively supported by only sulfur implantation; additional experimental studies are necessary along with direct observations, especially at UV wavelengths such as those that could be performed by instruments on board Hubble Space Telescope or by the forthcoming World Space Observatory (WSO/UV).

  12. Following the Water: the Evolution of Ice-forming Regions in the Early Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.

  13. Ice Particle Impact on Cloud Water Content Instrumentation

    NASA Technical Reports Server (NTRS)

    Emery, Edward F.; Miller, Dean R.; Plaskon, Stephen R.; Strapp, Walter; Lillie, Lyle

    2004-01-01

    Determining the total amount of water contained in an icing cloud necessitates the measurement of both the liquid droplets and ice particles. One commonly accepted method for measuring cloud water content utilizes a hot wire sensing element, which is maintained at a constant temperature. In this approach, the cloud water content is equated with the power required to keep the sense element at a constant temperature. This method inherently assumes that impinging cloud particles remain on the sensing element surface long enough to be evaporated. In the case of ice particles, this assumption requires that the particles do not bounce off the surface after impact. Recent tests aimed at characterizing ice particle impact on a thermally heated wing section, have raised questions about the validity of this assumption. Ice particles were observed to bounce off the heated wing section a very high percentage of the time. This result could have implications for Total Water Content sensors which are designed to capture ice particles, and thus do not account for bouncing or breakup of ice particles. Based on these results, a test was conducted to investigate ice particle impact on the sensing elements of the following hot-wire cloud water content probes: (1) Nevzorov Total Water Content (TWC)/Liquid Water Content (LWC) probe, (2) Science Engineering Associates TWC probe, and (3) Particle Measuring Systems King probe. Close-up video imaging was used to study ice particle impact on the sensing element of each probe. The measured water content from each probe was also determined for each cloud condition. This paper will present results from this investigation and attempt to evaluate the significance of ice particle impact on hot-wire cloud water content measurements.

  14. Applying Archimedes' Law to Ice Melting in Sea Water

    NASA Astrophysics Data System (ADS)

    Noerdlinger, Peter D.; Brower, K. R.

    2006-12-01

    Archimedes stated that a floating body displaces its own weight of liquid, but his law has been widely misapplied to ice floating in the oceans by scientists who assumed that equal weights correspond to equal liquid volumes. It is often said that when floating ice melts, the sea level does not rise "because of Archimedes' law." True when ice floats in fresh water, but a myth for ice in oceans! Most ice floating in the oceans is nearly pure water. When it melts, the pure water produced has about 2.6% more volume than the salt water that was displaced, and the ocean slightly rises. It is often suggested that students demonstrate the "fact" of no rise in the sea surface by melting ice cubes floating in a glass of water; such a demonstration even appears in the movie "An Inconvenient Truth." Let's teach students to spot such errors. We highlight a couple more "surprise issues." First, the density of the floating ice, if it is free of salt and dirt, is irrelevant, so long as it floats. Next, when "grounded" ice (resting on land), enters the sea, it initially displaces less water than its melted form will eventually add to the sea. Thus, an event of that kind, such as formation of an iceberg, produces a rise of the sea level in two stages. We conclude with a series of thought-experiments that could help teachers and students discern the correct result, and a photo of a demonstration.

  15. Determination of Ice Water Path in Ice-over-Water Cloud Systems Using Combined MODIS and AMSR-E Measurements

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Yi, Yuhong; Fan, T.-F.; Sun-Mack, Sunny; Ayers, J. K.

    2006-01-01

    To provide more accurate ice cloud properties for evaluating climate models, the updated version of multi-layered cloud retrieval system (MCRS) is used to retrieve ice water path (IWP) in ice-over-water cloud systems over global ocean using combined instrument data from the Aqua satellite. The liquid water path (LWP) of lower layer water clouds is estimated from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) measurements. With the lower layer LWP known, the properties of the upper-level ice clouds are then derived from Moderate Resolution Imaging Spectroradiometer measurements by matching simulated radiances from a two-cloud layer radiative transfer model. Comparisons with single-layer cirrus systems and surface-based radar retrievals show that the MCRS can significantly improve the accuracy and reduce the over-estimation of optical depth and ice water path retrievals for ice over-water cloud systems. During the period from December 2004 through February 2005, the mean daytime ice cloud optical depth and IWP for overlapped ice-over-water clouds over ocean from Aqua are 7.6 and 146.4 gm(sup -2), respectively, significantly less than the initial single layer retrievals of 17.3 and 322.3 gm(sup -2). The mean IWP for actual single-layer clouds was 128.2 gm(sup -2).

  16. Investigation of surface water behavior during glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Turnock, Stephen R.

    1990-01-01

    A series of experimental investigations that focused on isolating the primary factors that control the behavior of unfrozen surface water during glaze ice accretion were conducted. Detailed microvideo observations were made of glaze ice accretions on 2.54 cm diam cylinders in a closed-loop refrigerated wind tunnel. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film, a rough zone where surface tension effects caused coalescence of surface water into stationary beads, and a zone where surface water ran back as rivulets. The location of the transition from the smooth to the rough zone was found to migrate towards the stagnation point with time. Comparative tests were conducted to study the effect of the substrate thermal and roughness properties on ice accretion. The importance of surface water behavior was evaluated by the addition of a surface tension reducing agent to the icing tunnel water supply, which significantly altered the accreted glaze ice shape. Measurements were made to determine the contact angle behavior of water droplets on ice. A simple multizone modification to current glaze ice accretion models was proposed to include the observed surface roughness behavior.

  17. Dynamic Ice-Water Interactions Form Europa's Chaos Terrains

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Schmidt, B. E.; Patterson, G. W.; Schenk, P.

    2011-12-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. We present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. This model is consistent with key observations of chaos, predicts observables for future missions, and indicates that the surface is likely still active today[1]. We apply lessons from ice-water interaction in the terrestrial cryosphere to hypothesize a dynamic lense-collapse model to for Europa's chaos terrain. Chaos terrain morphology, like that of Conamara chaos and Thera Macula, suggests a four-phase formation [1]: 1) Surface deflection occurs as ice melts over ascending thermal plumes, as regularly occurs on Earth as subglacial volcanoes activate. The same process can occur at Europa if thermal plumes cause pressure melt as they cross ice-impurity eutectics. 2) Resulting hydraulic gradients and driving forces produce a sealed, pressurized melt lense, akin to the hydraulic sealing of subglacial caldera lakes. On Europa, the water cannot escape the lense due to the horizontally continuous ice shell. 3) Extension of the brittle ice lid above the lense opens cracks, allowing for the ice to be hydrofractured by pressurized water. Fracture, brine injection and percolation within the ice and possible iceberg toppling produces ice-melange-like granular matrix material. 4) Refreezing of the melt lense and brine-filled pores and cracks within the matrix results in raised chaos. Brine soaking and injection concentrates the ice in brines and adds water volume to the shell. As this englacial water freezes, the now water-filled ice will expand, not unlike the process of forming pingos and other "expansion ice" phenomena on Earth. The refreezing can raise the surface and create the oft-observed matrix "domes" In this presentation, we describe how catastrophic ice-water interactions on Earth have

  18. Tracing water ice and chromophores across Saturn's moons and rings

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Nicholson, P. D.; Clark, R. N.; Cruikshank, D. P.; Cuzzi, J. N.; Hedman, M. M.; Buratti, B. J.; Cerroni, P.; Tosi, F.; Jaumann, R.; Stephan, K.; Brown, R. H.

    2012-12-01

    The radial distribution of surface water ice and chromophores across Saturn's rings, regular and minor satellites is traced using Cassini-VIMS (Visual and Infrared Mapping Spectrometer) data. Reflectance spectra of these different objects are analyzed and clustered in spectral classes using specific VIS-IR indicators applied to VIMS datasets (Filacchione et al., 2012). Specifically, we report about the results retrieved from the analysis of about 3,000 disk-integrated observations of the icy satellites and ten ring's radial mosaics. Surface compositions and regolith properties are inferred through the comparison with laboratory and synthetic spectra of analogue icy materials. For each target it is essential to process as many observations taken at different illumination conditions as possible, in order to decouple the phase response from spectral analysis for both spectral slopes and band depth: we have observed infact a significant reduction in band depth at low phases caused by multiple scattering, which dominates single scattering on the continuum wings. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths (Cuzzi et al., 2009, 2010). Chromophores mixed in ice are constrained thanks to their characteristic reddening shown at visible wavelengths (Nicholson et al., 2008). With the exclusion of Phoebe and the dark material coating Iapetus' leading hemisphere (Clark et al., 2012), VIMS data display that the water ice radial distribution, traced using the 1.5-2.0 micron band depths, is almost constant across the entire saturnian system and reaches maximum abundances on A-B rings and Calypso. The maximum visual reddening is measured across the A-B rings and on Rhea and Hyperion. Moreover our analysis allows us to recognize several other specific effects characterizing the saturnian population, like: 1) the dichotomy between regular satellites leading and trailing hemispheres caused by the

  19. Isotopic Fractionation of Water-Ice from Sublimation

    NASA Astrophysics Data System (ADS)

    Christensen, E.; Boyer, C.; Park, M.; Gormally, J.; Benitez, E.; Dominguez, G.

    2015-12-01

    Elizabeth Christensen, Charisa Boyer, Manesseh Park, Ezra Benitez, Gerardo Dominguez Understanding the multi-isotopic fractionation of water-ice that results from its sublimation may be important for understanding the isotopic composition of cometary ices. Here we describe an experimental setup whose purpose is to understand the effects of various astrophysical processes on the δD and δ18O and δ17O composition of water-ices. Our setup consists of an ultrahigh vacuum (UHV) chamber with oil free pumping, a closed cycle He cryostat to achieve low temperatures (capable of reaching 6K), and a vacuum line connected to the chamber via a UHV feed-through. Water isotopologues H216O, H218O, H217O, and HD16O samples can be measured after sublimation of water-ice with a cavity ring-down spectrometer (Picarro L2120-i) that is connected to the vacuum line. To perform these experiments, ambient water vapor was introduced into, frozen, and purified inside the UHV chamber (T< 150 K). Water-ice samples were sublimated for varying amounts of time to collect various fractions of the original reservoir. We will present the first results on the oxygen and deuterium isotopic fractionation of water-ice sublimation and discuss their implications for interpreting the isotopic compositions of cometary ices.

  20. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70 K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  1. Rapid Variability of Water Vapor Abundance in the Venus Mesosphere

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Melnick, G. J.; Tolls, V.; Bergin, E. A.; Patten, B. M.

    2006-09-01

    We present the first detections of the water vapor ground-state rotational transition (at 556.9 GHz) and the 13CO(5-4) rotational transition (at 550.9 GHz) from the atmosphere of Venus, obtained with the Submillimeter Wave Astronomy Satellite (SWAS). These submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. Complementary observations of the 12CO(2-1) rotational transition (at 230.5 GHz) were obtained concurrently with the Submillimeter Array (SMA) to help constrain global atmospheric parameters. The water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the water line in December 2002 and July 2004, and no detections in January and March of 2004. Using a multi-transition inversion algorithm (combining temperature, carbon monoxide, and water profile retrieval under some constraints), we retrieved or found upper limits for the globally averaged mesospheric water vapor abundance for each period, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. The observations from December 2002 detected very rapid changes in water vapor abundance. Over five days, a deep ground-state water absorption feature consistent with a water abundance of 4.5±1.5 ppm suddenly gave way to a significantly shallower absorption, implying a decrease in the water abundance by a factor of nearly 50 in less than 48 hours. In 2004 similar changes in water vapor abundance are seen between the March and July SWAS observing periods, but variability on timescales of less than a week was not detected. M.A.G. gratefully acknowledges support from NASA contract NAG5-7946. G.J.M., V.T., E.A.B, and B.M.P. were supported by

  2. Mars atmospheric water vapor abundance: 1996-1997

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  3. The structural changes of water ice I during warmup

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Blake, David F.

    1994-01-01

    The polymorph transitions of vapor deposited water ice I during warmup from 15 K to 210 K was mapped by means of selected area electron diffraction. The polymorph transitions account for many phenomena observed in laboratory analog studies of cometary outgassing and radial diffusion in UV photolyzed interstellar ices.

  4. INTERSTELLAR ICES AS WITNESSES OF STAR FORMATION: SELECTIVE DEUTERATION OF WATER AND ORGANIC MOLECULES UNVEILED

    SciTech Connect

    Cazaux, S.; Spaans, M.; Caselli, P.

    2011-11-10

    Observations of star-forming environments revealed that the abundances of some deuterated interstellar molecules are markedly larger than the cosmic D/H ratio of 10{sup -5}. Possible reasons for this pointed to grain surface chemistry. However, organic molecules and water, which are both ice constituents, do not enjoy the same deuteration. For example, deuterated formaldehyde is very abundant in comets and star-forming regions, while deuterated water rarely is. In this paper, we explain this selective deuteration by following the formation of ices (using the rate equation method) in translucent clouds, as well as their evolution as the cloud collapses to form a star. Ices start with the deposition of gas-phase CO and O onto dust grains. While reaction of oxygen with atoms (H or D) or molecules (H{sub 2}) yields H{sub 2}O (HDO), CO only reacts with atoms (H and D) to form H{sub 2}CO (HDCO, D{sub 2}CO). As a result, the deuteration of formaldehyde is sensitive to the gas D/H ratio as the cloud undergoes gravitational collapse, while the deuteration of water strongly depends on the dust temperature at the time of ice formation. These results reproduce well the deuterium fractionation of formaldehyde observed in comets and star-forming regions and can explain the wide spread of deuterium fractionation of water observed in these environments.

  5. Automated detection of Martian water ice clouds: the Valles Marineris

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Munetomo, Takafumi; Hatanaka, Yuji; Okumura, Susumu

    2016-10-01

    We need to extract water ice clouds from the large number of Mars images in order to reveal spatial and temporal variations of water ice cloud occurrence and to meteorologically understand climatology of water ice clouds. However, visible images observed by Mars orbiters for several years are too many to visually inspect each of them even though the inspection was limited to one region. Therefore, an automated detection algorithm of Martian water ice clouds is necessary for collecting ice cloud images efficiently. In addition, it may visualize new aspects of spatial and temporal variations of water ice clouds that we have never been aware. We present a method for automatically evaluating the presence of Martian water ice clouds using difference images and cross-correlation distributions calculated from blue band images of the Valles Marineris obtained by the Mars Orbiter Camera onboard the Mars Global Surveyor (MGS/MOC). We derived one subtracted image and one cross-correlation distribution from two reflectance images. The difference between the maximum and the average, variance, kurtosis, and skewness of the subtracted image were calculated. Those of the cross-correlation distribution were also calculated. These eight statistics were used as feature vectors for training Support Vector Machine, and its generalization ability was tested using 10-fold cross-validation. F-measure and accuracy tended to be approximately 0.8 if the maximum in the normalized reflectance and the difference of the maximum and the average in the cross-correlation were chosen as features. In the process of the development of the detection algorithm, we found many cases where the Valles Marineris became clearly brighter than adjacent areas in the blue band. It is at present unclear whether the bright Valles Marineris means the occurrence of water ice clouds inside the Valles Marineris or not. Therefore, subtracted images showing the bright Valles Marineris were excluded from the detection of

  6. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice.

    PubMed

    Klein, Eric S; Cherry, J E; Young, J; Noone, D; Leffler, A J; Welker, J M

    2015-05-29

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ(18)O, δ(2)H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ(18)O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle.

  7. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice

    PubMed Central

    Klein, Eric S.; Cherry, J. E.; Young, J.; Noone, D.; Leffler, A. J.; Welker, J. M.

    2015-01-01

    Rapid Arctic warming is associated with important water cycle changes: sea ice loss, increasing atmospheric humidity, permafrost thaw, and water-induced ecosystem changes. Understanding these complex modern processes is critical to interpreting past hydrologic changes preserved in paleoclimate records and predicting future Arctic changes. Cyclones are a prevalent Arctic feature and water vapor isotope ratios during these events provide insights into modern hydrologic processes that help explain past changes to the Arctic water cycle. Here we present continuous measurements of water vapor isotope ratios (δ18O, δ2H, d-excess) in Arctic Alaska from a 2013 cyclone. This cyclone resulted in a sharp d-excess decrease and disproportional δ18O enrichment, indicative of a higher humidity open Arctic Ocean water vapor source. Past transitions to warmer climates inferred from Greenland ice core records also reveal sharp decreases in d-excess, hypothesized to represent reduced sea ice extent and an increase in oceanic moisture source to Greenland Ice Sheet precipitation. Thus, measurements of water vapor isotope ratios during an Arctic cyclone provide a critical processed-based explanation, and the first direct confirmation, of relationships previously assumed to govern water isotope ratios during sea ice retreat and increased input of northern ocean moisture into the Arctic water cycle. PMID:26023728

  8. Searching for Water Ice at the Lunar North Pole Using High-Resolution Images and Radar

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.; Lawrence, S. J.; Robinson, M. S.; Speyerer, E. J.; Denevi, B. W.

    2017-01-01

    Permanently shadowed regions (PSRs) at the lunar poles are potential reservoirs of frozen volatiles, and are therefore high-priority exploration targets. PSRs trap water and other volatiles because their annual maximum temperatures (40-100K) are lower than the sublimation temperatures of these species (i.e. H2O approx.104K). Previous studies using various remote sensing techniques have not been able to definitively characterize the distribution or abundance of ice in lunar PSRs. The purpose of this study is to search for signs of ice in PSRs using two complimentary remote sensing techniques: radar and visible images.

  9. Exposed water ice discovered near the south pole of Mars

    USGS Publications Warehouse

    Titus, T.N.; Kieffer, H.H.; Christensen, P.R.

    2003-01-01

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  10. Exposed water ice discovered near the south pole of Mars.

    PubMed

    Titus, Timothy N; Kieffer, Hugh H; Christensen, Phillip R

    2003-02-14

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  11. Premelting and the Water Budget in Polycrystalline Ice

    NASA Astrophysics Data System (ADS)

    Thomson, E. S.; Wilen, L. A.; Wettlaufer, J. S.

    2008-12-01

    A number of mechanisms, generally classified as premelting are responsible for the presence of liquid water at ice interfaces at temperatures well below 0°C . Premelting includes the familiar colligative effects of ions and other impurities, which lower the chemical potential of the liquid solvent, and the Gibbs-Thomson effect which describes the lowering of the melting point for a solid convex into its melt. Such phenomena are known to influence the amount of water in natural and laboratory polycrystalline ice and to control the thermal, chemical, and material transport properties. Thus, liquid water within the solid ice matrix influences the behavior of terrestrial ice over a wide range of length and time scales, from the macroscopic behavior of temperate glacier ice to the distribution of climate proxies within polar ice sheets. Using optical microscopy observations of ice near its melting temperature, rough bounds have been put on the length scales and dihedral angle associated with the liquid network in ice. However, these techniques cannot resolve whether the boundary between any two grains is wet or dry. For this, a more refined light scattering method has been developed. This method and the results are described both in the context of the basic physics and the application to the geophysical setting. The importance of this approach is broad, with implications ranging from the understanding of the role of intermolecular forces in the wetting properties of the ice/ice interface to constructing a budget for the total amount of water in an ice sheet. Additionally, basic applications of grain boundary melting are important in fields from metallurgy and materials science to mineral physics and geoengineering.

  12. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.

    PubMed

    Zhao, Wen-Hui; Wang, Lu; Bai, Jaeil; Yuan, Lan-Feng; Yang, Jinlong; Zeng, Xiao Cheng

    2014-08-19

    Understanding phase behavior of highly confined water, ice, amorphous ice, and clathrate hydrates (or gas hydrates), not only enriches our view of phase transitions and structures of quasi-two-dimensional (Q2D) solids not seen in the bulk phases but also has important implications for diverse phenomena at the intersection between physical chemistry, cell biology, chemical engineering, and nanoscience. Relevant examples include, among others, boundary lubrication in nanofluidic and lab-on-a-chip devices, synthesis of antifreeze proteins for ice-growth inhibition, rapid cooling of biological suspensions or quenching emulsified water under high pressure, and storage of H2 and CO2 in gas hydrates. Classical molecular simulation (MD) is an indispensable tool to explore states and properties of highly confined water and ice. It also has the advantage of precisely monitoring the time and spatial domains in the sub-picosecond and sub-nanometer scales, which are difficult to control in laboratory experiments, and yet allows relatively long simulation at the 10(2) ns time scale that is impractical with ab initio molecular dynamics simulations. In this Account, we present an overview of our MD simulation studies of the structures and phase behaviors of highly confined water, ice, amorphous ice, and clathrate, in slit graphene nanopores. We survey six crystalline phases of monolayer (ML) ice revealed from MD simulations, including one low-density, one mid-density, and four high-density ML ices. We show additional supporting evidence on the structural stabilities of the four high-density ML ices in the vacuum (without the graphene confinement), for the first time, through quantum density-functional theory optimization of their free-standing structures at zero temperature. In addition, we summarize various low-density, high-density, and very-high-density Q2D bilayer (BL) ice and amorphous ice structures revealed from MD simulations. These simulations reinforce the notion that

  13. Radiation Chemistry in Ammonia-Water Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  14. Water vapor, water-ice clouds, and dust in the North Polar Region

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Michael D.; Bass, Deborah S.; Hale, Amy S.

    2006-01-01

    The behavior of water vapor, water-ice and dust in the Martian atmosphere is important for understanding the overall Martian climate system, which is characterized by three main cycles: water, including water-ice, dust, and CO2. Understanding these cycles will lend insight into the behavior of the atmospheric dynamics, the atmosphere's ability to transport dust, water-ice, and vapor to different parts of the planet, and how that ability changes as a function of dust and water-ice loading.

  15. Photochemistry of alkyl bromides trapped in water ice films

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Okaikwei, B.; Bluszcz, Th.

    2012-04-01

    Photochemical reactions of atmospheric trace gases taking place at the surface of atmospheric ice particles and in bulk ice are important in stratospheric and tropospheric chemistry but also in polar and alpine snowpack chemistry. Consequently, the understanding of the uptake und incorporation of atmospheric trace gases in water ice as well as their interactions with water molecules is very important for the understanding of processes which occur in ice particles and at the air/ice interface. Reactive atmospheric trace gases trapped in ice are subject of photochemical reactions when irradiated with solar UV radiation. Among such compounds bromine species are highly interesting due to their potential of depleting ozone both in the stratosphere and troposphere. Organic bromine gases can carry bromine to the stratosphere. Methyl bromide (CH3Br) is the largest bromine carrier to the stratosphere. It has both natural and anthropogenic sources. In this contribution we will present the results of our laboratory studies of alkyl bromides (methyl, bromide (CH3Br), dimethyl bromide (CH2Br2), n-propyl bromide (C3H7Br), 1,2-dibromoethane C2H4Br2)), trapped in water ice. We have simulated the UV photochemistry of these brominated alkanes isolated in ice films kept at 16 K and for comparison in solid argon matrices. The photoproducts formed in the ice have been identified by means of FTIR spectroscopy. Reflection absorption infrared spectroscopy (RAIRS) is especially useful to study nascent ice surfaces, kinetics of adsorption/decomposition, and heterogeneous catalysis. Among the observed photoproducts we could identify carbon monoxide and carbon dioxide for each alkyl bromide studied. The photoproduct HBr is dissociated in the bulk ice. Based on the experimental observations possible reaction mechanisms will be discussed.

  16. A NEW SOURCE OF CO{sub 2} IN THE UNIVERSE: A PHOTOACTIVATED ELEY-RIDEAL SURFACE REACTION ON WATER ICES

    SciTech Connect

    Yuan, Chunqing; Cooke, Ilsa R.; Yates, John T. Jr.

    2014-08-20

    CO{sub 2} is one of the most abundant components of ices in the interstellar medium; however, its formation mechanism has not been clearly identified. Here we report an experimental observation of an Eley-Rideal-type reaction on a water ice surface, where CO gas molecules react by direct collisions with surface OH radicals, made by photodissociation of H{sub 2}O molecules, to produce CO{sub 2} ice on the surface. The discovery of this source of CO{sub 2} provides a new mechanism to explain the high relative abundance of CO{sub 2} ice in space.

  17. Water and Carbon Dioxide Ices-Rich Areas on Comet 67P/CG Nucleus Surface

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Raponi, A.; De Sanctis, M. C.; Ciarniello, M.; Barucci, M. A.; Tosi, F.; Migliorini, A.; Capria, M. T.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Arnold, G.; Kappel, D.; McCord, T. B.

    2017-01-01

    So far, only two ice species have been identified by Rosetta/VIRTIS-M [1] on the surface of 67P/Churyumov-Gerasimenko during the pre-perihelion time: crystalline water and carbon dioxide ice. Water ice has been spectroscopically identified in three distinct modalities: 1) On the active areas of Hapi region where water ice changes its abundance with local time and illumination conditions, condensing during the night hours and sublimating during daytime [2]; 2) On recent debris fields collapsed from two elevated structures in the Imhotep region where more fresh and pristine material is exposed [3]; 3) On eight bright areas located in Khonsu, Imhotep, Anhur, Atum and Khepry regions [4] where single or multiple grouped icy patches with sizes ranging between few meters to about 60 m are observed. Carbon dioxide ice has been detected only in a 60-80 m area in Anhur region while it was exiting from a four year-long winter-night season [5]. This ice deposit underwent a rapid sublimation, disappearing in about one month after its initial detection. While water and carbon dioxide ice appear always mixed with the ubiquitous dark material [6,7], there are no evidences of the presence of water and carbon dioxide ices mixed together in the same area. If observed, ices always account for very small fraction (few percent) with respect to the dark material. Moreover, the surface ice deposits are preferentially located on the large lobe and the neck while they are absent on the small lobe. Apart from these differences in the spatial distribution of ices on the surface, a large variability is observed the mixing modalities and in the grain size distributions, as retrieved from spectral modeling [8]: 1) very small μm-sized water ice grains in intimate mixing with the dark terrain are detected on Hapi active regions [2]; 2) two monodispersed distributions with maxima at 56 μm and at 2 mm, corresponding to the intimate and areal mixing classes, are observedon the Imhotep debris

  18. High-resolution subsurface water-ice distributions on Mars.

    PubMed

    Bandfield, Joshua L

    2007-05-03

    Theoretical models indicate that water ice is stable in the shallow subsurface (depths of <1-2 m) of Mars at high latitudes. These models have been mainly supported by the observed presence of large concentrations of hydrogen detected by the Gamma Ray Spectrometer suite of instruments on the Mars Odyssey spacecraft. The models and measurements are consistent with a water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has predicted that the depth at which water ice is stable can be highly variable, owing to local surface heterogeneities such as rocks and slopes, and the thermal inertia of the ground cover. Measurements have, however, been limited to the footprint (several hundred kilometres) of the Gamma Ray Spectrometer suite, preventing the observations from documenting more detailed water-ice distributions. Here I show that by observing the seasonal temperature response of the martian surface with the Thermal Emission Imaging System on the Mars Odyssey spacecraft, it is possible to observe such heterogeneities at subkilometre scale. These observations show significant regional and local water-ice depth variability, and, in some cases, support distributions in the subsurface predicted by atmospheric exchange and vapour diffusion models. The presence of water ice where it follows the depth of stability under current climatic conditions implies an active martian water cycle that responds to orbit-driven climate cycles. Several regions also have apparent deviations from the theoretical stability level, indicating that additional factors influence the ice-table depth. The high-resolution measurements show that the depth to the water-ice table is highly variable within the potential Phoenix spacecraft landing ellipses, and is likely to be variable at scales that may be sampled by the spacecraft.

  19. Magnetospheric ion sputtering and water ice grain size at Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Paranicas, C. P.; Shirley, J. H.; Dalton, J. B., III; Teolis, B. D.; Johnson, R. E.; Kamp, L.; Hendrix, A. R.

    2013-03-01

    NIMS data from an area on the trailing hemisphere apex. We find a high abundance of sulfuric acid hydrate and radiation-resistant hydrated salts along with large water ice regolith grains, all of which are consistent with the high levels of magnetospheric bombardment at the trailing apex.

  20. Creep of water ices at planetary conditions: A compilation

    USGS Publications Warehouse

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1997-01-01

    Many constitutive laws for the flow of ice have been published since the advent of the Voyager explorations of the outer solar system. Conflicting data have occasionally come from different laboratories, and refinement of experimental techniques has led to the publication of laws that supersede earlier ones. In addition, there are unpublished data from ongoing research that also amend the constitutive laws. Here we compile the most current laboratory-derived flow laws for water ice phases I, II, III, V, and VI, and ice I mixtures with hard particulates. The rheology of interest is mainly that of steady state, and the conditions reviewed are the pressures and temperatures applicable to the surfaces and interiors of icy moons of the outer solar system. Advances in grain-size-dependent creep in ices I and II as well as in phase transformations and metastability under differential stress are also included in this compilation. At laboratory strain rates the several ice polymorphs are rheologically distinct in terms of their stress, temperature, and pressure dependencies but, with the exception of ice III, have fairly similar strengths. Hard particulates strengthen ice I significantly only at high particulate volume fractions. Ice III has the potential for significantly affecting mantle dynamics because it is much weaker than the other polymorphs and its region of stability, which may extend metastably well into what is nominally the ice II field, is located near likely geotherms of large icy moons. Copyright 1997 by the American Geophysical Union.

  1. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  2. Anchored Clathrate Waters Bind Antifreeze Proteins to Ice

    SciTech Connect

    C Garnham; R Campbell; P Davies

    2011-12-31

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca{sup 2+}-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP{vert_ellipsis}ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the 'anchored clathrate' mechanism of AFP action.

  3. External Sources of Water for Mercury's Putative Ice Deposits

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Rawlins, Katherine; Zahnle, Kevin; Dones, Luke

    1999-01-01

    Radar images have revealed the possible presence of ice deposits in Mercury's polar regions. Although thermal models indicate that water ice can be stable in permanently shaded regions near Mercury's poles, the ultimate source of the water remains unclear. We use stochastic models and other theoretical methods to investigate the role of external sources in supplying Mercury with the requisite amount of water. By extrapolating the current terrestrial influx of interplanetary dust particles to that at Mercury, we find that continual micrometeoritic bombardment of Mercury over the last 3.5 byr could have resulted in the delivery of (3-60) x 10(exp 16) grams of water ice to the permanently shaded regions at Mercury's poles (equivalent to an average ice thickness of 0.8-20 m). Erosion by micrometeoritic impact on exposed ice deposits could reduce the above value by about a half. For comparison, the current ice deposits on Mercury are believed to be somewhere between approx. 2 and 20 m thick. Using a Monte Carlo model to simulate the impact history of Mercury, we find that asteroids and comets can also deliver an amount of water consistent with the observations. Impacts from Jupiter-family comets over the last 3.5 billion years can supply (0.1-200) x 10(exp 16) grams of water to Mercury's polar regions (corresponding to ice deposits 0.05-60 m thick), Halley-type comets can supply (0.2-20) x 10(exp 16) grams of water to the poles (0.07-7 m of ice), and asteroids can provide (0.4-20) x 10(exp 16) grams of water to the poles (0.1-8 m of ice). Although all these external sources are nominally sufficient to explain the estimated amount of ice currently at Mercury's poles, impacts by a few large comets and/or asteroids seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury. Despite their low population estimates in the inner solar system, Jupiter-family comets are particularly promising candidates for delivering water to Mercury

  4. Instability of water-ice interface under turbulent flow

    NASA Astrophysics Data System (ADS)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa

    2015-04-01

    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  5. Thin Water and Ice Films at Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  6. Water Vapour Abundance and Distribution in the Lower Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Chamberlain, S.; Bailey, J.

    2012-04-01

    We present ground-based observations and modelling studies of water vapour abundance and distribution in the Venusian lower atmosphere through analysis of absorption band depths within the 1.18 μm window. The lower atmosphere of Venus is difficult to study by both in situ and remote instruments. This is due to the planet wide cloud cover that obscures visual wavelengths and surface pressures approaching 100 times that of the Earth. In 1984 ground based observations resulted in the discovery of atmospheric windows on the Venusian nightside (Allen and Crawford, 1984). Here, near infrared radiation originating at the surface and lower atmosphere, pass relatively unimpeded through the Venus clouds. This discovery enabled remote studies of the Venusian subcloud region. Determining the abundance and distribution of water vapour is key to understanding the development, maintenance and links between major radiative and dynamical features of the Venus atmosphere. Water vapour in the lower atmosphere plays an important role in heat transfer and is pertinent to the runaway greenhouse effect and dynamical superrotation observed on Venus. Detailed studies of water vapour abundance and distribution throughout the lower atmosphere of Venus are therefore needed in order to develop accurate chemical, radiative and dynamical models. Ground-based spatially resolved near infrared spectroscopic observations of the Venusian nightside have been obtained from Siding Spring Observatory at each inferior conjunction since 2002. Observations have been made using the IRIS2 instrument on the Anglo-Australian Telescope and CASPIR on the 2.3m ANU telescope. The model VSTAR (Bailey and Kedziora-Chudczer 2012) is used to simulate the observed Venus spectra as seen through the Earth's atmosphere and best fit water vapour abundances are found for approximately 300 locations across the Venus nightside disk. Recent improvements in ground-based near-infrared instruments allow a substantial improvement

  7. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  8. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    SciTech Connect

    Mousis, Olivier; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  9. Multispectral comparison of water ice deposits observed on cometary nuclei

    NASA Astrophysics Data System (ADS)

    Oklay Vincent, Nilda; Sunshine, Jessica M.; Pajola, Maurizio; Pommerol, Antoine; Vincent, Jean-Baptiste; Sierks, Holger; OSIRIS Team

    2016-10-01

    Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Each of these three missions was equipped with multispectral cameras, allowing imaging at various wavelengths from NUV to NIR. In this spectral range, water ice-rich features display bluer spectral slopes than the average surface and some have very flat spectra. Features enriched in water ice are bright in the monochromatic images and are blue in the RGB color composites generated by using images taken in NUV, visible and NIR wavelentghs. Using these properties, water ice-rich features were detected on the nuclei of comets 9P [1], 103P [2] and 67P [3] via multispectral imaging cameras. Moreover, there were visual detections of jets and outbursts associated to some of these water ice-rich features when the right observing conditions were fulfilled [4, 5].We analyzed multispectral properties of different types of water ice-rich features [3] observed via OSIRIS NAC on comet 67P in the wavelength range of 260 nm to 1000 nm and then compared with those observed on comets 9P and 103P. Our multispectral analysis shows that the water ice deposits observed on comet 9P are very similar to the large bright blue clusters observed on comet 67P, while the large water ice deposit observed on comet 103P is similar to the large isolated water ice-rich features observed on comet 67P. The ice-rich deposits on comet 103P are the bluest of any comet, which indicates that the deposits on 103P contain more water ice than the ones observed on comets 9P and 67P [6].[1] Sunshine et al 2006, Science[2] Sunshine et al 2011, LPSC[3] Pommerol et al 2015, A&A[4] Oklay et al 2016, A&A[5] Vincent et al 2016, A&A[6] Oklay et al 2016, submitted

  10. Predicting the abundance of ice nucleating particles of biological origin in precipitation

    NASA Astrophysics Data System (ADS)

    Stopelli, Emiliano; Conen, Franz; Morris, Cindy; Alewell, Christine

    2016-04-01

    Ice nucleation is a key step for the formation of precipitation on Earth. Ice nucleating particles (INPs) of biological origin catalyse the freezing of supercooled cloud droplets at temperatures warmer than -12 ° C. In order to understand the effective role of these INPs in conditioning precipitation, it is of primary importance to describe and predict their variability in the atmosphere. Over the course of two years, 14 sampling campaigns in precipitating clouds were conducted at the High Altitude Research Station Jungfraujoch, in the Swiss Alps, at 3580 m a.s.l. A total of 106 freshly fallen snow samples were analysed immediately on site for the concentration of INPs active at -8 ° C (INPs-8) by immersion freezing. Values of INPs-8 ranged from 0.21 to 434ṡml-1. Environmental parameters (like temperature of the air, wind speed, the stable oxygen ratio δ18O of snow, the number of particles larger than 0.5 μm) were used as independent variables to build a set of multiple linear regression models to describe and predict the observed variations of INPs-8 over time. The model providing the best results was based on fV (the fraction of remaining vapour in precipitating clouds, derived from δ18O) and on wind speed. It indicates that a coincidence of strong atmospheric turbulence and little prior precipitation from a cloud coincides with large concentrations of INPs-8. These conditions can be frequently encountered when air masses are suddenly forced to rise, for instance by the passage of a cold front, where also meteorological conditions are favourable to the onset of precipitation. To obtain more information on the presence of INPs-8 of biological origin and their relative composition, a set of precipitation samples were progressively filtered through different meshes (5 μm, 1.2 μm, 0.22 μm) followed by heating (40 ° C and 80 ° C). Almost all ice nucleating activity is lost after heating at 80 ° C, and a significant part of INPs-8 is sensitive to warming

  11. Systematic Variations in CO2/H2O Ice Abundance Ratios in Nearby Galaxies Found with AKARI Near-infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.

    2015-07-01

    We report CO2/H2O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5-5.0 μm) spectra. The CO2/H2O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO2/H2O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO2/H2O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO2/H2O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO2/H2O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO2/H2O ice abundance ratios tend to be high in young star-forming galaxies.

  12. Anchored clathrate waters bind antifreeze proteins to ice.

    PubMed

    Garnham, Christopher P; Campbell, Robert L; Davies, Peter L

    2011-05-03

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca(2+)-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFPice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the "anchored clathrate" mechanism of AFP action.

  13. Amorphous and polycrystalline water ices in space environments

    NASA Astrophysics Data System (ADS)

    Andrade, Diana; Pilling, Sergio; Da Silveira, Enio; Barros, Ana

    2016-07-01

    Ices are an important reservoir of more complex molecular species in several space environments, containing information about the composition and formation of these regions. Water ice is the dominant constituent of interstellar ices in most lines of sight and is about 70 % of the composition in comets, being a key molecule in astrochemical models. It is believed that one of the reactive species possibly evaporated from the water ices is the hydronium ion, H_{3}O^{+}, which plays an important role in the oxygen chemistry network. This ion has been detected in the lunar surface of Enceladus and Titan, and toward the Sagittarius B2 molecular Clouds, where H_{2}O and OH were also identified. In this work, the ion desorption due to radiolysis in ices constituted by water at three different temperatures (40, 70 and 125 K) is studied, to investigate the different allotropic water ices. A discussion on the rate of H_{3}O^{+} and water delivered to gas phase, as well as the half-life of water ice grains, inside dense molecular clouds considering a constants cosmic ray flux is given. The ions desorbed from water ice have been mass/charge analyzed by a time-of-flight spectrometer. Among the results, it is seen that in the positive ion spectrum of high density amorphous water ice at 40 K the highest desorption yields (ejected ions/impact) correspond to H^{+}, H_{3}O^{+} and clusters formed by (H_{2}O)_{n}R^{+}, where R^{+} is H_{3}O^{+} and 1 ≤ n ≤ 25. At T = 125 K, the ice is in its low density polycrystalline form and new clusters are present, such as (H_{2}O)_{n}R^{+}, where R^{+} is H_{2}^{+} and H_{3}^{+} (for low n), beyond H_{3}O^{+}. Therefore, it is seen that (H_{2}O)_{n}H_{3}O^{+} series (with n between 1 and 25) is dominant in all cases. The H_{3}O^{+} desorption yield at 40 K is about 5times10^{-3} ions/impact. This value is 4-5 times higher than the one obtained at T > 125 K. This behavior is also seen to all series member and consequently to the sum (Yn).

  14. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  15. Sea Ice Ecosystems

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  16. Analysis of water ice and ice/dust mixtures using laser-induced breakdown spectroscopy (LIBS).

    SciTech Connect

    Cremers, D. A.; Brown, Kari; Gibson, L. E.; Ferris, M. J.; Wiens, R. C.; Maurice, S.

    2003-01-01

    In 1992, LIBS was proposed as a new method for stand-off detection of geological samples for use on landers and rovers to Mars. Recently, there has been increased interest in the technique for this and other space applications and studies have determined some of the characteristics and capabilities of the method under the conditions that these measurements will have to be made. In addition to rocks and soils, there is interest in using LIBS to analyze ices and dusts entrained in ice . This is especially true for missions to the Mars polar regions . Of particular interest is determining the nature of polar layered deposits, the geochemistry of polar surface materials, detection of water ice and the distribution of ice, and the presence of possible organics in these materials (via C/N ratios)

  17. Zooplankton abundance and biomass size spectra in the East Antarctic sea-ice zone during the winter-spring transition

    NASA Astrophysics Data System (ADS)

    Wallis, Jake R.; Swadling, Kerrie M.; Everett, Jason D.; Suthers, Iain M.; Jones, Hugh J.; Buchanan, Pearse J.; Crawford, Christine M.; James, Lainey C.; Johnson, Robert; Meiners, Klaus M.; Virtue, Patti; Westwood, Karen; Kawaguchi, So

    2016-09-01

    Sea ice is an influential feature in Southern Ocean-Antarctic marine environments creating a 2-phase vertical ecosystem. The lack of information on how this system influences community structure during the winter-spring transition, however, is largely lacking. Zooplankton form the link that bridges these environments, with the meiofaunal and algal communities within sea ice directly influencing the epipelagic zooplankton community at the ice-water interface. A combination of methods including sea-ice coring, umbrella net sampling and Laser Optical Plankton Counter were used to describe the vertical structure of zooplankton and meiofaunal communities. The distribution of meiofauna and chlorophyll a both played important roles in structuring the zooplankton community within this dynamic region. Many dominant taxa, including Calanus propinquus and Oithona similis, directly responded to the high availability of algae present within the bottom strata of sea ice. The sea-ice associated species Stephos longipes represented a strong link between this 2-phase ecosystem. Observations of the vertical distribution of biomass obtained from the LOPC suggests that the responses of these species to the sea ice directly influences the vertical structure of zooplankton during the winter-spring transition.

  18. Liquid water in the domain of cubic crystalline ice Ic

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.

    1997-01-01

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  19. Liquid water in the domain of cubic crystalline ice Ic.

    PubMed

    Jenniskens, P; Banham, S F; Blake, D F; McCoustra, M R

    1997-07-22

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  20. Particle Size and Abundance of HC3N Ice in Titan's Lower Stratosphere at High Northern Latitudes

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Bjoraker, G. L.; Actherberg, R. K.

    2010-01-01

    Up to now, there has been no corroboration from Cassini CIRS of the Voyager IRIS-discovery of cyanoacetylene (HC3N) ice in Titan's thermal infrared spectrum. We report the first compelling spectral evidence from CIRS for the v6 HC3N ice feature at 506 per centimeter at latitudes 62 deg. N and 70 deg. N, from which we derive particle sizes and column abundances in Titan's lower stratosphere. We find mean particle radii of 3.0 micrometers and 2.3 micrometers for condensed HC3N at 62 deg. N and 70 deg. N, respectively, and corresponding ice phase molecular column abundances in the range 1-10 x 10(exp 16) mol per square centimeter. Only upper limits for cloud abundances can be established at latitudes of 85 deg. N, 55 deg. N, 30 deg. N, 10 deg. N, and 15 deg. S. Under the assumption that cloud tops coincide with the uppermost levels at which HC3N vapor saturates, we infer geometric thicknesses for the clouds equivalent to 10-20 km or so, with tops at 165 km and 150 km at 70 deg. N and 62 Deg. N, respectively.

  1. Ice Cloud Properties in Ice-Over-Water Cloud Systems Using TRMM VIRS and TMI Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Huang, Jianping; Lin, Bing; Yi, Yuhong; Arduini, Robert F.; Fan, Tai-Fang; Ayers, J. Kirk; Mace, Gerald G.

    2007-01-01

    A multi-layered cloud retrieval system (MCRS) is updated and used to estimate ice water path in maritime ice-over-water clouds using Visible and Infrared Scanner (VIRS) and TRMM Microwave Imager (TMI) measurements from the Tropical Rainfall Measuring Mission spacecraft between January and August 1998. Lookup tables of top-of-atmosphere 0.65- m reflectance are developed for ice-over-water cloud systems using radiative transfer calculations with various combinations of ice-over-water cloud layers. The liquid and ice water paths, LWP and IWP, respectively, are determined with the MCRS using these lookup tables with a combination of microwave (MW), visible (VIS), and infrared (IR) data. LWP, determined directly from the TMI MW data, is used to define the lower-level cloud properties to select the proper lookup table. The properties of the upper-level ice clouds, such as optical depth and effective size, are then derived using the Visible Infrared Solar-infrared Split-window Technique (VISST), which matches the VIRS IR, 3.9- m, and VIS data to the multilayer-cloud lookup table reflectances and a set of emittance parameterizations. Initial comparisons with surface-based radar retrievals suggest that this enhanced MCRS can significantly improve the accuracy and decrease the IWP in overlapped clouds by 42% and 13% compared to using the single-layer VISST and an earlier simplified MW-VIS-IR (MVI) differencing method, respectively, for ice-over-water cloud systems. The tropical distribution of ice-over-water clouds is the same as derived earlier from combined TMI and VIRS data, but the new values of IWP and optical depth are slightly larger than the older MVI values, and exceed those of single-layered layered clouds by 7% and 11%, respectively. The mean IWP from the MCRS is 8-14% greater than that retrieved from radar retrievals of overlapped clouds over two surface sites and the standard deviations of the differences are similar to those for single-layered clouds. Examples

  2. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Ruaud, M.; Hersant, F.; Dutrey, A.; Semenov, D.; Majumdar, L.; Guilloteau, S.

    2016-10-01

    Context. Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. Aims: We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. Methods: We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H2), and the sticking of H2 is almost negligible. Finally, the remaining model is an intermediate solution known as the encounter desorption mechanism. Results: We show that the efficiency of molecular hydrogen binding (and thus its abundance at the surface of the grains) can have a quantitative effect on the predicted column densities in the gas phase of major species such as CO, CS, CN, and HCN.

  3. Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    2004-01-01

    In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system

  4. Crystalline water ice on the Kuiper belt object (50000) Quaoar.

    PubMed

    Jewitt, David C; Luu, Jane

    2004-12-09

    The Kuiper belt is a disk-like structure consisting of solid bodies orbiting the Sun beyond Neptune. It is the source of the short-period comets and the likely repository of the Solar System's most primitive materials. Surface temperatures in the belt are low ( approximately 50 K), suggesting that ices trapped at formation should have been preserved over the age of the Solar System. Unfortunately, most Kuiper belt objects are too faint for meaningful compositional study, even with the largest available telescopes. Water ice has been reported in a handful of objects, but most appear spectrally featureless. Here we report near-infrared observations of the large Kuiper belt object (50000) Quaoar, which reveal the presence of crystalline water ice and ammonia hydrate. Crystallinity indicates that the ice has been heated to at least 110 K. Both ammonia hydrate and crystalline water ice should be destroyed by energetic particle irradiation on a timescale of about 10(7) yr. We conclude that Quaoar has been recently resurfaced, either by impact exposure of previously buried (shielded) ices or by cryovolcanic outgassing, or by a combination of these processes.

  5. WATER ICE AT THE SURFACE OF THE HD 100546 DISK

    SciTech Connect

    Honda, M.; Kudo, T.; Terada, H.; Takato, N.; Takatsuki, S.; Nakamoto, T.; Inoue, A. K.; Fukagawa, M.; Tamura, M.

    2016-04-10

    We made near-infrared multicolor imaging observations of a disk around Herbig Be star HD 100546 using Gemini/NICI. K (2.2 μm), H{sub 2}O ice (3.06 μm), and L′ (3.8 μm) disk images were obtained and we found a 3.1 μm absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on Oka et al., including the water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by both the disk models with and without the photodesorption effect within the measurement accuracy, but the model with photodesorption effects is slightly more favored, implying that the UV photons play an important role in the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement to the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.

  6. Reconciling LCROSS and Orbital Neutron Water Abundance Estimates in Cabeus Crater

    NASA Technical Reports Server (NTRS)

    Elphic, Richard; Teodoro, Luis F.; Eke, Vincent R.; Paige, David A.; Siegler, Matthew A.; Colaprete, Anthony

    2011-01-01

    The Lunar Prospector Neutron Spectrometer (LPNS) first revealed Cabeus crater (84.9 deg S, 35.5degW) as having the highest inferred hydrogen on the Moon. Because of the broad LPNS footprint (approximately 40 km FWHM), the apparent peak water-equivalent hydrogen (WEH) concentration is only approximately 0.25 wt%, but could be much higher in smaller areas than the spectrometer footprint. Earlier image reconstruction work suggested that areas within permanent shadow have abundances approximately 1 wt% WEH. However, the LCROSS impact yielded total water estimates, ice plus vapor, of between 3 and 10 wt%. The large disagreement between LCROSS and apparent orbital values imply that either the ice is buried, by perhaps as much as 50 to 100 cm; or the ice distribution within Cabeus is spatially inhomogeneous, or both. Modeling reveals that the areal extent of a "shallow permafrost zone" is far greater than the area of permanent shadow. Ice can be virtually stable for billions of years within a few tens of centimeters of the surface in these areas. However, the LCROSS impact took place in an area of permanent shadow. If stably-trapped volatiles can be found in locales that receive occasional, oblique sunlight, landed missions may target these sites and eventual resource exploitation may be done more easily. Are orbital neutron data consistent with areally-extensive, volatile-rich cold traps? Orbital epithermal neutron data over the northern half of Cabeus (near the LCROSS impact site) are consistent with 0.2 wt% WEH or less in the "permafrost zone" near the crater. On the other hand, pixon reconstructions that confine the hydrogen enhancements to permanent shadow result in higher abundance estimates -- around 1 wt% if homogeneously mixed. But if the PSR abundance is increased to 10 wt%, consistent with the sum of all H-bearing compounds seen by LCROSS, a much larger-than-observed reduction in neutron count rate would be seen from orbit. It is likely that volatiles are

  7. Salts as Water Ice Cloud Nuclei on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D.; Chuang, P. Y.; Iraci, L. T.

    2015-12-01

    In recent years, observations of the Martian surface have indicated the presence of chlorine-bearing minerals, including perchlorates, on the surface of Mars. These salt-bearing minerals would potentially be source material for dust lofted from the surface into the Martian atmosphere, thus providing potential nucleation sites for water ice clouds. Considering that salts play an important role in cloud formation on Earth, it is important to have a better understanding of how salt may affect nucleation processes under Mars-like conditions. We perform laboratory experiments to examine water ice nucleation onto salt substrates. We use a vacuum chamber that simulates the temperatures and pressures observed of the Martian atmosphere. Using infrared spectroscopy we measure the onset of nucleation and calculate the temperature-dependent critical saturation ratio (Scrit) for water ice nucleation onto salts, specifically sodium chloride and sodium perchlorate. Preliminary results of Scrit values for water ice nucleation on sodium chloride show a negative temperature dependence, as did other substrates from previous experiments. Values of Scrit are useful for understanding the realistic conditions under which water ice clouds may form on Mars, and can be used in climate models simulating clouds on Mars.

  8. D/H fractionation during the sublimation of water ice

    NASA Astrophysics Data System (ADS)

    Lécuyer, Christophe; Royer, Aurélien; Fourel, François; Seris, Magali; Simon, Laurent; Robert, François

    2017-03-01

    Experiments of sublimation of pure water ice have been performed in the temperature range -105 °C to -30 °C and atmospheric partial pressures ranging from 10-6 to 10-1 mb. Sampling of both vapour and residual ice fractions has been performed with the use of a vacuum line designed for the extraction and purification of gases before the measurement of their D/H ratios. Sublimation was responsible for sizable isotopic fractionation factors in the range 0.969-1.123 for temperatures lying between -105 °C and -30 °C. The fractionation factor exhibits a cross-over at temperatures around -50 °C with the water vapour fraction being D-depleted relative to the residual ice fraction at T < -50 °C (αice-vapour = 0.969-0.995). This cross-over has implications for the understanding of the atmospheric water cycle of some terrestrial planets such as the Earth or Mars. The magnitude of deuterium enrichment or depletion between ice and water vapour cannot explain the differences in the D/H ratios amongst Jupiter comets and long-period comets families nor those that have been documented between Earth's and cometary water.

  9. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes

    NASA Astrophysics Data System (ADS)

    Clarke, G. K.

    2006-12-01

    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  10. Ice/water Classification of Sentinel-1 Images

    NASA Astrophysics Data System (ADS)

    Korosov, Anton; Zakhvatkina, Natalia; Muckenhuber, Stefan

    2015-04-01

    Sea Ice monitoring and classification relies heavily on synthetic aperture radar (SAR) imagery. These sensors record data either only at horizontal polarization (RADARSAT-1) or vertically polarized (ERS-1 and ERS-2) or at dual polarization (Radarsat-2, Sentinel-1). Many algorithms have been developed to discriminate sea ice types and open water using single polarization images. Ice type classification, however, is still ambiguous in some cases. Sea ice classification in single polarization SAR images has been attempted using various methods since the beginning of the ERS programme. The robust classification using only SAR images that can provide useful results under varying sea ice types and open water tend to be not generally applicable in operational regime. The new generation SAR satellites have capability to deliver images in several polarizations. This gives improved possibility to develop sea ice classification algorithms. In this study we use data from Sentinel-1 at dual-polarization, i.e. HH (horizontally transmitted and horizontally received) and HV (horizontally transmitted, vertically received). This mode assembles wide SAR image from several narrower SAR beams, resulting to an image of 500 x 500 km with 50 m resolution. A non-linear scheme for classification of Sentinel-1 data has been developed. The processing allows to identify three classes: ice, calm water and rough water at 1 km spatial resolution. The raw sigma0 data in HH and HV polarization are first corrected for thermal and random noise by extracting the background thermal noise level and smoothing the image with several filters. At the next step texture characteristics are computed in a moving window using a Gray Level Co-occurence Matrix (GLCM). A neural network is applied at the last step for processing array of the most informative texture characteristics and ice/water classification. The main results are: * the most informative texture characteristics to be used for sea ice classification

  11. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    NASA Astrophysics Data System (ADS)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (<0.1-15.8 μg Chl a l -1), low brine salinities (1.8-21.7) and flushing from the melting sea ice likely explain the low ice meiofauna concentrations. Higher abundances of Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind l -1, median 40 ind l -1), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind m -2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high

  12. Upper limits to the water abundance in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wilson, C. D.; Booth, R. S.; Olofsson, A. O. H.; Olberg, M.; Persson, C. M.; Sandqvist, Aa.; Hjalmarson, Â.; Buat, V.; Encrenaz, P. J.; Fich, M.; Frisk, U.; Gerin, M.; Rydback, G.; Wiklind, T.

    2007-07-01

    Aims:We have searched for emission from the 557 GHz ortho-water line in the interstellar medium of six nearby starburst galaxies. Methods: We used the Odin satellite to observe the 110{-}101 transition of o-H2O in the galaxies NGC 253, IC 342, M 82, NGC 4258, CenA, and M 51. None of the galaxies in our sample was detected. Results: We derive three sigma upper limits to the H2O abundance relative to H2 ranging from 2×10-9 to 1×10-8. The best of these upper limits are comparable to the measured abundance of H2O in the Galactic star forming region W3. However, if only 10% of the molecular gas is in very dense cores, then the water abundance limits in the cores themselves would be larger by a factor of 10 i.e. 2×10-8 to 1×10-7. Conclusions: These observations suggest that detections of H2O emission in galaxies with the upcoming Herschel Space Observatory are likely to require on-source integration times of an hour or more except in the very brightest extragalactic targets such as M 82 and NGC 253. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Etude Spatiale (CNES). The Swedish Space Corporation has been the industrial prime contractor and also is operating the satellite.

  13. Water formation at low temperatures by surface O2 hydrogenation I: Characterization of ice penetration.

    PubMed

    Ioppolo, S; Cuppen, H M; Romanzin, C; van Dishoeck, E F; Linnartz, H

    2010-10-14

    Water is the main component of interstellar ice mantles, is abundant in the solar system and is a crucial ingredient for life. The formation of this molecule in the interstellar medium cannot be explained by gas-phase chemistry only and its surface hydrogenation formation routes at low temperatures (O, O(2), O(3) channels) are still unclear and most likely incomplete. In a previous paper we discussed an unexpected zeroth-order H(2)O production behavior in O(2) ice hydrogenation experiments compared to the first-order H(2)CO and CH(3)OH production behavior found in former studies on hydrogenation of CO ice. In this paper we experimentally investigate in detail how the structure of O(2) ice leads to this rare behavior in reaction order and production yield. In our experiments H atoms are added to a thick O(2) ice under fully controlled conditions, while the changes are followed by means of reflection absorption infrared spectroscopy (RAIRS). The H-atom penetration mechanism is systematically studied by varying the temperature, thickness and structure of the O(2) ice. We conclude that the competition between reaction and diffusion of the H atoms into the O(2) ice explains the unexpected H(2)O and H(2)O(2) formation behavior. In addition, we show that the proposed O(2) hydrogenation scheme is incomplete, suggesting that additional surface reactions should be considered. Indeed, the detection of newly formed O(3) in the ice upon H-atom exposure proves that the O(2) channel is not an isolated route. Furthermore, the addition of H(2) molecules is found not to have a measurable effect on the O(2) reaction channel.

  14. Putting life on ice: bacteria that bind to frozen water

    PubMed Central

    Bernheim, Reut; Guo, Shuaiqi; Davies, Peter L.; Braslavsky, Ido

    2016-01-01

    Ice-binding proteins (IBPs) are typically small, soluble proteins produced by cold-adapted organisms to help them avoid ice damage by either resisting or tolerating freezing. By contrast, the IBP of the Antarctic bacterium Marinomonas primoryensis is an extremely long, 1.5 MDa protein consisting of five different regions. The fourth region, a 34 kDa domain, is the only part that confers ice binding. Bioinformatic studies suggest that this IBP serves as an adhesin that attaches the bacteria to ice to keep it near the top of the water column, where oxygen and nutrients are available. Using temperature-controlled cells and a microfluidic apparatus, we show that M. primoryensis adheres to ice and is only released when melting occurs. Binding is dependent on the mobility of the bacterium and the functionality of the IBP domain. A polyclonal antibody raised against the IBP region blocks bacterial ice adhesion. This concept may be the basis for blocking biofilm formation in other bacteria, including pathogens. Currently, this IBP is the only known example of an adhesin that has evolved to bind ice. PMID:27534698

  15. Water and ice on Mars: Evidence from Valles Marineris

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1987-01-01

    An important contribution to the volatile history of Mars comes from a detailed study of Valles Marineris, where excellent stereoimages and a three-dimensional view of the upper Martian crust permit unusual insights. The evidence that ground water and ice existed until relatively recently or still exist in the equatorial area comes from observations of landslides, wall rock, and dark volcanic vents. Valles Marineris landslides are different in efficiency from large catastrophic landslides on Earth. One explanation for the difference might be that the Martian slides are lubricated by water. A comparison of landslide speeds also suggests that the Martian slides contain water. That Valles Marineris wall rock contained water or ice is further suggested by its difference from the interior layered deposits. Faults and fault zones in Valles Marineris also shed light on the problem of water content in the walls. Because the main evidence for water and ice in the wall rock comes from landslides, their time of emplacement is important. The landslides in Valles Marineris date from the time of late eruptions of the Tharsis volcanoes and thus were emplaced after the major activity of Martian outflow channels. None of the observations conclusively demonstrate that water or ice existed in the wall rock of Valles Marineris, but altogether the evidence is highly suggestive.

  16. Thermal stability of water ice in Ceres' crater Oxo

    NASA Astrophysics Data System (ADS)

    Formisano, Michelangelo; Federico, Costanzo; De Sanctis, Maria Cristina; Frigeri, Alessandro; Magni, Gianfranco; Tosi, Federico

    2016-10-01

    Dwarf planet Ceres, target of the NASA Dawn mission, exhibits evidences of ammoniated phyllosilicates on its surface [1], compatible with a likely outer Solar System origin. Considerable amounts of water ice have recently been detected in some craters by the Visible InfraRed mapping spectrometer (VIR) onboard Dawn in some small fresh crater, such as Oxo, located at about 40° N. The exposure mechanism of water ice is unknown: cryovolcanism, cometary type sublimation/recondensation [2]or impacts with other bodies are likely mechanisms. The evaluation of the time stability of the water ice is crucial to understand the plausible mechanism for its existence. For this purpose, we developed a 3D finite-elements model (FEM) by using the topography given by the shape model of Ceres derived on the basis of images acquired by the Framing Camera in the Survey mission phase. The illumination conditions are provided by the SPICE toolkit. We performed several simulations by analyzing the effect of thermal inertia and albedo on the temperature and rate of ice sublimation. The results of the simulations about the stability of water ice will be presented.[1] De Sanctis et al. NATURE, doi:10.1038/nature16172[2] Formisano et al. MNRAS, doi: 10.1093/mnras/stv2344

  17. Identification of water ice on the Centaur 1997 CU26.

    PubMed

    Brown, R H; Cruikshank, D P; Pendleton, Y; Veeder, G J

    1998-05-29

    Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.

  18. Identification of water ice on the Centaur 1997 CU26

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.; Veeder, G. J.

    1998-01-01

    Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.

  19. Sea ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.

  20. Forced convective melting at an evolving ice-water interface

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Hirsh, Benjamin; Olson, Peter; Gnanadesikan, Anand

    2015-11-01

    The intrusion of warm Circumpolar Deep Water into the ocean cavity between the base of ice shelves and the sea bed in Antarctica causes melting at the ice shelves' basal surface, producing a turbulent melt plume. We conduct a series of laboratory experiments to investigate how the presence of forced convection (turbulent mixing) changes the delivery of heat to the ice-water interface. We also develop a theoretical model for the heat balance of the system that can be used to predict the change in ice thickness with time. In cases of turbulent mixing, the heat balance includes a term for turbulent heat transfer that depends on the friction velocity and an empirical coefficient. We obtain a new value for this coefficient by comparing the modeled ice thickness against measurements from a set of nine experiments covering one order of magnitude of Reynolds numbers. Our results are consistent with the altimetry-inferred melting rate under Antarctic ice shelves and can be used in climate models to predict their disintegration. This work was supported by NSF grant EAR-110371.

  1. Water abundance and accretion history of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Waenke, H.; Dreibus, G.

    1994-01-01

    According to a widespread believe, Earth's water was either added in form of a late volatile-rich veneer or as we have argued repeatedly that of all the water which was added to the Earth only that portion remained which was added towards the end of accretion when the mean oxygen fugacity of the accreting material became so high that metallic iron could not exist any longer. Prior to this moment, all the water in the latter scenario would have been used up for the oxidation of iron. Fe + H2O yields FeO + H2. Huge quantities of hydrogen would continuously be produced in this scenario which escaped. In the same moment the hydrogen on its way to the surface would lead to an efficient degassing of the growing Earth's mantle. The fact that - assuming C1 abundances - the amount of iridium in the Earth's mantle agrees, within a factor of two with the total water inventory of the Earth's mantle and crust is taken as evidence for the validity of such a scenario. In both scenarios, the Earth's mantle would remain dry and devoid of other volatiles. Some species soluble in metallic iron like carbon and hydrogen will probably partly enter the core in some portions. It is generally assumed that today a considerable portion of the earth's total water inventory resides in the mantle. It is also clear that over the history of the Earth the water of the Earth's oceans has been recycled many times through the mantle. This is the consequence of plate subduction. In a similar way mantle convection was probably responsible to being water into the originally dry mantle. As a consequence, today the Earth is wet both inside and outside.

  2. Modelling water flow under glaciers and ice sheets

    PubMed Central

    Flowers, Gwenn E.

    2015-01-01

    Recent observations of dynamic water systems beneath the Greenland and Antarctic ice sheets have sparked renewed interest in modelling subglacial drainage. The foundations of today's models were laid decades ago, inspired by measurements from mountain glaciers, discovery of the modern ice streams and the study of landscapes evacuated by former ice sheets. Models have progressed from strict adherence to the principles of groundwater flow, to the incorporation of flow ‘elements’ specific to the subglacial environment, to sophisticated two-dimensional representations of interacting distributed and channelized drainage. Although presently in a state of rapid development, subglacial drainage models, when coupled to models of ice flow, are now able to reproduce many of the canonical phenomena that characterize this coupled system. Model calibration remains generally out of reach, whereas widespread application of these models to large problems and real geometries awaits the next level of development. PMID:27547082

  3. The abundance and distribution of water vapor in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon L.; Larson, Harold P.; Kunde, Virgil G.

    1986-01-01

    The atmospheric transmission window between 1800 and 2250 cm(-1) in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory (KAO) and by the infrared spectrometer (IRIS) on Voyager. The vertical distribution of H2O was derived for the 1 to 6 bar portion of Jupiter's troposphere. The spatial variation of H2O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts, the Equatorial Zone, and for an average of the North and South Tropical Zones. The H2O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amagat. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 to 40 deg latitude, the H2O mole fraction, qH2O, is saturated for P less than 2 bars, qH2O = 4x10 to the -6 in the 2 to 4 bar range and it increases to 3x10 to the -5 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H2O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. The massive H2O cloud at 5 bars, T = 273 K, proposed in solar composition models, is inconsistent with the observations. Instead, a thin H2O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H2O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the Sun. The implications for the origin of Jupiter of globally depleted O/H, but enhanced C/H and N/H, are discussed.

  4. The abundance and distribution of water vapor in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Bjoraker, Gordon L.; Larson, Harold P.; Kunde, Virgil G.

    1986-01-01

    The atmospheric transmission window between 1800 and 2250/cm in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory and by the IR spectrometer (IRIS) on Voyager. The vertical distribution of H2O was derived for the 1-6 bar portion of Jupiter's troposphere. The spatial variation of H2O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts (NEB, SEB) and the Equatorial Zone and for an average of the North and South Tropical Zones. The H2O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm amagats. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 and +40 deg latitude, the H2O mole fraction, qH2O, is saturated for P less than 2 bars, qH2O = 4 millionths in the 2-4 bar range, and it increases to 3/100,000 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H2O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. A massive H2O cloud at 5 bars, T = 273 K is inconsistent with the observations. Instead, a thin H2O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H2O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the sun.

  5. Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA

    PubMed Central

    Pietsch, Renée B.; Vinatzer, Boris A.; Schmale, David G.

    2017-01-01

    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas, respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae. Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae. Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae-caused plant disease outbreaks. PMID:28337177

  6. Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA.

    PubMed

    Pietsch, Renée B; Vinatzer, Boris A; Schmale, David G

    2017-01-01

    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas, respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae. Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae. Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae-caused plant disease outbreaks.

  7. Airborne discrimination between ice and water - Application to the laser measurement of chlorophyll-in-water in a marginal ice zone

    NASA Technical Reports Server (NTRS)

    Hoge, Frank E.; Wright, C. Wayne; Swift, Robert N.; Yungel, James K.

    1989-01-01

    The concurrent active-passive measurement capabilities of the NASA Airborne Oceanographic Lidar have been used to (1) discriminate between ice and water in a large ice field within the Greenland Sea and (2) achieve the detection and measurement of chlorophyll-in-water by laser-induced and water-Raman-normalized pigment fluorescence. Passive upwelled radiances from sea ice are significantly stronger than those from the neighboring water, even when the optical receiver field-of-view is only partially filled with ice. Thus, weaker passive upwelled radiances, together with concurrently acquired laser-induced spectra, can rather confidently be assigned to the intervening water column. The laser-induced spectrum can then be processed using previously established methods to measure the chlorophyll-in-water concentration. Significant phytoplankton patchiness and elevated chlorophyll concentrations were found within the waters of the melting ice compared to ice-free regions just outside the ice field.

  8. RADIOLYSIS OF NITROGEN AND WATER-ICE MIXTURE BY FAST IONS: IMPLICATIONS FOR KUIPER BELT OBJECTS

    SciTech Connect

    Barros, A. L. F. de; Silveira, E. F da; Bergantini, A.; Rothard, H.; Boduch, P.

    2015-09-10

    The participation of condensed nitrogen in the surface chemistry of some objects in the outer solar system, such as Pluto and Triton, is very important. The remote observation of this species using absorption spectroscopy is a difficult task because N{sub 2} is not IR active in the gas phase. Water is also among the most abundant molecules in the surface of these objects; chemical reactions between N{sub 2} and H{sub 2}O induced by cosmic rays are therefore expected. Although pure N{sub 2} ice is hardly identified by IR spectroscopy, the species produced through the processing of the surface ice by cosmic rays may give relevant clues indicating how abundant the N{sub 2} is in the outside layers of the surface of trans-Neptunian objects (TNOs). The objective of this work is to investigate the formation of nitrogenated species induced by cosmic-ray analogs in an ice mixture containing nitrogen and water. Experiments were performed in the GANIL Laboratory by bombarding N{sub 2}:H{sub 2}O (10:1) ice at 15 K with 40 MeV {sup 58}Ni{sup 11+} ions. Evolution of precursor and daughter species was monitored by Fourier transform infrared spectrometry. The main produced species are the nitrogen oxides NO{sub k} (k = 1–3), N{sub 2}O{sub j} (j = 1–5), N{sub 3}, and O{sub 3}. Among them, the N{sub 2}O and N{sub 3} are the most abundant, representing ∼61% of the total column density of the daughter molecules at 10{sup 13} ions cm{sup −2} fluence; the current results indicate that the yield of daughter species from this mixture is low, and this may be one of the reasons why N{sub i}O{sub j} molecules are not usually observed in TNOs.

  9. Simulating Snowfall: Modeling Water Deposition on the Martian Northern Polar Ice Cap

    NASA Astrophysics Data System (ADS)

    Durbin, Allyn J.; Brown, A.; Hollingsworth, J. L.; Kahre, M. A.

    2013-01-01

    Every spring on the Martian northern ice cap, a retreat of the carbon dioxide ice reveals the permanent layer of water ice below. Data obtain by the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor during this retreat detected the presence of both carbon dioxide and water ice. However, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter detected only water ice in the same location. It is theorized this discrepancy can be explained by the Houben process, first described in Houben, et al. (1997), which is a mechanism that provides the northward transfer of water ice onto the retreating carbon dioxide ice cap. In this project, we attempted to simulate Houben events using the NASA Ames Mars Climate Model. We have been able to replicate and verify some events indicative of the Houben process, providing a basis for the obscuration of carbon dioxide ice by water ice on Martian northern polar ice cap.

  10. The phase diagram of water at negative pressures: virtual ices.

    PubMed

    Conde, M M; Vega, C; Tribello, G A; Slater, B

    2009-07-21

    The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

  11. Abundance and distribution of Legionellaceae in Puerto Rican waters.

    PubMed Central

    Ortiz-Roque, C M; Hazen, T C

    1987-01-01

    Waters in marine and freshwater areas of Puerto Rico were analyzed for the presence of Legionella spp. by direct fluorescent antibody assay with guinea pig confirmation. Several species, including L. bozemanii, L. dumoffii, L. gormanii, L. longbeachae, L. micdadei, and L. pneumophila, were widely distributed among all sites. Legionellaceae, including L. pneumophila, were found in high densities in water collected in the rain forest from epiphytes in trees 30 ft. (about 9.25 m) above the ground. Both interspecific and intersite variations were significant. L. pneumophila was the most abundant species at all sites, with average densities of 10(4) cells ml-1, very close to the range which is potentially pathogenic for humans. Densities of L. pneumophila were highest in sewage-contaminated coastal waters. These are the highest densities of Legionella spp. ever reported for marine habitats. Densities of L. pneumophila were positively correlated with concentrations of sulfates, phosphates, and pH. A survey of 88 fatal atypical pneumonia cases at a Puerto Rico hospital showed that 15% of the patients had L. pneumophila infections. This study establishes L. pneumophila as a relatively common cause of atypical pneumonia in Puerto Rico and suggests natural aquatic habitats as possible sources or reservoirs of pathogenic Legionella spp. in the tropics. Images PMID:3314710

  12. The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

  13. Mimas: Preliminary Evidence For Amorphous Water Ice from VIMS

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Marzo, G. A.; Pinilla-Alonso, N.; Roush, T. L.; Mastrapa, R. M.; DalleOre, C. M.; Buratti, B. J.; Stephan, K.

    2010-01-01

    We have conducted a statistical clustering analysis (1,2) on a mosaic of VIMS data cubes obtained on February 13, 2010, for Saturn s satellite Mimas. Seven VIMS cubes were geometrically projected and re-sampled to a common spatial resolution. The clustering technique consists of a partitioning algorithm coupled to a criterion that prevents sub-optimal solutions and tests for the influence of random noise in the measurements. The clustering technique is agnostic about the meaning of the clusters, and scientific interpretation requires their a posteriori evaluation. The preliminary results yielded five clusters, demonstrating that spectral variability across Mimas surface is statistically significant. The ratios of the means calculated for each of the clusters show structure within the 1.6- micron water ice band, as well as the shape and the central wavelength of the strong ice band at 2 micron, that map spatially in patterns apparently related to the topography of Mimas, in particular certain regions in and around Herschel crater. The mean spectra of the five clusters, show similarities with laboratory spectra of amorphous and crystalline H2O ice (3) that are suggestive of the presence of an amorphous ice component in certain regions of Mimas, notably on the central peak of Herschel, on the crater floor, and in faults surrounding the crater. This may represent a mixture of both ice phases, or perhaps a layer of amorphous ice on a base of crystalline ice. Another possible occurrence of amorphous ice appears southwest of Herschel, close to the south pole.

  14. Lessons: Science: "Sinkholes." Students Observe What Happens When Ice-Cold Water Mingles with Warm Water.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    2000-01-01

    This intermediate-level science activity has students observe the effect of ice-cold water mingling with warm water. Water's behavior and movement alters with shifts in temperature. Students must try to determine how temperature affects the movement of water. Necessary materials include a pencil, cup, glass jar, masking tape, warm water, ice…

  15. Heat flux at the base of lake ice cover estimated from fine structure of the ice-water boundary layer

    NASA Astrophysics Data System (ADS)

    Kirillin, Georgiy; Aslamov, Ilya; Kozlov, Vladimir; Granin, Nikolay; Engelhardt, Christof; Förster, Josephine

    2016-04-01

    Seasonal lake ice is a highly changeable part of the cryosphere undergoing remarkable impact by global warming. Vertical heat transport across the boundary layer under ice affects strongly the growth and melting of lake ice cover. The existing models of ice cover dynamics focus basically on the dependence of the ice thickness on the air temperature with implicit account of the snow cover effects. The heat flux at the water-ice boundary, in turn, is usually neglected or parameterized in a very simplistic form. However, neglecting of the basal ice melting due to heat flux at the ice-water interface produces appreciable errors in the modeled ice cover duration. We utilize fine-structure observations taken during 2009-2015 in ice-water boundary layers of Lake Baikal and arctic Lake Kilpisjärvi to reveal the major physical drivers of the heat exchange at the ice bottom and to explain the high geographical, spatial, and temporal variability in the heat flux magnitudes. The methods provide first detailed estimations of the heat exchange beneath the ice cover, available previously only from bulk estimations. The fluxes in Lake Baikal have magnitudes of 101 W m-2 and vary strongly between different parts of the lake being influenced by large-scale horizontal circulation with current velocities amounting at up to 7 cm s-1. The shallow lake fluxes, while an order of magnitude weaker, are highly non-stationary, being affected by the turbulence due to oscillating currents under ice. Our results demonstrate the role played by the boundary layer mixing in the ice growth and melting, as well as characterize the physical processes responsible for the vertical heat exchange and provide a basis for an improved parameterization of ice cover in coupled lake-atmosphere models.

  16. The abundance and distribution of water vapor in the Jovian troposphere as inferred from Voyager IRIS observations

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Lacis, Andrew A.; Rossow, William B.

    1992-01-01

    The Voyager IRIS spectra of the Jovian North Equatorial Belt (NEB) hot spots are reanalyzed using a radiative transfer model which includes the full effects of anisotropic multiple scattering by clouds. The atmospheric model includes the three thermochemically predicted cloud layers, NH3, NH4SH, and H2O. Spectrally dependent cloud extinction is modeled using Mie theory and the refractive indices of NH3 ice, NH4SH ice, water, and H2O ice. The upper tropospheric temperature profile, gas abundances, height-dependent parahydrogen profile, and vertical distribution of NH3 cloud opacity are retrieved from an analysis of the far-infrared (180-1200/cm) IRIS observations. With these properties constrained, the 5-micron (1800-2300/cm) observations are analyzed to determine the atmospheric and cloud structure of the deeper atmosphere (P of greater than 1.5 bars). The results show that the abundance of water is at least 1.5 times solar with 2 times solar (0.00276 mixing ratio relative to H2) providing the best-fit to the Voyager IRIS hot spot observations.

  17. 21 CFR 1250.86 - Water for making ice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water for making ice. 1250.86 Section 1250.86 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION Sanitation Facilities and...

  18. Martian north pole summer temperatures: dirty water ice.

    PubMed

    Kieffer, H H; Chase, S C; Martin, T Z; Miner, E D; Palluconi, F D

    1976-12-11

    Broadband thermal and reflectance observations of the martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  19. Martian north pole summer temperatures - Dirty water ice

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.

    1976-01-01

    Broadband thermal and reflectance observations of the Martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  20. Polyamorphism in Water: Amorphous Ices and their Glassy States

    NASA Astrophysics Data System (ADS)

    Amann-Winkel, K.; Boehmer, R.; Fujara, F.; Gainaru, C.; Geil, B.; Loerting, T.

    2015-12-01

    Water is ubiquitous and of general importance for our environment. But it is also known as the most anomalous liquid. The fundamental origin of the numerous anomalies of water is still under debate. An understanding of these anomalous properties of water is closely linked to an understanding of the phase diagram of the metastable non-crystalline states of ice. The process of pressure induced amorphization of ice was first observed by Mishima et al. [1]. The authors pressurized hexagonal ice at 77 K up to a pressure of 1.6 GPa to form high density amorphous ice (HDA). So far three distinct structural states of amorphous water are known [2], they are called low- (LDA), high- (HDA) and very high density amorphous ice (VHDA). Since the discovery of multiple distinct amorphous states it is controversy discussed whether this phenomenon of polyamorphism at high pressures is connected to the occurrence of more than one supercooled liquid phase [3]. Alternatively, amorphous ices have been suggested to be of nanocrystalline nature, unrelated to liquids. Indeed inelastic X-ray scattering measurements indicate sharp crystal-like phonons in the amorphous ices [4]. In case of LDA the connection to the low-density liquid (LDL) was inferred from several experiments including the observation of a calorimetric glass-to-liquid transition at 136 K and ambient pressure [5]. Recently also the glass transition in HDA was observed at 116 K at ambient pressure [6] and at 140 K at elevated pressure of 1 GPa [7], using calorimetric measurements as well as dielectric spectroscopy. We discuss here the general importance of amorphous ices and their liquid counterparts and present calorimetric and dielectric measurements on LDA and HDA. The good agreement between dielectric and calorimetric results convey for a clearer picture of water's vitrification phenomenon. [1] O. Mishima, L. D. Calvert, and E. Whalley, Nature 314, 76, 1985 [2] D.T. Bowron, J. L. Finney, A. Hallbrucker, et al., J. Chem

  1. Abundance and distribution of water vapor in Jupiter's atmosphere

    SciTech Connect

    Bjoraker, G.L.; Larson, H.P.; Kunde, V.G.

    1986-09-01

    The atmospheric transmission window between 1800 and 2250 cm(-1) in Jupiter's atmosphere was observed from the Kuiper Airborne Observatory (KAO) and by the infrared spectrometer (IRIS) on Voyager. The vertical distribution of H/sub 2/O was derived for the 1 to 6 bar portion of Jupiter's troposphere. The spatial variation of H/sub 2/O was measured using IRIS spectra of the Hot Spots in the North and South Equatorial Belts, the Equatorial Zone, and for an average of the North and South Tropical Zones. The H/sub 2/O column abundance above the 4 bar level is the same in the zones as in the SEB Hot Spots, about 20 cm-amagat. The NEB Hot Spots are desiccated by a factor of 3 with respect to the rest of Jupiter. For an average between -40 to 40 deg latitude, the H/sub 2/O mole fraction, qH/sub 2/O, is saturated for P less than 2 bars, qH/sub 2/O = 4x10 to the -6 in the 2 to 4 bar range and it increases to 3x10 to the -5 at 6 bars. A similar vertical profile applies to the spatially resolved zone and belt spectra, except that H/sub 2/O falls off more rapidly at P less than 4 bars in the NEB Hot Spots. The massive H/sub 2/O cloud at 5 bars, T = 273 K, proposed in solar composition models, is inconsistent with the observations. Instead, a thin H/sub 2/O ice cloud would form at 2 bars, T = 200 K. The O/H ratio in Jupiter, inferred from H/sub 2/O measurements in both belts and zones at 6 bars, is depleted by a factor of 50 with respect to the Sun. The implications for the origin of Jupiter of globally depleted O/H, but enhanced C/H and N/H, are discussed.

  2. Flow of ices in the Ammonia-Water System

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Kirby, S. H.; Stern, L. A.

    1993-01-01

    We have fabricated in the laboratory and subsequently deformed crystalline hydrates and partial melts of the water-rich end of the NH3-H2O system, with the aim of improving our understanding of physical processes occurring in icy moons of the outer solar system. Deformation experiments were carried out at constant strain rate. The range of experimental variables are given. Phase relationships in the NH3-H2O system indicate that water ice and ammonia dihydrate, NH3-2H2O, are the stable phases under our experiment conditions. X-ray diffraction of our samples usually revealed these as the dominant phases, but we have also observed an amorphous phase (in unpressurized samples only) and occasionally significant ammonia monohydrate, NH3-H2O. The onset of partial melting at the peritectic temperature at about 176 K appeared as a sharp transition in strength observed in samples of x(sub NH3) = 0.05 and 0.01, the effect of melt was less pronounced. For any given water ice + dihydrate alloy in the subsolidus region, we observed one rheological law over the entire temperature range from 175 K to about 140 K. Below 140 K, a shear instability similar to that occurring in pure water ice under the same conditions limited our ability to measure ductile flow. The rheological laws for the several alloys vary systematically from that of pure ice to that of dihydrate. Pure dihydrate is about 4 orders of magnitude less viscous than water ice just below the peritectic temperature, but because of a very pronounced temperature dependence in dihydrate (100 kJ/mol versus 43 kJ/mol for water ice) the viscosity of dihydrate equals or exceeds that of water ice at T less than 140 K. The large variation in viscosity of dihydrate with relatively small changes in temperature may be helpful in explaining the rich variety of tectonic and volcanic features seen on the surfaces of icy moons in the outer solar system.

  3. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.

    PubMed

    Arp, Zane A; Cremers, David A; Wiens, Roger C; Wayne, David M; Sallé, Béatrice; Maurice, Sylvestre

    2004-08-01

    Recently, laser-induced breakdown spectroscopy (LIBS) has been developed for the elemental analysis of geological samples for application to space exploration. There is also interest in using the technique for the analysis of water ice and ice/dust mixtures located at the Mars polar regions. The application is a compact instrument for a lander or rover to the Martian poles to interrogate stratified layers of ice and dusts that contain a record of past geologic history, believed to date back several million years. Here we present results of a study of the use of LIBS for the analysis of water ice and ice/dust mixtures in situ and at short stand-off distances (< 6.5 m) using experimental parameters appropriate for a compact instrument. Characteristics of LIBS spectra of water ice, ice/soil mixtures, element detection limits, and the ability to ablate through ice samples to monitor subsurface dust deposits are discussed.

  4. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8–4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ∼0.1 and ∼0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°–80°.

  5. Numerical modeling of runback water on ice protected aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.

    1992-01-01

    A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.

  6. CHEMICAL PROCESSING OF PURE AMMONIA AND AMMONIA-WATER ICES INDUCED BY HEAVY IONS

    SciTech Connect

    Bordalo, V.; Da Silveira, E. F.; Seperuelo Duarte, E.

    2013-09-10

    Cosmic rays are possibly the main agents to prevent the freeze-out of molecules onto grain surfaces in cold dense clouds. Ammonia (NH{sub 3}) is one of the most abundant molecules present in dust ice mantles, with a concentration of up to 15% relative to water (H{sub 2}O). FTIR spectroscopy is used to monitor pure NH{sub 3} and NH{sub 3}-H{sub 2}O ice samples as they are irradiated with Ni and Zn ion beams (500-600 MeV) at GANIL/France. New species, such as hydrazine (N{sub 2}H{sub 4}), diazene (N{sub 2}H{sub 2} isomers), molecular hydrogen (H{sub 2}), and nitrogen (N{sub 2}) were identified after irradiation of pure NH{sub 3} ices. Nitrous oxide (N{sub 2}O), nitrogen oxide (NO), nitrogen dioxide (NO{sub 2}), and hydroxylamine (NH{sub 2}OH) are some of the products of the NH{sub 3}-H{sub 2}O ice radiolysis. The spectral band at 6.85 {mu}m was observed after irradiation of both types of ice. Besides the likely contribution of ammonium (NH{sub 4}{sup +}) and amino (NH{sub 2}) radicals, data suggest a small contribution of NH{sub 2}OH to this band profile after high fluences of irradiation of NH{sub 3}-H{sub 2}O ices. The spectral shift of the NH{sub 3} ''umbrella'' mode (9.3 {mu}m) band is parameterized as a function of NH{sub 3}/H{sub 2}O ratio in amorphous ices. Ammonia and water destruction cross-sections are obtained, as well as the rate of NH{sub 3}-H{sub 2}O (1:10) ice compaction, measured by the OH dangling bond destruction cross-section. Ammonia destruction is enhanced in the presence of H{sub 2}O in the ice and a power law relationship between stopping power and NH{sub 3} destruction cross-section is verified. Such results may provide relevant information for the evolution of molecular species in dense molecular clouds.

  7. Water and ice on Mars: Evidence from Valles Marineris

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1987-01-01

    An important contribution to the volatile history of Mars comes from a study of Valles Marineris, where stereoimages and a 3-D view of the upper Martian crust permit unusual insights. The evidence that ground water and ice existed until relatively recently or still exist in the equatorial area comes from observations of landslides, wall rock, and dark volcanic vents. Valles Marineris landslides are different in efficiency from large catastrophic landslides on Earth. One explanation for the difference might be that the Martian slides are lubricated by water. A comparison of landslide speeds also suggests that the Martian slides contain water. That Valles Marineris wall rock contained water or ice is further suggested by its difference from the interior layered deposits. Faults and fault zones in Valles Marineris also shed light on the problem of water content in the walls. Because the main evidence for water and ice in the wall rock comes from slides, their time of emplacement is important. The slides in Valles Marineris date from the time of late eruptions of the Tharsis volcanoes and thus were emplaced after the major activity of Martian outflow channels.

  8. Ionization dynamics of water dimer on ice surface

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2016-05-01

    The solid surface provides an effective two-dimensional reaction field because the surface increases the encounter probability of bi-molecular collision reactions. Also, the solid surface stabilizes a reaction intermediate because the excess energy generated by the reaction dissipates into the bath modes of surface. The ice surface in the universe is one of the two dimensional reaction fields. However, it is still unknown how the ice surface affects to the reaction mechanism. In the present study, to elucidate the specific property of the ice surface reaction, ionization dynamics of water dimer adsorbed on the ice surface was theoretically investigated by means of direct ab-initio molecular dynamics (AIMD) method combined with ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) technique, and the result was compared with that of gas phase reaction. It was found that a proton is transferred from H2O+ to H2O within the dimer and the intermediate complex H3O+(OH) is formed in both cases. However, the dynamic features were different from each other. The reaction rate of the proton transfer on the ice surface was three times faster than that in the gas phase. The intermediate complex H3O+(OH) was easily dissociated to H3O+ and OH radical on the ice surface, and the lifetime of the complex was significantly shorter than that of gas phase (100 fs vs. infinite). The reason why the ice surface accelerates the reaction was discussed in the present study.

  9. Formation, destruction and chemical influences of water ice: A review of recent laboratory results

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.

    Water ice is the dominant constituent of icy grain mantles in the interstellar medium, and as such one of the most abundant species during all stages of star and planet formation. Its formation through atom addition reactions on grain surfaces, its destruction through different desorption channels, and its influence on the chemistry and desorption efficiencies of other species in icy grain mantles have all been the objects of intense study. This contribution reviews our current understanding of these processes, and the laboratory experiments that have been instrumental in establishing the existing paradigm.

  10. The Detection of Water Ice in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Davies, John K.; Roush, Ted L.; Cruikshank, Dale P.; Bartholomew, Mary Jane; Geballe, Thomas R.; Owen, Tobias

    1996-01-01

    We present spectra of Comet Hale-Bopp (C/1995 01) covering the range 1.4-2.5 micron that were recorded when the comet was 7 AU from the Sun. These show I)road absorption features at 1.5 and 2.05 micron. We show that some, but not all, of this absorption could be matched by an intimate mixture of water ice and a low albedo material such as carbon on the nucleus. However, we recognize that it is more likely that the ice features are produced by scattering from icy grains in the coma. The absence of absorption at 1.65 micron suggests that this ice is probably in the amorphous state. An unidentified additional component may be required to account for the downward slope at the longwavelength end of the spectrum.

  11. Numerical simulation of comet nuclei. I - Water-ice comets

    NASA Technical Reports Server (NTRS)

    Herman, G.; Podolak, M.

    1985-01-01

    A one-dimensional numerical model of pure water-ice cometary nuclei is presented, and the influence of the nuclear interior as a heat reservoir on the behavior of the nuclear surface is examined. It is shown that a number of effects, including the thermal inertia due to heat stored in the core and the release of latent heat, which goes entirely into heating the adjacent layers or into sublimation on passing through a phase transition from amorphous to crystalline ice, can help to explain such characteristics as the asymmetrical lightcurve of Comet Halley. Results are given for the cases of Comet Schwassmann-Wachmann 1 and Comet Encke. Consideration is also given to the insulating effect of an evolving dust mantle. The role of this mantle in determining the surface temperature of the ice core is studied as a function of the mass fraction of the dust in the ice-dust mixture and the thermal conductivity of the nucleus. The loose-lattice model of Mendis and Brin (1977) indicates that both high dust to ice ratios and high-core conductivities inhibit mantle blowoff.

  12. SYSTEMATIC VARIATIONS IN CO{sub 2}/H{sub 2}O ICE ABUNDANCE RATIOS IN NEARBY GALAXIES FOUND WITH AKARI NEAR-INFRARED SPECTROSCOPY

    SciTech Connect

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.

    2015-07-01

    We report CO{sub 2}/H{sub 2}O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5–5.0 μm) spectra. The CO{sub 2}/H{sub 2}O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO{sub 2}/H{sub 2}O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO{sub 2}/H{sub 2}O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO{sub 2}/H{sub 2}O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO{sub 2}/H{sub 2}O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO{sub 2}/H{sub 2}O ice abundance ratios tend to be high in young star-forming galaxies.

  13. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland.

    PubMed

    Marteinsson, Viggó Thór; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G; Gaidos, Eric

    2013-02-01

    Subglacial lakes beneath the Vatnajökull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3-v5 and v4-v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4-v6 libraries are 3-8 times higher than in corresponding v3-v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajökull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome.

  14. Molecular characterization of dissolved organic matter in glacial ice: coupling natural abundance 1H NMR and fluorescence spectroscopy.

    PubMed

    Pautler, Brent G; Woods, Gwen C; Dubnick, Ashley; Simpson, André J; Sharp, Martin J; Fitzsimons, Sean J; Simpson, Myrna J

    2012-04-03

    Glaciers and ice sheets are the second largest freshwater reservoir in the global hydrologic cycle, and the onset of global climate warming has necessitated an assessment of their contributions to sea-level rise and the potential release of nutrients to nearby aquatic environments. In particular, the release of dissolved organic matter (DOM) from glacier melt could stimulate microbial activity in both glacial ecosystems and adjacent watersheds, but this would largely depend on the composition of the material released. Using fluorescence and (1)H NMR spectroscopy, we characterize DOM at its natural abundance in unaltered samples from a number of glaciers that differ in geographic location, thermal regime, and sample depth. Parallel factor analysis (PARAFAC) modeling of DOM fluorophores identifies components in the ice that are predominantly proteinaceous in character, while (1)H NMR spectroscopy reveals a mixture of small molecules that likely originate from native microbes. Spectrofluorescence also reveals a terrestrial contribution that was below the detection limits of NMR; however, (1)H nuclei from levoglucosan was identified in Arctic glacier ice samples. This study suggests that the bulk of the DOM from these glaciers is a mixture of biologically labile molecules derived from microbes.

  15. Observations on the nucleation of ice VII in compressed water

    NASA Astrophysics Data System (ADS)

    Stafford, Samuel J. P.; Chapman, David J.; Bland, Simon N.; Eakins, Daniel E.

    2017-01-01

    Water can freeze upon multiple shock compression, but the window material determines the pressure of the phase transition. Several plate impact experiments were conducted with liquid targets on a single-stage gas gun, diagnosed simultaneously using photonic doppler velocimetry (PDV) and high speed imaging through the water. The experiments investigated why silica windows instigate freezing above 2.5 GPa whilst sapphire windows do not until 7 GPa. We find that the nucleation of ice occurs on the surfaces of windows and can be affected by the surface coating suggesting the surface energy of fused silica, likely due to hydroxyl groups, encourages nucleation of ice VII crystallites. Aluminium coatings prevent nucleation and sapphire surfaces do not nucleate until approximately 6.5 GPa. This is believed to be the threshold pressure for the homogeneous nucleation of water.

  16. Water Ice on Kuiper Belt Object 1996 TO66

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Cruikshank, D. P.; Pendleton, Y.

    1999-01-01

    The 1.40-2.40 micron spectrum of Kuiper Belt object (KBO) 1996 TO66 was measured at the Keck Observatory in September 1998. It's spectrum shows the strong absorptions near 1.5 and 2.0 micron characteristic of water ice--the first such detection on a Kuiper Belt object. The depth of the absorption bands and the continuum reflectance of 1996 TO66 also suggest the presence of a black to slightly blue-colored, spectrally featureless particulate material as a minority component mixed with the water ice. In addition, there is evidence that the intensity of the water bands in the spectrum of 1996 TO66 vary with rotational phase suggesting that it has a "patchy" surface.

  17. Ice Nucleation Near the Surfactant-Water Interface

    NASA Astrophysics Data System (ADS)

    Carlin, Caleb; Cantrell, Will; Taylor, Caroline

    2008-03-01

    Ice nucleation is a fundamental component of the atmospheric mechanisms driving the formation of clouds. Atmospheric nucleation occurs with a variety of compounds and conditions, but understanding the behavior of water is key in all cases. We have used multiscale molecular simulations to study heterogeneous nucleation in clouds, probing the influence of long-chain alcohols on the freezing of water droplets. Ice nucleation occurs at a finite distance from the heterogeneous surface, due to the disruption of the hydrogen bond network in response to the surfactant-water interface. The penetration depth of the disturbance is found to be dependent upon the chain length and surface organization, as well as the acidity of the terminal alcohol group.

  18. Interaction and photochemical decomposition of hydroperoxides at water ice surfaces and in bulk ice

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Gand, M.; Ignatov, S. K.; Gadzhiev, O. B.; Cisami

    2011-12-01

    Hydroperoxides are important tropospheric trace gases as they are an important source of OH radicals. The simplest in this class is methyl hydroperoxide (CH3OOH) which is a product of methane oxidation by OH and HO2 radicals. Sinks of CH3OOH are photolysis, reactions with OH radicals or dry and wet deposition. Laboratory studies have shown that CH3OOH absorbs strongly over the region between 200 and 360 nm resulting in excitation to a dissociative electronic excited state. The pathway with the lowest threshold energy involves single bond cleavage giving rise to the CH3O + OH radical products. Our recent measurements at Neumayer station in Antarctica [1] have shown that CH3OOH mixing ratios during the polar day are considerably higher than during the polar night and correlate with UV radiation. Snow and ice-covered regions are huge sinks for tropospheric trace gases. For hydrogen peroxide and methyl hydroperoxide we have studied the low-temperature interaction of CH3OOH with the hexagonal water ice surface using DFT (BLYP/6-31++G(d,p) and B3LYP/6-311++G(2d,2p)) calculations [2, 3]. In these calculations we used the extended cluster models up to (H2O)48, (H2O)56, and (H2O)72 for the various modes of hydroperoxide coordination on different ice crystal planes and incorporation inside the ice [3]. Also, the effect of orientational isomerism of hydrogen bond network inside the water ice was investigated [2]. In laboratory experiments we have simulated the UV photochemistry of CH3OOH trapped in ice (H2O and D2O) at 14 K. The photoproducts (CH2O, HCO, CO, CO2) formed in the ice have been identified by means of FTIR spectroscopy. [1] Riedel K., Weller R., Schrems O., König-Langlo G., Atmos.Environ., 2000,34, 5225-5234. [2] Ignatov S.K., Razuvaev A.G., Sennikov P.G., Schrems O., J.Mol.Struct.(THEOCHEM), 2009, 908,47-54. [3] Ignatov S.K., Gadzhiev O.B., Kulikov M.Yu., Petrov A.I., Razuvaev A.G., Gand M., Feigin A.M., Schrems O., J.Phys.Chem.C, 2011, 115, 9081-9089.

  19. [Study on spectrum of oil film in ice-infested waters].

    PubMed

    Li, Ying; Liu, Bing-Xin; Lan, Guo-Xin; Ma, Long; Gao, Chao

    2010-04-01

    Oil spills in ice-infested waters are a subject of great concern to corporations, local residents, and government agencies, which participate in oil exploration, production, and transportation in ice-infested regions recently. For developing a credible and effective response to oil spill in ice-infested waters, a field experiment was performed on the spectrum of oil film in ice-infested waters. In this experiment, four groups of spectrum samples were collected, including clean sea water, brash ice and even ice and sea water/brash ice/even ice contaminated by diesel and crude oil. The experiment results indicated that: the same sort of oil with different background had different reflectance at the same wavelength, and so did the same sort of oil with the same background but different distribution state; nevertheless there were some common characteristics within the same oil. For example, diesel had two apparent characteristics, no matter on the surface of sea water or brash ice or even ice, the first of which was that the reflectance curves of diesel film were first lower and then higher than that of clean sea water, brash ice or even ice according to the wavelength; the second was that the reflectance curves of diesel film were almost equaled to that of the background between 400 and 510 nm in sea water, 410 and 510 nm in brash ice and 490 and 510 nm in even ice. The spectrum curves of crude oil had a representative sphenoid reflectance-peak which appeared between 750 and 770 nm. These characteristics of oil film in terms of ice and oil type could be effectively used to distinct the oil with sea water and sea ice, meanwhile this experiment would improve and facilitate the detecting and monitoring proposal of oil which had been spilled in moving, broken pack ice and fast-ice environment in the ocean.

  20. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  1. THE RADIAL DISTRIBUTION OF WATER ICE AND CHROMOPHORES ACROSS SATURN'S SYSTEM

    SciTech Connect

    Filacchione, G.; Capaccioni, F.; Cerroni, P.; Tosi, F.; Ciarniello, M.; Clark, R. N.; Nicholson, P. D.; Lunine, J. I.; Hedman, M. M.; Cruikshank, D. P.; Cuzzi, J. N.; Brown, R. H.; Buratti, B. J.; Flamini, E.

    2013-04-01

    Over the past eight years, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 {mu}m range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness, and regolith grain size as a result of their evolutionary histories, endogenic processes, and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e., organic and non-icy materials, across the Saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS. Moving from the inner C ring to Iapetus, we found a marking uniformity in the distribution of abundance of water ice. On the other hand, the distribution of chromophores is much more concentrated in the rings particles and on the outermost satellites (Rhea, Hyperion, and Iapetus). A reduction of red material is observed on the satellites' surfaces orbiting within the E ring environment likely due to fine particles from Enceladus' plumes. Once the exogenous dark material covering the Iapetus' leading hemisphere is removed, the texture of the water ice-rich surfaces, inferred through the 2 {mu}m band depth, appears remarkably uniform across the entire system.

  2. Importance of open-water ice growth and ice concentration evolution: a study based on FESOM-ECHAM6

    NASA Astrophysics Data System (ADS)

    Shi, X.; Lohmann, G.

    2015-10-01

    A newly developed global climate model FESOM-ECHAM6 with an unstructured mesh and high resolution is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. A sensitivity experiment is performed which reduces the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting decrease in the Arctic winter sea-ice concentration strongly reduces the surface albedo, enhances the ocean heat release to the atmosphere, and increases the sea-ice production. Furthermore, our simulations show a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the sea ice transport affects the freshwater budget in regions of deep water formation. A warming over Europe, Asia and North America, associated with a negative anomaly of Sea Level Pressure (SLP) over the Arctic (positive phase of the Arctic Oscillation (AO)), is also simulated by the model. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), especially for the Pacific sector. Additionally, a series of sensitivity tests are performed using an idealized 1-D thermodynamic model to further investigate the influence of the open-water ice growth, which reveals similar results in terms of the change of sea ice and ocean temperature. In reality, the distribution of new ice on open water relies on many uncertain parameters, for example, surface albedo, wind speed and ocean currents. Knowledge of the detailed processes is currently too crude for those processes to be implemented realistically into models. Our sensitivity experiments indicate a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system.

  3. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.

  4. Kindergarten Explorations with Snow, Ice, and Water

    ERIC Educational Resources Information Center

    Carroll, Martha A.

    1978-01-01

    Using winter snow, kindergarten students can explore the properties of water. Students demonstrate melting, freezing, expansion, and evaporation through a number of activities involving a paper cup and a scoop of snow. Procedures and student reactions are described in detail by the teacher-author. (MA)

  5. Modeling of New Galileo/NIMS Europa Spectra Using Two Endmembers and Water Ice

    NASA Astrophysics Data System (ADS)

    Hansen, G. B.

    2013-12-01

    Europa is the second outward from Jupiter of the four Galilean satellites. It is similar in size to the Earth's moon, and has a young crater-free surface. The interior has a dense rocky/metallic core surrounded by a low density shell 80-170 km thick that is assumed to be primarily ice and/or water. The magnetic signature of Europa implies the presence of a conducting liquid subsurface ocean. Additionally, spectra from the Galileo Near Infrared Mapping Spectrometer (NIMS) showed the surface to be partly covered by heavily hydrated materials such as sulfate salts and/or sulfuric acid hydrate. The hydrated material is concentrated in the regions of darker brownish coloring that occur in some chaos regions and along linea, and may be linked to possible endogenic materials from the subsurface. We are modeling NIMS spectra of the first 6 Galileo orbits, which cover the anti-Jovian hemisphere to the trailing hemisphere (about 150-330 W longitude) at various spatial resolutions. The observations are newly calibrated with the correct calibration of the first two detectors and proper removal of radiation spikes. The modeling is linear mixture of reddish hydrate (MgSO4?), sulfuric acid hydrate, and water ice of various grain sizes. The model is fitted to the full NIMS wavelength range of 0.7-5.2 μm. The two global scale models we have completed (79 and 47 km/px spatial resolution) shows the hydrate concentrated on the trailing side. The sulfuric acid is distributed from 180 W to beyond the trailing apex, and from ×20 degrees at 180W and ×40 degrees at 270W, but it's highest concentrations are at the equator and 210-240W where there is more water ice. The water ice is least abundant near the equator from 230-270W, and higher at other equatorial regions and most abundant in the polar regions. The water ice grain sizes are largest (500 μm) at the poles and trailing side, and smallest (20 μm) at the leading side. The sulfuric acid hydrate distribution is consistent with the

  6. Hemispheric asymmetry in martian seasonal surface water ice from MGS TES

    NASA Astrophysics Data System (ADS)

    Bapst, Jonathan; Bandfield, Joshua L.; Wood, Stephen E.

    2015-11-01

    The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) visible/near-infrared and thermal infrared bolometers measured planetary broadband albedo and temperature for more than three Mars years. As seasons progress on Mars, surface temperatures may fall below the frost point of volatiles in the atmosphere (namely, carbon dioxide and water). Systematic mapping of the spatial and temporal occurrence of these volatiles in the martian atmosphere, on the surface, and in the subsurface has shown their importance in understanding the climate of Mars. We examine TES daytime albedo, temperature, and atmospheric opacity data to map the latitudinal and temporal occurrence of seasonal surface water frost on Mars. We expand on previous work by looking at the behavior of water frost over the entire martian year, made possible with comprehensive, multi-year data. Interpretations of frost are based on albedo changes and the corresponding daytime temperature range. Data is considered consistent with water frost when there are significant albedo increases (>0.05 relative to frost-free seasons) and the observed temperatures are ∼170-200 K. We argue the presence of extensive water frost in the northern hemisphere, extending from the pole to ∼40°N, following seasonal temperature trends. In the north, water frost first appears near the pole at Ls = ∼160° and is last observed at Ls = ∼90°. Extensive water frost is less evident in southern hemisphere data, though both hemispheres show data that are consistent with the presence of a water ice annulus during seasonal cap retreat. Hemispherical asymmetry in the occurrence of seasonal water frost is due in part to the lower (∼40%) atmospheric water vapor abundances observed in the southern hemisphere. Our results are consistent with net transport of water vapor to the northern hemisphere. The deposition and sublimation of seasonal water frost may significantly increase the near-surface water vapor density that could

  7. Distribution of fish and macrozooplankton in ice-covered and open-water areas of the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    De Robertis, Alex; Cokelet, Edward D.

    2012-06-01

    The eastern Bering Sea shelf is a productive ecosystem with extensive commercial fisheries. Although the area is well-studied during summer months, little is known about the abundance and distribution of fish and macrozooplankton during periods of seasonal ice cover. The use of an icebreaker during the Bering Sea Ecosystem Study (BEST) provided a platform for spring acoustic surveys of fish and zooplankton in ice-covered areas for the first time. Icebreaker measurements were complemented with observations from conventional vessels during spring and summer. In spring, very little backscatter from fish (dominated by walleye pollock, Theragra chalcogramma) was observed in the ice-covered northern areas where near-bottom waters were cold (<˜0.5 °C), including areas where walleye pollock are abundant in summer. The majority of fish were observed within 40 km (and often slightly inside) the ice edge over similar seafloor depths as in summer. Together, these observations suggest that pollock, a dominant component of the ecosystem, shift their distribution to a more restricted geographic area in spring, following the ice edge southeast along the bathymetry, away from areas of cold water and extensive ice cover, then reoccupying these areas in summer. In contrast, acoustic backscatter attributed to zooplankton (likely dominated by euphausiids) was more evenly distributed, and less restricted by water temperature and ice cover. The implications of this seasonal shift in fish distribution are uncertain, but this may affect predator-prey interactions by reducing overlap of pollock with euphausiids, an important prey source, while increasing overlap of adult and juvenile pollock and potentially increasing cannibalism.

  8. Fluctuations and local ice structure in model supercooled water.

    PubMed

    Overduin, S D; Patey, G N

    2015-09-07

    Large-scale simulations (up to 32,000 molecules) are used to analyze local structures and fluctuations for the TIP4P/2005 and TIP5P water models, under deeply supercooled conditions, near previously proposed liquid-liquid critical points. Bulk freezing does not occur in our simulations, but correlations between molecules with local ice-like structure (ice-like molecules) are strong and long ranged (∼4 nm), exceeding the shortest dimension of smaller simulation cells at the lowest temperatures considered. Correlations between ice-like molecules decay slowly at low temperature, on the order of a hundred nanoseconds. Local ice-like structure is strongly correlated with highly tetrahedral liquid structure at all times, both structures contribute to density fluctuations, and to the associated anomalous scattering. For the TIP4P/2005 and TIP5P models, we show that the apparent spontaneous liquid-liquid phase separations, recently reported [T. Yagasaki, M. Matsumoto, and H. Tanaka, Phys. Rev. E 89, 020301 (2014)] for small rectangular simulation cells below the proposed critical points, exhibit strong system size dependence and do not occur at all in the largest systems we consider. Furthermore, in the smaller rectangular systems where layers of different densities do occur, we find that the appearance of a region of low density is always accompanied simultaneously by an excess of local ice density, with no separation in time. Our results suggest that the density differences observed in direct simulations for the two models considered here are likely due to long-range correlations between ice-like molecules and do not provide strong evidence of liquid-liquid phase separation.

  9. North Polar Water Ice by Weight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 8, 2003

    This map shows the percent of water by weight in near-surface materials of Mars' north polar region. It is derived from the gamma ray spectrometer component of the gamma ray spectrometer suite of instruments on NASA's Mars Odyssey spacecraft.

    Significant concentrations of water (greater than 20 percent) are poleward of 55 degrees north latitude. The highest concentration, greater than 50 percent, is between 75 degrees north and the pole. Another area with a high concentration of water by weight is in the north polar plains between longitudes minus 105 degrees and minus 140 degrees, and between latitudes 60 degrees and 75 degrees.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for the NASA Office of Space Science in Washington. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

  10. Comparative study of water ice exposures on cometary nuclei using multispectral imaging data

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Sunshine, J. M.; Pajola, M.; Pommerol, A.; Vincent, J.-B.; Mottola, S.; Sierks, H.; Fornasier, S.; Barucci, M. A.; Preusker, F.; Scholten, F.; Lara, L. M.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; A'Hearn, M. F.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Cremonese, G.; Da Deppo, V.; Davidsson, B. J. R.; Debei, S.; De Cecco, M.; Deller, J.; Fulle, M.; Gicquel, A.; Groussin, O.; Gutiérrez, P. J.; Güttler, C.; Hall, I.; Hofmann, M.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Keller, H. U.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lin, Z.-Y.; Lopez Moreno, J. J.; Marzari, F.; Naletto, G.; Shi, X.; Thomas, N.; Tubiana, C.

    2016-11-01

    Deep Impact, EPOXI and Rosetta missions visited comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko, respectively. Each of these three missions was equipped with both multispectral imagers and infrared spectrometers. Bright blue features containing water ice were detected in each of these comet nuclei. We analysed multispectral properties of enriched water ice features observed via Optical, Spectroscopic, and Infrared Remote Imaging System narrow angle camera on comet 67P in the wavelength range of 260-1000 nm and then compared with multispectral data of water ice deposits observed on comets 9P and 103P. We characterize the UV/VIS properties of water-ice-rich features observed on the nuclei of these three comets. When compared to the average surface of each comet, our analysis shows that the water ice deposits seen on comet 9P are similar to the clustered water-ice-rich features seen on comet 67P, while the water ice deposit seen on comet 103P is more akin to two large isolated water-ice-rich features seen on comet 67P. Our results indicate that the water ice deposit observed on comet 103P contains more water ice than the water-ice-rich features observed on comets 9P and 67P, proportionally to the average surface of each nucleus.

  11. New Models of Water Delivery To Earth: The Effects of Ice Longevity and Collisional Water Transport

    NASA Astrophysics Data System (ADS)

    Maindl, Thomas I.; Haghighipour, Nader

    2016-10-01

    It is widely accepted that the vast majority of Earth's water was delivered to its accretion zone by water-carrying planetesimals and planetary embryos from the outer regions of the asteroid belt while Earth was still forming. Modern simulations of the formation of terrestrial planets show this process with high resolution. However, their treatment of the actual delivery of water is still rudimentary assuming that a water-carrying object will maintain all its water content during its journey from its original orbit to the accretion zone of Earth. Models of the ice longevity have, however, shown that the water-ice may not stay intact, and asteroids and planetary embryos may lose some of their original water in form of ice sublimation during the dynamical evolution of these bodies. Also, collisions among these bodies while on their journey to Earth's accretion zone will result in the loss of large amounts of their water. These effects could be especially important during the formation of terrestrial planets as this process takes tens to hundreds of millions of years. We have developed a more accurate model in which the sublimation of ice during the process of the scattering of icy asteroids and planetary embryos into the accretion zone of Earth is taken into account. Our model includes two different modes of handling ice sublimation, one for sub-surface water and one for deeper ice. We also estimate water loss and retention during collisions which depends on the physical and dynamical parameters of the impacts. The results of our simulations put stringent constraints on the initial water distribution in the protoplanetary disk, the location of snowline, and the contribution of water from the primordial nebula to the final water budget of Earth. In this poster, we will present the results of our new simulations and discuss their implications for models of solar system formation and dynamics.

  12. 3 micron spectrophotometry of Comet Halley - Evidence for water ice

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Tielens, A. G. G. M.; Witteborn, Fred C.; Rank, David M.; Wooden, Diane

    1988-01-01

    Structure has been observed in the 3-3.6 micron preperihelion spectrum of Comet Halley consistent with either an absorption band near 3.1 microns or emission near 3.3 microns. The results suggest that a large fraction of the water molecules lost by the comet are initially ejected in the form of small ice particles rather than in the gas phase.

  13. Mars Secular Obliquity Change Due to Water Ice Caps

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    1998-01-01

    Mars may have substantially changed its average axial tilt over geologic time due to the waxing and waning of water ice caps. Depending upon Mars' climate and internal structure, the average obliquity could have increased or decreased through climate friction by tens of degrees. A decrease could account for the apparent youthfulness of the polar layered terrain. Alternatively, Mars' average obliquity may have changed until it became "stuck" at its present value of 24.4 deg.

  14. Improved Instrument for Detecting Water and Ice in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Chin, Keith; Keymeulen, Didler; McCann, Timothy; Seshadri, Suesh; Anderson, Robert

    2009-01-01

    An instrument measures electrical properties of relatively dry soils to determine their liquid water and/or ice contents. Designed as a prototype of instruments for measuring the liquid-water and ice contents of lunar and planetary soils, the apparatus could also be utilized for similar purposes in research and agriculture involving terrestrial desert soils and sands, and perhaps for measuring ice buildup on aircraft surfaces. This instrument is an improved version of the apparatus described in Measuring Low Concentrations of Liquid Water and Ice in Soil (NPO-41822), NASA Tech Briefs, Vol. 33, No. 2 (February 2009), page 22. The designs of both versions are based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and the magnitude and phase angle of impedance changes accordingly) with increasing water content. The previous version included an impedance spectrometer and a jar into which a sample of soil was placed. Four stainless-steel screws at the bottom of the jar were used as electrodes of a fourpoint impedance probe connected to the spectrometer. The present instrument does not include a sample jar and can be operated without acquiring or handling samples. Its impedance probe consists of a compact assembly of electrodes housed near the tip of a cylinder. The electrodes protrude slightly from the cylinder (see Figure 1). In preparation for measurements, the cylinder is simply pushed into the ground to bring the soil into contact with the electrodes.

  15. The Uranian satellites - Water ice on Ariel and Umbriel

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Brown, R. H.

    1981-01-01

    New near-infrared reflectance spectra are presented for Ariel and Umbriel. Water ice on the surface of Ariel and Umbriel is verified from spectral signatures in the 2-micron region. However, the weaker bands in Umbriel's spectrum indicate that its surface is significantly different from Ariel either in degree of contamination with dark material or in microstate. Umbriel may have a lower albedo than Ariel, Titania, and Oberon and, therefore, may have a diameter comparable to that of Titania.

  16. Models for the water-ice librational band in cool dust: possible observational test

    NASA Astrophysics Data System (ADS)

    Robinson, G.

    2014-01-01

    Of all the water-ice (H2O-ice) bands the librational band, occurring at a wavelength of about 12 μm, has proved to be the most difficult to detect observationally and also to reproduce in radiative transfer models. In fact, the case for the positive identification of the feature is strong in only a few astronomical objects. A previously suggested explanation for this is that so-called radiative transfer effects may mask the feature. In this paper, radiative transfer models are produced which unambiguously reveal the presence of the librational band as a separate resolved feature provided that there is no dust present which radiates significantly in the 10-μm region, specifically silicate-type dust. This means that the maximum dust temperature must be ≲50 K. In this case, the models indicate that the librational band may clearly be observed as an absorption feature against the stellar continuum. This suggests that the feature may be best observed by obtaining the 10-μm spectrum of stars either with very cool circumstellar dust shells, with Tmax ≲ 50 K, or those without circumstellar dust shells at all but with interstellar extinction. The first option might, however, require unrealistically large amounts of dust in the circumstellar shell in order to produce measurable absorption. Thus, the best place to look for the water-ice librational band may not be protostars with the remnants of their dust cloud still present, or evolved objects with ejected dust shells, as one might first think, because of the warm dust (Tmax ≫ 50 K) usually present in the shells of these objects. If objects associated with very cool dust exclusively do show the 3.1-μm water-ice band in deep absorption, but the librational band still does not appear, this may imply that it is not radiative transfer effects which suppress the librational band, and that some other mechanism for its suppression is in play. One possibility is that a low water-ice to silicate abundance may mask the

  17. Ice-like encapsulated water by two cholic acid moieties.

    PubMed

    Soto, Victor H; Alvarez, Mercedes; Meijide, Francisco; Trillo, Juan V; Antelo, Alvaro; Jover, Aida; Galantini, L; Tato, José Vázquez

    2012-10-01

    Starting from the structure of ice (in which each water molecule is surrounded by other four water molecules forming a tetrahedron with a value of 4.51Å for the edge O-O distance), and the knowledge that this value also corresponds to the O7-O12 distance of the skeleton of cholic acid, it is hypothesized that two steroid cholic acid moieties, with an appropriate steroid-steroid distance and a belly-to-belly orientation, could encapsulate a single water molecule between them. To check this hypothesis two succinyl derivatives of cholic acid (a monomer and the related head-head dimer in which the succinyl group is the linking bridge) were designed. The expected "ice-like" structure is found in the crystal of the dimer. There is a hydrogen bond synergy between those participating in the "ice-like" structure, and those in which the bridge is involved with the O7-H hydroxy group and the side chain of the steroid.

  18. Shedding of Water Drops from a Surface under Icing Conditions.

    PubMed

    Mandal, Deepak Kumar; Criscione, Antonio; Tropea, C; Amirfazli, A

    2015-09-01

    A sessile water drop exposed to an air flow will shed if the adhesion is overcome by the external aerodynamic forces on the drop. In this study, shedding of water drops were investigated under icing conditions, on surfaces with different wettabilities, from hydrophilic to superhydrophobic. A wind tunnel was used for experiments in a temperature range between -8 and 24.5 °C. Results indicate that the temperature has a major influence on the incipient motion of drop shedding. The critical air velocity (U(c)) at which a drop first starts to shed generally increases under icing conditions, indicating an increase in the adhesion force. The contact angle hysteresis (CAH) and the drop base length (L(b)) are found to be the controlling factors for adhesion. A correlation was also developed to deduce the drag coefficient, C(D) for the drop. It was found that C(D) can decrease under icing conditions. In general, a lower C(D) and higher adhesion together lead to a higher critical air velocity. However, there are systems such as water on Teflon for which the critical air velocity remains practically unaffected by temperature because of similar adhesion and C(D) values, at all temperatures tested.

  19. Discovery of water ice nearly everywhere in the solar system

    SciTech Connect

    Zuppero, A.

    1995-10-01

    During the last decade we have discovered sources of accessible water in some form nearly everywhere in the solar system. Water ice has been found on the planet Mercury; probably on the Earth`s Moon; on Mars; on near Earth objects; on comets whose orbits frequently come close to that of Earth`s orbit; probably on Ceres, the largest inner asteroid; and on comets previously and incorrectly considered to be out of practical reach. The comets also provide massive quantities of hydrocarbons, similar to oil shale. The masses of either water or hydrocarbons are measured in units of cubic kilometers. The water is key to space transportation because it can be used as a rocket propellant directly, and because thermal process alone can be used to convert it and hydrocarbons into hydrogen, the highest performing rocket propellant. This presentation outlines what is currently known about the locations of the water ice, and sketches the requirements and environments of missions to prospect for and assay the water sources.

  20. Laboratory Investigation of Direct Measurement of Ice Water Content, Ice Surface Area, and Effective Radius of Ice Crystals Using a Laser-Diffraction Instrument

    NASA Technical Reports Server (NTRS)

    Gerber, H.; DeMott, P. J.; Rogers, D. C.

    1995-01-01

    The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.

  1. Biological Ice Nucleation Activity in Cloud Water (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Ice nucleation active (INA) biological particles, in particular microorganisms, were studied in cloud water. Twelve cloud samples were collected over a period of 16 months from the puy de Dôme summit (1465 m, France) using sterile cloud droplet impactors. The samples were characterized through biological (cultures, cell counts) and physico-chemical measurements (pH, ion concentrations, carbon content...), and biological ice nuclei were investigated by droplet-freezing assays from -3°C to -13°C. The concentration of total INA particles within this temperature range typically varied from ~1 to ~100 per mL of cloud water; the concentrations of biological IN were several orders of magnitude higher than the values previously reported for precipitations. At -12°C, at least 76% of the IN were biological in origin, i.e. they were inactivated by heating at 95°C, and at temperatures above -8°C only biological material could induce ice. By culture, 44 Pseudomonas-like strains of bacteria were isolated from cloud water samples; 16% of them were found INA at the temperature of -8°C and they were identified as Pseudomonas syringae, Xanthomonas sp. and Pseudoxanthomonas sp.. Two strains induced freezing at as warm as -2°C, positioning them among the most active ice nucleators described so far. We estimated that, in average, 0.18% and more than 1%.of the bacterial cells present in clouds (~104 mL-1) are INA at the temperatures of -8°C and -12°C, respectively.

  2. Bursting money bins, the ice and water structure

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2015-05-01

    In the classic comics by Carl Barks, "The Big Bin on Killmotor Hill" [1], Uncle Scrooge, trying to defend his money bin from the Beagle Boys, follows a suggestion by Donald Duck, and fills the bin with water. Unfortunately, that night is going be the coldest one in the history of Ducksburg. The water freezes, bursting the "ten-foot walls'' of the money bin, and finally the gigantic cube of ice and dollars slips down the hill up to the Beagle Boys lot.

  3. A Contextual Comparison of Native Ice Abundances in Comet C/2013 US10 (Catalina) based on Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    DiSanti, Michael A.; Gibb, Erika L.; Roth, Nathanial; Bonev, Boncho P.; Keane, Jacqueline; Meech, Karen Jean; Villanueva, Geronimo Luis; Paganini, Lucas; Mumma, Michael J.

    2016-10-01

    The primitive nature of comets makes them the best available carriers of information pertaining to conditions in the early solar system. High-resolution spectrometers operating at IR wavelengths (~ 1 - 5 µm) permit quantifying molecular species (aka "parent volatiles") released into the coma upon sublimation of ices contained in the cometary nucleus (i.e., native ices). Over the past 20 years we used first CSHELL at the IRTF, then NIRSPEC at Keck and CRIRES at the VLT, amassing production rates and abundance ratios in 30-plus comets.We present a summary of molecular abundances in long period Comet C/2013 US10 (Catalina), which passed perihelion on UT 2015 November 15.7 at heliocentric distance Rh = 0.822 AU. We used CSHELL on UT 2015 November 23 (Rh = 0.84 AU), December 15 - 17 (Rh = 1.0 AU) and 2016 February 28 (Rh = 1.95 AU), and NIRSPEC on 2016 January 24 (Rh = 1.49 AU). We targeted H2O, CO, H2CO, CH3OH, OCS, HCN, NH3, CH4, C2H2, and C2H6, and obtained production rates or stringent upper limits for all of these. This allowed testing for potential changes in relative abundances as a function of Rh. Such IR measurements spanning a range in Rh are still rare, but are very important for testing possible heterogeneous nucleus composition and/or heliocentric dependence of abundances, for example through release from grains heated in the coma. Our measurements will be inter-compared, and also placed in the context of our current (and continually evolving) compositional taxonomy of comets.We gratefully acknowledge support from the NASA Solar System Observations/Planetary Astronomy Program (SSO15-0028 to MAD, PAST11-0045 to MJM), Planetary Atmospheres Program (NNX12AG60G to BPB), NASA Astrobiology Institute (13-13NAI7-0032 to MJM, NN09DA77A to KJM), and NSF Astronomy and Astrophysics Research Grants (AST-1211362 to BPB and ELG, and AST-1413736 to KJM). The IRTF is operated by the University of Hawaii under contract NNH14CK55B with the National Aeronautics and Space

  4. High pressure partially ionic phase of water ice.

    PubMed

    Wang, Yanchao; Liu, Hanyu; Lv, Jian; Zhu, Li; Wang, Hui; Ma, Yanming

    2011-11-29

    Water ice dissociates into a superionic solid at high temperature (>2,000 K) and pressure, where oxygen forms the lattice, but hydrogen diffuses completely. At low temperature, however, the dissociation into an ionic ice of hydronium (H(3)O)(+) hydroxide (OH)(-) is not expected because of the extremely high energy cost (~1.5 eV) of proton transfer between H(2)O molecules. Here we show the pressure-induced formation of a partially ionic phase (monoclinic P2(1) structure) consisting of coupled alternate layers of (OH)(δ-) and (H(3)O)(δ+) (δ=0.62) in water ice predicted by particle-swarm optimization structural search at zero temperature and pressures of >14 Mbar. The occurrence of this ionic phase follows the break-up of the typical O-H covalently bonded tetrahedrons in the hydrogen symmetric atomic phases and is originated from the volume reduction favourable for a denser structure packing.

  5. Vapor-deposited water and nitric acid ices

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun; Keyser, Leon F.

    Ices formed by vapor deposition have been the subject of numerous laboratory investigations in connection with snow and glaciers on the ground, ice clouds in the terrestrial atmosphere, surfaces of other planets and their satellites, and the interstellar medium. In this review we will focus on these specific subjects: (1) heterogeneous chemistry on the surfaces of polar stratospheric clouds (PSCs) and (2) surfaces of satellites of the outer planets in our solar system. Stratospheric ozone provides a protective shield for mankind and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical atmospheric models for the calculation of ozone balance frequently used only homogeneous gas-phase reactions in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions on the surface of PSCs is definitely needed to understand this significant natural event due to the anthropogenic emission of chlorofluorocarbons (CFCs). We will briefly discuss the experimental techniques for the investigation of heterogeneous chemistry on ice surfaces carried out in our laboratories. The experimental apparatus used include: several flow-tube reactors, an electron-impact ionization mass spectrometer, a Fourier transform infrared spectrometer, a BET adsorption apparatus, and a scanning environmental electron microscope. The adsorption experiments and electron microscopic work have demonstrated that the vapor-deposited ices are highly porous. Therefore, it is necessary to develop theoretical models for the elucidation of the uptake and reactivity of trace gases in porous ice substrates. Several measurements of uptake and reaction probabilities of these trace gases on water ices and nitric acid ices have been performed under ambient conditions in the upper troposphere and lower stratosphere, mainly in the temperature range 180-220 K. The trace gases of atmospheric importance

  6. Ice-Accretion Scaling Using Water-Film Thickness Parameters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Feo, Alejandro

    2003-01-01

    Studies were performed at INTA in Spain to determine water-film thickness on a stagnation-point probe inserted in a simulated cloud. The measurements were correlated with non-dimensional parameters describing the flow and the cloud conditions. Icing scaling tests in the NASA Glenn Icing Research Tunnel were then conducted using the Ruff scaling method with the scale velocity found by matching scale and reference values of either the INTA non-dimensional water-film thickness or a Weber number based on that film thickness. For comparison, tests were also performed using the constant drop-size Weber number and the average-velocity methods. The reference and scale models were both aluminum, 61-cm-span, NACA 0012 airfoil sections at 0 deg. AOA. The reference had a 53-cm-chord and the scale, 27 cm (1/2 size). Both models were mounted vertically in the center of the IRT test section. Tests covered a freezing fraction range of 0.28 to 1.0. Rime ice (n = 1.0) tests showed the consistency of the IRT calibration over a range of velocities. At a freezing fraction of 0.76, there was no significant difference in the scale ice shapes produced by the different methods. For freezing fractions of 0.40, 0.52 and 0.61, somewhat better agreement with the reference horn angles was typically achieved with the average-velocity and constant-film thickness methods than when either of the two Weber numbers was matched to the reference value. At a freezing fraction of 0.28, the four methods were judged equal in providing simulations of the reference shape.

  7. The Radial Distribution Of Water Ice And Reddening Material Across Saturn's Icy Satellites And Rings Retrieved From Cassini Vims Observations

    NASA Astrophysics Data System (ADS)

    Filacchione, Gianrico; Capaccioni, F.; Cerroni, P.; Clark, R. N.; Brown, R. H.; Cuzzi, J. N.; Buratti, B. J.; Coradini, A.; Tosi, F.; Ciarniello, M.; Cruikshank, D. P.; Jaumann, R.; Nicholson, P. D.; Stephan, K.; Baines, K. H.

    2010-10-01

    In the past few years we have retrieved the amount of water ice and red contaminant materials distributed across the Saturnian Icy satellites surfaces and Ring regions using Cassini-VIMS observations. These measurements highlight very striking differences among the Saturn system objects, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus leading hemisphere and Phoebe. In this framework we have developed a method to compare surface composition versus radial distance from Saturn and satellites' densities. In the F ring environment, the inner minor satellites (Prometheus, Pandora, Janus and Epimetheus) have in average surface water ice abundance similar to C ring and Cassini division particles but with much less reddening contaminant. Although their orbits are close to the F-ring, Prometheus and Pandora have very striking differences in surface composition, Prometheus being very water ice-rich but at the same time very red at VIS wavelengths. These properties make it very similar to A-B ring particles while Pandora is bluer. Moving outwards, we see the effects of E ring particles generated by Enceladus plumes contaminated surfaces from Mimas up to Rhea. We found some differences between Tethys’ lagrangian moons, Calypso being much more water ice-rich and bluer with respect to Telesto. Among outer satellites (Hyperion, Iapetus and Phoebe) we observe a linear trend in both water ice decrease and in reddening, Hyperion being the reddest object of the population. This research is supported by an Italian Space Agency Grant.

  8. Present-day Exposures of Water Ice in the Northern Mid-latitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Kanner, Lisa C.

    2007-01-01

    Water ice is exposed in the martian north polar cap, but is rarely exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60deg. We have examined mid-latitude areas of the northern plains displaying residual ice-rich layers, and report evidence of present-day surface exposures of water ice. These exposures, if confirmed, could con-strain the latitudinal and temporal stability of surface ice on Mars.

  9. Investigation of water and ice by ac impedance using electrochemical properties cup.

    PubMed

    Chin, K B; Buehler, M G; Seshadri, S; Keymeulen, D; Anderson, R C; Dutz, S; Narayanan, S R

    2007-01-01

    Water and ice were investigated by ac impedance with the electrochemical properties cup in an effort to develop an in situ instrument for water characterization. In liquid water, the impedance modulus decreased with the increase in charge carriers. In the ice, the impedance measurements were characterized by the dielectric relaxation and its corresponding activation energy. The activation energy of 0.400 eV was determined for pure ice. With ice containing Cl(-) anions, the activation energy was 0.24 eV. H(+) and OH(-) doped ice has the lowest activation energy for dielectric relaxation. Results from previous works are similar to the results reported in this study.

  10. Tracing Water Vapor and Ice During Dust Growth

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.

    2016-12-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ∼50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.

  11. Water or ice?--the challenge for invertebrate cold survival.

    PubMed

    Block, William

    2003-01-01

    The ecophysiology of cold tolerance in many terrestrial invertebrate animals is based on water and its activity at low temperatures, affecting cell, tissue and whole organism functions. The normal body water content of invertebrates varies from 40 to 90% of their live weight, which is influenced by water in their immediate environment, especially in species with a water vapour permeable cuticle. Water gain from, or loss to, the surrounding atmosphere may affect animal survival, but under sub-zero conditions body water status becomes more critical for overwinter survival in many species. Water content influences the supercooling capacity of many insects and other arthropods. Trehalose is known to maintain membrane integrity during desiccation stress in several taxa. Dehydration affects potential ice nucleators by reducing or masking their activity and a desiccation protection strategy has been detected in some species. When water crystallises to ice in an animal it greatly influences the physiology of nearby cells, even if the cells remain unfrozen. A proportion of body water remains unfrozen in many cold hardened invertebrates when they are frozen, which allows basal metabolism to continue at a low level and aids recovery to normal function when thawing occurs. About 22% of total body water remains unfrozen from calculations using differential scanning calorimetry (compared with ca 19% in food materials). The ratio of unfrozen to frozen water components in insects is 1:4 (1:6 for foods). Such unfrozen water may aid recovery of freezing tolerant species after a freezing exposure. Rapid changes in cold hardiness of some arthropods may be brought about by subtle shifts in body water management. It is recognised that cold tolerance strategies of many invertebrates are related to desiccation resistance, and possibly to mechanisms inherent in insect diapause, but the role of water is fundamental to them all. Detailed experimental studies are needed to provide information

  12. Formation of ice-like water structure on the surface of an antifreeze protein.

    PubMed

    Smolin, Nikolai; Daggett, Valerie

    2008-05-15

    Antifreeze proteins (AFPs) are found in different species from polar, alpine, and subarctic regions where they serve to inhibit ice crystal growth by adsorption to ice surfaces. Computational methods have the power to investigate the antifreeze mechanism in atomic detail. Molecular dynamics simulations of water under different conditions have been carried out to test our water model for simulations of biological macromolecules in extreme conditions: very low temperatures (200 K) and at the ice/liquid water interface. We show that the flexible F3C water model reproduces properties of water in the solid phase (ice I(h)), the supercooled liquid phase, and at the ice/liquid water interface. Additionally, the hydration of the type III AFP from ocean pout was studied as a function of temperature. Hydration waters on the ice-binding surface of the AFP were less distorted and more tetrahedral than elsewhere on the surface. More ice-like hydrating water structures formed on the ice-binding surface of the protein such that it created an ice-like structure in water within its first hydration layer but not beyond, suggesting that this portion of the protein has high affinity for ice surfaces.

  13. The abundance of benthic calcareous Foraminifera and other meiofauna at a time series station in the Northeast Water Polynya, Greenland

    NASA Astrophysics Data System (ADS)

    Newton, Adrian C.; Rowe, Gilbert T.

    1995-03-01

    Abundance and vertical distribution of living calcareous Foraminifera and associated meiofauna have been estimated during the ice-free period in 1992 and 1993 at a time series station in the Northeast Water Polynya off eastern Greenland. Calcareous forams (>150 μm) represented on average 28-39% of the meiofaunal size class. The mean abundance for both years was 574 individuals/100 cm2, and the variability of the estimates (Standard deviation = ±140) was relatively modest for benthic samples (Standard error=8.7% of the mean, number of samples=8). The abundance in 1992 was lower than in 1993 (probability <0.05), reflecting a smaller polynya, with less surface water productivity. While 41% of the variation in abundance in 1993 could be explained as a function of time (the estimated mean doubled between May 30 (387 ind/100 cm2) and July 24 (734 ind/100 cm2)), supporting earlier observations elsewhere that Foraminifera respond rapidly to seasonal or pulsed food inputs, the relationship was not statistically significant. The number of species present was low, a characteristic observed in other foram biofacies associated with open water shelf regions of the Arctic. This assemblage was dominated by a few calcareous forms: Elphidium excavatum, Melonis barleeanum, Nonionella labradorica, and Bucella frigida. Green and brown material, which we suspect was freshly settled phytodetritus, was found in numerous individuals of the dominant calcareous species located as deep as 6 cm within the sediment. The dominant species, including those containing "pigments," were encountered at specific, fairly narrow depth ranges within the sediment, with maximum abundances being common below, rather than at the sediment surface. Other meiofauna (nematodes, agglutinated forams, and ostracods) occurred to depths as great as 10 cm in all cores, but their greatest densities were generally confined to surface sediments.

  14. Viral abundance and distribution in mesopelagic and bathypelagic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Magagnini, Mirko; Corinaldesi, Cinzia; Monticelli, Luis S.; De Domenico, Emilio; Danovaro, Roberto

    2007-08-01

    Despite the fact that marine viruses have been increasingly investigated in the last decade, knowledge on virus abundance, biomass and distribution in mesopelagic and bathypelagic waters is limited. We report here the results of a large-spatial-scale study (covering more than 3000 km) on the virioplankton distribution in epi-, meso- and bathypelagic waters in 19 areas of the Mediterranean Sea, from the Alboran Sea and Western Mediterranean, to the Tyrrhenian Sea, Sicily Channel and Ionian Sea. Integrated viral abundance in epipelagic waters was significantly higher than in deep-sea waters (on average, 2.4 vs. 0.5×10 12 viruses m -3). However, abundance of viruses in the deep-Mediterranean waters was the highest reported so far for deep seas worldwide (7.0 and 3.1×10 11 viruses m -3 in mesopelagic and bathypelagic waters, respectively) and their biomass accounted for 13-18% of total prokaryotic C biomass. The significant relationship between viral abundance and prokaryotic abundance and production in deep waters suggests that also deep-sea viruses are closely dependent on the abundance and metabolism of their hosts. Moreover, virus to prokaryote (and nucleoid-containing cell (NuCC)) abundance ratio increased with increasing depths suggesting that deep waters may represent optimal environments for viral survival or proliferation. Overall, our results indicate that deep waters may represent a significant reservoir of viruses and open new perspectives for future investigations of viral impact on the functioning of meso-bathypelagic ecosystems.

  15. A Lightweight Vertical Rosette for Deployment in Ice Covered Water

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Chayes, D. N.; Perry, R. S.; Schlosser, P.

    2009-12-01

    Although remote sensing technology provides measurement capability for a number of water properties, there are important substances for which this technology does not currently exist and the only way to measure these substances is to collect water samples and return the samples to the lab. In the Arctic Ocean water samples are difficult to obtain from ships because of the extensive ice cover and thick pressure ridges. However, the ice provides a landing platform for aircraft, which can rapidly cover long distances. Aircraft have been used for sampling the Arctic Ocean for the past half-century using bottles and internally recording CTDs attached to a cable and lowered through leads or holes drilled in the ice. The routine CTD/rosette technology used for sampling from ships measures profiles of temperature, salinity, oxygen as well as other substances in situ, displays the data in real time for choosing depths to obtain water samples and the water samples are then collected with the rosette. These systems are too heavy and bulky to deploy from aircraft. We have developed a lightweight modular CTD/rosette system that is deployed through a 12-inch diameter hole drilled in the ice. The modules are connected together physically and electrically with the water bottle modules, which contain four 4-liter bottles each, stacked on top of the CTD module. The CTD traces are displayed on a laptop computer and the bottles are tripped using modified Seabird controllers and a melt-lanyard tripping mechanism. We have used this system for several years with Twin Otter fixed wing aircraft as part of the Switchyard Project, sampling a line of stations annually in the heavily ice covered region between Alert and the North Pole. Casts are carried out in a tent connected to the airplane using a lightweight winch mounted in the airplane. At the completion of a cast, the water modules are placed in a cooler with bags of snow to provide thermal stability at about 0°C and the end caps

  16. Charge-on-spring polarizable water models revisited: From water clusters to liquid water to ice

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; van Gunsteren, Wilfred F.

    2004-11-01

    The properties of two improved versions of charge-on-spring (COS) polarizable water models (COS/G2 and COS/G3) that explicitly include nonadditive polarization effects are reported. In COS models, the polarization is represented via a self-consistently induced dipole moment consisting of a pair of separated charges. A previous polarizable water model (COS/B2), upon which the improved versions are based, was developed by Yu, Hansson, and van Gunsteren [J. Chem. Phys. 118, 221 (2003)]. To improve the COS/B2 model, which overestimated the dielectric permittivity, one additional virtual atomic site was used to reproduce the water monomer quadrupole moments besides the water monomer dipole moment in the gas phase. The molecular polarizability, residing on the virtual atomic site, and Lennard-Jones parameters for oxygen-oxygen interactions were varied to reproduce the experimental values for the heat of vaporization and the density of liquid water at room temperature and pressure. The improved models were used to study the properties of liquid water at various thermodynamic states as well as gaseous water clusters and ice. Overall, good agreement is obtained between simulated properties and those derived from experiments and ab initio calculations. The COS/G2 and COS/G3 models may serve as simple, classical, rigid, polarizable water models for the study of organic solutes and biopolymers. Due to its simplicity, COS type of polarization can straightforwardly be used to introduce explicit polarization into (bio)molecular force fields.

  17. Ice-like Behavior of Ultra-Confined Water

    NASA Astrophysics Data System (ADS)

    Prisk, Timothy; Kolesnikov, Alexander; Mamontov, Eugene; Anovitz, Lawrence

    2015-03-01

    Water confined within microporous minerals presents an extreme example of fluid confinement, where the water molecule is trapped within cages or pore channels which are not much larger than the water molecule itself. Hemimorphite Zn4Si2O7(OH)2 .H2O is a microporous silicate mineral containing confined molecular water which interacts with the crystal structure by means of hydrogen bonding. The water molecule forms a set of coplanar hydrogen bonds with the hydroxyl groups, forming a system of two-dimensional ice within the pore channel. In this presentation, we report quasi-elastic and inelastic neutron scattering studies of water and hydroxyl proton dynamics within hemimorphite. The scattering data reveal strong anisotropy in the vibrational behavior of the water molecule, with the scissors and stretching normal mode motions occurring only on a single crystallographic plane. The effective density of states of the protons extracted from the scattering data reproduces the water contribution to the mineral's heat capacity. This research conducted at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  18. Radiation processing of water, oxygen and ozone ices

    NASA Astrophysics Data System (ADS)

    Teolis, Benjamin D.

    This thesis investigates sputtering, radiolysis and structural changes produced by ion irradiation in H2O, O2 and O 3 ices using several experimental techniques: mass spectrometry, microbalance gravimetry, reflectance spectroscopy and sputter depth profiling. The first measurements of the angular dependence of the sputtering of water ice are presented, showing that (i) the sputtering yield exhibits a cos -1.3theta dependence on the incidence angle theta of the projectiles (100 keV protons) and (ii) that the sputtered flux of H2O is more forward directed than that of O2. Using 100 keV Ar + projectiles, a complex fluence dependence in the sputtered flux of O2 is also identified. The fluence dependence is determined by (i) the thermal and irradiation history of the water ice and (ii) the deposition of ice overlayers. These results are explained by the production of trapped O2 in the ice, with the O2 concentration being governed by the rates of production, diffusion and removal of O 2 from the ice surface by sputtering and/or thermal desorption. Sputter depth profile measurements show that the primary fluence dependence of O 2 sputtering is due to the accumulation of trapped O2, and that O2 is produced preferentially near the ice surface due to out-diffusion of hydrogen in the form of H2 from that region. Removal of O2 from the surface is blocked if H2O is condensed concurrently with Ar+ irradiation, resulting in an enhancement of the concentration of O2 in the ice which is sufficient for the generation of ozone. This result represents the first reported synthesis of ozone by radiolysis of pure water ice, and may help to explain the presence of O3 in the surfaces of icy satellites of Jupiter and Saturn, where sputtered and sublimed H2O recondense onto surfaces that are simultaneously subject to irradiation by magnetospheric ions. As in the case of water ice, the sputtering yields of solid O2 and O3 were found to depend on the occurrence of radiation chemistry in the

  19. Slab Ice Characterization on Martian Richardson Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Andrieu, F.; Douté, S.

    2016-09-01

    We compare two models: granular and slab in order to study the ice properties in the Richardson crater using spectroscopy. Thanks to radiative transfer modeling, we determine compactness of CO2 ice, grain size, and abundances of water ice and dust.

  20. Accretion growth of water-ice grains in astrophysically-relevant dusty plasma experiment

    NASA Astrophysics Data System (ADS)

    Chai, Kil-Byoung; Marshall, Ryan; Bellan, Paul

    2016-10-01

    The grain growth process in the Caltech water-ice dusty plasma experiment has been studied using a high-speed camera equipped with a long-distance microscope lens. It is found that (i) the ice grain number density decreases four-fold as the average grain length increases from 20 to 80 um, (ii) the ice grain length has a log-normal distribution rather than a power-law dependence, and (iii) no collisions between ice grains are apparent. The grains have a large negative charge so the agglomeration growth is prevented by their strong mutual repulsion. It is concluded that direct accretion of water molecules is in good agreement with the observed ice grain growth. The volumetric packing factor of the ice grains must be less than 0.25 in order for the grain kinetic energy to be sufficiently small to prevent collisions between ice grains; this conclusion is consistent with ice grain images showing a fractal character.

  1. Evidence for crystalline water and ammonia ices on Pluto's satellite charon.

    PubMed

    Brown, M E; Calvin, W M

    2000-01-07

    Observations have resolved the satellite Charon from its parent planet Pluto, giving separate spectra of the two objects from 1.0 to 2.5 micrometers. The spectrum of Charon is found to be different from that of Pluto, with water ice in crystalline form covering most of the surface of the satellite. In addition, an absorption feature in Charon's spectrum suggests the presence of ammonia ices. Ammonia ice-water ice mixtures have been proposed as the cause of flowlike features observed on the surfaces of many icy satellites. The existence of such ices on Charon may indicate geological activity in the satellite's past.

  2. Exposure of Water Ice in the Northern Mid-lattitudes of Mars

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Kanner, Lisa C.

    2007-01-01

    Water ice is exposed in the martian north polar cap, and is occasionally exposed beyond the cap boundary. Orbital gamma ray spectrometry data strongly imply the presence of water ice within meters of the surface at latitudes north of approximately 60 deg. We have examined midlatitude areas of the northern plains displaying evidence of residual ice-rich layers, and report possible present-day exposures of ice. These exposures, if confirmed, could constrain the latitudinal and temporal stability of surface ice on Mars.

  3. Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland

    PubMed Central

    Thór Marteinsson, Viggó; Rúnarsson, Árni; Stefánsson, Andri; Thorsteinsson, Thorsteinn; Jóhannesson, Tómas; Magnússon, Sveinn H; Reynisson, Eyjólfur; Einarsson, Bergur; Wade, Nicole; Morrison, Hilary G; Gaidos, Eric

    2013-01-01

    Subglacial lakes beneath the Vatnajökull ice cap in Iceland host endemic communities of microorganisms adapted to cold, dark and nutrient-poor waters, but the mechanisms by which these microbes disseminate under the ice and colonize these lakes are unknown. We present new data on this subglacial microbiome generated from samples of two subglacial lakes, a subglacial flood and a lake that was formerly subglacial but now partly exposed to the atmosphere. These data include parallel 16S rRNA gene amplicon libraries constructed using novel primers that span the v3–v5 and v4–v6 hypervariable regions. Archaea were not detected in either subglacial lake, and the communities are dominated by only five bacterial taxa. Our paired libraries are highly concordant for the most abundant taxa, but estimates of diversity (abundance-based coverage estimator) in the v4–v6 libraries are 3–8 times higher than in corresponding v3–v5 libraries. The dominant taxa are closely related to cultivated anaerobes and microaerobes, and may occupy unique metabolic niches in a chemoautolithotrophic ecosystem. The populations of the major taxa in the subglacial lakes are indistinguishable (>99% sequence identity), despite separation by 6 km and an ice divide; one taxon is ubiquitous in our Vatnajökull samples. We propose that the glacial bed is connected through an aquifer in the underlying permeable basalt, and these subglacial lakes are colonized from a deeper, subterranean microbiome. PMID:22975882

  4. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method.

    PubMed

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P; Quigley, David

    2017-02-21

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  5. Solid-liquid interfacial free energy of ice Ih, ice Ic, and ice 0 within a mono-atomic model of water via the capillary wave method

    NASA Astrophysics Data System (ADS)

    Ambler, Michael; Vorselaars, Bart; Allen, Michael P.; Quigley, David

    2017-02-01

    We apply the capillary wave method, based on measurements of fluctuations in a ribbon-like interfacial geometry, to determine the solid-liquid interfacial free energy for both polytypes of ice I and the recently proposed ice 0 within a mono-atomic model of water. We discuss various choices for the molecular order parameter, which distinguishes solid from liquid, and demonstrate the influence of this choice on the interfacial stiffness. We quantify the influence of discretisation error when sampling the interfacial profile and the limits on accuracy imposed by the assumption of quasi one-dimensional geometry. The interfacial free energies of the two ice I polytypes are indistinguishable to within achievable statistical error and the small ambiguity which arises from the choice of order parameter. In the case of ice 0, we find that the large surface unit cell for low index interfaces constrains the width of the interfacial ribbon such that the accuracy of results is reduced. Nevertheless, we establish that the interfacial free energy of ice 0 at its melting temperature is similar to that of ice I under the same conditions. The rationality of a core-shell model for the nucleation of ice I within ice 0 is questioned within the context of our results.

  6. Fungal spores as potential ice nuclei in fog/cloud water and snow

    NASA Astrophysics Data System (ADS)

    Bauer, Heidi; Goncalves, Fabio L. T.; Schueller, Elisabeth; Puxbaum, Hans

    2010-05-01

    INTRODUCTION: In discussions about climate change and precipitation frequency biological ice nucleation has become an issue. While bacterial ice nucleation (IN) is already well characterized and even utilized in industrial processes such as the production of artificial snow or to improve freezing processes in food industry, less is known about the IN potential of fungal spores which are also ubiquitous in the atmosphere. A recent study performed at a mountain top in the Rocky Mountains suggests that fungal spores and/or pollen might play a role in increased IN abundance during periods of cloud cover (Bowers et al. 2009). In the present work concentrations of fungal spores in fog/cloud water and snow were determined. EXPERIMENTAL: Fog samples were taken with an active fog sampler in 2008 in a traffic dominated area and in a national park in São Paulo, Brazil. The number concentrations of fungal spores were determined by microscopic by direct enumeration by epifluorescence microscopy after staining with SYBR Gold nucleic acid gel stain (Bauer et al. 2008). RESULTS: In the fog water collected in the polluted area at a junction of two highly frequented highways around 22,000 fungal spores mL-1 were counted. Fog in the national park contained 35,000 spores mL-1. These results were compared with cloud water and snow samples from Mt. Rax, situated at the eastern rim of the Austrian Alps. Clouds contained on average 5,900 fungal spores mL-1 cloud water (1,300 - 11,000) or 2,200 spores m-3 (304 - 5,000). In freshly fallen snow spore concentrations were lower than in cloud water, around 1,000 fungal spores mL-1 were counted (Bauer et al. 2002). In both sets of samples representatives of the ice nucleating genus Fusarium could be observed. REFERENCES: Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., Puxbaum, H. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols

  7. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    NASA Astrophysics Data System (ADS)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  8. Exposed water ice deposits on the surface of comet 9P/Tempel 1.

    PubMed

    Sunshine, J M; A'Hearn, M F; Groussin, O; Li, J-Y; Belton, M J S; Delamere, W A; Kissel, J; Klaasen, K P; McFadden, L A; Meech, K J; Melosh, H J; Schultz, P H; Thomas, P C; Veverka, J; Yeomans, D K; Busko, I C; Desnoyer, M; Farnham, T L; Feaga, L M; Hampton, D L; Lindler, D J; Lisse, C M; Wellnitz, D D

    2006-03-10

    We report the direct detection of solid water ice deposits exposed on the surface of comet 9P/Tempel 1, as observed by the Deep Impact mission. Three anomalously colored areas are shown to include water ice on the basis of their near-infrared spectra, which include diagnostic water ice absorptions at wavelengths of 1.5 and 2.0 micrometers. These absorptions are well modeled as a mixture of nearby non-ice regions and 3 to 6% water ice particles 10 to 50 micrometers in diameter. These particle sizes are larger than those ejected during the impact experiment, which suggests that the surface deposits are loose aggregates. The total area of exposed water ice is substantially less than that required to support the observed ambient outgassing from the comet, which likely has additional source regions below the surface.

  9. Erosion by Ice and Water in the Southern Andes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This scene on the remote, rugged Argentine/Chilean border in the far southern Andes Mountains offers numerous, dramatic examples of both erosional processes and features of ice and water. The sharp, glaciated crest of the Cerro San Lorenzo (center) exceeds 12,000 feet and casts a long shadow southeastward. Glaciers on its western flank flow into the valley. This Electronic Still Camera photo was taken from the International Space Station, in December 2000 (late spring) when most of the previous winter's snow had melted below an altitude of 6,000 feet. Lago Pueyrredon, and the other lakes visible here, have been excavated by geologically recent episodes of glacier erosion, when glaciers extended all the way onto the lowland plains (top right). Since the last melting of the glaciers (15,000 years ago) three distinct fan deltas (semicircular features, marked with arrows) have formed where rivers flow into the lake. Counterclockwise currents in the lake-driven by strong winds from the west-have generated thin sand spits from each fan-delta. The largest spit (attached to the largest fan-delta, see right arrow) has isolated an approximately 10-kilometer long segment of the south end of the lake. The river that constructed the largest fan presently discharges turbid water to this isolated basin, giving it a lighter color than the rest of the lake. Glacial data collected over the past 50 years indicate that small ice bodies are disappearing at accelerated rates. (EOS, vol 81, no. 24, June 13, 2000) Predictions are that large fluctuations in land ice, with significant implications to society, are possible in the coming decades and centuries due to natural and anthropogenic climate change. Before glacial data can be used to address critical problems pertaining to the world's economic and environmental health, more detailed information about such glaciers is needed. Image ISS001-ESC-5113 provided by the Earth Sciences and Image Analysis Laboratory, Johnson Space Center.

  10. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    NASA Astrophysics Data System (ADS)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  11. The Contribution of Water Ice Clouds to the Water Cycle in the North Polar Region of Mars: Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Bass, D. S.; Tamppari, L. K.

    2000-01-01

    While it has long been known that Mars' north residual polar cap and the Martian regolith are significant sources of atmospheric water vapor, the amount of water vapor observed in the northern spring season by the Viking Mars Atmospheric Water Detector instrument (MAWD) cannot be attributed to cap and regolith sources alone. Kahn suggested that ice hazes may be the mechanism by which additional water is supplied to the Martian atmosphere. Additionally, a significant decrease in atmospheric water vapor was observed in the late northern summer that could not be correlated with the return of the cold seasonal C02 ice. While the detection of water ice clouds on Mars indicate that water exists in Mars' atmosphere in several different phases, the extent to which water ice clouds play a role in moving water through the Martian atmosphere remains uncertain. Work by Bass et. al. suggested that the time dependence of water ice cap seasonal variability and the increase in atmospheric water vapor depended on the polar cap center reaching 200K, the night time saturation temperature. Additionally, they demonstrated that a decrease in atmospheric water vapor may be attributed to deposition of water ice onto the surface of the polar cap; temperatures were still too warm at this time in the summer for the deposition of carbon dioxide. However, whether water ice clouds contribute significantly to this variability is unknown. Additional information is contained in original extended abstract.

  12. The temporal evolution of exposed water ice-rich areas on the surface of 67P/Churyumov-Gerasimenko: spectral analysis.

    NASA Astrophysics Data System (ADS)

    Raponi, A.; Ciarniello, M.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Capria, M. T.; Barucci, M. A.; Longobardo, A.; Palomba, E.; Kappel, D.; Arnold, G.; Mottola, S.; Rousseau, B.; Rinaldi, G.; Erard, S.; Bockelee-Morvan, D.; Leyrat, C.

    2016-11-01

    Water ice-rich patches have been detected on the surface of comet 67P/Churyumov-Gerasimenko by the VIRTIS hyperspectral imager on-board the Rosetta spacecraft, since the orbital insertion in late August 2014. Among those, three icy patches have been selected, and VIRTIS data have been used to analyse their properties and temporal evolution while the comet was moving towards the Sun. We performed an extensive analysis of the spectral parameters, and we applied the Hapke radiative transfer model to retrieve the abundance and grain size of water ice, as well as the mixing modalities of water ice and the ubiquitous dark refractory terrains of the surface. Study of the spatial distribution of the spectral parameters within the ice-rich patches has revealed that water ice follows different patterns associated to a bimodal distribution of the grains: 50 μm sized and 2000 μm sized, respectively in intimate and areal mixture with the dark material. In all three cases we identified different stages of the evolution of abundance of ice in the selected patches after the first detections at about 3.5 AU heliocentric distance; the spatial extension and intensity of the water ice spectral features reached a maximum after 60-100 days at about 3.0 AU, was followed by an approximately equally timed decrease, and the features were no longer visible when observed again at about 2.2 AU, before perihelion. The exposure of deeper layers is consistent with their occurrence in "active" areas where falls or landslides could have caused the occasional exposure of water ice-rich layers. After the initial exposure of the ice, the activity of the affected area increases thus causing dust removal powered by sublimation, which provides a positive feedback on the exposure itself. The process develops as the solar flux increases, and it reaches a turning point when the exposure rate is outweighed by the sublimation rate, until the complete sublimation of the patch. It is interesting to note that

  13. Fluorescence instrument for in situ monitoring of viral abundance in water, wastewater and recycled water.

    PubMed

    Pollard, Peter C

    2012-04-01

    In a world of advanced molecular methods quantifying viruses in water remains one of the most inefficient and costly. Using a general molecular DNA/RNA probe - SYBR Gold combined with differential filtration a fast, cost effective and sensitive method is presented to determine the concentration of viruses in water in situ or on-line. The approach differentiates the nucleotide size fractions that are stained with SYBR Gold to show only those associated with Viral DNA and RNA. There was a linear relationship between the fluorescence maxima for SYBR Gold added to wastewater and viral numbers determined with direct counting using epifluorescent microscopy (r(2)=0.97) and for a range of diverse natural water samples (r(2)=0.86). The method was applied to water from the tropics and Antarctica, marine and freshwater environments where natural viral abundances ranged from 10(6) to 10(8) virusesmL(-1). The method takes into account the background fluorescence that represented 70% of total fluorescence and any auto-fluorescence due to other dissolved organic carbon. While DNAse II lowered the background fluorescence associated with free DNA and RNA it could not be eliminated. The technique presented is suitable for monitoring in situ viral numbers in natural water bodies and engineered water treatment processes. This on-line viral monitoring design has the potential to replace human viral pathogen indicators.

  14. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Technical Reports Server (NTRS)

    Elsaesser, Greg; Del Genio, Anthony

    2015-01-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  15. Insights into hydrogen bonding via ice interfaces and isolated water

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane; Bisson, Patrick; Vu, Tuan Hoang

    2014-11-01

    Water in a confined environment has a combination of fewer available configurations and restricted mobility. Both affect the spectroscopic signature. In this work, the spectroscopic signature of water in confined environments is discussed in the context of competing models for condensed water: (1) as a system of intramolecular coupled molecules or (2) as a network with intermolecular dipole-dipole coupled O-H stretches. Two distinct environments are used: the confined asymmetric environment at the ice surface and the near-isolated environment of water in an infrared transparent matrix. Both the spectroscopy and the environment are described followed by a perspective discussion of implications for the two competing models. Despite being a small molecule, water is relatively complex; perhaps not surprisingly the results support a model that blends inter- and intramolecular coupling. The frequency, and therefore the hydrogen-bond strength, appears to be a function of donor-acceptor interaction and of longer-range dipole-dipole alignment in the hydrogen-bonded network. The O-H dipole direction depends on the local environment and reflects intramolecular O-H stretch coupling.

  16. Insights into hydrogen bonding via ice interfaces and isolated water.

    PubMed

    Shultz, Mary Jane; Bisson, Patrick; Vu, Tuan Hoang

    2014-11-14

    Water in a confined environment has a combination of fewer available configurations and restricted mobility. Both affect the spectroscopic signature. In this work, the spectroscopic signature of water in confined environments is discussed in the context of competing models for condensed water: (1) as a system of intramolecular coupled molecules or (2) as a network with intermolecular dipole-dipole coupled O-H stretches. Two distinct environments are used: the confined asymmetric environment at the ice surface and the near-isolated environment of water in an infrared transparent matrix. Both the spectroscopy and the environment are described followed by a perspective discussion of implications for the two competing models. Despite being a small molecule, water is relatively complex; perhaps not surprisingly the results support a model that blends inter- and intramolecular coupling. The frequency, and therefore the hydrogen-bond strength, appears to be a function of donor-acceptor interaction and of longer-range dipole-dipole alignment in the hydrogen-bonded network. The O-H dipole direction depends on the local environment and reflects intramolecular O-H stretch coupling.

  17. Ice Protection of Turbojet Engines by Inertia Separation of Water I : Alternate-duct System

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing investigations of internal water-inertia separation inlets designed to prevent automatically entrance of large quantities of water into a turbojet engine in icing conditions was conducted on a one-half scale model. A simplified analytical approach to the design of internal water-inertia separation inlets is included. Results show that in order to be effective in preventing screen and guide-vane icing for an inlet of this type, a ram-pressure recovery of 75 percent was attained at design inlet-velocity ratio in an icing condition. For nonicing operation, ram-pressure recovery is comparable to direct-ram inlet.

  18. Pacific Mole Crab (Emerita analoga) Abundance in Correlation with Waste Water Effluence

    NASA Astrophysics Data System (ADS)

    Sun, L.; Dangerfield, L.; Minor, D.; Subedar, R.

    2012-12-01

    Previous studies have shown that pollutants such as ammonia and copper have had negative effects on marine invertebrate lifecycles. Along the Pacific Coast of California, a filter feeding invertebrate, the Pacific mole crab, Emerita analoga, is exposed to such pollutants regularly. In San Francisco, habitats for populations of Pacific mole crabs are located near the Oceanside Water Pollution Control Plant, which dumps waste water 4.5 miles off the coast. Due to this disturbance at the south end of Ocean Beach, we hypothesize that there is a negative correlation between the abundance of mole crabs and the levels of copper, zinc and ammonia in sewage released from the Oceanside plant each year. By analyzing four years of Pacific mole crab abundance data and utilizing yearly waste water discharge figures, we found that there is a slight negative correlation (-0.67057) between mole crab abundances and the total amount of waste water being released annually. The amount of copper released from 2007-2010 and the abundance of E. analoga also has a slight negative correlation (-0.6714). The correlation between Pacific mole crab abundance and the total amount of zinc is also a slightly negative (-0.48434). However, the correlation between the abundance of mole crabs and total amount of ammonia released is positive (0.4497). Further data are needed to ascertain the relationship between the abundance of the Pacific mole crab and the amount of pollutants released from nearby waste water treatment plants.

  19. New metastable form of ice and its role in the homogeneous crystallization of water.

    PubMed

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2014-07-01

    The homogeneous crystallization of water at low temperature is believed to occur through the direct nucleation of cubic (Ic) and hexagonal (Ih) ices. Here, we provide evidence from molecular simulations that the nucleation of ice proceeds through the formation of a new metastable phase, which we name Ice 0. We find that Ice 0 is structurally similar to the supercooled liquid, and that on growth it gradually converts into a stacking of Ice Ic and Ih. We suggest that this mechanism provides a thermodynamic explanation for the location and pressure dependence of the homogeneous nucleation temperature, and that Ice 0 controls the homogeneous nucleation of low-pressure ices, acting as a precursor to crystallization in accordance with Ostwald's step rule of phases. Our findings show that metastable crystalline phases of water may play roles that have been largely overlooked.

  20. A PHOTOMETRIC SYSTEM FOR DETECTION OF WATER AND METHANE ICES ON KUIPER BELT OBJECTS

    SciTech Connect

    Trujillo, Chadwick A.; Sheppard, Scott S.; Schaller, Emily L. E-mail: sheppard@dtm.ciw.edu

    2011-04-01

    We present a new near-infrared photometric system for detection of water ice and methane ice in the solar system. The system consists of two medium-band filters in the K-band region of the near-infrared, which are sensitive to water ice and methane ice, plus continuum observations in the J band and Y band. The primary purpose of this system is to distinguish between three basic types of Kuiper Belt Objects (KBOs)-those rich in water ice, those rich in methane ice, and those with little absorbance. In this work, we present proof-of-concept observations of 51 KBOs using our filter system, 21 of which have never been observed in the near-infrared spectroscopically. We show that our custom photometric system is consistent with previous spectroscopic observations while reducing telescope observing time by a factor of {approx}3. We use our filters to identify Haumea collisional family members, which are thought to be collisional remnants of a much larger body and are characterized by large fractions of water ice on their surfaces. We add 2009 YE{sub 7} to the Haumea collisional family based on our water ice band observations (J - H{sub 2}O = -1.03 {+-} 0.27) which indicate a high amount of water ice absorption, our calculated proper orbital elements, and the neutral optical colors we measured, V - R = 0.38 {+-} 0.04, which are all consistent with the rest of the Haumea family. We identify several objects dynamically similar to Haumea as being distinct from the Haumea family as they do not have water ice on their surfaces. In addition, we find that only the largest KBOs have methane ice, and Haumea itself has significantly less water ice absorption than the smaller Haumea family members. We find no evidence for other families in the Kuiper Belt.

  1. POLAR ICE: Integrating, Distributing and Visualising Ice Information Products for Operators in Polar Waters

    NASA Astrophysics Data System (ADS)

    Walker, Nick; Fleming, Andrew; Cziferszky, Andreas; Toudal Pedersen, Leif; Rasmussen, Till; Makynen, Marko; Berglund, Robin; Seitsonen, Lauri; Rudjord, Oystein; Solberg, Rune; Tangen, Helge; Axell, Lars; Saldo, Roberto; Melsheimer, Christian; Larsen, Hans Eilif; Puestow, Thomas; Arhturs, David; Flach, Dominie

    2016-08-01

    The POLAR ICE project has developed a system for integrating and delivering satellite derived ice information products to operators working in the economically and environmentally important Arctic and Antarctic regions. POLAR ICE has been supported by the European Commission's FP7 programme and undertaken by European and Canadian companies and institutes, who are all partners in the Polar View Earth Observation Limited (PVEO) company. It is the aim of PVEO to commercialise the service that has been developed and demonstrated as a part of POLAR ICE.Access to sea ice information derived from satellite earth observation data is critical to support the increasing numbers of Arctic and Antarctic shipping and off-shore operations and to protect the rapidly changing polar environment.To-date the development of sea ice information capabilities has addressed separate elements of complete service chains. In contrast POLAR ICE has linked these separate elements together, filled in known gaps and built a robust integrated service chain.

  2. Europa's Water Vapor Plumes: Systematically Constraining their Abundance and Variability

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz

    2014-10-01

    The discovery of transient water vapor plumes near Europa's south pole (Roth et al. 2014) has important implications for the search for life in our Solar System. Europa's subsurface water ocean is thought to provide all the ingredients needed for a habitable environment. The plumes might enable direct sampling of Europa's subsurface constituents and provide insights into the chemistry, mobility, and extent of the liquid water environments. In STIS spectral images obtained in Dec. 2012, the intensity ratios of atomic H and O auroral emissions uniquely identify the source as electron impact excitation of water molecules. However, a confirmation of the initial detection has not yet been achieved, and non-detections from four out of five previous such visits suggest a complex and possibly episodic variation in plume activity. We have identified five potential variability sources for plume activity and detectability and propose a focused program to systematically constrain Europa's plumes and their variability pattern. Our constraints for the plume activity on Europa are vital inputs for key programmatic decisions regarding NASA's next large mission to Europa.

  3. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-26

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  4. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  5. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    PubMed

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community.

  6. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  7. Mars Global Surveyor TES Results: Observations of Water Ice Clouds

    NASA Technical Reports Server (NTRS)

    Pearl, John C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.

    1999-01-01

    On July 31, 1999, Mars Global Surveyor completed its first martian year in orbit. During this time, the Thermal Emission Spectrometer (TES) experiment gathered extensive data on water ice clouds. We report here on three types of martian clouds. 1) Martian southern summer has long been characterized as the season when the most severe dust storms occur. It is now apparent that northern spring/summer is characterized as a time of substantial low latitude ice clouds [1]. TES observations beginning in the northern summer (Lsubs=107) show a well developed cloud belt between 10S and 30N latitude; 12 micron opacities were typically 0.15. This system decreased dramatically after Lsubs= 130. Thereafter, remnants were most persistent over the Tharsis ridge. 2) Clouds associated with major orographic features follow a different pattern [2]. Clouds of this type were present prior to the regional Noachis dust storm of 1997. They disappeared with the onset of the storm, but reappeared rather quickly following its decay. Typical infrared opacities were near 0.5. 3) Extensive, very thin clouds are also widespread [3]. Found at high altitudes (above 35 km), their opacities are typically a few hundredths. At times, such as in northern spring, these clouds are limited in their northern extent only by the southern edge of the polar vortex. We describe the distribution, infrared optical properties, and seasonal trends of these systems during the first martian year of TES operations.

  8. Evidence for subsurface water ice in Korolev crater, Mars

    USGS Publications Warehouse

    Armstrong, J.C.; Titus, T.N.; Kieffer, H.H.

    2005-01-01

    Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ???73?? latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix. ?? 2004 Elsevier Inc. All rights reserved.

  9. The study of fresh-water lake ice using multiplexed imaging radar

    USGS Publications Warehouse

    Leonard, Bryan M.; Larson, R.W.

    1975-01-01

    The study of ice in the upper Great Lakes, both from the operational and the scientific points of view, is receiving continued attention. Quantitative and qualitative field work is being conducted to provide the needed background for accurate interpretation of remotely sensed data. The data under discussion in this paper were obtained by a side-looking multiplexed airborne radar (SLAR) supplemented with ground-truth data.Because of its ability to penetrate adverse weather, radar is an especially important instrument for monitoring ice in the upper Great Lakes. It has previously been shown that imaging radars can provide maps of ice cover in these areas. However, questions concerning both the nature of the surfaces reflecting radar energy and the interpretation of the radar imagery continually arise.Our analysis of ice in Whitefish Bay (Lake Superior) indicates that the combination of the ice/water interlace and the ice/air interface is the major contributor to the radar backscatter as seen on the imagery At these frequencies the ice has a very low relative dielectric permittivity (< 3.0) and a low loss tangent Thus, this ice is somewhat transparent to the energy used by the imaging SLAR system. The ice types studied include newly formed black ice, pancake ice, and frozen and consolidated pack and brash ice.Although ice thickness cannot be measured directly from the received signals, it is suspected that by combining the information pertaining to radar backscatter with data on the meteorological and sea-state history of the area, together with some basic ground truth, better estimates of the ice thickness may be provided. In addition, certain ice features (e.g. ridges, ice-foot formation, areas of brash ice) may be identified with reasonable confidence. There is a continued need for additional ground work to verify the validity of imaging radars for these types of interpretations.

  10. Application of laser induced breakdown spectroscopy (LIBS) to Mars polar exploration : LIBS analysis of water ice and water ice/soil mixtures

    SciTech Connect

    Arp, Z. A.; Cremers, D. A.; Wiens, R. C.

    2004-01-01

    The polar regions of Mars are of great interest due to the presence of water ice and CO{sub 2} ice combined with wind blown deposits. Due to seasonal changes and repeated cycles of precipitating dusts and H{sub 2}O, geological samples appear to have built up in the polar regions. These polar layered deposits (PLD) may include volcanic ash, fallout from surface impacts, evaporates from subliming lakes and seas and even wind blown ancient microbial life. The ability to examine the PLDs will be of great importance in the study of past Martian geological history and the determination of the past presence of life on Mars. Analysis of the ice fields which are present in the polar regions of Mars will almost certainly be of great interest to future surface rovers and landers to this region. The use of LIBS will maximize the scientific return of these missions. Through the development of a compact sensor head and a pan and tilt mechanism, analysis of PLD may be made in areas that are otherwise inaccessible to either a lander or a surface rover. This gives LIBS a significant advantage over other analysis techniques which require more than just optical access. Also, through the use of repetitive laser pulses it will be possible to ablate away the water ice layer to better examine the PLDs which exist below the surface. Another potential use for LIBS is the analysis of retrieved ice core samples. Laser pulses formed along the length of the ice core can monitor composition as a function of depth. This method has already been shown to work for mineral drill cores and terrestrial ice cores using laser ablation ICP-MS. Prior work on the use of LIBS for analysis of ice has focused on the detection of trace metal ions in the ice. To our knowledge no further work has been reported on the use of LIBS for analysis of water ice and water ice/soil mixtures. Here we will examine in detail the detection capabilities of LIBS on water ice and water ice/soil mixtures in an atmosphere similar

  11. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the

  12. Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1988-01-01

    The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.

  13. Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-Locked Lakes of Schirmacher Oasis and the Perennially Ice-Covered Lake Untersee in East Antarctica

    NASA Technical Reports Server (NTRS)

    Huang, Jonathan; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Bej, Asim K.

    2010-01-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  14. Comparison of the microbial diversity and abundance between the freshwater land-locked lakes of Schirmacher Oasis, and the perennially ice-covered Lake Untersee in East Antarctica

    NASA Astrophysics Data System (ADS)

    Huang, Jonathan P.; Hoover, Richard B.; Swain, Ashit; Murdock, Chris; Andersen, Dale T.; Bej, Asim K.

    2010-09-01

    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors to the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed an abundant and diverse group of microorganisms compared to Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27C had a richer microbial diversity representing 4 different phyla and 7 different genera. In contrast L47 consisted of 3 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions.

  15. Diurnal Albedo Variations of the Martian North Polar Water Ice Cap

    NASA Technical Reports Server (NTRS)

    Troy, R. F.; Bass, D.

    2002-01-01

    Presentation of findings regarding diurnal variations in the north polar water ice cap of Mars as part of a larger study of the interannual and seasonal variations of the Martian north polar water ice cap. Additional information is contained in the original extended abstract.

  16. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: implications for cold environments.

    PubMed

    Weber, Jan; Kurková, Romana; Klánová, Jana; Klán, Petr; Halsall, Crispin J

    2009-12-01

    Here we investigate the photodegradation of structurally similar organophosphorus pesticides; methyl-parathion and fenitrothion in water (20 degrees C) and ice (-15 degrees C) under environmentally-relevant conditions with the aim of comparing these laboratory findings to limited field observations. Both compounds were found to be photolyzed more efficiently in ice than in aqueous solutions, with quantum yields of degradation being higher in ice than in water (fenitrothion > methyl-parathion). This rather surprising observation was attributed to the concentration effect caused by freezing the aqueous solutions. The major phototransformation products included the corresponding oxons (methyl-paraoxon and fenitroxon) and the nitrophenols (3-methyl-nitrophenol and nitrophenol) in both irradiated water and ice samples. The presence of oxons in ice following irradiation, demonstrates an additional formation mechanism of these toxicologically relevant compounds in cold environments, although further photodegradation of oxons in ice indicates that photochemistry of OPs might be an environmentally important sink in cold environments.

  17. How thick are Mercury's polar water ice deposits?

    NASA Astrophysics Data System (ADS)

    Eke, Vincent R.; Lawrence, David J.; Teodoro, Luís F. A.

    2017-03-01

    An estimate is made of the thickness of the radar-bright deposits in craters near to Mercury's north pole. To construct an objective set of craters for this measurement, an automated crater finding algorithm is developed and applied to a digital elevation model based on data from the Mercury Laser Altimeter onboard the MESSENGER spacecraft. This produces a catalogue of 663 craters with diameters exceeding 4 km, northwards of latitude +55∘ . A subset of 12 larger, well-sampled and fresh polar craters are selected to search for correlations between topography and radar same-sense backscatter cross-section. It is found that the typical excess height associated with the radar-bright regions within these fresh polar craters is (50 ± 35) m. This puts an approximate upper limit on the total polar water ice deposits on Mercury of ∼ 3 × 1015 kg.

  18. Evidence for exposed water ice in the Moon's south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements

    NASA Astrophysics Data System (ADS)

    Hayne, Paul O.; Hendrix, Amanda; Sefton-Nash, Elliot; Siegler, Matthew A.; Lucey, Paul G.; Retherford, Kurt D.; Williams, Jean-Pierre; Greenhagen, Benjamin T.; Paige, David A.

    2015-07-01

    We utilize surface temperature measurements and ultraviolet albedo spectra from the Lunar Reconnaissance Orbiter to test the hypothesis that exposed water frost exists within the Moon's shadowed polar craters, and that temperature controls its concentration and spatial distribution. For locations with annual maximum temperatures Tmax greater than the H2O sublimation temperature of ∼110 K, we find no evidence for exposed water frost, based on the LAMP UV spectra. However, we observe a strong change in spectral behavior at locations perennially below ∼110 K, consistent with cold-trapped ice on the surface. In addition to the temperature association, spectral evidence for water frost comes from the following spectral features: (a) decreasing Lyman-α albedo, (b) decreasing "on-band" (129.57-155.57 nm) albedo, and (c) increasing "off-band" (155.57-189.57 nm) albedo. All of these features are consistent with the UV spectrum of water ice, and are expected for water ice layers >∼100 nm in thickness. High regolith porosity, which would darken the surface at all wavelengths, cannot alone explain the observed spectral changes at low temperatures. Given the observed LAMP off-band/on-band albedo ratios at a spatial scale of 250 m, the range of water ice concentrations within the cold traps with Tmax < 110 K is ∼0.1-2.0% by mass, if the ice is intimately mixed with dry regolith. If pure water ice is exposed instead, then up to ∼10% of the surface area on the 250-m scale of the measurements may be ice-covered. The observed distribution of exposed water ice is highly heterogeneous, with some cold traps <110 K having little to no apparent water frost, and others with a significant amount of water frost. As noted by Gladstone et al. (Gladstone, G.R. et al. [2012]. J. Geophys. Res.: Planets 117(E12)), this heterogeneity may be a consequence of the fact that the net supply rate of H2O molecules to the lunar poles is very similar to the net destruction rate within the cold

  19. Martian Seasonal CO2 Frost Indicating Decameter-Scale Variability in Buried Water Ice

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; Hansen, C. J.; Cull, S.; Arvidson, R. E.; Searls, M.

    2011-12-01

    Several new lines of evidence indicate that subsurface water ice (ground ice) on Mars is more complexly distributed, and in variable concentrations, than had been previously envisioned. Understanding the current distribution of ground ice is a fundamental part of understanding how this ice was emplaced and the recent past climate conditions under which icy deposits formed and subsequently evolved. In this work we examine the seasonal defrosting of CO2 observed by HiRISE as an indicator of decameter-scale ground-ice heterogeneity. It is well known that CO2 dry ice accumulates on the martian surface in winter. The amount of dry ice and the time it spends on the ground depends strongly on surface properties. A readily observable attribute is the "crocus date", the season (Ls) when CO2 completely sublimates, exposing the soil surface. Many factors can affect the crocus date, but perhaps most important are the properties of CO2 frost and of the surface soil. We examine HiRISE observations, spanning more than a martian year, for decameter-scale patterns of CO2 frost and the crocus date. Year-to-year repeatability of CO2 ice patterns, both in polygon troughs and decameter-size patches, along with a lack of topography nor aeolian redistribution, suggests that differences in the surface substrate is the root cause for these patterns. In addition, only CO2 slab ice (solid, non-porous dry ice) is indicated throughout the observed seasons and at all spatial scales (down to meter scale), as evidenced by albedo (HiRISE and TES) and IR spectra (CRISM). In addition, the low emissivity and high albedo of fine-grained particulate CO2 frost would result in a crocus date much earlier than even the earliest observed. We present two scenarios of substrate differences which explain the observations: (i) the ice-table depth varies away from atmospheric equilibrium, such that a thicker "dry-soil" layer occurs in disequilibrium where the CO2 ice lingers longest; and (ii) the H2O

  20. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    PubMed

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  1. Water ice phases II, III, and V - Plastic deformation and phase relationships

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Boro, C. O.; Kirby, S. H.; Stern, L. A.; Heard, H. C.

    1988-01-01

    The ordinary water phase I was transformed to the ice phases that are known to exist in the interiors of large ice moons, such as Ganymede and Callisto for the purpose of investigating plastic deformation behavior of these ices. Ices II, III, and V were prepared using an apparatus and techniques similar to those described by Durham et al. (1983) and subsequently deformed in a gas deformation apparatus, and their deformation data were obtained. It was found that ice II was the strongest of the high-pressure phases, with a strength that was comparable to that of ice I; ice III was very weak, with the flow rate 100 to 1000 times higher than that of ice II at the same levels of stress. It was also found that ices III and V can exist metastably within the ice II field and that they may be deformed plastically within much of the metastable region without reverting to ice II. It is suggested that the weakness of the ice III phase may have profoundly influenced the evolution and the present-day behavior of the icy moons.

  2. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    PubMed Central

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-01-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas. PMID:26553610

  3. DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION

    SciTech Connect

    Terada, Hiroshi; Tokunaga, Alan T.

    2012-07-01

    We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

  4. Martian atmospheric chemistry during the time of low water abundance

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Yung, Yuk L.; Clancy, R. Todd

    1992-01-01

    The importance of odd hydrogen (or HO(x)) radicals in the catalytic recombination of carbon monoxide and oxygen in the Martian atmosphere is a well known fact. The inclusion of recent chemical kinetics data, specifically temperature-dependent CO2 absorption cross sections, into our one dimensional photochemical model shows that HO(x) is too efficient in this regard. The absorption cross sections of CO2 are smaller than previously assumed; this leads to a reduction in the photolysis rate of CO2 while the photolysis rate of H2O has increased. As a consequence the predicted mixing ratio of CO in our models is substantially less than the observed value of 6.5(10)(exp -4). Simultaneous measurements of water, ozone, and carbon monoxide were obtained in the Martian atmosphere in early Dec. 1990 (L(sub s) for Mars was 344 deg.).

  5. Dielectric constant of ices and water: a lesson about water interactions.

    PubMed

    Aragones, J L; MacDowell, L G; Vega, C

    2011-06-16

    In this paper, the dielectric constant has been evaluated for ices Ih, III, V, VI, and VII for several water models using two different methodologies. Using Monte Carlo simulations, with special moves to sample proton-disordered configurations, the dielectric constant has been rigorously evaluated. We also used an approximate route in which proton-disordered configurations satisfying the Bernal-Fowler rules were generated following the algorithm proposed by Buch et al. (Buch, V.; Sandler, P.; Sadlej, J. J. Phys. Chem. B 1998, 102, 8641), and the dielectric constant was estimated assuming that all configurations have the same statistical weight (as Pauling did when estimating the residual entropy of ice). The predictions of the Pauling model for the dielectric constant differ in general from those obtained rigorously by computer simulations because proton-disordered configurations satisfying the Bernal-Fowler rules can differ in their energies by as much as 0.10-0.30 NkT (at 243 K). These differences in energy significantly affect properties that vary from one configuration to another such as polarization, leading to different values of the dielectric constant. The Pauling predictions differ from the simulation results, especially for SPC/E and TIP5P, but yield reasonable results for TIP4P-like models. We suggest that for three charge models the polarization factor (G) in condensed phases depends on the ratio of the dipole to the quadrupole moment. The SPC/E, TIP5P, TIP4P, TIP4P/2005, TIP4P/ice models of water are unable to describe simultaneously both the experimental dielectric constants of water and ice Ih. Nonpolarizable models cannot describe the dielectric constants of the different condensed phases of water because their dipole moments (about 2.3 D) are much smaller that those estimated from first principles (of the order of 3 D). However, the predictions of TIP4P models provide an overall qualititatively correct description of the dielectric constant of the

  6. Molecular multipole moments of water molecules in ice Ih

    NASA Astrophysics Data System (ADS)

    Batista, Enrique R.; Xantheas, Sotiris S.; Jónsson, Hannes

    1998-09-01

    We have used an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments to study the electric field in ice. The self-consistent induction calculations gave an average total dipole moment of 3.09 D, a 67% increase over the dipole moment of an isolated water molecule. A previous, more approximate induction model study by Coulson and Eisenberg [Proc. R. Soc. Lond. A 291, 445 (1966)] suggested a significantly smaller average value of 2.6 D. This value has been used extensively in recent years as a reference point in the development of various polarizable interaction potentials for water as well as for assessment of the convergence of water cluster properties to those of bulk. The reason for this difference is not due to approximations made in the computational scheme of Coulson and Eisenberg but rather due to the use of less accurate values for the molecular multipoles in these earlier calculations.

  7. High Ice Water Content at Low Radar Reflectivity near Deep Convection: Part II. Evaluation of Microphysical Pathways in Updraft Parcel Simulations

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.

    2015-01-01

    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present; these conditions are encountered almost exclusively in the vicinity of deep convection. Part 1 (Fridlind et al., 2015) of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 C, and concludes that the measured ice particle size distributions are broadly consistent with past literature with profiling radar measurements of Z(sub e) and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions, the Airbus measurements generally indicate variable IWC that often exceeds 2 gm (exp -3) with relatively uniform mass median area-equivalent diameter (MMD(sub eq) of 200-300 micrometers. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMD(sub eq) than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of the production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice-multiplication source strength increases and as competition for water vapor increases. Both mass and modal

  8. High ice water content at low radar reflectivity near deep convection - Part 2: Evaluation of microphysical pathways in updraft parcel simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.

    2015-06-01

    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present, encountered almost exclusively in the vicinity of deep convection. Part 1 of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 °C, and concludes that the measured ice particle size distributions are broadly consistent with past literature and with profiling radar measurements of Ze and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions the Airbus measurements generally indicate variable IWC that often exceeds 2 g m-3 with relatively uniform mass median area-equivalent diameter (MMDeq) of 200-300 μm. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMDeq than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 °C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice multiplication source strength increases and as competition for water vapor increases. Both mass and modal diameter are reduced by entrainment and by increasing aerosol concentrations

  9. High ice water content at low radar reflectivity near deep convection - Part 2: Evaluation of microphysical pathways in updraft parcel simulations

    NASA Astrophysics Data System (ADS)

    Ackerman, A. S.; Fridlind, A. M.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.

    2015-10-01

    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present; these conditions are encountered almost exclusively in the vicinity of deep convection. Part 1 (Fridlind et al., 2015) of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 °C, and concludes that the measured ice particle size distributions are broadly consistent with past literature with profiling radar measurements of Ze and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions, the Airbus measurements generally indicate variable IWC that often exceeds 2 g m-3 with relatively uniform mass median area-equivalent diameter (MMDeq) of 200-300 μm. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMDeq than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 °C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of the production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice-multiplication source strength increases and as competition for water vapor increases. Both mass and modal diameter are reduced by

  10. Of Ice and Microbes

    NASA Astrophysics Data System (ADS)

    Deming, Jody

    2006-12-01

    Inuit hunters of the North have long recognized ice as the natural state of water from which life flows on Earth. Although unaware of the microscopic world, they chart changes in properties of ice and water that derive from a succession of microbial inhabitants. Scientific hunters of the West have largely overlooked all but the warmest of ices as dynamic scenes of microbial life, considering the frozen realm to archive life forms instead. Deeply frozen glacial ice on Earth does appear to preserve microbes effectively, but isn't the ocean beneath the geologically dynamic ice of Europa believed too salty? Aren't the subsurface ices of Mars expected to be rich in all manner of mineralogical impurities? Wherever salt and other mineral impurities are sufficiently abundant in Earth ice, the ice contains interior liquid water that can range from nano-layer films on grain surfaces (glacial ice) to a porous network of brine (Arctic winter sea ice down to 20°C). Other recent studies of saline ices have indicated a world of interacting life forms, with viruses infecting bacteria in brines at -12°C (the lowest temperature tested), the domains of Bacteria and Archaea undergoing succession in winter ices (down to -28°C), and evidence that cellular maintenance may go forward incrementally even below the eutectic of seawater (-55°C). Microbes are also known to alter the physical properties of their icy homes by producing exopolymers that further depress the freezing point, either directly or by entraining more salt into the ice. Even the most inhospitable of ices to human hunters may contain interior oases for microbes, in control to some degree of their own space. In considering the habitability of icy worlds beyond Earth, we'd do well to learn more about the evolutionary prowess of microbes in adapting to conditions beyond our warm-blooded imaginations.

  11. Temporal changes in endmember abundances, liquid water and water vapor over vegetation at Jasper Ridge

    NASA Technical Reports Server (NTRS)

    Roberts, Dar A.; Green, Robert O.; Sabol, Donald E.; Adams, John B.

    1993-01-01

    Imaging spectrometry offers a new way of deriving ecological information about vegetation communities from remote sensing. Applications include derivation of canopy chemistry, measurement of column atmospheric water vapor and liquid water, improved detectability of materials, more accurate estimation of green vegetation cover and discrimination of spectrally distinct green leaf, non-photosynthetic vegetation (NPV: litter, wood, bark, etc.) and shade spectra associated with different vegetation communities. Much of our emphasis has been on interpreting Airborne Visible/Infrared Imaging Spectrometry (AVIRIS) data spectral mixtures. Two approaches have been used, simple models, where the data are treated as a mixture of 3 to 4 laboratory/field measured spectra, known as reference endmembers (EM's), applied uniformly to the whole image, to more complex models where both the number of EM's and the types of EM's vary on a per-pixel basis. Where simple models are applied, materials, such as NPV, which are spectrally similar to soils, can be discriminated on the basis of residual spectra. One key aspect is that the data are calibrated to reflectance and modeled as mixtures of reference EM's, permitting temporal comparison of EM fractions, independent of scene location or data type. In previous studies the calibration was performed using a modified-empirical line calibration, assuming a uniform atmosphere across the scene. In this study, a Modtran-based calibration approach was used to map liquid water and atmospheric water vapor and retrieve surface reflectance from three AVIRIS scenes acquired in 1992 over the Jasper Ridge Biological Preserve. The data were acquired on June 2nd, September 4th and October 6th. Reflectance images were analyzed as spectral mixtures of reference EM's using a simple 4 EM model. Atmospheric water vapor derived from Modtran was compared to elevation, and community type. Liquid water was compare to the abundance of NPV, Shade and Green Vegetation

  12. Using A-Train Observations to Evaluate Ice Water Path and Ice Cloud Radiative Effects in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Berry, B. J.

    2015-12-01

    In this study we first use A-Train satellite data to investigate the distribution of clouds, along with their radiative and microphysical properties, in Southeast Asia during the summer monsoon. The distribution of ice water path (IWP) in this region is highly skewed, such that the mean value is not representative of the typical ice cloud. In examining how cirrus cloud radiative effects at the TOA vary as a function of IWP, we find that cirrus with an IWP less than 200 g m-2 produce a net warming. And weighting the radiative effect by the frequency of occurrence of IWP, reveals that cirrus with an IWP around 20 g m-2contribute most to the heating at the TOA. Next, we use the A-Train results to address the issues of IWP occurrence and high cloud forcing in the Community Atmosphere Model version 5. Our goal is to determine if the clouds that heat the upper troposphere in the model are the same genre of clouds that heat the upper troposphere in the real atmosphere. First, we assess the distribution of ice cloud fraction in the model. Then we define a cloud radiative kernel that's a function of cloud top pressure and IWP, to determine whether the modeled ice clouds produce similar shortwave and longwave radiative effects at the TOA. Lastly, we use the cloud radiative kernel and cloud fraction histogram to evaluate how the ice cloud forcing in the model compares to the ice cloud forcing derived from A-Train.

  13. An overview of laboratory studies on the energetic processes in water-rich ices containing organic impurities at outer Solar System temperatures.

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Allamandola, L. J.

    2006-12-01

    Solid water-rich ice is an important constituent in our Solar System. Planets such as Earth and Mars, Moons such as Europa and Enceladus, Comets, rings of Saturn, and KBOs are covered with solid water ices. Thus, understanding the intricate physics and chemistry of these ices is a non-trivial and non-negligible task that needs both laboratory and in-situ observational work to make advances in this field. Over the past several years, we have been systematically studying VUV-radiation processing of organic impurities embedded in water-ices in the temperature range between 20 K and 180 K. Since PAHs are abundant extraterrestrial species and their optical strong absorption occurs in the UV-VIS-NIR region (0.2 -- 0.9 μ m) where water-ice is transparent, we have focused on water rich ices containing PAHs. During these in-situ studies we discovered several counter-intuitive phenomena (see for example: Gudipati {&} Allamandola, 2006, Astrophys. J. 638, 286 {&} J. Phys. Chem. A 110, 9020 and references therein): \\begin{itemize} PAHs embedded in cryogenic water-ice are easily and efficiently ionized (>80{%}, i.e., near quantitative ion yields) to the cation form by VUV photons. In water ice, PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions. PAH cations are stabilized in water ice to temperatures as high as 120 K. Sequential photoionization leading to the formation and stabilization of doubly positively charged organic (PAH) species in water ice has also been found. Electrons are stored in these energy processed water-ices doped with organic impurities. These findings have a range of applications to understanding the geology, chemistry, and physics of icy bodies in the outer Solar System such as coloration, energy budget, outbursts and atmospheres. These and other applications to outer Solar System will be discussed. Acknowledgments: This work was supported by grants from NASA's Exobiology

  14. Water Droplet Impingement on Simulated Glaze, Mixed, and Rime Ice Accretions

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Rachman, Arief; Wong, See-Cheuk; Yeong, Hsiung-Wei; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for a 36-in. chord NACA 23012 airfoil with and without simulated ice using a dye-tracer method. The simulated ice shapes were defined with the NASA Glenn LEWICE 2.2 ice accretion program and including one rime, four mixed and five glaze ice shapes. The impingement experiments were performed with spray clouds having median volumetric diameters of 20, 52, 111, 154, and 236 micron. Comparisons to the experimental data were generated which showed good agreement for the rime and mixed shapes at lower drop sizes. For larger drops sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove or shadow regions of ice shapes.

  15. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  16. Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China.

    PubMed

    Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong

    2016-01-01

    In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups.

  17. The Structural Properties of Vapor Deposited Water Ice and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Films of vapor deposited water ice at low temperature (T<30 K) show a number of interesting structural changes during a gradual warmup. We would like to talk about the structure of the low temperature high density amorphous form of water ice, the process of crystallization, and some recent work on the morphological changes of water ice films at high temperature. The studies of the high density amorphous form are from in-situ electron microscopy as well as numerical simulations of molecular dynamics and have lead to new insights into the physical distinction between this high density amorphous form and the low density amorphous form. For the process of crystallization, we propose a model that describes the crystallization of water ice from the amorphous phase to cubic ice in terms of the nucleation of small domains in the ice. This model agrees well with the behavior of water ice in our electron microscopy studies and finds that pure water above the glass transition is a strong liquid. In more recent work, we have concentrated on temperatures above the crystallization temperature and we find interesting morphological changes related to the decrease in viscosity of the amorphous component in the cubic crystalline regime. Given enough time, we would like to put these results in an astrophysical context and discuss some observed features of the frost on interstellar grains and the bulk ice in comets.

  18. Spectral imaging of martian water ice clouds and their diurnal behavior during the 1999 aphelion season ( Ls = 130°)

    NASA Astrophysics Data System (ADS)

    Glenar, David A.; Samuelson, Robert E.; Pearl, John C.; Bjoraker, Gordon L.; Blaney, Diana

    2003-02-01

    We report high-spectral-resolution (λ/δλ = 800-2300) near-infrared mapping observations of Mars at Ls = 130° (April 1999), which were obtained by drift-scanning the cryogenic long-slit spectrometer at the KPNO 2.2-m telescope across the disk. Data were reformatted into calibrated spectral image cubes ( x,y,λ) spanning 2.19 to 4.12 μm, which distinguish atmospheric CO 2 features, solar lines, and surface and aerosol features. Maps of relative band depth between 3.0 and 3.5 μm trace water ice clouds and show the diurnal evolution of features in the persistent northern summer aphelion cloud belt, which was mapped contemporaneously but at fixed local time by the Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES). Cloud optical depth, particle sizes, and ice aerosol content were estimated using a two-stream, single-layer scattering model, with Mie coefficients derived from recently published ice optical constants, followed by a linear spectral deconvolution process. A comparison of data and model spectra shows evaporating nighttime clouds in the morning followed by afternoon growth of a prominent orographic cloud feature on the west flank of Elysium Mons. Cloud optical depth at 3.2 μm evolved to 0.28 ± 0.13 and ice aerosol column abundance to 0.9 ± 0.3 pr μm in the afternoon. Column abundances as large as 0.17 pr μm were retrieved in nonorographic clouds within the aphelion cloud band around midday. These clouds exhibit a modest decline in optical depth during the afternoon. Results show that ice particle radii from <2 μm to >4 μm exist in both cloud types. However, large particles dominate the spectra, consistent with recent MGS/TES emission phase function measurements of aphelion cloud aerosol properties.

  19. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.

    1989-01-01

    The icing research tunnel at the NASA Lewis Research Center underwent a major rehabilitation in 1986 to 1987, necessitating recalibration of the icing cloud. The methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content are described. PMS Forward Scattering Spectrometer and Optical Array probes were used for measurement of droplet size. Examples of droplet size distributions are shown for several median volumetric diameters. Finally, the liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and are compared to the FAA icing certification criteria.

  20. Pressure Drop in Cold Water Flow in Beds Packed with Several Kinds of Crushed Ice.

    NASA Astrophysics Data System (ADS)

    Yanadori, Michio; Ohira, Akiyoshi

    This paper deals with the pressure drop in cold water flow in the beds packed with crushed ice. 1n each case, ice-packed beds were filled with sevral kinds of crushed ice, and friction-loss coefficients were examined. The following results were obtained. (1) The friction factor of rectangular-type ice-packed beds is smaller than that of ideal sphere beds by about 1/4 to 1/2. (2) The friction factor of small-stone-type ice-packed beds is about twice as large as that of ideal sphere beds. (3) It is difficult to compare the flow model of water in restricted channel of particle-type ice-packed beds with that of ideal packed beds.

  1. Ice speed of a calving glacier modulated by small fluctuations in basal water pressure

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shin; Skvarca, Pedro; Naito, Nozomu; Enomoto, Hiroyuki; Tsutaki, Shun; Tone, Kenta; Marinsek, Sebastián; Aniya, Masamu

    2011-09-01

    Ice flow acceleration has played a crucial role in the rapid retreat of calving glaciers in Alaska, Greenland and Antarctica. Glaciers that calve in water flow much faster than those that terminate on land, as a result of enhanced basal ice motion where basal water pressure is high. However, a scarcity of subglacial observations in calving glaciers limits a mechanistic understanding. Here we present high-frequency measurements of ice speed and basal water pressures from Glaciar Perito Moreno, a fast-flowing calving glacier in Patagonia. We measured water pressure in boreholes drilled at a site where the glacier is 515+/-5m thick, and where more than 60% of the ice is below the level of proglacial lakes. We found that the mean basal water pressure was about 95% of the pressure imposed by the weight of the overlying ice. Moreover, changes in basal water pressure by a few per cent drove nearly 40% of the variations in ice flow speed. The ice speed was strongly correlated to air temperature, suggesting that glacier motion was modulated by water pressure changes as meltwater entered the system. We conclude that basal water pressure in calving glaciers is important for glacier dynamics, and closely connected to climate conditions.

  2. Two moment dust and water ice in the MarsWRF GCM

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark I.; Newman, Claire E.; Mischna, Michael A.

    2016-10-01

    A new two moment dust and water ice microphysics scheme has been developed for the MarsWRF General Circulation Model based on the Morrison and Gettelman (2008) scheme, and includes temperature dependent nucleation processes and energetically constrained condensation and evaporation. Dust consumed in the formation of water ice is also tracked by the model.The two moment dust scheme simulates dust particles in the Martian atmosphere using a Gamma distribution with fixed radius for lifted particles. Within the atmosphere the particle distribution is advected and sedimented within the two moment framework, obviating the requirement for lossy conversion between the continuous Gamma distribution and discritized bins found in some Mars microphysics schemes. Water ice is simulated using the same Gamma distribution and advected and sedimented in the same way. Water ice nucleation occurs heterogeneously onto dust particles with temperature dependent contact parameters (e.g. Trainer et al., 2009) and condensation and evaporation follows energetic constraints (e.g. Pruppacher and Klett, 1980; Montmessin et al., 2002) allowing water ice particles to grow in size where necessary. Dust particles are tracked within the ice cores as nucleation occurs, and dust cores advect and sediment along with their parent ice particle distributions. Radiative properties of dust and water particles are calculated as a function of the effective radius of the particles and the distribution width. The new microphysics scheme requires 5 tracers to be tracked as the moments of the dust, water ice, and ice core. All microphysical processes are simulated entirely within the two moment framework without any discretization of particle sizes.The effect of this new microphysics scheme on dust and water ice cloud distribution will be discussed and compared with observations from TES and MCS.

  3. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    NASA Astrophysics Data System (ADS)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  4. Sublimation and Irradiation of Glycolaldehyde/Water Ices

    NASA Astrophysics Data System (ADS)

    Burke, Daren; Brown, W. A.; Viti, S.; Woods, P. M.; Slater, B.

    2012-05-01

    There is currently great interest among astronomers and astrobiologists in the inventory of organic molecules in space, in particular in star and planet-forming regions. Observations towards the Galactic Centre have revealed a rich and complex chemistry, from simple organic molecules such as methane (CH4) and methanol (CH3OH) to the recent detection of ethyl formate (C2H5OCHO) and n-propyl cyanide (C3H7CN). Amongst the most important organic species detected in space is glycolaldehyde (CH2OHCHO), an isomer of methyl formate (HCOOCH3) and acetic acid (CH3COOH). Glycolaldehyde is the simplest of the monosaccharide sugars and it reacts with propenal to form ribose, a central constituent of RNA. As a consequence, it is thought that glycolaldehyde may have a role in the origins of life in our universe. We present a detailed investigation of the adsorption and desorption of glycolaldehyde and methyl formate using temperature programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) under ultra-high vacuum. The sublimation of glycolaldehyde/water and methyl formate/water containing ices from a model carbonaceous grain surface (graphite) will be presented, along with kinetic parameters for desorption (such as the binding energy, order of desorption and desorption pre-exponential factor) derived from analysis of TPD. These experimental parameters will be incorporated into astronomical models of star-forming regions. Additional experiments investigating the stability of glycolaldehyde/water containing ices to electron/UV irradiation will also be discussed. Electron irradiation (simulating the effect of cosmic ray ionisation, which produces electrons) and UV irradiation (over a range of wavelengths) is used to examine competing routes for non-thermal desorption, decomposition and formation. RAIRS and TPD will be used to identify any reaction products and to monitor the desorption/decomposition of glycolaldehyde as a function of irradiation time. This

  5. Ice haze, snow, and the Mars water cycle

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    1990-01-01

    Light curves and extinction profiles derived from Martian limb observations are used to constrain the atmospheric temperature structure in regions of the atmosphere with thin haze and to analyze the haze particle properties and atmospheric eddy mixing. Temperature between 170 and 190 K are obtained for three cases at levels in the atmosphere ranging from 20 to 50 km. Eddy diffusion coefficients around 100,000 sq cm/s, typical of a nonconvecting atmosphere, are derived in the haze regions at times when the atmosphere is relatively clear of dust. This parameter apparently changes by more than three orders of magnitude with season and local conditions. The derived particle size parameter varies systematically by more than an order of magnitude with condensation level, in such a way that the characteristic fall time is always about one Martian day. Ice hazes provide a mechanism for scavenging water vapor in the thin Mars atmosphere and may play a key role in the seasonal cycle of water on Mars.

  6. VOLATILE TRANSPORT INSIDE SUPER-EARTHS BY ENTRAPMENT IN THE WATER-ICE MATRIX

    SciTech Connect

    Levi, A.; Podolak, M.; Sasselov, D.

    2013-05-20

    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles, and composition. In this paper, we consider super-Earths with an extensive water mantle (i.e., water planets), and the possibility of entrapment of methane in their extensive water-ice envelopes. We adopt the theory developed by van der Waals and Platteeuw for modeling solid solutions, often used for modeling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  7. Field observations of slush ice generated during freeze-up in arctic coastal waters

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.

    1987-01-01

    In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during

  8. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems.

  9. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    NASA Astrophysics Data System (ADS)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (D<50 μm) relative to the larger ice particles. Combining this small crystal information with the PSD scheme describing the larger particle concentrations yields the retrieved PSD. Small ice crystals are evaluated using the absorption properties of photon tunneling or wave resonance while the liquid water fraction is evaluated using classical Beer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  10. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    SciTech Connect

    Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan

    2015-10-07

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.

  11. Unusual dynamic properties of water near the ice-binding plane of hyperactive antifreeze protein

    NASA Astrophysics Data System (ADS)

    Kuffel, Anna; Czapiewski, Dariusz; Zielkiewicz, Jan

    2015-10-01

    The dynamical properties of solvation water of hyperactive antifreeze protein from Choristoneura fumiferana (CfAFP) are analyzed and discussed in context of its antifreeze activity. The protein comprises of three well-defined planes and one of them binds to the surface of ice. The dynamical properties of solvation water around each of these planes were analyzed separately; the results are compared with the dynamical properties of solvation water of ice around its two crystallographic planes: basal and prism. Three main conclusions are inferred from our investigations. The first one is that the solvation shell of CfAFP does not seem to be particularly far-ranged, at least not beyond what is usually observed for proteins that do not interact with ice. Therefore, it does not appear to us that the antifreeze activity is enhanced by a long-ranged retardation of water mobility. Also the correlation between the collective mobility of water and the collective mobility of protein atoms highly resembles the one measured for the protein that does not interact with ice. Our second conclusion is that the dynamical properties of solvation water of CfAFP are non-uniform. The dynamics of solvation water of ice-binding plane is, in some respects, different from the dynamics of solvation water of the two remaining planes. The feature that distinguishes the dynamics of solvation water of the three planes is the activation energy of diffusion process. The third conclusion is that—from the three analyzed solvation shells of CfAFP—the dynamical properties of solvation water of the ice-binding plane resemble the most the properties of solvation water of ice; note, however, that these properties still clearly differ from the dynamic properties of solvation water of ice.

  12. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  13. A laboratory study of water ice erosion by low-energy ions

    NASA Astrophysics Data System (ADS)

    Muntean, Elena A.; Lacerda, Pedro; Field, Thomas A.; Fitzsimmons, Alan; Fraser, Wesley C.; Hunniford, Adam C.; McCullough, Robert W.

    2016-11-01

    Water ice covers the surface of various objects in the outer Solar system. Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.

  14. ICE911 Research: Floating Safe Inert Materials to Preserve Ice and Conserve Water in Order to Mitigate Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Manzara, A.; Chetty, S.; Venkatesh, S.; Scholtz, A.

    2015-12-01

    Ice911 Research has conducted years of field testing to develop and test localized reversible engineering techniques to mitigate the negative impacts of polar ice melt. The technology uses environmentally safe materials to reflect energy in carefully selected, limited areas from summertime polar sun. The technology is now being adapted to help with California's drought. We have tested the albedo modification technique on a small scale over seven Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small artificial pond in Minnesota about 100 ft in diameter and 6 ft deep at the center, using various materials and an evolving array of instrumentation. On the pond in Minnesota, this year's test results for ice preservation, using hollow glass spheres deployed over our largest test areas yet, showed that glass bubbles can provide an effective material for increasing albedo, significantly reducing the melting rate of ice. This year Ice911 also undertook its first small Arctic field test in Barrow, Alaska on a lake in Barrow's BEO area, and results are still coming in. The technology that Ice911 has been developing for ice preservation has also been shown to keep small test areas of water cooler, in various small-scale tests spanning years. We believe that with some adaptations of the technology, the materials can be applied to reservoirs and lakes to help stretch these precious resources further in California's ongoing drought. There are several distinct advantages for this method over alternatives such as large reverse osmosis projects or building new reservoirs, which could possibly allow a drought-stricken state to build fewer of these more-costly alternatives. First, applying an ecologically benign surface treatment of Ice911's materials can be accomplished within a season, at a lower cost, with far less secondary environmental impact, than such capital-and-time-intensive infrastructure projects. Second, keeping

  15. Retrieving cloud ice water content and geometrical thickness from microwave and infrared radiometric observations

    NASA Technical Reports Server (NTRS)

    Wu, M.-L. C.

    1986-01-01

    Techniques are presented and their application illustrated for analysis of remotely sensed data collected with an aircraft carrying a multispectral cloud radiometer and an advanced microwave moisture sounder. The instruments were used on NASA high altitude flights to perform cloud field experiments. Sample IR and microwave brightness temperature data are provided as functions of the ice water path and of the ice water content. Quantitative models are described for deriving the cloud ice (or liquid) water content and the cloud geometric thickness from the radiometric data.

  16. Performance of the Aachen Acoustic Laboratory and results from comparative studies in water and ice

    NASA Astrophysics Data System (ADS)

    Heinen, Dirk; Paul, Larissa; Wiebusch, Christopher

    2013-05-01

    To investigate acoustic ice properties under laboratory conditions and to test the thermoacoustic model, the Aachen Acoustic Laboratory (AAL) was founded as a part of the activities of the acoustic working group (SPATS) within the IceCube collaboration. The goal of SPATS is to evaluate the possibility of acoustic detection of ultra high-energy neutrinos in the Antarctic ice. The AAL provides a test facility setup with a proper infrastructure to study acoustics and thermoacoustics in a large volume of water and ice. The control of the freezing process, the ice quality, the temperature monitoring at different phases of the medium and the laser-based thermoacoustic sound generation are the key features of the setup. The AAL setup provides the possibility for the characterization of a wide range of acoustic transducers, sensor/transmitter calibration, study of the thermoacoustic sound generation, study of the acoustic properties of the ice, water as well as the water/ice interfaces, and research and development of new types of acoustic transducers (PVDF-based) as an alternative to standard PZTs. In this document, the different parts of the AAL setup are described, results on the commissioning from the laser based thermoacoustic sound generation are presented and the performance of an absolute sensor calibration method in water and ice are discussed.

  17. Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China

    PubMed Central

    Chen, Yong; Li, Xiang-Kai; Si, Jing; Wu, Guang-Jian; Tian, Li-De; Xiang, Shu-Rong

    2016-01-01

    In this study, six bacterial community structures were analyzed from the Dunde ice core (9.5-m-long) using 16S rRNA gene cloning library technology. Compared to the Muztagata mountain ice core (37-m-long), the Dunde ice core has different dominant community structures, with five genus-related groups Blastococcus sp./Propionibacterium, Cryobacterium-related., Flavobacterium sp., Pedobacter sp., and Polaromas sp. that are frequently found in the six tested ice layers from 1990 to 2000. Live and total microbial density patterns were examined and related to the dynamics of physical-chemical parameters, mineral particle concentrations, and stable isotopic ratios in the precipitations collected from both Muztagata and Dunde ice cores. The Muztagata ice core revealed seasonal response patterns for both live and total cell density, with high cell density occurring in the warming spring and summer months indicated by the proxy value of the stable isotopic ratios. Seasonal analysis of live cell density for the Dunde ice core was not successful due to the limitations of sampling resolution. Both ice cores showed that the cell density peaks were frequently associated with high concentrations of particles. A comparison of microbial communities in the Dunde and Muztagata glaciers showed that similar taxonomic members exist in the related ice cores, but the composition of the prevalent genus-related groups is largely different between the two geographically different glaciers. This indicates that the micro-biogeography associated with geographic differences was mainly influenced by a few dominant taxonomic groups. PMID:27847503

  18. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  19. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  20. Numerical simulation of water transport and intracellular ice formation for freezing of endothelial cells.

    PubMed

    Zhao, G; Xu, Y; Ding, W P; Hu, M B

    2013-01-01

    Endothelial cell detachment may cause failure of blood vessel and corneal cryopreservation, and thus successful cryopreservation of endothelial cells is regarded to be the first step to optimize cryopreservation of endothelial cells containing tissues. In this study, the pre-determined biophysical parameters were incorporated into the model for intracellular ice formation (IIF) and the growth of intracellular ice crystals (ICG) to calculate cell water loss, supercooling of intracellular solution, intracellular ice formation and the growth of intracellular ice crystals. The optimal protocols were determined according to the combination effect of both solution injury and IIF injury.

  1. Evidence of water ice near the lunar poles

    SciTech Connect

    Feldman, W. C.; Maurice, S.; Lawrence, David J. ,; Little, R. C.; Lawrence, S. L.; Gasnault, O. M.; Wiens, R. C.; Barraclough, B. L.; Elphic, Richard C.,; Prettyman, T. H.; Steinberg, John Tyree; Binder, A. B.

    2001-01-01

    the large sunlit polar craters and the relatively high [H] in neighboring inter-crater plains. A closer look at the 'inter-crater' plains near the poles, shows that they are covered by many small craters that harbor permanent shade [4]. The temperatures within many of these craters are low enough [5] that they can disable sublimation as a viable loss process of [H{sub 2}O]. It is therefore tempting to postulate that the enhanced hydrogen within most regions of permanent shade is in the form of water molecules. This postulate is certainly viable within the bottoms of several large, permanently shaded craters near the south pole. Predicted temperatures within them [5] fall well below the 100 K temperature that is needed to stabilize water ice for aeons. The picture is different near the north pole. Here, there are relatively few permanently-shaded craters that are large enough to harbor temperatures that are sufficiently low to stabilize water ice indefinitely against sublimation [5]. Instead, the 'inter-crater' polar plains are a jumble of many permanently-shaded craters that have diameters less than 10 km [4]. Although simulations of temperatures within this class of craters show they are only marginally cold enough to indefinitely stabilize water ice [5], this terrane appears to have the highest [H]. Nevertheless, predicted temperatures are close enough to that needed to permanently stabilize [H{sub 2}O] to suggest that sublimation is indeed the process that discriminates between polar terrane that contains enhanced [H] and those that do not (see, e.g., the temperature estimates for doubly-shaded craters [6]). If correct, then an important fraction of the hydrogen near the north pole must be in the form of H{sub 2}O, which then resides within these small craters. Estimates using our improved data set of [H] within craters near the south pole remain unchanged from those derived from our previous analysis [2], [H] = 1700{+-}900 ppm. This translates to [H{sub 2}O]=1

  2. Bibliography of Ice Properties and Forecasting Related to Transportation in Ice-Covered Waters.

    DTIC Science & Technology

    1980-09-01

    critical survey , NTIS #ADA-009 363, April 1975, 43 pp., 157 refs. Korzhavin, K.N., Development of methods for This report contains a critical survey ... methods mapped the permafrost. A subsea, ice-bonded perma- frost vertical section was charted extending from Seliakov, N.J., Some observation on processes...Betin, V.V., Uralov, N.S., and Zhadrinskii, S.V., On data are then extended and extrapolated with the aid the method of observations on sea ice from

  3. Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing.

    PubMed

    Lovering, Kaitlin A; Bertram, Allan K; Chou, Keng C

    2017-02-16

    We observed a transient noncentrosymmetric phase of ice at water/mineral interfaces during freezing, which enhanced the intensity of the IR-visible sum frequency generation intensity by up to 20-fold. The lifetime of the transient phase was several minutes. Since the most stable form of ice, hexagonal and cubic ice, are centrosymmetric, our study suggests the transient existence of stacking-disordered ice during the freezing process at water/mineral interfaces. Stacking-disordered ice, which has only been observed in bulk ice at temperatures lower than -20 °C, is a random mixture of layers of hexagonal ice and cubic ice. However, the transient phase at the ice/mineral interface was observed at temperatures as high as -1 °C. It suggests that the mineral surface may play a role in promoting and stabilizing the formation of stacking-disordered ice at the interface.

  4. North Atlantic Deep Water Formation: Information from Ice Cores

    NASA Technical Reports Server (NTRS)

    Oeschger, H.

    1984-01-01

    The main results of measurements of the CO2 concentration of air occluded in natural ice during periods of climatic change are presented, as well as other measured ice core parameters. Elements of an interpretation of the data in terms of mechanisms of changing environmental systems are briefly discussed.

  5. Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79-81°N)

    NASA Astrophysics Data System (ADS)

    Blachowiak-Samolyk, Katarzyna; Søreide, Janne E.; Kwasniewski, Slawek; Sundfjord, Arild; Hop, Haakon; Falk-Petersen, Stig; Nøst Hegseth, Else

    2008-10-01

    The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM m -2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind. m -3) in August. Algal bloom stage, chlorophyll- a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus ( Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological "hot-spots" were associated with Arctic communities.

  6. An upper limit of gaseous water abundance in Chamaeleon-MMS1 as observed with ODIN

    NASA Astrophysics Data System (ADS)

    Klotz, A.; Harju, J.; Ristorcelli, I.; Juvela, M.; Boudet, N.; Haikala, L. K.

    2008-09-01

    Context: The determination of the gaseous water abundances in different intestellar environments is crucial for understanding the oxygen chemistry and its role in the molecular cloud evolution. Aims: The purpose of this study is to estimate water abundance in the protostellar core Cha-MMS1. Methods: The ground-state line of o-H20 at 557 GHz was observed with the ODIN telescope. Two observing runs performed in 2002 and 2003 resulted in an upper limit of TA = 16 mK. A model for the core density and temperature structure was constructed using a 1.3 mm continuum map from SEST/SIMBA. The water abundance profile through the cloud was derived and water line intensities expected from this model were calculated. Results: An upper limit of 7 × 10-9 was derived for the average fractional o-H2O abundance (relative to H{2}). The non-detection is consistent with an abundance profile where a high fractional abundance ( 10-7) is reached in the low-density envelope of the core. According to our radiative transfer calculations, the detection of the 557 GHz line from a quiescent core should severely be hampered by self-absorption. Therefore the present observations do not put hard contrainst on the H2O abundance. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Étude Spatiale (CNES). The Swedish Space Corporation has been the industrial prime contractor and also is operating the satellite. Complementary data were collected at the European Southern Observatory, La Silla, Chile.

  7. The role of carrion supply in the abundance of deep-water fish off California.

    PubMed

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  8. The Role of Carrion Supply in the Abundance of Deep-Water Fish off California

    PubMed Central

    Drazen, Jeffrey C.; Bailey, David M.; Ruhl, Henry A.; Smith, Kenneth L.

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  9. Direct calculation of ice homogeneous nucleation rate for a molecular model of water

    PubMed Central

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2015-01-01

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature. PMID:26240318

  10. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  11. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.

    PubMed

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2015-08-25

    Ice formation is ubiquitous in nature, with important consequences in a variety of environments, including biological cells, soil, aircraft, transportation infrastructure, and atmospheric clouds. However, its intrinsic kinetics and microscopic mechanism are difficult to discern with current experiments. Molecular simulations of ice nucleation are also challenging, and direct rate calculations have only been performed for coarse-grained models of water. For molecular models, only indirect estimates have been obtained, e.g., by assuming the validity of classical nucleation theory. We use a path sampling approach to perform, to our knowledge, the first direct rate calculation of homogeneous nucleation of ice in a molecular model of water. We use TIP4P/Ice, the most accurate among existing molecular models for studying ice polymorphs. By using a novel topological approach to distinguish different polymorphs, we are able to identify a freezing mechanism that involves a competition between cubic and hexagonal ice in the early stages of nucleation. In this competition, the cubic polymorph takes over because the addition of new topological structural motifs consistent with cubic ice leads to the formation of more compact crystallites. This is not true for topological hexagonal motifs, which give rise to elongated crystallites that are not able to grow. This leads to transition states that are rich in cubic ice, and not the thermodynamically stable hexagonal polymorph. This mechanism provides a molecular explanation for the earlier experimental and computational observations of the preference for cubic ice in the literature.

  12. The role of water ice clouds in the Martian hydrologic cycle

    NASA Technical Reports Server (NTRS)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  13. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay

    NASA Astrophysics Data System (ADS)

    Williams, G. D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K. I.; Fukamachi, Y.; Fraser, A. D.; Gao, L.; Chen, H.; McMahon, C. R.; Harcourt, R.; Hindell, M.

    2016-08-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65-34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate.

  14. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay.

    PubMed

    Williams, G D; Herraiz-Borreguero, L; Roquet, F; Tamura, T; Ohshima, K I; Fukamachi, Y; Fraser, A D; Gao, L; Chen, H; McMahon, C R; Harcourt, R; Hindell, M

    2016-08-23

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65-34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate.

  15. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay

    PubMed Central

    Williams, G. D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K. I.; Fukamachi, Y.; Fraser, A. D.; Gao, L.; Chen, H.; McMahon, C. R.; Harcourt, R.; Hindell, M.

    2016-01-01

    A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011–2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involving opposing contributions from three polynyas (positive) and two ice shelves (negative), dense shelf water (salinity 34.65–34.7) is exported through Prydz Channel. This provides a distinct, relatively fresh contribution to Cape Darnley bottom water. Elsewhere, dense water formation is hindered by the freshwater input from the Amery and West Ice Shelves into the Prydz Bay Gyre. This study highlights the susceptibility of Antarctic bottom water to increased freshwater input from the enhanced melting of ice shelves, and ultimately the potential collapse of Antarctic bottom water formation in a warming climate. PMID:27552365

  16. Micronekton abundance and biomass in Hawaiian waters as influenced by seamounts, eddies, and the moon

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; De Forest, Lisa G.; Domokos, Reka

    2011-05-01

    Micronekton abundance, biomass, and community composition was determined from 58 Cobb trawl samples taken from 2005 to 2008 at several locations in the lee of the Hawaiian Islands. The results indicated a strong influence of the lunar illumination on micronekton abundance and biomass. This effect was evident in shallow night tows and probably was the result of lunar light affecting the nighttime depths of migrating species. The abundance and biomass of micronekton is remarkably consistent between years and areas in Hawaiian waters after the affects of moon phase are accounted for. Micronekton, principally migratory myctophids, were reduced over the summit of Cross Seamount but not Finch Seamount that has a summit below the daytime depth of most migrators. However, during a new moon, micronekton abundance over Cross seamount was similar to surrounding areas either because of altered migration patterns or because predators such as tunas cannot forage as effectively at night without lunar illumination. Species belonging to the Hawaiian mesopelagic boundary layer community were found to vary in presence and abundance between years at Cross Seamount suggesting that a consistent seamount associated fauna does not exist. Sparse sampling of a cyclonic mid-ocean eddy suggested very high micronekton abundance and biomass both in shallow waters at night but also at depth during the day. Although preliminary, these results suggest that eddies may aggregate the micronekton which probably feed on the enhanced secondary productivity.

  17. Sensitivity of radiative properties of persistent contrails to the ice water path

    NASA Astrophysics Data System (ADS)

    Rodríguez de León, R.; Krämer, M.; Lee, D. S.; Thelen, J. C.

    2011-07-01

    The dependence of the radiative properties of persistent linear contrails on the variability of their ice water path is assessed in a two-stream radiative transfer model. It is assumed that the ice water content and the effective size of ice crystals in aged contrails do not differ from those observed in natural cirrus; the parameterization of these two variables, based on in situ observations, allows a more realistic representation than the common assumption of fixed values for the contrail optical depth and ice crystal effective radius. The results show that the large variability in ice water content that aged contrails may share with natural cirrus, together with an assumed contrail vertical thickness between 220 and 1000 m, translate into a wider range of radiative forcings from linear contrails (0.3 to 51.6 mW m-2) than that reported in previous studies, including IPCC's (3 to 30 mW m-2). The derivation of a best estimate within this range is complicated by the fact that the ice water contents measured in situ imply mean optical depths between 0.08 and 0.32, coinciding with the range commonly assumed in contrail studies, while optical depths derived from satellite ice water content retrievals are significantly larger (0.51-2.02). Further field and modelling studies of the temporal evolution of contrail properties will thus be needed to reduce the uncertainties associated with the values assumed in large scale contrail studies.

  18. Perennial water ice identified in the south polar cap of Mars.

    PubMed

    Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard

    2004-04-08

    The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.

  19. Winter sea ice melting in the Atlantic Water subduction area, Svalbard Norway

    NASA Astrophysics Data System (ADS)

    Tverberg, V.; Nøst, O. A.; Lydersen, C.; Kovacs, K. M.

    2014-09-01

    Herein, we study a small area along the shelf west of Spitsbergen, near Prins Karls Forland, where warm, saline Atlantic Water of the West Spitsbergen Current currently first encounters sea ice. This sea ice is drifting in a coastal current that carries Arctic Water originating from the Barents Sea northward over the shelf. Our aim was to investigate whether melting of sea ice by Atlantic Water in this area might be a significant factor that could contribute to the formation of a cold halocline layer that isolates the sea ice from further melting from below. Observations of temperature and salinity profiles were collected during two winters, via CTD-SRDL instruments deployed on harbor seals (Phoca vitulina), and fed into a heat and freshwater budget box model in order to quantify the importance of melting relative to other processes that could transform the shelf water mass during winter. Cross-frontal exchange of Atlantic Water from the West Spitsbergen Current, driven by buoyancy forcing rather than Ekman upwelling, was determined to be the source of the heat that melted drift ice on the shelf. Some local sea ice formation did take place, but its importance in the total heat and freshwater budgets appeared to be minor. The data suggest that the production of a cold halocline layer was preceded by southerly winds and rapid drift ice melting.

  20. The role of ice dynamics in shaping vegetation in flowing waters.

    PubMed

    Lind, Lovisa; Nilsson, Christer; Polvi, Lina E; Weber, Christine

    2014-11-01

    Ice dynamics is an important factor affecting vegetation in high-altitude and high-latitude streams and rivers. During the last few decades, knowledge about ice in streams and rivers has increased significantly and a respectable body of literature is now available. Here we review the literature on how ice dynamics influence riparian and aquatic vegetation. Traditionally, plant ecologists have focused their studies on the summer period, largely ignoring the fact that processes during winter also impact vegetation dynamics. For example, the freeze-up period in early winter may result in extensive formation of underwater ice that can restructure the channel, obstruct flow, and cause flooding and thus formation of more ice. In midwinter, slow-flowing reaches develop a surface-ice cover that accumulates snow, protecting habitats under the ice from formation of underwater ice but also reducing underwater light, thus suppressing photosynthesis. Towards the end of winter, ice breaks up and moves downstream. During this transport, ice floes can jam up and cause floods and major erosion. The magnitudes of the floods and their erosive power mainly depend on the size of the watercourse, also resulting in different degrees of disturbance to the vegetation. Vegetation responds both physically and physiologically to ice dynamics. Physical action involves the erosive force of moving ice and damage caused by ground frost, whereas physiological effects - mostly cell damage - happen as a result of plants freezing into the ice. On a community level, large magnitudes of ice dynamics seem to favour species richness, but can be detrimental for individual plants. Human impacts, such as flow regulation, channelisation, agriculturalisation and water pollution have modified ice dynamics; further changes are expected as a result of current and predicted future climate change. Human impacts and climate change can both favour and disfavour riverine vegetation dynamics. Restoration of streams

  1. Interstellar Ice Chemistry: From Water to Complex Organics

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.; Fayolle, E.; Linnartz, H.; van Dishoeck, E.; Fillion, J.; Bertin, M.

    2013-06-01

    Molecular cloud cores, protostellar envelopes and protoplanetary disk midplanes are all characterized by freeze-out of atoms and molecules (other than H and H2) onto interstellar dust grains. On the grain surface, atom addition reactions, especially hydrogenation, are efficient and H2O forms readily from O, CH3OH from CO etc. The result is an icy mantle typically dominated by H2O, but also rich in CO2, CO, NH3, CH3OH and CH4. These ices are further processed through interactions with radiation, electrons and energetic particles. Because of the efficiency of the freeze-out process, and the complex chemistry that succeeds it, these icy grain mantles constitute a major reservoir of volatiles during star formation and are also the source of much of the chemical evolution observed in star forming regions. Laboratory experiments allow us to explore how molecules and radicals desorb, dissociate, diffuse and react in ices when exposed to different sources of energy. Changes in ice composition and structure is constrained using infrared spectroscopy and mass spectrometry. By comparing ice desorption, segregation, and chemistry efficiencies under different experimental conditions, we can characterize the basic ice processes, e.g. diffusion of different species, that underpin the observable changes in ice composition and structure. This information can then be used to predict the interstellar ice chemical evolution. I will review some of the key laboratory discoveries on ice chemistry during the past few years and how they have been used to predict and interpret astronomical observations of ice bands and gas-phase molecules associated with ice evaporation. These include measurements of thermal diffusion in and evaporation from ice mixtures, non-thermal diffusion efficiencies (including the recent results on frequency resolved UV photodesorption), and the expected temperature dependencies of the complex ice chemistry regulated by radical formation and diffusion. Based on these

  2. Partitioning CloudSat Ice Water Content for Comparison with Upper-Tropospheric Ice in Global Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Chen, W. A.; Woods, C. P.; Li, J. F.; Waliser, D. E.; Chern, J.; Tao, W.; Jiang, J. H.; Tompkins, A. M.

    2010-12-01

    CloudSat provides important estimates of vertically resolved ice water content (IWC) on a global scale based on radar reflectivity. These estimates of IWC have proven beneficial in evaluating the representations of ice clouds in global models. An issue when performing model-data comparisons of IWC particularly germane to this investigation, is the question of which component(s) of the frozen water mass are represented by retrieval estimates and how they relate to what is represented in models. The present study developed and applied a new technique to partition CloudSat total IWC into small and large ice hydrometeors, based on the CloudSat-retrieved ice particle size distribution (PSD) parameters. The new method allows one to make relevant model-data comparisons and provides new insights into the model’s representation of atmospheric IWC. The partitioned CloudSat IWC suggests that the small ice particles contribute to 20-30% of the total IWC in the upper troposphere when a threshold size of 100 μm is used. Sensitivity measures with respect to the threshold size, the PSD parameters, and the retrieval algorithms are presented. The new dataset is compared to model estimates, pointing to areas for model improvement. Cloud ice analyses from the European Centre for Medium-Range Weather Forecasts model agree well with the small IWC from CloudSat. The finite-volume multi-scale modeling framework model underestimates total IWC at 147 and 215 hPa, while overestimating the fractional contribution from the small ice species. These results are discussed in terms of their applications to, and implications for, the evaluation of global atmospheric models, providing constraints on the representations of cloud feedback and precipitation in global models, which in turn can help reduce uncertainties associated with climate change projections. Figure 1. A sample lognormal ice number distribution (red curve), and the corresponding mass distribution (black curve). The dotted line

  3. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  4. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  5. Modelling the liquid-water vein system within polar ice sheets as a potential microbial habitat

    NASA Astrophysics Data System (ADS)

    Dani, K. G. Srikanta; Mader, Heidy M.; Wolff, Eric W.; Wadham, Jemma L.

    2012-06-01

    Based on the fundamental and distinctive physical properties of polycrystalline ice Ih, the chemical and temperature profiles within the polar ice sheets, and the observed selective partitioning of bacteria into liquid water filled veins in the ice, we consider the possibility that microbial life could survive and be sustained within glacial systems. Here, we present a set of modelled vertical profiles of vein diameter, vein chemical concentration, and vein water volume variability across a range of polar ice sheets using their ice core chemical profiles. A sensitivity analysis of VeinsInIce1.0, the numerical model used in this study shows that the ice grain size and the local borehole temperature are the most significant factors that influence the intergranular liquid vein size and the amount of freeze-concentrated impurities partitioned into the veins respectively. Model results estimate the concentration and characteristics of the chemical broth in the veins to be a potential extremophilic microbial medium. The vein sizes are estimated to vary between 0.3 μm to 8 μm across the vertical length of many polar ice sheets and they may contain up to 2 μL of liquid water per litre of solid ice. The results suggest that these veins in polar ice sheets could accommodate populations of psychrophilic and hyperacidophilic ultra-small bacteria and in some regions even support the habitation of unicellular eukaryotes. This highlights the importance of understanding the potential impact of englacial microbial metabolism on polar ice core chemical profiles and provides a model for similar extreme habitats elsewhere in the universe.

  6. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  7. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    PubMed

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  8. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    PubMed

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  9. Ice/Water Interface: Zeta Potential, Point of Zero Charge, and Hydrophobicity.

    PubMed

    Drzymala; Sadowski; Holysz; Chibowski

    1999-12-15

    The ice/water interface is a common and important part of many biological, environmental, and technological systems. In contrast to its importance, the system has not been extensively studied and is not well understood. Therefore, in this paper the properties of the H(2)O ice/water and D(2)O ice/water interfaces were investigated. Although the zeta potential vs pH data points were significantly scattered, it was determined that the isoelectric point (iep) of D(2)O ice particles in water at 3.5 degrees C containing 10(-3) M NaCl occurs at about pH 3.0. The negative values of the zeta potential, calculated from the electrophoretic mobility, seem to decrease with decreasing content of NaCl, while the iep shifts to a higher pH. The point of zero charge (pzc) of D(2)O ice and H(2)O ice, determined by changes in pH of 10(-4) M NaCl aqueous solution at 0.5 degrees C after the ice particle addition, was found to be very different from the iep and equal to pH 7.0 +/- 0.5. The shift of the iep with NaCl concentration and the difference in the positions of the iep and pzc on the pH scale point to complex specific adsorption of ions at the interface. Interestingly, similar values of iep and pzc were found for very different systems, such as hydrophilic ice and highly hydrophobic hexadecane droplets in water. A comparison of the zeta potential vs pH curves for hydrophilic ice and hydrophobic materials that do not possess dissociative functional groups at the interface (diamond, air bubbles, bacteria, and hexadecane) indicated that all of them have an iep near pH 3.5. These results indicate that the zeta potential and surface charge data alone cannot be used to delineate the electrochemical properties of a given water/moiety interface because similar electrical properties do not necessary mean a similar structure of the interfacial region. A good example is the aliphatic hydrocarbon/water interface in comparison to the ice/water interface. Although the experiments were carried

  10. A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Riddle, M. J.; Craven, M.; Goldsworthy, P. M.; Carsey, F.

    2007-03-01

    A hot water drill was used to penetrate 480 m of ice to reveal a diverse benthic assemblage, dominated by suspension-feeding invertebrates, under the Amery Ice Shelf (East Antarctica) at a location 100 km from open water and at a depth of 775 m below sea level (840 m below the ice shelf surface). This is the first record of a benthic assemblage of this type found at this distance under an ice shelf. The few previous reports of life under ice shelves describe assemblages with very different trophic strategies (e.g., sparse assemblages of mobile scavengers or chemotrophs) or are in circumstances in which in situ photosynthesis at tide cracks or through the ice cannot be ruled out as a potential source of primary production. The physical characteristics of the Amery Ice Shelf and the feeding strategies represented together indicate that the only likely source of primary production to sustain the benthic assemblage is material advected from open water. This suggestion is supported by observed current speeds in the vicinity and reported rates of particle settling. The observation under an ice shelf of a benthic assemblage that is very similar to those found elsewhere in Antarctica, in locations dominated by annual sea ice or at depths below the photic zone, has implications for the interpretation of sediment paleorecords to represent the history of ice shelf advance and retreat. Without observations of this living assemblage in situ, the remnants of its component species in the sediment record, such as sponge spicules, echinoderm ossicles, and bryozoan fragments, could be interpreted reasonably, but erroneously, to represent open water conditions.

  11. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1996-01-01

    Slow, constant-volume heating of water ice plus methane gas mixtures forms methane clathrate hydrate by a progressive reaction that occurs at the nascent ice/liquid water interface. As this reaction proceeds, the rate of melting of metastable water ice may be suppressed to allow short-lived superheating of ice to at least 276 kelvin. Plastic flow properties measured on clathrate test specimens are significantly different from those of water ice; under nonhydrostatic stress, methane clathrate undergoes extensive strain hardening and a process of solid-state disproportionation or exsolution at conditions well within its conventional hydrostatic stability field.

  12. Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean

    DTIC Science & Technology

    2013-09-30

    1 Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean Kathleen F. Jones Cold Regions Research and Engineering Laboratory, 72...areas in the core ONR Arctic program: • Improving understanding of the physical environment and processes in the Arctic Ocean; • Developing integrated...Icing in the Emerging Open Water of the Arctic Ocean 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  13. Survey of cyanomyovirus abundance in Shantou coastal waters by g20

    NASA Astrophysics Data System (ADS)

    Li, Chuanbiao; Ding, Jun; Zhou, Lizhen; Zhang, Zhao; Li, Shengkang; Liu, Wenhua; Wen, Xiaobo

    2015-05-01

    To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phylogeny of natural cyanomyovirus communities. The abundance of total viruses, heterotrophic bacteria, and picophytoplankton in the coastal waters was monitored with flow cytometry. Hydrological parameters (NO{3/-}, NO{2/-}, NH3, soluble reactive phosphorus, total dissolved nitrogen, total dissolved phosphorus, dissolved oxygen, chemical oxygen demand, temperature, salinity, and chlorophyll a concentration) and microbial abundance (total viruses, total bacteria, Prochlorococcus, Synechococcus, and eukaryotes) were measured in the upper and lower layers at four sampling sites in the research area. In the direct viral counts, cyanomyoviruses accounted for 1.92% to >10% of the total viral community. A phylogenetic analysis showed that the g20 sequences in the Shantou coastal waters were very diverse, distributed in eight distinct operational taxonomic units, including the newly formed Cluster W. The g20 gene copies inferred from real time PCR assay indicated that cyanomyoviruses were correlated significantly with the heterotrophic bacteria numbers and the nitrate and chlorophyll a concentrations. These results suggest that cyanomyoviruses are ubiquitous and are an abundant component of the virioplankton in Shantou coastal waters.

  14. Effects of an Arctic under-ice bloom on solar radiant heating of the water column

    NASA Astrophysics Data System (ADS)

    Taskjelle, Torbjørn; Granskog, Mats A.; Pavlov, Alexey K.; Hudson, Stephen R.; Hamre, Børge

    2017-01-01

    The deposition of solar energy in the upper Arctic Ocean depends, among other things, on the composition of the water column. During the N-ICE2015 expedition, a drift in the Arctic pack ice north of Svalbard, an under-ice phytoplankton bloom was encountered in May 2015. This bloom led to significant changes in the inherent optical properties (IOPs) of the upper ocean. Mean values of total water absorption in the upper 20 m of the water column were up to 4 times higher during the bloom than prior to it. The total water attenuation coefficient increased by a factor of up to around 7. Radiative transfer modeling, with measured IOPs as input, has been performed with a coupled atmosphere-ice-ocean model. Simulations are used to investigate the change in depth-dependent solar heating of the ocean after the onset of the bloom, for wavelengths in the region 350-700 nm. Effects of clouds, sea ice cover, solar zenith angle, as well as the average cosine for scattering of the ocean inclusions are evaluated. An increase in energy absorption in the upper 10 m of about 36% is found under 25 cm ice with 2 cm snow, for bloom conditions relative to prebloom conditions, which may have implications for ice melt and growth in spring. Thicker clouds and lower sun reduce the irradiance available, but lead to an increase in relative absorption.

  15. Water Ice in 2060 Chiron and Its Implications for Centaurs and Kuiper Belt Objects.

    PubMed

    Luu; Jewitt; Trujillo

    2000-03-10

    We report the detection of water ice in the Centaur 2060 Chiron, based on near-infrared spectra (1.0-2.5 µm) taken with the 3.8 m United Kingdom Infrared Telescope and the 10 m Keck Telescope. The appearance of this ice is correlated with the recent decline in Chiron's cometary activity: the decrease in the coma cross section allows previously hidden solid-state surface features to be seen. We predict that water ice is ubiquitous among Centaurs and Kuiper Belt objects, but its surface coverage varies from object to object and thus determines its detectability and the occurrence of cometary activity.

  16. Ion Irradiation of Ethane and Water Mixture Ice at 15 K: Implications for the Solar System and the ISM

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; da Silveira, E. F.; Fulvio, D.; Rothard, H.; Boduch, P.

    2016-06-01

    Solid water has been observed on the surface of many different astronomical objects and is the dominant ice present in the universe, from the solar system (detected on the surface of some asteroids, planets and their satellites, trans-Neptunian objects [TNOs], comets, etc.) to dense cold interstellar clouds (where interstellar dust grains are covered with water-rich ices). Ethane has been detected across the solar system, from the atmosphere of the giant planets and the surface of Saturn’s satellite Titan to various comets and TNOs. To date, there were no experiments focused on icy mixtures of C2H6 and H2O exposed to ion irradiation simulating cosmic rays, a case study for many astronomical environments in which C2H6 has been detected. In this work, the radiolysis of a C2H6:H2O (2:3) ice mixture bombarded by a 40 MeV58Ni11+ ion beam is studied. The chemical evolution of the molecular species existing in the sample is monitored by a Fourier transform infrared spectrometer. The analysis of ethane, water, and molecular products in solid phase was performed. Induced chemical reactions in C2H6:H2O ice produce 13 daughter molecular species. Their formation and dissociation cross sections are determined. Furthermore, atomic carbon, oxygen, and hydrogen budgets are determined and used to verify the stoichiometry of the most abundantly formed molecular species. The results are discussed in the view of solar system and interstellar medium chemistry. The study presented here should be regarded as a first step in laboratory works dedicated to simulate the effect of cosmic radiation on multicomponent mixtures involving C2H6 and H2O.

  17. Effetively trapping air or lqiud water for anti-icing applications

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun

    2014-03-01

    Icing on solid surfaces leads to operational difficulties and high maintenance efforts for power networks, aircrafts, ships, ground transportation vehicles and house-hold refrigerators, to name but a few. In extreme cases, icing on surfaces causes disastrous events such as crash of aircrafts and collapse of power networks, which result in severe economic impact and large loss of life. This talk is focused on the fundamentals of the ice formation and adhesion of ice with solid substrates aiming for fighting against icing on solid surfaces. When the supercooling is low, it would be possible to remove supercooled liquid water from the solid surfaces before freezing occurs. To achieve this, we design and constructed surfaces that can trap the air at the subfreezing temperature thus condensed water microdroplets could be spontaneously removed after the coalescence. When the supercooling is high, icing on surfaces occurs spontaniously. In this case, we constructed coatings on which aqueous lubricating layer could be trapped, thus the ice adhesion on the coating is so low that the ice formed atop could be removed by a wind action or its own gravity.

  18. Observations of Water Ice Distribution in the HD169142 Disk

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2013-01-01

    Icy grains play an important role on planetesimal/planet formation and related matters. Therefore, to reveal ice dust distribution within a protoplanetary disk is an important work for understanding planet formation. However, observations of icy grain IN THE DISK are scarce due to various observational limitations. Here we propose observations to trace the icy grains by making K, H_2O ice, and L' imaging photometric observations of disk scattered light to derive H_2O ice dust distribution in a disk surface via 3.1 mu m absorption. For the moment, only Gemini/NICI is capable of such observations. We have already demonstrated the effectiveness of such observing method toward Herbig Fe star HD142527. Since some theoretical studies suggest that there are no ice grains at the surface of the disk around A/B stars due to intense UV irradiation, we propose to observe disks around Herbig Ae star HD169142. When we fail to detect the ice feature, it supports the theoretical prediction that photodesorption is important. While the ice feature is detected, it requires reconsideration of the theories and provides an important constraint for the disk chemistry.

  19. Observations of Water Ice Distribution in the Disk

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2012-06-01

    Icy grains play an important role on planetesimal/planet formation and related matters. Therefore, to reveal ice dust distribution within a protoplanetary disk is an important work for understanding planet formation. However, observations of icy grain IN THE DISK are scarce due to various observational limitations. Here we propose observations to trace the icy grains by making K, H_2O ice, and L' imaging photometric observations of disk scattered light to derive H_2O ice dust distribution in a disk surface via 3.1 mu m absorption. For the moment, only Gemini/NICI is capable of such observations. We have already demonstrated the effectiveness of such observing method toward Herbig Fe star HD142527. Since some theoretical studies suggest that there are no ice grains at the surface of the disk around A/B stars due to intense UV irradiation, we propose to observe disks around Herbig Be star HD100546. When we fail to detect the ice feature, it supports the theoretical prediction that photodesorption is important. While the ice feature is detected, it requires reconsideration of the theories and provides an important constraint for the disk chemistry.

  20. Probing the Extremes in the Water-Ice Content of the Martian Permafrost

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; Feldman, W. C.; Hansen, C. J.; Arvidson, R. E.

    2013-12-01

    The high-latitude regions of Mars are generally understood to be extensively underlain by ice-rich permafrost. The Mars Odyssey Neutron Spectrometer (MONS) provided direct confirmation of the permafrost's ice-rich status. The geographic extent and depth distribution of the observed ground ice are consistent with prior predictions of ground ice stability. On the other hand, the observation of high ice concentrations (ice exceeding the soil pore volume) in many regions is an ongoing puzzle. For example between -60 to -70 degrees latitude the ice concentration varies between extremes of 'low' 20-40% by volume (consistent with matrix-supported ice-cemented soil) and 'high' 75-90% by volume (essentially dirty ice, greatly exceeding typical soil pore volumes). These variations occur longitudinally over 100's to 1000's of kilometers within this single latitude zone. Such a contrast in ice content raises many questions about the details of the horizontal and vertical distribution of the ice on a variety of spatial scales, and of its historical origin and implications for the modern Martian climate and the role of liquid water. In the present work we examined small-scale periglacial geomorphologic features (as seen in High Resolution Imaging Science Experiment, HiRISE, images) over regional scales. We focus on polygonal patterned ground that forms through seasonal thermal contraction of ice-cemented permafrost. The formation and characteristics of these polygons are expected to depend significantly on permafrost properties, such as the ice content and burial depth, through differences in subsurface rheology and seasonal temperatures. Pure or slightly dirty subsurface ice should result in larger polygonal forms due more to rapid relaxation of stresses relative to ice-cemented soil. We find that the characteristic size of polygons in this southern high-latitude region is correlated with MONS ice concentration. Specifically, polygon 'diameters' are typically 2-4 m in areas of

  1. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia

    PubMed Central

    Januar, Indra; Wild, Christian; Kunzmann, Andreas

    2016-01-01

    Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts. PMID:27904802

  2. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia.

    PubMed

    Baum, Gunilla; Januar, Indra; Ferse, Sebastian C A; Wild, Christian; Kunzmann, Andreas

    2016-01-01

    Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20-60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m(-2) d(-1)). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts.

  3. Detection and structural identification of dissolved organic matter in Antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy.

    PubMed

    Pautler, Brent G; Simpson, André J; Simpson, Myrna J; Tseng, Li-Hong; Spraul, Manfred; Dubnick, Ashley; Sharp, Martin J; Fitzsimons, Sean J

    2011-06-01

    Dissolved organic matter (DOM) is ubiquitous in aquatic ecosystems and is derived from various inputs that control its turnover. Glaciers and ice sheets are the second largest water reservoir in the global hydrologic cycle, but little is known about glacial DOM composition or contributions to biogeochemical cycling. Here we employ SPR-W5-WATERGATE (1)H NMR spectroscopy to elucidate and quantify the chemical structures of DOM constituents in Antarctic glacial ice as they exist in their natural state (average DOC of 8 mg/L) without isolation or preconcentration. This Antarctic glacial DOM is predominantly composed of a mixture of small recognizable molecules differing from DOM in marine, lacustrine, and other terrestrial environments. The major constituents detected in three distinct types of glacial ice include lactic and formic acid, free amino acids, and a mixture of simple sugars and amino sugars with concentrations that vary between ice types. The detection of free amino acid and amino sugar monomer components of peptidoglycan within the ice suggests that Antarctic glacial DOM likely originates from in situ microbial activity. As these constituents are normally considered to be biologically labile (fast cycling) in nonglacial environments, accelerated glacier melt and runoff may result in a flux of nutrients into adjacent ecosystems.

  4. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  5. Water ice nucleation characteristics of JSC Mars-1 regolith simulant under simulated Martian atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce D.; Johnson, Alexandria V.; Mar, Brendan; Stone, Bradley M.; Colaprete, Anthony; Iraci, Laura T.

    2011-04-01

    Water ice clouds in the Martian atmosphere are governed by parameters such as number density and particle size distribution that in turn affect how they influence the climate. With some of the underlying properties of cloud formation well known only for Earth, extrapolations to Mars are potentially misleading. We report here continued laboratory experiments to identify critical onset conditions for water ice formation under Martian cloud forming temperatures and water partial pressures (155-182 K, 7.6 × 10-5 to 7.7 × 10-3 Pa H2O). By observing the 3 μm infrared band to monitor nucleation and growth, we observe significant temperature dependence in the nucleation of ice on JSC Mars-1 regolith simulant, with critical saturation ratios, Scrit, as high as 3.8 at 155 K. At temperatures below ˜180 K, ice nucleation on JSC Mars-1 requires significant supersaturation, potentially impacting the Martian hydrological cycle.

  6. Understanding Europa's Ice Shell and Subsurface Water Through Terestrial Analogs for Flyby Radar Sounding

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Grima, C.; Young, D. A.; Schroeder, D. M.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Patterson, G.; Moussessian, A.

    2015-12-01

    The recently approved NASA mission to Europa proposes to study this ice-covered moon of Jupiter though a series of fly-by observations of its surface and subsurface from a spacecraft in Jovian orbit. The science goal of this mission is to "explore Europa to investigate its habitability". One of the primary instruments in the selected scientific payload is a multi-frequency, multi-channel ice penetrating radar system. The "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" will play a critical role in achieving the mission's habitability driven science objectives, which include characterizing the distribution of any shallow subsurface water, searching for an ice-ocean interface and evaluating a spectrum of ice-ocean-atmosphere exchange hypotheses. The development of successful measurement and data interpretation techniques for exploring Europa will need to leverage knowledge of analogous terrestrial environments and processes. Towards this end, we will discuss a range of terrestrial radioglaciological analogs for hypothesized physical, chemical, and biological processes on Europa and present airborne data collected with the University of Texas dual-frequency radar system over a variety of terrestrial targets. These targets include water filled fractures, brine rich ice, water lenses, accreted marine ice, and ice surfaces with roughness ranging from firn to crevasse fields and will provide context for understanding and optimizing the observable signature of these processes in future radar data collected at Europa.

  7. Ionization of Organics in Cryogenic Water-Ices: Relevance to Planetary Astronomy and Astrobiology

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Allamandola, L. J.

    2006-05-01

    Water-rich, mixed molecular ices are common throughout interstellar molecular clouds, the Solar System, and atmospheric aerosols. Laboratory analog experiments have shown vacuum ultraviolet (VUV) irradiation and particle bombardment of water dominated mixed molecular ices containing impurities such as CH3OH, NH3, CO and PAHs (polycyclic aromatic hydrocarbons) produce complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs which may have played a role in the origin of life. In an attempt to understand the fundamental processes that occur during VUV processing of water dominated mixed molecular ices containing organic (PAH) impurities, several new and so far unknown phenomena were recently discovered in our laboratory. (a) PAHs embedded in cryogenic water ice are easily and efficiently ionized (>80%, i.e., near quantitative ion yields) to the cation form by VUV photons; (b) PAH ionization energy is lowered by up to 2 eV compared to the gas-phase, in agreement with recent theoretical predictions; (c) PAH cations are stabilized to temperatures as high as 120 K; and (d) Multiple ionization of large aromatic molecules leading to PAH dications and their stabilization in water ice. These new findings will be discussed and their relevance to planetary ices and astrobiology will be outlined.

  8. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.

    PubMed

    Mishima, Osamu

    2011-12-08

    Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water.

  9. "Ice Cubes" in the Center of the Milky Way: Water-ice and Hydrocarbons in the Central Parsec

    NASA Astrophysics Data System (ADS)

    Moultaka, J.; Eckart, A.; Mužić, K.

    2015-06-01

    The close environment of the central supermassive black hole of our Galaxy has been studied thoroughly for decades in order to shed light on the behavior of the central regions of galaxies in general and of active galaxies in particular. The Galactic center (GC) has shown a wealth of structures on different scales with a complicated mixture of early- and late-type stars, ionized and molecular gas, dust, and winds. Here we aim to study the distribution of water-ices and hydrocarbons in the central parsec, as well as along the line of sight. This study is made possible thanks to L-band spectroscopy. This spectral band, from 2.8 to 4.2 μm, hosts important signatures of the circumstellar medium and interstellar dense and diffuse media among which deep absorption features are attributed to water-ices and hydrocarbons. We observed the GC in the L band of the ISAAC spectrograph located on the UT1/VLT ESO telescope. By mapping the central half parsec using 27 slit positions, we were able to build the first data cube of the region in this wavelength domain. Thanks to a calibrator spectrum of the foreground extinction in the L band derived in a previous paper, we corrected our data cube for the line-of-sight extinction and validated our calibrator spectrum. The data show that a residual absorption due to water-ices and hydrocarbons is present in the corrected data cube. This suggests that the features are produced in the local environment of the GC, implying very low temperatures well below 80 K. This is in agreement with our finding of local CO ices in the central parsec described in Moultaka et al. Resulting from ESO VLT observations of program ID numbers 71.C-0192A and 077.C-0286A.

  10. ICE CUBES” IN THE CENTER OF THE MILKY WAY: WATER-ICE AND HYDROCARBONS IN THE CENTRAL PARSEC

    SciTech Connect

    Moultaka, J.; Eckart, A.; Muzic, K. E-mail: eckart@ph1.uni-koeln.de

    2015-06-20

    The close environment of the central supermassive black hole of our Galaxy has been studied thoroughly for decades in order to shed light on the behavior of the central regions of galaxies in general and of active galaxies in particular. The Galactic center (GC) has shown a wealth of structures on different scales with a complicated mixture of early- and late-type stars, ionized and molecular gas, dust, and winds. Here we aim to study the distribution of water-ices and hydrocarbons in the central parsec, as well as along the line of sight. This study is made possible thanks to L-band spectroscopy. This spectral band, from 2.8 to 4.2 μm, hosts important signatures of the circumstellar medium and interstellar dense and diffuse media among which deep absorption features are attributed to water-ices and hydrocarbons. We observed the GC in the L band of the ISAAC spectrograph located on the UT1/VLT ESO telescope. By mapping the central half parsec using 27 slit positions, we were able to build the first data cube of the region in this wavelength domain. Thanks to a calibrator spectrum of the foreground extinction in the L band derived in a previous paper, we corrected our data cube for the line-of-sight extinction and validated our calibrator spectrum. The data show that a residual absorption due to water-ices and hydrocarbons is present in the corrected data cube. This suggests that the features are produced in the local environment of the GC, implying very low temperatures well below 80 K. This is in agreement with our finding of local CO ices in the central parsec described in Moultaka et al.

  11. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  12. Stability relationship for water droplet crystallization with the NASA Lewis icing spray nozzle

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1988-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  13. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  14. Sticking of Molecules on Nonporous Amorphous Water Ice

    NASA Astrophysics Data System (ADS)

    He, Jiao; Acharyya, Kinsuk; Vidali, Gianfranco

    2016-05-01

    Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on nonporous amorphous solid water. The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King-Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas-grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.

  15. Meridional Martian water abundance profiles during the 1988-1989 season

    NASA Technical Reports Server (NTRS)

    Rizk, B.; Wells, W. K.; Hunten, D. M.; Stoker, C. R.; Freedman, R. S.; Roush, T.; Pollack, J. B.; Haberle, R. M.

    1991-01-01

    The Martian southern hemisphere atmospheric water vapor column abundance measurements reported agree with Viking Orbiter atmospheric water detectors during early southern spring and southern autumnal equinox; profiles obtained in southern mid- and late summer, however, indicate the presence of twice as much water both in the southern hemisphere and planetwide. This discrepancy is accounted for by the high optical depths created by two global dust storms during the Viking year, while the present observations were obtained in the case of the relatively dust-free atmosphere of the 1988-1989 opposition.

  16. Modeling photosynthesis in sea ice-covered waters

    NASA Astrophysics Data System (ADS)

    Long, Matthew C.; Lindsay, Keith; Holland, Marika M.

    2015-09-01

    The lower trophic levels of marine ecosystems play a critical role in the Earth System mediating fluxes of carbon to the ocean interior. Many of the functional relationships describing biological rate processes, such as primary productivity, in marine ecosystem models are nonlinear functions of environmental state variables. As a result of nonlinearity, rate processes computed from mean fields at coarse resolution will differ from similar computations that incorporate small-scale heterogeneity. Here we examine how subgrid-scale variability in sea ice thickness impacts simulated net primary productivity (NPP) in a 1°×1° configuration of the Community Earth System Model (CESM). CESM simulates a subgrid-scale ice thickness distribution and computes shortwave penetration independently for each ice thickness category. However, the default model formulation uses grid-cell mean irradiance to compute NPP. We demonstrate that accounting for subgrid-scale shortwave heterogeneity by computing light limitation terms under each ice category then averaging the result is a more accurate invocation of the photosynthesis equations. Moreover, this change delays seasonal bloom onset and increases interannual variability in NPP in the sea ice zone in the model. The new treatment reduces annual production by about 32% in the Arctic and 19% in the Antarctic. Our results highlight the importance of considering heterogeneity in physical fields when integrating nonlinear biogeochemical reactions.

  17. Structural transformation in supercooled water controls the crystallization rate of ice.

    PubMed

    Moore, Emily B; Molinero, Valeria

    2011-11-23

    One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature, T(H) ≈ 232 K, yet the mechanism of ice crystallization-including the size and structure of critical nuclei-has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase on moving into the supercooled region, according to power laws that would diverge (that is, approach infinity) at ~225 K (refs 1, 2), so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T(H). And although atomistic studies have captured water crystallization, high computational costs have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model in the supercooled regime around T(H) which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanisms of ice formation. The results of the simulations and classical nucleation theory using experimental data suggest that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below T(H) and well above its glass transition temperature, 136 K. By establishing a relationship between the structural transformation in liquid water and its anomalous thermodynamics and crystallization rate, our findings also provide mechanistic insight into the observed dependence of homogeneous ice nucleation rates on the thermodynamics of water.

  18. Water ice clouds on Mars: Exploring processes through modeling and laboratory work

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, Delia Liza

    Water ice clouds on Mars are an important component of the hydrologic cycle as well as the overall climate system of the planet. The goal of this research is to better understand water ice cloud formation and behavior on Mars. We use modeling and laboratory experiments to explore different processes related to water ice cloud formation and evolution. The first goal of this work is to examine how well the Martian water cycle is simulated by the NASA Ames Mars General Circulation Model. The simulation predicts atmospheric water vapor amounts approximately half of those observed, globally. We identify water ice clouds as being a major contributor to this discrepancy. The model closely reproduces the convective aphelion cloud belt at the equator, but deviates substantially from observations over the North Polar Cap region. Modifying the nucleation scheme within the cloud microphysical model brings model results closer to observations and affects the surface radiative balance, which affects the annual cycle of sublimation and deposition of water ice at the residual North Polar Cap. The most realistic global water vapor and cloud patterns come from limiting the nucleation rate of particles at the poles. Our simulations show that the North Polar Cap region exhibits atmospheric dynamics where stratiform clouds form. We hypothesize that the modified nucleation scheme compensates for biases in the radiative properties of the stratiform clouds expected over the North Polar Cap. More broadly, this study illustrates the strong sensitivity of the Martian global water cycle to clouds over the North Polar Cap region. The second goal of this work is to assess the ability of various salts to serve as water ice cloud condensation nuclei under Martian conditions. We use a vacuum chamber to simulate the cold, lower pressure atmospheric conditions on Mars and find the critical saturation ratios at which the substrates nucleate water ice. We find no significant difference between sodium

  19. Arctic Ocean Sea Ice Thickness, Bathymetry, and Water Properties from Submarine Data

    NASA Astrophysics Data System (ADS)

    Windnagel, A. K.; Fetterer, F. M.

    2014-12-01

    The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration that began in 1993 among the operational Navy, research agencies, and the marine research community to use nuclear-powered submarines for scientific studies of the Arctic Ocean. Unlike surface ships and satellites, submarines have the unique ability to operate and take measurements regardless of sea ice cover, weather conditions, and time of year. This allows for a broad and comprehensive investigation of an entire ocean basin. The goal of the program is to acquire comprehensive data about Arctic sea ice thickness; biological, chemical, and hydrographic water properties; and bathymetry to improve our understanding of the Arctic Ocean basin and its role in the Earth's climate system. Ice draft is measured with upward looking sonars mounted on the submarine's hull. The work of collaborators on the SCICEX project compared recent ice draft from the submarines with draft from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and with ice thickness estimates from ice age and have shown that SCICEX ice draft are consistent with these models. Bathymetry is measured with a bottom sounder. SCICEX bathymetry data from 1993 to 1999 are included in the International Bathymetric Chart of the Arctic Ocean (IBCAO). Collaborators have compared more recent bathymetry data collected through the SCICEX project with other IBCAO data, and they agree well. Water properties are measured with two different types of conductivity, temperature, and depth (CTD) sensors: one mounted on the submarine's hull and expendable versions that are deployed through the submarines torpedo tubes. Data from the two different CTD sensors validate one another. The breadth of instrumentation available from submarines along with their ability to be unencumbered by sea ice, weather, and season makes the data they have collected extremely valuable. The National Snow and Ice Data Center (NSIDC) manages this data

  20. Onset of ice VII phase during ps laser pulse propagation through liquid water

    NASA Astrophysics Data System (ADS)

    Kumar, V. Rakesh; Kiran, P. Prem

    2017-01-01

    Water dominantly present in liquid state on earth gets transformed to crystalline polymorphs under different dynamic loading conditions. Out of different crystalline phases discovered till date, ice VII is observed to be stable over wide pressure (2-63 GPa) and temperature (>273 K) ranges. The formation of ice VII crystalline structure has been vastly reported during high pressure static compression using diamond anvil cell and propagation of high energy (>50 mJ/pulse) nanosecond laser pulse induced dynamic high pressures through liquid water. We present the onset of ice VII phase at low threshold of 2 mJ/pulse during 30 ps (532 nm, 10 Hz) laser pulse induced shock propagating through liquid water. Role of input pulse energy on the evolution of Stoke's and anti-Stoke's Raman shift of the dominant A1g mode of ice VII, filamentation, free-electrons, plasma shielding is presented. The H-bond network rearrangement, electron ion energy transfer time coinciding with the excitation pulse duration supported by the filamentation and plasma shielding of the ps laser pulses reduced the threshold of ice VII structure formation. Filamentation and the plasma shielding have shown the localized creation and sustenance of ice VII structure in liquid water over 3 mm length and 50 μm area of cross-section.

  1. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  2. The deglaciation over Laurentian Fan: History of diatoms, IRD, ice and fresh water

    NASA Astrophysics Data System (ADS)

    Gil, Isabelle M.; Keigwin, Lloyd D.; Abrantes, Fatima

    2015-12-01

    A high-resolution diatom census coupled with other proxy data from Laurentian Fan (LF) provides a detailed description of the last deglaciation, bringing new insight to that period by revealing directly the timing of sea-ice formation and melting. Cold events Heinrich Event 1 (H1) and the Younger Dryas (YD) were multiphase events. H1 (∼16.8-15.7 cal kyr BP) was defined by a two-pulse release of icebergs promoting sea-ice formation. Melting of sea-ice after H1 corresponds to a cold and fresh anomaly that may have kept the Bølling colder than the Allerød. At ∼13.6 cal kyr BP, a cooling trend culminated with sea-ice formation, marking the YD onset (∼12.8 cal kyr BP). The decrease in sea-ice (∼12.2 cal kyr BP) led to a YD second phase characterized by very cold winters. However, the contribution of warm water diatoms tends to increase at the same time and the YD gradual end (∼11.6 cal kyr BP) contrasts with its abrupt end in Greenland ice cores. The YD cannot be regarded as an event triggered by a fresh water input through the Laurentian Channel since only one weak brief input nearly 1000 yrs after its onset is recorded. Very cold and cool conditions without ice mark the following Preboreal. A northward heat flux between 10.8 and 10.2 cal kyr BP was interrupted by the increased influence of coastal waters likely fed by inland melting. There was no further development of sea-ice or ice-drift then.

  3. Microwave signatures of snow and fresh water ice

    NASA Technical Reports Server (NTRS)

    Schmugge, T.; Wilheit, T. T.; Gloersen, P.; Meier, M. F.; Frank, D.; Dirmhirn, I.

    1973-01-01

    During March of 1971, the NASA Convair 990 Airborne Observatory carrying microwave radiometers in the wavelength range 0.8 to 21 cm was flown over dry snow with different substrata: Lake ice at Bear Lake in Utah; wet soil in the Yampa River Valley near Steamboat Springs, Colorado; and glacier ice, firm and wet snow on the South Cascade Glacier in Washington. The data presented indicate that the transparency of the snow cover is a function of wavelength. False-color images of microwave brightness temperatures obtained from a scanning radiometer operating at a wavelength of 1.55 cm demonstrate the capability of scanning radiometers for mapping snowfields.

  4. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice.

    PubMed

    Pućko, M; Stern, G A; Barber, D G; Macdonald, R W; Warner, K-A; Fuchs, C

    2012-11-06

    During the summer of 2009, we sampled 14 partially refrozen melt ponds and the top 1 m of old ice in the pond vicinity for α-hexachlorocyclohexane (α-HCH) concentrations and enantiomer fractions (EFs) in the Beaufort Sea. α-HCH concentrations were 3 - 9 times higher in melt ponds than in the old ice. We identify two routes of α-HCH enrichment in the ice over the summer. First, atmospheric gas deposition results in an increase of α-HCH concentration from 0.07 ± 0.02 ng/L (old ice) to 0.34 ± 0.08 ng/L, or ~20% less than the atmosphere-water equilibrium partitioning concentration (0.43 ng/L). Second, late-season ice permeability and/or complete ice thawing at the bottom of ponds permit α-HCH rich seawater (~0.88 ng/L) to replenish pond water, bringing concentrations up to 0.75 ± 0.06 ng/L. α-HCH pond enrichment may lead to substantial concentration patchiness in old ice floes, and changed exposures to biota as the surface meltwater eventually reaches the ocean through various drainage mechanisms. Melt pond concentrations of α-HCH were relatively high prior to the late 1980-s, with a Melt pond Enrichment Factor >1 (MEF; a ratio of concentration in surface meltwater to surface seawater), providing for the potential of increased biological exposures.

  5. Ice-nucleating bacteria control the order and dynamics of interfacial water

    DOE PAGES

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  6. Measuring ice and liquid water content in moderately supercooled clouds with Cloudnet

    NASA Astrophysics Data System (ADS)

    Bühl, Johannes; Seifert, Patric; Myagkov, Alexander; Albert, Ansmann

    2016-04-01

    The interaction between ice nuclei and clouds is an important topic in weather and climate research. Recent laboratory experiments and field in-situ field campaigns present more and more detailed measurements of ice nucleating particles (INP) at temperatures close to 0°C. This brings moderately supercooled mixed-phase clouds into the focus of current cloud research. One current example is the European Union BACCHUS project. A major goal of BACCHUS is the analysis of the anthropogenic impact on ice nucleation. Within this project, we use the Leipzig Aerosol Cloud Remote Observations System (LACROS) and the Cloudnet framework in order to get quantitative insight into the formation of ice in mixed-phase layered clouds with cloud top temperature (CTT) from -40 to 0°C. Depolarization measurements from lidar and radar show a clear dependence between particle shape and the temperature under which the particles have been formed. The special focus of this work is on the CTT range from -10 to 0°C. An algorithm is presented to decide between ice and liquid water precipitation falling from the clouds showing that between 10% and 30% of all layered clouds show ice precipitation with CTT between -5 and 0°C. For these slightly supercooled clouds an average ice-water-content between 10e-7 and 10e-8 [kg per cubic meter] is found.

  7. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    PubMed

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

  8. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  9. Ice-nucleating bacteria control the order and dynamics of interfacial water

    SciTech Connect

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Frohlich-Nowoisky, Janine; Schmuser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Poschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

  10. Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Johnson, R. E.; Kaiser, M. L.; Wahlund, J.-E.; Waite, J. H., Jr.

    2009-01-01

    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.

  11. Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy.

    PubMed

    Prettyman, T H; Yamashita, N; Toplis, M J; McSween, H Y; Schörghofer, N; Marchi, S; Feldman, W C; Castillo-Rogez, J; Forni, O; Lawrence, D J; Ammannito, E; Ehlmann, B L; Sizemore, H G; Joy, S P; Polanskey, C A; Rayman, M D; Raymond, C A; Russell, C T

    2017-01-06

    The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA's Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres' carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

  12. Free energy landscapes for homogeneous nucleation of ice for a monatomic water model

    NASA Astrophysics Data System (ADS)

    Reinhardt, Aleks; Doye, Jonathan P. K.

    2012-02-01

    We simulate the homogeneous nucleation of ice from supercooled liquid water at 220 K in the isobaric-isothermal ensemble using the MW monatomic water potential. Monte Carlo simulations using umbrella sampling are performed in order to determine the nucleation free energy barrier. We find the Gibbs energy profile to be relatively consistent with that predicted by classical nucleation theory; the free energy barrier to nucleation was determined to be ˜18 kBT and the critical nucleus comprised ˜85 ice particles. Growth from the supercooled liquid gives clusters that are predominantly cubic, whilst starting with a pre-formed subcritical nucleus of cubic or hexagonal ice results in the growth of predominantly that phase of ice only.

  13. Dazzled by Ice and Snow: Improving Medium Spatial Resolution Ocean Color Images in Arctic Waters

    NASA Astrophysics Data System (ADS)

    Goyens, Clemence; Belanger, Simon; Babin, Marcel

    2016-08-01

    Ocean color sensors carried on-board satellites represent a valuable tool providing synoptic views of extreme environments such as the Arctic Ocean. However, in icy waters inaccuracies are frequent due to, among others, adjacent and sub-pixel sea-ice contamination. Therefore, there is a need to improve atmospheric correction (AC) algorithms to ensure accurate ocean color images in the vicinity of the ice edge. The present study compares the performance of different AC methods through an in-situ-satellite match-up exercise and investigates the possibility to improve these algorithms in presence of sea-ice floes. Results confirm the large errors resulting from sea-ice contamination and illustrate the difficulty in improving these algorithms due to, among others, the optically complex waters encountered in the Arctic Ocean.

  14. Size, separation, structural order, and mass density of molecules packing in water and ice.

    PubMed

    Huang, Yongli; Zhang, Xi; Ma, Zengsheng; Li, Wen; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q

    2013-10-21

    The structural symmetry and molecular separation in water and ice remain uncertain. We present herewith a solution to unifying the density, the structure order and symmetry, the size (H-O length dH), and the separation (d(OO) = d(L) + d(H) or the O:H length d(L)) of molecules packing in water and ice in terms of statistic mean. This solution reconciles: i) the d(L) and the d(H) symmetrization of the O:H-O bond in compressed ice, ii) the d(OO) relaxation of cooling water and ice and, iii) the d(OO) expansion of a dimer and between molecules at water surface. With any one of the d(OO), the density ρ(g·cm⁻³), the d(L), and the d(H), as a known input, one can resolve the rest quantities using this solution that is probing conditions or methods independent. We clarified that: i) liquid water prefers statistically the mono-phase of tetrahedrally-coordinated structure with fluctuation, ii) the low-density phase (supersolid phase as it is strongly polarized with even lower density) exists only in regions consisting molecules with fewer than four neighbors and, iii) repulsion between electron pairs on adjacent oxygen atoms dictates the cooperative relaxation of the segmented O:H-O bond, which is responsible for the performance of water and ice.

  15. The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Wilson, J. K.

    2013-06-01

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket into the permanently shadowed region (PSR) within Cabeus crater and detected water vapor and ice, as well as other volatiles, in the ejecta plume. The Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph on board the Lunar Reconnaissance Orbiter (LRO), observed this plume as FUV emissions from the fluorescence of sunlight by molecular hydrogen (H2) and other constituents. Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can dissociate the molecules in water ice to form H2. We examine how much H2can be formed by these types of particle radiation interacting with water ice sequestered in the regolith within PSRs, and we assess whether it can account for the H2 observed by LAMP. To estimate H2formation, we use the GCR and SEP radiation dose rates measured by the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER). The exposure time of the ice is calculated by considering meteoritic gardening and the penetration depth of the energetic particles. We find that GCRs and SEPs could convert at least 1-7% of the original water molecules into H2. Therefore, given the amount of water detected by LCROSS, such particle radiation‒induced dissociation of water ice could likely account for a significant percentage (10-100%) of the H2measured by LAMP.

  16. On the Abundance of Water in Extrasolar Planetary Systems as a Function of Stellar Metallicity

    NASA Astrophysics Data System (ADS)

    Dominguez, Gerardo

    2016-06-01

    The discovery, to date, of several hundred confirmed extra solar planets and a statistical analysis of their properties has revealed intriguing patterns in the abundance and types of extrasolar planets. The metallicity of the host star appears to be a driver in determining extrasolar planetary system characteristics, although a mechanistic understanding of these relationships is not currently available. Understanding the broad relationship(s) between the characteristics of extrasolar planets and stellar metallicity thus appears timely.Recent work examining the timescales for water production in protoplanetary disks suggest that ionizing radiation required to drive surface chemistry in protoplanetary disks is insufficient and production timescales too slow to account for a significant amount of water in protoplanetary disks. Here we focus on the timescales for water production in cold molecular clouds and examine the relationship of this timescale as a function of molecular cloud metallicity. To do this, we consider the distribution of surface area concentration (dA/dV) in molecular clouds as a function of their metallicity and various MRN-like dust grain size distributions. We find that molecular cloud metallicity is a significant factor in determining upper-limits to the availability of water in molecular clouds and by extension, protoplanetary disks. The spectral index of the MRN distribution affects the upper-limits to H2O abundance, but the effect is not as significant as metallicity. We find that the ratio of H2O/SiO2 produced in a molecular cloud of solar metallicity can easily account for Earth’s present day ratio , supporting the “wet” hypothesis for the origins of Earth’s water. Future studies will focus on the retention of water on interstellar dust grain surfaces in protoplanetary disk environments inside the water line, the abundance of other volatile species, more detailed estimates of H2O destruction timescales in molecular clouds, and

  17. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    NASA Astrophysics Data System (ADS)

    Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.

    2015-07-01

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re ˜2 ×104- 3 ×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  18. Drag Moderation by the Melting of an Ice Surface in Contact with Water.

    PubMed

    Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re~2×10^{4}-3×10^{5} and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  19. Stimulated Raman scattering from ice-VIII by shock-induced compression in liquid water

    NASA Astrophysics Data System (ADS)

    Men, Zhiwei; Li, Zuowei; Zhou, Mi; Lu, Guohui; Zou, Bo; Li, Zhanlong; Sun, Chenglin

    2012-03-01

    Stimulated Raman scattering (SRS) from ice-VIII was investigated using shock-induced compression (SIC) generated by laser-induced breakdown in liquid water. Three backward SRS peaks of OH stretching vibrations and one backward SRS characteristic peak of lattice translation were observed. The SRS spectra indicated that the ice-VIII structure is formed by SIC, as the trajectory of the SIC passes through the stable pressure-temperature range of ice-VIII. The static electric field generated by electron jets protects proton-ordered structure. The laser-induced shock wave mechanism is also discussed.

  20. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  1. Determining the Water Ice Content of Martian Regolith by Nonlinear Spectral Mixture Modeling

    NASA Technical Reports Server (NTRS)

    Gyalay, S.; Noe Dobrea, E. Z.

    2015-01-01

    In the search for evidence of life, Icebreaker will drill in to the Martian ice-rich regolith to collect samples, which will then be analyzed by an array of instruments designed to identify biomarkers. In addition, drilling into the subsurface will provide the opportunity to assess the vertical distribution of ice to a depth of 1 meter. The purpose of this particular project was to understand the uncertainties involved in the use of the imaging system to constrain the water ice content in regolith samples.

  2. A numerical model for water and heat transport in freezing soils with nonequilibrium ice-water interfaces

    NASA Astrophysics Data System (ADS)

    Peng, Zhenyang; Tian, Fuqiang; Wu, Jingwei; Huang, Jiesheng; Hu, Hongchang; Darnault, Christophe J. G.

    2016-09-01

    A one-dimensional numerical model of heat and water transport in freezing soils is developed by assuming that ice-water interfaces are not necessarily in equilibrium. The Clapeyron equation, which is derived from a static ice-water interface using the thermal equilibrium theory, cannot be readily applied to a dynamic system, such as freezing soils. Therefore, we handled the redistribution of liquid water with the Richard's equation. In this application, the sink term is replaced by the freezing rate of pore water, which is proportional to the extent of supercooling and available water content for freezing by a coefficient, β. Three short-term laboratory column simulations show reasonable agreement with observations, with standard error of simulation on water content ranging between 0.007 and 0.011 cm3 cm-3, showing improved accuracy over other models that assume equilibrium ice-water interfaces. Simulation results suggest that when the freezing front is fixed at a specific depth, deviation of the ice-water interface from equilibrium, at this location, will increase with time. However, this deviation tends to weaken when the freezing front slowly penetrates to a greater depth, accompanied with thinner soils of significant deviation. The coefficient, β, plays an important role in the simulation of heat and water transport. A smaller β results in a larger deviation in the ice-water interface from equilibrium, and backward estimation of the freezing front. It also leads to an underestimation of water content in soils that were previously frozen by a rapid freezing rate, and an overestimation of water content in the rest of the soils.

  3. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    PubMed Central

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-01-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to −25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g−1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments. PMID:26522086

  4. Species, Abundance and Function of Ammonia-oxidizing Archaea in Inland Waters across China

    NASA Astrophysics Data System (ADS)

    Zhou, Leiliu; Wang, Shanyun; Zou, Yuxuan; Xia, Chao; Zhu, Guibing

    2015-11-01

    Ammonia oxidation is the first step in nitrification and was thought to be performed solely by specialized bacteria. The discovery of ammonia-oxidizing archaea (AOA) changed this view. We examined the large scale and spatio-temporal occurrence, abundance and role of AOA throughout Chinese inland waters (n = 28). Molecular survey showed that AOA was ubiquitous in inland waters. The existence of AOA in extreme acidic, alkaline, hot, cold, eutrophic and oligotrophic environments expanded the tolerance limits of AOA, especially their known temperature tolerance to -25 °C, and substrate load to 42.04 mM. There were spatio-temporal divergences of AOA community structure in inland waters, and the diversity of AOA in inland water ecosystems was high with 34 observed species-level operational taxonomic units (OTUs; based on a 15% cutoff) distributed widely in group I.1b, I.1a, and I.1a-associated. The abundance of AOA was quite high (8.5 × 104 to 8.5 × 109 copies g-1), and AOA outnumbered ammonia-oxidizing bacteria (AOB) in the inland waters where little human activities were involved. On the whole AOB predominate the ammonia oxidation rate over AOA in inland water ecosystems, and AOA play an indispensable role in global nitrogen cycle considering that AOA occupy a broader habitat range than AOB, especially in extreme environments.

  5. Further characterization of the physical makeup and dynamical behavior of water ice and dust in comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Kelley, M.; Sunshine, J.; Feaga, L.; A'Hearn, M.; Farnham, T.; Groussin, O.; Besse, S.; Merlin, F.; Li, J.

    2014-07-01

    We present an updated characterization of the type of mixing (areal vs. intimate), relative abundance, grain size, spatial distribution, and dynamical behavior of water ice and refractories detected in the inner ˜10 kilometers of the coma of comet 103P/Hartley 2. The Deep Impact eXtended Investigation (A'Hearn, 2011) allowed us to observe the near-nucleus coma at high resolution with both visible cameras (HRI-VIS, MRI-VIS) and the infrared spectrometer (HRI-IR). These data interpreted together have strengthened our understanding of the coma particles. We discuss the possibility that the observed water ice grains in the HRI-IR data are likely to be aggregates, the relationship between these particles and those detected in the visible images [Kelley et al., 2013], and their contribution to the total water production rate of this hyperactive comet.

  6. FORMATION AND ALIGNMENT OF ELONGATED, FRACTAL-LIKE WATER-ICE GRAINS IN EXTREMELY COLD, WEAKLY IONIZED PLASMA

    SciTech Connect

    Chai, Kil-Byoung; Bellan, Paul M. E-mail: pbellan@caltech.edu

    2015-04-01

    Elongated, fractal-like water-ice grains are observed to form spontaneously when water vapor is injected into a weakly ionized laboratory plasma formed in a background gas cooled to an astrophysically relevant temperature. The water-ice grains form in 1–2 minutes, levitate with regular spacing, and are aligned parallel to the sheath electric field. Water-ice grains formed in plasma where the neutrals and ions have low mass, such as hydrogen and helium, are larger, more elongated, and more fractal-like than water-ice grains formed in plasmas where the neutrals and ions have high mass such as argon and krypton. Typical aspect ratios (length to width ratio) are as great as 5 while typical fractal dimensions are ∼1.7. Water-ice grain lengths in plasmas with low neutral and ion masses can be several hundred microns long. Infrared absorption spectroscopy reveals that the water-ice grains are crystalline and so are similar in constitution to the water-ice grains in protoplanetary disks, Saturn’s rings, and mesospheric clouds. The properties and behavior of these laboratory water-ice grains may provide insights into morphology and alignment behavior of water-ice grains in astrophysical dusty plasmas.

  7. Assessment of Atmospheric Water Vapor Abundance Above RSL Locations on Mars

    NASA Astrophysics Data System (ADS)

    Berdis, Jodi R.; Murphy, Jim; Wilson, Robert John

    2016-10-01

    The possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs)1 are investigated. These RSLs appear during local spring and summer on downward slopes, and have been linked to liquid water which leaves behind streaks of briny material. Viking Orbiter Mars Atmospheric Water Detector (MAWD)2 and Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES)3-5 derived water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, and Coprates Chasma) exhibit episodic enhanced local water vapor abundance during southern summer solstice (Ls = 270°) and autumnal equinox (Ls = 360°) when RSLs are observed to develop6,7. Any detected atmospheric water vapor signal would expand upon current knowledge of RSLs, while non-detection would provide upper limits on RSL water content. Viking Orbiter Infrared Thermal Mapper (IRTM) and MGS TES derived temperature values are also investigated due to the appearance of active RSLs after the surface temperature of the slopes exceeds 250 K1.A high spatial resolution Martian atmospheric numerical model will be employed to assess the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. The ability of past and future orbiter-based instruments to detect such water vapor quantities will be assessed.References1. McEwen, A. et al. 2011, Sci., 333, 7402. Jakosky, B. & Farmer, C. 1982, JGR, 87, 29993. Christensen, P. et al. 1992, JGR, 97, 77194. Christensen, P. et al. 2001, JGR, 106, 238235. Smith, M. 2002, JGR, 107, 51156. Ojha, L. et al. 2015, Nature Geosci., 8, 8297. Stillman, D. et al. 2014, Icarus, 233, 328

  8. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.

    PubMed

    Modig, Kristofer; Qvist, Johan; Marshall, Christopher B; Davies, Peter L; Halle, Bertil

    2010-09-21

    Antifreeze proteins (AFPs) prevent uncontrolled ice formation in organisms exposed to subzero temperatures by binding irreversibly to specific planes of nascent ice crystals. To understand the thermodynamic driving forces and kinetic mechanism of AFP activity, it is necessary to characterize the hydration behavior of these proteins in solution. With this aim, we have studied the hyperactive insect AFP from Tenebrio molitor (TmAFP) with the (17)O magnetic relaxation dispersion (MRD) method, which selectively monitors the rotational motion and exchange kinetics of water molecules on picosecond-microsecond time scales. The global hydration behavior of TmAFP is found to be similar to non-antifreeze proteins, with no evidence of ice-like or long-ranged modifications of the solvent. However, two sets of structural water molecules, located within the core and on the ice-binding face in the crystal structure of TmAFP, may have functional significance. We find that 2 of the 5 internal water molecules exchange with a residence time of 8 +/- 1 micros at 300 K and a large activation energy of approximately 50 kJ mol(-1), reflecting intermittent large-scale conformational fluctuations in this exceptionally dense and rigid protein. Six water molecules arrayed with ice-like spacing in the central trough on the ice-binding face exchange with bulk water on a sub-nanosecond time scale. The combination of high order and fast exchange may allow these water molecules to contribute entropically to the ice-binding affinity without limiting the absorption rate.

  9. Compaction of porous ices rich in water by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Mejía, C.; de Barros, A. L. F.; Seperuelo Duarte, E.; da Silveira, E. F.; Dartois, E.; Domaracka, A.; Rothard, H.; Boduch, P.

    2015-04-01

    Porous water ice and water ice mixtures H2O:X (X = CO, CO2 and CH4) produced at 15 K, with film thicknesses in the 0.5-1 μm range, were irradiated by swift ions and monitored by mid-infrared spectroscopy (FTIR). The analysis of the evolution of the pure water ice infrared absorption on ion beam dose reveals a strong correlation among three quantities: (i) the absorbance of the most intense band (3250 cm-1), (ii) the wavelength of the maximum absorbance of this band and (iii) the absorbance of the OH-dangling bonds. This correlation is interpreted as indications of the water ice compaction by irradiation: as the beam fluence increases, the ice porosity decreases, the dangling bond peaks collapse and the area and position of the 3250 cm-1 band vary exponentially, all of them evolving with the same compaction cross section (σc). The linear dependence σc ∝Se (Se being the electronic stopping power) is observed for both pure and mixed water ices, confirming previous results. We suggests that the infrared absorption A-value varies with dose as (1 - ζe - D /D0) during the compaction process (D0 = 0.2 eV/molec being the effective energy density to eliminate the OH-db, and ζ is a parameter characterizing the porosity). These findings may be used as a diagnostic tool to probe the morphology of water ices occurring in the outer Solar System and in the ISM.

  10. Acquisition of seismic data in ice filled waters

    NASA Astrophysics Data System (ADS)

    Hopper, J. R.; Trinhammer, P.; Marcussen, C.; Funck, T.

    2012-12-01

    Collecting seismic data in the Arctic Ocean requires specially designed equipment and procedures adapted to harsh environmental conditions. Based on experiences of others in the 90's and 00's, Aarhus University and GEUS designed a fully containerized seismic acquisition system for Icebreaker Oden that includes: A single cable, the towing umbilical connecting all equipment to the ship. This reduces risk of damage by ice and simplifies deployment and recovery operations. A 250- m-long GeoEel streamer. The short length permits fast deployment and recovery and in the event of a full stop, will not sink below the 300 m depth limit for the equipment. A linear array of two airguns hung from a single point on the towing umbilical. The towing umbilical is designed to keep the guns and streamer at a depth of 20 m, below the wash of the ship's propellers, and minimizing the risk of equipment coming in contact with ice. This, however, compromises signal quality because of the effects on frequency content. Sonobuoys to record data at larger offsets for determining seismic velocities of the sediments. In easier ice conditions, Oden can break ice continuously at 3 to 4 knots and seismic data of reasonable data quality can be acquired. In heavy ice conditions, Oden's normal mode of operation is to maintain as high a speed as possible. In very heavy ice, progress is only achieved by backing and ramming. Neither of these heavy ice modes is possible with seismic gear behind the ship. The gear is designed for slow speeds and backing will entangle gear in the propellers. Limitations to breaking heavy ice while towing seismic gear can only be addressed by having a lead pre-broken prior to acquiring seismic data. We have used two options to accomplish this. First is to operate with two ships, where a lead icebreaker (as powerful as possible) prepares a track along a pre-planned line several times at maximum speed. Oden then uses this track to collect data continuously at 3-4 knots. The

  11. Ceres: predictions for near-surface water ice stability and implications for plume generating processes

    USGS Publications Warehouse

    Titus, Timothy N.

    2015-01-01

    This paper will constrain the possible sources and processes for the formation of recently observed H2O vapor plumes above the surface of the dwarf planet Ceres. Two hypotheses have been proposed: (1) cryovolcanism where the water source is the mantle and the heating source is still unknown or (2) comet-like sublimation where near-surface water ice is vaporized by seasonally increasing solar insolation. We test hypothesis #2, comet-like near-surface sublimation, by using a thermal model to examine the stability of water-ice in the near surface. For a reasonable range of physical parameters (thermal inertia, surface roughness, slopes), we find that water ice is only stable at latitudes higher than ~40-60 degrees. These results indicate that either (a) the physical properties of Ceres are unlike our expectations or (b) an alternative to comet-like sublimation, such as the cryovolcanism hypothesis, must be invoked.

  12. Ultraviolet-stimulated fluorescence and phosphorescence of aromatic hydrocarbons in water ice.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Bolser, Diana K; Bhartia, Rohit; Lane, Arthur L; Kanik, Isik

    2011-03-01

    A principal goal of astrobiology is to detect and inventory the population of organic compounds on extraterrestrial bodies. Targets of specific interest include the wealth of icy worlds that populate our Solar System. One potential technique for in situ detection of organics trapped in water ice matrices involves ultraviolet-stimulated emission from these compounds. Here, we report a preliminary investigation into the feasibility of this concept. Specifically, fluorescence and phosphorescence of pure benzene ice and 1% mixtures of benzene, toluene, p-xylene, m-xylene, and o-xylene in water ice, respectively, were studied at temperatures ranging from ∼17 K up to 160 K. Spectra were measured from 200-500 nm (50,000-20,000 cm(-1)) while ice mixtures were excited at 248.6 nm. The temperature dependence of the fluorescence and phosphorescence intensities was found to be independent of the thermal history and phase of the ice matrix in all cases examined. All phosphorescent emissions were found to decrease in intensity with increasing temperature. Similar behavior was observed for fluorescence in pure benzene, while the observed fluorescence intensity in water ices was independent of temperature.

  13. Trapping in water - an important prerequisite for complex reactivity in astrophysical ices: the case of acetone (CH3)2C = O and ammonia NH3

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Theule, Patrice; Duvernay, Fabrice; Chiavassa, Thierry

    2014-10-01

    Water is the most abundant compound in interstellar and cometary ices. Laboratory experiments on ice analogues have shown that water has a great influence on the chemical activity of these ices. In this study, we investigated the reactivity of acetone-ammonia ices, showing that water is an essential component in chemical reactions with high activation energies. In a water-free binary ice, acetone and ammonia do not react due to high activation energy, as the reactants desorb before reacting (at 120 and 140 K, respectively). By contrast, our study shows that under experimental conditions of ˜150 K, this reaction does occur in the presence of water. Here, water traps reactants in the solid phase above their desorption temperatures, allowing them to gather thermal energy as the reaction proceeds. Using infrared spectroscopy and mass spectrometry associated with isotopic labelling, as well as quantum chemical calculations, 2-aminopropan-2-ol (2HN-C(CH3)2-OH) was identified as the acetone-ammonia reaction product. The formation of this product may represent the first step towards formation of 2-aminoisobutyric acid (AIB) in the Strecker synthesis. The activation energy for the formation of 2-aminopropan-2-ol was measured to be 42 ± 3 kJ mol-1, while its desorption energy equalled 61.3 ± 0.1 kJ mol-1. Our work demonstrates that astrophysical water, rather than being a non-thermally reactive species, is crucial for the evolution of complex chemistry occurring in the Universe.

  14. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.

    PubMed

    Laffon, C; Lacombe, S; Bournel, F; Parent, Ph

    2006-11-28

    The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO(2) radicals, as well as the oxygen O(2) and hydrogen peroxide H(2)O(2) molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I(cryst)) ice films. The evolution of their concentrations with the temperature indicates that HO(2), O(2), and H(2)O(2) result from a simple step reaction fuelled by OH, where O(2) is a product of HO(2) and HO(2) a product of H(2)O(2). The local order of ice is also modified, whatever the initial structure is. The crystalline ice I(cryst) becomes amorphous. The high-density amorphous phase (I(a)h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I(a)l). The phase I(a)h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase-we call I(a)vh-is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K.

  15. Classical and quantum theories of proton disorder in hexagonal water ice

    NASA Astrophysics Data System (ADS)

    Benton, Owen; Sikora, Olga; Shannon, Nic

    2016-03-01

    It has been known since the pioneering work of Bernal, Fowler, and Pauling that common, hexagonal (Ih) water ice is the archetype of a frustrated material: a proton-bonded network in which protons satisfy strong local constraints (the "ice rules") but do not order. While this proton disorder is well established, there is now a growing body of evidence that quantum effects may also have a role to play in the physics of ice at low temperatures. In this paper, we use a combination of numerical and analytic techniques to explore the nature of proton correlations in both classical and quantum models of ice Ih. In the case of classical ice Ih, we find that the ice rules have two, distinct, consequences for scattering experiments: singular "pinch points," reflecting a zero-divergence condition on the uniform polarization of the crystal, and broad, asymmetric features, coming from its staggered polarization. In the case of the quantum model, we find that the collective quantum tunneling of groups of protons can convert states obeying the ice rules into a quantum liquid, whose excitations are birefringent, emergent photons. We make explicit predictions for scattering experiments on both classical and quantum ice Ih, and show how the quantum theory can explain the "wings" of incoherent inelastic scattering observed in recent neutron scattering experiments [Bove et al., Phys. Rev. Lett. 103, 165901 (2009), 10.1103/PhysRevLett.103.165901]. These results raise the intriguing possibility that the protons in ice Ih could form a quantum liquid at low temperatures, in which protons are not merely disordered, but continually fluctuate between different configurations obeying the ice rules.

  16. Visible and Thermal Imaging of Sea Ice and Open Water from Coast Guard Arctic Domain Awareness Flights

    DTIC Science & Technology

    2014-09-30

    seasonal evolution of the ice cover. APPROACH The Coast Guard Arctic Domain Awareness (ADA) flights based out of Kodiak Alaska offer a tremendous...and Thermal Imaging of Sea Ice and Open Water from Coast Guard Arctic Domain Awareness Flights 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...temperature, melt pond temperature, percentage ice coverage, and ice flow and melt pond size 3 distributions. We are also collaborating within APL

  17. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  18. Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Miller, Lisa A.; Carnat, Gauthier; Shadwick, Elizabeth; Thomas, Helmuth; Pineault, Simon; Papakyriakou, Tim N.

    2013-12-01

    From sea-ice formation in November 2007 to onset of ice melt in May 2008, we studied the carbonate system in first-year Arctic sea ice, focusing on the impact of calcium-carbonate (CaCO3) saturation states of aragonite (ΩAr) and calcite (ΩCa) at the ice-water interface (UIW). Based on total inorganic carbon (CT) and total alkalinity (AT), and derived pH, CO2, carbonate ion ([CO32-]) concentrations and Ω, we investigated the major drivers such as brine rejection, CaCO3 precipitation, bacterial respiration, primary production and CO2-gas flux in sea ice, brine, frost flowers and UIW. We estimated large variability in sea-ice CT at the top, mid, and bottom ice. Changes due to CaCO3 and CO2-gas flux had large impact on CT in the whole ice core from March to May, bacterial respiration was important at the bottom ice during all months, and primary production in May. It was evident that the sea-ice processes had large impact on UIW, resulting in a five times larger seasonal amplitude of the carbonate system, relative to the upper 20 m. During ice formation, [CO2] increased by 30 µmol kg-1, [CO32-] decreased by 50 µmol kg-1, and the ΩAr decreased by 0.8 in the UIW due to CO2-enriched brine from solid CaCO3. Conversely, during ice melt, [CO32-] increased by 90 µmol kg-1 in the UIW, and Ω increased by 1.4 between March and May, likely due to CaCO3 dissolution and primary production. We estimated that increased ice melt would lead to enhanced oceanic uptake of inorganic carbon to the surface layer.

  19. Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments.

    PubMed

    Olvera-Carrillo, Yadira; Luis Reyes, José; Covarrubias, Alejandra A

    2011-04-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families; each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility.

  20. A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.

    2015-01-01

    Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…