Science.gov

Sample records for abundantly expressed transcripts

  1. Abundant and broad expression of transcription-induced chimeras and protein products in mammalian genomes.

    PubMed

    Lu, Guanting; Wu, Jin; Zhao, Gangbin; Wang, Zhiqiang; Chen, Weihua; Mu, Shijie

    2016-02-12

    The expression of transcription-induced chimeras (TICs) was underestimated due to strategic and logical reasons. In order to thoroughly examine TICs, systematic survey of TIC events was conducted in mammalian genomes using ESTs, followed by experimental validation using RT-PCR and real-time quantitative PCR (qPCR). The expression of ∼98% TIC events in at least one tissue or cell line from both mouse and human was verified. Besides, ∼40% TICs were broadly expressed, and ∼33% of TICs showed expression levels comparable to or higher than their upstream parental genes. We further identified putative chimeric proteins in public databases and validated two using Western blotting. GO analysis revealed that proteins resided in one multi-protein complex or functioning in metabolic or signaling pathway tended to produce fused products. Taken together, we have shown substantial evidence for the underestimated TIC events; and TICs could be a novel regulated way to further increases the proteome complexity in mammalian genomes. Possible regulation mechanisms and evolution of TICs were also discussed. PMID:26718406

  2. Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors.

    PubMed

    Devi, M Jyostna; Sinclair, Thomas R; Jain, Mukesh; Gallo, Maria

    2016-04-01

    A plant trait currently being exploited to decrease crop yield loss under water-deficit conditions is limited-transpiration rate (TRlim ) under high atmospheric vapor pressure deficit (VPD) conditions. Although limited genotype comparisons for the TRlim trait have been performed in peanut (Arachis hypogaea), no detailed study to describe the basis for this trait in peanut has been reported. Since it has been hypothesized that the TRlim trait may be a result of low leaf hydraulic conductance associated with aquaporins (AQPs), the first objective of this study was to examine a possible correlation of TRlim to leaf AQP transcriptional profiles in six peanut cultivars. Five of the studied cultivars were selected because they expressed TRlim while the cultivar York did not. Transcripts of six AQPs were measured. Under exposure to high vapor pressure deficit, cultivar C 76-16 had decreased AQP transcript abundance for four of the six AQPs but in York only one AQP had decreased abundance. The second objective was to explore the influence of AQP inhibitors mercury and silver on expression of TRlim and AQP transcription profiles. Quantitative RT-PCR data were compared in cultivars York and C 76-16, which had the extreme response in TR to VPD. Inhibitor treatment resulted in increased abundance of AQP transcripts in both. The results of these experiments indicate that AQP transcript abundance itself may not be useful in identifying genotypes expressing the TRlim trait under high VPD conditions. PMID:26303261

  3. The bHLH transcription factor Tcf12 (ME1) mRNA is abundantly expressed in Paneth cells of mouse intestine.

    PubMed

    Tanigawa, Yoko; Yakura, Rieko; Komiya, Tohru

    2007-06-01

    Using a large-scale in situ hybridization screening system, we found that mRNA coding for ME1, a basic helix-loop-helix (bHLH) transcription factor, was abundantly expressed in Paneth cells of adult small intestinal crypts. Other functionally related E-protein mRNAs, ME2, and E2A, however, could not be detected in the cells. ME1 mRNA was first detected in the jejunum and ileum two weeks after birth when the number of Paneth cells starts to increase. ME1 is the first identified bHLH transcription factor expressed in the Paneth cells and may be used as a molecular marker and a key molecule for analyzing transcriptional regulation in the Paneth cell. PMID:17405739

  4. Microdissected double-minute DNA detects variable patterns of chromosomal localizations and multiple abundantly expressed transcripts in normal and leukemic cells

    SciTech Connect

    Sen, S.; Zhou, Hongyi; Stass, S.A.; Sen, P. ); Mulac-Jericevic, B.; Pirrotta, V. )

    1994-02-01

    Double-minute (dm) chromosomes are cytogenetically resolvable DNA amplification-mediating acentric extrachromosomal structures that are commonly seen in primary tumors, tumor cell lines, and drug-resistant cells grown in vitro. Selective isolation of dm DNAs with standard molecular biological techniques is difficult, and thus, detailed studies to elucidate their structure, site of chromosomal origin, and chromosomal reintegration patterns have been limited. In those instances in which a gene has been localized on dms, characterization of the remainder of the DNA, which far exceeds the size of the gene identified, has remained inconclusive. dms seen in the acute myeloid leukemia cell line HL-60 have been shown to harbor the c-myc protooncogene. In this paper, the authors report the successful isolation of the dm-specific DNAs from these cells by the microdissection/polymerase chain reaction technique and demonstrate that the dm DNAs derived from a single discrete normal chromosome segment 8q24.1-q24.2 reintegrate at various specific locations in the leukemic cells. The microdissected dm DNA detects multiple abundantly expressed transcripts distinct from c-myc mRNA on Northern blots. By devising a [open quotes]transcript selection[close quotes] strategy, they cloned the partial genomic sequence of a gene from the microdissected DNA that encodes two of these RNAs. This strategy will be generally applicable for rapid cloning of unknown amplified genes harbored on dms. With DNA from 20 microdissected dms, they constructed a genomic library of about 20,000 recombinant microclones with an average insert size of about 450 bp. The microclones should help in isolating corresponding yeast artificial chromosome clones for high-resolution physical mapping of dms in HL-60 cells. Furthermore, application of the microdissection technique appears to be an extremely feasible approach to characterization of dms in other cell types. 42 refs., 6 figs., 1 tab.

  5. Housekeeping gene transcript abundance in bovine fertilized and cloned embryos.

    PubMed

    Ross, Pablo J; Wang, Kai; Kocabas, Arif; Cibelli, Jose B

    2010-12-01

    The objective of this study was to compare housekeeping gene expression levels, relative to total mRNA, across different stages of bovine preimplantation development in embryos generated by IVF and somatic cell nuclear transfer (SCNT). We first analyzed the levels of total RNA recovered from different stages of preimplantation development. A similar RNA level was observed from oocytes to 16-cell stage embryos with a significant increase at morula and blastocyst stages. Then we used an absolute mRNA determination method that accounts for the RNA level in the embryo by quantifying copies of transcripts normalized to loaded cDNA amount. The number of housekeeping genes mRNA copies per nanogram of cDNA was compared among samples obtained from different stages of preimplantation IVF-derived embryos. None of the genes analyzed (GAPDH, PPIA, ACTB, RPL15, GUSB, and Histone H2A.2) maintained constant levels throughout preimplantation development, indicating that they are not suitable for normalizing gene expression across developmental stages. We then compared expression of housekeeping genes between IVF and SCNT embryos at different embryonic stages. We found different levels of transcript abundance between IVF and SCNT embryos for GAPDH, RPL15, GUSB, and ACTB. On the other hand, Histone H2A.2 and PPIA were similar between IVF and SCNT embryos at each stage analyzed, although they varied across stages as previously mentioned. PMID:20973679

  6. Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts.

    PubMed

    Wang, Xinhui; Li, Xinran; Liu, Shiwei; Ren, Hang; Yang, Mingjuan; Ke, Yuehua; Huang, Liuyu; Liu, Chao; Liu, Bo; Chen, Zeliang

    2016-01-01

    Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria. PMID:26848029

  7. Ultrasensitive Detection of Bacteria by Targeting Abundant Transcripts

    PubMed Central

    Wang, Xinhui; Li, Xinran; Liu, Shiwei; Ren, Hang; Yang, Mingjuan; Ke, Yuehua; Huang, Liuyu; Liu, Chao; Liu, Bo; Chen, Zeliang

    2016-01-01

    Molecular detection assays are increasingly becoming routine diagnostic techniques for bacterial infection; however, their sensitivities are restricted by the low concentrations of bacteria in clinical samples. Here, we report a new paradigm for ultrasensitive detection of bacteria. The principle of this approach is that by choosing highly transcribed genes as signature sequences and detecting both DNA and its RNA transcripts, assay sensitivity can be greatly improved. First, signature genes with abundant transcripts were screened by RNA-Seq. We confirmed that RT-PCR efficiently amplifies both DNA and RNA, while PCR amplifies only DNA. Unexpectedly, we found that the RNA extraction efficiency is relatively low, while simplified denaturation was more appropriate for transcript detection. For highly transcribed genes, RT-PCR consistently generated lower cycle threshold (Ct) values than those of PCR. The sensitivity of RT-PCR targeting abundant transcripts could detect quantities as low as one bacterium, which was not possible using PCR. Amplification of different genes among several other common bacteria also confirmed that transcript detection by RT-PCR is more sensitive than is DNA detection by PCR. Therefore, abundant transcript detection represents a universal strategy for ultrasensitive detection of bacteria. PMID:26848029

  8. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation

    PubMed Central

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2014-01-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P<0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3’-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack there of (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation. PMID:25560149

  9. Metaproteomics reveals abundant transposase expression in mutualistic endosymbionts

    SciTech Connect

    Kleiner, Manuel; Young, Jacque C; Shah, Manesh B; Verberkmoes, Nathan C; Dubilier, Nicole

    2013-01-01

    Transposases, enzymes that catalyze the movement of mobile genetic elements, are the most abundant genes in nature. While many bacteria encode an abundance of transposases in their genomes, the current paradigm is that transposase gene expression is tightly regulated and generally low due to its severe mutagenic effects. In the current study, we detected the highest number of transposase proteins ever reported in bacteria, in symbionts of the gutless marine worm Olavius algarvensis using metaproteomics. At least 26 different transposases from 12 different families were detected and genomic and proteomic analyses suggest many of these are active. This high expression of transposases indicates that the mechanisms for their tight regulation have been disabled or destroyed. Based on recent studies on other symbionts and pathogens that showed high transposase transcription, we speculate that abundant transposase expression might be common in symbionts and pathogens.

  10. Transcriptional abundance is not the single force driving the evolution of bacterial proteins

    PubMed Central

    2013-01-01

    Background Despite rapid progress in understanding the mechanisms that shape the evolution of proteins, the relative importance of various factors remain to be elucidated. In this study, we have assessed the effects of 16 different biological features on the evolutionary rates (ERs) of protein-coding sequences in bacterial genomes. Results Our analysis of 18 bacterial species revealed new correlations between ERs and constraining factors. Previous studies have suggested that transcriptional abundance overwhelmingly constrains the evolution of yeast protein sequences. This transcriptional abundance leads to selection against misfolding or misinteractions. In this study we found that there was no single factor in determining the evolution of bacterial proteins. Not only transcriptional abundance (codon adaptation index and expression level), but also protein-protein associations (PPAs), essentiality (ESS), subcellular localization of cytoplasmic membrane (SLM), transmembrane helices (TMH) and hydropathicity score (HS) independently and significantly affected the ERs of bacterial proteins. In some species, PPA and ESS demonstrate higher correlations with ER than transcriptional abundance. Conclusions Different forces drive the evolution of protein sequences in yeast and bacteria. In bacteria, the constraints are involved in avoiding a build-up of toxic molecules caused by misfolding/misinteraction (transcriptional abundance), while retaining important functions (ESS, PPA) and maintaining the cell membrane (SLM, TMH and HS). Each of these independently contributes to the variation in protein evolution. PMID:23914835

  11. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. PMID:25590685

  12. A monoallelic-to-biallelic T-cell transcriptional switch regulates GATA3 abundance

    PubMed Central

    Ku, Chia-Jui; Lim, Kim-Chew; Kalantry, Sundeep; Maillard, Ivan; Engel, James Douglas; Hosoya, Tomonori

    2015-01-01

    Protein abundance must be precisely regulated throughout life, and nowhere is the stringency of this requirement more evident than during T-cell development: A twofold increase in the abundance of transcription factor GATA3 results in thymic lymphoma, while reduced GATA3 leads to diminished T-cell production. GATA3 haploinsufficiency also causes human HDR (hypoparathyroidism, deafness, and renal dysplasia) syndrome, often accompanied by immunodeficiency. Here we show that loss of one Gata3 allele leads to diminished expansion (and compromised development) of immature T cells as well as aberrant induction of myeloid transcription factor PU.1. This effect is at least in part mediated transcriptionally: We discovered that Gata3 is monoallelically expressed in a parent of origin-independent manner in hematopoietic stem cells and early T-cell progenitors. Curiously, half of the developing cells switch to biallelic Gata3 transcription abruptly at midthymopoiesis. We show that the monoallelic-to-biallelic transcriptional switch is stably maintained and therefore is not a stochastic phenomenon. This unique mechanism, if adopted by other regulatory genes, may provide new biological insights into the rather prevalent phenomenon of monoallelic expression of autosomal genes as well as into the variably penetrant pathophysiological spectrum of phenotypes observed in many human syndromes that are due to haploinsufficiency of the affected gene. PMID:26385963

  13. Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly.

    PubMed

    Alves e Silva, Thiago Luiz; Savage, Amy F; Aksoy, Serap

    2016-04-01

    African trypanosomes (Trypanosoma brucei spp.) cause devastating diseases in sub-Saharan Africa. Trypanosomes differentiate repeatedly during development in tsetse flies before gaining mammalian infectivity in fly salivary glands. Lipid phosphate phosphatases (LPPs) are involved in diverse biological processes, such as cell differentiation and cell migration. Gene sequences encoding two putative T. brucei LPP proteins were used to search the T. brucei genome, revealing two additional putative family members. Putative structural features and transcript abundance during parasite development in tsetse fly were characterized. Three of the four LPP proteins are predicted to have six transmembrane domains, while the fourth shows only one. Semiquantitative gene expression revealed differential regulation of LPPs during parasite development. Transcript abundance for three of the four putative LPP genes was elevated in parasites infecting salivary glands, but not mammalian-infective metacyclic cells in fly saliva, indicating a potential role of this family in parasite establishment in tsetse salivary glands. PMID:26856918

  14. Three abundant germ line-specific transcripts in Volvox carteri encode photosynthetic proteins.

    PubMed

    Choi, G; Przybylska, M; Straus, D

    1996-09-01

    Volvox carteri is a multicellular eukaryotic green alga composed of about 2000 cells of only two differentiated types: somatic and germ line. To understand how embryonic cells are assigned either to somatic or germ line fates, we are investigating the regulation of transcripts that are abundant in only one cell type. Here we report the identity of three transcripts that are coordinately expressed at high levels in germ line cells but not in somatic cells. Surprisingly, all three transcripts encode photosynthetic chloroplast proteins (light-harvesting complex protein, oxygen-evolving enhancer protein 3, and ferredoxin-NADP+ reductase) that are transcribed from nuclear genes. We discuss why these mRNAs might be required at high levels in germ line cells and present a hypothesis, suggested by our results, on the evolution of cell specialization in the Volvocales. PMID:8781179

  15. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN

    PubMed Central

    Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda

    2016-01-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  16. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm.

    PubMed

    Zhang, Runxuan; Tucker, Matthew R; Burton, Rachel A; Shirley, Neil J; Little, Alan; Morris, Jenny; Milne, Linda; Houston, Kelly; Hedley, Pete E; Waugh, Robbie; Fincher, Geoffrey B

    2016-03-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  17. RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations.

    PubMed

    Munger, Steven C; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K; Gatti, Daniel M; Hinerfeld, Douglas A; Svenson, Karen L; Keller, Mark P; Attie, Alan D; Hibbs, Matthew A; Graber, Joel H; Chesler, Elissa J; Churchill, Gary A

    2014-09-01

    Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449

  18. TEMPERATURE CONDITIONING ALTERS TRANSCRIPT ABUNDANCE OF GENES RELATED TO CHILLING STRESS IN GRAPEFRUIT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapefruit (Citrus paradisi) are susceptible to chilling injury (CI) if held at temperatures below about 10C. Changes in transcript abundance for a number of genes have been correlated with chilling stress in citrus fruit. We tested the hypothesis that conditioning affects transcript abundance of ...

  19. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    PubMed Central

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple

  20. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.

    PubMed

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for

  1. Differences in transcript abundance of genes on BTA15 located within a region associated with gain in beef steers.

    PubMed

    Lindholm-Perry, A K; Kern, R J; Kuehn, L A; Snelling, W M; Miles, J R; Oliver, W T; Freetly, H C

    2015-11-01

    Using results from a previous GWAS, we chose to evaluate seven genes located within a 229Kb region on BTA15 for variation in RNA transcript abundance in a library of tissue samples that included adipose, liver, rumen papillae, spleen, muscle, and small intestine epithelial layers from the duodenum, ileum and jejunum collected from steers (n = 14) with positive and negative residual GN near mean dry matter intake (DMI). The genes evaluated were two olfactory receptor-like genes (LOC525033 and LOC618173), RRM1, STIM1, RHOG, PGAP2, and NUP98. The rumen papillae transcript abundance of RHOG was positively correlated with residual GN (P = 0.02) and ruminal STIM1 exhibited a trend towards an association with residual GN (P = 0.08). The transcript abundance of one olfactory receptor (LOC618173) in the ileum was also positively associated with residual GN (P = 0.02) and PGAP2 and LOC525033 in the ileum displayed trends for association with GN (P ≤ 0.1). To further evaluate the differential expression detected in the ileum and rumen of these animals, the transcript abundance of STIM1 and RHOG in the rumen and of PGAP2 and the olfactory receptors in the ileum were assessed in an additional group of 32 animals with divergent average daily gain (ADG) and average daily feed intake (ADFI) collected over two groups. The olfactory receptor, LOC525033, was not expressed in the ileum for the majority of these animals. Only RHOG showed a slight, but non-significant trend towards greater expression in animals with greater gain. We have detected differences in the transcript abundance of genes within this region in the rumen and ileum of animals selected for greater and less residual gain; however, we were unable to validate the expression of these genes in the larger group of cattle possibly due to the differences in phenotype or contemporary group. PMID:26143118

  2. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera)

    PubMed Central

    Johnson, Reed M.; Evans, Jay D.; Robinson, Gene E.; Berenbaum, May R.

    2009-01-01

    Colony collapse disorder (CCD) is a mysterious disappearance of honey bees that has beset beekeepers in the United States since late 2006. Pathogens and other environmental stresses, including pesticides, have been linked to CCD, but a causal relationship has not yet been demonstrated. Because the gut acts as a primary interface between the honey bee and its environment as a site of entry for pathogens and toxins, we used whole-genome microarrays to compare gene expression between guts of bees from CCD colonies originating on both the east and west coasts of the United States and guts of bees from healthy colonies sampled before the emergence of CCD. Considerable variation in gene expression was associated with the geographical origin of bees, but a consensus list of 65 transcripts was identified as potential markers for CCD status. Overall, elevated expression of pesticide response genes was not observed. Genes involved in immune response showed no clear trend in expression pattern despite the increased prevalence of viruses and other pathogens in CCD colonies. Microarray analysis revealed unusual ribosomal RNA fragments that were conspicuously more abundant in the guts of CCD bees. The presence of these fragments may be a possible consequence of picorna-like viral infection, including deformed wing virus and Israeli acute paralysis virus, and may be related to arrested translation. Ribosomal fragment abundance and presence of multiple viruses may prove to be useful diagnostic markers for colonies afflicted with CCD. PMID:19706391

  3. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera).

    PubMed

    Johnson, Reed M; Evans, Jay D; Robinson, Gene E; Berenbaum, May R

    2009-09-01

    Colony collapse disorder (CCD) is a mysterious disappearance of honey bees that has beset beekeepers in the United States since late 2006. Pathogens and other environmental stresses, including pesticides, have been linked to CCD, but a causal relationship has not yet been demonstrated. Because the gut acts as a primary interface between the honey bee and its environment as a site of entry for pathogens and toxins, we used whole-genome microarrays to compare gene expression between guts of bees from CCD colonies originating on both the east and west coasts of the United States and guts of bees from healthy colonies sampled before the emergence of CCD. Considerable variation in gene expression was associated with the geographical origin of bees, but a consensus list of 65 transcripts was identified as potential markers for CCD status. Overall, elevated expression of pesticide response genes was not observed. Genes involved in immune response showed no clear trend in expression pattern despite the increased prevalence of viruses and other pathogens in CCD colonies. Microarray analysis revealed unusual ribosomal RNA fragments that were conspicuously more abundant in the guts of CCD bees. The presence of these fragments may be a possible consequence of picorna-like viral infection, including deformed wing virus and Israeli acute paralysis virus, and may be related to arrested translation. Ribosomal fragment abundance and presence of multiple viruses may prove to be useful diagnostic markers for colonies afflicted with CCD. PMID:19706391

  4. RNA-Seq Reveals Different mRNA Abundance of Transporters and Their Alternative Transcript Isoforms During Liver Development

    PubMed Central

    Cui, Julia Yue; Gunewardena, Sumedha S.; Yoo, Byunggil; Liu, Jie; Renaud, Helen J.; Lu, Hong; Zhong, Xiao-bo; Klaassen, Curtis D.

    2012-01-01

    During development, the maturation of liver transporters is essential for chemical elimination in newborns and children. One cannot compare the real abundance of transcripts by conventional messenger RNA (mRNA) profiling methods; in comparison, RNA-Seq provides a “true quantification” of transcript counts and an unbiased detection of novel transcripts. The purpose of this study was to compare the mRNA abundance of liver transporters and seek their novel transcripts during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq, with transcript abundance estimated by Cufflinks. Among 498 known transporters, the ontogeny of 62 known critical xenobiotic transporters was examined in detail. The cumulative mRNAs of the uptake transporters increased more than the efflux transporters in livers after birth. A heatmap revealed three ontogenic patterns of these transporters, namely perinatal (reaching maximal expression before birth), adolescent (about 20 days), and adult enriched (about 60 days of age). Before birth, equilibrative nucleoside transporter 1 was the transporter with highest expression in liver (29%), followed by breast cancer resistance protein (Bcrp) (26%). Within 1 day after birth, the mRNAs of these two transporters decreased markedly, and Ntcp became the transporter with highest expression (52%). In adult liver, the transporters with highest expression were organic cation transporter 1 and Ntcp (23% and 22%, respectively). Three isoforms of Bcrp with alternate leading exons were identified (E1a, E1b, and E1c), with E1b being the major isoform. In conclusion, this study reveals the mRNA abundance of transporters in liver and demonstrates that the expression of liver transporters is both age and isoform specific. PMID:22454430

  5. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  6. Identifying Novel Transcriptional Regulators with Circadian Expression

    PubMed Central

    Schick, Sandra; Thakurela, Sudhir; Fournier, David; Hampel, Mareike Hildegard

    2015-01-01

    Organisms adapt their physiology and behavior to the 24-h day-night cycle to which they are exposed. On a cellular level, this is regulated by intrinsic transcriptional-translational feedback loops that are important for maintaining the circadian rhythm. These loops are organized by members of the core clock network, which further regulate transcription of downstream genes, resulting in their circadian expression. Despite progress in understanding circadian gene expression, only a few players involved in circadian transcriptional regulation, including transcription factors, epigenetic regulators, and long noncoding RNAs, are known. Aiming to discover such genes, we performed a high-coverage transcriptome analysis of a circadian time course in murine fibroblast cells. In combination with a newly developed algorithm, we identified many transcription factors, epigenetic regulators, and long intergenic noncoding RNAs that are cyclically expressed. In addition, a number of these genes also showed circadian expression in mouse tissues. Furthermore, the knockdown of one such factor, Zfp28, influenced the core clock network. Mathematical modeling was able to predict putative regulator-effector interactions between the identified circadian genes and may help for investigations into the gene regulatory networks underlying circadian rhythms. PMID:26644408

  7. Two wheat (Triticum aestivum) pathogenesis-related 10 (PR-10) transcripts with distinct patterns of abundance in different organs.

    PubMed

    Mohammadi, Mohsen; Srivastava, Sanjeeva; Hall, Jocelyn C; Kav, Nat N V; Deyholos, Michael K

    2012-06-01

    PR-10 genes encode small, acidic, intracellular proteins that respond to abiotic and biotic stimuli. Transgenic expression of PR-10 genes has been shown to enhance early seedling growth of dicots in saline environments. To identify candidate PR-10 genes in cereals for increasing stress tolerance, we conducted phylogenetic analyses and real-time polymerase chain reaction of representatives of the two major clades of putative PR-10 genes in wheat. We observed that the abundance of BQ752893 was generally greater than the abundance of CV778999, particularly when measured in roots across four wheat genotypes. However, CV778999 transcripts were more abundant than BQ752893 in flag leaves. These data suggest that the transcripts define two functionally divergent groups of PR-10 type genes in wheat, both of which may be suitable targets for biotechnological manipulation under different circumstances. PMID:21818707

  8. Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance

    PubMed Central

    Gall, BJ; Wilson, A; Schroer, AB; Gross, JD; Stoilov, P; Setola, V; Watkins, CM; Siderovski, DP

    2015-01-01

    G protein signaling modulator 3 (GPSM3) is a regulator of G protein-coupled receptor signaling, with expression restricted to leukocytes and lymphoid organs. Previous genome-wide association studies have highlighted single-nucleotide polymorphisms (SNPs rs204989, rs204991) in a region upstream of the GPSM3 transcription start site as being inversely correlated to the prevalence of rheumatoid arthritis (RA) -- this association is supported by the protection afforded to Gpsm3-deficient mice in models of inflammatory arthritis. Here, we assessed the functional consequences of these polymorphisms. We collected biospecimens from 50 volunteers with RA diagnoses, 50 RA-free volunteers matched to the aforementioned group, and 100 unmatched healthy young volunteers. We genotyped these individuals for GPSM3 (rs204989, rs204991), CCL21 (rs2812378), and HLA gene region (rs6457620) polymorphisms, and found no significant differences in minor allele frequencies between the RA and disease-free cohorts. However, we identified that individuals homozygous for SNPs rs204989 and rs204991 had decreased GPSM3 transcript abundance relative to individuals homozygous for the major allele. In vitro promoter activity studies suggest that SNP rs204989 is the primary cause of this decrease in transcript levels. Knockdown of GPSM3 in THP-1 cells, a human monocytic cell line, was found to disrupt ex vivo migration to the chemokine MCP-1. PMID:26821282

  9. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    PubMed

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated. PMID:25443852

  10. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE PAGESBeta

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; et al

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more » inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  11. DBATE: database of alternative transcripts expression.

    PubMed

    Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2013-01-01

    The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/. PMID:23842462

  12. Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast

    PubMed Central

    McManus, C. Joel; May, Gemma E.; Spealman, Pieter; Shteyman, Alan

    2014-01-01

    Understanding the patterns and causes of phenotypic divergence is a central goal in evolutionary biology. Much work has shown that mRNA abundance is highly variable between closely related species. However, the extent and mechanisms of post-transcriptional gene regulatory evolution are largely unknown. Here we used ribosome profiling to compare transcript abundance and translation efficiency in two closely related yeast species (S. cerevisiae and S. paradoxus). By comparing translation regulatory divergence to interspecies differences in mRNA sequence features, we show that differences in transcript leaders and codon bias substantially contribute to divergent translation. Globally, we find that translation regulatory divergence often buffers species differences in mRNA abundance, such that ribosome occupancy is more conserved than transcript abundance. We used allele-specific ribosome profiling in interspecies hybrids to compare the relative contributions of cis- and trans-regulatory divergence to species differences in mRNA abundance and translation efficiency. The mode of gene regulatory divergence differs for these processes, as trans-regulatory changes play a greater role in divergent mRNA abundance than in divergent translation efficiency. Strikingly, most genes with aberrant transcript abundance in F1 hybrids (either over- or underexpressed compared to both parent species) did not exhibit aberrant ribosome occupancy. Our results show that interspecies differences in translation contribute substantially to the evolution of gene expression. Compensatory differences in transcript abundance and translation efficiency may increase the robustness of gene regulation. PMID:24318730

  13. A transcription map of a yeast centromere plasmid: unexpected transcripts and altered gene expression.

    PubMed Central

    Marczynski, G T; Jaehning, J A

    1985-01-01

    YCp19 is a yeast centromere plasmid capable of autonomous replication in both yeast and E. coli (J. Mol. Biol., 158: 157-179, 1982). It is stably maintained as a single copy in the yeast cell and is therefore a model yeast "minichromosome" and cloning vector. We have located the positions and measured the abundance of the in vivo yeast transcripts from YCp19. Transcripts from the selectable marker genes TRP1 and URA3 were present at increased levels relative to chromosomal copies of the genes. Unanticipated transcripts from the yeast CEN4 and E. coli pBR322 sequences were also found. Although much of the plasmid vector is actively transcribed in vivo, the regions around the most useful cloning sites (BamHI, EcoRI, SalI) are free of transcripts. We have analyzed transcription of BamHI inserts containing promoter variants of the HIS3 gene and determined that although initiation events are accurate, plasmid context may alter levels of gene expression. Images PMID:3909105

  14. A novel method to prioritize RNAseq data for post-hoc analysis based on absolute changes in transcript abundance.

    PubMed

    McNutt, Patrick; Gut, Ian; Hubbard, Kyle; Beske, Phil

    2015-06-01

    The use of fold-change (FC) to prioritize differentially expressed genes (DEGs) for post-hoc characterization is a common technique in the analysis of RNA sequencing datasets. However, the use of FC can overlook certain population of DEGs, such as high copy number transcripts which undergo metabolically expensive changes in expression yet fail to exceed the ratiometric FC cut-off, thereby missing potential important biological information. Here we evaluate an alternative approach to prioritizing RNAseq data based on absolute changes in normalized transcript counts (ΔT) between control and treatment conditions. In five pairwise comparisons with a wide range of effect sizes, rank-ordering of DEGs based on the magnitude of ΔT produced a power curve-like distribution, in which 4.7-5.0% of transcripts were responsible for 36-50% of the cumulative change. Thus, differential gene expression is characterized by the high production-cost expression of a small number of genes (large ΔT genes), while the differential expression of the majority of genes involves a much smaller metabolic investment by the cell. To determine whether the large ΔT datasets are representative of coordinated changes in the transcriptional program, we evaluated large ΔT genes for enrichment of gene ontologies (GOs) and predicted protein interactions. In comparison to randomly selected DEGs, the large ΔT transcripts were significantly enriched for both GOs and predicted protein interactions. Furthermore, enrichments were were consistent with the biological context of each comparison yet distinct from those produced using equal-sized populations of large FC genes, indicating that the large ΔT genes represent an orthagonal transcriptional response. Finally, the composition of the large ΔT gene sets were unique to each pairwise comparison, indicating that they represent coherent and context-specific responses to biological conditions rather than the non-specific upregulation of a family of genes

  15. Predictive modelling of gene expression from transcriptional regulatory elements.

    PubMed

    Budden, David M; Hurley, Daniel G; Crampin, Edmund J

    2015-07-01

    Predictive modelling of gene expression provides a powerful framework for exploring the regulatory logic underpinning transcriptional regulation. Recent studies have demonstrated the utility of such models in identifying dysregulation of gene and miRNA expression associated with abnormal patterns of transcription factor (TF) binding or nucleosomal histone modifications (HMs). Despite the growing popularity of such approaches, a comparative review of the various modelling algorithms and feature extraction methods is lacking. We define and compare three methods of quantifying pairwise gene-TF/HM interactions and discuss their suitability for integrating the heterogeneous chromatin immunoprecipitation (ChIP)-seq binding patterns exhibited by TFs and HMs. We then construct log-linear and ϵ-support vector regression models from various mouse embryonic stem cell (mESC) and human lymphoblastoid (GM12878) data sets, considering both ChIP-seq- and position weight matrix- (PWM)-derived in silico TF-binding. The two algorithms are evaluated both in terms of their modelling prediction accuracy and ability to identify the established regulatory roles of individual TFs and HMs. Our results demonstrate that TF-binding and HMs are highly predictive of gene expression as measured by mRNA transcript abundance, irrespective of algorithm or cell type selection and considering both ChIP-seq and PWM-derived TF-binding. As we encourage other researchers to explore and develop these results, our framework is implemented using open-source software and made available as a preconfigured bootable virtual environment. PMID:25231769

  16. Transcriptional analysis of human survivin gene expression.

    PubMed Central

    Li, F; Altieri, D C

    1999-01-01

    The preservation of tissue and organ homoeostasis depends on the regulated expression of genes controlling apoptosis (programmed cell death). In this study, we have investigated the basal transcriptional requirements of the survivin gene, an IAP (inhibitor of apoptosis) prominently up-regulated in cancer. Analysis of the 5' flanking region of the human survivin gene revealed the presence of a TATA-less promoter containing a canonical CpG island of approximately 250 nt, three cell cycle dependent elements, one cell cycle homology region and numerous Sp1 sites. PCR-based analysis of human genomic DNA, digested with methylation-sensitive and -insensitive restriction enzymes, indicated that the CpG island was unmethylated in both normal and neoplastic tissues. Primer extension and S1 nuclease mapping of the human survivin gene identified two main transcription start sites at position -72 and within -57/-61 from the initiating ATG. Transfection of cervical carcinoma HeLa cells with truncated or nested survivin promoter-luciferase constructs revealed the presence of both enhancer and repressor sequences and identified a minimal promoter region within the proximal -230 nt of the human survivin gene. Unbiased mutagenesis analysis of the human survivin promoter revealed that targeting the Sp1 sequences at position -171 and -151 abolished basal transcriptional activity by approximately 63-82%. Electrophoretic mobility-shift assay with DNA oligonucleotides confirmed formation of a DNA-protein complex between the survivin Sp1 sequences and HeLa cell extracts in a reaction abolished by mutagenesis of the survivin Sp1 sites. These findings identify the basal transcriptional requirements of survivin gene expression. PMID:10567210

  17. TAp73 transcriptionally represses BNIP3 expression

    PubMed Central

    Petrova, Varvara; Mancini, Mara; Agostini, Massimiliano; Knight, Richard A; Annicchiarico-Petruzzelli, Margherita; Barlev, Nikolai A; Melino, Gerry; Amelio, Ivano

    2015-01-01

    TAp73 is a tumor suppressor transcriptional factor, belonging to p53 family. Alteration of TAp73 in tumors might lead to reduced DNA damage response, cell cycle arrest and apoptosis. Carcinogen-induced TAp73−/− tumors display also increased angiogenesis, associated to hyperactivition of hypoxia inducible factor signaling. Here, we show that TAp73 suppresses BNIP3 expression, directly binding its gene promoter. BNIP3 is a hypoxia responsive protein, involved in a variety of cellular processes, such as autophagy, mitophagy, apoptosis and necrotic-like cell death. Therefore, through different cellular process altered expression of BNIP3 may differently contribute to cancer development and progression. We found a significant upregulation of BNIP3 in human lung cancer datasets, and we identified a direct association between BNIP3 expression and survival rate of lung cancer patients. Our data therefore provide a novel transcriptional target of TAp73, associated to its antagonistic role on HIF signaling in cancer, which might play a role in tumor suppression. PMID:25950386

  18. Controlling for Gene Expression Changes in Transcription Factor Protein Networks*

    PubMed Central

    Banks, Charles A. S.; Lee, Zachary T.; Boanca, Gina; Lakshminarasimhan, Mahadevan; Groppe, Brad D.; Wen, Zhihui; Hattem, Gaye L.; Seidel, Chris W.; Florens, Laurence; Washburn, Michael P.

    2014-01-01

    The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein–protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NFκB1, NFκB2, Rel, RelB, IκBα, IκBβ, and IκBε). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NFκB family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions. PMID:24722732

  19. Functional analysis of a highly conserved abundant larval transcript-2 (alt-2) intron 2 repeat region of lymphatic filarial parasites.

    PubMed

    Sakthidevi, Moorthy; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2014-06-01

    The filarial-specific protein abundant larval transcript-2 (ALT-2) is expressed exclusively in the infective larval stage (L3) and is a crucial protein for establishing immunopathogenesis in human hosts. The alt-2 gene has a conserved minisatellite repeat (29 or 27bp) in intron 2 (IR2) whose significance within lymphatic filarial species is unknown. Here, we report the role of IR2 in the regulation of alt-2 gene expression using an in vitro model. Using electrophoretic mobility shift assays, we identified the presence of a putative nuclear protein binding region within IR2. Subsequent transient expression experiments in eukaryotic cell lines demonstrated that the IR2 downregulated the expression of a downstream luciferase reporter gene, which was further validated with RT-PCR. We therefore identify IR2 as a suppressor element that regulates L3 stage-specific expression of alt-2. PMID:24681262

  20. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    PubMed

    Zielinski, Brian L; Allen, Andrew E; Carpenter, Edward J; Coles, Victoria J; Crump, Byron C; Doherty, Mary; Foster, Rachel A; Goes, Joaquim I; Gomes, Helga R; Hood, Raleigh R; McCrow, John P; Montoya, Joseph P; Moustafa, Ahmed; Satinsky, Brandon M; Sharma, Shalabh; Smith, Christa B; Yager, Patricia L; Paul, John H

    2016-01-01

    silicon became limiting. Expression of these genes, including carbonic anhydrase and transporters for nitrate and phosphate, were found to reflect the physiological status and biogeochemistry of river plume environments. These relatively stable patterns of eukaryotic transcript abundance occurred over modest spatiotemporal scales, with similarity observed in sample duplicates collected up to 2.45 km in space and 120 minutes in time. These results confirm the use of metatranscriptomics as a valuable tool to understand and predict microbial community function. PMID:27598790

  1. Transcript Abundance Explains mRNA Mobility Data in Arabidopsis thaliana.

    PubMed

    Calderwood, Alexander; Kopriva, Stanislav; Morris, Richard J

    2016-03-01

    Recently, a large population of mRNA was shown to be able to travel between plant organs via sieve elements as a putative long-distance signaling molecule. However, a mechanistic basis by which transcripts are selected for transport has not yet been identified. Here, we show that experimental mRNA mobility data in Arabidopsis can be explained by transcript abundance and half-life. This suggests that the majority of identified mobile transcripts can be accounted for by non-sequence-specific movement of mRNA from companion cells into sieve elements. PMID:26952566

  2. Transcript Abundance Explains mRNA Mobility Data in Arabidopsis thaliana[OPEN

    PubMed Central

    Calderwood, Alexander

    2016-01-01

    Recently, a large population of mRNA was shown to be able to travel between plant organs via sieve elements as a putative long-distance signaling molecule. However, a mechanistic basis by which transcripts are selected for transport has not yet been identified. Here, we show that experimental mRNA mobility data in Arabidopsis can be explained by transcript abundance and half-life. This suggests that the majority of identified mobile transcripts can be accounted for by non-sequence-specific movement of mRNA from companion cells into sieve elements. PMID:26952566

  3. Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis.

    PubMed

    Filichkin, Sergei A; Cumbie, Jason S; Dharmawardhana, Palitha; Jaiswal, Pankaj; Chang, Jeff H; Palusa, Saiprasad G; Reddy, A S N; Megraw, Molly; Mockler, Todd C

    2015-02-01

    Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron-retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating and non-oscillating transcripts. Broad-range thermal cycles triggered a sharp increase in the long IR CCA1 isoforms and altered their phasing to different times of day. Both abiotic and biotic stresses such as drought or Pseudomonas syringae infection induced a similar increase. Thermal stress induced a time delay in accumulation of CCA1 I4Rb transcripts, whereas functional mRNA showed steady oscillations. Our data favor a hypothesis that stress-induced instabilities of the central oscillator can be in part compensated through fluctuations in abundance and out-of-phase oscillations of CCA1 IR transcripts. Taken together, our results support a concept that mRNA abundance can be modulated through altering ratios between functional and nonsense/IR transcripts. SR45 protein specifically bound to the retained CCA1 intron in vitro, suggesting that this splicing factor could be involved in regulation of intron retention. Transcriptomes of nonsense-mediated mRNA decay (NMD)-impaired and heat-stressed plants shared a set of retained introns associated with stress- and defense-inducible transcripts. Constitutive activation of certain stress response networks in an NMD mutant could be linked to disequilibrium between functional and nonsense mRNAs. PMID:25680774

  4. Environmental Stresses Modulate Abundance and Timing of Alternatively Spliced Circadian Transcripts in Arabidopsis.

    PubMed

    Filichkin, Sergei A; Cumbie, Jason S; Dharmawadhana, J Palitha; Jaiswal, Pankaj; Chang, Jeff H; Palusa, Saiprasad G; Reddy, A S N; Megraw, Molly; Mockler, Todd C

    2014-11-01

    Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating and non-oscillating transcripts. Broad range thermal cycles triggered a sharp increase in the long intron retaining CCA1 isoforms and altered their phasing to different times of day. Both abiotic and biotic stresses such as drought or P. syringae infection induced similar increase. Thermal stress induced a time delay in accumulation of CCA1 I4Rb transcripts whereas functional mRNA showed steady oscillations. Our data favor a hypothesis that stress-induced instabilities of the central oscillator can be in part compensated through fluctuations in abundance and out of phase oscillations of CCA1 IR transcripts. Altogether, our results support a concept that mRNA abundance can be modulated through altering ratios between functional and nonsense/IR transcripts. SR45 protein specifically bound to the retained CCA1 intron in vitro, suggesting that this splicing factor could be involved in regulation of intron retention. Transcriptomes of NMD-impaired and heat-stressed plants shared a set of retained introns associated with stress- and defense-inducible transcripts. Constitutive activation of certain stress response networks in an NMD mutant could be linked to disequilibrium between functional and nonsense mRNAs. PMID:25366180

  5. The transcriptional regulation of regucalcin gene expression.

    PubMed

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  6. Brugia malayi abundant larval transcript 2 protein treatment attenuates experimentally-induced colitis in mice.

    PubMed

    Khatri, Vishal; Amdare, Nitin; Yadav, Ravi Shankar; Tarnekar, Aaditya; Goswami, Kalyan; Reddy, Maryada Venkata Rami

    2015-11-01

    Helminths are known to modulate host's immunity by suppressing host protective pro-inflammatory responses. Such immunomodulatory effects have been experimentally shown to have therapeutic implications in immune mediated disorders. In the present study, we have explored a filarial protein i.e. Brugia malayi recombinant abundant larval transcript 2 (rBmALT2) for its therapeutic effect in dextran sodium sulfate (DSS) induced colitis in mouse model. The immunomodulatory activity of rBmALT-2 was initially confirmed by demonstrating that it suppressed the lipopolysaccharide (LPS) induced nitric oxide synthesis and down-regulated the expression of pro-inflammatory cytokines in vitro by peritoneal exudate cells of mice. Treatment with rBmALT2 reduced severity of colitis associated with significant reduction in weight loss, disease activity, colon damage, mucosal edema and histopathological score including myeloperoxidase activity in colon tissues. rBmALT2 was comparatively more effective in attenuation of colitis when used in the preventive mode than when used for curative purpose. The therapeutic effect of rBmALT2 was found to be associated with downregulation of IFN-γ, IL-6, IL-17 and upregulation of IL-10 cytokines. These results provide strong experimental evidence that BmALT2 could be a potential alternative therapeutic agent in colitis. PMID:26669016

  7. Alterations in transcript abundance of bovine oocytes recovered at growth and dominance phases of the first follicular wave

    PubMed Central

    Ghanem, Nasser; Hölker, Michael; Rings, Franca; Jennen, Danyel; Tholen, Ernst; Sirard, Marc-André; Torner, Helmut; Kanitz, Wilhelm; Schellander, Karl; Tesfaye, Dawit

    2007-01-01

    Background Oocyte developmental competence is highly affected by the phase of ovarian follicular wave. Previous studies have shown that oocytes from subordinate follicles recovered at growth phase (day 3 after estrus) are developmentally more competent than those recovered at dominance phase (day 7 after estrus). However, the molecular mechanisms associated with these differences are not well elucidated. Therefore, the objective of this study was to investigate transcript abundance of bovine oocytes retrieved from small follicles at growth and dominance phases of the first follicular wave and to identify candidate genes related to oocyte developmental competence using cDNA microarray. Results Comparative gene expression analysis of oocytes from growth and dominance phases and subsequent data analysis using Significant Analysis of Microarray (SAM) revealed a total of 51 differentially regulated genes, including 36 with known function, 6 with unknown function and 9 novel transcripts. Real-time PCR has validated 10 transcripts revealed by microarray analysis and quantified 5 genes in cumulus cells derived from oocytes of both phases. The expression profile of 8 (80%) transcripts (ANAXA2, FL396, S100A10, RPL24, PP, PTTG1, MSX1 and BMP15) was in agreement with microarray data. Transcript abundance of five candidate genes in relation to oocyte developmental competence was validated using Brilliant Cresyl Blue (BCB) staining as an independent model. Furthermore, localization of mRNA and protein product of the candidate gene MSX1 in sections of ovarian follicles at days 0, 1, 3 and 7 of estrous cycle showed a clear fluorescent signal in both oocytes and cumulus cells with higher intensity in the former. Moreover, the protein product was detected in bovine oocytes and early cleavage embryos after fertilization with higher intensity around the nucleus. Conclusion This study has identified distinct sets of differentially regulated transcripts between bovine oocytes recovered

  8. Abundance of specific mRNA transcripts impacts hatching success in European eel, Anguilla anguilla L.

    PubMed

    Rozenfeld, Christoffer; Butts, Ian A E; Tomkiewicz, Jonna; Zambonino-Infante, Jose-Luis; Mazurais, David

    2016-01-01

    Maternal mRNA governs early embryonic development in fish and variation in abundance of maternal transcripts may contribute to variation in embryonic survival and hatch success in European eel, Anguilla anguilla. Previous studies have shown that quantities of the maternal gene products β-tubulin, insulin-like growth factor 2 (igf2), nucleoplasmin (npm2), prohibitin 2 (phb2), phosphatidylinositol glycan biosynthesis class F protein 5 (pigf5), and carnitine O-palmitoyltransferase liver isoform-like 1 (cpt1) are associated with embryonic developmental competence in other teleosts. Here, the relations between relative mRNA abundance of these genes in eggs and/or embryos and egg quality, was studied and analyzed. We compared egg quality of the two groups: i) batches with hatching and ii) batches with no hatching. Results showed no significant differences in relative mRNA abundance between the hatch and no hatching groups for any of the selected genes at 0, 2.5, and 5HPF. However, at 30HPF the hatch group showed significantly higher abundance of cpt1a, cpt1b, β-tubulin, phb2, and pigf5 transcripts than the no hatch group. Therefore, these results indicate that up-regulation of the transcription of these genes in European eel after the mid-blastula transition, may be needed to sustain embryonic development and hatching success. PMID:26415730

  9. Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes.

    PubMed

    Abdoon, Ahmed S; Gabler, Christoph; Holder, Christoph; Kandil, Omaima M; Einspanier, Ralf

    2014-11-01

    Hot season is a major constraint to production and reproduction in buffaloes. The present work aimed to investigate the effect of season on ovarian function, developmental competence, and the relative abundance of gene expression in buffalo oocytes. Three experiments were conducted. In experiment 1, pairs of buffalo ovaries were collected during cold season (CS, autumn and winter) and hot season (HS, spring and summer), and the number of antral follicles was recorded. Cumulus oocyte complexes (COCs) were aspirated and evaluated according to their morphology into four Grades. In experiment 2, Grade A and B COCs collected during CS and HS were in vitro matured (IVM) for 24 hours under standard conditions at 38.5 °C in a humidified air of 5% CO2. After IVM, cumulus cells were removed and oocytes were fixed, stained with 1% aceto-orcein, and evaluated for nuclear configuration. In vitro matured buffalo oocytes harvested during CS or HS were in vitro fertilized (IVF) using frozen-thawed buffalo semen and cultured in vitro to the blastocyst stage. In experiment 3, buffalo COCs and in vitro matured oocytes were collected during CS and HS, and then snap frozen in liquid nitrogen for gene expression analysis. Total RNA was extracted from COCs and in vitro matured oocytes, and complementary DNA was synthesized; quantitative Reverse Transcription-Polymerase Chain Reaction was performed for eight candidate genes including GAPDH, ACTB, B2M, GDF9, BMP15, HSP70, and SOD2. The results indicated that HS significantly (P < 0.01) decreased the number of antral follicles and the number of COCs recovered per ovary. The number of Grade A, B, and C COCs was lower (P < 0.05) during HS than CS. In vitro maturation of buffalo oocytes during HS significantly (P < 0.01) reduced the number of oocytes reaching the metaphase II stage and increased the percentage of degenerated oocytes compared with CS. Oocytes collected during HS also showed signs of cytoplasmic degeneration. After IVF

  10. Post-transcriptional regulation of transcript abundance by a conserved member of the tristetraprolin family in Candida albicans

    PubMed Central

    Wells, Melissa L.; Washington, Onica L.; Hicks, Stephanie N.; Nobile, Clarissa J.; Hartooni, Nairi; Wilson, Gerald M.; Zucconi, Beth E.; Huang, Weichun; Li, Leping; Fargo, David C.; Blackshear, Perry J.

    2015-01-01

    Summary Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins bind to AU-rich regions in target mRNAs, leading to their deadenylation and decay. Family members in Saccharomyces cerevisiae influence iron metabolism, whereas the single protein expressed in Schizosaccharomyces pombe, Zfs1, regulates cell–cell interactions. In the human pathogen Candida albicans, deep sequencing of mutants lacking the orthologous protein, Zfs1, revealed significant increases (> 1.5-fold) in 156 transcripts. Of these, 113 (72%) contained at least one predicted TTP family member binding site in their 3′UTR, compared with only 3 of 56 (5%) down-regulated transcripts. The zfs1Δ/Δ mutant was resistant to 3-amino-1,2,4-triazole, perhaps because of increased expression of the potential target transcript encoded by HIS3. Sequences of the proteins encoded by the putative Zfs1 targets were highly conserved among other species within the fungal CTG clade, while the predicted Zfs1 binding sites in these mRNAs often ‘disappeared’ with increasing evolutionary distance from the parental species. C. albicans Zfs1 bound to the ideal mammalian TTP binding site with high affinity, and Zfs1 was associated with target transcripts after co-immunoprecipitation. Thus, the biochemical activities of these proteins in fungi are highly conserved, but Zfs1-like proteins may target different transcripts in each species. PMID:25524641

  11. Gene expression in plant mitochondria: transcriptional and post-transcriptional control.

    PubMed Central

    Binder, Stefan; Brennicke, Axel

    2003-01-01

    The informational content of the mitochondrial genome in plants is, although small, essential for each cell. Gene expression in these organelles involves a number of distinct transcriptional and post-transcriptional steps. The complex post-transcriptional processes of plant mitochondria such as 5' and 3' RNA processing, intron splicing, RNA editing and controlled RNA stability extensively modify individual steady-state RNA levels and influence the mRNA quantities available for translation. In this overview of the processes in mitochondrial gene expression, we focus on confirmed and potential sites of regulatory interference and discuss the evolutionary origins of the transcriptional and post-transcriptional processes. PMID:12594926

  12. Control of Rta expression critically determines transcription of viral and cellular genes following gammaherpesvirus infection.

    PubMed

    Hair, James R; Lyons, Paul A; Smith, Kenneth G C; Efstathiou, Stacey

    2007-06-01

    The replication and transcriptional activator (Rta), encoded by ORF50 of gammaherpesviruses, initiates the lytic cycle of gene expression; therefore understanding the impact of Rta on viral and cellular gene expression is key to elucidating the transcriptional events governing productive infection and reactivation from latency. To this end, the impact of altering Rta transcription on viral and cellular gene expression was studied in the context of a whole virus infection. Recombinant murine gammaherpesvirus (MHV)-68 engineered to overexpress Rta greatly accelerated expression of specific lytic cycle ORFs, but repressed transcription of the major latency gene, ORF73. Increased expression of Rta accelerated the dysregulation in transcription of specific cellular genes when compared with cells infected with wild-type and revertant viruses. A subset of cellular genes was dysregulated only in cells infected with Rta-overexpressing virus, and never in those infected with non-overexpressing viruses. These data highlight the critical role of Rta abundance in governing viral and cellular gene transcription, and demonstrate the importance of understanding how the relative expression of ORF50 during the virus life cycle impacts on these processes. PMID:17485528

  13. Control of Rta expression critically determines transcription of viral and cellular genes following gammaherpesvirus infection

    PubMed Central

    Hair, James R.; Lyons, Paul A.; Smith, Kenneth G. C.; Efstathiou, Stacey

    2007-01-01

    The replication and transcriptional activator (Rta), encoded by ORF50 of gammaherpesviruses, initiates the lytic cycle of gene expression; therefore understanding the impact of Rta on viral and cellular gene expression is key to elucidating the transcriptional events governing productive infection and reactivation from latency. To this end, the impact of altering Rta transcription on viral and cellular gene expression was studied in the context of a whole virus infection. Recombinant murine gammaherpesvirus (MHV)-68 engineered to overexpress Rta greatly accelerated expression of specific lytic cycle ORFs, but repressed transcription of the major latency gene, ORF73. Increased expression of Rta accelerated the dysregulation in transcription of specific cellular genes when compared with cells infected with wild-type and revertant viruses. A subset of cellular genes was dysregulated only in cells infected with Rta-overexpressing virus, and never in those infected with non-overexpressing viruses. These data highlight the critical role of Rta abundance in governing viral and cellular gene transcription, and demonstrate the importance of understanding how the relative expression of ORF50 during the virus life cycle impacts on these processes. PMID:17485528

  14. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  15. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  16. Transcript abundance on its own cannot be used to infer fluxes in central metabolism

    PubMed Central

    Schwender, Jörg; König, Christina; Klapperstück, Matthias; Heinzel, Nicolas; Munz, Eberhard; Hebbelmann, Inga; Hay, Jordan O.; Denolf, Peter; De Bodt, Stefanie; Redestig, Henning; Caestecker, Evelyne; Jakob, Peter M.; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2014-01-01

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism, some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. This limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments. PMID:25506350

  17. Transcript abundance on its own cannot be used to infer fluxes in central metabolism

    DOE PAGESBeta

    Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias; Heinzel, Nicolas; Munz, Eberhard; Hebbelmann, Inga; Hay, Jordan O.; Denolf, Peter; De Bodt, Stefanie; Redestig, Henning; et al

    2014-11-28

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism,more » some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.« less

  18. Transcript abundance on its own cannot be used to infer fluxes in central metabolism

    SciTech Connect

    Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias; Heinzel, Nicolas; Munz, Eberhard; Hebbelmann, Inga; Hay, Jordan O.; Denolf, Peter; De Bodt, Stefanie; Redestig, Henning; Caestecker, Evelyne; Jakob, Peter M.; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2014-11-28

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism, some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.

  19. Trans-splicing Into Highly Abundant Albumin Transcripts for Production of Therapeutic Proteins In Vivo

    PubMed Central

    Wang, Jun; Mansfield, S Gary; Cote, Colette A; Jiang, Ping Du; Weng, Ke; Amar, Marcelo JA; Brewer, Bryan H; Remaley, Alan T; McGarrity, Gerard J; Garcia-Blanco, Mariano A; Puttaraju, M

    2008-01-01

    Spliceosome-mediated RNA trans-splicing has emerged as an exciting mode of RNA therapy. Here we describe a novel trans-splicing strategy, which targets highly abundant pre-mRNAs, to produce therapeutic proteins in vivo. First, we used a pre-trans-splicing molecule (PTM) that mediated trans-splicing of human apolipoprotein A-I (hapoA-I) into the highly abundant mouse albumin exon 1. Hydrodynamic tail vein injection of the hapoA-I PTM plasmid in mice followed by analysis of the chimeric transcripts and protein, confirmed accurate and efficient trans-splicing into albumin pre-mRNA and production of hapoA-I protein. The versatility of this approach was demonstrated by producing functional human papillomavirus type-16 E7 (HPV16-E7) single-chain antibody in C57BL/6 mice and functional factor VIII (FVIII) and phenotypic correction in hemophilia A mice. Altogether, these studies demonstrate that trans-splicing to highly abundant albumin transcripts can be used as a general platform to produce therapeutic proteins in vivo. PMID:19066600

  20. Resistance locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f.sp. glycines.

    PubMed

    Iqbal, M J; Yaegashi, S; Njiti, V N; Ahsan, R; Cryder, K L; Lightfoot, D A

    2002-11-01

    Soybean Sudden Death Syndrome (SDS) is caused by Fusarium solani f.sp. glycines (Fsg). Six quantitative trait loci (QTLs), each conferring partial resistance to SDS, have been discovered in an Essex x Forrest recombinant inbred line (RIL) population, but their mode of action is not clear. This study aimed to identify genes (ESTs) whose mRNA transcripts were altered in abundance in soybean roots following inoculation of Fsg. Roots of the soybean variety Forrest (four resistance alleles) were inoculated with Fsg, and 14 days later RNA sequences that were differentially expressed relative to uninoculated roots were enriched using suppression subtraction and differential display. The abundance of these RNAs was quantified in inoculated and non-inoculated roots by macroarray hybridizations. A unigene set of 135 ESTs was identified and used in a further macroarray analysis. The abundance of 28 cDNA fragments was increased more than two-fold in inoculated compared to uninoculated roots of RIL 23 (six resistance alleles). In Forrest and Essex (two resistance alleles), the level of only one mRNA was increased two-fold in inoculated roots compared to the uninoculated roots. In Essex most of the mRNAs analyzed decreased in abundance (61/135 showed a two-fold decrease), while in Forrest most mRNA abundances did not change. Among the 28 cDNAs that revealed a two-fold or higher increase in mRNA abundance in RIL 23, 14% code for proteins known to be involved in plant defense, 21% in metabolism, 14% in cell structure and 4% in transport. Unannotated ESTs accounted for 43% of the genes, and 4% of the sequences were previously unknown. The plant defense-related genes that showed a differential response to Fsg inoculation suggested a role for the phenylproponoid pathway in soybean defense against Fsg. In Essex, genes involved in plant defense, cell wall synthesis, ethylene synthesis and metabolism were expressed at lower levels in inoculated roots. The difference in response between

  1. Reverse transcriptase genes are highly abundant and transcriptionally active in marine plankton assemblages.

    PubMed

    Lescot, Magali; Hingamp, Pascal; Kojima, Kenji K; Villar, Emilie; Romac, Sarah; Veluchamy, Alaguraj; Boccara, Martine; Jaillon, Olivier; Iudicone, Daniele; Bowler, Chris; Wincker, Patrick; Claverie, Jean-Michel; Ogata, Hiroyuki

    2016-05-01

    Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 μm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage. PMID:26613339

  2. Incidence of apoptosis and transcript abundance in bovine follicular cells is associated with the quality of the enclosed oocyte.

    PubMed

    Janowski, D; Salilew-Wondim, D; Torner, H; Tesfaye, D; Ghanem, N; Tomek, W; El-Sayed, A; Schellander, K; Hölker, M

    2012-08-01

    The close contact and interaction between the oocyte and the follicular environment influence the establishment of oocyte developmental competence. Moreover, it is assumed that apoptosis in the follicular cells has a beneficial influence on the developmental competence of oocytes. The aim of this study was to investigate whether bovine oocytes with varied developmental competence show differences in the degree of apoptosis and gene expression pattern in their surrounding follicular cells (cumulus and granulosa cells). Oocytes and follicular cells from follicles of 3 to 5 mm in diameter were grouped as brilliant cresyl blue (BCB)+ and BCB- based on glucose-6-phosphate dehydrogenase (G6PDH) activity in the ooplasm by BCB staining. In the follicular cells initial, early and late apoptotic events were assessed by analyzing caspase-3 activity, annexin-V and TUNEL, respectively. Global gene expression was investigated in immature oocytes and corresponding follicular cells. BCB+ oocytes resulted in a higher blastocyst rate (19.3%) compared to the BCB- group (7.4%, P < 0.05). Moreover, the analysis of apoptosis showed a higher caspase-3 activity in the follicular cells and an increased degree of late apoptotic events in granulosa cells in the BCB+ compared with the BCB- group. Additionally, the global gene expression profile revealed a total of 34 and 37 differentially expressed genes between BCB+ and BCB- cumulus cells and granulosa cells, respectively, whereas 207 genes showed an altered transcript abundance between BCB+ and BCB- oocytes. Among these, EIF3F, RARRES2, RNF34, ACTA1, GSTA1, EIF3A, VIM and CS gene transcripts were most highly enriched in the BCB+ oocytes, whereas OLFM1, LINGO1, ALDH1A3, PTHLH, BTN3A3, MRPS2 and PPM1K were most significantly reduced in these cells. Therefore, the follicular cells enclosing developmentally competent oocytes show a higher level of apoptosis and a different pattern of gene expression compared to follicular cells enclosing non

  3. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  4. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis.

    PubMed

    Yang, Jie; Xu, Xinqi; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2016-01-01

    Laccases are a class of multi-copper oxidases with industrial potential. In this study, eight laccases (Lac1-8) from Cerrena sp. strain HYB07, a white-rot fungus with high laccase yields, were analyzed. The laccases showed moderate identities to each other as well as with other fungal laccases and were predicted to have high redox potentials except for Lac6. Selected laccase isozymes were heterologously expressed in the yeast Pichia pastoris, and different enzymatic properties were observed. Transcription of the eight laccase genes was differentially regulated during submerged and solid state fermentation, as shown by quantitative real-time polymerase chain reaction and validated reference genes. During 6-day submerged fermentation, Lac7 and 2 were successively the predominantly expressed laccase gene, accounting for over 95% of all laccase transcripts. Interestingly, accompanying Lac7 downregulation, Lac2 transcription was drastically upregulated on days 3 and 5 to 9958-fold of the level on day 1. Consistent with high mRNA abundance, Lac2 and 7, but not other laccases, were identified in the fermentation broth by LC-MS/MS. In solid state fermentation, less dramatic differences in transcript abundance were observed, and Lac3, 7 and 8 were more highly expressed than other laccase genes. Elucidating the properties and expression profiles of the laccase gene family will facilitate understanding, production and commercialization of the fungal strain and its laccases. PMID:27527131

  5. Oxidative Damage to Rhesus Macaque Spermatozoa Results in Mitotic Arrest and Transcript Abundance Changes in Early Embryos1

    PubMed Central

    Burruel, Victoria; Klooster, Katie L.; Chitwood, James; Ross, Pablo J.; Meyers, Stuart A.

    2013-01-01

    ABSTRACT Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO2 in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development. PMID:23904511

  6. Transcriptional Regulation of Gene Expression in C. elegans

    PubMed Central

    Reinke, Valerie; Krause, Michael; Okkema, Peter

    2013-01-01

    Protein coding gene sequences are converted to mRNA by the highly regulated process of transcription. The precise temporal and spatial control of transcription for many genes is an essential part of development in metazoans. Thus, understanding the molecular mechanisms underlying transcriptional control is essential to understanding cell fate determination during embryogenesis, post-embryonic development, many environmental interactions, and disease-related processes. Studies of transcriptional regulation in C. elegans exploit its genomic simplicity and physical characteristics to define regulatory events with single cell and minute time scale resolution. When combined with the genetics of the system, C. elegans offers a unique and powerful vantage point from which to study how chromatin-associated protein and their modifications interact with transcription factors and their binding sites to yield precise control of gene expression through transcriptional regulation. PMID:23801596

  7. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum).

    PubMed

    Reynolds, T L; Crawford, R L

    1996-12-01

    A clone for an embryoid-abundant, early cysteine-labeled metallothionein (EcMt) gene has been isolated from a wheat pollen embryoid cDNA library. The transcript of this gene was only expressed in embryogenic microspores, pollen embryoids, and developing zygotic embryos of wheat. Accumulation of the EcMt mRNA showed a direct and positive correlation with an increase of the plant hormone, abscisic acid (ABA) in developing pollen embryoids. Treating cultures with an inhibitor of ABA biosynthesis, fluridone, suppressed not only ABA accumulation but also the appearance of the EcMt gene transcript and the ability of microspores to form embryoids. These results suggest that the EcMt gene may act as a molecular marker for pollen embryogenesis because ABA biosynthesis is accompanied by the increased expression of the EcMt transcript that coincides with the differentiation of pollen embryoids in wheat anther cultures. PMID:8980534

  8. Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies

    PubMed Central

    Hestand, Matthew S.; Klingenhoff, Andreas; Scherf, Matthias; Ariyurek, Yavuz; Ramos, Yolande; van Workum, Wilbert; Suzuki, Makoto; Werner, Thomas; van Ommen, Gert-Jan B.; den Dunnen, Johan T.; Harbers, Matthias; 't Hoen, Peter A.C.

    2010-01-01

    Next-generation sequencing is excellently suited to evaluate the abundance of mRNAs to study gene expression. Here we compare two alternative technologies, cap analysis of gene expression (CAGE) and serial analysis of gene expression (SAGE), for the same RNA samples. Along with quantifying gene expression levels, CAGE can be used to identify tissue-specific transcription start sites, while SAGE monitors 3′-end usage. We used both methods to get more insight into the transcriptional control of myogenesis, studying differential gene expression in differentiated and proliferating C2C12 myoblast cells with statistical evaluation of reproducibility and differential gene expression. Both CAGE and SAGE provided highly reproducible data (Pearson's correlations >0.92 among biological triplicates). With both methods we found around 10 000 genes expressed at levels 2 transcripts per million (0.3 copies per cell), with an overlap of 86%. We identified 4304 and 3846 genes differentially expressed between proliferating and differentiated C2C12 cells by CAGE and SAGE, respectively, with an overlap of 2144. We identified 196 novel regulatory regions with preferential use in proliferating or differentiated cells. Next-generation sequencing of CAGE and SAGE libraries provides consistent expression levels and can enrich current genome annotations with tissue-specific promoters and alternative 3′-UTR usage. PMID:20615900

  9. Regulation of Nitrogenase Gene Expression by Transcript Stability in the Cyanobacterium Anabaena variabilis

    PubMed Central

    Pratte, Brenda S.

    2014-01-01

    The nitrogenase gene cluster in cyanobacteria has been thought to comprise multiple operons; however, in Anabaena variabilis, the promoter for the first gene in the cluster, nifB1, appeared to be the primary promoter for the entire nif cluster. The structural genes nifHDK1 were the most abundant transcripts; however, their abundance was not controlled by an independent nifH1 promoter, but rather, by RNA processing, which produced a very stable nifH1 transcript and a moderately stable nifD1 transcript. There was also no separate promoter for nifEN1. In addition to the nifB1 promoter, there were weak promoters inside the nifU1 gene and inside the nifE1 gene, and both promoters were heterocyst specific. In an xisA mutant, which effectively separated promoters upstream of an 11-kb excision element in nifD1 from the downstream genes, the internal nifE1 promoter was functional. Transcription of the nif1 genes downstream of the 11-kb element, including the most distant genes, hesAB1 and fdxH1, was reduced in the xisA mutant, indicating that the nifB1 promoter contributed to their expression. However, with the exception of nifK1 and nifE1, which had no expression, the downstream genes showed low to moderate levels of transcription in the xisA mutant. The hesA1 gene also had a promoter, but the fdxH gene had a processing site just upstream of the gene. The processing of transcripts at sites upstream of nifH1 and fdxH1 correlated with increased stability of these transcripts, resulting in greater amounts than transcripts that were not close to processing sites. PMID:25092030

  10. Regulation of nitrogenase gene expression by transcript stability in the cyanobacterium Anabaena variabilis.

    PubMed

    Pratte, Brenda S; Thiel, Teresa

    2014-10-01

    The nitrogenase gene cluster in cyanobacteria has been thought to comprise multiple operons; however, in Anabaena variabilis, the promoter for the first gene in the cluster, nifB1, appeared to be the primary promoter for the entire nif cluster. The structural genes nifHDK1 were the most abundant transcripts; however, their abundance was not controlled by an independent nifH1 promoter, but rather, by RNA processing, which produced a very stable nifH1 transcript and a moderately stable nifD1 transcript. There was also no separate promoter for nifEN1. In addition to the nifB1 promoter, there were weak promoters inside the nifU1 gene and inside the nifE1 gene, and both promoters were heterocyst specific. In an xisA mutant, which effectively separated promoters upstream of an 11-kb excision element in nifD1 from the downstream genes, the internal nifE1 promoter was functional. Transcription of the nif1 genes downstream of the 11-kb element, including the most distant genes, hesAB1 and fdxH1, was reduced in the xisA mutant, indicating that the nifB1 promoter contributed to their expression. However, with the exception of nifK1 and nifE1, which had no expression, the downstream genes showed low to moderate levels of transcription in the xisA mutant. The hesA1 gene also had a promoter, but the fdxH gene had a processing site just upstream of the gene. The processing of transcripts at sites upstream of nifH1 and fdxH1 correlated with increased stability of these transcripts, resulting in greater amounts than transcripts that were not close to processing sites. PMID:25092030

  11. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals

    PubMed Central

    Schmitt, Bianca M.; Stefflova, Klara

    2015-01-01

    To understand the evolutionary dynamics between transcription factor (TF) binding and gene expression in mammals, we compared transcriptional output and the binding intensities for three tissue-specific TFs in livers from four closely related mouse species. For each transcription factor, TF-dependent genes and the TF binding sites most likely to influence mRNA expression were identified by comparing mRNA expression levels between wild-type and TF knockout mice. Independent evolution was observed genome-wide between the rate of change in TF binding and the rate of change in mRNA expression across taxa, with the exception of a small number of TF-dependent genes. We also found that binding intensities are preferentially conserved near genes whose expression is dependent on the TF, and the conservation is shared among binding peaks in close proximity to each other near the TSS. Expression of TF-dependent genes typically showed an increased sensitivity to changes in binding levels as measured by mRNA abundance. Taken together, these results highlight a significant tolerance to evolutionary changes in TF binding intensity in mammalian transcriptional networks and suggest that some TF-dependent genes may be largely regulated by a single TF across evolution. PMID:25394363

  12. Transcription mediated insulation and interference direct gene cluster expression switches

    PubMed Central

    Nguyen, Tania; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-01-01

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change. DOI: http://dx.doi.org/10.7554/eLife.03635.001 PMID:25407679

  13. Isoform-level ribosome occupancy estimation guided by transcript abundance with Ribomap

    PubMed Central

    Wang, Hao; McManus, Joel; Kingsford, Carl

    2016-01-01

    Summary: Ribosome profiling is a recently developed high-throughput sequencing technique that captures approximately 30 bp long ribosome-protected mRNA fragments during translation. Because of alternative splicing and repetitive sequences, a ribosome-protected read may map to many places in the transcriptome, leading to discarded or arbitrary mappings when standard approaches are used. We present a technique and software that addresses this problem by assigning reads to potential origins proportional to estimated transcript abundance. This yields a more accurate estimate of ribosome profiles compared with a naïve mapping. Availability and implementation: Ribomap is available as open source at http://www.cs.cmu.edu/∼ckingsf/software/ribomap. Contact: carlk@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153676

  14. Transcriptional Regulation of Tlr11 Gene Expression in Epithelial Cells*

    PubMed Central

    Cai, Zhenyu; Shi, Zhongcheng; Sanchez, Amir; Zhang, Tingting; Liu, Mingyao; Yang, Jianghua; Wang, Fen; Zhang, Dekai

    2009-01-01

    As sensors of invading microorganisms, Toll-like receptors (TLRs) are expressed not only on macrophages and dendritic cells (DCs) but also on epithelial cells. In the TLR family, Tlr11 appears to have the unique feature in that it is expressed primarily on epithelial cells, although it is also expressed on DCs and macrophages. Here, we demonstrate that transcription of the Tlr11 gene is regulated through two cis-acting elements, one Ets-binding site and one interferon regulatory factor (IRF)-binding site. The Ets element interacts with the epithelium-specific transcription factors, ESE-1 and ESE-3, and the IRF motif interacts with IRF-8. Thus, Tlr11 expression on epithelial cells is regulated by the transcription factors that are presumably distinct from transcription factors that regulate the expression of TLRs in innate immune cells such as macrophages and DCs. Our results imply that the distinctive transcription regulatory machinery for TLRs on epithelium may represent a promising new avenue for the development of epithelia-specific therapeutic interventions. PMID:19801549

  15. Abundant Gene-by-Environment Interactions in Gene Expression Reaction Norms to Copper within Saccharomyces cerevisiae

    PubMed Central

    Hodgins-Davis, Andrea; Adomas, Aleksandra B.; Warringer, Jonas; Townsend, Jeffrey P.

    2012-01-01

    Genetic variation for plastic phenotypes potentially contributes phenotypic variation to populations that can be selected during adaptation to novel ecological contexts. However, the basis and extent of plastic variation that manifests in diverse environments remains elusive. Here, we characterize copper reaction norms for mRNA abundance among five Saccharomyces cerevisiae strains to 1) describe population variation across the full range of ecologically relevant copper concentrations, from starvation to toxicity, and 2) to test the hypothesis that plastic networks exhibit increased population variation for gene expression. We find that although the vast majority of the variation is small in magnitude (considerably <2-fold), not just some, but most genes demonstrate variable expression across environments, across genetic backgrounds, or both. Plastically expressed genes included both genes regulated directly by copper-binding transcription factors Mac1 and Ace1 and genes indirectly responding to the downstream metabolic consequences of the copper gradient, particularly genes involved in copper, iron, and sulfur homeostasis. Copper-regulated gene networks exhibited more similar behavior within the population in environments where those networks have a large impact on fitness. Nevertheless, expression variation in genes like Cup1, important to surviving copper stress, was linked with variation in mitotic fitness and in the breadth of differential expression across the genome. By revealing a broader and deeper range of population variation, our results provide further evidence for the interconnectedness of genome-wide mRNA levels, their dependence on environmental context and genetic background, and the abundance of variation in gene expression that can contribute to future evolution. PMID:23019066

  16. Epigenetic Regulation of Polymerase II Transcription Initiation in Trypanosoma cruzi: Modulation of Nucleosome Abundance, Histone Modification, and Polymerase Occupancy by O-Linked Thymine DNA Glucosylation▿ †

    PubMed Central

    Ekanayake, Dilrukshi; Sabatini, Robert

    2011-01-01

    Very little is understood regarding how transcription is initiated/regulated in the early-diverging eukaryote Trypanosoma cruzi. Unusually for a eukaryote, genes transcribed by RNA polymerase (Pol) II in T. cruzi are arranged in polycistronic transcription units (PTUs). On the basis of this gene organization, it was previously thought that trypanosomes rely solely on posttranscriptional processes to regulate gene expression. We recently localized a novel glucosylated thymine DNA base, called base J, to potential promoter regions of PTUs throughout the trypanosome genome. Loss of base J, following the deletion of JBP1, a thymidine hydroxylase involved with synthesis, led to a global increase in the Pol II transcription rate and gene expression. In order to determine the mechanism by which base J regulates transcription, we have characterized changes in chromatin structure and Pol II recruitment to promoter regions following the loss of base J. The loss of base J coincides with a decrease in nucleosome abundance, increased histone H3/H4 acetylation, and increased Pol II occupancy at promoter regions, including the well-characterized spliced leader RNA gene promoter. These studies present the first direct evidence for epigenetic regulation of Pol II transcription initiation via DNA modification and chromatin structure in kinetoplastids as well as provide a mechanism for regulation of trypanosome gene expression via the novel hypermodified base J. PMID:21926332

  17. Expression and Stress-Dependent Induction of Potassium Channel Transcripts in the Common Ice Plant1

    PubMed Central

    Su, Hua; Golldack, Dortje; Katsuhara, Maki; Zhao, Chengsong; Bohnert, Hans J.

    2001-01-01

    We have characterized transcripts for three potassium channel homologs in the AKT/KAT subfamily (Shaker type) from the common ice plant (Mesembryanthemum crystallinum), with a focus on their expression during salt stress (up to 500 mm NaCl). Mkt1 and 2, Arabidopsis AKT homologs, and Kmt1, a KAT homolog, are members of small gene families with two to three isoforms each. Mkt1 is root specific; Mkt2 is found in leaves, flowers, and seed capsules; and Kmt1 is expressed in leaves and seed capsules. Mkt1 is present in all cells of the root, and in leaves a highly conserved isoform is detected present in all cells with highest abundance in the vasculature. MKT1 for which antibodies were made is localized to the plasma membrane. Following salt stress, MKT1 (transcripts and protein) is drastically down-regulated, Mkt2 transcripts do not change significantly, and Kmt1 is strongly and transiently (maximum at 6 h) up-regulated in leaves and stems. The detection and stress-dependent behavior of abundant transcripts representing subfamilies of potassium channels provides information about tissue specificity and the complex regulation of genes encoding potassium uptake systems in a halophytic plant. PMID:11161018

  18. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; Stieve-Caldwell, E.

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.

  19. Transcriptional regulation of chemokine expression in ovarian cancer.

    PubMed

    Singha, Bipradeb; Gatla, Himavanth R; Vancurova, Ivana

    2015-01-01

    The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies. PMID:25790431

  20. Transcriptional effects of CRP* expression in Escherichia coli

    PubMed Central

    Khankal, Reza; Chin, Jonathan W; Ghosh, Debashis; Cirino, Patrick C

    2009-01-01

    Background Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) enables co-utilization of glucose and other sugars in E. coli. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression. In this study, we compare the transcriptome of E. coli W3110 (expressing wild-type CRP) to that of mutant strain PC05 (expressing CRP*) in the presence and absence of glucose. Results The glucose effect is significantly suppressed in strain PC05 relative to strain W3110. The expression levels of glucose-sensitive genes are generally not altered by glucose to the same extent in strain PCO5 as compared to W3110. Only 23 of the 80 genes showing significant differential expression in the presence of glucose for strain PC05 are present among the 418 genes believed to be directly regulated by CRP. Genes involved in central carbon metabolism (including several TCA cycle genes) and amino acid biosynthesis, as well as genes encoding nutrient transport systems are among those whose transcript levels are most significantly affected by CRP* expression. We present a detailed transcription analysis and relate these results to phenotypic differences between strains expressing wild-type CRP and CRP*. Notably, CRP* expression in the presence of glucose results in an elevated intracellular NADPH concentration and reduced NADH concentration relative to wild-type CRP. Meanwhile, a more drastic decrease in the NADPH/NADP+ ratio is observed for the case of CRP* expression in strains engineered to reduce xylose to xylitol via a heterologously expressed, NADPH-dependent xylose reductase. Altered expression levels of transhydrogenase and TCA cycle genes

  1. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators

    PubMed Central

    Sun, Jian; Rockowitz, Shira; Chauss, Daniel; Wang, Ping; Kantorow, Marc; Zheng, Deyou

    2015-01-01

    Purpose Gene expression correlates with local chromatin structure. Our studies have mapped histone post-translational modifications, RNA polymerase II (pol II), and transcription factor Pax6 in lens chromatin. These data represent the first genome-wide insights into the relationship between lens chromatin structure and lens transcriptomes and serve as an excellent source for additional data analysis and refinement. The principal lens proteins, the crystallins, are encoded by predominantly expressed mRNAs; however, the regulatory mechanisms underlying their high expression in the lens remain poorly understood. Methods The formaldehyde-assisted identification of regulatory regions (FAIRE-Seq) was employed to analyze newborn lens chromatin. ChIP-seq and RNA-seq data published earlier (GSE66961) have been used to assist in FAIRE-seq data interpretation. RNA transcriptomes from murine lens epithelium, lens fibers, erythrocytes, forebrain, liver, neurons, and pancreas were compared to establish the gene expression levels of the most abundant mRNAs versus median gene expression across other differentiated cells. Results Normalized RNA expression data from multiple tissues show that crystallins rank among the most highly expressed genes in mammalian cells. These findings correlate with the extremely high abundance of pol II all across the crystallin loci, including crystallin genes clustered on chromosomes 1 and 5, as well as within regions of “open” chromatin, as identified by FAIRE-seq. The expression levels of mRNAs encoding DNA-binding transcription factors (e.g., Foxe3, Hsf4, Maf, Pax6, Prox1, Sox1, and Tfap2a) revealed that their transcripts form “clusters” of abundant mRNAs in either lens fibers or lens epithelium. The expression of three autophagy regulatory mRNAs, encoding Tfeb, FoxO1, and Hif1α, was found within a group of lens preferentially expressed transcription factors compared to the E12.5 forebrain. Conclusions This study reveals novel features of

  2. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  3. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and Other Transcription Factors Are Involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 Expression1[OPEN

    PubMed Central

    Tokizawa, Mutsutomo; Kobayashi, Yuriko; Saito, Tatsunori; Kobayashi, Masatomo; Iuchi, Satoshi; Nomoto, Mika; Tada, Yasuomi; Yamamoto, Yoshiharu Y.; Koyama, Hiroyuki

    2015-01-01

    In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5′ truncated promoters of different lengths showed that the promoter region between –540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around –297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5′ untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression. PMID:25627216

  4. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, iso-osmotic salinity (120 mM NaCl, 12mM CaCl2) and osmotic (PEG) stresses, along with chilling (5oC) stress, were applied to the cold-sensitive grapevine species V. vinifera cv. Cabernet Sauvignon. Microarray analysis of transcript abundance in shoot tips revealed that 43% of gene exp...

  5. Identification and characterization of jute LTR retrotransposons:: Their abundance, heterogeneity and transcriptional activity.

    PubMed

    Ahmed, Salim; Shafiuddin, Md; Azam, Muhammad Shafiul; Islam, Md Shahidul; Ghosh, Ajit; Khan, Haseena

    2011-05-01

    Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842

  6. Knock-down of transcript abundance of a family of Kunitz proteinase inhibitor genes in white clover (Trifolium repens) reveals a redundancy and diversity of gene function.

    PubMed

    Islam, Afsana; Leung, Susanna; Burgess, Elisabeth P J; Laing, William A; Richardson, Kim A; Hofmann, Rainer W; Dijkwel, Paul P; McManus, Michael T

    2015-12-01

    The transcriptional regulation of four phylogenetically distinct members of a family of Kunitz proteinase inhibitor (KPI) genes isolated from white clover (Trifolium repens; designated Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5) has been investigated to determine their wider functional role. The four genes displayed differential transcription during seed germination, and in different tissues of the mature plant, and transcription was also ontogenetically regulated. Heterologous over-expression of Tr-KPI1, Tr-KPI2, Tr-KPI4 and Tr-KPI5 in Nicotiana tabacum retarded larval growth of the herbivore Spodoptera litura, and an increase in the transcription of the pathogenesis-related genes PR1 and PR4 was observed in the Tr-KPI1 and Tr-KPI4 over-expressing lines. RNA interference (RNAi) knock-down lines in white clover displayed significantly altered vegetative growth phenotypes with inhibition of shoot growth and a stimulation of root growth, while knock-down of Tr-KPI1, Tr-KPI2 and Tr-KPI5 transcript abundance also retarded larval growth of S. litura. Examination of these RNAi lines revealed constitutive stress-associated phenotypes as well as altered transcription of cellular signalling genes. These results reveal a functional redundancy across members of the KPI gene family. Further, the regulation of transcription of at least one member of the family, Tr-KPI2, may occupy a central role in the maintenance of a cellular homeostasis. PMID:26377591

  7. PAPILLOMAVIRUS GENOME STRUCTURE, EXPRESSION, AND POST-TRANSCRIPTIONAL REGULATION

    PubMed Central

    Zheng, Zhi-Ming; Baker, Carl C.

    2006-01-01

    Papillomaviruses are a group of small non-enveloped DNA tumor viruses whose infection usually causes benign epithelial lesions (warts). Certain types of HPVs, such as HPV-16, HPV-18, and HPV-31, have been recognized as causative agents of cervical cancer and anal cancer and their infections, which arise via sexual transmission, are associated with more than 95% of cervical cancer. Papillomaviruses infect keratinocytes in the basal layer of stratified squamous epithelia and replicate in the nucleus of infected keratinocytes in a differentiation-dependent manner. Viral gene expression in infected cells depends on cell differentiation and is tightly regulated at the transcriptional and post-transcriptional levels. A noteworthy feature of all papillomavirus transcripts is that they are transcribed as a bicistronic or polycistronic form containing two or more ORFs and are polyadenylated at either an early or late poly(A) site. In the past ten years, remarkable progress has been made in understanding how this complex viral gene expression is regulated at the level of transcription (such as via DNA methylation) and particularly post-transcription (including RNA splicing, polyadenylation, and translation). Current knowledge of papillomavirus mRNA structure and RNA processing has provided some clues on how to control viral oncogene expression. However, we still have little knowledge about which mRNAs are used to translate each viral protein. Continuing research on post-transcriptional regulation of papillomavirus infection will remain as a future focus to provide more insights into papillomavirus-host interactions, the virus life-cycle, and viral oncogenesis. PMID:16720315

  8. Abundance, transcription levels and phylogeny of bacteria capable of nitrous oxide reduction in a municipal wastewater treatment plant.

    PubMed

    Song, Kang; Suenaga, Toshikazu; Hamamoto, Aki; Satou, Kouichi; Riya, Shohei; Hosomi, Masaaki; Terada, Akihiko

    2014-09-01

    Nitrous oxide (N2O) production and expression of genes capable of its reduction were investigated in two full-scale parallel plug-flow activated sludge systems. These two systems continuously received wastewater with the same constituents, but operated under distinct nitrification efficiencies due to mixed liquor suspended solid (MLSS) concentration and the different hydraulic retention times (HRTs). A shorter HRT in system 2 resulted in a lower nitrification efficiency (40-60%) in conjunction with a high N2O emission (50.6 mg-N/L/day), whereas there was a higher nitrification efficiency (>99%) in system 1 with low N2O emission (22.6 mg-N/L/day). The DNA abundance of functional genes responsible for nitrification and denitrification were comparable in both systems, but transcription of nosZ mRNA in the lower N2O emission system (system 1) was one order of magnitude higher than that in the higher N2O emission system (system 2). The diversity and evenness of the nosZ gene were nearly identical; however, the predominant N2O reducing bacteria were phylogenetically distinct. Phylogenetic analysis indicated that N2O-reducing strains only retrieved in system 1 were close to the genera Rhodobacter, Oligotropha and Shinella, whereas they were close to the genera Mesorhizobium only in system 2. The distinct predominant N2O reducers may directly or indirectly influence N2O emissions. PMID:24725963

  9. Post-Transcriptional Control of Chloroplast Gene Expression

    PubMed Central

    del Campo, Eva M.

    2009-01-01

    Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts. PMID:19838333

  10. Spatial expression of transcription factors in Drosophila embryonic organ development

    PubMed Central

    2013-01-01

    Background Site-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown. Results We present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study. Conclusions We produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system. PMID:24359758

  11. Protective immune responses to biolistic DNA vaccination of Brugia malayi abundant larval transcript-2.

    PubMed

    Joseph, S K; Sambanthamoorthy, S; Dakshinamoorthy, G; Munirathinam, G; Ramaswamy, K

    2012-10-01

    Biolistic vaccination using gene gun is developed as a safer tool for delivery of DNA vaccines, a technique that combines high vaccine efficiency with lower antigen dosage and lower cost per vaccine dose. In this study, we compared the protective responses in mice after delivering the Brugia malayi abundant larval transcript-2 (BmALT-2) DNA vaccine using the conventional intradermal approach or with the needleless gene gun delivery approach. BmALT-2 is a leading vaccine candidate against B. malayi, a lymphatic filarial parasite of human. After optimizing the DNA dose and gene gun parameters for delivery into mouse skin, groups of mice were biolistically vaccinated with 5 μg of BmALT-2pVAX. Groups of mice vaccinated intradermally with 5 μg or 100 μg of BmALT-2pVAX was used for comparison of vaccine efficacy. Results demonstrated that gene gun vaccination with 5 μg of BmALT-2pVAX conferred significant protection against challenge infection that was comparable to the degree of protection conferred by intradermal vaccination with 100 μg of BmALT-2pVAX. This observation was further supported by an in vitro antibody dependent cellular cytotoxicity (ADCC) assay. Analysis of the immune response showed that the gene gun vaccination predominantly induced an IgG1 antibody response and significantly high Th2 cytokine response (IL-4) from spleen cells compared to intradermal BmALT-2 DNA delivery that induced predominantly an IgG2a and Th1 cytokine response (IFN-γ, IL-12 and TNF-α). These findings show that host protective responses could be achieved with 20 fold decrease in DNA dose using a gene gun and could prove to be an efficient delivery method in BmALT-2 DNA vaccination against lymphatic filariasis. PMID:22885273

  12. Characterization of GPR101 transcript structure and expression patterns.

    PubMed

    Trivellin, Giampaolo; Bjelobaba, Ivana; Daly, Adrian F; Larco, Darwin O; Palmeira, Leonor; Faucz, Fabio R; Thiry, Albert; Leal, Letícia F; Rostomyan, Liliya; Quezado, Martha; Schernthaner-Reiter, Marie Helene; Janjic, Marija M; Villa, Chiara; Wu, T John; Stojilkovic, Stanko S; Beckers, Albert; Feldman, Benjamin; Stratakis, Constantine A

    2016-08-01

    We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. In this work, GPR101 transcripts were characterized in human tissues by 5'-Rapid Amplification of cDNA Ends (RACE) and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-quantitative PCR (qPCR), whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat and zebrafish. We identified four GPR101 isoforms characterized by different 5'-untranslated regions (UTRs) and a common 6.1kb long 3'UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult monkey and rat pituitaries expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary, Gpr101 is expressed only after birth and shows sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species. PMID:27282544

  13. ERalpha suppresses slug expression directly by transcriptional repression.

    PubMed

    Ye, Yin; Xiao, Yi; Wang, Wenting; Yearsley, Kurtis; Gao, Jian-Xin; Barsky, Sanford H

    2008-12-01

    Two of the most common signalling pathways in breast cancer are the ER (oestrogen receptor) ligand activation pathway and the E-cadherin snai1 slug EMT (epithelial-mesenchymal transition) pathway. Although these pathways have been thought to interact indirectly, the present study is the first to observe direct interactions between these pathways that involves the regulation of slug expression. Specifically we report that ligand-activated ERalpha suppressed slug expression directly by repression of transcription and that knockdown of ERalpha with RNA interference increased slug expression. More specifically, slug expression was down-regulated in ERalpha-negative MDA-MB-468 cells transfected with ERalpha after treatment with E2 (17beta-oestradiol). The down-regulation of slug in the ERalpha-positive MCF-7 cell line was mediated by direct repression of slug transcription by the formation of a co-repressor complex involving ligand-activated ERalpha protein, HDAC1 (histone deacetylase 1) and N-CoR (nuclear receptor co-repressor). This finding was confirmed by sequential ChIP (chromatin immunoprecipitation) studies. In the MCF-7 cell line, slug expression normally was low. In addition, knockdown of ERalpha with RNA interference in this cell line increased slug expression. This effect could be partially reversed by treatment of the cells with E2. The efficacy of the effect of ERalpha on slug repression was dependent on the overall level of ERalpha. These observations confirmed that slug was an E2-responsive gene. PMID:18588516

  14. Transcriptional regulation of IGF-I expression in skeletal muscle

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.

    2003-01-01

    The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

  15. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo.

    PubMed

    Marcinowski, Lisa; Tanguy, Mélanie; Krmpotic, Astrid; Rädle, Bernd; Lisnić, Vanda J; Tuddenham, Lee; Chane-Woon-Ming, Béatrice; Ruzsics, Zsolt; Erhard, Florian; Benkartek, Corinna; Babic, Marina; Zimmer, Ralf; Trgovcich, Joanne; Koszinowski, Ulrich H; Jonjic, Stipan; Pfeffer, Sébastien; Dölken, Lars

    2012-02-01

    Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3'-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3'-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3'-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo. PMID:22346748

  16. Ribonucleic Acid Synthesis in Cells Infected with Herpes Simplex Virus: Controls of Transcription and of RNA Abundance*

    PubMed Central

    Frenkel, Niza; Roizman, Bernard

    1972-01-01

    Analysis of the kinetics of hybridization in liquid of labeled herpes simplex virus-1 DNA and excess viral RNA revealed the following: (i) Cells infected by herpes simplex virus-1 for 2 hr (before DNA synthesis) contain two classes of RNA molecules differing 140-fold in molar concentrations. The abundant and scarce RNAs are transcribed from 14 and 30% of the DNA, respectively. RNA extracted at 8 hr after infection (late RNA) also contains abundant and scarce classes differing 40-fold in molar concentrations; these are transcribed from 19 and 28% of viral DNA, respectively. Abundance competition hybridization tests indicate that the abundant RNA at 2 hr is a subset of the 8-hr abundant RNA. (ii) The abundant RNAs probably specify structural proteins, as indicated by estimates of DNA template required for structural proteins and by experiments showing that 19 of 24 proteins (corresponding to 68% of genetic information for structural proteins) are already made between 0.5 and 2 hr after infection. We conclude that there are two types of transcriptional controls, i.e., on-off and abundance controls, and that the synthesis of most structural components is an early viral function. PMID:4341703

  17. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription

    PubMed Central

    Ahmed, Wareed; Menon, Shruti; D. N. B. Karthik, Pullela V.; Nagaraja, Valakunja

    2016-01-01

    The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobacterium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of sub-optimal spacing between the −35 and −10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the −35 and −10 elements to facilitate the optimal transcription of topoI. PMID:26496944

  18. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch.

    PubMed

    Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance. PMID

  19. Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch

    PubMed Central

    Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi

    2015-01-01

    Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance. PMID

  20. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.

    PubMed

    Nicol, Graeme W; Leininger, Sven; Schleper, Christa; Prosser, James I

    2008-11-01

    Autotrophic ammonia oxidation occurs in acid soils, even though laboratory cultures of isolated ammonia oxidizing bacteria fail to grow below neutral pH. To investigate whether archaea possessing ammonia monooxygenase genes were responsible for autotrophic nitrification in acid soils, the community structure and phylogeny of ammonia oxidizing bacteria and archaea were determined across a soil pH gradient (4.9-7.5) by amplifying 16S rRNA and amoA genes followed by denaturing gradient gel electrophoresis (DGGE) and sequence analysis. The structure of both communities changed with soil pH, with distinct populations in acid and neutral soils. Phylogenetic reconstructions of crenarchaeal 16S rRNA and amoA genes confirmed selection of distinct lineages within the pH gradient and high similarity in phylogenies indicated a high level of congruence between 16S rRNA and amoA genes. The abundance of archaeal and bacterial amoA gene copies and mRNA transcripts contrasted across the pH gradient. Archaeal amoA gene and transcript abundance decreased with increasing soil pH, while bacterial amoA gene abundance was generally lower and transcripts increased with increasing pH. Short-term activity was investigated by DGGE analysis of gene transcripts in microcosms containing acidic or neutral soil or mixed soil with pH readjusted to that of native soils. Although mixed soil microcosms contained identical archaeal ammonia oxidizer communities, those adapted to acidic or neutral pH ranges showed greater relative activity at their native soil pH. Findings indicate that different bacterial and archaeal ammonia oxidizer phylotypes are selected in soils of different pH and that these differences in community structure and abundances are reflected in different contributions to ammonia oxidizer activity. They also suggest that both groups of ammonia oxidizers have distinct physiological characteristics and ecological niches, with consequences for nitrification in acid soils. PMID:18707610

  1. Fast and accurate approximate inference of transcript expression from RNA-seq data

    PubMed Central

    Hensman, James; Papastamoulis, Panagiotis; Glaus, Peter; Honkela, Antti; Rattray, Magnus

    2015-01-01

    Motivation: Assigning RNA-seq reads to their transcript of origin is a fundamental task in transcript expression estimation. Where ambiguities in assignments exist due to transcripts sharing sequence, e.g. alternative isoforms or alleles, the problem can be solved through probabilistic inference. Bayesian methods have been shown to provide accurate transcript abundance estimates compared with competing methods. However, exact Bayesian inference is intractable and approximate methods such as Markov chain Monte Carlo and Variational Bayes (VB) are typically used. While providing a high degree of accuracy and modelling flexibility, standard implementations can be prohibitively slow for large datasets and complex transcriptome annotations. Results: We propose a novel approximate inference scheme based on VB and apply it to an existing model of transcript expression inference from RNA-seq data. Recent advances in VB algorithmics are used to improve the convergence of the algorithm beyond the standard Variational Bayes Expectation Maximization algorithm. We apply our algorithm to simulated and biological datasets, demonstrating a significant increase in speed with only very small loss in accuracy of expression level estimation. We carry out a comparative study against seven popular alternative methods and demonstrate that our new algorithm provides excellent accuracy and inter-replicate consistency while remaining competitive in computation time. Availability and implementation: The methods were implemented in R and C++, and are available as part of the BitSeq project at github.com/BitSeq. The method is also available through the BitSeq Bioconductor package. The source code to reproduce all simulation results can be accessed via github.com/BitSeq/BitSeqVB_benchmarking. Contact: james.hensman@sheffield.ac.uk or panagiotis.papastamoulis@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online

  2. Expression of hematopoietic transcription factors Runt, CBFβ and GATA during ontogenesis of scallop Chlamys farreri.

    PubMed

    Yue, Feng; Wang, Lingling; Wang, Hao; Song, Linsheng

    2016-08-01

    Transcription factors Runx1, CBFβ and GATA1/2/3 play essential roles in regulating hematopoietic development during embryogenesis of vertebrate. In previous study, the orthologous genes of Runt, CBFβ and GATA1/2/3 have been identified from scallop Chlamys farreri and proved to have conserved function in regulating hemocyte production. Here, these three transcription factors were selected as hematopoietic markers to explore potential developmental events of hematopoiesis during ontogenesis of scallop. The transcripts of CfRunt, CfCBFβ and CfGATA were detected abundantly after 32-cell embryo, trochophore and morula stage, and reached to a peak level in 32-cell embryos and D-shaped veligers, pediveligers or gastrula respectively. Further whole-mount immunofluorescence assay showed that the immunoreactivity of CfRunt was firstly observed at 32-cell stage and then its distribution was specialized gradually to the mesoderm during gastrulation. By trochophore, the expression of CfRunt, CfCBFβ and CfGATA proteins occurred coincidently in two specific symmetry cell mass located bilaterally on prototroch, and then disappeared rapidly in D-shaped or umbonal vliger, respectively. However, remarkable expressions of the three transcription factors were observed consistently in a new sinus structure appeared at the dorsal anterior side of D-shaped and umbonal veliger. After bacterial challenge, the mRNA expression levels of the three transcription factors were up-regulated or down-regulated significantly in trochophore, D-shaped veliger and pediveliger, indicating the available hematopoietic regulation in scallop larvae. The results revealed that scallop might experience two waves of hematopoiesis during early development, which occurred in the bilateral symmetry cell mass of trochophore and the sinus structure of veliger. PMID:27012994

  3. The transcriptional repressor DREAM is involved in thyroid gene expression

    SciTech Connect

    D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna; Motti, Maria Letizia; Viglietto, Giuseppe; Nitsch, Lucio; Zannini, Mariastella . E-mail: stella@szn.it

    2005-04-15

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds to DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca{sup 2+} interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function.

  4. Calcium regulates caveolin-1 expression at the transcriptional level

    SciTech Connect

    Yang, Xiao-Yan; Huang, Cheng-Cheng; Kan, Qi-Ming; Li, Yan; Liu, Dan; Zhang, Xue-Cheng; Sato, Toshinori; Yamagata, Sadako; Yamagata, Tatsuya

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer Caveolin-1 expression is regulated by calcium signaling at the transcriptional level. Black-Right-Pointing-Pointer An inhibitor of or siRNA to L-type calcium channel suppressed caveolin-1 expression. Black-Right-Pointing-Pointer Cyclosporine A or an NFAT inhibitor markedly reduced caveolin-1 expression. Black-Right-Pointing-Pointer Caveolin-1 regulation by calcium signaling is observed in several mouse cell lines. -- Abstract: Caveolin-1, an indispensable component of caveolae serving as a transformation suppressor protein, is highly expressed in poorly metastatic mouse osteosarcoma FBJ-S1 cells while highly metastatic FBJ-LL cells express low levels of caveolin-1. Calcium concentration is higher in FBJ-S1 cells than in FBJ-LL cells; therefore, we investigated the possibility that calcium signaling positively regulates caveolin-1 in mouse FBJ-S1 cells. When cells were treated with the calcium channel blocker nifedipine, cyclosporin A (a calcineurin inhibitor), or INCA-6 (a nuclear factor of activated T-cells [NFAT] inhibitor), caveolin-1 expression at the mRNA and protein levels decreased. RNA silencing of voltage-dependent L-type calcium channel subunit alpha-1C resulted in suppression of caveolin-1 expression. This novel caveolin-1 regulation pathway was also identified in mouse NIH 3T3 cells and Lewis lung carcinoma cells. These results indicate that caveolin-1 is positively regulated at the transcriptional level through a novel calcium signaling pathway mediated by L-type calcium channel/Ca{sup 2+}/calcineurin/NFAT.

  5. Gene Expression Quantitative Trait Locus Analysis of 16,000 Barley Genes Reveals a Complex Pattern of Genome-wide Transcriptional Regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcript abundance data from cRNA hybridizations to Affymetrix microarrays can be used for simultaneous marker development and genome-wide eQTL (expression Quantitative Trait Loci) analysis of crops. We have shown that it is easily possible to use the information from Affymetrix expression arrays ...

  6. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.

    PubMed

    Pertea, Mihaela; Kim, Daehwan; Pertea, Geo M; Leek, Jeffrey T; Salzberg, Steven L

    2016-09-01

    High-throughput sequencing of mRNA (RNA-seq) has become the standard method for measuring and comparing the levels of gene expression in a wide variety of species and conditions. RNA-seq experiments generate very large, complex data sets that demand fast, accurate and flexible software to reduce the raw read data to comprehensible results. HISAT (hierarchical indexing for spliced alignment of transcripts), StringTie and Ballgown are free, open-source software tools for comprehensive analysis of RNA-seq experiments. Together, they allow scientists to align reads to a genome, assemble transcripts including novel splice variants, compute the abundance of these transcripts in each sample and compare experiments to identify differentially expressed genes and transcripts. This protocol describes all the steps necessary to process a large set of raw sequencing reads and create lists of gene transcripts, expression levels, and differentially expressed genes and transcripts. The protocol's execution time depends on the computing resources, but it typically takes under 45 min of computer time. HISAT, StringTie and Ballgown are available from http://ccb.jhu.edu/software.shtml. PMID:27560171

  7. An Aquaglyceroporin Is Abundantly Expressed Early in the Development of the Suspensor and the Embryo Proper of Loblolly Pine1

    PubMed Central

    Ciavatta, Vincent T.; Morillon, Raphael; Pullman, Gerald S.; Chrispeels, Maarten J.; Cairney, John

    2001-01-01

    In contrast to angiosperms, pines and other gymnosperms form well-developed suspensors in somatic embryogenic cultures. This creates a useful system to study suspensor biology. In a study of gene expression during the early stages of conifer embryogenesis, we identified a transcript, PtNIP1;1, that is abundant in immature loblolly pine (Pinus taeda) zygotic and somatic embryos, but is undetectable in later-stage embryos, megagametophytes, and roots, stems, and needles from 1 year-old seedlings. Analysis of PtNIP1;1 transcript in embryo proper and suspensor tissues by reverse transcription-polymerase chain reaction suggests preferential expression in the suspensor. Based on comparisons of derived amino acid sequences, PtNIP1;1 belongs to the nodulin-like members of the major intrinsic protein superfamily branch of the aquaporin (major intrinsic protein) superfamily. Through heterologous expression in Xenopus laevis oocytes and the yeast (Saccharomyces cerevisiae) fps1− mutant, PtNIP1;1 has been shown to be an active aquaglyceroporin. PMID:11743100

  8. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Jung, Hee-Jeong; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Jong-Goo; Nou, Ill-Sup

    2015-07-01

    BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops. PMID:25931321

  9. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling

    PubMed Central

    2014-01-01

    Background Sorghum is an important cereal crop, which requires large quantities of nitrogen fertilizer for achieving commercial yields. Identification of the genes responsible for low-N tolerance in sorghum will facilitate understanding of the molecular mechanisms of low-N tolerance, and also facilitate the genetic improvement of sorghum through marker-assisted selection or gene transformation. In this study we compared the transcriptomes of root tissues from seven sorghum genotypes having differential response to low-N stress. Results Illumina RNA-sequencing detected several common differentially expressed genes (DEGs) between four low-N tolerant sorghum genotypes (San Chi San, China17, KS78 and high-NUE bulk) and three sensitive genotypes (CK60, BTx623 and low-NUE bulk). In sensitive genotypes, N-stress increased the abundance of DEG transcripts associated with stress responses including oxidative stress and stimuli were abundant. The tolerant genotypes adapt to N deficiency by producing greater root mass for efficient uptake of nutrients. In tolerant genotypes, higher abundance of transcripts related to high affinity nitrate transporters (NRT2.2, NRT2.3, NRT2.5, and NRT2.6) and lysine histidine transporter 1 (LHT1), may suggest an improved uptake efficiency of inorganic and organic forms of nitrogen. Higher abundance of SEC14 cytosolic factor family protein transcript in tolerant genotypes could lead to increased membrane stability and tolerance to N-stress. Conclusions Comparison of transcriptomes between N-stress tolerant and sensitive genotypes revealed several common DEG transcripts. Some of these DEGs were evaluated further by comparing the transcriptomes of genotypes grown under full N. The DEG transcripts showed higher expression in tolerant genotypes could be used for transgenic over-expression in sensitive genotypes of sorghum and related crops for increased tolerance to N-stress, which results in increased nitrogen use efficiency for sustainable

  10. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough

    PubMed Central

    Holmes, Rebecca K.; Tuck, Alex C.; Zhu, Chenchen; Dunn-Davies, Hywel R.; Kudla, Grzegorz; Clauder-Munster, Sandra; Granneman, Sander; Steinmetz, Lars M.; Guthrie, Christine; Tollervey, David

    2015-01-01

    Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3’ end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3’ end formation. Tiling arrays and RNAPII mapping data revealed 3’ extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. PMID:26694144

  11. Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough.

    PubMed

    Holmes, Rebecca K; Tuck, Alex C; Zhu, Chenchen; Dunn-Davies, Hywel R; Kudla, Grzegorz; Clauder-Munster, Sandra; Granneman, Sander; Steinmetz, Lars M; Guthrie, Christine; Tollervey, David

    2015-12-01

    Yeast Npl3 is a highly abundant, nuclear-cytoplasmic shuttling, RNA-binding protein, related to metazoan SR proteins. Reported functions of Npl3 include transcription elongation, splicing and RNA 3' end processing. We used UV crosslinking and analysis of cDNA (CRAC) to map precise RNA binding sites, and strand-specific tiling arrays to look at the effects of loss of Npl3 on all transcripts across the genome. We found that Npl3 binds diverse RNA species, both coding and non-coding, at sites indicative of roles in both early pre-mRNA processing and 3' end formation. Tiling arrays and RNAPII mapping data revealed 3' extended RNAPII-transcribed RNAs in the absence of Npl3, suggesting that defects in pre-mRNA packaging events result in termination readthrough. Transcription readthrough was widespread and frequently resulted in down-regulation of neighboring genes. We conclude that the absence of Npl3 results in widespread 3' extension of transcripts with pervasive effects on gene expression. PMID:26694144

  12. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  13. Heterologous expression of the transcriptional regulator escargot inhibits megakaryocytic endomitosis.

    PubMed

    Ballester, A; Frampton, J; Vilaboa, N; Calés, C

    2001-11-16

    Certain cell types escape the strict mechanisms imposed on the majority of somatic cells to ensure the faithful inheritance of parental DNA content. This is the case in many embryonic tissues and certain adult cells such as mammalian hepatocytes and megakaryocytes. Megakaryocytic endomitosis is characterized by repeated S phases followed by abortive mitoses, resulting in mononucleated polyploid cells. Several cell cycle regulators have been proposed to play an active role in megakaryocytic polyploidization; however, little is known about upstream factors that could control endomitosis. Here we show that ectopic expression of the transcriptional repressor escargot interferes with the establishment of megakaryocytic endomitosis. Phorbol ester-induced polyploidization was inhibited in stably transfected megakaryoblastic HEL cells constitutively expressing escargot. Analysis of the expression and activity of different cell cycle factors revealed that Escargot affects the G(1)/S transition by influencing Cdk2 activity and cyclin A transcription. Nuclear proteins that specifically bind the Escargot-binding element were detected in endomitotic and non-endomitotic megakaryoblastic cells, but down-regulation occurred only during differentiation of cells that become polyploid. As Escargot was originally implicated in ploidy maintenance of Drosophila embryonic and larval cells, our results suggest that polyploidization in megakaryocytes might respond to mechanisms conserved from early development to adult cells that need to escape normal control of the diploid state. PMID:11498537

  14. Non-Equilibrium Thermodynamics of Gene Expression and Transcriptional Regulation

    NASA Astrophysics Data System (ADS)

    Lemus, Enrique Hernández

    2009-12-01

    In recent times whole-genome gene expression analysis has turned out to be a highly important tool to study the coordinated function of a very large number of genes within their corresponding cellular environment, especially in relation to phenotypic diversity and disease. A wide variety of methods of quantitative analysis has been developed to cope with high throughput data sets generated by gene expression profiling experiments. Due to the complexity associated with transcriptomics, especially in the case of gene regulation phenomena, most of these methods are of a probabilistic or statistical nature. Even if these methods have reached a central status in the development of an integrative, systematic understanding of the associated biological processes, they very rarely constitute a concrete guide to the actual physicochemical mechanisms behind biological function, and the role of these methods is more on a hypotheses generating line. An important improvement could lie in the development of a thermodynamic theory for gene expression and transcriptional regulation that will build the foundations for a proper integration of the vast amount of molecular biophysical data and could lead, in the future, to a systemic view of genetic transcription and regulation.

  15. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea.

    PubMed

    Moitinho-Silva, Lucas; Bayer, Kristina; Cannistraci, Carlo V; Giles, Emily C; Ryu, Taewoo; Seridi, Loqmane; Ravasi, Timothy; Hentschel, Ute

    2014-03-01

    Marine sponges are generally classified as high microbial abundance (HMA) and low microbial abundance (LMA) species. Here, 16S rRNA amplicon sequencing was applied to investigate the diversity, specificity and transcriptional activity of microbes associated with an LMA sponge (Stylissa carteri), an HMA sponge (Xestospongia testudinaria) and sea water collected from the central Saudi Arabia coast of the Red Sea. Altogether, 887 068 denoised sequences were obtained, of which 806 661 sequences remained after quality control. This resulted in 1477 operational taxonomic units (OTUs) that were assigned to 27 microbial phyla. The microbial composition of S. carteri was more similar to that of sea water than to that of X. testudinaria, which is consistent with the observation that the sequence data set of S. carteri contained many more possibly sea water sequences (~24%) than the X. testudinaria data set (~6%). The most abundant OTUs were shared between all three sources (S. carteri, X. testudinaria, sea water), while rare OTUs were unique to any given source. Despite this high degree of overlap, each sponge species contained its own specific microbiota. The X. testudinaria-specific bacterial taxa were similar to those already described for this species. A set of S. carteri-specific bacterial taxa related to Proteobacteria and Nitrospira was identified, which are likely permanently associated with S. carteri. The transcriptional activity of sponge-associated microorganisms correlated well with their abundance. Quantitative PCR revealed the presence of Poribacteria, representing typical sponge symbionts, in both sponge species and in sea water; however, low transcriptional activity in sea water suggested that Poribacteria are not active outside the host context. PMID:23957633

  16. Protein-coding cis-natural antisense transcripts have high and broad expression in Arabidopsis.

    PubMed

    Zhan, Shuhua; Lukens, Lewis

    2013-04-01

    Pairs of genes within eukaryotic genomes are often located on opposite DNA strands such that transcription generates cis-natural sense antisense transcripts (cis-NATs). This orientation of genes has been associated with the biogenesis of splice variants and natural antisense small RNAs. Here, in an analysis of currently available data, we report that within Arabidopsis (Arabidopsis thaliana), protein-coding cis-NATs are also characterized by high abundance, high coexpression, and broad expression. Our results suggest that a permissive chromatin environment may have led to the proximity of these genes. Compared with other genes, cis-NAT-encoding genes have enriched low-nucleosome-density regions, high levels of histone H3 lysine-9 acetylation, and low levels of H3 lysine-27 trimethylation. Promoters associated with broadly expressed genes are preferentially found in the 5' regulatory sequences of cis-NAT-encoding genes. Our results further suggest that natural antisense small RNA production from cis-NATs is limited. Small RNAs sequenced from natural antisense small RNA biogenesis mutants including dcl1, dcl2, dcl3, and rdr6 map to cis-NATs as frequently as small RNAs sequenced from wild-type plants. Future work will investigate if the positive transcriptional regulation of overlapping protein-coding genes contributes to the prevalence of these genes within other eukaryotic genomes. PMID:23457227

  17. Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation

    PubMed Central

    Tsuchiya, Megumi; Isogai, Shin; Taniguchi, Hiroaki; Tochio, Hidehito; Shirakawa, Masahiro; Morohashi, Ken-ichirou; Hiraoka, Yasushi; Haraguchi, Tokuko; Ogawa, Hidesato

    2015-01-01

    Transcriptional coregulators contribute to several processes involving nuclear receptor transcriptional regulation. The transcriptional coregulator androgen receptor-interacting protein 4 (ARIP4) interacts with nuclear receptors and regulates their transcriptional activity. In this study, we identified p62 as a major interacting protein partner for ARIP4 in the nucleus. Nuclear magnetic resonance analysis demonstrated that ARIP4 interacts directly with the ubiquitin-associated (UBA) domain of p62. ARIP4 and ubiquitin both bind to similar amino acid residues within UBA domains; therefore, these proteins may possess a similar surface structure at their UBA-binding interfaces. We also found that p62 is required for the regulation of ARIP4 protein levels under nutrient starvation conditions. We propose that p62 is a novel binding partner for ARIP4, and that its binding regulates the cellular protein level of ARIP4 under conditions of metabolic stress. PMID:26412716

  18. Decreased RARβ expression induces abundant inflammation and cervical precancerous lesions.

    PubMed

    Albino-Sanchez, M E; Vazquez-Hernandez, J; Ocadiz-Delgado, R; Serafin-Higuera, N; León-Galicia, I; Garcia-Villa, E; Hernandez-Pando, R; Gariglio, P

    2016-08-01

    It is well known that vitamin A and its receptors protect against cancer development and that Retinoid Acid Receptor β (RARβ) is epigenetically silenced during tumoral progression. Cervical Cancer (CC) has been causally linked to high risk human papillomavirus (HR-HPV) infection. However, host factors are important in determining the outcome of persistent HR-HPV infection as most cervical precancerous lesions containing HR-HPVs do not progress to invasive carcinomas. Increasing evidence suggests that low diet in vitamin A and their receptors participate in the development of CC. The aim of this study has been to investigate the effects of abated RARβ expression in the development of cervical premalignant lesions in 4 month-old conditional mice (RARβ(L-/L-)). Results demonstrated the development of spontaneous squamous metaplasia, inflammatory infiltrate, enhanced mitotic activity, loss of cell differentiation, as well as decreased apoptosis and p16(INK4a) protein levels in RARβ(L-/L-) mice cervix. All these changes are hallmarks of moderate dysplasia. Importantly, our results suggest that the low expression of RARβ, may induce the down regulation of p16(INK4a), chronic inflammation and decreased apoptosis and may be involved in vulnerability to HR-HPV and early stage cervical carcinogenesis. PMID:27207583

  19. Neurotoxocarosis alters myelin protein gene transcription and expression.

    PubMed

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas. PMID:25773181

  20. Expression of the transcription factor PITX2 in ameloblastic carcinoma.

    PubMed

    García-Muñoz, Alejandro; Rodríguez, Mario A; Licéaga-Escalera, Carlos; Licéaga-Reyes, Rodrigo; Carreón-Burciaga, Ramón Gil; González-González, Rogelio; Bologna-Molina, Ronell

    2015-06-01

    Ameloblastic carcinoma is a rare odontogenic tumour that combines the histological features of ameloblastoma with cytological atypia. Until 2005, the incidence of ameloblastic carcinoma was unknown, and since then, fewer than 60 cases have been reported. These tumours may originate from pre-existing tumours or cysts, or they arise de novo from the activation or transformation of embryological cells. PITX2 is a transcription factor that is a product and regulator of the WNT cell signalling pathway, which has been involved in development of several tumours. To analyse whether PITX2 could be involved in the biological behaviour of ameloblastic carcinoma, we analysed the expression of this transcription factor in a sample of this tumour and nine benign ameloblastomas to compare. The results of Western blotting and RT-PCR analyses were positive, and considering the hundreds of genes that PITX2 regulates, we believe that its expression could be intimately linked to the behaviour of ameloblastic carcinoma and possibly other odontogenic lesions. PMID:25791324

  1. Collagen gene expression by cultured human skin fibroblasts. Abundant steady-state levels of type VI procollagen messenger RNAs.

    PubMed Central

    Olsen, D R; Peltonen, J; Jaakkola, S; Chu, M L; Uitto, J

    1989-01-01

    Previous studies have suggested that procollagen types I and III are the major collagenous gene products of cultured human skin fibroblasts. In this study the expression of 10 different genes, encoding the subunit polypeptides for collagen types I-VI, by human skin fibroblasts in culture was analyzed by molecular hybridizations. Northern transfer analysis demonstrated the presence of specific mRNA transcripts for collagen types I, III, IV, V, and VI, but not for type II collagen. Quantitation of the abundance of these mRNAs by slot blot hybridizations revealed that type I, III, and VI procollagens were the major collagenous gene products of skin fibroblasts in culture. The mRNAs for type IV and V collagens represented only a small percentage of the total collagenous mRNA transcripts. Further analysis by in situ hybridization demonstrated that the majority of the cultured cells coexpressed the genes for type I, III, and VI procollagen pro-alpha chains. Further in situ hybridization analyses revealed the expression of type VI collagen genes in normal human skin. These data demonstrate that human skin fibroblast cultures can be used to study the transcriptional regulation of at least nine genetically distinct procollagen genes. The data further suggest that type VI collagen, in addition to types I and III, may be a major collagenous component of human skin. Images PMID:2921321

  2. PPP1, a plant-specific regulator of transcription controls Arabidopsis development and PIN expression.

    PubMed

    Benjamins, René; Barbez, Elke; Ortbauer, Martina; Terpstra, Inez; Lucyshyn, Doris; Moulinier-Anzola, Jeanette; Khan, Muhammad Asaf; Leitner, Johannes; Malenica, Nenad; Butt, Haroon; Korbei, Barbara; Scheres, Ben; Kleine-Vehn, Jürgen; Luschnig, Christian

    2016-01-01

    Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular. PMID:27553690

  3. PPP1, a plant-specific regulator of transcription controls Arabidopsis development and PIN expression

    PubMed Central

    Benjamins, René; Barbez, Elke; Ortbauer, Martina; Terpstra, Inez; Lucyshyn, Doris; Moulinier-Anzola, Jeanette; Khan, Muhammad Asaf; Leitner, Johannes; Malenica, Nenad; Butt, Haroon; Korbei, Barbara; Scheres, Ben; Kleine-Vehn, Jürgen; Luschnig, Christian

    2016-01-01

    Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular. PMID:27553690

  4. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGESBeta

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  5. Temperature conditioning alters transcript abundance of genes related to chilling stress in 'Marsh' grapefruit flavedo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapefruit (Citrus x paradisi) develop symptoms of chilling injury (CI) if held at temperatures below about 10 degrees C. Conditioning grapefruit at a low, but non-chilling temperature prior to storage at a chilling temperature reduces the development of CI symptoms. Changes in transcript abundanc...

  6. The Expression of BAFF Is Controlled by IRF Transcription Factors.

    PubMed

    Sjöstrand, Maria; Johansson, Alina; Aqrawi, Lara; Olsson, Tomas; Wahren-Herlenius, Marie; Espinosa, Alexander

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are typically characterized by the presence of autoantibodies and an IFN-signature. The strength of the IFN-signature positively correlates with disease severity, suggesting that type I IFNs are active players in these diseases. BAFF is a cytokine critical for development and proper selection of B cells, and the targeting of BAFF has emerged as a successful treatment strategy of SLE. Previous reports have suggested that BAFF expression is directly induced by type I IFNs, but the precise mechanism for this remains unknown. In this article, we demonstrate that BAFF is a bona fide ISG and that IFN regulatory factors (IRFs) control the expression of BAFF. We identify IRF1 and IRF2 as positive regulators of BAFF transcription and IRF4 and IRF8 as potent repressors; in addition, we have mapped the precise binding site for these factors in the BAFF promoter. IFN-β injections induced BAFF expression mainly in neutrophils and monocytes, and BAFF expression in neutrophils from pSS patients strongly correlated with the strength of the IFN-signature. In summary, we show that BAFF expression is directly induced by type I IFNs via IRF1 and IRF2, whereas IRF4 and IRF8 are negative regulators of BAFF expression. These data suggest that type I IFN blockade in SLE and pSS patients will lead to downregulation of BAFF and a consequential reduction of autoreactive B cell clones and autoantibodies. PMID:26590315

  7. The Expression of BAFF Is Controlled by IRF Transcription Factors

    PubMed Central

    Sjöstrand, Maria; Johansson, Alina; Aqrawi, Lara; Olsson, Tomas; Wahren-Herlenius, Marie

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS) are typically characterized by the presence of autoantibodies and an IFN-signature. The strength of the IFN-signature positively correlates with disease severity, suggesting that type I IFNs are active players in these diseases. BAFF is a cytokine critical for development and proper selection of B cells, and the targeting of BAFF has emerged as a successful treatment strategy of SLE. Previous reports have suggested that BAFF expression is directly induced by type I IFNs, but the precise mechanism for this remains unknown. In this article, we demonstrate that BAFF is a bona fide ISG and that IFN regulatory factors (IRFs) control the expression of BAFF. We identify IRF1 and IRF2 as positive regulators of BAFF transcription and IRF4 and IRF8 as potent repressors; in addition, we have mapped the precise binding site for these factors in the BAFF promoter. IFN-β injections induced BAFF expression mainly in neutrophils and monocytes, and BAFF expression in neutrophils from pSS patients strongly correlated with the strength of the IFN-signature. In summary, we show that BAFF expression is directly induced by type I IFNs via IRF1 and IRF2, whereas IRF4 and IRF8 are negative regulators of BAFF expression. These data suggest that type I IFN blockade in SLE and pSS patients will lead to downregulation of BAFF and a consequential reduction of autoreactive B cell clones and autoantibodies. PMID:26590315

  8. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish

    PubMed Central

    Leong, Ivone U. S.; Skinner, Jonathan R.; Shelling, Andrew N.; Love, Donald R.

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients.

  9. Stochastic Gene Expression in Networks of Post-transcriptional Regulators

    NASA Astrophysics Data System (ADS)

    Baker, Charles; Jia, Tao; Pendar, Hodjat; Kulkarni, Rahul

    2012-02-01

    Post-transcriptional regulators, such as small RNAs and microRNAs, are critical elements of diverse cellular pathways. It has been postulated that, in several important cases, the role of these regulators is to to modulate the noise in gene expression for the regulated target. Correspondingly, general stochastic models have been developed, and results obtained, for the case in which a single sRNA regulates a single mRNA target. We generalize these results to networks containing a single mRNA regulated by multiple sRNAs and to networks containing multiple mRNAs regulated by a single sRNA. For these systems, we obtain exact expressions relating the mean levels of the sRNAs to the mean levels of the mRNAs. Additionally, we consider the convergence of the original model to an approximate model which considers sRNA concentrations to be high; for the latter model we derive an analytic form for the generating function of the protein distribution. Finally, we discuss potential experimental protocols which, in combination with the derived results, can be used to infer the underlying gene expression parameters.

  10. Association of triacylglyceride content and transcript abundance of genes involving in lipid synthesis of nitrogen deficient Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Han, Jichang; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2014-03-01

    Phaeodactylum tricornutum is a diatom that is rich in lipids. Recently, it has received much attention as a feedstock for biodiesel production. Nitrogen deficiency is widely known to increase the content of neutral lipids (mainly triacylglycerides, or TAGs) of microalgae, including P. tricornutum, but the mechanism is unclear. In this study, we deciphered the correlations between TAG content and nine key enzymatic genes involved in lipid synthesis in P. tricornutum. After being cultured under nitrogen-free conditions for 0, 4, 24, 48, 72, 120, and 168 h, the TAG contents of P. tricornutum cells were assayed and the transcript abundances of the target genes were monitored by quantitative real-time PCR. The results show that the abundances of four target gene transcripts ( LACS3, G3PDH2, G3PDH3, and G3PDH5) were positively correlated with TAG content, indicating that these genes may be involved in TAG synthesis in P. tricornutum. The findings improve our understanding of the metabolic network and regulation of lipid synthesis and will guide the future genetic improvement of the TAG content of P. tricornutum.

  11. DNA polymorphisms and transcript abundance of PRKAG2 and phosphorylated AMP-activated protein kinase in the rumen are associated with gain and feed intake in beef steers.

    PubMed

    Lindholm-Perry, A K; Kuehn, L A; Oliver, W T; Kern, R J; Cushman, R A; Miles, J R; McNeel, A K; Freetly, H C

    2014-08-01

    Beef steers with variation in feed efficiency phenotypes were evaluated previously on a high-density SNP panel. Ten markers from rs110125325-rs41652818 on bovine chromosome 4 were associated with average daily gain (ADG). To identify the gene(s) in this 1.2-Mb region responsible for variation in ADG, genotyping with 157 additional markers was performed. Several markers (n = 41) were nominally associated with ADG, and three of these, including the only marker to withstand Bonferroni correction, were located within the protein kinase, AMP-activated, gamma 2 non-catalytic subunit (PRKAG2) gene. An additional population of cross-bred steers (n = 406) was genotyped for validation. One marker located within the PRKAG2 loci approached a significant association with gain. To evaluate PRKAG2 for differences in transcript abundance, we measured expression in the liver, muscle, rumen and intestine from steers (n = 32) with extreme feed efficiency phenotypes collected over two seasons. No differences in PRKAG2 transcript abundance were detected in small intestine, liver or muscle. Correlation between gene expression level of PRKAG2 in rumen and average daily feed intake (ADFI) was detected in both seasons (P < 0.05); however, the direction differed by season. Lastly, we evaluated AMP-activated protein kinase (AMPK), of which PRKAG2 is a subunit, for differences among ADG and ADFI and found that the phosphorylated form of AMPK was associated with ADFI in the rumen. These data suggest that PRKAG2 and its mature protein, AMPK, are involved in feed efficiency traits in beef steers. This is the first evidence to suggest that rumen AMPK may be contributing to ADFI in cattle. PMID:24730749

  12. Mapping functional transcription factor networks from gene expression data

    PubMed Central

    Haynes, Brian C.; Maier, Ezekiel J.; Kramer, Michael H.; Wang, Patricia I.; Brown, Holly; Brent, Michael R.

    2013-01-01

    A critical step in understanding how a genome functions is determining which transcription factors (TFs) regulate each gene. Accordingly, extensive effort has been devoted to mapping TF networks. In Saccharomyces cerevisiae, protein–DNA interactions have been identified for most TFs by ChIP-chip, and expression profiling has been done on strains deleted for most TFs. These studies revealed that there is little overlap between the genes whose promoters are bound by a TF and those whose expression changes when the TF is deleted, leaving us without a definitive TF network for any eukaryote and without an efficient method for mapping functional TF networks. This paper describes NetProphet, a novel algorithm that improves the efficiency of network mapping from gene expression data. NetProphet exploits a fundamental observation about the nature of TF networks: The response to disrupting or overexpressing a TF is strongest on its direct targets and dissipates rapidly as it propagates through the network. Using S. cerevisiae data, we show that NetProphet can predict thousands of direct, functional regulatory interactions, using only gene expression data. The targets that NetProphet predicts for a TF are at least as likely to have sites matching the TF's binding specificity as the targets implicated by ChIP. Unlike most ChIP targets, the NetProphet targets also show evidence of functional regulation. This suggests a surprising conclusion: The best way to begin mapping direct, functional TF-promoter interactions may not be by measuring binding. We also show that NetProphet yields new insights into the functions of several yeast TFs, including a well-studied TF, Cbf1, and a completely unstudied TF, Eds1. PMID:23636944

  13. A family of transcripts encoding water channel proteins: tissue-specific expression in the common ice plant.

    PubMed Central

    Yamada, S; Katsuhara, M; Kelly, W B; Michalowski, C B; Bohnert, H J

    1995-01-01

    Seawater-strength salt stress of the ice plant (Mesembryanthemum crystallinum) initially results in wilting, but full turgor is restored within approximately 2 days. We are interested in a mechanistic explanation for this behavior and, as a requisite for in-depth biochemical studies, have begun to analyze gene expression changes in roots coincident with the onset of stress. cDNAs that suggested changes in mRNA amount under stress were found; their deduced amino acid sequences share homologies with proteins of the Mip (major intrinsic protein) gene family and potentially encode aquaporins. One transcript, MipB, was found only in root RNA, whereas two other transcripts, MipA and MipC, were detected in roots and leaves. Transcript levels of MipB were of low abundance. All transcripts declined initially during salt stress but later recovered to at least prestress level. The most drastic decline was in MipA and MipC transcripts. MipA mRNA distribution in roots detected by in situ hybridization indicated that the transcript was present in all cells in the root tip. In the expansion zone of the root where vascular bundles differentiate, MipA transcript amounts were most abundant in the endodermis. In older roots, which had undergone secondary growth, MipA was highly expressed in cell layers surrounding individual xylem strands. MipA was also localized in leaf vascular tissue and, in lower amounts, in mesophyll cells. Transcripts for MipB seemed to be present exclusively in the tip of the root, in a zone before and possibly coincident with the development of a vascular system. MipA- and MipB-encoded proteins expressed in Xenopus oocytes led to increased water permeability. mRNA fluctuations of the most highly expressed MipA and MipC coincided with turgor changes in leaves under stress. As the leaves regained turgor, transcript levels of these water channel proteins increased. PMID:7549476

  14. Transcript profiling reveals expression differences in wild-type and glabrous soybean lines

    PubMed Central

    2011-01-01

    Background Trichome hairs affect diverse agronomic characters such as seed weight and yield, prevent insect damage and reduce loss of water but their molecular control has not been extensively studied in soybean. Several detailed models for trichome development have been proposed for Arabidopsis thaliana, but their applicability to important crops such as cotton and soybean is not fully known. Results Two high throughput transcript sequencing methods, Digital Gene Expression (DGE) Tag Profiling and RNA-Seq, were used to compare the transcriptional profiles in wild-type (cv. Clark standard, CS) and a mutant (cv. Clark glabrous, i.e., trichomeless or hairless, CG) soybean isoline that carries the dominant P1 allele. DGE data and RNA-Seq data were mapped to the cDNAs (Glyma models) predicted from the reference soybean genome, Williams 82. Extending the model length by 250 bp at both ends resulted in significantly more matches of authentic DGE tags indicating that many of the predicted gene models are prematurely truncated at the 5' and 3' UTRs. The genome-wide comparative study of the transcript profiles of the wild-type versus mutant line revealed a number of differentially expressed genes. One highly-expressed gene, Glyma04g35130, in wild-type soybean was of interest as it has high homology to the cotton gene GhRDL1 gene that has been identified as being involved in cotton fiber initiation and is a member of the BURP protein family. Sequence comparison of Glyma04g35130 among Williams 82 with our sequences derived from CS and CG isolines revealed various SNPs and indels including addition of one nucleotide C in the CG and insertion of ~60 bp in the third exon of CS that causes a frameshift mutation and premature truncation of peptides in both lines as compared to Williams 82. Conclusion Although not a candidate for the P1 locus, a BURP family member (Glyma04g35130) from soybean has been shown to be abundantly expressed in the CS line and very weakly expressed in the

  15. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana

    PubMed Central

    Krishnaswamy, Sowmya S; Srivastava, Sanjeeva; Mohammadi, Mohsen; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat NV

    2008-01-01

    Background Pathogenesis-related proteins belonging to group 10 (PR10) are elevated in response to biotic and abiotic stresses in plants. Previously, we have shown a drastic salinity-induced increase in the levels of ABR17, a member of the PR10 family, in pea. Furthermore, we have also demonstrated that the constitutive expression of pea ABR17 cDNA in Arabidopsis thaliana and Brassica napus enhances their germination and early seedling growth under stress. Although it has been reported that several members of the PR10 family including ABR17 possess RNase activity, the exact mechanism by which the aforementioned characteristics are conferred by ABR17 is unknown at this time. We hypothesized that a study of differences in transcriptome between wild type (WT) and ABR17 transgenic A. thaliana may shed light on this process. Results The molecular changes brought about by the expression of pea ABR17 cDNA in A. thaliana in the presence or absence of salt stress were investigated using microarrays consisting of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes. Statistical analysis identified number of genes which were over represented among up- or down-regulated transcripts in the transgenic line. Our results highlight the important roles of many abscisic acid (ABA) and cytokinin (CK) responsive genes in ABR17 transgenic lines. Although the transcriptional changes followed a general salt response theme in both WT and transgenic seedlings under salt stress, many genes exhibited differential expression patterns when the transgenic and WT lines were compared. These genes include plant defensins, heat shock proteins, other defense related genes, and several transcriptional factors. Our microarray results for selected genes were validated using quantitative real-time PCR. Conclusion Transcriptional analysis in ABR17 transgenic Arabidopsis plants, both under normal and saline conditions, revealed significant changes in abundance of transcripts for many stress

  16. ß-catenin, a transcription factor activated by canonical Wnt signaling, is expressed in sensory neurons of calves latently infected with bovine herpesvirus 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like many a-herpesvirinae subfamily members, bovine herpes virus 1 (BoHV-1) expresses an abundant transcript in latently infected sensory neurons: the latency-related (LR) RNA. LR-RNA encodes a protein (ORF2) that inhibits apoptosis, interacts with Notch family members, interferes with Notch mediate...

  17. Cell type-specific regulation of von Willebrand factor expression by the E4BP4 transcriptional repressor.

    PubMed

    Hough, Christine; Cuthbert, Carla D; Notley, Colleen; Brown, Christine; Hegadorn, Carol; Berber, Ergul; Lillicrap, David

    2005-02-15

    Mechanisms of tissue-restricted patterns of von Willebrand factor (VWF) expression involve activators and repressors that limit expression to endothelial cells and megakaryocytes. The relative transcriptional activity of the proximal VWF promoter was assessed in VWF-producing and -nonproducing cells, and promoter activity was highest in endothelial cells followed by megakaryocytes. Only basal VWF promoter activity was seen in nonendothelial cells. Here we identify a negative response element located at nucleotides (nts) +96/+105 and demonstrate, using chromatin immunoprecipitation (ChIP) analysis, that in vivo this sequence interacts with the E4BP4 transcriptional repressor. Differences in size and relative abundance of nuclear E4BP4 were observed. In HepG2 cells, low levels of larger forms of E4BP4 are present that directly interact with the negative response element. In VWF-expressing cells, high levels of smaller forms predominate with no evidence of direct DNA binding. However, in endothelial cells, mutation of the VWF E4BP4 binding motif not only restores but also further elevates VWF promoter activity, suggesting that E4BP4 may be part of a coordinated binding complex. These observations implicate this binding motif in repressing both activated and basal levels of VWF transcription by different cell type-specific mechanisms, and support the hypothesis that E4BP4 sequesters negative regulators of transcription, thereby enhancing activated gene expression. PMID:15498853

  18. Transcriptional control of transglutaminase 2 expression in mouse apoptotic thymocytes.

    PubMed

    Sándor, Katalin; Daniel, Bence; Kiss, Bea; Kovács, Fruzsina; Szondy, Zsuzsa

    2016-08-01

    Transglutaminase 2 (TGM2) is a ubiquitously expressed multifunctional protein, which participates in various biological processes including thymocyte apoptosis. As a result, the transcriptional regulation of the gene is complex and must depend on the cell type. Previous studies from our laboratory have shown that in dying thymocytes the expression of Tgm2 is induced by external signals derived from engulfing macrophages, such as retinoids, transforming growth factor (TGF)-β and adenosine, the latter triggering the adenylate cyclase signaling pathway. The existence of TGF-β and retinoid responsive elements in the promoter region of Tgm2 has already been reported, but the intergenic regulatory elements participating in the regulation of Tgm2 have not yet been identified. Here we used publicly available results from DNase I hypersensitivity analysis followed by deep sequencing and chromatin immunoprecipitation followed by deep sequencing against CCCTC-binding factor (CTCF), H3K4me3, H3K4me1 and H3K27ac to map a putative regulatory element set for Tgm2 in thymocytes. By measuring eRNA expressions of these putative enhancers in retinoid, rTGF-β or dibutiryl cAMP-exposed thymocytes we determined which of them are functional. By applying ChIP-qPCR against SMAD4, retinoic acid receptor, retinoid X receptor, cAMP response element binding protein, P300 and H3K27ac under the same conditions, we identified two enhancers of Tgm2, which seem to act as integrators of the TGF-β, retinoid and adenylate cyclase signaling pathways in dying thymocytes. Our study describes a novel strategy to identify and characterize the signal-specific functional enhancer set of a gene by integrating genome-wide datasets and measuring the production of enhancer specific RNA molecules. PMID:27262403

  19. Transcriptional regulation of bone sialoprotein gene expression by Osx.

    PubMed

    Yang, Ya; Huang, Yehong; Zhang, Li; Zhang, Chi

    2016-08-01

    Osteoporosis is the most common metabolic bone disease characterized by decreased bone mass, decreased bone strength, and increased risk of fracture. It is due to unbalance between bone formation and bone resorption. Bone formation is a complex process which involves the differentiation of mesenchymal stem cells to osteoblasts. Osteoblasts produce a characteristic extracellular collagenous matrix that subsequently becomes mineralized. Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation. Bone sialoprotein (Bsp) is a member of the SIBLING gene family. Expression of Bsp correlates with the differentiation of osteoblasts and the onset of mineralization. Our preliminary data showed that Bsp was abolished in Osx-null mice; however, the detailed mechanism of Osx regulation on Bsp is not fully understood. In this study, regulation of Bsp expression by Osx was further characterized. It was shown that overexpression of Osx led to Bsp upregulation. Inhibition of Osx by small interfering RNA resulted in Bsp downregulation in osteoblast. Transfection assay demonstrated that Osx was able to activate Bsp promoter reporter in a dose-dependent manner. To define minimal region of Bsp promoter activated by Osx, a series of deletion mutants of Bsp promoter were generated, and the minimal region was narrowed down to the proximal 100 bp. Point-mutagenesis studies showed that one GC-rich site was required for Bsp promoter activation by Osx. ChIP assays demonstrated that endogenous Osx associated with native Bsp promoter in primary osteoblasts. Our observations provide evidence that Osx targets Bsp expression directly. PMID:27261434

  20. Comprehensive analyses of prostate gene expression: convergence of expressed sequence tag databases, transcript profiling and proteomics.

    PubMed

    Nelson, P S; Han, D; Rochon, Y; Corthals, G L; Lin, B; Monson, A; Nguyen, V; Franza, B R; Plymate, S R; Aebersold, R; Hood, L

    2000-05-01

    Several methods have been developed for the comprehensive analysis of gene expression in complex biological systems. Generally these procedures assess either a portion of the cellular transcriptome or a portion of the cellular proteome. Each approach has distinct conceptual and methodological advantages and disadvantages. We have investigated the application of both methods to characterize the gene expression pathway mediated by androgens and the androgen receptor in prostate cancer cells. This pathway is of critical importance for the development and progression of prostate cancer. Of clinical importance, modulation of androgens remains the mainstay of treatment for patients with advanced disease. To facilitate global gene expression studies we have first sought to define the prostate transcriptome by assembling and annotating prostate-derived expressed sequence tags (ESTs). A total of 55000 prostate ESTs were assembled into a set of 15953 clusters putatively representing 15953 distinct transcripts. These clusters were used to construct cDNA microarrays suitable for examining the androgen-response pathway at the level of transcription. The expression of 20 genes was found to be induced by androgens. This cohort included known androgen-regulated genes such as prostate-specific antigen (PSA) and several novel complementary DNAs (cDNAs). Protein expression profiles of androgen-stimulated prostate cancer cells were generated by two-dimensional electrophoresis (2-DE). Mass spectrometric analysis of androgen-regulated proteins in these cells identified the metastasis-suppressor gene NDKA/nm23, a finding that may explain a marked reduction in metastatic potential when these cells express a functional androgen receptor pathway. PMID:10870968

  1. Expression of the bmpB Gene of Borrelia burgdorferi Is Modulated by Two Distinct Transcription Termination Events

    PubMed Central

    Ramamoorthy, Ramesh; McClain, Natalie A.; Gautam, Aarti; Scholl-Meeker, Dorothy

    2005-01-01

    bmp gene family 36 of Borrelia burgdorferi, the agent of Lyme disease, comprises four paralogs: bmpA, bmpB, bmpC, and bmpD. The bmpA and bmpB genes constitute an operon. All four genes have been found to be transcribed in cultured spirochetes. Expression from the bmpAB operon results in three distinct transcripts of 1.1, 1.6, and 2.4 kb, and the relative expression of bmpA mRNA is three- to fourfold greater than that of bmpB mRNA. However, thus far only expression of the BmpA protein has been demonstrated. Therefore, in this study we characterized the origins of the three transcripts and compared the relative expression of the BmpA and BmpB proteins. Northern blotting revealed that the three distinct transcripts originated from a single promoter located upstream of bmpA but terminated either 3′ to the bmpA (1.1-kb RNA) or bmpB (2.4-kb RNA) gene or, most unusually, within the bmpB gene (1.6-kb RNA). Termination within the bmpB gene was associated with a functional Rho-independent transcription terminator. At the protein level, we also observed a 4.3-fold greater abundance of BmpA compared to that of BmpB. These studies identify a transcription termination mechanism in B. burgdorferi resulting in the disparate expression of the two genes of the bmpAB operon. PMID:15805505

  2. Nonspecific transcription factor binding can reduce noise in the expression of downstream proteins

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Bokes, P.; Fox, Z.; Singh, A.

    2015-10-01

    Transcription factors (TFs) interact with a multitude of binding sites on DNA and partner proteins inside cells. We investigate how nonspecific binding/unbinding to such decoy binding sites affects the magnitude and time-scale of random fluctuations in TF copy numbers arising from stochastic gene expression. A stochastic model of TF gene expression, together with decoy site interactions is formulated. Distributions for the total (bound and unbound) and free (unbound) TF levels are derived by analytically solving the chemical master equation under physiologically relevant assumptions. Our results show that increasing the number of decoy binding sides considerably reduces stochasticity in free TF copy numbers. The TF autocorrelation function reveals that decoy sites can either enhance or shorten the time-scale of TF fluctuations depending on model parameters. To understand how noise in TF abundances propagates downstream, a TF target gene is included in the model. Intriguingly, we find that noise in the expression of the target gene decreases with increasing decoy sites for linear TF-target protein dose-responses, even in regimes where decoy sites enhance TF autocorrelation times. Moreover, counterintuitive noise transmissions arise for nonlinear dose-responses. In summary, our study highlights the critical role of molecular sequestration by decoy binding sites in regulating the stochastic dynamics of TFs and target proteins at the single-cell level.

  3. Analysis of LPS-induced, NFκB-dependent interleukin-8 transcription in kidney embryonic cell line expressing TLR4 using luciferase assay.

    PubMed

    Yunusova, Tamara; Akhtar, Mumtaz; Poltoratsky, Vladimir

    2014-01-01

    Gene expression is orchestrated by a complex network of signal transduction pathways that typically originate on cell surface receptors and culminate in DNA-binding transcription factors, which translocate to the nucleus and bind cis-regulatory elements in promoter regions of genes, thereby inducing de novo synthesis of the nascent RNA transcripts and their splicing. Gene expression arrays monitor abundance of the matured, spliced cDNA, which undergoes additional posttranscriptional modifications that greatly affect the half-life of the cDNA. Thus, the relative abundance of cDNA is not necessarily commensurable with the activity of promoters of the corresponding genes. In contrast, reporter gene assays provide valuable insight into the regulation of gene expression at the level of transcription and allow for discerning the contribution of individual transcription factors into changes in gene expression. Here, we describe a robust reporter gene assay method that is useful for exploration of transcription regulatory network, which regulates gene expression in response to inflammation. The method is exemplified by using the promoter region of the prototypic pro-inflammatory chemokine interleukin-8 (IL-8, CXCL8), which plays an important role in immune response as well as carcinogenesis. Using the luciferase reporter gene assay, we analyze the activation status of the IL-8 promoter in lipopolysaccharide (LPS)-stimulated human embryonic kidney cells. PMID:24908317

  4. Stochastic expression dynamics of a transcription factor revealed by single-molecule noise analysis.

    PubMed

    Hensel, Zach; Feng, Haidong; Han, Bo; Hatem, Christine; Wang, Jin; Xiao, Jie

    2012-08-01

    Gene expression is inherently stochastic; precise gene regulation by transcription factors is important for cell-fate determination. Many transcription factors regulate their own expression, suggesting that autoregulation counters intrinsic stochasticity in gene expression. Using a new strategy, cotranslational activation by cleavage (CoTrAC), we probed the stochastic expression dynamics of cI, which encodes the bacteriophage λ repressor CI, a fate-determining transcription factor. CI concentration fluctuations influence both lysogenic stability and induction of bacteriophage λ. We found that the intrinsic stochasticity in cI expression was largely determined by CI expression level irrespective of autoregulation. Furthermore, extrinsic, cell-to-cell variation was primarily responsible for CI concentration fluctuations, and negative autoregulation minimized CI concentration heterogeneity by counteracting extrinsic noise and introducing memory. This quantitative study of transcription factor expression dynamics sheds light on the mechanisms cells use to control noise in gene regulatory networks. PMID:22751020

  5. An inducible promoter mediates abundant expression from the immediate-early 2 gene region of human cytomegalovirus at late times after infection.

    PubMed Central

    Puchtler, E; Stamminger, T

    1991-01-01

    An abundant late transcript of 1.5 kb originates from the immediate-early 2 (IE-2) gene region of human cytomegalovirus (HCMV) at late times after infection. The transcriptional start of this RNA was precisely mapped, and the putative promoter region was cloned in front of the CAT gene as reporter. This region, which comprises 78 nucleotides of IE-2 sequence upstream of the determined cap site, was strongly activated by viral superinfection at late times in the replicative cycle. As shown by RNase protection analyses, the authentic transcription start is used. No activation of this late promoter was observed after cotransfection with an expression plasmid containing the HCMV IE-1 and -2 gene region. This result suggests that, compared with early and early late promoters of HCMV, different or additional viral functions are required for the activation of true late promoters. Images PMID:1656096

  6. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  7. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  8. TTF1, a homeodomain containing transcription factor, contributes to regulating periodic oscillations in GnRH gene expression

    PubMed Central

    Matagne, Valerie; Kim, Jae Geun; Ryu, Byung Jun; Hur, Min Kyu; Kim, Min Sung; Kim, Kyungjin; Park, Byong Seo; Damante, Giuseppe; Smiley, Gregory; Lee, Byung Ju; Ojeda, Sergio R.

    2012-01-01

    Thyroid transcription factor 1 (TTF1), a member of the NK family of transcription factors required for basal forebrain morphogenesis, functions in the postnatal hypothalamus as a transcriptional regulator of genes encoding neuromodulators and hypophysiotrophic peptides. One of these peptides is gonadotropin-releasing hormone (GnRH). Here we show that Ttf1 mRNA abundance vary in a diurnal and melatonin-dependent fashion in the preoptic area (POA) of the rat, with maximal Ttf1 expression attained during the dark phase of the light/dark cycle, preceding the nocturnal peak in GnRH mRNA content. GnRH promoter activity oscillates in a circadian manner in GT1-7 cells, and this pattern is enhanced by TTF1 and blunted by siRNA-mediated Ttf1 gene silencing. TTF1 trans-activates GnRH transcription by binding to two sites in the GnRH promoter. Rat GnRH neurons in situ contain key proteins components of the positive (BMAL1, CLOCK) and negative (PER1) limbs of the circadian oscillator, and these proteins repress Ttf1 promoter activity in vitro. In contrast, Ttf1 transcription is activated by CRY1, a clock component required for circadian rhythmicity. In turn, TTF1 represses transcription of Rev-erbα, a heme receptor that controls circadian transcription within the positive limb of the circadian oscillator. These findings suggest that TTF1 is a component of the molecular machinery controlling circadian oscillations in GnRH gene transcription. PMID:22356123

  9. A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle.

    PubMed

    Nattrass, G S; Cafe, L M; McIntyre, B L; Gardner, G E; McGilchrist, P; Robinson, D L; Wang, Y H; Pethick, D W; Greenwood, P L

    2014-02-01

    the abundance of an alternative polyadenylated variant of the CAST transcript, terminated at the proximal polyadenylation site, provides a unique insight into the potential involvement of a post-transcriptional regulatory mechanism which may influence protein expression levels in bovine skeletal muscle. PMID:24664555

  10. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion

    PubMed Central

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W.; Kulozik, Andreas E.

    2016-01-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  11. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  12. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutane...

  13. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    PubMed Central

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation. PMID:26425553

  14. Agouti Revisited: Transcript Quantification of the ASIP Gene in Bovine Tissues Related to Protein Expression and Localization

    PubMed Central

    Albrecht, Elke; Komolka, Katrin; Kuzinski, Judith; Maak, Steffen

    2012-01-01

    Beside its role in melanogenesis, the agouti signaling protein (ASIP) has been related to obesity. The potentially crucial role in adipocyte development makes it a tempting candidate for economic relevant, fat related traits in farm animals. The objective of our study was to characterize the mRNA expression of different ASIP transcripts and of putative targets in different bovine tissues, as well as to study consequences on protein abundance and localization. ASIP mRNA abundance was determined by RT-qPCR in adipose and further tissues of cattle representing different breeds and crosses. ASIP mRNA was up-regulated more than 9-fold in intramuscular fat of Japanese Black cattle compared to Holstein (p<0.001). Further analyses revealed that a transposon-derived transcript was solely responsible for the increased ASIP mRNA abundance. This transcript was observed in single individuals of different breeds indicating a wide spread occurrence of this insertion at the ASIP locus in cattle. The protein was detected in different adipose tissues, skin, lung and liver, but not in skeletal muscle by Western blot with a bovine-specific ASIP antibody. However, the protein abundance was not related to the observed ASIP mRNA over-expression. Immuno-histochemical analyses revealed a putative nuclear localization of ASIP additionally to the expected cytosolic signal in different cell types. The expression of melanocortin receptors (MCR) 1 to 5 as potential targets for ASIP was analyzed by RT-PCR in subcutaneous fat. Only MC1R and MC4R were detected indicating a similar receptor expression like in human adipose tissue. Our results provide evidence for a widespread expression of ASIP in bovine tissues at mRNA and, for the first time, at protein level. ASIP protein is detectable in adipocytes as well as in further cells of adipose tissue. We generated a basis for a more detailed investigation of ASIP function in peripheral tissues of various mammalian species. PMID:22530003

  15. Agouti revisited: transcript quantification of the ASIP gene in bovine tissues related to protein expression and localization.

    PubMed

    Albrecht, Elke; Komolka, Katrin; Kuzinski, Judith; Maak, Steffen

    2012-01-01

    Beside its role in melanogenesis, the agouti signaling protein (ASIP) has been related to obesity. The potentially crucial role in adipocyte development makes it a tempting candidate for economic relevant, fat related traits in farm animals. The objective of our study was to characterize the mRNA expression of different ASIP transcripts and of putative targets in different bovine tissues, as well as to study consequences on protein abundance and localization. ASIP mRNA abundance was determined by RT-qPCR in adipose and further tissues of cattle representing different breeds and crosses. ASIP mRNA was up-regulated more than 9-fold in intramuscular fat of Japanese Black cattle compared to Holstein (p<0.001). Further analyses revealed that a transposon-derived transcript was solely responsible for the increased ASIP mRNA abundance. This transcript was observed in single individuals of different breeds indicating a wide spread occurrence of this insertion at the ASIP locus in cattle. The protein was detected in different adipose tissues, skin, lung and liver, but not in skeletal muscle by Western blot with a bovine-specific ASIP antibody. However, the protein abundance was not related to the observed ASIP mRNA over-expression. Immuno-histochemical analyses revealed a putative nuclear localization of ASIP additionally to the expected cytosolic signal in different cell types. The expression of melanocortin receptors (MCR) 1 to 5 as potential targets for ASIP was analyzed by RT-PCR in subcutaneous fat. Only MC1R and MC4R were detected indicating a similar receptor expression like in human adipose tissue. Our results provide evidence for a widespread expression of ASIP in bovine tissues at mRNA and, for the first time, at protein level. ASIP protein is detectable in adipocytes as well as in further cells of adipose tissue. We generated a basis for a more detailed investigation of ASIP function in peripheral tissues of various mammalian species. PMID:22530003

  16. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins

    PubMed Central

    Ostler, KR; Davis, EM; Payne, SL; Gosalia, BB; Expósito-Céspedes, J; Le Beau, MM; Godley, LA

    2008-01-01

    Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5′ end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells. PMID:17353906

  17. Single chromosome transcriptional profiling reveals chromosome-level regulation of gene expression

    PubMed Central

    Levesque, Marshall J.; Raj, Arjun

    2013-01-01

    Here we report iceFISH, a multiplex imaging method for measuring gene expression and chromosome structure simultaneously on single chromosomes. We demonstrate that chromosomal translocations can alter transcription chromosome-wide, finding substantial differences in transcriptional frequency between genes located on a translocated chromosome in comparison to the normal chromosome in the same cell. Examination of correlations between genes on a single chromosome revealed a cis chromosome-level transcriptional interaction spanning 14.3 megabases. PMID:23416756

  18. The Transcription Factor Titration Effect Dictates Level of Gene Expression

    PubMed Central

    Brewster, Robert C.; Weinert, Franz M.; Garcia, Hernan G.; Song, Dan; Rydenfelt, Mattias; Phillips, Rob

    2014-01-01

    Models of transcription are often built around a picture of RNA polymerase and transcription factors (TFs) acting on a single copy of a promoter. However, most TFs are shared between multiple genes with varying binding affinities. Beyond that, genes often exist at high copy number; in multiple, identical copies on the chromosome or on plasmids or viral vectors with copy numbers in the hundreds. Using a thermodynamic model, we characterize the interplay between TF copy number and the demand for that TF. We demonstrate the parameter-free predictive power of this model as a function of the copy number of the TF and the number and affinities of the available specific binding sites; such predictive control is important for the understanding of transcription and the desire to quantitatively design the output of genetic circuits. Finally we use these experiments to dynamically measure plasmid copy number through the cell cycle. PMID:24612990

  19. FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis

    PubMed Central

    Ito, Shogo; Song, Young Hun; Josephson-Day, Anna R.; Miller, Ryan J.; Breton, Ghislain; Olmstead, Richard G.; Imaizumi, Takato

    2012-01-01

    Many plants monitor day-length changes throughout the year and use the information to precisely regulate the timing of seasonal flowering for maximum reproductive success. In Arabidopsis thaliana, transcriptional regulation of the CONSTANS (CO) gene and posttranslational regulation of CO protein are crucial mechanisms for proper day-length measurement in photoperiodic flowering. Currently, the CYCLING DOF FACTOR proteins are the only transcription factors known to directly regulate CO gene expression, and the mechanisms that directly activate CO transcription have remained unknown. Here we report the identification of four CO transcriptional activators, named FLOWERING BHLH 1 (FBH1), FBH2, FBH3, and FBH4. All FBH proteins are related basic helix–loop–helix-type transcription factors that preferentially bind to the E-box cis-elements in the CO promoter. Overexpression of all FBH genes drastically elevated CO levels and caused early flowering regardless of photoperiod, whereas CO levels were reduced in the fbh quadruple mutants. In addition, FBH1 is expressed in the vascular tissue and bound near the transcription start site of the CO promoter in vivo. Furthermore, FBH homologs in poplar and rice induced CO expression in Arabidopsis. These results indicate that FBH proteins positively regulate CO transcription for photoperiodic flowering and that this mechanism may be conserved in diverse plant species. Our results suggest that the diurnal CO expression pattern is generated by a concert of redundant functions of positive and negative transcriptional regulators. PMID:22334645

  20. RNase L Attenuates Mitogen-stimulated Gene Expression via Transcriptional and Post-transcriptional Mechanisms to Limit the Proliferative Response*

    PubMed Central

    Brennan-Laun, Sarah E.; Li, Xiao-Ling; Ezelle, Heather J.; Venkataraman, Thiagarajan; Blackshear, Perry J.; Wilson, Gerald M.; Hassel, Bret A.

    2014-01-01

    The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases. PMID:25301952

  1. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response.

    PubMed

    Brennan-Laun, Sarah E; Li, Xiao-Ling; Ezelle, Heather J; Venkataraman, Thiagarajan; Blackshear, Perry J; Wilson, Gerald M; Hassel, Bret A

    2014-11-28

    The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases. PMID:25301952

  2. Mining SAGE data allows large-scale, sensitive screening of antisense transcript expression.

    PubMed

    Quéré, Ronan; Manchon, Laurent; Lejeune, Mireille; Clément, Oliver; Pierrat, Fabien; Bonafoux, Béatrice; Commes, Thérèse; Piquemal, David; Marti, Jacques

    2004-01-01

    As a growing number of complementary transcripts, susceptible to exert various regulatory functions, are being found in eukaryotes, high throughput analytical methods are needed to investigate their expression in multiple biological samples. Serial Analysis of Gene Expression (SAGE), based on the enumeration of directionally reliable short cDNA sequences (tags), is capable of revealing antisense transcripts. We initially detected them by observing tags that mapped on to the reverse complement of known mRNAs. The presence of such tags in individual SAGE libraries suggested that SAGE datasets contain latent information on antisense transcripts. We raised a collection of virtual tags for mining these data. Tag pairs were assembled by searching for complementarities between 24-nt long sequences centered on the potential SAGE-anchoring sites of well-annotated human expressed sequences. An analysis of their presence in a large collection of published SAGE libraries revealed transcripts expressed at high levels from both strands of two adjacent, oppositely oriented, transcription units. In other cases, the respective transcripts of such cis-oriented genes displayed a mutually exclusive expression pattern or were co-expressed in a small number of libraries. Other tag pairs revealed overlapping transcripts of trans-encoded unique genes. Finally, we isolated a group of tags shared by multiple transcripts. Most of them mapped on to retroelements, essentially represented in humans by Alu sequences inserted in opposite orientations in the 3'UTR of otherwise different mRNAs. Registering these tags in separate files makes possible computational searches focused on unique sense-antisense pairs. The method developed in the present work shows that SAGE datasets constitute a major resource of rapidly investigating with high sensitivity the expression of antisense transcripts, so that a single tag may be detected in one library when screening a large number of biological samples. PMID

  3. Scavenger receptor B1, the HDL receptor, is expressed abundantly in liver sinusoidal endothelial cells

    PubMed Central

    Ganesan, Latha P.; Mates, Jessica M.; Cheplowitz, Alana M.; Avila, Christina L.; Zimmerer, Jason M.; Yao, Zhili; Maiseyeu, Andrei; Rajaram, Murugesan V. S.; Robinson, John M.; Anderson, Clark L.

    2016-01-01

    Cholesterol from peripheral tissue, carried by HDL, is metabolized in the liver after uptake by the HDL receptor, SR-B1. Hepatocytes have long been considered the only liver cells expressing SR-B1; however, in this study we describe two disparate immunofluorescence (IF) experiments that suggest otherwise. Using high-resolution confocal microscopy employing ultrathin (120 nm) sections of mouse liver, improving z-axis resolution, we identified the liver sinusoidal endothelial cells (LSEC), marked by FcγRIIb, as the cell within the liver expressing abundant SR-B1. In contrast, the hepatocyte, identified with β-catenin, expressed considerably weaker levels, although optical resolution of SR-B1 was inadequate. Thus, we moved to a different IF strategy, first separating dissociated liver cells by gradient centrifugation into two portions, hepatocytes (parenchymal cells) and LSEC (non-parenchymal cells). Characterizing both portions for the cellular expression of SR-B1 by flow cytometry, we found that LSEC expressed considerable amounts of SR-B1 while in hepatocytes SR-B1 expression was barely perceptible. Assessing mRNA of SR-B1 by real time PCR we found messenger expression in LSEC to be about 5 times higher than in hepatocytes. PMID:26865459

  4. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue.

    PubMed

    Hilse, Karolina E; Kalinovich, Anastasia V; Rupprecht, Anne; Smorodchenko, Alina; Zeitz, Ute; Staniek, Katrin; Erben, Reinhold G; Pohl, Elena E

    2016-01-01

    UCP1 and UCP3 are members of the uncoupling protein (UCP) subfamily and are localized in the inner mitochondrial membrane. Whereas UCP1's central role in non-shivering thermogenesis is acknowledged, the function and even tissue expression pattern of UCP3 are still under dispute. Because UCP3 properties regarding transport of protons are qualitatively identical to those of UCP1, its expression in brown adipose tissue (BAT) alongside UCP1 requires justification. In this work, we tested whether any correlation exists between the expression of UCP1 and UCP3 in BAT by quantification of protein amounts in mouse tissues at physiological conditions, in cold-acclimated and UCP1 knockout mice. Quantification using recombinant UCP3 revealed that the UCP3 amount in BAT (0.51ng/(μg total tissue protein)) was nearly one order of magnitude higher than that in muscles and heart. Cold-acclimated mice showed an approximate three-fold increase in UCP3 abundance in BAT in comparison to mice in thermoneutral conditions. Surprisingly, we found a significant decrease of UCP3 in BAT of UCP1 knockout mice, whereas the protein amount in skeletal and heart muscles remained constant. UCP3 abundance decreased even more in cold-acclimated UCP1 knockout mice. Protein quantification in UCP3 knockout mice revealed no compensatory increase in UCP1 or UCP2 expression. Our results do not support the participation of UCP3 in thermogenesis in the absence of UCP1 in BAT, but clearly demonstrate the correlation in abundance between both proteins. The latter is important for understanding UCP3's function in BAT. PMID:26518386

  5. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector

    SciTech Connect

    Rumi, Mohammad; Ishihara, Shunji . E-mail: si360405@med.shimane-u.ac.jp; Aziz, Monowar; Kazumori, Hideaki; Ishimura, Norihisa; Yuki, Takafumi; Kadota, Chikara; Kadowaki, Yasunori; Kinoshita, Yoshikazu

    2006-01-13

    RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor {alpha}-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use.

  6. EXPRESSION PROFILING OF FIVE RAT STRAINS REVEAL TRANSCRIPTIONAL MODES IN THE ANTIGEN PROCESSING PATHWAY

    EPA Science Inventory

    Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...

  7. Ubiquitously expressed transcript is a novel interacting protein of protein inhibitor of activated signal transducer and activator of transcription 2

    PubMed Central

    KONG, XIANG; MA, SHIKUN; GUO, JIAQIAN; MA, YAN; HU, YANQIU; WANG, JIANJUN; ZHENG, YING

    2015-01-01

    Protein inhibitor of activated signal transducer and activator of transcription 2 (PIAS2) is a member of the PIAS protein family. This protein family modulates the activity of several transcription factors and acts as an E3 ubiquitin ligase in the sumoylation pathway. To improve understanding of the physiological roles of PIAS2, the current study used a yeast two-hybrid system to screen mouse stem cell cDNA libraries for proteins that interact with PIAS2. The screening identified an interaction between PIAS2 and ubiquitously expressed transcript (UXT). UXT, also termed androgen receptor trapped clone-27, is an α-class prefoldin-type chaperone that acts as a coregulator for various transcription factors, including nuclear factor-κB and androgen receptor (AR). A direct interaction between PIAS2 and UXT was confirmed by direct yeast two-hybrid analysis. In vitro evidence of the association of UXT with PIAS2 was obtained by co-immunoprecipitation. Colocalization between PIAS2 and UXT was identified in the nucleus and cytoplasm of HEK 293T and human cervical carcinoma HeLa cells. The results of the current study suggested that UXT is a binding protein of PIAS2, and interaction between PIAS2 and UXT may be important for the transcriptional activation of AR. PMID:25434787

  8. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    PubMed Central

    Taniuchi, Fumiko; Higai, Koji; Tanaka, Tomomi; Azuma, Yutaro; Matsumoto, Kojiro

    2013-01-01

    The α1,2-fucosyltransferase I (FUT1) enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT) activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS). Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp) assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells. PMID:23533340

  9. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae

    PubMed Central

    Rantasalo, Anssi; Czeizler, Elena; Virtanen, Riitta; Rousu, Juho; Lähdesmäki, Harri; Penttilä, Merja

    2016-01-01

    This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications. PMID:26901642

  10. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.

    PubMed

    Rantasalo, Anssi; Czeizler, Elena; Virtanen, Riitta; Rousu, Juho; Lähdesmäki, Harri; Penttilä, Merja; Jäntti, Jussi; Mojzita, Dominik

    2016-01-01

    This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications. PMID:26901642

  11. Hepatopancreatic multi-transcript expression patterns in the crayfish Cherax quadricarinatus during the moult cycle.

    PubMed

    Yudkovski, Y; Shechter, A; Chalifa-Caspi, V; Auslander, M; Ophir, R; Dauphin-Villemant, C; Waterman, M; Sagi, A; Tom, M

    2007-12-01

    Alterations of hepatopancreatic multi-transcript expression patterns, related to induced moult cycle, were identified in male Cherax quadricarinatus through cDNA microarray hybridizations of hepatopancreatic transcript populations. Moult was induced by X-organ sinus gland extirpation or by repeated injections of 20-hydroxyecdysone. Manipulated males were sacrificed at premoult or early postmoult, and a reference population was sacrificed at intermoult. Differentially expressed genes among the four combinations of two induction methods and two moult stages were identified. Biologically interesting clusters revealing concurrently changing transcript expressions across treatments were selected, characterized by a general shift of expression throughout premoult and early postmoult vs. intermoult, or by different premoult vs. postmoult expressions. A number of genes were differentially expressed in 20-hydroxyecdysone-injected crayfish vs. X-organ sinus gland extirpated males. PMID:18092996

  12. Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein.

    PubMed

    Ryu, Jina; Park, Hee Ho; Park, Ju Hyun; Lee, Hong Jai; Rhee, Won Jong; Park, Tai Hyun

    2016-04-01

    Transcription factors have been studied as an important drug candidate. Ever since the successful generation of induced pluripotent stem cells (iPSCs), there has been tremendous interest in reprogramming transcription factors. Because of the safety risks involved in a virus-based approach, many researchers have been trying to deliver transcription factors using nonintegrating materials. Thus, delivery of transcription factors produced as recombinant proteins in E. coli was proposed as an alternative method. However, the low level of soluble expression and instability of such recombinant proteins are potential barriers. We engineered a Bombyx mori 30Kc19 protein as a fusion partner for transcription factors to overcome those problems. We have previously reported that 30Kc19 protein can be produced as a soluble form in E. coli and has a cell-penetrating property and a protein-stabilizing effect. Transcription factors fused with 30Kc19 (Oct4-30Kc19, Sox2-30Kc19, c-Myc-30Kc19, L-Myc-30Kc19, and Klf4-30Kc19) were produced as recombinant proteins. Interestingly, Oct4 and L-Myc were expressed as a soluble form by conjugating with 30Kc19 protein, whereas Oct4 alone and L-Myc alone aggregated. The 30Kc19 protein also enhanced the stability of transcription factors both in vitro and in cells. In addition, 30Kc19-conjugated transcription factors showed rapid delivery into cells and transcriptional activity significantly increased. Overall, 30Kc19 protein conjugation simultaneously enhanced soluble expression, stability, and transcriptional activity of transcription factors. We propose that the conjugation with 30Kc19 protein is a novel approach to solve the technical bottleneck of gene regulation using transcription factors. PMID:26668030

  13. Lysophosphatidic Acid Mediates Activating Transcription Factor 3 Expression Which Is a Target for Post-Transcriptional Silencing by miR-30c-2-3p

    PubMed Central

    Nguyen, Ha T.; Jia, Wei; Beedle, Aaron M.; Kennedy, Eileen J.; Murph, Mandi M.

    2015-01-01

    Although microRNAs (miRNAs) are small, non-protein-coding entities, they have important roles in post-transcriptional regulation of most of the human genome. These small entities generate fine-tuning adjustments in the expression of mRNA, which can mildly or massively affect the abundance of proteins. Previously, we found that the expression of miR-30c-2-3p is induced by lysophosphatidic acid and has an important role in the regulation of cell proliferation in ovarian cancer cells. The goal here is to confirm that ATF3 mRNA is a target of miR-30c-2-3p silencing, thereby further establishing the functional role of miR-30c-2-3p. Using a combination of bioinformatics, qRT-PCR, immunoblotting and luciferase assays, we uncovered a regulatory pathway between miR-30c-2-3p and the expression of the transcription factor, ATF3. Lysophosphatidic acids triggers the expression of both miR-30c-2-3p and ATF3, which peak at 1 h and are absent 8 h post stimulation in SKOV-3 and OVCAR-3 serous ovarian cancer cells. The 3´-untranslated region (3´-UTR) of ATF3 was a predicted, putative target for miR-30c-2-3p, which we confirmed as a bona-fide interaction using a luciferase reporter assay. Specific mutations introduced into the predicted site of interaction between miR-30c-2-3p and the 3´-UTR of ATF3 alleviated the suppression of the luciferase signal. Furthermore, the presence of anti-miR-30c-2-3p enhanced ATF3 mRNA and protein after lysophosphatidic acid stimulation. Thus, the data suggest that after the expression of ATF3 and miR-30c-2-3p are elicited by lysophosphatidic acid, subsequently miR-30c-2-3p negatively regulates the expression of ATF3 through post-transcriptional silencing, which prevents further ATF3-related outcomes as a consequence of lysophosphatidic acid signaling. PMID:26418018

  14. Quercetin represses apolipoprotein B expression by inhibiting the transcriptional activity of C/EBPβ.

    PubMed

    Shimizu, Makoto; Li, Juan; Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5'-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes. PMID:25875015

  15. Green tea polyphenols added to IVM and IVC media affect transcript abundance, apoptosis, and pregnancy rates in bovine embryos.

    PubMed

    Wang, Zhengguang; Fu, Chunquan; Yu, Songdong

    2013-01-01

    Three experiments were conducted to examine the effects of green tea polyphenols (GTP) during IVM and IVC on apoptosis and relative transcript abundance (RA) of three genes controlling antioxidant enzymes, as well as subsequent pregnancy rates. In experiment 1, oocytes were matured in the presence of 0, 10, 15, or 25 μM GTP for 24 hours. The GTP dose applied to IVM medium was followed by the same dose supplemented to IVC medium, so oocytes and embryos of a given group were cultured in similar conditions. This resulted in a total of four groups (three experimental groups and the control). After IVF, presumptive zygotes were cultured in medium containing 0 to 25 μM GTP for 8 days. The addition of 15 μM GTP during IVM and IVC increased RA of SOD1, CAT, and GPX genes in blastocysts compared with the control (P < 0.05). Increase in GTP doses from 15 to 25 μM did not further increase the transcript level. In experiment 2, effects of GTP doses on apoptosis were investigated in bovine blastocysts. Two of the applied GTP doses (10 and 15 μM) decreased the apoptotic index (AI) in blastocysts (7.4% and 6.2% respectively) compared with the control (9.3%; P < 0.05). However, the highest GTP dose used (25 μM) caused an increase in AI compared with a dose of 15 μM (P < 0.05). Considering the results of experiment 1 and 2, the effects of 15 μM GTP treatment during IVM and IVC on pregnancy rate was evaluated after embryo transfer in experiment 3. Cows receiving embryos treated with 15 μM GTP had higher pregnancy rates on Day 30 (34.8% vs. 28.6%) and Day 60 (34.8% vs. 23.9%) than those receiving control embryos (P < 0.05). In conclusion, addition of 15 μM GTP during IVM and IVC improved pregnancy rates; this improvement seemed to be associated with the increase of RA of antioxidant enzyme genes and the decrease in AI in bovine blastocysts. PMID:23122606

  16. RNA Synthesis in Cells Infected with Herpes Simplex Virus VII. Control of Transcription and of Transcript Abundancies of Unique and Common Sequences of Herpes Simplex Virus 1 and 2

    PubMed Central

    Frenkel, Niza; Silverstein, Saul; Cassai, Enzo; Roizman, Bernard

    1973-01-01

    Analysis of the kinetics of hybridization in liquid of labeled herpes simplex virus (HSV) 1 and 2 DNAs with excess unlabeled RNA extracted at 2 (early) and 8 (late) h postinfection revealed the following. (i) The RNA transcripts present in the HSV-1-infected cells at 2 and 8 h postinfection are complementary to 44 and 48% of HSV-1 DNA. The RNA transcripts present in the HSV-2-infected cells at 2 and 8 h postinfection are complementary to 21 and 50% of HSV-2 DNA. (ii) The transcripts present in 2-h HSV-1- or HSV-2-infected cells treated with cycloheximide are complementary to 44 and 45% of the respective DNAs. (iii) The RNA transcripts present in the HSV-1-infected cells at 2 h postinfection and in HSV-2-infected cells at 8 h postinfection form 2 classes, abundant and scarce, differing in molar concentrations. The RNA transcripts present in the HSV-2-infected cells at 2 h postinfection form only one abundance class. (iv) The transcripts present in the HSV-1-infected cells at 8 h postinfection are complementary to 24% of HSV-2 DNA and therefore 50% of the transcribed HSV-1 sequences are shared by the two viruses. Of the RNA sequences complementary to HSV-2 DNA, 13% arise from HSV-1 templates specifying abundant RNA and 11% arise from HSV-1 templates specifying scarce RNA. Thus, the DNA sequences shared in common by HSV-1 and HSV-2 DNAs constitute 71% of the HSV-1 templates specifying abundant RNA and 39% of sequences specifying scarce RNA. PMID:4351458

  17. Transcriptional and Posttranscriptional Regulation of Dormancy-Associated Gene Expression by Afterripening in Wild Oat.

    PubMed Central

    Li, Bailin.; Foley, M. E.

    1996-01-01

    To investigate whether the afterripening-induced changes in gene expression are at the transcriptional or posttranscriptional level in wild oat (Avena fatua) seeds, we chose four dormancy-associated genes to estimate their relative transcription activities and the stability of their corresponding transcripts in afterripened and dormant embryos. The transcription activities for those genes were 1.5 to 7 times higher in dormant embryos than in afterripened embryos 24 h after incubation, as determined by nuclear run-on assays. The half-lives of the transcripts in afterripened and dormant embryos were estimated by the use of actinomycin D. The application of actinomycin D resulted in the stabilization of the transcripts. Nevertheless, the results indicated that the half-lives of the transcripts were much greater in dormant embryos than in afterripened embryos. Considering the great differences in the steady-state levels and the half-lives of the mRNAs, and the relatively small differences in transcription activities of the genes between afterripened and dormant embryos, we conclude that afterripening regulates the expression of dormancy-associated genes in excised embryos mainly at the posttranscriptional level and that transcriptional control plays a minor role. PMID:12226258

  18. AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal transcription factors.

    PubMed

    Zhang, Hong-Mei; Liu, Teng; Liu, Chun-Jie; Song, Shuangyang; Zhang, Xiantong; Liu, Wei; Jia, Haibo; Xue, Yu; Guo, An-Yuan

    2015-01-01

    Transcription factors (TFs) are key regulators for gene expression. Here we updated the animal TF database AnimalTFDB to version 2.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/). Using the improved prediction pipeline, we identified 72 336 TF genes, 21 053 transcription co-factor genes and 6502 chromatin remodeling factor genes from 65 species covering main animal lineages. Besides the abundant annotations (basic information, gene model, protein functional domain, gene ontology, pathway, protein interaction, ortholog and paralog, etc.) in the previous version, we made several new features and functions in the updated version. These new features are: (i) gene expression from RNA-Seq for nine model species, (ii) gene phenotype information, (iii) multiple sequence alignment of TF DNA-binding domains, and the weblogo and phylogenetic tree based on the alignment, (iv) a TF prediction server to identify new TFs from input sequences and (v) a BLAST server to search against TFs in AnimalTFDB. A new nice web interface was designed for AnimalTFDB 2.0 allowing users to browse and search all data in the database. We aim to maintain the AnimalTFDB as a solid resource for TF identification and studies of transcription regulation and comparative genomics. PMID:25262351

  19. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  20. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  1. Intragenic transcription of a noncoding RNA modulates expression of ASP3 in budding yeast

    PubMed Central

    Huang, Yu-Ching; Chen, Hung-Ta; Teng, Shu-Chun

    2010-01-01

    Inter- and intragenic noncoding transcription is widespread in eukaryotic genomes; however, the purpose of these types of transcription is still poorly understood. Here, we show that intragenic sense-oriented transcription within the budding yeast ASP3 coding region regulates a constitutively and immediately accessible promoter for the transcription of full-length ASP3. Expression of this short intragenic transcript is independent of GATA transcription factors, which are essential for the activation of full-length ASP3, and independent of RNA polymerase II (RNAPII). Furthermore, we found that an intragenic control element is required for the expression of this noncoding RNA (ncRNA). Continuous expression of the short ncRNA maintains a high level of trimethylation of histone H3 at lysine 4 (H3K4me3) at the ASP3 promoter and makes this region more accessible for RNAPII to transcribe the full-length ASP3. Our results show for the first time that intragenic noncoding transcription promotes gene expression. PMID:20817754

  2. Comparison of strategies for identification of regulatory quantitative trait loci of transcript expression traits.

    PubMed

    Franceschini, Nora; Wojczynski, Mary K; Göring, Harald H H; Peralta, Juan Manuel; Dyer, Thomas D; Li, Xia; Li, Hao; North, Kari E

    2007-01-01

    In order to identify regulatory genes, we determined the heritability of gene transcripts, performed linkage analysis to identify quantitative trait loci (QTLs), and evaluated the evidence for shared genetic effects among transcripts with co-localized QTLs in non-diseased participants from 14 CEPH (Centre d'Etude du Polymorphisme Humain) Utah families. Seventy-six percent of transcripts had a significant heritability and 54% of them had LOD score >or= 1.8. Bivariate genetic analysis of 15 transcripts that had co-localized QTLs on 4q28.2-q31.1 identified significant genetic correlation among some transcripts although no improvement in the magnitude of LOD scores in this region was noted. Similar results were found in analysis of 12 transcripts, that had co-localized QTLs in the 13q34 region. Principal-component analyses did not improve the ability to identify chromosomal regions of co-localized gene expressions. PMID:18466588

  3. Comparison of strategies for identification of regulatory quantitative trait loci of transcript expression traits

    PubMed Central

    Franceschini, Nora; Wojczynski, Mary K; Göring, Harald HH; Peralta, Juan Manuel; Dyer, Thomas D; Li, Xia; Li, Hao; North, Kari E

    2007-01-01

    In order to identify regulatory genes, we determined the heritability of gene transcripts, performed linkage analysis to identify quantitative trait loci (QTLs), and evaluated the evidence for shared genetic effects among transcripts with co-localized QTLs in non-diseased participants from 14 CEPH (Centre d'Etude du Polymorphisme Humain) Utah families. Seventy-six percent of transcripts had a significant heritability and 54% of them had LOD score ≥ 1.8. Bivariate genetic analysis of 15 transcripts that had co-localized QTLs on 4q28.2-q31.1 identified significant genetic correlation among some transcripts although no improvement in the magnitude of LOD scores in this region was noted. Similar results were found in analysis of 12 transcripts, that had co-localized QTLs in the 13q34 region. Principal-component analyses did not improve the ability to identify chromosomal regions of co-localized gene expressions. PMID:18466588

  4. Bimodal expression of PHO84 is modulated by early termination of antisense transcription

    PubMed Central

    Castelnuovo, Manuele; Rahman, Samir; Guffanti, Elisa; Infantino, Valentina; Stutz, Françoise; Zenklusen, Daniel

    2016-01-01

    Many S. cerevisiae genes encode antisense transcripts some of which are unstable and degraded by the exosome component Rrp6. Loss of Rrp6 results in the accumulation of long PHO84 antisense RNAs and repression of sense transcription through PHO84 promoter deacetylation. We used single molecule resolution fluorescent in situ hybridization (smFISH) to investigate antisense-mediated transcription regulation. We show that PHO84 antisense RNA acts as a bimodal switch, where continuous low frequency antisense transcription represses sense expression within individual cells. Surprisingly, antisense RNAs do not accumulate at the PHO84 gene but are exported to the cytoplasm. Furthermore, loss of Rrp6, rather than stabilizing PHO84 antisense RNA, promotes antisense elongation by reducing its early transcription termination by Nrd1-Nab3-Sen1. These observations suggest that PHO84 silencing results from constant low frequency antisense transcription through the promoter rather than its static accumulation at the repressed gene. PMID:23770821

  5. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. PMID:27064123

  6. Degradation of Cellular miR-27 by a Novel, Highly Abundant Viral Transcript Is Important for Efficient Virus Replication In Vivo

    PubMed Central

    Rädle, Bernd; Lisnić, Vanda J.; Tuddenham, Lee; Chane-Woon-Ming, Béatrice; Ruzsics, Zsolt; Erhard, Florian; Benkartek, Corinna; Babic, Marina; Zimmer, Ralf; Trgovcich, Joanne; Koszinowski, Ulrich H.; Jonjic, Stipan; Pfeffer, Sébastien

    2012-01-01

    Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3′-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3′-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3′-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo. PMID:22346748

  7. Parathyroid hormone inhibition of Na(+)/H(+) exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression.

    PubMed

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na(+)/H(+) exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the -61 to -42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. PMID:25888790

  8. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3.

    PubMed

    Friese, Andreas; Kaltschmidt, Julia A; Ladle, David R; Sigrist, Markus; Jessell, Thomas M; Arber, Silvia

    2009-08-11

    Spinal motor neurons are specified to innervate different muscle targets through combinatorial programs of transcription factor expression. Whether transcriptional programs also establish finer aspects of motor neuron subtype identity, notably the prominent functional distinction between alpha and gamma motor neurons, remains unclear. In this study, we identify DNA binding proteins with complementary expression profiles in alpha and gamma motor neurons, providing evidence for molecular distinctions in these two motor neuron subtypes. The transcription factor Err3 is expressed at high levels in gamma but not alpha motor neurons, whereas the neuronal DNA binding protein NeuN marks alpha but not gamma motor neurons. Signals from muscle spindles are needed to support the differentiation of Err3(on)/NeuN(off) presumptive gamma motor neurons, whereas direct proprioceptive sensory input to a motor neuron pool is apparently dispensable. Together, these findings provide evidence that transcriptional programs define functionally distinct motor neuron subpopulations, even within anatomically defined motor pools. PMID:19651609

  9. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881

  10. mTOR transcriptionally and post-transcriptionally regulates Npm1 gene expression to contribute to enhanced proliferation in cells with Pten inactivation.

    PubMed

    Boudra, Rafik; Lagrafeuille, Rosyne; Lours-Calet, Corinne; de Joussineau, Cyrille; Loubeau-Legros, Gaëlle; Chaveroux, Cédric; Saru, Jean-Paul; Baron, Silvère; Morel, Laurent; Beaudoin, Claude

    2016-05-18

    The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating data highlight supplementary role(s) for this serine/threonine kinase within the nucleus. Indeed, the nuclear activities of mTOR are currently associated with the control of protein biosynthetic capacity through its ability to regulate the expression of gene products involved in the control of ribosomal biogenesis and proliferation. Using primary murine embryo fibroblasts (MEFs), we observed that cells with overactive mTOR signaling displayed higher abundance for the growth-associated Npm1 protein, in what represents a novel mechanism of Npm1 gene regulation. We show that Npm1 gene expression is dependent on mTOR as demonstrated by treatment of wild-type and Pten inactivated MEFs cultured with rapamycin or by transient transfections of small interfering RNA directed against mTOR. In accordance, the mTOR kinase localizes to the Npm1 promoter gene in vivo and it enhances the activity of a human NPM1-luciferase reporter gene providing an opportunity for direct control. Interestingly, rapamycin did not dislodge mTOR from the Npm1 promoter but rather strongly destabilized the Npm1 transcript by increasing its turnover. Using a prostate-specific Pten-deleted mouse model of cancer, Npm1 mRNA levels were found up-regulated and sensitive to rapamycin. Finally, we also showed that Npm1 is required to promote mTOR-dependent cell proliferation. We therefore proposed a model whereby mTOR is closely involved in the transcriptional and posttranscriptional regulation of Npm1 gene expression with implications in development and diseases including cancer. PMID:27050906

  11. Differential Gene Expression and Protein Abundance Evince Ontogenetic Bias toward Castes in a Primitively Eusocial Wasp

    PubMed Central

    Hunt, James H.; Wolschin, Florian; Henshaw, Michael T.; Newman, Thomas C.; Toth, Amy L.; Amdam, Gro V.

    2010-01-01

    Polistes paper wasps are models for understanding conditions that may have characterized the origin of worker and queen castes and, therefore, the origin of paper wasp sociality. Polistes is “primitively eusocial” by virtue of having context-dependent caste determination and no morphological differences between castes. Even so, Polistes colonies have a temporal pattern in which most female larvae reared by the foundress become workers, and most reared by workers become future-reproductive gynes. This pattern is hypothesized to reflect development onto two pathways, which may utilize mechanisms that regulate diapause in other insects. Using expressed sequence tags (ESTs) for Polistes metricus we selected candidate genes differentially expressed in other insects in three categories: 1) diapause vs. non-diapause phenotypes and/or worker vs. queen differentiation, 2) behavioral subcastes of worker honey bees, and 3) no a priori expectation of a role in worker/gyne development. We also used a non-targeted proteomics screen to test for peptide/protein abundance differences that could reflect larval developmental divergence. We found that foundress-reared larvae (putative worker-destined) and worker-reared larvae (putative gyne-destined) differed in quantitative expression of sixteen genes, twelve of which were associated with caste and/or diapause in other insects, and they also differed in abundance of nine peptides/proteins. Some differentially-expressed genes are involved in diapause regulation in other insects, and other differentially-expressed genes and proteins are involved in the insulin signaling pathway, nutrient metabolism, and caste determination in highly social bees. Differential expression of a gene and a peptide encoding hexameric storage proteins is especially noteworthy. Although not conclusive, our results support hypotheses of 1) larval developmental pathway divergence that can lead to caste bias in adults and 2) nutritional differences as the

  12. Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev.

    PubMed

    Nekhai, Sergei; Jeang, Kuan-Teh

    2006-12-01

    The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new therapy. Targeting host cell factors that regulate HIV-1 replication might be one way to overcome the propensity for HIV-1 to mutate in order to develop resistance to antivirals. This article reviews the interplay between viral proteins Tat and Rev and their cellular cofactors in the transcriptional and post-transcriptional regulation of HIV-1 gene expression. HIV-1 Tat regulates viral transcription by recruiting cellular factors to the HIV promoter. Tat interacts with protein kinase complexes Cdk9/cyclin T1 and Cdk2/cyclin E; acetyltransferases p300/CBP, p300/CBP-associated factor and hGCN5; protein phosphatases and other factors. HIV-1 Rev regulates post-transcriptional processing of viral mRNAs. Rev primarily functions to export unspliced and partially spliced viral RNAs from the nucleus into the cytoplasm. For this activity, Rev cooperates with cellular transport protein CRM1 and RNA helicases DDX1 and DDX3, amongst others. PMID:17661632

  13. The expression of ELK transcription factors in adult DRG: Novel isoforms, antisense transcripts and upregulation by nerve damage.

    PubMed

    Kerr, Niall; Pintzas, Alexander; Holmes, Fiona; Hobson, Sally-Ann; Pope, Robert; Wallace, Mark; Wasylyk, Christine; Wasylyk, Bohdan; Wynick, David

    2010-06-01

    ELK transcription factors are known to be expressed in a number of regions in the nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fails to bind ETS binding sites and yet can activate transcription by an indirect mechanism. The Elk3 and Elk4 genes are overlapped by co-expressed Pctk2 (Cdk17) and Mfsd4 genes, respectively, with the potential formation of Elk3/Pctaire2 and Elk4/Mfsd4 sense-antisense mRNA heteroduplexes. After peripheral nerve injury the Elk3 mRNA isoforms are each upregulated approximately 2.3-fold in DRG (P<0.005), whereas the natural antisense Pctaire2 isoforms show only a small increase (21%, P<0.01) and Elk1 and Elk4 mRNAs are unchanged. PMID:20304071

  14. SOLiD-SAGE of Endophyte-Infected Red Fescue Reveals Numerous Effects on Host Transcriptome and an Abundance of Highly Expressed Fungal Secreted Proteins

    PubMed Central

    Ambrose, Karen V.; Belanger, Faith C.

    2012-01-01

    One of the most important plant-fungal symbiotic relationships is that of cool season grasses with endophytic fungi of the genera Epichloë and Neotyphodium. These associations often confer benefits, such as resistance to herbivores and improved drought tolerance, to the hosts. One benefit that appears to be unique to fine fescue grasses is disease resistance. As a first step towards understanding the basis of the endophyte-mediated disease resistance in Festuca rubra we carried out a SOLiD-SAGE quantitative transcriptome comparison of endophyte-free and Epichloë festucae-infected F. rubra. Over 200 plant genes involved in a wide variety of physiological processes were statistically significantly differentially expressed between the two samples. Many of the endophyte expressed genes were surprisingly abundant, with the most abundant fungal tag representing over 10% of the fungal mapped tags. Many of the abundant fungal tags were for secreted proteins. The second most abundantly expressed fungal gene was for a secreted antifungal protein and is of particular interest regarding the endophyte-mediated disease resistance. Similar genes in Penicillium and Aspergillus spp. have been demonstrated to have antifungal activity. Of the 10 epichloae whole genome sequences available, only one isolate of E. festucae and Neotyphodium gansuense var inebrians have an antifungal protein gene. The uniqueness of this gene in E. festucae from F. rubra, its transcript abundance, and the secreted nature of the protein, all suggest it may be involved in the disease resistance conferred to the host, which is a unique feature of the fine fescue–endophyte symbiosis. PMID:23285269

  15. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation

    PubMed Central

    Junier, Ivan; Rivoire, Olivier

    2016-01-01

    Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. Here, we analyze hundreds of bacterial genomes to identify supra-operonic segments of genes that are proximal in a large number of genomes. We show that these synteny segments correspond to genomic units of strong transcriptional co-expression. Structurally, the segments contain operons with specific relative orientations (co-directional or divergent) and nucleoid-associated proteins are found to bind at their boundaries. Functionally, operons inside a same segment are highly co-expressed even in the apparent absence of regulatory factors at their promoter regions. Remote operons along DNA can also be co-expressed if their corresponding segments share a transcriptional or sigma factor, without requiring these factors to bind directly to the promoters of the operons. As evidence that these results apply across the bacterial kingdom, we demonstrate them both in the Gram-negative bacterium Escherichia coli and in the Gram-positive bacterium Bacillus subtilis. The underlying process that we propose involves only RNA-polymerases and DNA: it implies that the transcription of an operon mechanically enhances the transcription of adjacent operons. In support of a primary role of this regulation by facilitated co-transcription, we show that the transcription en bloc of successive operons as a result of transcriptional read-through is strongly and specifically enhanced in synteny segments. Finally, our analysis indicates that facilitated co-transcription may be evolutionary primitive and may apply beyond bacteria. PMID:27195891

  16. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection

    PubMed Central

    McNally, Kristin L.; Mitzel, Dana N.; Anderson, Jennifer M.; Ribeiro, José M. C.; Valenzuela, Jesus G.; Myers, Timothy G.; Godinez, Alvaro; Wolfinbarger, James B.; Best, Sonja M.; Bloom, Marshall E.

    2011-01-01

    Ixodid ticks are vectors of human diseases such as Lyme disease, babesiosis, anaplasmosis, and tick-borne encephalitis. These diseases cause significant morbidity and mortality worldwide and are transmitted to humans during tick feeding. The tick-host-pathogen interface is a complex environment where host responses are modulated by the molecules in tick saliva to enable the acquisition of a blood meal. Disruption of host responses at the site of the tick bite may also provide an advantage for pathogens to survive and replicate. Thus, the molecules in tick saliva not only aid the tick in securing a nutrient-rich blood meal, but can also enhance the transmission and acquisition of pathogens. To investigate the effect of feeding and flavivirus infection on the salivary gland transcript expression profile in ticks, a first-generation microarray was developed using ESTs from a cDNA library derived from Ixodes scapularis salivary glands. When the salivary gland transcript profile in ticks feeding over the course of 3 days was compared to that in unfed ticks, a dramatic increase in transcripts related to metabolism was observed. Specifically, 578 transcripts were up-regulated compared to 151 down-regulated transcripts in fed ticks. When specific time points post attachment were analyzed, a temporal pattern of gene expression was observed. When Langat virus-infected ticks were compared to mock-infected ticks, transcript expression changes were observed at all 3 days of feeding. Differentially regulated transcripts include putative secreted proteins, lipocalins, Kunitz domain-containing proteins, anti-microbial peptides, and transcripts of unknown function. These studies identify salivary gland transcripts that are differentially regulated during feeding or in the context of flavivirus infection in Ixodes scapularis nymphs, a medically important disease vector. Further analysis of these transcripts may identify salivary factors that affect the transmission or replication of

  17. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection.

    PubMed

    McNally, Kristin L; Mitzel, Dana N; Anderson, Jennifer M; Ribeiro, José M C; Valenzuela, Jesus G; Myers, Timothy G; Godinez, Alvaro; Wolfinbarger, James B; Best, Sonja M; Bloom, Marshall E

    2012-02-01

    Ixodid ticks are vectors of human diseases such as Lyme disease, babesiosis, anaplasmosis, and tick-borne encephalitis. These diseases cause significant morbidity and mortality worldwide and are transmitted to humans during tick feeding. The tick-host-pathogen interface is a complex environment where host responses are modulated by the molecules in tick saliva to enable the acquisition of a blood meal. Disruption of host responses at the site of the tick bite may also provide an advantage for pathogens to survive and replicate. Thus, the molecules in tick saliva not only aid the tick in securing a nutrient-rich blood meal, but can also enhance the transmission and acquisition of pathogens. To investigate the effect of feeding and flavivirus infection on the salivary gland transcript expression profile in ticks, a first-generation microarray was developed using ESTs from a cDNA library derived from Ixodes scapularis salivary glands. When the salivary gland transcript profile in ticks feeding over the course of 3 days was compared to that in unfed ticks, a dramatic increase in transcripts related to metabolism was observed. Specifically, 578 transcripts were up-regulated compared to 151 down-regulated transcripts in response to feeding. When specific time points post attachment were analyzed, a temporal pattern of gene expression was observed. When Langat virus-infected ticks were compared to mock-infected ticks, transcript expression changes were observed at all 3 days of feeding. Differentially regulated transcripts include putative secreted proteins, lipocalins, Kunitz domain-containing proteins, anti-microbial peptides, and transcripts of unknown function. These studies identify salivary gland transcripts that are differentially regulated during feeding or in the context of flavivirus infection in Ixodes scapularis nymphs, a medically important disease vector. Further analysis of these transcripts may identify salivary factors that affect the transmission or

  18. Transcription factor expression in lipopolysaccharide-activated peripheral-blood-derived mononuclear cells

    PubMed Central

    Roach, Jared C.; Smith, Kelly D.; Strobe, Katie L.; Nissen, Stephanie M.; Haudenschild, Christian D.; Zhou, Daixing; Vasicek, Thomas J.; Held, G. A.; Stolovitzky, Gustavo A.; Hood, Leroy E.; Aderem, Alan

    2007-01-01

    Transcription factors play a key role in integrating and modulating biological information. In this study, we comprehensively measured the changing abundances of mRNAs over a time course of activation of human peripheral-blood-derived mononuclear cells (“macrophages”) with lipopolysaccharide. Global and dynamic analysis of transcription factors in response to a physiological stimulus has yet to be achieved in a human system, and our efforts significantly advanced this goal. We used multiple global high-throughput technologies for measuring mRNA levels, including massively parallel signature sequencing and GeneChip microarrays. We identified 92 of 1,288 known human transcription factors as having significantly measurable changes during our 24-h time course. At least 42 of these changes were previously unidentified in this system. Our data demonstrate that some transcription factors operate in a functional range below 10 transcripts per cell, whereas others operate in a range three orders of magnitude greater. The highly reproducible response of many mRNAs indicates feedback control. A broad range of activation kinetics was observed; thus, combinatorial regulation by small subsets of transcription factors would permit almost any timing input to cis-regulatory elements controlling gene transcription. PMID:17913878

  19. Abundant expression of myosin heavy-chain IIB RNA in a subset of human masseter muscle fibres

    PubMed Central

    Horton, Michael J.; Brandon, Carla A.; Morris, Terence J.; Braun, Thomas W.; Yaw, Kenneth M.; Sciote, James J.

    2013-01-01

    Type IIB fast fibres are typically demonstrated in human skeletal muscle by histochemical staining for the ATPase activity of myosin heavy-chain (MyHC) isoforms. However, the monoclonal antibody specific for the mammalian IIB isoform does not detect MyHC IIB protein in man and MyHC IIX RNA is found in histochemically identified IIB fibres, suggesting that the IIB protein isoform may not be present in man; if this is not so, jaw-closing muscles, which express a diversity of isoforms, are likely candidates for their presence. ATPase histochemistry, immunohistochemistry polyacrylamide gel electrophoresis and in situ hybridization, which included a MyHC IIB-specific mRNA riboprobe, were used to compare the composition and RNA expression of MyHC isoforms in a human jaw-closing muscle, the masseter, an upper limb muscle, the triceps, an abdominal muscle, the external oblique, and a lower limb muscle, the gastrocnemius. The external oblique contained a mixture of histochemically defined type I, IIA and IIB fibres distributed in a mosaic pattern, while the triceps and gastrocnemius contained only type I and IIA fibres. Typical of limb muscle fibres, the MyHC I-specific mRNA probes hybridized with histochemically defined type I fibres, the IIA-specific probes with type IIA fibres and the IIX-specific probes with type IIB fibres. The MyHC IIB mRNA probe hybridized only with a few histochemically defined type I fibres in the sample from the external oblique; in addition to this IIB message, these fibres also expressed RNAs for MyHC I, IIA and IIX. MyHC IIB RNA was abundantly expressed in histochemical and immunohistochemical type IIA fibres of the masseter, together with transcripts for IIA and in some cases IIX. No MyHC IIB protein was detected in fibres and extracts of either the external oblique or masseter by immunohistochemistry, immunoblotting and electrophoresis. Thus, IIB RNA, but not protein, was found in the fibres of two different human skeletal muscles. It is

  20. Expression of Drosophila Forkhead Transcription Factors During Kidney Development

    PubMed Central

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F.; Zuo, Xiaofeng; Lipschutz, Joshua H.

    2014-01-01

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ~2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified. PMID:24491558

  1. The Role of Transcription Factors at Antisense-Expressing Gene Pairs in Yeast

    PubMed Central

    Mostovoy, Yulia; Thiemicke, Alexander; Hsu, Tiffany Y.; Brem, Rachel B.

    2016-01-01

    Genes encoded close to one another on the chromosome are often coexpressed, by a mechanism and regulatory logic that remain poorly understood. We surveyed the yeast genome for tandem gene pairs oriented tail-to-head at which expression antisense to the upstream gene was conserved across species. The intergenic region at most such tandem pairs is a bidirectional promoter, shared by the downstream gene mRNA and the upstream antisense transcript. Genomic analyses of these intergenic loci revealed distinctive patterns of transcription factor regulation. Mutation of a given transcription factor verified its role as a regulator in trans of tandem gene pair loci, including the proximally initiating upstream antisense transcript and downstream mRNA and the distally initiating upstream mRNA. To investigate cis-regulatory activity at such a locus, we focused on the stress-induced NAD(P)H dehydratase YKL151C and its downstream neighbor, the metabolic enzyme GPM1. Previous work has implicated the region between these genes in regulation of GPM1 expression; our mutation experiments established its function in rich medium as a repressor in cis of the distally initiating YKL151C sense RNA, and an activator of the proximally initiating YKL151C antisense RNA. Wild-type expression of all three transcripts required the transcription factor Gcr2. Thus, at this locus, the intergenic region serves as a focal point of regulatory input, driving antisense expression and mediating the coordinated regulation of YKL151C and GPM1. Together, our findings implicate transcription factors in the joint control of neighboring genes specialized to opposing conditions and the antisense transcripts expressed between them. PMID:27190003

  2. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer

    PubMed Central

    Wiesner, Thomas; Lee, William; Obenauf, Anna C.; Ran, Leili; Murali, Rajmohan; Zhang, Qi Fan; Wong, Elissa W. P.; Hu, Wenhuo; Scott, Sasinya N.; Shah, Ronak H.; Landa, Iñigo; Button, Julia; Lailler, Nathalie; Sboner, Andrea; Gao, Dong; Murphy, Devan A.; Cao, Zhen; Shukla, Shipra; Hollmann, Travis J.; Wang, Lu; Borsu, Laetitia; Merghoub, Taha; Schwartz, Gary K.; Postow, Michael A.; Ariyan, Charlotte E.; Fagin, James A.; Zheng, Deyou; Ladanyi, Marc; Busam, Klaus J.; Berger, Michael F.; Chen, Yu; Chi, Ping

    2016-01-01

    Activation of oncogenes by mechanisms other than genetic aberrations such as mutations, translocations, or amplifications is largely undefined. Here we report a novel isoform of the anaplastic lymphoma kinase (ALK) that is expressed in ~ 11% of melanomas and sporadically in other human cancer types, but not in normal tissues. The novel ALK transcript initiates from a de novo alternative transcription initiation (ATI) site in ALK intron 19, and was termed ALKATI. In ALKATI-expressing tumours, the ATI site is enriched for H3K4me3 and RNA polymerase II, chromatin marks characteristic of active transcription initiation sites1. ALKATI is expressed from both ALK alleles, and no recurrent genetic aberrations are found at the ALK locus, indicating that the transcriptional activation is independent of genetic aberrations at the ALK locus. The ALKATI transcript encodes three proteins with molecular weights of 61.1, 60.8 and 58.7 kilodaltons, consisting primarily of the intracellular tyrosine kinase domain. ALKATI stimulates multiple oncogenic signalling pathways, drives growth-factor-independent cell proliferation in vitro, and promotes tumorigenesis in vivo in mouse models. ALK inhibitors can suppress the kinase activity of ALKATI, suggesting that patients with ALKATI-expressing tumours may benefit from ALK inhibitors. Our findings suggest a novel mechanism of oncogene activation in cancer through de novo alternative transcription initiation. PMID:26444240

  3. Encoding four gene expression programs in the activation dynamics of a single transcription factor.

    PubMed

    Hansen, Anders S; O'Shea, Erin K

    2016-04-01

    Cellular signaling response pathways often exhibit a bow-tie topology [1,2]: multiple upstream stress signals converge on a single shared transcription factor, which is thought to induce different downstream gene expression programs (Figure 1A). However, if several different signals activate the same transcription factor, can each signal then induce a specific gene expression response? A growing body of literature supports a temporal coding theory where information about environmental signals can be encoded, at least partially, in the temporal dynamics of the shared transcription factor [1,2]. For example, in the case of the budding yeast transcription factor Msn2, different stresses induce distinct Msn2 activation dynamics: Msn2 shows pulsatile nuclear activation with dose-dependent frequency under glucose limitation, but sustained nuclear activation with dose-dependent amplitude under oxidative stress [3]. These dynamic patterns can then lead to differential gene expression responses [3-5], but it is not known how much specificity can be obtained. Thus, a major question of this temporal coding theory is how many gene response programs or cellular functions can be robustly encoded by dynamic control of a single transcription factor. Here we provide the first direct evidence that, simply by regulating the activation dynamics of a single transcription factor, it is possible to preferentially induce four distinct gene expression programs. PMID:27046808

  4. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    SciTech Connect

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  5. Ehrlichia chaffeensis Transcriptome in Mammalian and Arthropod Hosts Reveals Differential Gene Expression and Post Transcriptional Regulation

    PubMed Central

    Kuriakose, Jeeba A.; Miyashiro, Simone; Luo, Tian; Zhu, Bing; McBride, Jere W.

    2011-01-01

    Background Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray. Methodology/Principal Findings The majority (∼80%) of E. chaffeensis genes were expressed during infection in human and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that were 30–80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally regulated. Conclusions/Significance Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes

  6. Human transcriptional interactome of chromatin contribute to gene co-expression

    PubMed Central

    2010-01-01

    Background Transcriptional interactome of chromatin is one of the important mechanisms in gene transcription regulation. By chromatin conformation capture and 3D FISH experiments, several chromatin interactions cases among sequence-distant genes or even inter-chromatin genes were reported. However, on genomics level, there is still little evidence to support these mechanisms. Recently based on Hi-C experiment, a genome-wide picture of chromatin interactions in human cells was presented. It provides a useful material for analysing whether the mechanism of transcriptional interactome is common. Results The main work here is to demonstrate whether the effects of transcriptional interactome on gene co-expression exist on genomic level. While controlling the effects of transcription factors control similarities (TCS), we tested the correlation between Hi-C interaction and the mutual ranks of gene co-expression rates (provided by COXPRESdb) of intra-chromatin gene pairs. We used 6,084 genes with both TF annotation and co-expression information, and matched them into 273,458 pairs with similar Hi-C interaction ranks in different cell types. The results illustrate that co-expression is strongly associated with chromatin interaction. Further analysis using GO annotation reveals potential correlation between gene function similarity, Hi-C interaction and their co-expression. Conclusions According to the results in this research, the intra-chromatin interactome may have relation to gene function and associate with co-expression. This study provides evidence for illustrating the effect of transcriptional interactome on transcription regulation. PMID:21156067

  7. Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia.

    PubMed

    Tomich, Mladen; Mohr, Christian D

    2004-02-01

    Burkholderia cenocepacia is an important member of the Burkholderia cepacia complex, a group of closely related bacteria that inhabits a wide variety of environmental niches in nature and that also colonizes the lungs of compromised humans. Certain strains of B. cenocepacia express peritrichous adherence organelles known as cable pili, thought to be important in the colonization of the lower respiratory tract. The genetic locus required for cable pilus biogenesis is comprised of at least five genes, designated cblB, cblA, cblC, cblD, and cblS. In this study a transcriptional analysis of cbl gene expression was undertaken. The principal promoter, located upstream of the cbl locus, was identified and characterized. By using lacZ transcriptional fusions, the effects of multiple environmental cues on cbl gene expression were examined. High osmolarity, temperature of 37 degrees C, acidic pH, and low iron bioavailability were found to induce cbl gene expression. Northern hybridization analysis of the cbl locus identified a single, stable transcript corresponding to cblA, encoding the major pilin subunit. Transcriptional fusion studies combined with reverse transcription-PCR analysis indicated that the stable cblA transcript is the product of an mRNA processing event. This event may ensure high levels of expression of the major pilin, relative to other components of the assembly pathway. Our findings lend further insight into the control of cable pilus biogenesis in B. cenocepacia and provide evidence for regulation of cbl gene expression on both the transcriptional and posttranscriptional levels. PMID:14761995

  8. Characterization and Improvement of RNA-Seq Precision in Quantitative Transcript Expression Profiling

    SciTech Connect

    Labaj, Pawel P.; Leparc, German G.; Linggi, Bryan E.; Markillie, Lye Meng; Wiley, H. S.; Kreil, David P.

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large scale RNA-Seq data sets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target coverage and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive target coverage of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, less than 30% of all transcripts could be quantified reliably with a relative error < 20%. Based on established tools, we then introduce a new approach for mapping and analyzing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.

  9. Expression Profiling of the Maize Flavonoid Pathway Genes Controlled by Estradiol-Inducible Transcription Factors CRC and P

    PubMed Central

    Bruce, Wesley; Folkerts, Otto; Garnaat, Carl; Crasta, Oswald; Roth, Brad; Bowen, Ben

    2000-01-01

    To determine the scope of gene expression controlled by the maize transcription factors C1/R and P, which are responsible for activating flavonoid synthesis, we used GeneCalling, an open-ended, gel-based, mRNA-profiling technology, to analyze cell suspension lines of the maize inbred Black Mexican Sweet (BMS) that harbored estradiol-inducible versions of these factors. BMS cells were transformed with a continually expressed estrogen receptor/maize C1 activator domain fusion gene (ER–C1) and either a fusion of C1 and R (CRC), P, or luciferase genes regulated by a promoter containing four repeats of an estrogen receptor binding site. Increasing amounts of luciferase activity, anthocyanins, and flavan-4-ols were detected in the respective cell lines after the addition of estradiol. The expression of both known and novel genes was detected simultaneously in these BMS lines by profiling the mRNA isolated from replicate samples at 0, 6, and 24 hr after estradiol treatment. Numerous cDNA fragments were identified that showed a twofold or greater difference in abundance at 6 and 24 hr than at 0 hr. The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected. Many novel cDNA fragments were also induced or repressed by lines expressing CRC alone, P alone, or both transcription factors in unique temporal patterns. The temporal differences and the evidence of repression indicate a more diverse set of regulatory controls by CRC or P than originally expected. GeneCalling analysis was successful in detecting members of complex metabolic pathways and uncovering novel genes that were either coincidentally regulated or directly involved in such pathways. PMID:10634908

  10. Scaling of Gene Expression with Transcription-Factor Fugacity

    NASA Astrophysics Data System (ADS)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2014-12-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  11. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  12. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  13. Improved transgene expression fine-tuning in mammalian cells using a novel transcription-translation network.

    PubMed

    Malphettes, Laetitia; Fussenegger, Martin

    2006-08-01

    Following the discovery of RNA interference (RNAi) and related phenomena, novel regulatory processes, attributable to small non-protein-coding RNAs, continue to emerge. Capitalizing on the ability of artificial short interfering RNAs (siRNAs) to trigger degradation of specific target transcripts, and thereby silence desired gene expression, we designed and characterized a generic transcription-translation network in which it is possible to fine-tune heterologous protein production by coordinated transcription and translation interventions using macrolide and tetracycline antibiotics. Integration of siRNA-specific target sequences (TAGs) into the 5' or 3' untranslated regions (5'UTR, 3'UTR) of a desired constitutive transcription unit rendered transgene-encoded protein (erythropoietin, EPO; human placental alkaline phosphatase, SEAP; human vascular endothelial growth factor 121, VEGF(121)) production in mammalian cells responsive to siRNA levels that can be fine-tuned by macrolide-adjustable RNA polymerase II- or III-dependent promoters. Coupling of such macrolide-responsive siRNA-triggered translation control with tetracycline-responsive transcription of tagged transgene mRNAs created an antibiotic-adjustable two-input transcription-translation network characterized by elimination of detectable leaky expression with no reduction in maximum protein production levels. This transcription-translation network revealed transgene mRNA depletion to be dependent on siRNA and mRNA levels and that translation control was able to eliminate basal expression inherent to current transcription control modalities. Coupled transcription-translation circuitries have the potential to lead the way towards composite artificial regulatory networks, to enable complex therapeutic interventions in future biopharmaceutical manufacturing, gene therapy and tissue engineering initiatives. PMID:16488500

  14. Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration.

    PubMed Central

    Savard, P; Gates, P B; Brockes, J P

    1988-01-01

    Adult urodele amphibians such as the newt Notophthalmus viridescens are capable of regenerating their limbs and tail by formation of a blastema, a growth zone of mesenchymal progenitor cells. In an attempt to identify genes implicated in specification of the regenerate, we screened a newt forelimb blastema cDNA library with homeobox probes, and isolated and sequenced clones that identify a 1.8 kb polyadenylated transcript containing a homeobox. The transcript is derived from a single gene called NvHbox 1, the newt homologue of XIHbox 1 (Xenopus), HHO.c8 (human) and Hox-6.1 (mouse). The cDNA for the 1.8 kb transcript has two exons as determined by isolation and partial sequencing of a genomic clone. The expression of the transcript shows several interesting features in relation to limb regeneration: (i) Hybridization of Northern blots of poly(A)+ RNA from limb and tail and their respective blastemas shows that the transcript in limb tissues has exons 1 and 2, whereas a 1.8 kb transcript in tail tissues has only exon 2. (ii) The transcript is expressed in limbs of adult newt but not of adult Xenopus, raising the possibility that this contributes to an explanation of the loss of regenerative ability with maturation in adult anurans. (iii) The transcript is expressed at a higher level in a proximal (mid-humerus) blastema than in a distal one (mid-radius). When distal blastemas were proximalized by treatment with retinoic acid, no change in the level of the transcript was detected by Northern analysis at a single time point after amputation.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2907476

  15. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation

    PubMed Central

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A.

    2015-01-01

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2–3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2–3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. PMID:26182383

  16. Expression of cytokine mRNA transcripts in renal cell carcinoma.

    PubMed

    Olive, C; Cheung, C; Nicol, D; Falk, M C

    1998-08-01

    Renal cell carcinoma (RCC) is a solid tumour of the kidney and is the most common renal neoplasm. Despite the presence of tumour infiltrating lymphocytes (TIL) in RCC, these tumours continue to progress in vivo suggesting a poor host immune response to the tumour, and the suppression of TIL effector function. Cytokines are key molecules that modulate the function of T cells. The possibility is investigated that the local production of cytokines in RCC contributes to immunosuppression of TIL. The expression of pro-inflammatory (IFN-gamma/IL-2) and immunosuppressive (IL-10/TGF-beta) cytokine mRNA transcripts was determined in RCC, normal kidney and peripheral blood of RCC patients using a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) with cytokine-specific primers. Following Southern blot hybridization of the PCR products with internal radiolabelled oligonucleotide probes, cytokine transcript levels were measured by densitometry and expressed relative to the glyceraldehyde-3-phosphate dehydrogenase densitometry score. With the exception of IL-10, there were no differences in expression of cytokine mRNA transcripts between the peripheral blood of patients and normal healthy individuals. It was found that TGF-beta transcripts were well represented in normal kidney and RCC. In contrast, the expression of IFN-gamma transcripts, while low in the majority of samples, was significantly increased in RCC when compared to normal kidney (P=0.05). The IL-2 and IL-10 transcripts showed a more variable expression in normal kidney and RCC, with no significant differences in expression between the sample groups. The data demonstrating pro-inflammatory and immunosuppressive cytokine expression in RCC do not support a prominent immunosuppressive cytokine profile in these tumours. PMID:9723777

  17. Pleiohomeotic Interacts with the Core Transcription Elongation Factor Spt5 to Regulate Gene Expression in Drosophila

    PubMed Central

    Jennings, Barbara H.

    2013-01-01

    The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb) is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG) protein Pleiohomeotic (Pho), and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner. PMID:23894613

  18. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    PubMed

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  19. Integration of multi-omics data of a genome-reduced bacterium: Prevalence of post-transcriptional regulation and its correlation with protein abundances

    PubMed Central

    Chen, Wei-Hua; van Noort, Vera; Lluch-Senar, Maria; Hennrich, Marco L.; H. Wodke, Judith A.; Yus, Eva; Alibés, Andreu; Roma, Guglielmo; Mende, Daniel R.; Pesavento, Christina; Typas, Athanasios; Gavin, Anne-Claude; Serrano, Luis; Bork, Peer

    2016-01-01

    We developed a comprehensive resource for the genome-reduced bacterium Mycoplasma pneumoniae comprising 1748 consistently generated ‘-omics’ data sets, and used it to quantify the power of antisense non-coding RNAs (ncRNAs), lysine acetylation, and protein phosphorylation in predicting protein abundance (11%, 24% and 8%, respectively). These factors taken together are four times more predictive of the proteome abundance than of mRNA abundance. In bacteria, post-translational modifications (PTMs) and ncRNA transcription were both found to increase with decreasing genomic GC-content and genome size. Thus, the evolutionary forces constraining genome size and GC-content modify the relative contributions of the different regulatory layers to proteome homeostasis, and impact more genomic and genetic features than previously appreciated. Indeed, these scaling principles will enable us to develop more informed approaches when engineering minimal synthetic genomes. PMID:26773059

  20. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    SciTech Connect

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.

  1. Identification and cDNA cloning of a protein abundantly expressed during apple fruit development.

    PubMed

    Yamada, K; Mori, H; Yamaki, S

    1999-02-01

    A 60 kDa protein (MF-60) abundantly appearing in matured apple fruit was detected by SDS-PAGE of the soluble protein. It was partially purified through Butyl-Toyopearl and DEAE-cellulose. Its partial amino acid sequences were determined to isolate a full-length cDNA. MF-60 cDNA (mf-60) consisting of 1,825 bp containing an open reading frame of 1,524 bp and encoding a 54.2 kDa polypeptide. The deduced polypeptide of mf-60 has 81.1% identity to turgor-responsive protein 26 g from wilted garden pea shoot. Northern blot and Western blot analyses showed that the levels of the protein and the transcript of MF-60 changed in parallel through the developmental season; they were very low in young fruit at 36 DAF and 60 DAF, started to increase at 85 DAF, and then remained at a higher level from 114 DAF to 176 DAF. These results suggested that MF-60 functions are connected with fruit development but not with the fruit ripening induced by ethylene. PMID:10202815

  2. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    SciTech Connect

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  3. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  4. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco.

    PubMed

    Aoyama, T; Dong, C H; Wu, Y; Carabelli, M; Sessa, G; Ruberti, I; Morelli, G; Chua, N H

    1995-11-01

    The Arabidopsis thaliana Athb-1 is a homeobox gene of unknown function. By analogy with homeobox genes of other organisms, its gene product, Athb-1, is most likely a transcription factor involved in developmental processes. We constructed a series of Athb-1-derived genes to examine the roles of Athb-1 in transcriptional regulation and plant development. Athb-1 was found to transactivate a promoter linked to a specific DNA binding site by transient expression assays. In transgenic tobacco plants, overexpression of Athb-1 or its chimeric derivatives with heterologous transactivating domains of the yeast transcription factor GAL4 or herpes simplex virus transcription factor VP16 conferred deetiolated phenotypes in the dark, including cotyledon expansion, true leaf development, and an inhibition of hypocotyl elongation. Expression of Athb-1 or the two chimeric derivatives also affected the development of palisade parenchyma under normal growth conditions, resulting in light green sectors in leaves and cotyledons, whereas other organs in the transgenic plants remained normal. Both developmental phenotypes were induced by glucocorticoid in transgenic plants expressing a chimeric transcription factor comprising the Athb-1 DNA binding domain, the VP16 transactivating domain, and the glucocorticoid receptor domain. Plants with severe inducible phenotypes showed additional abnormality in cotyledon expansion. Our results suggest that Athb-1 is a transcription activator involved in leaf development. PMID:8535134

  5. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco.

    PubMed Central

    Aoyama, T; Dong, C H; Wu, Y; Carabelli, M; Sessa, G; Ruberti, I; Morelli, G; Chua, N H

    1995-01-01

    The Arabidopsis thaliana Athb-1 is a homeobox gene of unknown function. By analogy with homeobox genes of other organisms, its gene product, Athb-1, is most likely a transcription factor involved in developmental processes. We constructed a series of Athb-1-derived genes to examine the roles of Athb-1 in transcriptional regulation and plant development. Athb-1 was found to transactivate a promoter linked to a specific DNA binding site by transient expression assays. In transgenic tobacco plants, overexpression of Athb-1 or its chimeric derivatives with heterologous transactivating domains of the yeast transcription factor GAL4 or herpes simplex virus transcription factor VP16 conferred deetiolated phenotypes in the dark, including cotyledon expansion, true leaf development, and an inhibition of hypocotyl elongation. Expression of Athb-1 or the two chimeric derivatives also affected the development of palisade parenchyma under normal growth conditions, resulting in light green sectors in leaves and cotyledons, whereas other organs in the transgenic plants remained normal. Both developmental phenotypes were induced by glucocorticoid in transgenic plants expressing a chimeric transcription factor comprising the Athb-1 DNA binding domain, the VP16 transactivating domain, and the glucocorticoid receptor domain. Plants with severe inducible phenotypes showed additional abnormality in cotyledon expansion. Our results suggest that Athb-1 is a transcription activator involved in leaf development. PMID:8535134

  6. Tillage Management and Seasonal Effects on Denitrifier Community Abundance, Gene Expression and Structure over Winter.

    PubMed

    Tatti, Enrico; Goyer, Claudia; Burton, David L; Wertz, Sophie; Zebarth, Bernie J; Chantigny, Martin; Filion, Martin

    2015-10-01

    Tillage effects on denitrifier communities and nitrous oxide (N2O) emissions were mainly studied during the growing season. There is limited information for the non-growing season, especially in northern countries where winter has prolonged periods with sub-zero temperatures. The abundance and structure of the denitrifier community, denitrification gene expression and N2O emissions in fields under long-term tillage regimes [no-tillage (NT) vs conventional tillage (CT)] were assessed during two consecutive winters. NT exerted a positive effect on nirK and nosZ denitrifier abundance in both winters compared to CT. Moreover, the two contrasting managements had an opposite influence on nirK and nirS RNA/DNA ratios. Tillage management resulted in different denitrifier community structures during both winters. Seasonal changes were observed in the abundance and the structure of denitrifiers. Interestingly, the RNA/DNA ratios were greater in the coldest months for nirK, nirS and nosZ. N2O emissions were not influenced by management but changed over time with two orders of magnitude increase in the coldest month of both winters. In winter of 2009-2010, emissions were mainly as N2O, whereas in 2010-2011, when soil temperatures were milder due to persistent snow cover, most emissions were as dinitrogen. Results indicated that tillage management during the growing season induced differences in denitrifier community structure that persisted during winter. However, management did not affect the active cold-adapted community structure. PMID:25851442

  7. Novel Sfp1 Transcriptional Regulation of Saccharomyces cerevisiae Gene Expression Changes During Spaceflight

    NASA Astrophysics Data System (ADS)

    Coleman, Chasity B.; Allen, Patricia L.; Rupert, Mark; Goulart, Carla; Hoehn, Alexander; Stodieck, Louis S.; Hammond, Timothy G.

    2008-12-01

    This study identifies transcriptional regulation of stress response element (STRE) genes in space in the model eukaryotic organism, Saccharomyces cerevisiae. To determine transcription-factor dependence, gene expression changes in space were examined in strains bearing green fluorescent protein tagged (GFP-tagged) reporters for YIL052C (Sfp1 dependent with stress), YST-2 (Sfp1/Rap1 dependent with stress), or SSA4 (Msn4 dependent with stress), along with strains of SSA4-GFP and YIL052C-GFP with individual deletions of the Msn4 or Sfp1. When compared to parallel ground controls, spaceflight induces significant gene expression changes in SSA4 (35% decrease) and YIL052C (45% decrease), while expression of YST-2 (0.08% decrease) did not change. In space, deletion of Sfp1 reversed the SSA4 gene expression effect (0.00% change), but Msn4 deletion yielded a similar decrease in SSA4 expression (34% change), which indicates that SSA4 gene expression is dependent on the Sfp1 transcription factor in space, unlike other stresses. For YIL052C, deletion of Sfp1 reversed the effect (0.01% change), and the Msn4 deletion maintained the decrease in expression (30% change), which indicates that expression of YIL052C is also dependent on Sfp1 in space. Spaceflight has selective and specific effects on SSA4 and YIL052C gene expression, indicated by novel dependence on Sfp1.

  8. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines

    PubMed Central

    Weaver, David A; Crawford, Erin L; Warner, Kristy A; Elkhairi, Fadel; Khuder, Sadik A; Willey, James C

    2005-01-01

    Background Although 40–50% of non-small cell lung cancer (NSCLC) tumors respond to cisplatin chemotherapy, there currently is no way to prospectively identify potential responders. The purpose of this study was to determine whether transcript abundance (TA) levels of twelve selected DNA repair or multi-drug resistance genes (LIG1, ERCC2, ERCC3, DDIT3, ABCC1, ABCC4, ABCC5, ABCC10, GTF2H2, XPA, XPC and XRCC1) were associated with cisplatin chemoresistance and could therefore contribute to the development of a predictive marker. Standardized RT (StaRT)-PCR, was employed to assess these genes in a set of NSCLC cell lines with a previously published range of sensitivity to cisplatin. Data were obtained in the form of target gene molecules relative to 106 β-actin (ACTB) molecules. To cancel the effect of ACTB variation among the different cell lines individual gene expression values were incorporated into ratios of one gene to another. Each two-gene ratio was compared as a single variable to chemoresistance for each of eight NSCLC cell lines using multiple regression. In an effort to validate these results, six additional lines then were evaluated. Results Following validation, single variable models best correlated with chemoresistance (p < 0.001), were ERCC2/XPC, ABCC5/GTF2H2, ERCC2/GTF2H2, XPA/XPC and XRCC1/XPC. All single variable models were examined hierarchically to achieve two variable models. The two variable model with the highest correlation was (ABCC5/GTF2H2, ERCC2/GTF2H2) with an R2 value of 0.96 (p < 0.001). Conclusion These results provide markers suitable for assessment of small fine needle aspirate biopsies in an effort to prospectively identify cisplatin resistant tumors. PMID:15882455

  9. Mimecan, a Hormone Abundantly Expressed in Adipose Tissue, Reduced Food Intake Independently of Leptin Signaling

    PubMed Central

    Cao, Huang-Ming; Ye, Xiao-Ping; Ma, Jun-Hua; Jiang, He; Li, Sheng-Xian; Li, Rong-Ying; Li, Xue-Song; Guo, Cui-Cui; Wang, Zhi-Quan; Zhan, Ming; Zuo, Chun-Lin; Pan, Chun-Ming; Zhao, Shuang-Xia; Zheng, Cui-Xia; Song, Huai-Dong

    2015-01-01

    Adipokines such as leptin play important roles in the regulation of energy metabolism, particularly in the control of appetite. Here, we describe a hormone, mimecan, which is abundantly expressed in adipose tissue. Mimecan was observed to inhibit food intake and reduce body weight in mice. Intraperitoneal injection of a mimecan-maltose binding protein (-MBP) complex inhibited food intake in C57BL/6J mice, which was attenuated by pretreatment with polyclonal antibody against mimecan. Notably, mimecan-MBP also induced anorexia in Ay/a and db/db mice. Furthermore, the expression of interleukin (IL)-1β and IL-6 was up-regulated in the hypothalamus by mimecan-MBP, as well as in N9 microglia cells by recombinant mouse mimecan. Taken together, the results suggest that mimecan is a satiety hormone in adipose tissue, and that mimecan inhibits food intake independently of leptin signaling by inducing IL-1β and IL-6 expression in the hypothalamus. PMID:26870797

  10. Abundant contribution of short tandem repeats to gene expression variation in humans

    PubMed Central

    Gymrek, Melissa; Willems, Thomas; Guilmatre, Audrey; Zeng, Haoyang; Markus, Barak; Georgiev, Stoyan; Daly, Mark J.; Price, Alkes L.; Pritchard, Jonathan; Sharp, Andrew

    2016-01-01

    The contribution of repetitive elements to quantitative human traits is largely unknown. Here, we report a genome-wide survey of the contribution of Short Tandem Repeats (STRs), one of the most polymorphic and abundant repeat classes, to gene expression in humans. Our survey identified 2,060 significant expression STRs (eSTRs). These eSTRs were replicable in orthogonal populations and expression assays. We used variance partitioning to disentangle the contribution of eSTRs from linked SNPs and indels and found that eSTRs contribute 10%–15% of the cis-heritability mediated by all common variants. Further functional genomic analyses showed that eSTRs are enriched in conserved regions, co-localize with regulatory elements, and can modulate certain histone modifications. By analyzing known GWAS hits and searching for new associations in 1,685 deeply-phenotyped whole-genomes, we found that eSTRs are enriched in various clinically-relevant conditions. These results highlight the contribution of short tandem repeats to the genetic architecture of quantitative human traits. PMID:26642241

  11. Evidence for the expression of abundant microRNAs in the locust genome

    PubMed Central

    Wang, Yanli; Jiang, Feng; Wang, Huimin; Song, Tianqi; Wei, Yuanyuan; Yang, Meiling; Zhang, Jianzhen; Kang, Le

    2015-01-01

    Substantial accumulation of neutral sequences accounts for genome size expansion in animal genomes. Numerous novel microRNAs (miRNAs), which evolve in a birth and death manner, are considered evolutionary neutral sequences. The migratory locust is an ideal model to determine whether large genomes contain abundant neutral miRNAs because of its large genome size. A total of 833 miRNAs were discovered, and several miRNAs were randomly chosen for validation by Northern blot and RIP-qPCR. Three additional verification methods, namely, processing-dependent methods of miRNA biogenesis using RNAi, evolutionary comparison with closely related species, and evidence supported by tissue-specific expression, were applied to provide compelling results that support the authenticity of locust miRNAs. We observed that abundant local duplication events of miRNAs, which were unique in locusts compared with those in other insects with small genome sizes, may be responsible for the substantial acquisition of miRNAs in locusts. Together, multiple evidence showed that the locust genome experienced a burst of miRNA acquisition, suggesting that genome size expansion may have considerable influences of miRNA innovation. These results provide new insight into the genomic dynamics of miRNA repertoires under genome size evolution. PMID:26329925

  12. Merkel cell carcinoma subgroups by Merkel cell polyomavirus DNA relative abundance and oncogene expression

    PubMed Central

    Bhatia, Kishor; Goedert, James J.; Modali, Rama; Preiss, Liliana; Ayers, Leona W.

    2010-01-01

    Merkel cell polyomavirus (MCPyV) was recently discovered in Merkel cell carcinoma (MCC), a clinically and pathologically heterogeneous malignancy of dermal neuroendocrine cells. To investigate this heterogeneity, we developed a tissue microarray (TMA) to characterize immunohistochemical staining of candidate tumor cell proteins and a quantitative PCR assay to detect MCPyV and measure viral loads. MCPyV was detected in 19 of 23 (74%) primary MCC tumors, but 8 of these had less than 1 viral copy per 300 cells. Viral abundance of 0.06–1.2viral copies/cell was directly related to presence of retinoblastoma gene product (pRb) and terminal deoxyribonucleotidyl transferase (TdT) by immunohistochemical staining (P≤0.003). Higher viral abundance tumors tended to be associated with less p53 expression, younger age at diagnosis, and longer survival (P≤0.08). These data suggest that MCC may arise through different oncogenic pathways, including ones independent of pRb and MCPyV. PMID:19551862

  13. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks. PMID:24251925

  14. Expression and Purification of Mitochondrial RNA Polymerase and Transcription Factor A from Drosophila melanogaster.

    PubMed

    Gajewski, John P; Arnold, Jamie J; Salminen, Tiina S; Kaguni, Laurie S; Cameron, Craig E

    2016-01-01

    Mitochondrial gene expression is essential in all organisms. Our understanding of mitochondrial transcription on a biochemical level has been limited by the inability to purify the individual protein components involved in mitochondrial gene expression. Recently, new systems have been identified that permit purification of these proteins from bacteria. However, the generalizability of these systems is not clear. Here, we have applied the technology from the Cameron lab to express and purify mitochondrial RNA polymerase and transcription factor A from Drosophila melanogaster. We show that the use of SUMO system to produce SUMO fusion proteins in bacteria is effective not only for the human and mouse proteins, but also for the fly proteins. The application of this system to produce the mitochondrial proteins from other organisms should permit detailed understanding of mitochondrial transcription from any organism. PMID:26530684

  15. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Coactivators

    PubMed Central

    Zhao, Xueyan; Benveniste, Etty N.

    2008-01-01

    Summary Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme for matrix proteins, chemokines and cytokines, is a major target in cancer and autoimmune diseases since it is aberrantly upregulated. To control MMP-9 expression in pathological conditions, it is necessary to understand the regulatory mechanisms of MMP-9 expression. MMP-9 gene expression is regulated primarily at the transcriptional level. In this study, we investigated the role of multiple coactivators in regulating MMP-9 transcription. We demonstrate that multiple transcriptional coactivators are involved in MMP-9 promoter activation, including CBP/p300, PCAF, CARM1 and GRIP1. Furthermore, enhancement of MMP-9 promoter activity requires the histone acetyltransferase activity of PCAF but not that of CBP/p300, and the methyltransferase activity of CARM1. More importantly, these coactivators are not only able to activate MMP-9 promoter activity independently, but also function in a synergistic manner. Significant synergy was observed among CARM1, p300 and GRIP1, which is dependent on the interaction of p300 and CARM1 with the AD1 and AD2 domains of GRIP1, respectively. This suggests the formation of a ternary coactivator complex on the MMP-9 promoter. Chromatin immunoprecipitation assays demonstrate that these coactivators associate with the endogenous MMP-9 promoter, and that siRNA knockdown of expression of these coactivators reduces endogenous MMP-9 expression. Taken together, these studies demonstrate a new level of transcriptional regulation of MMP-9 expression by the cooperative action of coactivators. PMID:18790699

  16. Expression analysis and identification of antimicrobial peptide transcripts from six North American frog species

    USGS Publications Warehouse

    Robertson, Laura S.; Fellers, Gary M.; Marranca, Jamie Marie; Kleeman, Patrick M.

    2013-01-01

    Frogs secrete antimicrobial peptides onto their skin. We describe an assay to preserve and analyze antimicrobial peptide transcripts from field-collected skin secretions that will complement existing methods for peptide analysis. We collected skin secretions from 4 North American species in the field in California and 2 species in the laboratory. Most frogs appeared healthy after release; however, Rana boylii in the Sierra Nevada foothills, but not the Coast Range, showed signs of morbidity and 2 died after handling. The amount of total RNA extracted from skin secretions was higher in R. boylii and R. sierrae compared to R. draytonii, and much higher compared to Pseudacris regilla. Interspecies variation in amount of RNA extracted was not explained by size, but for P. regilla it depended upon collection site and date. RNA extracted from skin secretions from frogs handled with bare hands had poor quality compared to frogs handled with gloves or plastic bags. Thirty-four putative antimicrobial peptide precursor transcripts were identified. This study demonstrates that RNA extracted from skin secretions collected in the field is of high quality suitable for use in sequencing or quantitative PCR (qPCR). However, some species do not secrete profusely, resulting in very little extracted RNA. The ability to measure transcript abundance of antimicrobial peptides in field-collected skin secretions complements proteomic analyses and may provide insight into transcriptional mechanisms that could affect peptide abundance.

  17. Snail1 transcriptional repressor binds to its own promoter and controls its expression

    PubMed Central

    Peiró, Sandra; Escrivà, Maria; Puig, Isabel; Barberà, Maria José; Dave, Natàlia; Herranz, Nicolás; Larriba, Maria Jesús; Takkunen, Minna; Francí, Clara; Muñoz, Alberto; Virtanen, Ismo; Baulida, Josep; de Herreros, Antonio García

    2006-01-01

    The product of Snail1 gene is a transcriptional repressor of E-cadherin expression and an inductor of the epithelial–mesenchymal transition in several epithelial tumour cell lines. Transcription of Snail1 is induced when epithelial cells are forced to acquire a mesenchymal phenotype. In this work we demonstrate that Snail1 protein limits its own expression: Snail1 binds to an E-box present in its promoter (at −146 with respect to the transcription start) and represses its activity. Therefore, mutation of the E-box increases Snail1 transcription in epithelial and mesenchymal cells. Evidence of binding of ectopic or endogenous Snail1 to its own promoter was obtained by chromatin immunoprecipitation (ChIP) experiments. Studies performed expressing different forms of Snail1 under the control of its own promoter demonstrate that disruption of the regulatory loop increases the cellular levels of Snail protein. These results indicate that expression of Snail1 gene can be regulated by its product and evidence the existence of a fine-tuning feed-back mechanism of regulation of Snail1 transcription. PMID:16617148

  18. DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis

    PubMed Central

    QIU, Lingling; XU, Lu; CHANG, Guobin; GUO, Qixin; LIU, Xiangping; BI, Yulin; ZHANG, Yu; WANG, Hongzhi; WANG, Kehua; LU, Wei; REN, Lichen; ZHU, Pengfei; WU, Yun; ZHANG, Yang; XU, Qi; CHEN, Guohong

    2016-01-01

    The P-element induced wimpy testis (Piwi) protein family is responsible for initiating spermatogenesis and maintaining the integrity of germ cells and stem cells, but little is known regarding its transcriptional regulation in poultry. Here, we characterized the methylation status of the Piwil1 promoter in five different spermatogenic cell lines using direct bisulfite pyrosequencing and determined that methylation correlates negatively with germ cell type-specific expression patterns of piwil1. We demonstrated that methylation of the −148 CpG site, which is the predicted binding site for the transcription factors TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This site was completely methylated in PGCs (primordial germ cells), but was unmethylated in round spermatids. A similar result was obtained in the region from +121 to +139 CpG sites of the Piwil1 promoter CpG island, which was predicted to contain SOX2 binding sites. In addition, demethylation assays further demonstrated that DNA methylation indeed regulates Piwil1 expression during chicken spermatogenesis. Combined with transcription factor binding site prediction, we speculate that methylation influences the recruitment of corresponding transcription factors. Collectively, we show the negative correlation between promoter methylation and piwil1 expression and that the spatiotemporal expression of chicken Piwil1 from the PGC stage to the round spermatid stage is influenced by methylation-mediated transcription factor regulation. PMID:27108736

  19. Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L.

    PubMed

    Chandran, Divya; Sankararamasubramanian, H M; Kumar, M Ashok; Parida, Ajay

    2014-04-01

    Jatropha curcas has been widely studied at the molecular level due to its potential as an alternative source of fuel. Many of the reports till date on this plant have focussed mainly on genes contributing to the accumulation of oil in its seeds. A suppression subtractive hybridization strategy was employed to identify genes which are differentially expressed in the mid maturation stage of J. curcas seeds. Random expressed sequence tag sequencing of the cDNA subtraction library resulted in 385 contigs and 1,428 singletons, with 591 expressed sequence tags mapping for enzymes having catalytic roles in various metabolic pathways. Differences in transcript levels in early and mid-to-late maturation stages of seeds were also investigated using sequence information obtained from the cDNA subtraction library. Seven out of 12 transcripts having putative roles in central carbon metabolism were up regulated in early seed maturation stage while lipid metabolism related transcripts were detected at higher levels in the later stage of seed maturation. Interestingly, 4 of the transcripts revealed putative alternative splice variants that were specifically present or up regulated in the early or late maturation stage of the seeds. Transcript expression patterns from the current study using maturing seeds of J. curcas reveal a subtle balancing of oil accumulation and utilization, which may be influenced by their energy requirements. PMID:24757322

  20. Dynamic expression of transcription factor Brn3b during mouse cranial nerve development.

    PubMed

    Sajgo, Szilard; Ali, Seid; Popescu, Octavian; Badea, Tudor Constantin

    2016-04-01

    During development, transcription factor combinatorial codes define a large variety of morphologically and physiologically distinct neurons. Such a combinatorial code has been proposed for the differentiation of projection neurons of the somatic and visceral components of cranial nerves. It is possible that individual neuronal cell types are not specified by unique transcription factors but rather emerge through the intersection of their expression domains. Brn3a, Brn3b, and Brn3c, in combination with each other and/or transcription factors of other families, can define subgroups of retinal ganglion cells (RGC), spiral and vestibular ganglia, inner ear and vestibular hair cell neurons in the vestibuloacoustic system, and groups of somatosensory neurons in the dorsal root ganglia. The present study investigates the expression and potential role of the Brn3b transcription factor in cranial nerves and associated nuclei of the brainstem. We report the dynamic expression of Brn3b in the somatosensory component of cranial nerves II, V, VII, and VIII and visceromotor nuclei of nerves VII, IX, and X as well as other brainstem nuclei during different stages of development into adult stage. We find that genetically identified Brn3b(KO) RGC axons show correct but delayed pathfinding during the early stages of embryonic development. However, loss of Brn3b does not affect the anatomy of the other cranial nerves normally expressing this transcription factor. PMID:26356988

  1. DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis.

    PubMed

    Qiu, Lingling; Xu, Lu; Chang, Guobin; Guo, Qixin; Liu, Xiangping; Bi, Yulin; Zhang, Yu; Wang, Hongzhi; Wang, Kehua; Lu, Wei; Ren, Lichen; Zhu, Pengfei; Wu, Yun; Zhang, Yang; Xu, Qi; Chen, Guohong

    2016-08-25

    The P-element induced wimpy testis (Piwi) protein family is responsible for initiating spermatogenesis and maintaining the integrity of germ cells and stem cells, but little is known regarding its transcriptional regulation in poultry. Here, we characterized the methylation status of the Piwil1 promoter in five different spermatogenic cell lines using direct bisulfite pyrosequencing and determined that methylation correlates negatively with germ cell type-specific expression patterns of piwil1. We demonstrated that methylation of the -148 CpG site, which is the predicted binding site for the transcription factors TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This site was completely methylated in PGCs (primordial germ cells), but was unmethylated in round spermatids. A similar result was obtained in the region from +121 to +139 CpG sites of the Piwil1 promoter CpG island, which was predicted to contain SOX2 binding sites. In addition, demethylation assays further demonstrated that DNA methylation indeed regulates Piwil1 expression during chicken spermatogenesis. Combined with transcription factor binding site prediction, we speculate that methylation influences the recruitment of corresponding transcription factors. Collectively, we show the negative correlation between promoter methylation and piwil1 expression and that the spatiotemporal expression of chicken Piwil1 from the PGC stage to the round spermatid stage is influenced by methylation-mediated transcription factor regulation. PMID:27108736

  2. A robust and efficient method for estimating enzyme complex abundance and metabolic flux from expression data.

    PubMed

    Barker, Brandon E; Sadagopan, Narayanan; Wang, Yiping; Smallbone, Kieran; Myers, Christopher R; Xi, Hongwei; Locasale, Jason W; Gu, Zhenglong

    2015-12-01

    A major theme in constraint-based modeling is unifying experimental data, such as biochemical information about the reactions that can occur in a system or the composition and localization of enzyme complexes, with high-throughput data including expression data, metabolomics, or DNA sequencing. The desired result is to increase predictive capability and improve our understanding of metabolism. The approach typically employed when only gene (or protein) intensities are available is the creation of tissue-specific models, which reduces the available reactions in an organism model, and does not provide an objective function for the estimation of fluxes. We develop a method, flux assignment with LAD (least absolute deviation) convex objectives and normalization (FALCON), that employs metabolic network reconstructions along with expression data to estimate fluxes. In order to use such a method, accurate measures of enzyme complex abundance are needed, so we first present an algorithm that addresses quantification of complex abundance. Our extensions to prior techniques include the capability to work with large models and significantly improved run-time performance even for smaller models, an improved analysis of enzyme complex formation, the ability to handle large enzyme complex rules that may incorporate multiple isoforms, and either maintained or significantly improved correlation with experimentally measured fluxes. FALCON has been implemented in MATLAB and ATS, and can be downloaded from: https://github.com/bbarker/FALCON. ATS is not required to compile the software, as intermediate C source code is available. FALCON requires use of the COBRA Toolbox, also implemented in MATLAB. PMID:26381164

  3. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum

    PubMed Central

    2011-01-01

    Background It has been shown that nearly a quarter of the initial predicted gene models in the Plasmodium falciparum genome contain errors. Although there have been efforts to obtain complete cDNA sequences to correct the errors, the coverage of cDNA sequences on the predicted genes is still incomplete, and many gene models for those expressed in sexual or mosquito stages have not been validated. Antisense transcripts have widely been reported in P. falciparum; however, the extent and pattern of antisense transcripts in different developmental stages remain largely unknown. Results We have sequenced seven bidirectional libraries from ring, early and late trophozoite, schizont, gametocyte II, gametocyte V, and ookinete, and four strand-specific libraries from late trophozoite, schizont, gametocyte II, and gametocyte V of the 3D7 parasites. Alignment of the cDNA sequences to the 3D7 reference genome revealed stage-specific antisense transcripts and novel intron-exon splicing junctions. Sequencing of strand-specific cDNA libraries suggested that more genes are expressed in one direction in gametocyte than in schizont. Alternatively spliced genes, antisense transcripts, and stage-specific expressed genes were also characterized. Conclusions It is necessary to continue to sequence cDNA from different developmental stages, particularly those of non-erythrocytic stages. The presence of antisense transcripts in some gametocyte and ookinete genes suggests that these antisense RNA may play an important role in gene expression regulation and parasite development. Future gene expression studies should make use of directional cDNA libraries. Antisense transcripts may partly explain the observed discrepancy between levels of mRNA and protein expression. PMID:22129310

  4. The ftsZ Gene of Mycobacterium smegmatis is expressed Through Multiple Transcripts

    PubMed Central

    Roy, Sougata; Anand, Deepak; Vijay, Srinivasan; Gupta, Prabuddha; Ajitkumar, Parthasarathi

    2011-01-01

    The principal essential bacterial cell division gene ftsZ is differentially expressed through multiple transcripts in diverse genera of bacteria in order to meet cell division requirements in compliance with the physiological niche of the organism under different environmental conditions. We initiated transcriptional analyses of ftsZ gene of the fast growing saprophytic mycobacterium, Mycobacterium smegmatis, as the first step towards understanding the requirements for FtsZ for cell division under different growth phases and stress conditions. Primer extension analyses identified four transcripts, T1, T2, T3, and T4. Transcriptional fusion studies using gfp showed that the respective putative promoter regions, P1, P2, P3, and P4, possessed promoter activity. T1, T2, and T3 were found to originate from the intergenic region between ftsZ and the upstream gene, ftsQ. T4 was initiated from the 3’ portion of the open reading frame of ftsQ. RT-PCR analyses indicated co-transcription of ftsQ and ftsZ. The four transcripts were present in the cells at all growth phases and at different levels in the cells exposed to a variety of stress conditions in vitro. T2 and T3 were absent under hypoxia and nutrient-depleted stationary phase conditions, while the levels of T1 and T4 remained unaffected. These studies showed that ftsZ gene expression through multiple transcripts and differential expression of the transcripts at different growth phases and under stress conditions are conserved in M. smegmatis, like in other Actinomycetes. PMID:21772930

  5. Cloning of nitric oxide associated 1 (NOA1) transcript from oil palm (Elaeis guineensis) and its expression during Ganoderma infection.

    PubMed

    Kwan, Yee-Min; Meon, Sariah; Ho, Chai-Ling; Wong, Mui-Yun

    2015-02-01

    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection. PMID:25462975

  6. Dorsal transcription factor is involved in regulating expression of crustin genes during white spot syndrome virus infection.

    PubMed

    Huang, Xin; Wang, Wen; Ren, Qian

    2016-10-01

    Nuclear factor-kappa B (NF-κB) pathways play important roles in innate immune responses. In this study, we identified a dorsal homolog (MrDorsal) from freshwater prawn Macrobrachium rosenbergii. The full-length cDNA of MrDorsal comprised 2533 bp with an open reading frame of 1986 bp, which encoded a peptide of 661 amino acid residues. Amino acid sequence analysis showed that MrDorsal contains a Rel homolog domain and an IPT/TIG (i.e., Ig-like, plexin, and transcription factors) domain. The signature sequence of dorsal protein FRYMCEG existed in the deduced amino acid sequence. Sequence analysis showed that MrDorsal shared high similarities with Dorsal from invertebrate species. MrDorsal was abundant in the hemocytes and gills of healthy prawns but minute levels were detected in other tissues. The expression of MrDorsal was significantly upregulated 48 h after the white spot syndrome virus (WSSV-) challenge. Knockdown of MrDorsal using double-stranded RNA could suppress the transcription of crustin genes (MrCrustin2 and MrCrustin4) in gills of prawns after 48 h of the WSSV challenge. Results indicated that MrDorsal was involved to regulate the expression of crustin genes and it might play potential important roles during WSSV infection. PMID:27181712

  7. Purification and Characterization of an Endophytic Fungal Proteinase That Is Abundantly Expressed in the Infected Host Grass.

    PubMed Central

    Lindstrom, J. T.; Belanger, F. C.

    1994-01-01

    A novel Acremonium typhinum proteinase that is expressed during endophytic infection of the grass Poa ampla Merr. was purified from endophyte-infected leaf sheath tissue. It is a thiol-containing serine alkaline endoproteinase with bound carbohydrate. In the infected host tissue, this proteinase is an abundant protein localized within fungal membrane vesicles and in the plant and/or fungal cell walls. This proteinase was not expressed constitutively during fungus culture. Rather, its expression appeared to be induced by nutrient depletion. Expression of an antigenically similar proteinase was detected in five other endophyte-infected Poa species. The regulated expression of the proteinase in culture and its abundance in infected plant tissue suggest that its expression may be involved in the symbiotic interaction of the plant and the fungus. PMID:12232300

  8. Myosin Gene Expression and Protein Abundance in Different Castes of the Formosan Subterranean Termite (Coptotermes formosanus).

    PubMed

    Tarver, Matthew R; Florane, Christopher B; Mattison, Christopher P; Holloway, Beth A; Lax, Alan

    2012-01-01

    The Formosan subterranean termite (Coptotermes formosanus) is an important worldwide pest, each year causing millions of dollars in structural damage and control costs. Termite colonies are composed of several phenotypically distinct castes. Termites utilize these multiple castes to efficiently perform unique roles within the colony. During the molting/caste differentiation process, multiple genes are believed to be involved in the massive reorganization of the body plan. The objective of this research was to analyze the muscle gene, myosin, to further understand the role it plays in C. formosanus development. We find that comparing worker vs. solider caste myosin gene expression is up-regulated in the soldier and a myosin antibody-reactive protein suggests changes in splicing. Comparison of body regions of mature soldier and worker castes indicates a greater level of myosin transcript in the heads. The differential expression of this important muscle-related gene is anticipated considering the large amount of body plan reorganization and muscle found in the soldier caste. These results have a direct impact on our understanding of the downstream genes in the caste differentiation process and may lead to new targets for termite control. PMID:26466734

  9. Induced myelomonocytic differentiation in leukemia cells is accompanied by noncanonical transcription factor expression

    PubMed Central

    Jensen, Holly A.; Yourish, Harmony B.; Bunaciu, Rodica P.; Varner, Jeffrey D.; Yen, Andrew

    2015-01-01

    Transcription factors that drive non-neoplastic myelomonocytic differentiation are well characterized but have not been systematically analyzed in the leukemic context. We investigated widely used, patient-derived myeloid leukemia cell lines with proclivity for differentiation into granulocytes by retinoic acid (RA) and/or monocytes by 1,25-dihyrdroxyvitamin D3 (D3). Using K562 (FAB M1), HL60 (FAB M2), RA-resistant HL60 sublines, NB4 (FAB M3), and U937 (FAB M5), we correlated nuclear transcription factor expression to immunophenotype, G1/G0 cell cycle arrest and functional inducible oxidative metabolism. We found that myelomonocytic transcription factors are aberrantly expressed in these cell lines. Monocytic-lineage factor EGR1 was not induced by D3 (the monocytic inducer) but instead by RA (the granulocytic inducer) in lineage bipotent myeloblastic HL60. In promyelocytic NB4 cells, EGR1 levels were increased by D3, while Gfi-1 expression (which promotes the granulocytic lineage) was upregulated during D3-induced monocytic differentiation in HL60, and by RA treatment in monocytic U937 cells. Furthermore, RARα and VDR expression were not strongly correlated to differentiation. In response to different differentiation inducers, U937 exhibited the most distinct transcription factor expression profile, while similarly mature NB4 and HL60 were better coupled. Overall, the differentiation induction agents RA and D3 elicited cell-specific responses across these common FAB M1-M5 cell lines. PMID:26566473

  10. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression

    PubMed Central

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-01-01

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division. PMID:24714560

  11. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    PubMed Central

    2012-01-01

    Background Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described. Results Our results demonstrate the induction of the gene coding TTP (ZFP36) by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates ZFP36 expression by two mechanisms: by binding the ZFP36 promoter directly through ETS-binding site (+ 883 to +905 bp) and by inducing expression of EGR-1, which in turn increases ZFP36 expression through sequences located between -111 and -103 bp. Conclusions EGF activates TTP expression via ELK-1 and EGR-1 transcription factors. PMID:22433566

  12. Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus

    PubMed Central

    Hosokawa, Norimune; Hatakeyama, Tetsuhiro S.; Kojima, Takashi; Kikuchi, Yoshiyuki; Ito, Hiroshi; Iwasaki, Hideo

    2011-01-01

    Circadian rhythms are a fundamental property of most organisms, from cyanobacteria to humans. In the unicellular obligately photoautotrophic cyanobacterium Synechococcus elongatus PCC 7942, essentially all promoter activities are controlled by the KaiABC-based clock under continuous light conditions. When Synechococcus cells are transferred from the light to continuous dark (DD) conditions, the expression of most genes, including the clock genes kaiA and kaiBC, is rapidly down-regulated, whereas the KaiC phosphorylation cycle persists. Therefore, we speculated that the posttranslational oscillator might not drive the transcriptional circadian output without de novo expression of the kai genes. Here we show that the cyanobacterial clock regulates the transcriptional output even in the dark. The expression of a subset of genes in the genomes of cells grown in the dark was dramatically affected by kaiABC nullification, and the magnitude of dark induction was dependent on the time at which the cells were transferred from the light to the dark. Moreover, under DD conditions, the expression of some dark-induced gene transcripts exhibited temperature-compensated damped oscillations, which were nullified in kaiABC-null strains and were affected by a kaiC period mutation. These results indicate that the Kai protein-based posttranslational oscillator can drive the circadian transcriptional output even without the de novo expression of the clock genes. PMID:21896749

  13. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression

    PubMed Central

    Guo, Jia; Zhang, Jin-Fang; Wang, Wei-Mao; Cheung, Florence Wing-ki; Lu, Ying-fei; Ng, Chi-fai; Kung, Hsiang-fu; Liu, Wing-keung

    2014-01-01

    The microphthalmia-associated transcription factor (MITF) is a pivotal regulator of melanogenic enzymes for melanogenesis, and its expression is modulated by many transcriptional factors at the transcriptional level or post-transcriptional level through microRNAs (miRNAs). Although several miRNAs modulate melanogenic activities, there is no evidence of their direct action on MITF expression. Out of eight miRNAs targeting the 3′-UTR of Mitf predicted by bioinformatic programs, our results show miR-218 to be a novel candidate for direct action on MITF expression. Ectopic miR-218 dramatically reduced MITF expression, suppressed tyrosinase activity, and induced depigmentation in murine immortalized melan-a melanocytes. MiR-218 also suppressed melanogenesis in human pigmented skin organotypic culture (OTC) through the repression of MITF. An inverse correlation between MITF and miR-218 expression was found in human primary skin melanocytes and melanoma cell lines. Taken together, our findings demonstrate a novel mechanism involving miR-218 in the regulation of the MITF pigmentary process and its potential application for skin whitening therapy. PMID:24824743

  14. Expression of Human Frataxin Is Regulated by Transcription Factors SRF and TFAP2

    PubMed Central

    Li, Kuanyu; Singh, Anamika; Crooks, Daniel R.; Dai, Xiaoman; Cong, Zhuangzhuang; Pan, Liang; Ha, Dung; Rouault, Tracey A.

    2010-01-01

    Background Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by reduced expression levels of the frataxin gene (FXN) due to expansion of triplet nucleotide GAA repeats in the first intron of FXN. Augmentation of frataxin expression levels in affected Friedreich ataxia patient tissues might substantially slow disease progression. Methodology/Principal Findings We utilized bioinformatic tools in conjunction with chromatin immunoprecipitation and electrophoretic mobility shift assays to identify transcription factors that influence transcription of the FXN gene. We found that the transcription factors SRF and TFAP2 bind directly to FXN promoter sequences. SRF and TFAP2 binding sequences in the FXN promoter enhanced transcription from luciferase constructs, while mutagenesis of the predicted SRF or TFAP2 binding sites significantly decreased FXN promoter activity. Further analysis demonstrated that robust SRF- and TFAP2-mediated transcriptional activity was dependent on a regulatory element, located immediately downstream of the first FXN exon. Finally, over-expression of either SRF or TFAP2 significantly increased frataxin mRNA and protein levels in HEK293 cells, and frataxin mRNA levels were also elevated in SH-SY5Y cells and in Friedreich ataxia patient lymphoblasts transfected with SRF or TFAP2. Conclusions/Significance We identified two transcription factors, SRF and TFAP2, as well as an intronic element encompassing EGR3-like sequence, that work together to regulate expression of the FXN gene. By providing new mechanistic insights into the molecular factors influencing frataxin expression, our results should aid in the discovery of new therapeutic targets for the treatment of Friedreich ataxia. PMID:20808827

  15. Single nucleotide variants in transcription factors associate more tightly with phenotype than with gene expression.

    PubMed

    Sudarsanam, Priya; Cohen, Barak A

    2014-05-01

    Mapping the polymorphisms responsible for variation in gene expression, known as Expression Quantitative Trait Loci (eQTL), is a common strategy for investigating the molecular basis of disease. Despite numerous eQTL studies, the relationship between the explanatory power of variants on gene expression versus their power to explain ultimate phenotypes remains to be clarified. We addressed this question using four naturally occurring Quantitative Trait Nucleotides (QTN) in three transcription factors that affect sporulation efficiency in wild strains of the yeast, Saccharomyces cerevisiae. We compared the ability of these QTN to explain the variation in both gene expression and sporulation efficiency. We find that the amount of gene expression variation explained by the sporulation QTN is not predictive of the amount of phenotypic variation explained. The QTN are responsible for 98% of the phenotypic variation in our strains but the median gene expression variation explained is only 49%. The alleles that are responsible for most of the variation in sporulation efficiency do not explain most of the variation in gene expression. The balance between the main effects and gene-gene interactions on gene expression variation is not the same as on sporulation efficiency. Finally, we show that nucleotide variants in the same transcription factor explain the expression variation of different sets of target genes depending on whether the variant alters the level or activity of the transcription factor. Our results suggest that a subset of gene expression changes may be more predictive of ultimate phenotypes than the number of genes affected or the total fraction of variation in gene expression variation explained by causative variants, and that the downstream phenotype is buffered against variation in the gene expression network. PMID:24784239

  16. STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6

    PubMed Central

    Walker, Sarah R.; Nelson, Erik A.; Yeh, Jennifer E.; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    Inappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5. PMID:23716595

  17. Regulating expression of cell and tissue-specific genes by modifying transcription

    SciTech Connect

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  18. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  19. Allelic Variations at Four Major Maturity E Genes and Transcriptional Abundance of the E1 Gene Are Associated with Flowering Time and Maturity of Soybean Cultivars

    PubMed Central

    Wang, Yueqiang; Chen, Xin; Ren, Haixiang; Yang, Jiayin; Cheng, Wen; Zong, Chunmei; Gu, Heping; Qiu, Hongmei; Wu, Hongyan; Zhang, Xingzheng; Cui, Tingting; Xia, Zhengjun

    2014-01-01

    The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene. PMID:24830458

  20. The influence of salinity on the abundance, transcriptional activity, and diversity of AOA and AOB in an estuarine sediment: a microcosm study.

    PubMed

    Zhang, Yan; Chen, Lujun; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-11-01

    Estuarine sediment-seawater microcosms were established to evaluate the influence of salinity on the population, transcriptional activity, and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA was found to show the most abundant and the highest transcriptional activity under moderate salinity; on the other hand, AOB abundance was not sensitive to salinity variation but showed the highest transcriptional activity in the low-salinity microcosms. AOA exhibited more advantages than AOB on growth and ammonia-oxidizing activity under moderate- and high-salinity environments. The highest richness and diversity of active AOA were found under salinity of 15 psu. All the active AOA detected under the salinities studied were clustered into Nitrosopumilus maritimus linage, with the composition shifted from N. maritimus C12 cluster, N. maritimus like 1.1 cluster, N. maritimus SCM1 cluster, and N. maritimus like 1.2 cluster to N. maritimus C12 and N. maritimus A10 clusters when salinity was increased from 5 to 30 psu. PMID:26219499

  1. Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans.

    PubMed

    Pauli, Florencia; Liu, Yueyi; Kim, Yoona A; Chen, Pei-Jiun; Kim, Stuart K

    2006-01-01

    We used mRNA tagging to identify genes expressed in the intestine of C. elegans. Animals expressing an epitope-tagged protein that binds the poly-A tail of mRNAs (FLAG::PAB-1) from an intestine-specific promoter (ges-1) were used to immunoprecipitate FLAG::PAB-1/mRNA complexes from the intestine. A total of 1938 intestine-expressed genes (P<0.001) were identified using DNA microarrays. First, we compared the intestine-expressed genes with those expressed in the muscle and germline, and identified 510 genes enriched in all three tissues and 624 intestine-, 230 muscle- and 1135 germ line-enriched genes. Second, we showed that the 1938 intestine-expressed genes were physically clustered on the chromosomes, suggesting that the order of genes in the genome is influenced by the effect of chromatin domains on gene expression. Furthermore, the commonly expressed genes showed more chromosomal clustering than the tissue-enriched genes, suggesting that chromatin domains may influence housekeeping genes more than tissue-specific genes. Third, in order to gain further insight into the regulation of intestinal gene expression, we searched for regulatory motifs. This analysis found that the promoters of the intestine genes were enriched for the GATA transcription factor consensus binding sequence. We experimentally verified these results by showing that the GATA motif is required in cis and that GATA transcription factors are required in trans for expression of these intestinal genes. PMID:16354718

  2. Regulation of the expression of human C[epsilon] germline transcript

    SciTech Connect

    Ichiki, T.; Takahashi, W.; Watanabe, T. )

    1993-06-15

    Transcriptional regulation for Ig H chain germline transcripts induced by cytokines is a topic of recent interest for the understanding of the mechanism of class switch recombination. Among human B cell lines examined, the authors have found that a human IgM-producing B cell line, DND39 (EBV negative) expressed germ-line transcripts of [epsilon] constant gene (C[epsilon]) when stimulated with lL-4. In this study, the regulatory element responsible for the expression of lL-4-induced human C[epsilon] germ-line transcript was determined using DND39 cells. To identify the lL-4 responsive promotor/enhancer element, deletion analysis of the upstream region of the germ-line exon (l[epsilon]) of the C[epsilon] germ-line transcript which is located 5' to the switch region, was performed by using a luciferase gene as a reporter. Deletion analysis showed that a DNA fragment which lies between [minus]215 and [minus]154 bp upstream from the most 3' transcriptional initiation site of human l[epsilon] gene is fully responsible for the induction of germ-line transcripts by IL-4. According to a mutational analysis, the DNA fragment between [minus]163 and [minus]152 bp was identified to be a novel IL-4 responsive element in a human C[epsilon] gene. Electrophoretic gel mobility shift assay showed the presence of IL-4-induced nuclear factor that specifically bound to this IL-4 responsive element. This novel IL-4 responsive element and an IL-4-induced DNA binding protein may play an important role for the induction of C[epsilon] germ-line transcript as well as class switching to IgE. 54 refs., 7 figs.

  3. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  4. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  5. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  6. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    PubMed

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  7. The Water Vapor Abundance Near the Surface of Venus from Venus Express / VIRTIS Observations

    NASA Astrophysics Data System (ADS)

    Bezard, Bruno; Tsang, C. C. C.; Carlson, R. W.; Piccioni, G.; Marcq, E.; Drossart, P.; VIRTIS/Venus Express Team

    2008-09-01

    We present an analysis of Venus Express/VIRTIS observations of the 1.18-μm window on Venus' night side. We used the infrared M-channel of the VIRTIS instrument, an imaging spectrometer for the range 1-5 μm with a resolution of about 17 nm. The 1.18-μm window probes down to the surface and allows us to map and monitor the water abundance in the lowest scale height of the atmosphere. Besides CO2 and H2O molecular bands, an additional "continuum" source of absorption exists in the window, likely due to CO2 collision-induced bands and extreme far wings of strong CO2 bands. From the variation of the emission with surface elevation, we determined this absorption to be 1.1 ± 0.2 × 10-9 cm-1 amagat-2. From the best fit of the 1.18-micron window in various areas of Venus' southern hemisphere, we derived a H2O mole fraction of 32 ± 7 ppm in the altitude range 0-15 km. This result agrees with previous ground-based and Galileo/NIMS determinations (Taylor et al. 1997, in Venus II, pp. 325-351) but has significantly lower error bars. The derived mole fraction is similar to that inferred at higher altitudes from the 2.3- and 1.74-μm windows, suggesting a constant-with-height water profile from the surface up to 40 km. We also searched for spatial variations of the H2O near-surface abundance using various VIRTIS-M observational sequences and did not detect any latitudinal variations to within 1.5% (i.e. ± 0.5 ppm) in the range 60°S - 20°N.

  8. Transcriptional Factor PU.1 Regulates Decidual C1q Expression in Early Pregnancy in Human.

    PubMed

    Madhukaran, Shanmuga Priyaa; Kishore, Uday; Jamil, Kaiser; Teo, Boon Heng Dennis; Choolani, Mahesh; Lu, Jinhua

    2015-01-01

    C1q is the first recognition subcomponent of the complement classical pathway, which in addition to being synthesized in the liver, is also expressed by macrophages and dendritic cells (DCs). Trophoblast invasion during early placentation results in accumulation of debris that triggers the complement system. Hence, both early and late components of the classical pathway are widely distributed in the placenta and decidua. In addition, C1q has recently been shown to significantly contribute to feto-maternal tolerance, trophoblast migration, and spiral artery remodeling, although the exact mechanism remains unknown. Pregnancy in mice, genetically deficient in C1q, mirrors symptoms similar to that of human preeclampsia. Thus, regulated complement activation has been proposed as an essential requirement for normal successful pregnancy. Little is known about the molecular pathways that regulate C1q expression in pregnancy. PU.1, an Ets-family transcription factor, is required for the development of hematopoietic myeloid lineage immune cells, and its expression is tissue-specific. Recently, PU.1 has been shown to regulate C1q gene expression in DCs and macrophages. Here, we have examined if PU.1 transcription factor regulates decidual C1q expression. We used immune-histochemical analysis, PCR, and immunostaining to localize and study the gene expression of PU.1 transcription factor in early human decidua. PU.1 was highly expressed at gene and protein level in early human decidual cells including trophoblast and stromal cells. Surprisingly, nuclear as well as cytoplasmic PU.1 expression was observed. Decidual cells with predominantly nuclear PU.1 expression had higher C1q expression. It is likely that nuclear and cytoplasmic PU.1 localization has a role to play in early pregnancy via regulating C1q expression in the decidua during implantation. PMID:25762996

  9. Transcriptional control of insulin-sensitive glucose carrier Glut4 expression in adipose tissue cells.

    PubMed

    Penkov, D N; Akopyan, Zh A; Kochegura, T N; Egorov, A D

    2016-03-01

    In search for new targets for obesity treatment, we have studied the effect of several transcription factors on the conversion of murine preadipocytes from the 3T3-L1 cell line into adipocytes. We have found that knockdown of Prep1 gene expression affects adipogenic differentiation and results in significant increase in the insulin-sensitive glucose carrier Glut4 gene expression. PMID:27193720

  10. SATB1 Packages Densely Looped, Transcriptionally Active Chromatin for Coordinated Expression of Cytokine Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SATB1 (special AT-rich sequence binding protein 1) organizes cell type–specific nuclear architecture by anchoring specialized DNA sequences and recruiting chromatin remodeling factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4 and...

  11. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae.

    PubMed

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. PMID:25190458

  12. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae

    PubMed Central

    Yuzenkova, Yulia; Gamba, Pamela; Herber, Martijn; Attaiech, Laetitia; Shafeeq, Sulman; Kuipers, Oscar P.; Klumpp, Stefan; Zenkin, Nikolay; Veening, Jan-Willem

    2014-01-01

    Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in ‘transcription traffic jams’ on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes. PMID:25190458

  13. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch

    PubMed Central

    Perdrizet, George A.; Artsimovitch, Irina; Furman, Ran; Sosnick, Tobin R.; Pan, Tao

    2012-01-01

    Riboswitches are cis-acting elements that regulate gene expression by affecting transcriptional termination or translational initiation in response to binding of a metabolite. A typical riboswitch is made of an upstream aptamer domain and a downstream expression platform. Both domains participate in the folding and structural rearrangement in the absence or presence of its cognate metabolite. RNA polymerase pausing is a fundamental property of transcription that can influence RNA folding. Here we show that pausing plays an important role in the folding and conformational rearrangement of the Escherichia coli btuB riboswitch during transcription by the E. coli RNA polymerase. This riboswitch consists of an approximately 200 nucleotide, coenzyme B12 binding aptamer domain and an approximately 40 nucleotide expression platform that controls the ribosome access for translational initiation. We found that transcriptional pauses at strategic locations facilitate folding and structural rearrangement of the full-length riboswitch, but have minimal effect on the folding of the isolated aptamer domain. Pausing at these regulatory sites blocks the formation of alternate structures and plays a chaperoning role that couples folding of the aptamer domain and the expression platform. Pausing at strategic locations may be a general mechanism for coordinated folding and conformational rearrangements of riboswitch structures that underlie their response to environmental cues. PMID:22331895

  14. Transcription regulates HIF-1α expression in CD4(+) T cells.

    PubMed

    Bollinger, Thomas; Bollinger, Annalena; Gies, Sydney; Feldhoff, Lea; Solbach, Werner; Rupp, Jan

    2016-01-01

    The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates the metabolic adaptation of cells to hypoxia and T-helper cell fate. However, HIF-1α regulation in CD4(+) T cells (T cells) remains elusive. Here we observed that depletion of oxygen (O2⩽2%) alone was not sufficient to induce HIF-1α expression in T cells. However, when hypoxic T cells were stimulated, HIF-1α was expressed and this was dependent on nuclear factor-κB- and nuclear factor of activated T cell (NFAT)-mediated transcriptional upregulation of Hif-1α mRNA. HIF-1α upregulation could be blocked by drugs inhibiting NF-κB, NFAT or mammalian target of rapamycin precluding CD4(+) T-cell stimulation or translation in T cells, as well as by blocking transcription. CD3, CD28, phorbol-12-myristat-13-acetat (PMA) or ionomycin-stimulated T cells did not express HIF-1α under normoxic conditions. In conclusion, regulation of HIF-1α expression in CD4(+) T cells in hypoxia gravely relies on its transcriptional upregulation and subsequent enhanced protein stabilization. PMID:26150319

  15. Inferring the relation between transcriptional and posttranscriptional regulation from expression compendia

    PubMed Central

    2014-01-01

    Background Publicly available expression compendia that measure both mRNAs and sRNAs provide a promising resource to simultaneously infer the transcriptional and the posttranscriptional network. To maximally exploit the information contained in such compendia, we propose an analysis flow that combines publicly available expression compendia and sequence-based predictions to infer novel sRNA-target interactions and to reconstruct the relation between the sRNA and the transcriptional network. Results We relied on module inference to construct modules of coexpressed genes (sRNAs). TFs and sRNAs were assigned to these modules using the state-of-the-art inference techniques LeMoNe and Context Likelihood of Relatedness (CLR). Combining these expressions with sequence-based sRNA-target interactions allowed us to predict 30 novel sRNA-target interactions comprising 14 sRNAs. Our results highlight the role of the posttranscriptional network in finetuning the transcriptional regulation, e.g. by intra-operonic regulation. Conclusion In this work we show how strategies that combine expression information with sequence-based predictions can help unveiling the intricate interaction between the transcriptional and the posttranscriptional network in prokaryotic model systems. PMID:24467879

  16. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain

    PubMed Central

    Contet, Candice

    2013-01-01

    Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics. PMID:24078902

  17. Coordinated transcription factor and promoter engineering to establish strong expression elements in Saccharomyces cerevisiae.

    PubMed

    Leavitt, John M; Tong, Alice; Tong, Joyce; Pattie, Jonathan; Alper, Hal S

    2016-07-01

    Gene expression requires the coordination of trans-acting factors and cis-DNA elements to initiate transcription. Here we present a coordinated approach that combines cis-acting element engineering with mutant trans-acting factors to engineer yeast promoters. Specifically, we first construct a hybrid promoter based on the ARO9 upstream region that exhibits high constitutive and inducible expression with respect to exogenous tryptophan. Next, we perform protein engineering to identify a mutant Aro80p that affords both high constitutive expression while retaining inducible traits. We then use this mutant trans-acting factor to drive expression and generate ultra-strong promoters with transcriptional output roughly 2 fold higher than TDH3 (GPD), one of the strongest promoters to-date. Finally, we used this element to construct a modular expression system capable of staged outputs resulting in a system with nearly 6-fold, 12-fold and 15-fold expression relative to the off-state. This work further highlights the potential of using endogenous transcription factors (including mutant factors) along with hybrid promoters to expand the yeast synthetic biology toolbox. PMID:27152757

  18. YY1 Acts as a Transcriptional Activator of Hoxa5 Gene Expression in Mouse Organogenesis

    PubMed Central

    Bérubé-Simard, Félix-Antoine; Prudhomme, Christelle; Jeannotte, Lucie

    2014-01-01

    The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis. PMID:24705708

  19. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches.

    PubMed

    Diotel, Nicolas; Rodriguez Viales, Rebecca; Armant, Olivier; März, Martin; Ferg, Marco; Rastegar, Sepand; Strähle, Uwe

    2015-06-01

    The zebrafish has become a model to study adult vertebrate neurogenesis. In particular, the adult telencephalon has been an intensely studied structure in the zebrafish brain. Differential expression of transcriptional regulators (TRs) is a key feature of development and tissue homeostasis. Here we report an expression map of 1,202 TR genes in the telencephalon of adult zebrafish. Our results are summarized in a database with search and clustering functions to identify genes expressed in particular regions of the telencephalon. We classified 562 genes into 13 distinct patterns, including genes expressed in the proliferative zone. The remaining 640 genes displayed unique and complex patterns of expression and could thus not be grouped into distinct classes. The neurogenic ventricular regions express overlapping but distinct sets of TR genes, suggesting regional differences in the neurogenic niches in the telencephalon. In summary, the small telencephalon of the zebrafish shows a remarkable complexity in TR gene expression. The adult zebrafish telencephalon has become a model to study neurogenesis. We established the expression pattern of more than 1200 transcription regulators (TR) in the adult telencephalon. The neurogenic regions express overlapping but distinct sets of TR genes suggesting regional differences in the neurogenic potential. PMID:25556858

  20. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments

    PubMed Central

    Yang, Bo; Jiang, Yuanqing; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat NV

    2009-01-01

    Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L.), no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST) database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP) and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR). Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h). We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA), and cytokinin (6-benzylaminopurine, BAP) and the defense signaling molecules jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in expression patterns

  1. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  2. [Identification and expression analysis of WRKY transcription factors in medicinal plant Catharanthus roseus].

    PubMed

    Yang, Zhirong; Wang, Xingchun; Xue, Jin'ai; Meng, Lingzhi; Li, Runzhi

    2013-06-01

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, involve in multiple life activities including plant growth and development as well as stress responses. However, little is known about the types and functions of WRKY transcription factors in Catharanthus roseus, an important medicinal plant. In this study, we identified 47 CrWRKY transcriptional factors from 26 009 proteins in Catharanthus roseus, and classified them into three distinct groups (G1, G2 and G3) according to the structure of WRKY domain and evolution of the protein family. The expression profiling showed that these CrWRKY genes expressed in a tissue/organ specific manner. The 47 CrWRKY genes were clustered into three types of expression patterns. The first type includes the CrWRKYs highly expressed in flowers and the protoplast treated with methy jasmonate (MeJA) or yeast extraction (YE). The second type contains the CrWRKYs highly expressed in stem and hairy root. The third type represents the CrWRKYs highly expressed in root, stem, leaf, seedling and the hairy root treated by MeJA. Real time quantitative PCR was employed to further identify the expression patterns of the 16 selected CrWRKY genes in various organs, the MeJA-treated protoplasts and hairy roots of Catharanthus roseus, and similar results were obtained. Notably, the expresion of more than 1/3 CrWRKY genes were regulated by MeJA or YE, indicating that these CrWRKYs are likely involed in the signalling webs which modulate the biosynthesis of terpenoid indole alkaloid and plant responses to various stresses. The present results provide a framework for functional identification of the CrWRKYs and understanding of the regulation network of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PMID:24063238

  3. Genetic variability of transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism

    PubMed Central

    2011-01-01

    Background The genetics of transcript-level variation is an exciting field that has recently given rise to many studies. Genetical genomics studies have mainly focused on cell lines, blood cells or adipose tissues, from human clinical samples or mice inbred lines. Few eQTL studies have focused on animal tissues sampled from outbred populations to reflect natural genetic variation of gene expression levels in animals. In this work, we analyzed gene expression in a whole tissue, pig skeletal muscle sampled from individuals from a half sib F2 family shortly after slaughtering. Results QTL detection on transcriptome measurements was performed on a family structured population. The analysis identified 335 eQTLs affecting the expression of 272 transcripts. The ontologic annotation of these eQTLs revealed an over-representation of genes encoding proteins involved in processes that are expected to be induced during muscle development and metabolism, cell morphology, assembly and organization and also in stress response and apoptosis. A gene functional network approach was used to evidence existing biological relationships between all the genes whose expression levels are influenced by eQTLs. eQTLs localization revealed a significant clustered organization of about half the genes located on segments of chromosome 1, 2, 10, 13, 16, and 18. Finally, the combined expression and genetic approaches pointed to putative cis-drivers of gene expression programs in skeletal muscle as COQ4 (SSC1), LOC100513192 (SSC18) where both the gene transcription unit and the eQTL affecting its expression level were shown to be localized in the same genomic region. This suggests cis-causing genetic polymorphims affecting gene expression levels, with (e.g. COQ4) or without (e.g. LOC100513192) potential pleiotropic effects that affect the expression of other genes (cluster of trans-eQTLs). Conclusion Genetic analysis of transcription levels revealed dependence among molecular phenotypes as being

  4. Inosine monophosphate dehydrogenase expression: transcriptional regulation of the type I and type II genes.

    PubMed

    Zimmermann, A; Gu, J J; Spychala, J; Mitchell, B S

    1996-01-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is an essential rate-limiting enzyme in the de novo guanine nucleotide synthetic pathway that catalyzes the conversion of IMP to XMP. Enzyme activity is accounted for by the expression of two distinct but closely related genes termed IMPDH I and II. Increased IMPDH activity has been linked to both cellular proliferation and neoplastic transformation and generally ascribed to an increase in the expression of the type II gene. We have characterized the type I and type II genes and identified elements important in the transcriptional regulation of both genes. The type II IMPDH gene contains a 466 bp 5' flanking region spanning the translation start site that contains several transcription factor binding sites and mediates increased transcription of a CAT reporter gene in peripheral blood T lymphocytes when these cells are induced to proliferate. The single functional IMPDH type I gene contains exon-intron boundaries and exon structures that are nearly identical to those in the type II gene. In contrast to the type II gene, however, it contains two putative promoter sites, each with the potential for transcriptional regulation. We conclude that these two genes most probably arose from an early gene duplication event and that their highly conserved structures and differential regulation at the transcriptional level argue strongly for a significant role for each gene in cellular metabolism, growth, and differentiation. PMID:8869741

  5. Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice

    SciTech Connect

    Khan, A.S.; Laigret, F.; Rodi, C.P.

    1987-03-01

    The authors used a synthetic 16-base-pair mink cell focus-forming (MCF) env-specific oligomer as radiolabeled probe to study MCF murine leukemia virus (MuLV)-related transcripts in brain, kidney, liver, spleen, and thymus tissues of AKR mice ranging from 5 weeks to 6 months (mo) of age. Tissue-specific expression of poly(A)/sup +/ RNAs was seen. In addition, all the tissues tested contained 3.0-kb messages. The transcription of these MCF-related mRNAs was independent of the presence of ecotropic and xenotropic MuLVs. In general, expression of the MCF env-related transcripts appeared to peak at 2 mo of age; these messages were barely detectable in brain, kidney, liver, and spleen tissues after 2 mo and in thymus tissue after 4 mo of age. All of the subgenomic MCF env-related mRNAs appeared to contain the 190-base-pair cellular DNA insert, characteristic of the long terminal repeats associated with endogenous MCF env-related proviruses. No genomic-size (8.4-kb) transcripts corresponding to endogenous MCF-related proviruses were detected. An 8.4-kb MCF env-related mRNA was first seen at 3 mo of age, exclusively in thymus tissue. This species most likely represents the first appearance of a recombinant MCF-related MuLV genome. The transcripts which were detected in thymus tissue might be involved in the generation of leukemogenic MCF viruses.

  6. Transcriptional regulation of human RANK ligand gene expression by E2F1

    SciTech Connect

    Hu Yan; Sun Meng; Nadiminty, Nagalakshmi; Lou Wei; Pinder, Elaine; Gao, Allen C.

    2008-06-06

    Receptor activator of nuclear factor kappa B ligand (RANKL) is a critical osteoclastogenic factor involved in the regulation of bone resorption, immune function, the development of mammary gland and cardiovascular system. To understand the transcriptional regulation of RANKL, we amplified and characterized a 1890 bp 5'-flanking sequence of human RANKL gene (-1782 bp to +108 bp relative to the transcription start site). Using a series of deletion mutations of the 1890 bp RANKL promoter, we identified a 72 bp region (-172 to -100 bp) mediating RANKL basal transcriptional activity. Sequence analysis revealed a putative E2F binding site within this 72 bp region in the human RANKL promoter. Overexpression of E2F1 increased RANKL promoter activity, while down-regulation of E2F1 expression by small interfering RNA decreased RANKL promoter activity. RT-PCR and enzyme linked immunosorbent assays (ELISA) further demonstrated that E2F1 induced the expression of RANKL. Electrophoretic gel mobility shift assays (EMSA) and antibody competition assays confirmed that E2F1 proteins bind to the consensus E2F binding site in the RANKL promoter. Mutation of the E2F consensus binding site in the RANKL promoter profoundly reduced the basal promoter activity and abolished the transcriptional modulation of RANKL by E2F1. These results suggest that E2F1 plays an important role in regulating RANKL transcription through binding to the E2F consensus binding site.

  7. Alternative promoter usage and differential expression of multiple transcripts of mouse Prkar1a gene.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2011-11-01

    Prkar1a gene encodes regulatory type 1 alpha subunit (RIα) of cAMP-dependent protein kinase (PKA) in mouse. The role of this gene has been implicated in Carney complex and many cancer types that suggest its involvement in physiological processes like cell cycle regulation, growth and/or proliferation. We have identified and sequenced partial cDNA clones encoding four alternatively spliced transcripts of mouse Prkar1a gene. These transcripts have alternate 5' UTR structure which results from splicing of three exons (designated as E1a, E1b, and E1c) to canonical exon 2. The designated transcripts T1, T2, T3, and T4 contain 5' UTR exons as E1c, E1a + E1b, E1a, and E1b, respectively. The transcript T1 corresponded to earlier reported transcript in GenBank. In silico study of genomic DNA sequence revealed three distinct promoter regions namely, P1, P2, and P3 upstream of the exons E1a, E1b, and E1c, respectively. P1 is non-CpG-related promoter but P2 and P3 are CpG-related promoters; however, all three are TATA less. RT-PCR analysis demonstrated the expression of all four transcripts in late postnatal stages; however, these were differentially regulated in early postnatal stages of 0.5 day, 3 day, and 15 day mice in different tissue types. Variations in expression of Prkar1a gene transcripts suggest their regulation from multiple promoters that respond to a variety of signals arising in or out of the cell in tissue and developmental stage-specific manner. PMID:21638026

  8. Dual transcriptional-translational cascade permits cellular level tuneable expression control

    PubMed Central

    Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil

    2016-01-01

    The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200

  9. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    PubMed Central

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  10. Transcription Factors Are Targeted by Differentially Expressed miRNAs in Primates

    PubMed Central

    Dannemann, Michael; Prüfer, Kay; Lizano, Esther; Nickel, Birgit; Burbano, Hernán A.; Kelso, Janet

    2012-01-01

    MicroRNAs (miRNAs) are small RNA molecules involved in the regulation of mammalian gene expression. Together with other transcription regulators, miRNAs modulate the expression of genes and thereby potentially contribute to tissue and species diversity. To identify miRNAs that are differentially expressed between tissues and/or species, and the genes regulated by these, we have quantified expression of miRNAs and messenger RNAs in five tissues from multiple human, chimpanzee, and rhesus macaque individuals using high-throughput sequencing. The breadth of this tissue and species data allows us to show that downregulation of target genes by miRNAs is more pronounced between tissues than between species and that downregulation is more pronounced for genes with fewer binding sites for expressed miRNAs. Intriguingly, we find that tissue- and species-specific miRNAs target transcription factor genes (TFs) significantly more often than expected. Through their regulatory effect on transcription factors, miRNAs may therefore exert an indirect influence on a larger proportion of genes than previously thought. PMID:22454130

  11. Human von Economo neurons express transcription factors associated with Layer V subcerebral projection neurons.

    PubMed

    Cobos, Inma; Seeley, William W

    2015-01-01

    The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions. PMID:23960210

  12. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription f...

  13. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    ERIC Educational Resources Information Center

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  14. Engineering Synthetic TALE and CRISPR/Cas9 Transcription Factors for Regulating Gene Expression

    PubMed Central

    Kabadi, Ami M.; Gersbach, Charles A.

    2014-01-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription Activator-Like Effectors (TALEs) and the RNA-guided Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. PMID:25010559

  15. Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes.

    PubMed

    Cestari, Igor; Stuart, Ken

    2015-05-26

    African trypanosomes evade clearance by host antibodies by periodically changing their variant surface glycoprotein (VSG) coat. They transcribe only one VSG gene at a time from 1 of about 20 telomeric expression sites (ESs). They undergo antigenic variation by switching transcription between telomeric ESs or by recombination of the VSG gene expressed. We show that the inositol phosphate (IP) pathway controls transcription of telomeric ESs and VSG antigenic switching in Trypanosoma brucei. Conditional knockdown of phosphatidylinositol 5-kinase (TbPIP5K) or phosphatidylinositol 5-phosphatase (TbPIP5Pase) or overexpression of phospholipase C (TbPLC) derepresses numerous silent ESs in T. brucei bloodstream forms. The derepression is specific to telomeric ESs, and it coincides with an increase in the number of colocalizing telomeric and RNA polymerase I foci in the nucleus. Monoallelic VSG transcription resumes after reexpression of TbPIP5K; however, most of the resultant cells switched the VSG gene expressed. TbPIP5K, TbPLC, their substrates, and products localize to the plasma membrane, whereas TbPIP5Pase localizes to the nucleus proximal to telomeres. TbPIP5Pase associates with repressor/activator protein 1 (TbRAP1), and their telomeric silencing function is altered by TbPIP5K knockdown. These results show that specific steps in the IP pathway control ES transcription and antigenic switching in T. brucei by epigenetic regulation of telomere silencing. PMID:25964327

  16. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    PubMed

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones. PMID:25791525

  17. Transcription factor expression dynamics of early T-lymphocyte specification and commitment

    PubMed Central

    David-Fung, Elizabeth-Sharon; Butler, Robert; Buzi, Gentian; Yui, Mary A.; Diamond, Rochelle A.; Anderson, Michele K.; Rowen, Lee; Rothenberg, Ellen V.

    2009-01-01

    Summary Mammalian T lymphocytes are a prototype for development from adult pluripotent stem cells. While T-cell specification is driven by Notch signaling, T-lineage commitment is only finalized after prolonged Notch activation. However, no T-lineage specific regulatory factor has been reported that mediates commitment. We used a gene-discovery approach to identify additional candidate T-lineage transcription factors and characterized expression of >100 regulatory genes in early T-cell precursors using realtime RT-PCR. These regulatory genes were also monitored in multilineage precursors as they entered T-cell or non-T-cell pathways in vitro; in non-T cells ex vivo; and in later T-cell developmental stages after lineage commitment. At least three major expression patterns were observed. Transcription factors in the largest group are expressed at relatively stable levels throughout T-lineage specification as a legacy from prethymic precursors, with some continuing while others are downregulated after commitment. Another group is highly expressed in the earliest stages only, and is downregulated before or during commitment. Genes in a third group undergo upregulation at one of three distinct transitions, suggesting a positive regulatory cascade. However, the transcription factors induced during commitment are not T-lineage specific. Different members of the same transcription factor family can follow opposite trajectories during specification and commitment, while factors co-expressed early can be expressed in divergent patterns in later T-cell development. Some factors reveal new regulatory distinctions between αβ and γδ T-lineage differentiation. These results show that T-cell identity has an essentially complex regulatory basis and provide a detailed framework for regulatory network modeling of T-cell specification. PMID:19013443

  18. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer

    PubMed Central

    JASZCZYNSKA-NOWINKA, KAROLINA; RUCINSKI, MARCIN; ZIOLKOWSKA, AGNIESZKA; MARKOWSKA, ANNA; MALENDOWICZ, LUDWIK K.

    2014-01-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  19. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    PubMed

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  20. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    PubMed

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed. PMID:26254918

  1. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine.

    PubMed

    Luo, Jian-Bo; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2014-09-01

    This study investigated the effects of dietary valine on the growth, intestinal immune response, tight junction proteins transcript abundance and gene expression of immune-related signaling molecules in the intestine of young grass carp (Ctenopharyngodon idella). Six iso-nitrogenous diets containing graded levels of valine (4.3-19.1 g kg(-)(1) diet) were fed to the fish for 8 weeks. The results showed that percentage weight gain (PWG), feed intake and feed efficiency of fish were the lowest in fish fed the valine-deficient diet (P < 0.05). In addition, valine deficiency decreased lysozyme, acid phosphatase activities and complement 3 content in the intestine (P < 0.05), down-regulated mRNA levels of interleukin 10, transforming growth factor β1, IκBα and target of rapamycin (TOR) (P < 0.05), and up-regulated tumor necrosis factor α, interleukin 8 and nuclear factor κB P65 (NF-κB P65) gene expression (P < 0.05). Additionally, valine deficiency significantly decreased transcript of Occludin, Claudin b, Claudin c, Claudin 3, and ZO-1 (P < 0.05), and improved Claudin 15 expression in the fish intestine (P < 0.05). However, valine did not have a significant effect on expression of Claudin 12 in the intestine of grass carp (P > 0.05). In conclusion, valine deficiency decreased fish growth and intestinal immune status, as well as regulated gene expression of tight junction proteins, NF-κB P65, IκBα and TOR in the fish intestine. Based on the quadratic regression analysis of lysozyme activity or PWG, the dietary valine requirement of young grass carp (268-679 g) were established to be 14.47 g kg(-1) diet (4.82 g 100 g(-1) CP) or 14.00 g kg(-1) diet (4.77 g 100 g(-1) CP), respectively. PMID:25014314

  2. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  3. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells

    PubMed Central

    Li, Yi; Liu, Huizhan; Barta, Cody L.; Judge, Paul D.; Zhao, Lidong; Zhang, Weiping J.; Gong, Shusheng; Beisel, Kirk W.; He, David Z. Z.

    2016-01-01

    Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells. PMID:26974322

  4. HOXC8 promotes breast tumorigenesis by transcriptionally facilitating cadherin-11 expression.

    PubMed

    Li, Yong; Chao, Fengmei; Huang, Bei; Liu, Dahai; Kim, Jaejik; Huang, Shuang

    2014-05-15

    Cell-cell adhesion molecule cadherin-11(CDH11) is preferentially expressed in basal-like breast cancer cells and facilitates breast cancer cell migration by promoting small GTPase Rac activity. However, how the expression of CDH11 is regulated in breast cancer cells is not understood. Here, we show that CDH11 is transcriptionally controlled by homeobox C8 (HOXC8) in human breast cancer cells. HOXC8 serves as a CDH11-specific transcription factor and binds to the site of nucleotides -196 to -191 in the CDH11 promoter. Depletion of HOXC8 leads to the decrease in anchorage-independent cell growth, cell migration/invasion and spontaneous metastasis of breast cancer cells; however, suppressed tumorigenic events were fully rescued by ectopic CDH11 expression in HOXC8-knockdown cells. These results indicate that HOXC8 impacts breast tumorigenesis through CDH11. The analysis of publically available human breast tumor microarray gene expression database demonstrates a strong positive linear association between HOXC8 and CDH11 expression ( = 0.801, p < 0.001). Survival analysis (Kaplan-Meier method, log-rank test) show that both high HOXC8 and CDH11 expression correlate with poor recurrence-free survival rate of patients. Together, our study suggests that HOXC8 promotes breast tumorigenesis by maintaining high level of CDH11 expression in breast cancer cells. PMID:24810778

  5. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells.

    PubMed

    Li, Yi; Liu, Huizhan; Barta, Cody L; Judge, Paul D; Zhao, Lidong; Zhang, Weiping J; Gong, Shusheng; Beisel, Kirk W; He, David Z Z

    2016-01-01

    Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells. PMID:26974322

  6. Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation.

    PubMed

    Gergics, Peter; Christian, Helen C; Choo, Monica S; Ajmal, Adnan; Camper, Sally A

    2016-09-01

    Thyrotrope hyperplasia and hypertrophy are common responses to primary hypothyroidism. To understand the genetic regulation of these processes, we studied gene expression changes in the pituitaries of Cga(-/-) mice, which are deficient in the common α-subunit of TSH, LH, and FSH. These mice have thyrotrope hypertrophy and hyperplasia and develop thyrotrope adenoma. We report that cell proliferation is increased, but the expression of most stem cell markers is unchanged. The α-subunit is required for secretion of the glycoprotein hormone β-subunits, and mutants exhibit elevated expression of many genes involved in the unfolded protein response, consistent with dilation and stress of the endoplasmic reticulum. Mutants have elevated expression of transcription factors that are important in thyrotrope function, such as Gata2 and Islet 1, and those that stimulate proliferation, including Nupr1, E2f1, and Etv5. We characterized the expression and function of a novel, overexpressed gene, transcription elongation factor A (SII)-like 5 (Tceal5). Stable expression of Tceal5 in a pituitary progenitor cell line is sufficient to increase cell proliferation. Thus, Tceal5 may act as a proto-oncogene. This study provides a rich resource for comparing pituitary transcriptomes and an analysis of gene expression networks. PMID:27580811

  7. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development

    PubMed Central

    Hasegawa, Yu; Taylor, Deanne; Ovchinnikov, Dmitry A.; Wolvetang, Ernst J.; de Torrenté, Laurence; Mar, Jessica C.

    2015-01-01

    An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression

  8. DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells.

    PubMed

    Iio, Akio; Takagi, Takeshi; Miki, Kohei; Naoe, Tomoki; Nakayama, Atsuo; Akao, Yukihiro

    2013-10-01

    In various human malignancies, widespread dysregulation of microRNA (miRNA) expression is reported to occur and affects various cell growth programs. Recent studies suggest that the expression levels of miRNAs that act as tumor suppressors are frequently reduced in cancers because of chromosome deletions, epigenetical changes, aberrant transcription, and disturbances in miRNA processing. MiR-143 and -145 are well-recognized miRNAs that are highly expressed in several tissues, but down-regulated in most types of cancers. However, the mechanism of this down-regulation has not been investigated in detail. Here, we show that DEAD-box RNA helicase 6, DDX6 (p54/RCK), post-transcriptionally down-regulated miR-143/145 expression by prompting the degradation of its host gene product, NCR143/145 RNA. In human gastric cancer cell line MKN45, DDX6 protein was abundantly expressed and accumulated in processing bodies (P-bodies). DDX6 preferentially increased the instability of non-coding RNA, NCR143/145, which encompasses the miR-143/145 cluster, and down-regulated the expression of mature miR-143/145. In human monocytic cell line THP-1, lipopolysaccharide treatment promoted the assembly of P-bodies and down-regulated the expression of NCR143/145 and its miR-143/145 rapidly. In these cells, cycloheximide treatment led to a loss of P-bodies and to an increase in NCR143/145 RNA stability, thus resulting in up-regulation of miR-143/145 expression. These data demonstrate that DDX6 contributed to the control of NCR143/145 RNA stability in P-bodies and post-transcriptionally regulated miR-143/145 expression in cancer cells. PMID:23932921

  9. Ectopic expression of single transcription factors directs differentiation of a medaka spermatogonial cell line.

    PubMed

    Thoma, Eva C; Wagner, Toni U; Weber, Isabell P; Herpin, Amaury; Fischer, Andreas; Schartl, Manfred

    2011-08-01

    The capability to form all cell types of the body is a unique feature of stem cells. However, many questions remain concerning the mechanisms regulating differentiation potential. The derivation of spermatogonial cell lines (SGs) from mouse and human, which can differentiate across germ-layer borders, suggested male germ cells as a potential stem cell source in addition to embryonic stem cells. Here, we present a differentiation system using an SG of the vertebrate model organism Oryzias latipes (medaka). We report differentiation of this cell line into 4 different ectodermal and mesodermal somatic cell types. In addition to differentiation into adipocytes by retinoic acid treatment, we demonstrate for the first time that directed differentiation of an SG can be induced by ectopic expression of single transcription factors, completely independent of culture conditions. Transient transfection with mitf-m, a transcription factor that has been shown to induce differentiation into melanocytes in medaka embryonic stem cells, resulted in the formation of the same cell type in spermatogonia. Similarly, the formation of neuron-like cells and matrix-depositing osteoblasts was induced by ectopic expression of mash1 and cbfa1, respectively. Interestingly, we found that the expression of all mentioned fate-inducing transcription factors leads to recapitulation of the temporal pattern of marker gene expression known from in vivo studies. PMID:21090990

  10. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    PubMed Central

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  11. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens.

    PubMed

    Islam, Md Zaherul; Yun, Hae Keun

    2016-08-01

    Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines. PMID:27493610

  12. Expression of transcription factors and crystallin proteins during rat lens regeneration

    PubMed Central

    Huang, Yusen

    2010-01-01

    Purpose To establish a model of lens regeneration in rats and to detect the expression of transcription factor and crystallin genes. Methods An extracapsular lens extraction (ECLE) was performed in Sprague-Dawley rats. Examinations with slit-lamp and histological analysis were performed at various time points after ECLE. Real-time PCR and/or immunofluorescence were performed to detect the expression of the lens transcription factors paired box 6 (Pax6), prospero homeobox 1 (Prox1), and forkhead box E3 (Foxe3) and α-, β-, and γ-crystallin (Cryaa, Cryab, Crybb1, Crybb2, Cryba2, and Crygd, respectively). Results Lens epithelial cells (LECs) were left behind under the anterior capsule immediately after ECLE. Lens fiber differentiation had occurred in the peripheral capsular bag in all rats 3 days after ECLE. One month after surgery, all capsular bags were filled with new semitransparent lenticular structures displaying an established equator with well differentiated bow regions. The mRNA-expression quantity of lens transcription factors and α-, β-, and γ- crystallin increased after ECLE. Pax6 was expressed in both LECs and the newly regenerated lens fiber cells, Prox1 was expressed both in LECs and differentiating lens fiber cells, and Foxe3 was confined to LECs. Conclusions Lens fiber differentiation during regeneration follows a process similar to embryological development, with proliferation of epithelial cells along the anterior and posterior capsule, elongation of the posterior epithelial cells, and differentiation of epithelial cells into lens fibers. The regenerated lens contains proteins and transcription factors similar to those found in normal lenses. Inductive interactions seen during lens development are not necessary for lens regeneration. PMID:20216939

  13. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

    PubMed Central

    Islam, Md. Zaherul; Yun, Hae Keun

    2016-01-01

    Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines. PMID:27493610

  14. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses

    PubMed Central

    Warshan, Denis; Bay, Guillaume; Nahar, Nurun; Wardle, David A; Nilsson, Marie-Charlotte; Rasmussen, Ulla

    2016-01-01

    Dinitrogen (N2)-fixation by cyanobacteria living in symbiosis with pleurocarpous feather mosses (for example, Pleurozium schreberi and Hylocomium splendens) represents the main pathway of biological N input into N-depleted boreal forests. Little is known about the role of the cyanobacterial community in contributing to the observed temporal variability of N2-fixation. Using specific nifH primers targeting four major cyanobacterial clusters and quantitative PCR, we investigated how community composition, abundance and nifH expression varied by moss species and over the growing seasons. We evaluated N2-fixation rates across nine forest sites in June and September and explored the abundance and nifH expression of individual cyanobacterial clusters when N2-fixation is highest. Our results showed temporal and host-dependent variations of cyanobacterial community composition, nifH gene abundance and expression. N2-fixation was higher in September than June for both moss species, explained by higher nifH gene expression of individual clusters rather than higher nifH gene abundance or differences in cyanobacterial community composition. In most cases, ‘Stigonema cluster' made up less than 29% of the total cyanobacterial community, but accounted for the majority of nifH gene expression (82–94% of total nifH expression), irrespective of sampling date or moss species. Stepwise multiple regressions showed temporal variations in N2-fixation being greatly explained by variations in nifH expression of the ‘Stigonema cluster'. These results suggest that Stigonema is potentially the most influential N2-fixer in symbiosis with boreal forest feather mosses. PMID:26918665

  15. Seasonal variation in nifH abundance and expression of cyanobacterial communities associated with boreal feather mosses.

    PubMed

    Warshan, Denis; Bay, Guillaume; Nahar, Nurun; Wardle, David A; Nilsson, Marie-Charlotte; Rasmussen, Ulla

    2016-09-01

    Dinitrogen (N2)-fixation by cyanobacteria living in symbiosis with pleurocarpous feather mosses (for example, Pleurozium schreberi and Hylocomium splendens) represents the main pathway of biological N input into N-depleted boreal forests. Little is known about the role of the cyanobacterial community in contributing to the observed temporal variability of N2-fixation. Using specific nifH primers targeting four major cyanobacterial clusters and quantitative PCR, we investigated how community composition, abundance and nifH expression varied by moss species and over the growing seasons. We evaluated N2-fixation rates across nine forest sites in June and September and explored the abundance and nifH expression of individual cyanobacterial clusters when N2-fixation is highest. Our results showed temporal and host-dependent variations of cyanobacterial community composition, nifH gene abundance and expression. N2-fixation was higher in September than June for both moss species, explained by higher nifH gene expression of individual clusters rather than higher nifH gene abundance or differences in cyanobacterial community composition. In most cases, 'Stigonema cluster' made up less than 29% of the total cyanobacterial community, but accounted for the majority of nifH gene expression (82-94% of total nifH expression), irrespective of sampling date or moss species. Stepwise multiple regressions showed temporal variations in N2-fixation being greatly explained by variations in nifH expression of the 'Stigonema cluster'. These results suggest that Stigonema is potentially the most influential N2-fixer in symbiosis with boreal forest feather mosses. PMID:26918665

  16. The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression

    PubMed Central

    Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.

    2014-01-01

    Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544

  17. GW8510 Increases Insulin Expression in Pancreatic Alpha Cells through Activation of p53 Transcriptional Activity

    PubMed Central

    Fomina-Yadlin, Dina; Kubicek, Stefan; Vetere, Amedeo; He, Kaihui Hu; Schreiber, Stuart L.; Wagner, Bridget K.

    2012-01-01

    Background Expression of insulin in terminally differentiated non-beta cell types in the pancreas could be important to treating type-1 diabetes. Previous findings led us to hypothesize involvement of kinase inhibition in induction of insulin expression in pancreatic alpha cells. Methodology/Principal Findings Alpha (αTC1.6) cells and human islets were treated with GW8510 and other small-molecule inhibitors for up to 5 days. Alpha cells were assessed for gene- and protein-expression levels, cell-cycle status, promoter occupancy status by chromatin immunoprecipitation (ChIP), and p53-dependent transcriptional activity. GW8510, a putative CDK2 inhibitor, up-regulated insulin expression in mouse alpha cells and enhanced insulin secretion in dissociated human islets. Gene-expression profiling and gene-set enrichment analysis of GW8510-treated alpha cells suggested up-regulation of the p53 pathway. Accordingly, the compound increased p53 transcriptional activity and expression levels of p53 transcriptional targets. A predicted p53 response element in the promoter region of the mouse Ins2 gene was verified by chromatin immunoprecipitation (ChIP). Further, inhibition of Jun N-terminal kinase (JNK) and p38 kinase activities suppressed insulin induction by GW8510. Conclusions/Significance The induction of Ins2 by GW8510 occurred through p53 in a JNK- and p38-dependent manner. These results implicate p53 activity in modulation of Ins2 expression levels in pancreatic alpha cells, and point to a potential approach toward using small molecules to generate insulin in an alternative cell type. PMID:22242153

  18. Serine 574 phosphorylation alters transcriptional programming of FOXO3 by selectively enhancing apoptotic gene expression.

    PubMed

    Li, Z; Zhao, J; Tikhanovich, I; Kuravi, S; Helzberg, J; Dorko, K; Roberts, B; Kumer, S; Weinman, S A

    2016-04-01

    Forkhead box O3 (FOXO3) is a multispecific transcription factor that is responsible for multiple and conflicting transcriptional programs such as cell survival and apoptosis. The protein is heavily post-translationally modified and there is considerable evidence that post-transcriptional modifications (PTMs) regulate protein stability and nuclear-cytosolic translocation. Much less is known about how FOXO3 PTMs determine the specificity of its transcriptional program. In this study we demonstrate that exposure of hepatocytes to ethanol or exposure of macrophages to lipopolysaccharide (LPS) induces the c-Jun N-terminal kinase (JNK)-dependent phosphorylation of FOXO3 at serine-574. Chromatin immunoprecipitation (ChIP), mRNA and protein measurements demonstrate that p-574-FOXO3 selectively binds to promoters of pro-apoptotic genes but not to other well-described FOXO3 targets. Both unphosphorylated and p-574-FOXO3 bound to the B-cell lymphoma 2 (Bcl-2) promoter, but the unphosphorylated form was a transcriptional activator, whereas p-574-FOXO3 was a transcriptional repressor. The combination of increased TRAIL (TNF-related apoptosis-inducing ligand) and decreased Bcl-2 was both necessary and sufficient to induce apoptosis. LPS treatment of a human monocyte cell line (THP-1) induced FOXO3 S-574 phosphorylation and apoptosis. LPS-induced apoptosis was prevented by knockdown of FOXO3. It was restored by overexpressing wild-type FOXO3 but not by overexpressing a nonphosphorylatable S-574A FOXO3. Expression of an S-574D phosphomimetic form of FOXO3 induced apoptosis even in the absence of LPS. A similar result was obtained with mouse peritoneal macrophages where LPS treatment increased TRAIL, decreased Bcl-2 and induced apoptosis in wild-type but not FOXO3(-/-) cells. This work thus demonstrates that S-574 phosphorylation generates a specifically apoptotic form of FOXO3 with decreased transcriptional activity for other well-described FOXO3 functions. PMID:26470730

  19. Characterization of a novel C-kinesin (KIFC3) abundantly expressed in vertebrate retina and RPE.

    PubMed

    Hoang, E; Bost-Usinger, L; Burnside, B

    1999-07-01

    Many forms of intracellular transport are mediated by microtubule-dependent motors of the kinesin superfamily (KIFs). To identify kinesins expressed in human retina and RPE, we used degenerate primer RT-PCR to amplify a approximately 440 bp kinesin motor domain fragment from human retinal and RPE messenger RNAs. Four distinct kinesins were detected: one C-kinesin (HsKIFC3); one kinesin from the unc104/KIF1 family [HsKIF1A]; and the ubiquitous and neuronal forms of conventional kinesin heavy chain [HsuKHC and HsnKHC]. The C-kinesin HsKIFC3 comprised 33.3% of the retinal clones and was 60% identical to FKIF2, the most abundant kinesin detected in a previous screen of fish retina and 95% identical to a fragment of MmKifC3 recently amplified from mouse brain. Elsewhere we have reported the sequence of HsKIFC3 and shown that it maps to the same locus on chromosome 16q13-q21 as Bardet-Biedl syndrome Type II, a hereditary retinal degeneration. We describe here the kinesin PCR screen of human retina and RPE and examine the tissue and subcellular distribution of KIFC3 in both fish and human retina using an antibody raised against a peptide conserved between FKIF2 and HsKIFC3. This peptide antibody identified a single approximately 80 kDa band in Western blots of fish and human retina and RPE. In both fish and human retina this antibody strongly labeled photoreceptor terminals in the outer plexiform layer, suggesting that FKIF2/KIFC3 may play some role in the photoreceptor synapse. PMID:10375449

  20. Transcriptional expression profile of cultured human embryonic stem cells in vitro and in vivo.

    PubMed

    Keil, Marlen; Siegert, Antje; Eckert, Klaus; Gerlach, Jörg; Haider, Wolfram; Fichtner, Iduna

    2012-03-01

    The aims of this study were to analyze the spontaneous differentiation of human embryonic stem cells in vitro and in vivo and to investigate the influence of in vitro partial differentiation on in vivo teratoma formation in immunodeficient mice. Standardized methods are needed for long-term cultivation of undifferentiated stem cells and the multilineage cells that spontaneously differentiate from them. Accordingly, SA002 human embryonic stem cells were cultured on irradiated mouse embryonic fibroblasts cells, on irradiated human foreskin fibroblasts, or were cultured feeder-free using matrigel. Expression of marker protein transcripts was analyzed in undifferentiated and differentiated stem cells using real-time PCR, and both types of stem cells were transplanted subcutaneously into immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice to test for teratoma formation. Teratoma histology and expression profiles were subsequently characterized. Cells cultured using different conditions and morphologically undifferentiated cells had comparable marker expression profiles, showing high expression levels of markers for pluripotency and low-to-moderate expression levels of germ layer markers. Cells showing spontaneous differentiation that were cultured in feeder-free conditions in the absence of basic fibroblast growth factor demonstrated slight upregulation of sex determining region Y-box 17, connexin 32, and albumin expression at early time points, as well as expression of octamer-binding transcription factor 4, proteoglycan epitopes on podocalyxin (Trafalgar), and alkaline phosphatase. At later time points, expression of hepatocyte nuclear factor-3-beta, and hepatocyte nuclear factor-4-alpha and alpha fetoprotein was upregulated, whereas beta-3-tubulin, chemokine receptor, nestin, sex-determining region Y-box 17, and connexin 32 were downregulated. Expression of pluripotency markers remained high, and hematopoetic markers were not expressed. SA002 cells that showed

  1. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes.

    PubMed

    Gauthier, Sebastien A; Hewes, Randall S

    2006-05-01

    The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting. PMID:16651547

  2. Effects of dietary roughage levels on the expression of adipogenic transcription factors in Wagyu steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-12-01

    We hypothesized that dietary roughage level would alter the expression levels of adipogenic transcription factors in adipose tissue of Japanese black (Wagyu) steers. Steers were fed whole crop rice silage at three levels: (1) high-roughage feeding group, fed 8kg silage and 5kg concentrate (HR); (2) middle roughage feeding group, fed 5kg silage and 6kg concentrate (MR); and (3) low roughage feeding group, fed 2kg silage and 7kg concentrate (LR) from 22 to 30months of age. In subcutaneous adipose tissue, there were no significant differences in the expression of the adipogenic transcription factors and adipocyte size among feeding groups. In mesenteric adipose tissue, the expression of C/EBPα in the LR and MR groups was significantly higher than that in the HR group. Adipocyte size in the mesenteric adipose tissue of the LR group was significantly larger than that of the HR group. In intermuscular adipose tissue, the expression of C/EBPβ-LAP in the LR group was significantly higher than that in the HR group, and the expression of C/EBPβ-LIP in the LR and MR groups was significantly higher than that in the HR group. Adipocyte size in the intermuscular adipose tissue of the LR and MR groups was significantly smaller than that of the HR group. These results suggest that dietary roughage revel affects the adipose tissue depot-specific differences in C/EBP family expression pattern and adipocyte cellularity in Wagyu steers. PMID:20416623

  3. Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c.

    PubMed

    Jiang, Yong; Liu, He; Liu, Wen-Jing; Tong, Hai-Bin; Chen, Chang-Jun; Lin, Fu-Gui; Zhuo, Yan-Hang; Qian, Xiao-Zhen; Wang, Zeng-Bin; Wang, Yu; Zhang, Peng; Jia, Hong-Liang

    2016-04-30

    Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells. PMID:26923194

  4. Endothelial Aquaporin-1 (AQP1) Expression Is Regulated by Transcription Factor Mef2c

    PubMed Central

    Jiang, Yong; Liu, He; Liu, Wen-jing; Tong, Hai-bin; Chen, Chang-jun; Lin, Fu-gui; Zhuo, Yan-hang; Qian, Xiao-zhen; Wang, Zeng-bin; Wang, Yu; Zhang, Peng; Jia, Hong-liang

    2016-01-01

    Aquaporin 1 (AQP1) is expressed in most microvasculature endothelial cells and forms water channels that play major roles in a variety of physiologic processes. This study aimed to delineate the transcriptional regulation of AQP1 by Mef2c in endothelial cells. Mef2c cooperated with Sp1 to activate human AQP1 transcription by binding to its proximal promoter in human umbilical cord vein endothelial cells (HUVEC). Over-expression of Mef2c, Sp1, or Mef2c/Sp1 increased HUVEC migration and tube-forming ability, which can be abolished AQP1 knockdown. These data indicate that AQP1 is a direct target of Mef2c in regulating angiogenesis and vasculogenesis of endothelial cells. PMID:26923194

  5. Multiple breast cancer risk variants are associated with differential transcript isoform expression in tumors

    PubMed Central

    Caswell, Jennifer L.; Camarda, Roman; Zhou, Alicia Y.; Huntsman, Scott; Hu, Donglei; Brenner, Steven E.; Zaitlen, Noah; Goga, Andrei; Ziv, Elad

    2015-01-01

    Genome-wide association studies have identified over 70 single-nucleotide polymorphisms (SNPs) associated with breast cancer. A subset of these SNPs are associated with quantitative expression of nearby genes, but the functional effects of the majority remain unknown. We hypothesized that some risk SNPs may regulate alternative splicing. Using RNA-sequencing data from breast tumors and germline genotypes from The Cancer Genome Atlas, we tested the association between each risk SNP genotype and exon-, exon–exon junction- or transcript-specific expression of nearby genes. Six SNPs were associated with differential transcript expression of seven nearby genes at FDR < 0.05 (BABAM1, DCLRE1B/PHTF1, PEX14, RAD51L1, SRGAP2D and STXBP4). We next developed a Bayesian approach to evaluate, for each SNP, the overlap between the signal of association with breast cancer and the signal of association with alternative splicing. At one locus (SRGAP2D), this method eliminated the possibility that the breast cancer risk and the alternate splicing event were due to the same causal SNP. Lastly, at two loci, we identified the likely causal SNP for the alternative splicing event, and at one, functionally validated the effect of that SNP on alternative splicing using a minigene reporter assay. Our results suggest that the regulation of differential transcript isoform expression is the functional mechanism of some breast cancer risk SNPs and that we can use these associations to identify causal SNPs, target genes and the specific transcripts that may mediate breast cancer risk. PMID:26472073

  6. Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

    PubMed Central

    Núñez-López, Lizeth; Aguirre-Cruz, Andrés

    2015-01-01

    Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming growth processes under submergence stress. Arabidopsis was employed to test if heterologous expression of SUB1A-1 or SUB1C-1 (a related gene) can be used to improve saccharification. Cellulolytic and amylolytic enzymatic treatments confirmed that SUB1A-1 transgenics had better saccharification yield than wild-type (Col-0), mainly from accumulated starch. This improved saccharification yield was developmentally controlled; when compared to Col-0, young transgenic vegetative plants yielded 200–300% more glucose, adult vegetative plants yielded 40–90% more glucose and plants in reproductive stage had no difference in yield. We measured photosynthetic parameters, starch granule microstructure, and transcript abundance of genes involved in starch degradation (SEX4, GWD1), juvenile transition (SPL3-5) and meristematic identity (FUL, SOC1) but found no differences to Col-0, indicating that starch accumulation may be controlled by down-regulation of CONSTANS and FLOWERING LOCUS T by SUB1A-1 as previously reported. SUB1A-1 transgenics also offered less resistance to deformation than wild-type concomitant to up-regulation of AtEXP2 expansin and BGL2 glucan-1,3,-beta-glucosidase. We conclude that heterologous SUB1A-1 expression can improve saccharification yield and softness, two traits needed in bioethanol production. PMID:25780769

  7. Comparative transcript profiling of gene expression of fresh and frozen-thawed bull sperm.

    PubMed

    Chen, Xiaoli; Wang, Yonggui; Zhu, Huabin; Hao, Haisheng; Zhao, Xueming; Qin, Tong; Wang, Dong

    2015-03-01

    Although frozen semen is widely used commercially in the cattle breeding industry, the resultant pregnancy rate is lower than that produced using fresh semen. Cryodamage is a major problem in semen cryopreservation; it causes changes to sperm transcripts that may influence sperm function and motility. We used suppression subtractive hybridization technology to establish a complementary DNA subtractive library, and combined microarray technology and sequence homology analysis to screen and analyze differentially expressed genes in the library, comparing fresh sperm with the frozen-thawed sperm of nine bulls. Overall, 19 positive differentially expressed unigenes were identified using microarray data and Significance Analysis of Microarrays software (|score (d)| ≥ 2, fold change > 1, and false discovery rate < 0.05). Of 15 differentially expressed unigenes exhibited high sequence homology (E-value ≤ 1 × 10(-3)), 12 were upregulated in frozen-thawed sperm, the remaining 3 were upregulated in fresh sperm, and 4 other clones were identified as unknown because of incomplete sequences or because there was no significant sequence homology (E-value > 1E(-03)) and were considered novel genes. The expression of five of these genes-RPL31, PRKCE, PAPSS2, PLP1, and R1G7-was verified by quantitative real-time reverse transcription-polymerase chain reaction. There was a significant differential expression of the RPL31 gene (P < 0.05). Our preliminary results provide an overview of differentially expressed transcripts between fresh and frozen-thawed sperm of Holstein bulls. PMID:25459024

  8. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression.

    PubMed

    Reddy, Timothy E; Gertz, Jason; Pauli, Florencia; Kucera, Katerina S; Varley, Katherine E; Newberry, Kimberly M; Marinov, Georgi K; Mortazavi, Ali; Williams, Brian A; Song, Lingyun; Crawford, Gregory E; Wold, Barbara; Willard, Huntington F; Myers, Richard M

    2012-05-01

    A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences. PMID:22300769

  9. A comprehensive look at transcription factor gene expression changes in colorectal adenomas

    PubMed Central

    2014-01-01

    Background Biological processes are controlled by transcription networks. Expression changes of transcription factor (TF) genes in precancerous lesions are therefore crucial events in tumorigenesis. Our aim was to obtain a comprehensive picture of these changes in colorectal adenomas. Methods Using a 3-pronged selection procedure, we analyzed transcriptomic data on 34 human tissue samples (17 adenomas and paired samples of normal mucosa, all collected with ethics committee approval and written, informed patient consent) to identify TFs with highly significant tumor-associated gene expression changes whose potential roles in colorectal tumorigenesis have been under-researched. Microarray data were subjected to stringent statistical analysis of TF expression in tumor vs. normal tissues, MetaCore-mediated identification of TF networks displaying enrichment for genes that were differentially expressed in tumors, and a novel quantitative analysis of the publications examining the TF genes’ roles in colorectal tumorigenesis. Results The 261 TF genes identified with this procedure included DACH1, which plays essential roles in the proper proliferation and differentiation of retinal and leg precursor cell populations in Drosophila melanogaster. Its possible roles in colorectal tumorigenesis are completely unknown, but it was found to be markedly overexpressed (mRNA and protein) in all colorectal adenomas and in most colorectal carcinomas. However, DACH1 expression was absent in some carcinomas, most of which were DNA mismatch-repair deficient. When networks were built using the set of TF genes identified by all three selection procedures, as well as the entire set of transcriptomic changes in adenomas, five hub genes (TGFB1, BIRC5, MYB, NR3C1, and TERT) where identified as putatively crucial components of the adenomatous transformation process. Conclusion The transcription-regulating network of colorectal adenomas (compared with that of normal colorectal mucosa) is

  10. Negative Regulation of DsbA-L Gene Expression by the Transcription Factor Sp1

    PubMed Central

    Fang, Qichen; Yang, Wenjing; Li, Huating; Hu, Wenxiu; Chen, Lihui; Jiang, Shan; Dong, Kun; Song, Qianqian; Wang, Chen; Chen, Shuo; Liu, Feng

    2014-01-01

    Disulfide-bond A oxidoreductase-like protein (DsbA-L) possesses beneficial effects such as promoting adiponectin multimerization and stability, increasing insulin sensitivity, and enhancing energy metabolism. The expression level of DsbA-L is negatively correlated with obesity in mice and humans, but the underlying mechanisms remain unknown. To address this question, we generated reporter gene constructs containing the promoter sequence of the mouse DsbA-L gene. Deletion analysis showed that the proximal promoter of mouse DsbA-L is located between −186 and −34 bp relative to the transcription start site. In silico analysis identified a putative Sp1 transcription factor binding site in the first intron of the DsbA-L gene. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Sp1 bound to this intron region in vitro and in intact cells. Overexpression of Sp1 or suppressing Sp1 expression by siRNA reduced or increased DsbA-L promoter activity, respectively. The binding activity of Sp1 was gradually decreased during 3T3-L1 cell differentiation and was significantly increased in adipose tissues of obese mice. Our results identify Sp1 as an inhibitor of DsbA-L gene transcription, and the Sp1-mediated inhibition of DsbA-L gene expression may provide a mechanism underlying obesity-induced adiponectin downregulation and insulin resistance. PMID:25024375

  11. Hog1 Targets Whi5 and Msa1 Transcription Factors To Downregulate Cyclin Expression upon Stress

    PubMed Central

    González-Novo, Alberto; Jiménez, Javier; Clotet, Josep; Nadal-Ribelles, Mariona; Cavero, Santiago

    2015-01-01

    Yeast cells have developed complex mechanisms to cope with extracellular insults. An increase in external osmolarity leads to activation of the stress-activated protein kinase Hog1, which is the main regulator of adaptive responses, such as gene expression and cell cycle progression, that are essential for cellular survival. Upon osmostress, the G1-to-S transition is regulated by Hog1 through stabilization of the cyclin-dependent kinase inhibitor Sic1 and the downregulation of G1 cyclin expression by an unclear mechanism. Here, we show that Hog1 interacts with and phosphorylates components of the core cell cycle transcriptional machinery such as Whi5 and the coregulator Msa1. Phosphorylation of these two transcriptional regulators by Hog1 is essential for inhibition of G1 cyclin expression, for control of cell morphogenesis, and for maximal cell survival upon stress. The control of both Whi5 and Msa1 by Hog1 also revealed the necessity for proper coordination of budding and DNA replication. Thus, Hog1 regulates G1 cyclin transcription upon osmostress to ensure coherent passage through Start. PMID:25733686

  12. Carnitine palmitoyltransferase I gene in Synechogobius hasta: Cloning, mRNA expression and transcriptional regulation by insulin in vitro.

    PubMed

    Wu, Kun; Zheng, Jia-Lang; Luo, Zhi; Chen, Qi-Liang; Zhu, Qing-Ling; Wei-Hu

    2016-01-15

    We cloned seven complete CPT I cDNA sequences (CPT I α1a-1a, CPT I α1a-1b, CPT I α1a-1c, CPT I α1a-2, CPT I α2a, CPT I α2b1a, CPT I β) and a partial cDNA sequence (CPT I α2b1b) from Synechogobius hasta. Phylogenetic analysis shows that there are four CPT I duplications in S. hasta, CPT I duplication resulting in CPT I α and CPT I β, CPT I α duplication producing CPT I α1 and CPT I α2, CPT I α2 duplication generating CPT I α2a and CPT I α2b, and CPT I α2b duplication creating CPT I α2b1a and CPT I α2b1b. Alternative splicing of CPT Iα1a results in the generation of four CPT I isoforms, CPT I α1a-1a, CPT I α1a-1b, CPT I α1a-1c and CPT I α1a-2. Five CPT I transcripts (CPT I α1a, CPT I α2a, CPT I α2b1a, CPT I α2b1b and CPT I β) mRNAs are expressed in a wide range of tissues, but their abundance of each CPT I mRNA shows the tissue-dependent expression patterns. Insulin incubation significantly reduces the mRNA expression of CPT Iα1a and CPT Iα2a, but not other transcripts in hepatocytes of S. hasta. For the first time, our study demonstrates CPT Iα2b duplication and CPT I α1a alternative splicing in fish at transcriptional level, and the CPT I mRNAs are differentially regulated by insulin in vitro, suggesting that four CPT I isoforms may play different physiological roles during insulin signaling. PMID:26506441

  13. Expression of adipogenic transcription factors in adipose tissue of fattening Wagyu and Holstein steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-01-01

    In this experiment, we studied the effects of breed differences on the protein expression of adipogenic transcription factors, the C/EBP family (C/EBPα, C/EBPβ-LAP, C/EBPβ-LIP and C/EBPδ) and PPARγ, in the adipose tissues of Japanese Black (Wagyu) and Holstein steers from various anatomical sites (subcutaneous, intermuscular, and mesenteric) at different fattening periods (19 and 24 months of age). The expression of C/EBPβ-LAP and C/EBPα in the mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The expression of C/EBPδ in the subcutaneous, intermuscular and mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The plasma insulin concentrations of Wagyu steers at 19 months of age tended to be higher than those of Holstein. No significant differences in the expression of the adipogenic transcription factors and plasma insulin concentration were observed between the breeds at 24 months of age. These results suggest the existence of breed difference on the expression of the C/EBP family between fattening Wagyu and Holstein steers at 19 months of age, whereas breed difference might have disappeared before 24 months of age. PMID:22063966

  14. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus

    PubMed Central

    2010-01-01

    Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi). Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB), cell cycle regulation (cyclin B2, CDK1, and CKI3), matrix metalloproteinases (MMPs) and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections. PMID:20663125

  15. Differential, regional, and cellular expression of the stathmin family transcripts in the adult rat brain.

    PubMed

    Ozon, S; El Mestikawy, S; Sobel, A

    1999-06-01

    Stathmin is a ubiquitous cytosolic phosphoprotein, preferentially expressed in the nervous system, and previously described as a relay integrating diverse intracellular signaling pathways. Stathmin is the generic element of a mammalian protein family including SCG10, SCLIP, and RB3 with its splice variants RB3' and RB3". In contrast with stathmin, SCG10, SCLIP, and RB3/RB3'/RB3" are exclusively expressed in the nervous system, stathmin and SCG10 being mostly expressed during cell proliferation and differentiation, and SCLIP and RB3 rather in mature neural cells. To further understand their specific roles in the CNS, we compared the localization of the stathmin, SCG10, SCLIP, and RB3 transcripts in adult rat brain. Northern blot analysis as well as in situ hybridization experiments showed that all stathmin-related mRNAs are expressed in a wide range of adult rat brain areas. At a regional level, SCG10 and SCLIP appear generally distributed similarly except in a few areas. The pattern of expression of the RB3 transcript is very different from that of the three other members of the stathmin family. Furthermore, unlike SCG10 and SCLIP, which were detected only in neurons, but like stathmin, RB3 was detected in neurons and also in glial cells of the white matter. Altogether, our results suggest distinct roles for each member of the stathmin-related phosphoprotein family, in regard to their specific regional and cellular localization in the rat brain. PMID:10369222

  16. Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco.

    PubMed

    Xu, Juan; Yang, Kwang-Yeol; Yoo, Seung Jin; Liu, Yidong; Ren, Dongtao; Zhang, Shuqun

    2014-07-01

    Plant mitogen-activated protein kinases represented by tobacco WIPK (wounding-induced protein kinase) and its orthologs in other species are unique in their regulation at transcriptional level in response to stress and pathogen infection. We previously demonstrated that transcriptional activation of WIPK is essential for induced WIPK activity, and activation of salicylic acid-induced protein kinase (SIPK) by the constitutively active NtMEK2(DD) is sufficient to induce WIPK gene expression. Here, we report that the effect of SIPK on WIPK gene expression is mediated by reactive oxygen species (ROS). Using a combination of pharmacological and gain-of-function transgenic approaches, we studied the relationship among SIPK activation, WIPK gene activation in response to fungal cryptogein, light-dependent ROS generation in chloroplasts, and ROS generated via NADPH oxidase. In the conditional gain-of-function GVG-NtMEK2(DD) transgenic tobacco, induction of WIPK expression is dependent on the ROS generation in chloroplasts. Consistently, methyl viologen, an inducer of ROS generation in chloroplasts, highly activated WIPK expression. In addition to chloroplast-originated ROS, H(2)O(2) generated from the cell-surface NADPH oxidase could also activate WIPK gene expression, and inhibition of cryptogein-induced ROS generation also abolished WIPK gene activation. Our data demonstrate that WIPK gene activation is mediated by ROS, which provides a mechanism by which ROS influence cellular signalling processes in plant stress/defence response. PMID:24392654

  17. Expression of The Embryonic Stem Cell Transcription Factor SOX2 in Human Skin

    PubMed Central

    Laga, Alvaro C.; Lai, Chiou-Yan; Zhan, Qian; Huang, Susan J.; Velazquez, Elsa F.; Yang, Qinghong; Hsu, Mei-Yu; Murphy, George F.

    2010-01-01

    SOX2 is a gene located on chromosome 3q26.33 that encodes a transcription factor important to maintenance of embryonic neural crest stem cell pluripotency. We have identified rare SOX2-immunoreactive cells in normal human skin at or near the established stem cell niches. Three subsets of SOX2-positive cells were defined in these regions: those expressing only SOX2 and those that co-expressed SOX2 and either CK20 or microphthalmia-associated transcription factor, which are consistent with dichotomous differentiation of SOX2-expressing precursors along neuroendocrine (Merkel cell) or melanocytic lines, respectively. Examination of Merkel cell carcinomas confirmed nuclear SOX2 expression in this tumor type. In human patient melanoma, strong nuclear expression of SOX2 was noted in a subset of tumors, and the ability to detect SOX2 in lesional cells significantly correlated with primary tumor thickness in a survey cohort. To assess the potential role of SOX2 in melanoma growth, an in vivo tumorigenesis assay was used. Whereas SOX2 knockdown failed to influence proliferation of cultured melanoma cells in vitro, tumor xenografts generated with the SOX2-knockdown cell line showed significant decrease in mean tumor volume as compared with controls. In aggregate, these findings suggest that SOX2 is a novel biomarker for subpopulations of normal skin cells that reside in established stem cell niches and that might relate to Merkel cell and melanocyte ontogeny and tumorigenesis. PMID:20042675

  18. A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone.

    PubMed

    Garvin, Lindsay M; Chen, Yajun; Damsker, Jesse M; Rose, Mary C

    2016-06-01

    Overproduction of secretory mucins contributes to morbidity/mortality in inflammatory lung diseases. Inflammatory mediators directly increase expression of mucin genes, but few drugs have been shown to directly repress mucin gene expression. IL-1β upregulates the MUC5AC mucin gene in part via the transcription factors NFκB while the glucocorticoid Dexamethasone (Dex) transcriptionally represses MUC5AC expression by Dex-activated GR binding to two GRE cis-sites in the MUC5AC promoter in lung epithelial cells. VBP compounds (ReveraGen BioPharma) maintain anti-inflammatory activity through inhibition of NFκB but exhibit reduced GRE-mediated transcriptional properties associated with adverse side-effects and thus have potential to minimize harmful side effects of long-term steroid therapy in inflammatory lung diseases. We investigated VBP15 efficacy as an anti-mucin agent in two types of airway epithelial cells and analyzed the transcription factor activity and promoter binding associated with VBP15-induced MUC5AC repression. VBP15 reduced MUC5AC mRNA abundance in a dose- and time-dependent manner similar to Dex in the presence or absence of IL-1β in A549 and differentiated human bronchial epithelial cells. Repression was abrogated in the presence of RU486, demonstrating a requirement for GR in the VBP15-induced repression of MUC5AC. Inhibition of NFκB activity resulted in reduced baseline expression of MUC5AC indicating that constitutive activity maintains MUC5AC production. Chromatin immunoprecipitation analysis demonstrated lack of GR and of p65 (NFκB) binding to composite GRE domains in the MUC5AC promoter following VBP15 exposure of cells, in contrast to Dex. These data demonstrate that VBP15 is a novel anti-mucin agent that mediates the reduction of MUC5AC gene expression differently than the classical glucocorticoid, Dex. PMID:27133900

  19. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  20. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    PubMed

    Shelburne, Samuel A; Olsen, Randall J; Suber, Bryce; Sahasrabhojane, Pranoti; Sumby, Paul; Brennan, Richard G; Musser, James M

    2010-03-01

    Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection. PMID:20333240

  1. Mitochondrial dysfunction induces SESN2 gene expression through Activating Transcription Factor 4.

    PubMed

    Garaeva, Alisa A; Kovaleva, Irina E; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-01-01

    We found that inhibitors of mitochondrial respiratory chain complexes III (myxothiazol) and I (piericidin A) in some epithelial carcinoma cell lines induce transcription of the p53-responsive SESN2 gene that plays an important role in stress response and homeostatic regulation. However, the effect did not depend on p53 because i) there was no induction of p53 after the treatment with piericidin A; ii) after the treatment with myxothiazol the peak of SESN2 gene upregulation occurred as early as 5h, before the onset of p53 activation (13h); iii) a supplementation with uridine that abolishes the p53 activation in response to myxothiazol did not abrogate the induction of SESN2 transcripts; iv) in the p53 negative HCT116 p53 -/- cells SESN2 transcription could be also induced by myxothiazol. In response to the respiratory chain inhibitors we observed an induction of ATF4, the key transcription factor of the integrated stress response (ISR). We found that the induction of SESN2 transcripts could be prevented by the ISR inhibitory small molecule ISRIB. Also, by inhibiting or overexpressing ATF4 with specific shRNA or ATF4-expressing constructs, respectively, we have confirmed the role of ATF4 in the SESN2 gene upregulation induced by mitochondrial dysfunction. At a distance of 228 bp upstream from the SESN2 transcription start site we found a candidate sequence for the ATF4 binding site and confirmed its requirement for the induction of SESN2 in luciferase reporter experiments. We suggest that the upregulation of SESN2 by mitochondrial dysfunction provides a homeostatic feedback that attenuates biosynthetic processes during temporal losses of energy supply from mitochondria thereby assisting better adaptation and viability of cells in hostile environments. PMID:26771712

  2. Integrated Genomic and Transcriptional Profiling Identifies Chromosomal Loci with Altered Gene Expression in Cervical Cancer

    PubMed Central

    Wilting, Saskia M.; de Wilde, Jillian; Meijer, Chris J. L. M.; Berkhof, Johannes; Yi, Yajun; van Wieringen, Wessel N.; Braakhuis, Boudewijn J. M.; Meijer, Gerrit A.; Ylstra, Bauke; Snijders, Peter J. F.; Steenbergen, Renske D. M.

    2009-01-01

    For a better understanding of the consequences of recurrent chromosomal alterations in cervical carcinomas, we integrated genome-wide chromosomal and transcriptional profiles of 10 squamous cell carcinomas (SCCs), 5 adenocarcinomas (AdCAs) and 6 normal controls. Previous genomic profiling showed that gains at chromosome arms 1q, 3q, and 20q as well as losses at 8q, 10q, 11q, and 13q were common in cervical carcinomas. Altered regions spanned multiple megabases, and the extent to which expression of genes located there is affected remains unclear. Expression analysis of these previously chromosomally profiled carcinomas yielded 83 genes with significantly differential expression between carcinomas and normal epithelium. Application of differential gene locus mapping (DIGMAP) analysis and the array CGH expression integration tool (ACE-it) identified hotspots within large chromosomal alterations in which gene expression was altered as well. Chromosomal gains of the long arms of chromosome 1, 3, and 20 resulted in increased expression of genes located at 1q32.1-32.2, 3q13.32-23, 3q26.32-27.3, and 20q11.21-13.33, whereas a chromosomal loss of 11q22.3-25 was related to decreased expression of genes located in this region. Overexpression of DTX3L, PIK3R4, ATP2C1, and SLC25A36, all located at 3q21.1-23 and identified by DIGMAP, ACE-it or both, was confirmed in an independent validation sample set consisting of 12 SCCs and 13 normal ectocervical samples. In conclusion, integrated chromosomal and transcriptional profiling identified chromosomal hotspots at 1q, 3q, 11q, and 20q with altered gene expression within large commonly altered chromosomal regions in cervical cancer. PMID:18618715

  3. Influence of transcriptional and translational control sequences on the expression of foreign genes in Caulobacter crescentus.

    PubMed Central

    Yap, W H; Thanabalu, T; Porter, A G

    1994-01-01

    The influence of expression control sequences (ECSs; promoters and ribosome-binding sites [RBSs]), transcriptional terminators, and gene orientation on the expression of the Escherichia coli lacZ gene in the gram-negative microorganisms Caulobacter crescentus and E. coli was investigated. A series of broad-host-range expression vectors, based on the RK2 plasmid derivative pRK248, were constructed. The ECSs included the tac promoter, the promoter for the surface layer protein of C. crescentus, and promoters from a number of gram-positive bacteria together with their associated RBSs. In addition, synthetic ECSs were constructed by using different combinations of promoters and RBSs. lacZ expression was found to be dependent on the nature of the promoter and RBS and, to a lesser extent, on the presence of a transcriptional terminator and the orientation of the promoter-lacZ construct in pRK248. The relative efficiencies of the various ECSs in driving lacZ expression differed markedly in C. crescentus and E. coli. In C. crescentus, the ECS ptac1 (tac promoter and consensus RBS for C. crescentus mRNAs) appeared to be the most efficient, producing 12-fold-higher activity than did pSL (promoter for the surface layer protein of C. crescentus and its putative RBS). pSL was not transcribed in E. coli, whereas various promoters from gram-positive microorganisms were transcribed in both C. crescentus and E. coli. A number of ECSs were also used to drive mosquitocidal toxin gene expression in C. crescentus, and a correlation between toxin expression and lacZ expression was observed. PMID:8169208

  4. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    PubMed

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  5. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max)

    PubMed Central

    Valliyodan, Babu; Van Toai, Tara T.; Alves, Jose Donizeti; de Fátima P. Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B.; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J. Grover; Nguyen, Henry T.

    2014-01-01

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  6. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    PubMed

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. PMID:26969076

  7. ZBTB2 increases PDK4 expression by transcriptional repression of RelA/p65

    PubMed Central

    Kim, Min-Young; Koh, Dong-In; Choi, Won-Il; Jeon, Bu-Nam; Jeong, Deok-yoon; Kim, Kyung-Sup; Kim, Kunhong; Kim, Se-Hoon; Hur, Man-Wook

    2015-01-01

    The NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65. Sp1 plays a key role in the expression of the RelA/p65 gene. ZBTB2 represses transcription of the gene by inhibiting Sp1 binding to a Sp1-binding GC-box in the RelA/p65 proximal promoter (bp, −31 to −21). Moreover, recent studies revealed that RelA/p65 directly binds to the peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α) to decrease transcriptional activation of the PGC1α target gene PDK4, whose gene product inhibits pyruvate dehydrogenase (PDH), a key regulator of TCA cycle flux. Accordingly, we observed that RelA/p65 repression by ZBTB2 indirectly results in increased PDK4 expression, which inhibits PDH. Consequently, in cells with ectopic ZBTB2, the concentrations of pyruvate and lactate were higher than those in normal cells, indicating changes in glucose metabolism flux favoring glycolysis over the TCA cycle. Knockdown of ZBTB2 in mouse xenografts decreased tumor growth. ZBTB2 may increase cell proliferation by reprogramming glucose metabolic pathways to favor glycolysis by upregulating PDK4 expression via repression of RelA/p65 expression. PMID:25609694

  8. SSH Analysis of Endosperm Transcripts and Characterization of Heat Stress Regulated Expressed Sequence Tags in Bread Wheat

    PubMed Central

    Goswami, Suneha; Kumar, Ranjeet R.; Dubey, Kavita; Singh, Jyoti P.; Tiwari, Sachidanand; Kumar, Ashok; Smita, Shuchi; Mishra, Dwijesh C.; Kumar, Sanjeev; Grover, Monendra; Padaria, Jasdeep C.; Kala, Yugal K.; Singh, Gyanendra P.; Pathak, Himanshu; Chinnusamy, Viswanathan; Rai, Anil; Praveen, Shelly; Rai, Raj D.

    2016-01-01

    Heat stress is one of the major problems in agriculturally important cereal crops, especially wheat. Here, we have constructed a subtracted cDNA library from the endosperm of HS-treated (42°C for 2 h) wheat cv. HD2985 by suppression subtractive hybridization (SSH). We identified ~550 recombinant clones ranging from 200 to 500 bp with an average size of 300 bp. Sanger's sequencing was performed with 205 positive clones to generate the differentially expressed sequence tags (ESTs). Most of the ESTs were observed to be localized on the long arm of chromosome 2A and associated with heat stress tolerance and metabolic pathways. Identified ESTs were BLAST search using Ensemble, TriFLD, and TIGR databases and the predicted CDS were translated and aligned with the protein sequences available in pfam and InterProScan 5 databases to predict the differentially expressed proteins (DEPs). We observed eight different types of post-translational modifications (PTMs) in the DEPs corresponds to the cloned ESTs-147 sites with phosphorylation, 21 sites with sumoylation, 237 with palmitoylation, 96 sites with S-nitrosylation, 3066 calpain cleavage sites, and 103 tyrosine nitration sites, predicted to sense the heat stress and regulate the expression of stress genes. Twelve DEPs were observed to have transmembrane helixes (TMH) in their structure, predicted to play the role of sensors of HS. Quantitative Real-Time PCR of randomly selected ESTs showed very high relative expression of HSP17 under HS; up-regulation was observed more in wheat cv. HD2985 (thermotolerant), as compared to HD2329 (thermosusceptible) during grain-filling. The abundance of transcripts was further validated through northern blot analysis. The ESTs and their corresponding DEPs can be used as molecular marker for screening or targeted precision breeding program. PTMs identified in the DEPs can be used to elucidate the thermotolerance mechanism of wheat—a novel step toward the development of

  9. SSH Analysis of Endosperm Transcripts and Characterization of Heat Stress Regulated Expressed Sequence Tags in Bread Wheat.

    PubMed

    Goswami, Suneha; Kumar, Ranjeet R; Dubey, Kavita; Singh, Jyoti P; Tiwari, Sachidanand; Kumar, Ashok; Smita, Shuchi; Mishra, Dwijesh C; Kumar, Sanjeev; Grover, Monendra; Padaria, Jasdeep C; Kala, Yugal K; Singh, Gyanendra P; Pathak, Himanshu; Chinnusamy, Viswanathan; Rai, Anil; Praveen, Shelly; Rai, Raj D

    2016-01-01

    Heat stress is one of the major problems in agriculturally important cereal crops, especially wheat. Here, we have constructed a subtracted cDNA library from the endosperm of HS-treated (42°C for 2 h) wheat cv. HD2985 by suppression subtractive hybridization (SSH). We identified ~550 recombinant clones ranging from 200 to 500 bp with an average size of 300 bp. Sanger's sequencing was performed with 205 positive clones to generate the differentially expressed sequence tags (ESTs). Most of the ESTs were observed to be localized on the long arm of chromosome 2A and associated with heat stress tolerance and metabolic pathways. Identified ESTs were BLAST search using Ensemble, TriFLD, and TIGR databases and the predicted CDS were translated and aligned with the protein sequences available in pfam and InterProScan 5 databases to predict the differentially expressed proteins (DEPs). We observed eight different types of post-translational modifications (PTMs) in the DEPs corresponds to the cloned ESTs-147 sites with phosphorylation, 21 sites with sumoylation, 237 with palmitoylation, 96 sites with S-nitrosylation, 3066 calpain cleavage sites, and 103 tyrosine nitration sites, predicted to sense the heat stress and regulate the expression of stress genes. Twelve DEPs were observed to have transmembrane helixes (TMH) in their structure, predicted to play the role of sensors of HS. Quantitative Real-Time PCR of randomly selected ESTs showed very high relative expression of HSP17 under HS; up-regulation was observed more in wheat cv. HD2985 (thermotolerant), as compared to HD2329 (thermosusceptible) during grain-filling. The abundance of transcripts was further validated through northern blot analysis. The ESTs and their corresponding DEPs can be used as molecular marker for screening or targeted precision breeding program. PTMs identified in the DEPs can be used to elucidate the thermotolerance mechanism of wheat-a novel step toward the development of "climate-smart" wheat

  10. The JNKs differentially regulate RNA polymerase III transcription by coordinately modulating the expression of all TFIIIB subunits.

    PubMed

    Zhong, Shuping; Johnson, Deborah L

    2009-08-01

    RNA polymerase (pol) III-dependent transcription is subject to stringent regulation by tumor suppressors and oncogenic proteins and enhanced RNA pol III transcription is essential for cellular transformation and tumorigenesis. Since the c-Jun N-terminal kinases (JNKs) display both oncogenic and tumor suppressor properties, the roles of these proteins in regulating RNA pol III transcription were examined. In both mouse and human cells, loss or reduction in JNK1 expression represses RNA pol III transcription. In contrast, loss or reduction in JNK2 expression induces transcription. The JNKs coordinately regulate expression of all 3 TFIIIB subunits. While JNK1 positively regulates TBP expression, the RNA pol III-specific factors, Brf1 and Bdp1, JNK2 negatively regulates their expression. Brf1 is coregulated with TBP through the JNK target, Elk-1. Reducing Elk-1 expression decreases Brf1 expression. Decreasing JNK1 expression reduces Elk-1 occupancy at the Brf1 promoter, while decreasing JNK2 expression enhances recruitment of Elk-1 to the Brf1 promoter. In contrast, regulation of Bdp1 occurs through JNK-mediated alterations in TBP expression. Altered TBP expression mimics the effect of reduced JNK1 or JNK2 levels on Bdp1 expression. Decreasing JNK1 expression reduces the occupancy of TBP at the Bdp1 promoter, while decreasing JNK2 expression enhances recruitment of TBP to the Bdp1 promoter. Together, these results provide a molecular mechanism for regulating RNA pol III transcription through the coordinate control of TFIIIB subunit expression and elucidate opposing functions for the JNKs in regulating a large class of genes that dictate the biosynthetic capacity of cells. PMID:19620725

  11. Poly(C)-binding proteins as transcriptional regulators of gene expression

    SciTech Connect

    Choi, Hack Sun Hwang, Cheol Kyu; Song, Kyu Young; Law, P.-Y.; Wei, L.-N.; Loh, Horace H.

    2009-03-13

    Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). They can be divided into two groups: hnRNP K and PCBP1-4. These proteins are involved mainly in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). In this review, we summarize and discuss how PCBPs act as transcriptional regulators by binding to specific elements in gene promoters that interact with the RNA polymerase II transcription machinery. Transcriptional regulation of PCBPs might itself be regulated by their localization within the cell. For example, activation by p21-activated kinase 1 induces increased nuclear retention of PCBP1, as well as increased promoter activity. PCBPs can function as a signal-dependent and coordinated regulator of transcription in eukaryotic cells. We address the molecular mechanisms by which PCBPs binding to single- and double-stranded DNA mediates gene expression.

  12. PPAR{gamma} transcriptionally regulates the expression of insulin-degrading enzyme in primary neurons

    SciTech Connect

    Du, Jing; Zhang, Lang; Liu, Shubo; Zhang, Chi; Huang, Xiuqing; Li, Jian; Zhao, Nanming; Wang, Zhao

    2009-06-12

    Insulin-degrading enzyme (IDE) is a protease that has been demonstrated to play a key role in degrading both A{beta} and insulin and deficient in IDE function is associated with Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) pathology. However, little is known about the cellular and molecular regulation of IDE expression. Here we show IDE levels are markedly decreased in DM2 patients and positively correlated with the peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) levels. Further studies show that PPAR{gamma} plays an important role in regulating IDE expression in rat primary neurons through binding to a functional peroxisome proliferator-response element (PPRE) in IDE promoter and promoting IDE gene transcription. Finally, we demonstrate that PPAR{gamma} participates in the insulin-induced IDE expression in neurons. These results suggest that PPAR{gamma} transcriptionally induces IDE expression which provides a novel mechanism for the use of PPAR{gamma} agonists in both DM2 and AD therapies.

  13. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    PubMed

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-01

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016. PMID:27087581

  14. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  15. The transcription factor E2F-1 mediates the autoregulation of RB gene expression.

    PubMed Central

    Shan, B; Chang, C Y; Jones, D; Lee, W H

    1994-01-01

    The retinoblastoma (RB) gene is the prototype tumor suppressor gene. Mutations in this gene are often associated with the occurrence of various tumors. Several mutations have been found in the promoter region of the gene, suggesting that inappropriate transcriptional regulation of the RB gene contributes to tumorigenesis. Sequence analysis of the RB promoter has revealed a potential E2F recognition site within a region critical for RB gene transcription. By using the cloned E2F-1 gene, here we report that (i) RB expression is negatively regulated by its own gene product, (ii) E2F-1 binds specifically to an E2F recognition sequence in the RB promoter and transactivates the RB promoter, (iii) overexpression of RB suppresses E2F-1-mediated stimulation of RB promoter activity, and (iv) the expression of the RB gene is paralleled by the expression of the E2F-1 gene during cell cycle progression. These results demonstrate that expression of RB is negatively autoregulated through E2F-1. Images PMID:8264596

  16. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L.

    PubMed Central

    Comai, L; Dietrich, R A; Maslyar, D J; Baden, C S; Harada, J J

    1989-01-01

    We have analyzed the temporal and spatial expression of genes encoding the glycoxylate cycle enzymes isocitrate lyase and malate synthase in Brassica napus L. to determine whether they are coordinately expressed. Both enzymes participate in reactions associated with lipid mobilization in oilseed plant seedlings and are sequestered in a specialized organelle, the glyoxysome. We have identified an isocitrate lyase cDNA clone containing the complete protein coding region. RNA blot and in situ hybridization studies with isocitrate lyase and malate synthase cDNA clones from B. napus showed that the genes exhibit similar expression patterns. The mRNAs begin to accumulate during late embryogeny, reach maximal levels in seedling cotyledons, are not detected at significant amounts in leaves, and are distributed similarly in cotyledons and axes of seedlings. Furthermore, transcription studies with isolated nuclei indicate that the genes are controlled primarily although not exclusively at the transcriptional level. We conclude that glyoxysome biogenesis is regulated in part through the coordinate expression of isocitrate lyase and malate synthase genes. PMID:2535504

  17. Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses

    PubMed Central

    Sun, Lijun; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming; Li, Dayong

    2015-01-01

    NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold) and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants) stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance. PMID:25690040

  18. Functional transcription factor target discovery via compendia of binding and expression profiles

    PubMed Central

    Banks, Christopher J.; Joshi, Anagha; Michoel, Tom

    2016-01-01

    Genome-wide experiments to map the DNA-binding locations of transcription-associated factors (TFs) have shown that the number of genes bound by a TF far exceeds the number of possible direct target genes. Distinguishing functional from non-functional binding is therefore a major challenge in the study of transcriptional regulation. We hypothesized that functional targets can be discovered by correlating binding and expression profiles across multiple experimental conditions. To test this hypothesis, we obtained ChIP-seq and RNA-seq data from matching cell types from the human ENCODE resource, considered promoter-proximal and distal cumulative regulatory models to map binding sites to genes, and used a combination of linear and non-linear measures to correlate binding and expression data. We found that a high degree of correlation between a gene’s TF-binding and expression profiles was significantly more predictive of the gene being differentially expressed upon knockdown of that TF, compared to using binding sites in the cell type of interest only. Remarkably, TF targets predicted from correlation across a compendium of cell types were also predictive of functional targets in other cell types. Finally, correlation across a time course of ChIP-seq and RNA-seq experiments was also predictive of functional TF targets in that tissue. PMID:26857150

  19. Expression of mitochondrial transcription factor A in endometrial carcinomas: clinicopathologic correlations and prognostic significance.

    PubMed

    Toki, Naoyuki; Kagami, Seiji; Kurita, Tomoko; Kawagoe, Toshinori; Matsuura, Yusuke; Hachisuga, Toru; Matsuyama, Atsuji; Hashimoto, Hiroshi; Izumi, Hiroto; Kohno, Kimitoshi

    2010-04-01

    Mitochondrial transcription factor A (mtTFA) is necessary for both transcription and maintenance of mitochondrial DNA. This study was conducted to elucidate the clinicopathologic and prognostic significance of mtTFA in patients with endometrial carcinoma. This study investigated the relationship between the immunohistochemical expression of mtTFA and various clinicopathological variables in 276 endometrial carcinomas, including 245 endometrioid adenocarcinomas and 31 nonendometrioid carcinomas (21 serous carcinomas and 10 clear cell adenocarcinomas). Both uni- and multivariate regression analyses were performed. The mtTFA labeling index of endometrioid adenocarcinomas ranged from 0% to 98%, with a median value of 32%, which was selected as the cut-off point for mtTFA expression. The mtTFA expression in endometrioid adenocarcinomas was significantly associated with the surgical stage, myometrial invasion, lymphovascular space invasion, cervical invasion, and lymph node metastasis. In contrast, no correlation between clinicopathologic variables and mtTFA expression was found in nonendometrioid carcinomas. Correlation analysis between mtTFA and p53 expression by using the Pearson test showed significant correlation in endometrioid adenocarcinomas (P = 0.007), but no significant correlation in nonendometrioid carcinomas (P = 0.947). A univariate survival analysis showed that the 10-year overall survival rate of the patients with mtTFA-positive endometrioid adenocarcinoma was significantly worse than that of patients with mtTFA-negative endometrioid adenocarcinoma (80.8% vs. 93.8%, P = 0.012). However, the multivariate analysis revealed that mtTFA expression in endometrioid adenocarcinomas was no independent prognostic factor. The positive mtTFA expression is a useful maker for progression of the tumors and the poor prognosis of the patients in endometrioid adenocarcinomas. PMID:20232213

  20. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.

    PubMed

    D'Erchia, Anna Maria; Atlante, Anna; Gadaleta, Gemma; Pavesi, Giulio; Chiara, Matteo; De Virgilio, Caterina; Manzari, Caterina; Mastropasqua, Francesca; Prazzoli, Gian Marco; Picardi, Ernesto; Gissi, Carmela; Horner, David; Reyes, Aurelio; Sbisà, Elisabetta; Tullo, Apollonia; Pesole, Graziano

    2015-01-01

    Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments. PMID:25446395

  1. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles

    PubMed Central

    Johnson, Kirby D.; Kim, Shin-Il; Bresnick, Emery H.

    2006-01-01

    Changes in transcription factor levels and activities dictate developmental fate. Such a change might affect the full ensemble of target genes for a factor or only uniquely sensitive targets. We investigated the relationship among activity of the hematopoietic transcription factor GATA-1, chromatin occupancy, and target gene sensitivity. Graded activation of GATA-1 in GATA-1-null cells revealed high-, intermediate-, and low-sensitivity targets. GATA-1 activity requirements for occupancy and transcription often correlated. A GATA-1 amino-terminal deletion mutant severely deregulated the low-sensitivity gene Tac-2. Thus, cells expressing different levels of a cell type-specific activator can have qualitatively distinct target gene expression patterns, and factor mutations preferentially deregulate low-sensitivity genes. Unlike other target genes, GATA-1-mediated Tac-2 regulation was bimodal, with activation followed by repression, and the coregulator Friend of GATA-1 (FOG-1) selectively mediated repression. A GATA-1 mutant defective in FOG-1 binding occupied a Tac-2 regulatory region at levels higher than wild-type GATA-1, whereas FOG-1 facilitated chromatin occupancy at a distinct target site. These results indicate that FOG-1 is a determinant of GATA factor target gene sensitivity by either facilitating or opposing chromatin occupancy. PMID:17043224

  2. Analysis of transcriptional control mechanisms of capsule expression in Neisseria meningitidis.

    PubMed

    Von Loewenich, F D; Wintermeyer, E; Dümig, M; Frosch, M

    2001-11-01

    The major virulence factor which contributes to the survival of Neisseria meningitidis in the blood stream and the cerebrospinal fluid is the capsular polysaccharide. Expression of the capsule genes of N. meningitidis serogroups B, C, W-135 and Y is controlled by an intergenic region separating the capsule biosynthesis operon (siaA-D) and the capsule transport operon (ctrA-D). To further investigate capsule expression in N. meningitidis we amplified and sequenced the intergenic region of 42 meningococcal isolates of different serogroups. Sequence variations were found mainly in a repeat region preceding the siaA start codon. Correlation between sequence variation and serogroup could not be observed. To measure the transcriptional and translational activity of the respective intergenic regions we performed transcriptional and translational fusions with the lacZ gene integrated into the chromosome of N. meningitidis. Sequence variations preceding the siaA start codon had no effect on beta-galactosidase activity. Different in vitro growth conditions such as temperature, glucose concentration, osmolarity, pH and iron concentration also did not influence beta-galactosidase activity. Sequential deletions of the intergenic region showed that an Up-like element adjacent to the predicted -35 box is necessary for full transcriptional activity. The deletion of the untranslated region preceding the siaA start codon led to a threefold higher beta-galactosidase activity compared with the full-length construct suggesting that the respective region may be involved in capsule regulation. PMID:11727820

  3. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    SciTech Connect

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes that encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.

  4. β-Adrenergic Receptor-Dependent Alterations in Murine Cardiac Transcript Expression Are Differentially Regulated by Gefitinib In Vivo

    PubMed Central

    Talarico, Jennifer A.; Carter, Rhonda L.; Grisanti, Laurel A.; Yu, Justine E.; Repas, Ashley A.; Tilley, Douglas G.

    2014-01-01

    β-adrenergic receptor (βAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib), including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib. PMID:24901703

  5. Understanding Transcription Factors in Sugar Beets: Genetic and Physical Mapping, Differential Expression, and Conservation Between Related Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factors control all biological processes at the cellular level, but their role in sugar beets is still widely unknown. In order to develop a greater understanding, 47 primer pairs were designed around expressed tag sequences (ESTs) whose putative functions are various transcription fac...

  6. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.

    PubMed

    Baloglu, Mehmet Cengiz; Inal, Behcet; Kavas, Musa; Unver, Turgay

    2014-10-15

    Abiotic stress including drought and salinity affects quality and yield of wheat varieties used for the production of both bread and pasta flour. bZIP, MBF1, WRKY, MYB and NAC transcription factor (TF) genes are the largest transcriptional regulators which are involved in growth, development, physiological processes, and biotic/abiotic stress responses in plants. Identification of expression profiling of these TFs plays a crucial role to understand the response of different wheat species against severe environmental changes. In the current study, expression analysis of TaWLIP19 (wheat version of bZIP), TaMBF1, TaWRKY10, TaMYB33 and TaNAC69 genes was examined under drought and salinity stress conditions in Triticum aestivum cv. (Yuregir-89), Triticum turgidum cv. (Kiziltan-91), and Triticum monococcum (Siyez). After drought stress application, all five selected genes in Kiziltan-91 were induced. However, TaMBF1 and TaWLIP19 were the only downregulated genes in Yuregir-89 and Siyez, respectively. Except TaMYB33 in Siyez, expression level of the remaining genes increased under salt stress condition in all Triticum species. For determination of drought response to selected TF members, publicly available RNA-seq data were also analyzed in this study. TaMBF1, TaWLIP19 and TaNAC69 transcripts were detected through in silico analysis. This comprehensive gene expression analysis provides valuable information for understanding the roles of these TFs under abiotic stresses in modern wheat cultivars and ancient einkorn wheat. In addition, selected TFs might be used for determination of drought or salinity-tolerant and susceptible cultivars for molecular breeding studies. PMID:25130909

  7. Transcriptional and posttranscriptional mechanisms regulate murine thymidine kinase gene expression in serum-stimulated cells.

    PubMed Central

    Lieberman, H B; Lin, P F; Yeh, D B; Ruddle, F H

    1988-01-01

    We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed. Images PMID:3244356

  8. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    PubMed Central

    Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve

    2009-01-01

    Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308

  9. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    PubMed Central

    Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J

    2007-01-01

    Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of

  10. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    PubMed Central

    2011-01-01

    Background Runt-related transcription factor 3 (RUNX3) is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC). Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91%) and tissues (90%). RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis. PMID:21205319

  11. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis

    PubMed Central

    Donaldson, Michael E; Saville, Barry J

    2013-01-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense–antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis. PMID:23650872

  12. rRNA Gene Expression of Abundant and Rare Activated-Sludge Microorganisms and Growth Rate Induced Micropollutant Removal.

    PubMed

    Vuono, David C; Regnery, Julia; Li, Dong; Jones, Zackary L; Holloway, Ryan W; Drewes, Jörg E

    2016-06-21

    The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems. PMID:27196630

  13. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs.

    PubMed

    Men, X M; Deng, B; Tao, X; Qi, K K; Xu, Z W

    2016-04-01

    The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics. PMID:26949945

  14. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs

    PubMed Central

    Men, X. M.; Deng, B.; Tao, X.; Qi, K. K.; Xu, Z. W.

    2016-01-01

    The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics. PMID:26949945

  15. PTRcombiner: mining combinatorial regulation of gene expression from post-transcriptional interaction maps

    PubMed Central

    2014-01-01

    Background The progress in mapping RNA-protein and RNA-RNA interactions at the transcriptome-wide level paves the way to decipher possible combinatorial patterns embedded in post-transcriptional regulation of gene expression. Results Here we propose an innovative computational tool to extract clusters of mRNA trans-acting co-regulators (RNA binding proteins and non-coding RNAs) from pairwise interaction annotations. In addition the tool allows to analyze the binding site similarity of co-regulators belonging to the same cluster, given their positional binding information. The tool has been tested on experimental collections of human and yeast interactions, identifying modules that coordinate functionally related messages. Conclusions This tool is an original attempt to uncover combinatorial patterns using all the post-transcriptional interaction data available so far. PTRcombiner is available at http://disi.unitn.it/~passerini/software/PTRcombiner/. PMID:24758252

  16. Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes

    PubMed Central

    Altmann, Markus; Pich, Dagmar; Ruiss, Romana; Wang, Jindong; Sugden, Bill; Hammerschmidt, Wolfgang

    2006-01-01

    EBV is a paradigm for human tumor viruses because, although it infects most people benignly, it also can cause a variety of cancers. Both in vivo and in vitro, EBV infects B lymphocytes in G0, induces them to become blasts, and can maintain their proliferation in cell culture or in vivo as tumors. How EBV succeeds in these contrasting cellular environments in expressing its genes that control the host has not been explained. We have genetically dissected the EBV nuclear antigen 1 (EBNA1) gene that is required for replication of the viral genome, to elucidate its possible role in the transcription of viral genes. Strikingly, EBNA1 is essential to drive transcription of EBV's transforming genes after infection of primary B lymphocytes. PMID:16966603

  17. Transcriptional inhibition of etv2 expression is essential for embryonic cardiac development.

    PubMed

    Schupp, Marcus-Oliver; Waas, Matthew; Chun, Chang-Zoon; Ramchandran, Ramani

    2014-09-01

    E-twenty six variant 2 (Etv2) transcription factor participates in cardiac, vascular-endothelial and blood cell lineage specification decisions during embryonic development. Previous studies have identified genomic elements in the etv2 locus responsible for vascular endothelial cell specification. Using transgenic analysis in zebrafish, we report here an etv2 proximal promoter fragment that prevents transgene misexpression in myocardial progenitor cells. This inhibition of etv2 expression in the cardiac progenitor population is partly mediated by Scl and Nkx2.5, likely through direct binding to the etv2 promoter, and cis-regulatory elements located in the first and second introns. The results identify an etv2 cis-regulatory mechanism controlling cardiovascular fate choice implying that etv2 participates in a transcriptional network mediating developmental plasticity of endothelial progenitor cells during embryonic development. PMID:24984259

  18. Transcription factor AP-2 regulates human immunodeficiency virus type 1 gene expression.

    PubMed Central

    Perkins, N D; Agranoff, A B; Duckett, C S; Nabel, G J

    1994-01-01

    Human immunodeficiency virus type 1 (HIV-1) gene expression is regulated by an enhancer region composed of multiple potential cis-acting regulatory sites. Here, we describe binding sites for the transcription factor AP-2 in the HIV-1 long terminal repeat which modulate HIV enhancer function. One site is embedded within the two previously described kappa B elements, and a second site is detected further downstream. DNase I footprinting and electrophoretic mobility shift assay experiments demonstrated that AP-2 binds to the site between the kappa B elements. Interestingly, AP-2 and NF-kappa B bind to this region in a mutually exclusive manner. Mutations which disrupt this AP-2-binding site lower basal levels of transcription but do not affect NF-kappa B-mediated induction by tumor necrosis factor alpha in Jurkat T leukemia cells. Images PMID:8084021

  19. A Progenitor Cell Expressing Transcription Factor RORγt Generates All Human Innate Lymphoid Cell Subsets.

    PubMed

    Scoville, Steven D; Mundy-Bosse, Bethany L; Zhang, Michael H; Chen, Li; Zhang, Xiaoli; Keller, Karen A; Hughes, Tiffany; Chen, Luxi; Cheng, Stephanie; Bergin, Stephen M; Mao, Hsiaoyin C; McClory, Susan; Yu, Jianhua; Carson, William E; Caligiuri, Michael A; Freud, Aharon G

    2016-05-17

    The current model of murine innate lymphoid cell (ILC) development holds that mouse ILCs are derived downstream of the common lymphoid progenitor through lineage-restricted progenitors. However, corresponding lineage-restricted progenitors in humans have yet to be discovered. Here we identified a progenitor population in human secondary lymphoid tissues (SLTs) that expressed the transcription factor RORγt and was unique in its ability to generate all known ILC subsets, including natural killer (NK) cells, but not other leukocyte populations. In contrast to murine fate-mapping data, which indicate that only ILC3s express Rorγt, these human progenitor cells as well as human peripheral blood NK cells and all mature ILC populations expressed RORγt. Thus, all human ILCs can be generated through an RORγt(+) developmental pathway from a common progenitor in SLTs. These findings help establish the developmental signals and pathways involved in human ILC development. PMID:27178467

  20. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    SciTech Connect

    Tucker, James D.; Joiner, Michael C.; Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V.; Chinkhota, Chantelle N.; Smolinski, Joseph M.; Divine, George W.; Auner, Gregory W.

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  1. Abscisic Acid-Dependent and -Independent Expression of the Carrot Late-Embryogenesis-Abundant-Class Gene Dc3 in Transgenic Tobacco Seedlings1

    PubMed Central

    Siddiqui, Najeeb U.; Chung, Hwa-Jee; Thomas, Terry L.; Drew, Malcolm C.

    1998-01-01

    We studied the expression of three promoter 5′ deletion constructs (−218, −599, and −1312) of the LEA (late embryogenesis abundant)-class gene Dc3 fused to β-glucuronidase (GUS), where each construct value refers to the number of base pairs upstream of the transcription start site at which the deletion occurred. The Dc3 gene is noted for its induction by abscisic acid (ABA), but its response to other plant hormones and various environmental stresses has not been reported previously for vegetative cells. Fourteen-day-old transgenic tobacco (Nicotiana tabacum L.) seedlings were exposed to dehydration, hypoxia, salinity, exogenous ethylene, or exogenous methyl jasmonate (MeJa). GUS activity was quantified fluorimetrically and expression was observed by histochemical staining of the seedlings. An increase in GUS activity was observed in plants with constructs −599 and −1312 in response to dehydration and salinity within 6 h of stress, and at 12 h in response to hypoxia. No increase in endogenous ABA was found in any of the three lines, even after 72 h of hypoxia. An ABA-independent increase in GUS activity was observed when endogenous ABA biosynthesis was blocked by fluridone and plants were exposed to 5 μL L−1 ethylene in air or 100 μm MeJa. Virtually no expression was observed in construct −218 in response to dehydration, salinity, or MeJa, but there was a moderate response to ethylene and hypoxia. This suggests that the region between −218 and −599 is necessary for ABA (dehydration and salinity)- and MeJa-dependent expression, whereas ethylene-mediated expression does not require this region of the promoter. PMID:9847092

  2. Association of Sirtuin 1 (SIRT1) Gene SNPs and Transcript Expression Levels With Severe Obesity

    PubMed Central

    Clark, Stephen J.; Falchi, Mario; Olsson, Bob; Jacobson, Peter; Cauchi, Stéphane; Balkau, Beverley; Marre, Michel; Lantieri, Olivier; Andersson, Johanna C.; Jernås, Margareta; Aitman, Timothy J.; Richardson, Sylvia; Sjöström, Lars; Wong, Hang Y.; Carlsson, Lena M. S.; Froguel, Philippe; Walley, Andrew J.

    2013-01-01

    Recent studies have reported associations of sirtuin 1 (SIRT1) single nucleotide polymorphisms (SNPs) to both obesity and BMI. This study was designed to investigate association between SIRT1 SNPs, SIRT1 gene expression and obesity. Case-control analyses were performed using 1,533 obese subjects (896 adults, BMI >40 kg/m2 and 637 children, BMI >97th percentile for age and sex) and 1,237 nonobese controls, all French Caucasians. Two SNPs (in high linkage disequilibrium (LD), r2 = 0.96) were significantly associated with adult obesity, rs33957861 (P value = 0.003, odds ratio (OR) = 0.75, confidence interval (CI) = 0.61–0.92) and rs11599176 (P value: 0.006, OR = 0.74, CI = 0.61–0.90). Expression of SIRT1 mRNA was measured in BMI-discordant siblings from 154 Swedish families. Transcript expression was significantly correlated to BMI in the lean siblings (r2 = 0.13, P value = 3.36 × 10−7) and lower SIRT1 expression was associated with obesity (P value = 1.56 × 10−35). There was also an association between four SNPs (rs11599176, rs12413112, rs33957861, and rs35689145) and BMI (P values: 4 × 10−4, 6 × 10−4, 4 × 10−4, and 2 × 10−3) with the rare allele associated with a lower BMI. However, no SNP was associated with SIRT1 transcript expression level. In summary, both SNPs and SIRT1 gene expression are associated with severe obesity. PMID:21760635

  3. Differentially Expressed Transcripts and Dysregulated Signaling Pathways and Networks in African American Breast Cancer

    PubMed Central

    Stewart, Paul A.; Luks, Jennifer; Roycik, Mark D.; Sang, Qing-Xiang Amy; Zhang, Jinfeng

    2013-01-01

    African Americans (AAs) have higher mortality rate from breast cancer than that of Caucasian Americans (CAs) even when socioeconomic factors are accounted for. To better understand the driving biological factors of this health disparity, we performed a comprehensive differential gene expression analysis, including subtype- and stage-specific analysis, using the breast cancer data in the Cancer Genome Atlas (TCGA). In total, 674 unique genes and other transcripts were found differentially expressed between these two populations. The numbers of differentially expressed genes between AA and CA patients increased in each stage of tumor progression: there were 26 in stage I, 161 in stage II, and 223 in stage III. Resistin, a gene that is linked to obesity, insulin resistance, and breast cancer, was expressed more than four times higher in AA tumors. An uncharacterized, long, non-coding RNA, LOC90784, was down-regulated in AA tumors, and its expression was inversely related to cancer stage and was the lowest in triple negative AA breast tumors. Network analysis showed increased expression of a majority of components in p53 and BRCA1 subnetworks in AA breast tumor samples, and members of the aurora B and polo-like kinase signaling pathways were also highly expressed. Higher gene expression diversity was observed in more advanced stage breast tumors suggesting increased genomic instability during tumor progression. Amplified resistin expression may indicate insulin-resistant type II diabetes and obesity are associated with AA breast cancer. Expression of LOC90784 may have a protective effect on breast cancer patients, and its loss, particularly in triple negative breast cancer, could be having detrimental effects. This work helps elucidate molecular mechanisms of breast cancer health disparity and identifies putative biomarkers and therapeutic targets such as resistin, and the aurora B and polo-like kinase signaling pathways for treating AA breast cancer patients. PMID

  4. Presence of Transcription Factor OCT4 Limits Interferon-tau Expression during the Pre-attachment Period in Sheep.

    PubMed

    Kim, Min-Su; Sakurai, Toshihiro; Bai, Hanako; Bai, Rulan; Sato, Daisuke; Nagaoka, Kentaro; Chang, Kyu-Tae; Godkin, James D; Min, Kwan-Sik; Imakawa, Kazuhiko

    2013-05-01

    Interferon-tau (IFNT) is thought to be the conceptus protein that signals maternal recognition of pregnancy in ruminants. We and others have observed that OCT4 expression persists in the trophectoderm of ruminants; thus, both CDX2 and OCT4 coexist during the early stages of conceptus development. The aim of this study was to examine the effect of CDX2 and OCT4 on IFNT gene transcription when evaluated with other transcription factors. Human choriocarcinoma JEG-3 cells were cotransfected with an ovine IFNT (-654-bp)-luciferase reporter (-654-IFNT-Luc) construct and several transcription factor expression plasmids. Cotransfection of the reporter construct with Cdx2, Ets2 and Jun increased transcription of -654-IFNT-Luc by about 12-fold compared with transfection of the construct alone. When cells were initially transfected with Oct4 (0 h) followed by transfection with Cdx2, Ets2 and/or Jun 24 h later, the expression of -654-IFNT-Luc was reduced to control levels. OCT4 also inhibited the stimulatory activity of CDX2 alone, but not when CDX2 was combined with JUN and/or ETS2. Thus, when combined with the other transcription factors, OCT4 exhibited little inhibitory activity towards CDX2. An inhibitor of the transcriptional coactivator CREB binding protein (CREBBP), 12S E1A, reduced CDX2/ETS2/JUN stimulated -654-IFNT-Luc expression by about 40%, indicating that the formation of an appropriate transcription factor complex is required for maximum expression. In conclusion, the presence of OCT4 may initially minimize IFNT expression; however, as elongation proceeds, the increasing expression of CDX2 and formation of the transcription complex leads to greatly increased IFNT expression, resulting in pregnancy establishment in ruminants. PMID:25049833

  5. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene

    PubMed Central

    Zhou, Jiawei

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  6. Co-expression network analysis identifies transcriptional modules in the mouse liver.

    PubMed

    Liu, Wei; Ye, Hua

    2014-10-01

    The mouse liver transcriptome has been extensively studied but little is known about the global hepatic gene network of the mouse under normal physiological conditions. Understanding this will help reveal the transcriptional organization of the liver and elucidate its functional complexity. Here, weighted gene co-expression network analysis (WGCNA) was carried out to explore gene co-expression networks using large-scale microarray data from normal mouse livers. A total of 7,203 genes were parsed into 16 gene modules associated with protein catabolism, RNA processing, muscle contraction, transcriptional regulation, oxidation reduction, sterol biosynthesis, translation, fatty acid metabolism, immune response and others. The modules were organized into higher order co-expression groups. Hub genes in each module were found to be critical for module function. In sum, the analyses revealed the gene modular map of the mouse liver under normal physiological condition. These results provide a systems-level framework to help understand the complexity of the mouse liver at the molecular level, and should be beneficial in annotating uncharacterized genes. PMID:24816893

  7. Molecular cloning and expression of a novel MYB transcription factor gene in rubber tree.

    PubMed

    Qin, Bi; Zhang, Yu; Wang, Meng

    2014-12-01

    MYB family proteins regulate a variety of cellular processes in plants. Tapping panel dryness (TPD) in rubber tree (Hevea brasiliensis Muell. Arg.) affects latex biosynthesis and causes serious losses to rubber producers. In this study, a novel SANT/MYB transcription factor gene down-regulated in TPD rubber tree, named as HbSM1, was isolated from rubber tree. The complete HbSM1 open reading frame (ORF) was 948 bp in length. The deduced HbSM1 protein is 315 amino acids. HbSM1 belonged to 1RMYB subfamily with a single SANT domain. Sequence alignment revealed that HbSM1 had high homology with MYB members from Ricinus communis and Manihot esculenta, with 72 and 78 % identity, respectively. Moreover, HbSM1 shared 56 % identity with Glycine max GmMYB176. Phylogenetic analysis revealed that HbSM1, GmMYB176, rice OsMYBS2, and OsMYBS3 fell into the same cluster with 93 % bootstrap support value. Comparing expression among different tissues demonstrated that HbSM1 was ubiquitously expressed in all tissues, but it appeared to be preferentially expressed in leaf and latex. Furthermore, HbSM1 transcripts were significantly induced by various phytohormones (including gibberellic acid, ethephon, methyl jasmonate, salicylic acid, and abscisic acid) and wounding treatments. These results suggested that HbSM1 might play multiple roles in plant development via different phytohormones signaling pathways. PMID:25195053

  8. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene.

    PubMed

    Li, Yan; Wang, Lei; Zhou, Jiawei; Li, Fenge

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (-418 bp to -3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  9. Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide

    PubMed Central

    Green, Jeffrey; Rolfe, Matthew D; Smith, Laura J

    2014-01-01

    Molecular oxygen (O2) and nitric oxide (NO) are diatomic gases that play major roles in infection. The host innate immune system generates reactive oxygen species and NO as bacteriocidal agents and both require O2 for their production. Furthermore, the ability to adapt to changes in O2 availability is crucial for many bacterial pathogens, as many niches within a host are hypoxic. Pathogenic bacteria have evolved transcriptional regulatory systems that perceive these gases and respond by reprogramming gene expression. Direct sensors possess iron-containing co-factors (iron–sulfur clusters, mononuclear iron, heme) or reactive cysteine thiols that react with O2 and/or NO. Indirect sensors perceive the physiological effects of O2 starvation. Thus, O2 and NO act as environmental cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within a host. Here, the mechanisms of signal perception by key O2- and NO-responsive bacterial transcription factors and the effects on virulence gene expression are reviewed, followed by consideration of these aspects of gene regulation in two major pathogens, Staphylococcus aureus and Mycobacterium tuberculosis. PMID:25603427

  10. USP15 stabilizes the transcription factor Nrf1 in the nucleus, promoting the proteasome gene expression.

    PubMed

    Fukagai, Kousuke; Waku, Tsuyoshi; Chowdhury, A M Masudul Azad; Kubo, Kaori; Matsumoto, Mariko; Kato, Hiroki; Natsume, Tohru; Tsuruta, Fuminori; Chiba, Tomoki; Taniguchi, Hiroaki; Kobayashi, Akira

    2016-09-01

    The transcriptional factor Nrf1 (NF-E2-related factor 1) sustains protein homeostasis (proteostasis) by regulating the expression of proteasome genes. Under physiological conditions, the transcriptional activity of Nrf1 is repressed by its sequestration into the endoplasmic reticulum (ER) and furthermore by two independent ubiquitin-proteasome pathways, comprising Hrd1 and β-TrCP in the cytoplasm and nucleus, respectively. However, the molecular mechanisms underlying Nrf1 activation remain unclear. Here, we report that USP15 (Ubiquitin-Specific Protease 15) activates Nrf1 in the nucleus by stabilizing it through deubiquitination. We first identified USP15 as an Nrf1-associated factor through proteome analysis. USP15 physically interacts with Nrf1, and it markedly stabilizes Nrf1 by removing its ubiquitin moieties. USP15 activates the Nrf1-mediated expression of a proteasome gene luciferase reporter and endogenous proteasome activity. The siRNA-mediated knockdown of USP15 diminishes the Nrf1-induced proteasome gene expression in response to proteasome inhibition. These results uncover a new regulatory mechanism that USP15 activates Nrf1 against the β-TrCP inhibition to maintain proteostasis. PMID:27416755

  11. Expanded mutational spectrum in Cohen syndrome, tissue expression, and transcript variants of COH1.

    PubMed

    Seifert, Wenke; Holder-Espinasse, Muriel; Kühnisch, Jirko; Kahrizi, Kimia; Tzschach, Andreas; Garshasbi, Masoud; Najmabadi, Hossein; Walter Kuss, Andreas; Kress, Wolfram; Laureys, Geneviève; Loeys, Bart; Brilstra, Eva; Mancini, Grazia M S; Dollfus, Hélène; Dahan, Karin; Apse, Kira; Hennies, Hans Christian; Horn, Denise

    2009-02-01

    Cohen syndrome is characterised by mental retardation, postnatal microcephaly, facial dysmorphism, pigmentary retinopathy, myopia, and intermittent neutropenia. Mutations in COH1 (VPS13B) have been found in patients with Cohen syndrome from diverse ethnic origins. We have carried out mutation analysis in twelve novel patients with Cohen syndrome from nine families. In this series, we have identified 13 different mutations in COH1, twelve of these are novel including six frameshift mutations, four nonsense mutations, two splice site mutations, and a one-codon deletion. Since different transcripts of COH1 have been reported previously, we have analysed the expression patterns of COH1 splice variants. The transcript variant NM_152564 including exon 28b showed ubiquitous expression in all examined human tissues. In contrast, human brain and retina showed differential splicing of exon 28 (NM_017890). Moreover, analysis of mouse tissues revealed ubiquitous expression of Coh1 homologous to human NM_152564 in all examined tissues but no prevalent alternative splicing. PMID:19006247

  12. Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism.

    PubMed Central

    Riu, Efren; Ferre, Tura; Mas, Alex; Hidalgo, Antonio; Franckhauser, Sylvie; Bosch, Fatima

    2002-01-01

    Overexpression of the c-Myc transcription factor in liver induces glucose uptake and utilization. Here we examined the effects of c- myc overexpression on the expression of hepatocyte-specific transcription factor genes which regulate the expression of genes controlling hepatic metabolism. At 4 months after streptozotocin (STZ) treatment, most diabetic control mice were highly hyperglycaemic and died, whereas in STZ-treated transgenic mice hyperglycaemia was markedly lower, the serum levels of beta-hydroxybutyrate, triacylglycerols and non-esterified fatty acids were normal, and they had greater viability in the absence of insulin. Furthermore, long-term STZ-treated transgenic mice showed similar glucose utilization and storage to healthy controls. This was consistent with the expression of glycolytic genes becoming normalized. In addition, restoration of gene expression of the transcription factor, sterol receptor element binding protein 1c, was observed in the livers of these transgenic mice. Further, in STZ-treated transgenic mice the expression of genes involved in the control of gluconeogenesis (phosphoenolpyruvate carbokykinase), ketogenesis (3-hydroxy-3-methylglutaryl-CoA synthase) and energy metabolism (uncoupling protein 2) had returned to normal. These findings were correlated with decreased expression of genes encoding the transcription factors hepatocyte nuclear factor 3gamma, peroxisome proliferator-activated receptor alpha and retinoid X receptor. These results indicate that c- myc overexpression may counteract diabetic changes by controlling hepatic glucose metabolism, both directly by altering the expression of metabolic genes and through the expression of key transcription factor genes. PMID:12230428

  13. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.)

    PubMed Central

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M.; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  14. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    PubMed

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-01-01

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish. PMID:26902837

  15. The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts

    PubMed Central

    Yoshizawa, Tatsuya; Hinoi, Eiichi; Jung, Dae Young; Kajimura, Daisuke; Ferron, Mathieu; Seo, Jin; Graff, Jonathan M.; Kim, Jason K.; Karsenty, Gerard

    2009-01-01

    The recent demonstration that osteoblasts have a role in controlling energy metabolism suggests that they express cell-specific regulatory genes involved in this process. Activating transcription factor 4 (ATF4) is a transcription factor that accumulates predominantly in osteoblasts, where it regulates virtually all functions linked to the maintenance of bone mass. Since Atf4–/– mice have smaller fat pads than littermate controls, we investigated whether ATF4 also influences energy metabolism. Here, we have shown, through analysis of Atf4–/–mice, that ATF4 inhibits insulin secretion and decreases insulin sensitivity in liver, fat, and muscle. Several lines of evidence indicated that this function of ATF4 occurred through its osteoblastic expression. First, insulin sensitivity is enhanced in the liver of Atf4–/– mice, but not in cultured hepatocytes from these mice. Second, mice overexpressing ATF4 in osteoblasts only [termed here α1(I)Collagen-Atf4 mice] displayed a decrease in insulin secretion and were insulin insensitive. Third, the α1(I)Collagen-Atf4 transgene corrected the energy metabolism phenotype of Atf4–/– mice. Fourth, and more definitely, mice lacking ATF4 only in osteoblasts presented the same metabolic abnormalities as Atf4–/– mice. Molecularly, ATF4 favored expression in osteoblasts of Esp, which encodes a product that decreases the bioactivity of osteocalcin, an osteoblast-specific secreted molecule that enhances secretion of and sensitivity to insulin. These results provide a transcriptional basis to the observation that osteoblasts fulfill endocrine functions and identify ATF4 as a regulator of most functions of osteoblasts. PMID:19726872

  16. Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ

    PubMed Central

    Yang, Xiuling; Yin, Lei; Li, Tang; Chen, Zhihong

    2014-01-01

    Objectives: This study is to determine if green tea (Camellia sinensis) extracts (GTE) affects adipogenesis and further investigate the related molecular mechanisms. Methods: Patients with metabolic syndrome were recruited in this study. Of them, 70 patients received GTE and 64 received water to serve as the control group. The human serum adiponectin, visfatin, and leptin concentrations were determined by enzyme-linked immunosorbent assay. Adipogenesis of 3T3-L1 preadipocytes was induced with reagents and then the cells were treated with GTE. The lipids were stained with Oil Red O for analysis of adipogenesis of 3T3-L1 preadipocytes. The 3T3-L1 preadipocytes were treated with increasing concentrations (0.2-0.5%, w/v) of GTE for 2 days and the cell viability was determined by MTT assay. Reverse transcription real-time PCR and immunoblotting assays were performed to determine RNA and protein levels of relative molecules. Results: GTE increases the serum concentrations of adiponectin but decreases visfatin levels in patients received GTE. The leptin concentrations in serum were not significantly affected. The GTE reduces the adipogenesis-induced lipid accumulation in 3T3-L1 preadipocytes. GTE decreases the mRNA and protein expression of adipogenic transcription factors C/EBPα and PPARγ in 3T3-L1 cells. Expression levels of the adipocyte-specific genes encoding adipocyte protein 2, lipoprotein lipase, and glucose transporter 4 were also decreased by GTE. Furthermore, it was found that GTE reduces phosphorylation of Akt during adipocyte differentiation. Conclusions: GTE reduces adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ by reduction of phosphorylation of Akt during adipocyte differentiation. PMID:25663987

  17. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: A quantitative analysis

    SciTech Connect

    Nie, Lei; Wu, Gang; Zhang, Weiwen

    2006-12-01

    The modest correlation between mRNA expression and protein abundance in large scale datasets is explained in part by experimental challenges, such as technological limitations, and in part by fundamental biological factors in the transcription and translation processes. Among various factors affecting the mRNA-protein correlation, the roles of biological factors related to translation are poorly understood. In this study, using experimental mRNA expression and protein abundance data collected from Desulfovibrio vulgaris by DNA microarray and LC-MS/MS proteomic analysis, we quantitatively examined the effects of several translational-efficiency-related sequence features on mRNA-protein correlation. Three classes of sequence features were investigated according to different translational stages: (1) initiation: Shine-Dalgarno sequences, start codon identity and start codon context; (2) elongation: codon usage and amino acid usage; and (3) termination: stop codon identity and stop codon context. Surprisingly, although it is widely accepted that translation initiation is a rate-limiting step for translation, our results showed that the mRNA-protein correlation was affected the most by the features at elongation stages, codon usage and amino acid composition (7.4-12.6% and 5.3-9.3% of the total variation of mRNA-protein correlation, respectively), followed by stop codon context and the Shine-Dalgarno sequence (2.5-4.2% and 2.3%, respectively). Taken together, all sequence features contributed to 18.4-21.8% of the total variation of mRNA-protein correlation. As the first comprehensive quantitative analysis of the mRNA-protein correlation in bacterial D. vulgaris, our results suggest that the traditional view of the relative importance of various sequence features in prokaryotic protein translation might be questionable.

  18. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    PubMed Central

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-01-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks. PMID:27161996

  19. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress

    PubMed Central

    Marguerat, Samuel; Lawler, Katherine; Brazma, Alvis; Bähler, Jürg

    2014-01-01

    The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, affords insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress. PMID:25007214

  20. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.

    PubMed

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-01-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks. PMID:27161996

  1. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  2. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    PubMed Central

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J.; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  3. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks

    NASA Astrophysics Data System (ADS)

    Nishtala, Sneha; Neelamraju, Yaseswini; Janga, Sarath Chandra

    2016-05-01

    RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly associated with their target transcripts at transcript level while ~95% of the studied RBPs were also found to be strongly associated with expression levels of target transcripts when protein expression levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across large phylogenetic distances. Analysis to uncover the features contributing to these associations revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to improved modelling and prediction of post-transcriptional networks.

  4. Role of PU.1 in MHC Class II Expression via CIITA Transcription in Plasmacytoid Dendritic Cells

    PubMed Central

    Miura, Ryosuke; Kasakura, Kazumi; Nakano, Nobuhiro; Hara, Mutsuko; Maeda, Keiko; Okumura, Ko; Ogawa, Hideoki; Yashiro, Takuya; Nishiyama, Chiharu

    2016-01-01

    The cofactor CIITA is a master regulator of MHC class II expression and several transcription factors regulating the cell type-specific expression of CIITA have been identified. Although the MHC class II expression in plasmacytoid dendritic cells (pDCs) is also mediated by CIITA, the transcription factors involved in the CIITA expression in pDCs are largely unknown. In the present study, we analyzed the role of a hematopoietic lineage-specific transcription factor, PU.1, in CIITA transcription in pDCs. The introduction of PU.1 siRNA into mouse pDCs and a human pDC cell line, CAL-1, reduced the mRNA levels of MHC class II and CIITA. When the binding of PU.1 to the 3rd promoter of CIITA (pIII) in CAL-1 and mouse pDCs was analyzed by a chromatin immunoprecipitation assay, a significant amount of PU.1 binding to the pIII was detected, which was definitely decreased in PU.1 siRNA-transfected cells. Reporter assays showed that PU.1 knockdown reduced the pIII promoter activity and that three Ets-motifs in the human pIII promoter were candidates of cis-enhancing elements. By electrophoretic mobility shift assays, it was confirmed that two Ets-motifs, GGAA (-181/-178) and AGAA (-114/-111), among three candidates, were directly bound with PU.1. When mouse pDCs and CAL-1 cells were stimulated by GM-CSF, mRNA levels of PU.1, pIII-driven CIITA, total CIITA, MHC class II, and the amount of PU.1 binding to pIII were significantly increased. The GM-CSF-mediated up-regulation of these mRNAs was canceled in PU.1 siRNA-introduced cells. Taking these results together, we conclude that PU.1 transactivates the pIII through direct binding to Ets-motifs in the promoter in pDCs. PMID:27105023

  5. Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Cassava

    PubMed Central

    Yan, Yan; Hou, Xiaowan; Zou, Meiling; Lu, Cheng; Wang, Wenquan; Peng, Ming

    2015-01-01

    NAC [no apical meristem (NAM), Arabidopsis transcription activation factor [ATAF1/2] and cup-shaped cotyledon (CUC2)] proteins is one of the largest groups of plant specific transcription factors and plays a crucial role in plant growth, development, and adaption to the environment. Currently, no information is known about the NAC family in cassava. In this study, 96 NAC genes (MeNACs) were identified from the cassava genome. Phylogenetic analysis of the NACs from cassava and Arabidopsis showed that MeNAC proteins can be clustered into 16 subgroups. Gene structure analysis found that the number of introns of MeNAC genes varied from 0 to 5, with the majority of MeNAC genes containing two introns, indicating a small gene structure diversity of cassava NAC genes. Conserved motif analysis revealed that all of the identified MeNACs had the conserved NAC domain and/or NAM domain. Global expression analysis suggested that MeNAC genes exhibited different expression profiles in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different accessions. Transcriptome analysis demonstrated that MeNACs had a widely transcriptional response to drought stress and that they had differential expression profiles in different accessions, implying their contribution to drought stress resistance in cassava. Finally, the expression of twelve MeNAC genes was analyzed under osmotic, salt, cold, ABA, and H2O2 treatments, indicating that cassava NACs may represent convergence points of different signaling pathways. Taken together, this work found some excellent tissue-specific and abiotic stress-responsive candidate MeNAC genes, which would provide a solid foundation for functional investigation of the NAC family, crop improvement and improved understanding of signal transduction in plants. These data bring new insight on the complexity of the transcriptional control of MeNAC genes and support the hypothesis that

  6. Analysis of liver connexin expression using reverse transcription quantitative real-time polymerase chain reaction

    PubMed Central

    Maes, Michaël; Willebrords, Joost; Crespo Yanguas, Sara; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Summary Although connexin production is mainly regulated at the protein level, altered connexin gene expression has been identified as the underlying mechanism of several pathologies. When studying the latter, appropriate methods to quantify connexin mRNA levels are required. The present chapter describes a well-established reverse transcription quantitative real-time polymerase chain reaction procedure optimized for analysis of hepatic connexins. The method includes RNA extraction and subsequent quantification, generation of complementary DNA, quantitative real-time polymerase chain reaction and data analysis. PMID:27207283

  7. Analysis of Liver Connexin Expression Using Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction.

    PubMed

    Maes, Michaël; Willebrords, Joost; Crespo Yanguas, Sara; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Although connexin production is mainly regulated at the protein level, altered connexin gene expression has been identified as the underlying mechanism of several pathologies. When studying the latter, appropriate methods to quantify connexin RNA levels are required. The present chapter describes a well-established reverse transcription quantitative real-time polymerase chain reaction procedure optimized for analysis of hepatic connexins. The method includes RNA extraction and subsequent quantification, generation of complementary DNA, quantitative real-time polymerase chain reaction, and data analysis. PMID:27207283

  8. Expression quantitative trait analysis reveals fine germline transcript regulation in mouse lung tumors.

    PubMed

    Cotroneo, Chiara E; Dassano, Alice; Colombo, Francesca; Pettinicchio, Angela; Lecis, Daniele; Dugo, Matteo; De Cecco, Loris; Dragani, Tommaso A; Manenti, Giacomo

    2016-06-01

    Gene expression modulates cellular functions in both physiologic and pathologic conditions. Herein, we carried out a genetic linkage study on the transcriptome of lung tumors induced by urethane in an (A/J x C57BL/6)F4 intercross population, whose individual lung tumor multiplicity (Nlung) is linked to the genotype at the Pulmonary adenoma susceptibility 1 (Pas1) locus. We found that expression levels of 1179 and 1579 genes are modulated by an expression quantitative trait locus (eQTL) in cis and in trans, respectively (LOD score > 5). Of note, the genomic area surrounding and including the Pas1 locus regulated 14 genes in cis and 857 genes in trans. In lung tumors of the same (A/J x C57BL/6)F4 mice, we found 1124 genes whose transcript levels associated with Nlung (FDR < 0.001). The expression levels of about a third of these genes (n = 401) were regulated by the genotype at the Pas1 locus. Pathway analysis of the sets of genes associated with Nlung and regulated by Pas1 revealed a set of 14 recurrently represented genes that are components or targets of the Ras-Erk and Pi3k-Akt signaling pathways. Altogether our results illustrate the architecture of germline control of gene expression in mouse lung cancer: they highlight the importance of Pas1 as a tumor-modifier locus, attribute to it a novel role as a major regulator of transcription in lung tumor nodules and strengthen the candidacy of the Kras gene as the effector of this locus. PMID:26966001

  9. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.

    PubMed

    Zhu, Gengrui; Chen, Guanxing; Zhu, Jiantang; Zhu, Yan; Lu, Xiaobing; Li, Xiaohui; Hu, Yingkao; Yan, Yueming

    2015-01-01

    NAC (NAM, ATAF1/2, CUC2) transcription factors are involved in regulating plant developmental processes and response to environmental stresses. Brachypodium distachyon is an emerging model system for cereals, temperate grasses and biofuel crops. In this study, a comprehensive investigation of the molecular characterizations, phylogenetics and expression profiles under various abiotic stresses of the NAC gene family in Brachypodium distachyon was performed. In total, 118 BNAC genes in B. distachyon were identified, of which 22 (18.64%) were tandemly duplicated and segmentally duplicated, respectively. The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) algorithms showed that they were divided into two clades and fourteen subfamilies, supported by similar motif compositions within one subfamily. Some critical amino acids detected using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The different exon-intron organizations among subfamilies revealed structural differentiation. Promoter sequence predictions showed that the BNAC genes were involved in various developmental processes and diverse stress responses. Three NAC domain-encoding genes (BNAC012, BNAC078 and BNAC108), orthologous of NAC1, were targeted by five miRNA164 (Bdi-miR164a-c, e, f), suggesting that they might function in lateral organ enlargement, floral development and the responses to abiotic stress. Eleven (~9.32%) BNAC proteins containing α-helical transmembrane motifs were identified. 23 representative BNAC genes were analyzed by quantitative real-time PCR, showing different expression patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic transcriptional expression analysis revealed that six genes showed constitutive expression and period

  10. The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation.

    PubMed

    Gendron, Fernand-Pierre; Mongrain, Sébastien; Laprise, Patrick; McMahon, Stéphanie; Dubois, Claire M; Blais, Mylène; Asselin, Claude; Rivard, Nathalie

    2006-02-01

    CDX2, a member of the caudal family of transcription factors, is involved in enterocyte lineage specification. CDX2 activates many intestine-specific genes, such as sucrase-isomaltase and lactase-phlorizin hydrolase (LPH), and adhesion proteins, namely, LI-cadherin and claudin-2. In this study, we show that the proprotein convertase furin, involved in proteolytic maturation of proprotein substrates including LPH and cell surface proteins, is a CDX2 target. Indeed, expression of the rat furin homolog was induced 1.5-fold, as determined by microarray experiments that compared control with CDX2-expressing intestinal epithelial cells (IEC-6). As determined by transient transfection assays in Caco-2/15 cells, the furin P1 promoter 1.3-kb fragment between SacI and NheI was essential for CDX2 transcriptional activation. Electrophoretic mobility shift/supershift assays followed by site-specific mutagenesis and chromatin immunoprecipitation identified the CDX DNA-binding site (CBS)2 sequence from nt -1827 to -1821 as the major CBS involved in furin P1 promoter activation. Increased furin mRNA and protein expression correlated with both CDX2 expression and intestinal epithelial cell differentiation. In addition, furin mRNAs were detected predominantly in differentiated epithelial cells of the villus, as determined by in situ hybridization. Treatment of Caco-2/15 cells with a furin inhibitor led to inhibition of LPH activity. Morphological differentiation of enterocyte-like features in Caco-2/15 such as epithelial cell polarity and brush-border formation were strongly attenuated by furin inhibition. These results suggest that CDX2 regulates furin expression in intestinal epithelial cells. Furin may be important in modulating the maturation and/or activation of key factors involved in enterocyte differentiation. PMID:16239403

  11. Novel expression and transcriptional regulation of FoxJ1 during oro-facial morphogenesis.

    PubMed

    Venugopalan, Shankar R; Amen, Melanie A; Wang, Jianbo; Wong, Leeyean; Cavender, Adriana C; D'Souza, Rena N; Akerlund, Mikael; Brody, Steve L; Hjalt, Tord A; Amendt, Brad A

    2008-12-01

    Axenfeld-Rieger syndrome (ARS) patients with PITX2 point mutations exhibit a wide range of clinical features including mild craniofacial dysmorphism and dental anomalies. Identifying new PITX2 targets and transcriptional mechanisms are important to understand the molecular basis of these anomalies. Chromatin immunoprecipitation assays demonstrate PITX2 binding to the FoxJ1 promoter and PITX2C transgenic mouse fibroblasts and PITX2-transfected cells have increased endogenous FoxJ1 expression. FoxJ1 is expressed at embryonic day 14.5 (E14.5) in early tooth germs, then down-regulated from E15.5-E17.5 and re-expressed in the inner enamel epithelium, oral epithelium, tongue epithelium, sub-mandibular salivary gland and hair follicles during E18.5 and neonate day 1. FoxJ1 and Pitx2 exhibit overlapping expression patterns in the dental and oral epithelium. PITX2 activates the FoxJ1 promoter and, Lef-1 and beta-catenin interact with PITX2 to synergistically regulate the FoxJ1 promoter. FoxJ1 physically interacts with the PITX2 homeodomain to synergistically regulate FoxJ1, providing a positive feedback mechanism for FoxJ1 expression. Furthermore, FoxJ1, PITX2, Lef-1 and beta-catenin act in concert to activate the FoxJ1 promoter. The PITX2 T68P ARS mutant protein physically interacts with FoxJ1; however, it cannot activate the FoxJ1 promoter. These data indicate a mechanism for the activity of the ARS mutant proteins in specific cell types and provides a basis for craniofacial/ tooth anomalies observed in these patients. These data reveal novel transcriptional mechanisms of FoxJ1 and demonstrate a new role of FoxJ1 in oro-facial morphogenesis. PMID:18723525

  12. Isolation of All CD44 Transcripts in Human Epidermis and Regulation of Their Expression by Various Agents

    PubMed Central

    Teye, Kwesi; Numata, Sanae; Ishii, Norito; Krol, Rafal P.; Tsuchisaka, Atsunari; Hamada, Takahiro; Koga, Hiroshi; Karashima, Tadashi; Ohata, Chika; Tsuruta, Daisuke; Saya, Hideyuki; Haftek, Marek; Hashimoto, Takashi

    2016-01-01

    CD44, a cell surface proteoglycan, is involved in many biological events. CD44 transcripts undergo complex alternative splicing, resulting in many functionally distinct isoforms. To date, however, the nature of these isoforms in human epidermis has not been adequately determined. In this study, we isolated all CD44 transcripts from normal human epidermis, and studied how their expressions are regulated. By RT-PCR, we found that a number of different CD44 transcripts were expressed in human epidermis, and we obtained all these transcripts from DNA bands in agarose and acrylamide gels by cloning. Detailed sequence analysis revealed 18 CD44 transcripts, 3 of which were novel. Next, we examined effects of 10 different agents on the expression of CD44 transcripts in cultured human keratinocytes, and found that several agents, particularly epidermal growth factor, hydrogen peroxide, phorbol 12-myristate 13-acetate, retinoic acid, calcium and fetal calf serum differently regulated their expressions in various patterns. Furthermore, normal and malignant keratinocytes were found to produce different CD44 transcripts upon serum stimulation and subsequent starvation, suggesting that specific CD44 isoforms are involved in tumorigenesis via different CD44-mediated biological pathways. PMID:27505250

  13. Two Novel Heat-Soluble Protein Families Abundantly Expressed in an Anhydrobiotic Tardigrade

    PubMed Central

    Yamaguchi, Ayami; Tanaka, Sae; Yamaguchi, Shiho; Kuwahara, Hirokazu; Takamura, Chizuko; Imajoh-Ohmi, Shinobu; Horikawa, Daiki D.; Toyoda, Atsushi; Katayama, Toshiaki; Arakawa, Kazuharu; Fujiyama, Asao; Kubo, Takeo; Kunieda, Takekazu

    2012-01-01

    Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA) proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals. PMID:22937162

  14. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  15. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium.

    PubMed

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  16. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  17. Sp1 transcriptionally regulates BRK1 expression in non-small cell lung cancer cells.

    PubMed

    Li, Meng; Ling, Bing; Xiao, Ting; Tan, Jinjing; An, Ning; Han, Naijun; Guo, Suping; Cheng, Shujun; Zhang, Kaitai

    2014-06-01

    Following a previous study reporting that BRK1 is upregulated in non-small cell lung cancer (NSCLC), the present study sought to clarify the role of specificity protein 1 (Sp1) in the transcriptional regulation of the BRK1 gene. Therefore, a construct, named F8, consisting of the -1341 to -1 nt sequence upstream of the start codon of the BRK1 gene inserted into pGL4.26 was made. A series of truncated fragments was then constructed based on F8. Segment S831, which contained the -84 to -1 nt region, displayed the highest transcriptional activity in the A549, H1299 and H520 NSCLC cell lines. Bioinformatic analysis showed a potential Sp1-binding element at -73 to -64 nt, and a mutation in this region suppressed the transcriptional activity of S831. Then the RNAi assays of Sp1 and its coworkers Sp3 and Sp4 were performed, and suppression of Sp1 by siRNA inhibited the mRNA expression of BRK1. Both an electrophoretic mobility shift assay (EMSA) and a chromatin immunoprecipitation (ChIP) assay demonstrated that Sp1 bound to the promoter area of the BRK1 gene. Our data identified a functional and positive Sp1 regulatory element from -73 to -64 nt in the BRK1 promoter, which may likely explain the overexpression of BRK1 in NSCLC. PMID:24680773

  18. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis.

    PubMed

    Wen, Zewen; Liu, Zhiyong; Hou, Yuyong; Liu, Chenfeng; Gao, Feng; Zheng, Yubin; Chen, Fangjian

    2015-10-01

    Haematococcus pluvialis is one of the most promising natural sources of astaxanthin. However, inducing the accumulation process has become one of the primary obstacles in astaxanthin production. In this study, the effect of ethanol on astaxanthin accumulation was investigated. The results demonstrated that astaxanthin accumulation occurred with ethanol addition even under low-light conditions. The astaxanthin productivity could reach 11.26 mg L(-1) d(-1) at 3% (v/v) ethanol, which was 2.03 times of that of the control. The transcriptional expression patterns of eight carotenogenic genes were evaluated using real-time PCR. The results showed that ethanol greatly enhanced transcription of the isopentenyl diphosphate (IPP) isomerase genes (ipi-1 and ipi-2), which were responsible for isomerization reaction of IPP and dimethylallyl diphosphate (DMAPP). This finding suggests that ethanol induced astaxanthin biosynthesis was up-regulated mainly by ipi-1 and ipi-2 at transcriptional level, promoting isoprenoid synthesis and substrate supply to carotenoid formation. Thus ethanol has the potential to be used as an effective reagent to induce astaxanthin accumulation in H. pluvialis. PMID:26215339

  19. Introduction to Bioinformatics Resources for Post-transcriptional Regulation of Gene Expression.

    PubMed

    Quattrone, Alessandro; Dassi, Erik

    2016-01-01

    Untranslated regions (UTRs) and, to a lesser extent, coding sequences of mRNAs are involved in defining the fate of the mature transcripts through the modulation of three primary control processes, mRNA localization, degradation and translation; the action of trans-factors such as RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) combined with the presence of defined sequence and structural cis-elements ultimately determines translation levels. Identifying functional regions in UTRs and uncovering post-transcriptional regulators acting upon these regions is thus of paramount importance to understand the spectrum of regulatory possibilities for any given mRNA. This tasks can now be approached computationally, to reduce the space of testable hypotheses and to drive experimental validation.This chapter focuses on presenting databases and tools allowing to study the various aspects of post-transcriptional regulation, including motif search (sequence and secondary structure), prediction of regulatory networks (e.g., RBP and ncRNA binding sites), profiling of the mRNAs translational state, and other aspects of this level of gene expression regulation. Two analysis pipelines are also presented as practical examples of how the described tools could be integrated and effectively employed. PMID:26463374

  20. Prolyl 4-hydroxylase activity-responsive transcription factors: From hydroxylation to gene expression and neuroprotection

    PubMed Central

    Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R

    2008-01-01

    Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity. PMID:17981760

  1. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium

    PubMed Central

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N.; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  2. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release.

    PubMed

    Varodayan, Florence P; Harrison, Neil L

    2013-01-01

    Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer-term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces Vamp2, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1) to induce Vamp2 expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA)-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function. PMID:24376402

  3. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    PubMed Central

    Varodayan, Florence P.; Harrison, Neil L.

    2013-01-01

    Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer-term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces Vamp2, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1) to induce Vamp2 expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA)-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function. PMID:24376402

  4. DNA regions bound at low occupancy by transcription factors do not drive patterned reporter gene expression in Drosophila

    PubMed Central

    Fisher, William W.; Li, Jingyi Jessica; Hammonds, Ann S.; Brown, James B.; Pfeiffer, Barret D.; Weiszmann, Richard; MacArthur, Stewart; Thomas, Sean; Stamatoyannopoulos, John A.; Eisen, Michael B.; Bickel, Peter J.; Biggin, Mark D.; Celniker, Susan E.

    2012-01-01

    In animals, each sequence-specific transcription factor typically binds to thousands of genomic regions in vivo. Our previous studies of 20 transcription factors show that most genomic regions bound at high levels in Drosophila blastoderm embryos are known or probable functional targets, but genomic regions occupied only at low levels have characteristics suggesting that most are not involved in the cis-regulation of transcription. Here we use transgenic reporter gene assays to directly test the transcriptional activity of 104 genomic regions bound at different levels by the 20 transcription factors. Fifteen genomic regions were selected based solely on the DNA occupancy level of the transcription factor Kruppel. Five of the six most highly bound regions drive blastoderm patterns of reporter transcription. In contrast, only one of the nine lowly bound regions drives transcription at this stage and four of them are not detectably active at any stage of embryogenesis. A larger set of 89 genomic regions chosen using criteria designed to identify functional cis-regulatory regions supports the same trend: genomic regions occupied at high levels by transcription factors in vivo drive patterned gene expression, whereas those occupied only at lower levels mostly do not. These results support studies that indicate that the high cellular concentrations of sequence-specific transcription factors drive extensive, low-occupancy, nonfunctional interactions within the accessible portions of the genome. PMID:23236164

  5. Hormone-Dependent Expression of a Steroidogenic Acute Regulatory Protein Natural Antisense Transcript in MA-10 Mouse Tumor Leydig Cells

    PubMed Central

    Castillo, Ana Fernanda; Fan, Jinjiang; Papadopoulos, Vassilios; Podestá, Ernesto J.

    2011-01-01

    Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3′-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5′ and 3′ RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis. PMID:21829656

  6. Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R).

    PubMed

    Aoki, Hirofumi; Moro, Osamu

    2002-09-20

    Analysis of the nucleotide sequence of human melanocortin-1 receptor (MC1R) promoter indicated that an E-box (CANNTG) is present immediately upstream of the transcriptional initiation site. The presence of the CATGTG motif suggests that MC1R gene expression may be regulated by a basic helix-loop-helix-leucine-zipper (bHLH-LZ) type transcription factor. The microphthalmia-associated transcription factor (MITF), which belongs to the family of bHLH-LZ type transcription factors, regulates the transcription of melanogenesis-related enzyme genes such as the tyrosinase and TRP-1 genes. We investigated whether MITF regulates human MC1R gene expression through the same transcriptional mechanism as tyrosinase and TRP-1 genes in melanocytes. For this purpose, the effect of co-expression of cDNA encoding MITF on MC1R promoter activity in NIH/3T3 cells was studied. MC1R promoter activity was induced to the extent of approximately 5-fold in the presence of MITF. In addition, electrophoretic mobility shift assay indicated that nuclear extracts of human SK-Mel-2 cells contain a protein that binds specifically to the MC1R promoter region containing the CATGTG motif. These results suggested that MITF regulates not only the expression of enzymes involved in melanin synthesis, but also the expression of a receptor which plays an essential role in melanocyte functions. PMID:12204775

  7. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5' UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  8. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress

    PubMed Central

    D’Osualdo, Andrea; Anania, Veronica G.; Yu, Kebing; Lill, Jennie R.; Kaufman, Randal J.; Matsuzawa, Shu-ichi; Reed, John C.

    2015-01-01

    Perturbation of endoplasmic reticulum (ER) homeostasis triggers the ER stress response (also known as Unfolded Protein Response), a hallmark of many pathological disorders. However the connection between ER stress and inflammation remains largely unexplored. Recent data suggest that ER stress controls the activity of inflammasomes, key signaling platforms that mediate innate immune responses. Here we report that expression of NLRP1, a core inflammasome component, is specifically up-regulated during severe ER stress conditions in human cell lines. Both IRE1α and PERK, but not the ATF6 pathway, modulate NLRP1 gene expression. Furthermore, using mutagenesis, chromatin immunoprecipitation and CRISPR-Cas9-mediated genome editing technology, we demonstrate that ATF4 transcription factor directly binds to NLRP1 promoter during ER stress. Although involved in different types of inflammatory responses, XBP-1 splicing was not required for NLRP1 induction. This study provides further evidence that links ER stress with innate PMID:26086088

  9. Expression of the CD4 gene requires a Myb transcription factor.

    PubMed Central

    Siu, G; Wurster, A L; Lipsick, J S; Hedrick, S M

    1992-01-01

    We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes. Images PMID:1347906

  10. Transcription Factor ATF4 Induces NLRP1 Inflammasome Expression during Endoplasmic Reticulum Stress.

    PubMed

    D'Osualdo, Andrea; Anania, Veronica G; Yu, Kebing; Lill, Jennie R; Kaufman, Randal J; Matsuzawa, Shu-ichi; Reed, John C

    2015-01-01

    Perturbation of endoplasmic reticulum (ER) homeostasis triggers the ER stress response (also known as Unfolded Protein Response), a hallmark of many pathological disorders. However the connection between ER stress and inflammation remains largely unexplored. Recent data suggest that ER stress controls the activity of inflammasomes, key signaling platforms that mediate innate immune responses. Here we report that expression of NLRP1, a core inflammasome component, is specifically up-regulated during severe ER stress conditions in human cell lines. Both IRE1α and PERK, but not the ATF6 pathway, modulate NLRP1 gene expression. Furthermore, using mutagenesis, chromatin immunoprecipitation and CRISPR-Cas9-mediated genome editing technology, we demonstrate that ATF4 transcription factor directly binds to NLRP1 promoter during ER stress. Although involved in different types of inflammatory responses, XBP-1 splicing was not required for NLRP1 induction. This study provides further evidence that links ER stress with innate. PMID:26086088

  11. Transcriptional and Posttranscriptional Events Control Copper-Responsive Expression of a Rhodobacter capsulatus Multicopper Oxidase

    PubMed Central

    Rademacher, Corinna; Moser, Roman; Lackmann, Jan-Wilm; Klinkert, Birgit; Narberhaus, Franz

    2012-01-01

    The copper-regulated Rhodobacter capsulatus cutO (multicopper oxidase) gene confers copper tolerance and is carried in the tricistronic orf635-cutO-cutR operon. Transcription of cutO strictly depends on the promoter upstream of orf635, as demonstrated by lacZ reporter fusions to nested promoter fragments. Remarkably, orf635 expression was not affected by copper availability, whereas cutO and cutR were expressed only in the presence of copper. Differential regulation was abolished by site-directed mutations within the orf635-cutO intergenic region, suggesting that this region encodes a copper-responsive mRNA element. Bioinformatic predictions and RNA structure probing experiments revealed an intergenic stem-loop structure as the candidate mRNA element. This is the first posttranscriptional copper response mechanism reported in bacteria. PMID:22287514

  12. The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication.

    PubMed Central

    Lu, A; Miller, L K

    1995-01-01

    A set of 18 plasmid subclones of the Autographa californica nuclear polyhedrosis virus genome supports expression from a late viral promoter in transient expression assays (J. W. Todd, A. L. Passarelli, and L. K. Miller, J. Virol. 69:968-974, 1995). Using this set of plasmids, we have assigned a role for each of the 18 genes required for optimal late gene expression with respect to its involvement at the levels of transcription, translation, and/or DNA replication. RNase protection analyses demonstrated that all of the known late expression factor genes (lefs) affected the steady-state level of reporter gene RNA. Thus, none of the lefs appeared to be specifically involved in translation. A subset of the lefs supported plasmid replication; ie-1, lef-1, lef-2, lef-3, p143, and p35 were essential for plasmid replication, while ie-n, lef-7, and dnapol had stimulatory effects. The predicted sequence of lef-7 suggests that it is a homolog of herpesvirus single-stranded DNA-binding protein (UL29). The role of p35 in plasmid replication appears to be suppression of apoptosis, because p35 could be functionally replaced in the replication assay by either Cp-iap or Op-iap, two heterologous baculovirus genes which suppress apoptosis by a mechanism which appears to differ from that of p35. Thus, one or more of the replication-related lefs or the process of plasmid replication appears to induce cellular apoptosis. Our results indicate that the remaining lefs, lefs 4 through 11, p47, and 39K (pp31), function either at the level of transcription or at that of mRNA stabilization. PMID:7815565

  13. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors

    PubMed Central

    Beck, G C; Rafat, N; Brinkkoetter, P; Hanusch, C; Schulte, J; Haak, M; van Ackern, K; van der Woude, F J; Yard, B A

    2006-01-01

    Interindividual differences of endothelial cells in response to endotoxins might contribute to the diversity in clinical outcome among septic patients. The present study was conducted to test the hypothesis that endothelial cells (EC) with high and low proinflammatory potential exist and to dissect the molecular basis underlying this phenomenon. Thirty human umbilical vein endothelial cell (HUVEC) lines were stimulated for 24 h with lipopolysaccharide (LPS) and screened for interleukin (IL)-8 production. Based on IL-8 production five low and five high producers, tentatively called types I and II responders, respectively, were selected for genome-wide gene expression profiling. From the 74 genes that were modulated by LPS in all type II responders, 33 genes were not influenced in type I responders. Among the 41 genes that were increased in both responders, 17 were expressed significantly stronger in type II responders. Apart from IL-8, significant differences in the expression of proinflammatory related genes between types I and II responders were found for adhesion molecules [intercellular adhesion molecule (ICAM-1), E-selectin)], chemokines [monocyte chemoattractant protein (MCP-1), granulocyte chemotactic protein (GCP-2)], cytokines (IL-6) and the transcription factor CCAAT/enhancer binding protein-delta (C/EBP-δ). Type I responders also displayed a low response towards tumour necrosis factor (TNF)-α. In general, maximal activation of nuclear factor (NF)-κB was achieved in type I responders at higher concentrations of LPS compared to type II responders. In the present study we demonstrate that LPS-mediated gene expression differs quantitatively and qualitatively in types I and II responders. Our results suggest a pivotal role for common transcription factors as a low inflammatory response was also observed after TNF-α stimulation. Further studies are required to elucidate the relevance of these findings in terms of clinical outcome in septic patients. PMID

  14. Dietary long-chain polyunsaturated fatty acids upregulate expression of FADS3 transcripts.

    PubMed

    Reardon, Holly T; Hsieh, Andrea T; Park, Woo Jung; Kothapalli, Kumar S D; Anthony, Joshua C; Nathanielsz, Peter W; Brenna, J Thomas

    2013-01-01

    The fatty acid desaturase (FADS) gene family at 11q12-13.1 includes FADS1 and FADS2, both known to mediate biosynthesis of omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA). FADS3 is a putative desaturase due to its sequence similarity with FADS1 and FADS2, but its function is unknown. We have previously described 7 FADS3 alternative transcripts (AT) and 1 FADS2 AT conserved across multiple species. This study examined the effect of dietary LCPUFA levels on liver FADS gene expression in vivo and in vitro, evaluated by qRT-PCR. Fourteen baboon neonates were randomized to three diet groups for their first 12 weeks of life, C: Control, no LCPUFA, L: 0.33% docosahexaenoic acid (DHA)/0.67% arachidonic acid (ARA) (w/w); and L3: 1.00% DHA/0.67% ARA (w/w). Liver FADS1 and both FADS2 transcripts were downregulated by at least 50% in the L3 group compared to controls. In contrast, FADS3 AT were upregulated (L3 > C), with four transcripts</