Yang, Yan-zhong; Tian, Xiao-hua; Zhou, Yan-min
2015-08-01
To investigate the effect of three different zirconia angular abutments on the stress distribution in bone and abutment using three-dimensional finite element analysis, and provide instruction for clinical application. Finite element analysis (FEA) was applied to analyze the stress distribution of three different zirconia/titanium angular abutments and bone around implant. The maximum Von Minses stress that existed in abutment, bolt and bone of the angular abutment model was significantly higher than that existed in the straight abutment model. The maximum Von Minses stress that existed in abutment, bolt and bone of the 20 ° angular abutment model was significantly higher than that existed in 15 ° angular abutment model. There was no significant difference between zirconia abutment model and titanium abutment model. The abutment angulation has a significant influence on the stress distribution in the abutment, bolt and bone, and exacerbates as the angulation increases, which suggest that we should take more attention to the implant orientation and use straight abutment or little angular abutment. The zirconia abutment can be used safely, and there is no noticeable difference between zirconia abutment and titanium abutment on stress distribution.
Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E
2018-04-01
There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p < .05). Titanium abutments (C) had significantly higher bending moments than identical zirconia abutments (T1) (p < .05). Zirconia abutments (T1) with internal connection had higher bending moments than zirconia abutments with external connection (T2) (p < .05). For all test groups, the bending moments were significantly reduced when restored with all-ceramic crowns. For narrow diameter abutments, the fracture strength of 2-piece internal connected zirconia abutments fixed on titanium resin bases was similar to those obtained for 1-piece titanium abutments. Narrow diameter zirconia abutments with internal connection exhibited higher fracture strength than zirconia abutments with an external connection. Titanium abutments with an internal connection were significantly stronger than identical zirconia abutments. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Patankar, Anuya; Kheur, Mohit; Kheur, Supriya; Lakha, Tabrez; Burhanpurwala, Murtuza
2016-12-01
This in vitro study evaluated the effect of different levels of preparation of an implant abutment on its fracture resistance. The study evaluated abutments that incorporated a platform switch (Myriad Plus Abutments, Morse Taper Connection) and Standard abutments (BioHorizons Standard Abutment, BioHorizons Inc). Each abutment was connected to an appropriate implant and mounted in a self-cured resin base. Based on the abutment preparation depths, 3 groups were created for each abutment type: as manufactured, abutment prepared 1 mm apical to the original margin, and abutment prepared 1.5 mm to the original margin. All the abutments were prepared in a standardized manner to incorporate a 0.5 mm chamfer margin uniformly. All the abutments were torqued to 30 Ncm on their respective implants. They were then subjected to loading until failure in a universal testing machine. Abutments with no preparation showed the maximum resistance to fracture for both groups. As the preparation depth increased, the fracture resistance decreased. The fracture resistance of implant abutment junction decreases as the preparation depth increases.
Carbon film coating of abutment surfaces: effect on the abutment screw removal torque.
Corazza, Pedro Henrique; de Moura Silva, Alecsandro; Cavalcanti Queiroz, José Renato; Salazar Marocho, Susana María; Bottino, Marco Antonia; Massi, Marcos; de Assunção e Souza, Rodrigo Othávio
2014-08-01
To evaluate the effect of diamond-like carbon (DLC) coating of prefabricated implant abutment on screw removal torque (RT) before and after mechanical cycling (MC). Fifty-four abutments for external-hex implants were divided among 6 groups (n = 9): S, straight abutment (control); SC, straight coated abutment; SCy, straight abutment and MC; SCCy, straight coated abutment and MC; ACy, angled abutment and MC; and ACCy, angled coated abutment and MC. The abutments were attached to the implants by a titanium screw. RT values were measured and registered. Data (in Newton centimeter) were analyzed with analysis of variance and Dunnet test (α = 0.05). RT values were significantly affected by MC (P = 0.001) and the interaction between DLC coating and MC (P = 0.038). SCy and ACy showed the lowest RT values, statistically different from the control. The abutment coated groups had no statistical difference compared with the control. Scanning electron microscopy analysis showed DLC film with a thickness of 3 μm uniformly coating the hexagonal abutment. DLC film deposited on the abutment can be used as an alternative procedure to reduce abutment screw loosening.
Mamoun, John S.
2013-01-01
The abutment(s) of a partial fixed dental prosthesis (PFDP) should have a minimal total occlusal convergence (TOC), also called a taper, in order to ensure adequate retention of a PFDP that will be made for the abutment(s), given the height of the abutment(s). This article reviews the concept of PFDP abutment TOC and presents an alternative definition of what TOC is, defining it as the extent to which the shape of an abutment differs from an ideal cylinder shape of an abutment. This article also reviews experimental results concerning what is the ideal TOC in degrees and explores clinical techniques of estimating the TOC of a crown abutment. The author suggests that Dentists use high magnification loupes (×6-8 magnification or greater) or a surgical operating microscope when preparing crown abutments, to facilitate creating a minimum abutment TOC. PMID:24932130
Shabanpour, Reza; Mousavi, Niloufar; Ghodsi, Safoura; Alikhasi, Marzieh
2015-08-01
The purpose of the current study was to compare the fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. Fourteen groups of abutments including prefabricated zirconia, copy-milled zirconia and titanium abutments of an implant system (XiVE, Dentsply) were prepared in different diameters. An increasing vertical load was applied to each specimen until failure occurred. Fracture resistance was measured in each group using the universal testing machine. Moreover, the failure modes were studied and categorized as abutment screw fracture, connection area fracture, abutment body fracture, abutment body distortion, screw distortion and connection area distortion. Groups were statistically compared using univariate and post-hoc tests. The level of statistical significance was set at 5%. Fabrication method (p = 0.03) and diameter (p < 0.001) had significant effect on the fracture resistance of abutments. Fracture resistance of abutments with 5.5 mm diameter was higher than other diameters (p < 0.001). The observed modes of failure were dependent on the abutment material as well. All of the prefabricated titanium abutments fractured within the abutment screw. Abutment screw distortion, connection area fracture, and abutment body fracture were the common failure type in other groups. Diameter had a significant effect on fracture resistance of implant abutments, as abutments with greater diameters were more resistant to static loads. Copy-milled abutments showed lower fracture resistance as compared to other experimental groups. Although zirconia abutments have received great popularity among clinicians and even patients selecting them for narrow implants should be with caution.
Torque loss of different abutment sizes before and after cyclic loading.
Moris, Izabela Cristina; Faria, Adriana Cláudia; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina
2015-01-01
The aim of this study was to compare 3.8- and 4.8-mm abutments submitted to simulations of masticatory cycles to examine whether abutment diameter and cemented vs screw-retained crowns affect torque loss of the abutments and crowns. Forty implant/abutment sets were divided into the following groups (n = 10 in each group): (1) G4.8S included 4.8-mm abutment with screw-retained crown; (2) G4.8C included 4.8-mm abutment with cemented crown; (3) G3.8S included 3.8-mm abutment with screw-retained crown; and (4) G3.8C included 3.8-mm abutment with cemented crown. All abutments were tightened with torque values of 20 Ncm, and 10 Ncm for screw-retained crowns. Torque loss was measured before and after cycling loading (300,000 cycles). Torque loss of screw-retained crowns significantly increased after cycling in abutments of groups G3.8S (P ≤ .05) and G4.8S (P = .001). No difference was noted between the abutments before cycling (P = .735), but G3.8S abutments presented greater torque loss than the other groups after cycling (P = .008). Significant differences were noted in the abutment torque loss before and after cycling loading only for the G3.8C group (P ≤ .05). The abutment diameter affects torque loss of screw-retained crowns and leads to failure during the test; mechanical cycling increases torque loss of abutment screw and screw-retained crowns.
[Dental implant restoration abutment selection].
Bin, Shi; Hao, Zeng
2017-04-01
An increasing number of implant restoration abutment types are produced with the rapid development of dental implantology. Although various abutments can meet different clinical demands, the selection of the appropriate abutment is both difficult and confusing. This article aims to help clinicians select the appropriate abutment by describing abutment design, types, and selection criteria.
Sui, Xinxin; Wei, Huasha; Wang, Dashan; Han, Yan; Deng, Jing; Wang, Yongliang; Wang, Junjun; Yang, Jianjun
2014-10-01
The purpose of the study was to investigate the correlation between fit accuracy and fracture resistance of zirconia abutments, as well as its feasibility for clinical applications. Twenty self-made zirconia abutments were tested with 30 Osstem GSII implants. First, 10 Osstem GSII implants were cut into two parts along the long axis and assembled with the zirconia abutments. The microgaps between the implants and the zirconia abutments were measured under a scanning electron microscope. Second, the zirconia abutments were assembled with 20 un-cut implants and photographed before and after being fixed with a central screw of 30-Ncm torque. The dental films were measured by Digora for Windows 2.6 software. Then the fracture resistance of zirconia abutments was measured using the universal testing machine at 90°. All results were analyzed using SPSS13.0 software. The average internal-hexagon microgaps between the implants and zirconia abutments were 19.38±1.34μm. The average Morse taper microgap in the implant-abutment interface was 17.55±1.68μm. The dental film showed that the Morse taper gap in the implant-abutment interface disappeared after being fixed with a central screw of 30-Ncm torque, and the average moving distance of the zirconia abutments to the implants was 0.19±0.02mm. The average fracture resistance of zirconia abutments was 282.93±17.28N. The internal-hexagon microgap between the implants and zirconia abutments was negatively related to the fracture resistance of the abutments (r1=-0.97, p<0.01). The Morse taper microgap in the implant-abutment interface was negatively related to the fracture resistance of the abutments (r2=-0.84, p<0.01). The microgap between implant and abutment was negatively related to the fracture resistance of the abutment, while the internal-hexagon microgap has better correlation than the Morse taper microgap. The closure of microgap is helpful to improve the fracture resistance of zirconia abutments. The fracture resistance of zirconia abutments can satisfy the clinical application. Copyright © 2014 Elsevier Ltd. All rights reserved.
A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments
Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo
2014-01-01
PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206
Influence of the implant abutment types and the dynamic loading on initial screw loosening
Kim, Eun-Sook
2013-01-01
PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006
Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar; Alikhasi, Marzieh
2017-08-01
This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. Two regular platform dental implants, one with external connection (Brånemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at α=0.05 of significance. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups ( P <.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom ( P <.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments ( P <.001). However, neither connection type ( P =.15) nor abutment material ( P =.38) affected torque loss. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.
Derafshi, Reza; Ahangari, Ahmad Hasan; Torabi, Kianoosh; Farzin, Mitra
2015-01-01
Background and aims. Because of compromised angulations of implants, the abutments are sometimes prepared. The purpose of this study was to investigate the effect of removing one wall of the implant abutment on the retention of cement-retained crowns. Materials and methods. Four prefabricated abutments were attached to analogues and embedded in acrylic resin blocks. The first abutment was left intact. Axial walls were partially removed from the remaining abutments to produce abutments with three walls. The screw access channel for the first and second abutments were completely filled with composite resin. For the third and fourth abutments, only partial filling was done. Wax-up models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The copings of fourth abutment had an extension into the screw access channel. Copings were cemented with Temp Bond. The castings were removed from the abutment using an Instron machine, and the peak removal force was recorded. A one-way ANOVA was used to test for a significant difference followed by the pairwise comparisons. Results. The abutments with opened screw access channel had a significantly higher retention than the two other abutments. The abutment with removed wall and no engagement into the hole by the castings exhibited the highest retention. Conclusion. Preserving the opening of screw access channel significantly increases the retention where one of the axial walls of implant abutments for cement-retained restorations is removed during preparation. PMID:25973152
Salaita, Louai G; Yilmaz, Burak; Seidt, Jeremy D; Clelland, Nancy L; Chien, Hua-Hong; McGlumphy, Edwin A
2017-08-01
Many aftermarket abutments for cement-retained crowns are available for the tapered screw-vent implant. Aftermarket abutments vary widely, from stock to custom abutments and in materials such as zirconia, titanium, or a combination of the two. How these aftermarket abutments perform under occlusal loads with regard to strain distribution is not clear. The purpose of this in vitro study was to measure and compare the different strains placed upon the bone around implants by 9 different abutments for cement-retained crowns on an implant with an internal hexagonal platform. Nine 4.1×11.5-mm tapered screw-vent implants were placed into a 305×51×8-mm resin block for strain measurements. Five abutment specimens of each of the 9 different abutments (N=45) were evaluated with 1 of the 9 implants. Monolithic zirconia crowns were then fabricated for each of the 9 different abutments, the crowns were cyclically loaded (maximum force 225 N) at 30 degrees, twice at a frequency of 2 Hz, and the strain was measured and recorded. The strain to the resin block was determined using a 3-dimensional digital image correlation (3D DIC) technique. Commercial image correlation software was used to analyze the strain around the implants. Data for maximal and minimal principal strains were compared using analysis of variance with a Tukey-Kramer post hoc test (α=.05). Strain measurements showed no significant differences among any of the abutments for minimal (compression) principal strains (P>.05). For maximal (tensile) principal strains, the zirconia abutment showed the highest, and the patient-specific abutment showed the second-highest strain around the implant, with the zirconia being significantly greater than all abutments, with the exception of the patient-specific abutment, and the patient-specific abutment being significantly greater than the straight contoured abutment in titanium and also zirconia (P<.05). The name brand patient specific titanium and Atlantis zirconia abutments conferred the most tensile strain to the implants. When selecting an abutment for a cement-retained crown on a tapered screw-vent implant, practitioners should consider the abutment material and the manufacturer of the abutment because not all abutments that fit in an individual implant transmit the strains in the same way. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fracture loads and failure modes of customized and non-customized zirconia abutments.
Moris, Izabela Cristina Maurício; Chen, Yung-Chung; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Fok, Alex Sui-Lun; Rodrigues, Renata Cristina Silveira
2018-05-05
This study aimed to evaluate the fracture load and pattern of customized and non-customized zirconia abutments with Morse-taper connection. 18 implants were divided into 3 groups according to the abutments used: Zr - with non-customized zirconia abutments; Zrc - with customized zirconia abutments; and Ti - with titanium abutments. To test their load capacity, a universal test machine with a 500-kgf load cell and a 0.5-mm/min speed were used. After, one implant-abutment assembly from each group was analyzed by Scanning Electron Microscopy (SEM). For fractographic analysis, the specimens were transversely sectioned above the threads of the abutment screw in order to examine their fracture surfaces using SEM. A significant difference was noted between the groups (Zr=573.7±11.66N, Zrc=768.0±8.72N and Ti=659.1±7.70N). Also, the zirconia abutments fractured while the titanium abutments deformed plastically. Zrc presented fracture loads significantly higher than Zr (p=0.009). All the zirconia abutments fractured below the implant platform, starting from the area of contact between the abutment and implant and propagating to the internal surface of the abutment. All the zirconia abutments presented complete cleavage in the mechanical test. Fractography detected differences in the position and pattern of fracture between the two groups with zirconia abutments, probably because of the different diameters in the transmucosal region. Customization of zirconia abutments did not affect their fracture loads, which were comparable to that of titanium and much higher than the maximum physiological limit for the anterior region of the maxilla. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Sghaireen, Mohd G
2015-06-01
The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.
Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung; Jeong, Chang-Mo
2014-12-01
This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material.
Siadat, Hakimeh; Beyabanaki, Elaheh; Mousavi, Niloufar
2017-01-01
PURPOSE This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS Two regular platform dental implants, one with external connection (Brånemark, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at α=0.05 of significance. RESULTS There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values. PMID:28874994
Farzin, Mitra; Torabi, Kianoosh; Ahangari, Ahmad Hasan; Derafshi, Reza
2014-01-01
Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group) was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group) the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20). The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20). Data were analyzed with two- way ANOVA (α=0.05). Results: There was no significant difference in the mean transformed retention (Ln-R) between intact abutments (4.90±0.37) and the abutments with 3 walls (4.83±0.25) using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R) was significantly lower in the intact abutment (3.9±0.23) compared to the abutment with 3 walls (4.13±0.33, P=0.027). Conclusion: The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal. PMID:25628660
The influence of abutment screw tightening on screw joint configuration.
Lang, Lisa A; Wang, Rui-Feng; May, Kenneth B
2002-01-01
Limiting abutment-to-implant hexagonal discrepancies and rotational movement of the abutment around the implant to less than 5 degrees would result in a more stable screw joint. However, the exact relationship after abutment screw tightening is unknown, as is the effect of a counter-torque device in limiting abutment movement during screw tightening. This study examined the orientation of the abutment hexagon to the implant hexagon after tightening of the abutment screw for several abutment systems with and without the use of a counter-torque device. Thirty conical self-tapping implants (3.75 x 10.0 mm) and 10 wide-platform Brånemark System implants (5.0 x 10.0 mm), along with 10 abutment specimens from the CeraOne, Estheticone, Procera, and AuraAdapt systems, were selected for this investigation. The implants were placed in a holding device prior to tightening of the abutments. When the tightening torque recommended for each abutment system was reached with the use of a torque controller, each implant abutment specimen was removed from the holding device and embedded in a hard resin medium. The specimens were sectioned in a horizontal direction at the level of the hexagons and cleansed of debris prior to examination. The hexagon orientations were assessed as the degree and direction of rotation of the abutment hexagon around the implant hexagon. The range of the maximum degrees of rotation for all 4 abutment groups tightened with or without the counter-torque device was slightly more than 3.53 degrees. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees with or without the use of the counter-torque device. The hexagon-to-hexagon orientation measured as rotational fit on all abutment systems was below the 5 degrees suggested as optimal for screw joint stability. The absolute degrees of rotation for all 4 abutment groups were less than 1.50 degrees regardless of whether the counter-torque device was used.
Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant.
Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon; Lee, Keun-Woo
2016-12-01
The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 10 6 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups ( P >.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment.
Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh
2018-01-01
The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.
14. DETAIL, NORTH ABUTMENT, FROM EAST, SHOWING ABUTMENT, PORTION OF ...
14. DETAIL, NORTH ABUTMENT, FROM EAST, SHOWING ABUTMENT, PORTION OF SIMPLY ORNAMENTED EAST PARAPET, AND REMNANT OF STONE MASONRY ABUTMENT OF ORIGINAL (1890) FIFTH STREET VIADUCT - Fifth Street Viaduct, Spanning Bacon's Quarter Branch Valley on Fifth Street, Richmond, Independent City, VA
Hogg, Wiebke Semper; Zulauf, Kris; Mehrhof, Jürgen; Nelson, Katja
2015-01-01
The influence of repeated system-specific torque tightening on the position stability of the abutment after de- and reassembly of the implant components was evaluated in six dental implant systems with a conical implant-abutment connection. An established experimental setup was used in this study. Rotation, vertical displacement, and canting moments of the abutment were observed; they depended on the implant system (P = .001, P < .001, P = .006, respectively). Repeated torque tightening of the abutment screw does not eliminate changes in position of the abutment.
The influence of abutment angulation on screw loosening of implants in the anterior maxilla.
Ha, Chun-Yeo; Lim, Yung-Jun; Kim, Myung-Joo; Choi, Jung-Han
2011-01-01
This study compared the removal torque values (RTVs) of different abutments (straight, angled, and gold premachined UCLA-type) in external- and internal-hex implants after dynamic cyclic loading with the clinical situation of the anterior maxilla simulated. An ideal cast of a maxilla with a missing right central incisor was fabricated in dental stone, and an implant analog was embedded in this model at a 15-degree angle labial to the long axis of the left central incisor. Thirty external-hex and 30 internal-hex implants were used. A total of 10 straight abutments, 10 angled abutments, and 10 gold premachined UCLA-type abutments of each system and 60 abutment screws were tested. Initial RTVs were measured after each assembly was tightened to 30 Ncm. Straight abutments and angled abutments were prepared and gold-premachined UCLA-type abutments were waxed and cast with low-fusing gold alloy for the central incisor. RTVs were then measured again. After each assembly was tightened, a metal crown was temporarily cemented. After cyclic loading of 20 to 200 N was applied 1 million times, RTVs were measured for a third time. Statistical analysis (alpha = .05) was performed to evaluate the results. The angled abutment group showed significantly higher RTVs than the straight abutment and gold premachined UCLA-type abutment groups in external-hex implants. However, no significant difference in RTVs was found among abutments in internal-hex implants. The time of analysis of RTV was found to significantly influence mean RTVs. Mean RTVs of external- and internal-hex implants showed significant differences. Within the limitations of this study, there were significant differences in RTVs among different abutment groups in external-hex implants. There were no significant differences in RTVs among different abutment groups in internal-hex implants.
Jo, Jae-Young; Yang, Dong-Seok; Huh, Jung-Bo; Heo, Jae-Chan; Yun, Mi-Jung
2014-01-01
PURPOSE This study evaluated the influence of abutment materials on the stability of the implant-abutment joint in internal conical connection type implant systems. MATERIALS AND METHODS Internal conical connection type implants, cement-retained abutments, and tungsten carbide-coated abutment screws were used. The abutments were fabricated with commercially pure grade 3 titanium (group T3), commercially pure grade 4 titanium (group T4), or Ti-6Al-4V (group TA) (n=5, each). In order to assess the amount of settlement after abutment fixation, a 30-Ncm tightening torque was applied, then the change in length before and after tightening the abutment screw was measured, and the preload exerted was recorded. The compressive bending strength was measured under the ISO14801 conditions. In order to determine whether there were significant changes in settlement, preload, and compressive bending strength before and after abutment fixation depending on abutment materials, one-way ANOVA and Tukey's HSD post-hoc test was performed. RESULTS Group TA exhibited the smallest mean change in the combined length of the implant and abutment before and after fixation, and no difference was observed between groups T3 and T4 (P>.05). Group TA exhibited the highest preload and compressive bending strength values, followed by T4, then T3 (P<.001). CONCLUSION The abutment material can influence the stability of the interface in internal conical connection type implant systems. The strength of the abutment material was inversely correlated with settlement, and positively correlated with compressive bending strength. Preload was inversely proportional to the frictional coefficient of the abutment material. PMID:25551010
Kim, Ki-Seong; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Yang, Jae-Ho; Lee, Jai-Bong; Yim, Soon-Ho
2011-08-01
Settling (embedment relaxation), which is the main cause for screw loosening, is developed by microroughness between implant and abutment metal surface. The objective of this study was to evaluate and compare the relationship between the level of applied torque and the settling of abutments into implants in external and internal implant-abutment connection. Five different implant-abutment connections were used (Ext, External butt joint + two-piece abutment; Int-H2, Internal hexagon + two-piece abutment; Int-H1, Internal hexagon + one-piece abutment; Int-O2, Internal octagon + two-piece abutment; Int-O1, Internal octagon + one-piece abutment). All abutments of each group were assembled and tightened with corresponding implants by a digital torque gauge. The total lengths of implant-abutment samples were measured at each torque (5, 10, 30 N cm and repeated 30 N cm with 10-min interval) by an electronic digital micrometer. The settling values were calculated by changes between the total lengths of implant-abutment samples. All groups developed settling with repeated tightening. The Int-H2 group showed markedly higher settling for all instances of tightening torque and the Ext group was the lowest. Statistically significant differences were found in settling values between the groups and statistically significant increases were observed within each group at different tightening torques (P<0.05). After the second tightening of 30 N cm, repeated tightening showed almost constant settling values. Results from the present study suggested that to minimize the settling effect, abutment screws should be retightened at least twice at 30 N cm torque at a 10-min interval in all laboratory and clinical procedures. © 2010 John Wiley & Sons A/S.
Gilbert, Andy B; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L; Chien, Hua-Hong
2015-01-01
Clinicians need to know whether there are any differences among the many abutment options available for restoring a particular implant. This study aims to compare nine abutments for one implant system for positional changes between hand tightening and torqueing. Nine Tapered Screw-Vent (TSV) implants were placed into a resin block. Five specimens of nine different abutments (n = 45) were tried in one of the nine implants. Initially, the abutments were torqued to 20 Ncm to represent hand tightening. Abutments were tightened to 30 Ncm using a torque driver as recommended by the manufacturer for final seating. Images were recorded in 12-second intervals for approximately 10 minutes after the torque was applied. The spatial relationship of the abutments to the resin block was determined using three-dimensional digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the nine different abutments were calculated in all three dimensions and for overall displacement in space. A t test with a step-down Bonferroni correction was used for a pairwise comparison of each abutment's mean displacements to the other abutments to determine statistical differences (α = .05). The Atlantis titanium, Inclusive titanium, and Legacy zirconia abutments showed mean displacements that were statistically significantly higher than other abutments in the horizontal direction. The overall three-dimensional displacement of the Atlantis titanium abutment after an applied 30-Ncm torque was significantly higher than that of six of the other eight abutments (P < .0144). Within the limitations of this in vitro study, the Zimmer PSA demonstrated less displacement between hand tightening and torqueing than the Atlantis titanium or Inclusive titanium abutments when used to restore a TSV implant.
Displacement of Implant Abutments Following Initial and Repeated Torqueing.
Yilmaz, Burak; Gilbert, Andy B; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L
2015-01-01
To measure and compare the three-dimensional (3D) position of nine different abutments manufactured by different manufacturers after repeated torqueing on an internal-hexagon implant. Nine tapered implants were placed into an acrylic resin block. Five specimens each of nine different abutments (n = 45) were placed into one of nine implants. The abutments were handtightened and then torqued to the manufacturer-recommended torque of 30 Ncm. After 10 minutes, 30 Ncm of torque was reapplied. Another 10 minutes elapsed before testing was completed. Images were recorded in 12-second intervals. The spatial relationship of the abutments to the resin block was determined using 3D digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the abutments were calculated in three dimensions and overall for both torque applications. Statistical comparisons were done with a t test and a step-down Bonferroni correction. The overall 3D displacement of the Atlantis Titanium abutment after the second applied torque was significantly greater than that of two of the eight other abutments. Displacement in all three dimensions for the Atlantis Titanium abutment changed direction between the first and second torque applications. All abutments moved further in the same direction except for the Atlantis Titanium abutment, which moved back toward its original hand-tightened position horizontally after the second torque application. Re-torqueing of abutments after a 10-minute interval leads to minor displacement of varying degrees between the abutment and a tapered implant. A potential effect of embedment relaxation and/or manufacturing errors should be taken into consideration when selecting an abutment for a cement-retained crown on a tapered implant. Accordingly, clinicians may benefit from adjusting cement-retained implant crowns after re-torqueing the abutments to prevent potential occlusal and interproximal contact problems.
Abe, Manami; Yang, Tsung-Chieh; Maeda, Yoshionobu; Ando, Takanori; Wada, Masahiro
The purpose of this preliminary in vivo study was to compare force distribution on abutments (tooth or implant) and tissues supporting overdentures with two or four abutments. A convenience sample of five subjects with tooth and/or implant-supported overdentures was enrolled. Recordings were completed on each subject using a force-measuring system mounted on a metal framework with four anteroposterior spread abutments (A), four abutments with denture bases (B), and on two anterior abutments with denture bases (C). The tissue-support ratio (TSR) was calculated as (A-B)/A or (A-C)/A. TSR values changed 1.5 to 2 times when the number of abutments was reduced from four to two. The amount of tissue strain on the posterior residual ridge increased when the number of abutments was reduced.
Wadhwani, Chandur; Chung, Kwok-Hung
2014-07-01
The effect of managing the screw access channels of zirconia implant abutments in the esthetic zone has not been extensively evaluated. The purpose of this study was to determine the effect of an insert placed within the screw access channel of an anterior zirconia implant abutment on the amount of cement retained within the restoration-abutment system and on the dislodging force. Thirty-six paired zirconia abutments and restorations were fabricated by computer-aided design and computer-aided manufacturing and were divided into 3 groups: open abutment, with the screw access channel unfilled; closed abutment, with the screw access channel sealed; and insert abutment, with a thin, tubular metal insert projection continuous with the screw head and placed into the abutment screw access channel. The restorations were cemented to the abutments with preweighed eugenol-free zinc oxide cement (TempBond NE). Excess cement was removed, and the weight of the cement that remained in the restoration-abutment system was measured. Vertical tensile dislodging forces were recorded at a crosshead speed of 5 mm/min after incubation in a 37°C water bath for 24 hours. The specimens were examined for the cement flow pattern into the screw access channel after dislodgement. Data were analyzed with ANOVA, followed by multiple comparisons by using the Tukey honestly significant difference test (α = .05). The mean (standard deviation) of retentive force values ranged from 108.1 ± 29.9 N to 148.3 ± 21.0 N. The retentive force values differed significantly between the insert abutment and both the open abutment (P < .05) and closed abutment groups (P < .01). Distinct patterns of cement failure were noted. The weight of the cement that remained in the system differed significantly, with both open abutment and insert abutment being greater than closed abutment (P < .05). Modifying the internal configuration of the screw access channel of an esthetic zirconia implant abutment with a metal insert significantly affected both the cement retained within the abutment itself and the retention capabilities of the zirconia restoration cemented with TempBond NE cement. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan
2015-01-01
Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.
Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.
Dula, Linda J; Shala, Kujtim Sh; Pustina-Krasniqi, Teuta; Bicaj, Teuta; Ahmedi, Enis F
2015-01-01
The aim of this study was to evaluate the influence of removable partial dentures (RPD) on the periodontal health of abutment and non-abutment teeth. A total 107 patients with RPD participated in this study. It was examined 138 RPD, they were 87 with clasp-retained and 51 were RPD with attachments. The following periodontal parameters were evaluated for abutment and non-abutment teeth, plaque index (PLI), calculus index (CI), bleeding on probing (BOP), probing depth (PD) (mm) and tooth mobility (TM) index. These clinical measurements were taken immediately before insertion the RPD, then one and 3 months after insertion. The level of significance was set at (P < 0.05). The mean scores for PLI, CI, BOP, PD, and TM index, of the abutment teeth and non-abutment teeth were no statistically significant at the time of insertion of RPD. After 1-month, PLI was statistically significant (0.57 ± 0.55 for abutment and 0.30 ± 0.46 for non-abutment teeth). After 3 months, there were significant differences between abutment and non-abutment teeth with regard to the BOP (1.53 ± 0.50 and 1.76 ± 0.43 respectively), PD (0.28 ± 0.45 and 0.12 ± 0.33 respectively) and PLI (1.20 ± 0.46 and 0.75 ± 0.64 respectively). No significant mean difference in TM and CI was found between the abutment and non-abutment teeth (P > 0.05). With carefully planned prosthetic treatment and adequate maintenance of the oral and denture hygiene, we can prevent the periodontal diseases.
Evaluation of stability of interface between CCM (Co-Cr-Mo) UCLA abutment and external hex implant
Yoon, Ki-Joon; Park, Young-Bum; Choi, Hyunmin; Cho, Youngsung; Lee, Jae-Hoon
2016-01-01
PURPOSE The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. MATERIALS AND METHODS Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 106 cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. RESULTS Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups (P>.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. CONCLUSION Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment. PMID:28018564
Assenza, Bartolomeo; Artese, Luciano; Scarano, Antonio; Rubini, Corrado; Perrotti, Vittoria; Piattelli, Maurizio; Thams, Ulf; San Roman, Fidel; Piccirilli, Marcello; Piattelli, Adriano
2006-01-01
Crestal bone loss has been reported to occur around dental implants. Even if the causes of this bone loss are not completely understood, the presence of a microgap between implant and abutment with a possible contamination of the internal portion of the implants has been suggested. The aim of this study was to see if there were differences in the vascular endothelial growth factor (VEGF) expression, microvessel density (MVD), proliferative activity (MIB-1), and inflammatory infiltrate in the soft tissues around implants with screwed and cemented abutments. Sandblasted and acid-etched implants were inserted in the mandibles of 6 Beagle dogs. Ten 3.5- x 10-mm root-form implants were inserted in each mandible. A total of 60 implants (30 with screwed abutments and 30 with cemented abutments) were used. After 12 months, all the bridges were removed and all abutments were checked for mobility. A total of 8 loosened screws (27%) were found in the screwed abutments, whereas no loosening was observed in cemented abutments. A gingival biopsy was performed in 8 implants with cemented abutments, in 8 implants with screwed abutments, and in 8 implants with unscrewed abutments. No statistically significant differences were found in the inflammatory infiltrate and in the MIB-1 among the different groups. No statistically significant difference was found in the MVD between screwed and cemented abutments (P = .2111), whereas there was a statistically significant difference in MVD between screwed and unscrewed abutments (P = .0277) and between cemented and unscrewed abutments (P = .0431). A low intensity of VEGF was prevalent in screwed and in cemented abutments, whereas a high intensity of VEGF was prevalent in unscrewed abutments. These facts could be explained by the effects induced, in the abutments that underwent a screw loosening, by the presence of bacteria inside the hollow portion of the implants or by enhanced reparative processes.
Smith, Nicole A; Turkyilmaz, Ilser
2014-09-01
When evaluating long-term implant success, clinicians have always been concerned with the gap at the implant-abutment junction, where bacteria can accumulate and cause marginal bone loss. However, little information regarding bacterial leakage at the implant-abutment junction, or microgap, is available. The purpose of this study was to evaluate sealing at 2 different implant-abutment interfaces under different screw torque values. Twenty sterile zirconia abutments and 20 sterile titanium abutments were screwed into 40 sterile implants and placed in test tubes. The ability of a bacterial mixture of Prevotella intermedia, Porphyromonas gingivalis, and Fusobacterium nucleatum to leak through an implant-titanium abutment seal under 20 and 35 Ncm torque values and an implant-zirconia abutment seal under 20 and 35 Ncm torque values was evaluated daily until leakage was noted. Once a unit demonstrated leakage, a specimen was plated. After 4 days, the number of colonies on each plate was counted with an electronic colony counter. Plating was used to verify whether or not bacterial leakage occurred and when leakage first occurred. The implant-abutment units were removed and rinsed with phosphate buffered saline solution and evaluated with a stereomicroscope. The marginal gap between the implant and the abutment was measured and correlated with the amount of bacterial leakage. The data were analyzed with ANOVA. Bacterial leakage was noted in all specimens, regardless of material or screw torque value. With titanium abutments, changing the screw torque value from 20 to 35 Ncm did not significantly affect the amount of bacterial leakage. However, with zirconia abutments, changing the screw torque value from 20 to 35 Ncm was statistically significant (P<.017). Overall, the marginal gap noted was larger at the zirconia-abutment interface (5.25 ±1.99 μm) than the titanium-abutment interface (12.38 ±3.73 μm), irrespective of the screw torque value. Stereomicroscopy revealed a nonuniform marginal gap in all specimens. The results of this study showed that, over time, bacteria will leak through the implant-abutment microgap at the implant-abutment interface. Implants with a titanium abutment demonstrate a smaller microgap than implants with a zirconia abutment. Tightening the zirconia abutment screw from 20 to 35 Ncm decreases the size of the microgap, which suggests a more intimate fit between the implant and the abutment. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Scarano, Antonio; Valbonetti, Luca; Degidi, Marco; Pecci, Raffaella; Piattelli, Adriano; de Oliveira, P S; Perrotti, Vittoria
2016-10-01
The presence of a microgap between implant and abutment could produce a bacterial reservoir which could interfere with the long-term health of the periimplant tissues. The aim of this article was to evaluate, by x-ray 3-dimensional microtomography, implant-abutment contact surfaces and microgaps at the implant-abutment interface in different types of implant-abutment connections. A total of 40 implants were used in this in vitro study. Ten implants presented a screw-retained internal hexagon abutment (group I), 10 had a Morse Cone taper internal connection (group II), 10 another type of Morse Cone taper internal connection (group III), and 10 had a screwed trilobed connection (group IV). In both types of Morse Cone internal connections, there was no detectable separation at the implant-abutment in the area of the conical connection, and there was an absolute congruity without any microgaps between abutment and implant. No line was visible separating the implant and the abutment. On the contrary, in the screwed abutment implants, numerous gaps and voids were present. The results of this study support the hypothesis that different types of implant-abutment joints are responsible for the observed differences in bacterial penetration.
Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System.
Sim, Bo Kyun; Kim, Bongju; Kim, Min Jeong; Jeong, Guk Hyun; Ju, Kyung Won; Shin, Yoo Jin; Kim, Man Yong; Lee, Jong-Ho
2017-01-01
The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA.
Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.
Measurement of the rotational misfit and implant-abutment gap of all-ceramic abutments.
Garine, Wael N; Funkenbusch, Paul D; Ercoli, Carlo; Wodenscheck, Joseph; Murphy, William C
2007-01-01
The specific aims of this study were to measure the implant and abutment hexagonal dimensions, to measure the rotational misfit between implant and abutments, and to correlate the dimension of the gap present between the abutment and implant hexagons with the rotational misfit of 5 abutment-implant combinations from 2 manufacturers. Twenty new externally hexed implants (n = 10 for Nobel Biocare; n = 10 for Biomet/3i) and 50 new abutments were used (n = 10; Procera Zirconia; Procera Alumina; Esthetic Ceramic Abutment; ZiReal; and GingiHue post ZR Zero Rotation abutments). The mating surfaces of all implants and abutments were imaged with a scanning electron microscope before and after rotational misfit measurements. The distances between the corners and center of the implant and abutment hexagon were calculated by entering their x and y coordinates, measured on a measuring microscope, into Pythagoras' theorem. The dimensional difference between abutment and implant hexagons was calculated and correlated with the rotational misfit, which was recorded using a precision optical encoder. Each abutment was rotated (3 times/session) clockwise and counterclockwise until binding. Analysis of variance and Student-Newman-Keuls tests were used to compare rotational misfit among groups (alpha = .05). With respect to rotational misfit, the abutment groups were significantly different from one another (P < .001), with the exception of the Procera Zirconia and Esthetic Ceramic groups (P = .4). The mean rotational misfits in degrees were 4.13 +/- 0.68 for the Procera Zirconia group, 3.92 +/- 0.62 for the Procera Alumina group, 4.10 +/- 0.67 for the Esthetic Ceramic group, 3.48 +/- 0.40 for the ZiReal group, and 1.61 +/- 0.24 for the GingiHue post ZR group. There was no correlation between the mean implant-abutment gap and rotational misfit. Within the limits of this study, machining inconsistencies of the hexagons were found for all implants and abutments tested. The GingiHue Post showed the smallest rotational misfit. All-ceramic abutments without a metal collar showed a greater rotational misfit than those with a metal collar.
Stimmelmayr, Michael; Edelhoff, Daniel; Güth, Jan-Frederik; Erdelt, Kurt; Happe, Arndt; Beuer, Florian
2012-12-01
The purpose of this study was to determine and measure the wear of the interface between titanium implants and one-piece zirconia abutments in comparison to titanium abutments. 6 implants were secured into epoxy resin blocks. The implant interface of these implants and 6 corresponding abutments (group Zr: three one-piece zirconia abutments; group Ti: three titanium abutments) were examined by a microscope and scanning electron micrograph (SEM). Also the implants and the abutments were scanned by 3D-Micro Computer Tomography (CT). The abutments were connected to the implants and cyclically loaded with 1,200,000 cycles at 100N in a two-axis fatigue testing machine. Afterwards, all specimens were unscrewed and the implants and abutments again were scanned by microscope, SEM and CT. The microscope and SEM images were compared, the CT data were superimposed and the wear was calculated by inspection software. The statistical analysis was carried out with an unpaired t-test. Abutment fracture or screw loosening was not observed during cyclical loading. Comparing the microscope and SEM images more wear was observed on the implants connected to zirconia abutments. The maximum wear on the implant shoulder calculated by the inspection software was 10.2μm for group Zr, and 0.7μm for group Ti. The influence of the abutment material on the measured wear was statistically significant (p≤0.001; Levene-test). Titanium implants showed higher wear at the implant interface following cyclic loading when connected to one-piece zirconia implant abutments compared to titanium abutments. The clinical relevance is not clear; hence damage of the internal implant connection could result in prosthetic failures up to the need of implant removal. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Dula, Linda J.; Shala, Kujtim Sh.; Pustina–Krasniqi, Teuta; Bicaj, Teuta; Ahmedi, Enis F.
2015-01-01
Objective: The aim of this study was to evaluate the influence of removable partial dentures (RPD) on the periodontal health of abutment and non-abutment teeth. Materials and Methods: A total 107 patients with RPD participated in this study. It was examined 138 RPD, they were 87 with clasp-retained and 51 were RPD with attachments. The following periodontal parameters were evaluated for abutment and non-abutment teeth, plaque index (PLI), calculus index (CI), bleeding on probing (BOP), probing depth (PD) (mm) and tooth mobility (TM) index. These clinical measurements were taken immediately before insertion the RPD, then one and 3 months after insertion. The level of significance was set at (P < 0.05). Results: The mean scores for PLI, CI, BOP, PD, and TM index, of the abutment teeth and non-abutment teeth were no statistically significant at the time of insertion of RPD. After 1-month, PLI was statistically significant (0.57 ± 0.55 for abutment and 0.30 ± 0.46 for non-abutment teeth). After 3 months, there were significant differences between abutment and non-abutment teeth with regard to the BOP (1.53 ± 0.50 and 1.76 ± 0.43 respectively), PD (0.28 ± 0.45 and 0.12 ± 0.33 respectively) and PLI (1.20 ± 0.46 and 0.75 ± 0.64 respectively). No significant mean difference in TM and CI was found between the abutment and non-abutment teeth (P > 0.05). Conclusions: With carefully planned prosthetic treatment and adequate maintenance of the oral and denture hygiene, we can prevent the periodontal diseases. PMID:26430367
Kim, Ki-Seong; Han, Jung-Suk; Lim, Young-Jun
2014-01-01
The aim of this study was to evaluate and compare the settling of abutments into implants and the removal torque values (RTVs) before and after cyclic loading. Five different implant-abutment connections were tested: Ext = external butt joint + two-piece abutment; Int-H2 = internal hexagon + two-piece abutment; Int-H1 = internal hexagon + one-piece abutment; Int-O2 = internal octagon + two-piece abutment; and Int-O1 = internal octagon + one-piece abutment. Ten abutments from each group were secured to their corresponding implants (total n = 50). All samples were tested in a universal testing machine with a vertical load of 250 N for 100,000 cycles of 14 Hz. The amount of settling of the abutment into the implant was calculated from the change in the total length of the implant-abutment sample before and after loading, as measured with an electronic digital micrometer. The RTV after cyclic loading was compared to the initial RTV with a digital torque gauge. Statistical analysis was performed at a 5% significance level. A multiple-comparison test showed specific significant differences in settling values in each group after 250 N cyclic loading (Int-H1, Ext < Int-H2 < Int-O2 < Int-O1). There were statistically significant decreases in RTVs after loading compared to the initial RTVs in the Int-H2 and Int-O2 groups. No statistically significant differences were found in the Ext, Int-H1, and Int-O1 groups. The results of this study demonstrated that the settling amount and RTV (loss of preload) after cyclic loading were specific to the abutment type and related to the design characteristics of the implant-abutment connection.
FEA and microstructure characterization of a one-piece Y-TZP abutment.
da Silva, Lucas Hian; Ribeiro, Sebastião; Borges, Alexandre Luís Souto; Cesar, Paulo Francisco; Tango, Rubens Nisie
2014-11-01
The most important drawback of dental implant/abutment assemblies is the need for a fixing screw. This study aimed to develop an esthetic one-piece Y-TZP abutment to suppress the use of the screw. Material characterization was performed using a bar-shaped specimen obtained by slip-casting to validate the method prior to prototype abutment fabrication by the same process. The mechanical behavior of the prototype abutment was verified and compared with a conventional abutment by finite element analysis (FEA). The abutment was evaluated by micro-CT analysis and its density was measured. FEA showed stress concentration at the first thread pitch during installation and in the cervical region during oblique loading for both abutments. However, stress concentration was observed at the base of the screw head and stem in the conventional abutment. The relative density for the fabricated abutment was 95.68%. Micro-CT analysis revealed the presence of elongated cracks with sharp edges over the surface and porosity in the central region. In the light of these findings, the behavior of a one-piece abutment is expected to be better than that of the conventional model. New studies should be conducted to clarify the performance and longevity of this one-piece Y-TZP abutment. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fracture resistance of zirconia-based implant abutments after artificial long-term aging.
Alsahhaf, Abdulaziz; Spies, Benedikt Christopher; Vach, Kirstin; Kohal, Ralf-Joachim
2017-02-01
To investigate the survival rate, fracture strength, bending moments, loading to fracture and fracture modes of different designs of zirconia abutments after dynamic loading with thermocycling, and compare these values to titanium abutments. A total of 80 abutment samples were divided into 5 test groups of 16 samples in each group. The study included the following groups, "Group 1" CAD/CAM produced all-zirconia abutments, "Group 2" titanium abutments, "Group 3" zirconia-abutments adhesively luted to a titanium base, "Group 4" prefabricated all-zirconia abutments and "Group 5" zirconia-abutments glass soldered to a titanium base. Half the number of samples in each group was exposed to 1.2 million loading cycles (5-years simulation) in the chewing simulator. The samples that survived the artificial aging were later tested for fracture strength in a universal testing machine. The remaining 8 samples of the group were directly tested for fracture strength. All samples exposed to the 5-years artificial aging survived except of six samples in one group (Group 1). The surviving samples were later fracture tested in the universal testing machine. The bending moments (Ncm) values were as follow: Exposed groups: "Group 1" 94.5Ncm; "Group 2" 599.2Ncm; "Group 3" 477.5Ncm; "Group 4" 314.4Ncm; "Group 5" 509.4Ncm. Non-exposed groups: "Group 1" 269.3Ncm; "Group 2" 474.2Ncm; "Group 3" 377.6Ncm; "Group 4" 265.4Ncm; "Group 5" 372.4Ncm. Except in Group 1, the values were higher in the exposed groups, although, statistically there was no difference (p>0.05). The one-piece ZrO2-abutment group (Group 1 and Group 4) exhibited lower values, while the two-piece ZrO2-abutment groups (Group 3 and Group 5) showed similar values and fracture modes like the titanium abutment group. The titanium abutment group showed the highest values of bending moments among all groups. The implant-abutment connection area appeared to influence the bending moment value and the fracture mode of the tested abutment groups, and it was found to be the weakest part of an internal connection one-piece zirconia abutment. The titanium base in the two-piece zirconia abutment worked as a substitute for the weakest part of the abutment. Therefore, the titanium base can reinforce the fracture strength of a zirconia abutment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hirata, Kiyotaka; Takahashi, Toshihito; Tomita, Akiko; Gonda, Tomoya; Maeda, Yoshinobu
This study evaluated the impact of angled abutments on strain in implants supporting a distal extension removable partial denture. An in vitro model of an implant supporting a distal extension removable partial denture was developed. The implant was positioned with a 17- or 30-degree mesial inclination, with either a healing abutment or a corrective multiunit abutment. Levels of strain under load were compared, and the results were compared using t test (P = .05). Correcting angulation with a multiunit angled abutment significantly decreased strain (P < .05) when compared with a healing abutment. An angled abutment decreased the strain on an inclined implant significantly more than a healing abutment when loaded under a distal extension removable partial denture.
Hasturk, Hatice; Nguyen, Daniel Huy; Sherzai, Homa; Song, Xiaoping; Soukos, Nikos; Bidlack, Felicitas B; Van Dyke, Thomas E
2013-08-01
The purpose of this study was to compare the impact of the removal of biofilm with hand scalers of different material composition on the surface of implant abutments by assessing the surface topography and residual plaque after scaling using scanning electron microscopy (SEM). Titanium implant analogs from 3 manufacturers (Straumann USA LLC, Andover, Maine, Nobel BioCare USA LLC, Yorba Linda, Cali, Astra Tech Implant Systems, Dentsply, Mölndal, Sweden) were mounted in stone in plastic vials individually with authentic prosthetic abutments. Plaque samples were collected from a healthy volunteer, inoculated into growth medium and incubated with the abutments anaerobically for 1 week. A blinded, calibrated hygienist performed scaling to remove the biofilm using 6 implant scalers (in triplicate), 1 scaler for 1 abutment. The abutments were mounted on an imaging stand and processed for SEM. Images were captured in 3 randomly designated areas of interest on each abutment. Analysis of the implant polished abutment surface and plaque area measurements were performed using ImageJ image analysis software. Surface alterations were characterized by the number, length, depth and the width of the scratches observed. Glass filled resin scalers resulted in significantly more and longer scratches on all 3 abutment types compared to other scalers, while unfilled resin scalers resulted in the least surface change (p < 0.05). Filled resin-graphite reinforced scalers, carbon fiber reinforced resin scalers and titanium scalers resulted in more superficial scratches compared to glass filled resin, as well as more scratches than unfilled resin. No statistically significant differences were found between scalers and abutments with regard to plaque removal. The impact of scalers on implant abutment surfaces varies between abutment types presumably due to different surface characteristics with no apparent advantage of one abutment type over the other with regard to resistance to surface damage. Unfilled resin was found consistently to be the least damaging to abutment surfaces, although all scalers of all compositions caused detectable surface changes to polished surfaces of implant abutments.
Cooper, Lyndon F; Stanford, Clark; Feine, Jocelyne; McGuire, Michael
2016-07-01
Single-tooth implant restorations are commonly used to replace anterior maxillary teeth. The esthetic, functional, and biologic outcomes are, in part, a function of the abutment and crown. The purpose of this clinical study was to describe the implant, abutment, and crown survival and complication rates for CAD/CAM zirconia abutment and lithium disilicate crown restorations for single-tooth implants. As part of a broader prospective investigation that enrolled and treated 141 participants comparing tissue responses at the conical interface (CI; AstraTech OsseoSpeed), flat-to-flat interface (FI; NobelSpeedy), and platform-switch interface (PS; NanoTite Certain Prevail) of single-tooth implants, computer-aided design and computer-aided manufacturing (CAD/CAM) zirconia abutments (ATLANTIS Abutment) and cemented lithium disilicate (e.max) crowns were used in the restoration of all implants. After 2.4 years in function (3 years after implant placement), the implant, abutment, and crown of 110 participants were evaluated. Technical and biologic complications were recorded. Demographic results were tabulated as percentages with mean values and standard deviations. Abutment survival was calculated with the Kaplan-Meier method. After 2.4 years, no abutments or crowns had been lost. Abutment complications (screw loosening, screw fracture, fracture) were absent for all 3 implant groups. Crown complications were limited to 2 crowns debonding and 1 with excess cement (2.5%). Five biological complications (4.0%) were recorded. The overall complication rate was 6.5%. CAD/CAM zirconia abutments restored with cemented lithium disilicate crowns demonstrated high survival on 3 different implant-abutment interface designs. No abutment or abutment screw fracture occurred. The technical complications observed after 2.4 years were minor and reversible. The use of CAD/CAM zirconia abutments with cemented lithium disilicate crowns is associated with high technical and biologic success at 2.4 years. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Sahu, Nabaprakash; Lakshmi, Namratha; Azhagarasan, N.S.; Agnihotri, Yoshaskam; Rajan, Manoj; Hariharan, Ramasubramanian
2014-01-01
Background: In cement-retained implant-supported restoration it is important to gain adequate retention of definitive restoration as well as retrievability of prosthesis. The surface of the abutment, alloy of the restoration and the type of cement used influences the retention of the restoration. There is a need to analyze the influence of surface modifications of abutments on the retentive capabilities of provisional implant cements. Purpose of study: To compare the effect of implant abutment surface modifications on retention of implant-supported restoration cemented with polymer based cement. Materials and method: Thirty solid titanium implant abutments (ADIN), 8mm height, were divided into 3 groups. Ten abutments with retentive grooves (Group I) as supplied by the manufacturer, Ten abutments milled to 20 taper circumferentially (Group II), and Ten abutments milled and air-abraded with 110 μm aluminum oxide (Group III) were used in this study. Ni-Cr coping were casted for each abutment and polymer based cement was used to secure them to the respective abutments. Using a universal testing machine at a crosshead speed of 0.5 cm/minute, tensile bond strength was recorded (N). Results: Mean tensile bond strength of Group I, II and III were found to be 408.3, 159.9 and 743.8 Newton respectively. The values were statistically different from each other (p<0.001). Conclusion: Abutments with milled and sandblasted surface provide the highest retention followed by abutments with retentive grooves and then by abutments with milled surface when cast copings were cemented to implant abutments with polymer based cement. Clinical implications: Retention of restoration depends on the surface of the abutment as well as the luting agents used. Incorporation of retentive grooves or particle abrasion can enhance retention especially in situation of short clinical crown. PMID:24596785
Yang, Jianjun; Wang, Ke; Liu, Guangyuan; Wang, Dashan
2013-11-01
Zirconia powder in nanometers can be fabricated into inter-joined abutment of dental implant system with the injection shaping technique. This study was to detect the resistance of inter-joined zirconia abutment with different angle loading for clinical applications. The inter-joined abutments were shaped with the technique of injection of zirconia powder in nanometers. Sixty Osstem GSII 5 × 10 mm implants were used with 30 zirconia abutments and 30 Osstem GSII titanium abutments for fixation using 40 N torque force. The loading applications included 90°, 30°, and 0° formed by the long axis of abutments and pressure head of universal test machine. The fracture resistances of zirconia and titanium abutments were documented and analyzed. The inter-joined zirconia abutments were assembled to the Osstem GSII implants successfully. In the 90° loading mode, the fracture resistance of zirconia abutment group and titanium abutment group were 301.5 ± 15.4 N and 736.4 ± 120.1 N, respectively. And those in the 30° groups were 434.7 ± 36.1 N and 1073.1 ± 74 N, correspondingly. Significant difference in the two groups was found using t-test and Wilcoxon test. No damage on the abutments of the two groups but S-shaped bending on the implants was found when the 0° loading was 1300-2000 N. Through the assembly of Zirconia abutments and implants, all the components presented sufficient resistance acquired for the clinical application under loadings with different angle. © 2012 John Wiley & Sons A/S.
Hollow Abutment Screw Design for Easy Retrieval in Case of Screw Fracture in Dental Implant System
Kim, Bongju; Shin, Yoo Jin
2017-01-01
The prosthetic component of dental implant is attached on the abutment which is connected to the fixture with an abutment screw. The abutment screw fracture is not frequent; however, the retrieval of the fractured screw is not easy, and it poses complications. A retrieval kit was developed which utilizes screw removal drills to make a hole on the fractured screw that provides an engaging drill to unscrew it. To minimize this process, the abutment screw is modified with a prefabricated access hole for easy retrieval. This study aimed to introduce this modified design of the abutment screw, the concept of easy retrieval, and to compare the mechanical strengths of the conventional and hollow abutment screws by finite element analysis (FEA) and mechanical test. In the FEA results, both types of abutment screws showed similar stress distribution in the single artificial tooth system. A maximum load difference of about 2% occurred in the vertical load by a mechanical test. This study showed that the hollow abutment screw may be an alternative to the conventional abutment screws because this is designed for easy retrieval and that both abutment screws showed no significant difference in the mechanical tests and in the FEA. PMID:29065610
Basílio, Mariana de Almeida; Delben, Juliana Aparecida; Cesar, Paulo Francisco; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir
2016-07-01
Yttria-stabilized tetragonal zirconia (Y-TZP) was introduced as ceramic implant abutments due to its excellent mechanical properties. However, the damage patterns for Y-TZP abutments are limited in the literature. Fractographic analyses can provide insights as to the failure origin and related mechanisms. The purpose of this study was to analyze fractured Y-TZP abutments to establish fractographic patterns and then possible reasons for failure. Thirty two prefabricated Y-TZP abutments on external hex implants were retrieved from a single-load-to failure test according to the ISO 14801. Fractographic analyses were conducted under polarized-light estereo and scanning electro microscopy. The predominant fracture pattern was abutment fracture at the connecting region. Classic fractographic features such as arrest lines, hackle, and twist hackle established that failure started where Y-TZP abutments were in contact with the retention screw edges. The abutment screw design and the loading point were the reasons for localized stress concentration and fracture patterns. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sinking and fit of abutment of locking taper implant system
Moon, Seung-Jin; Kim, Hee-Jung; Son, Mee-Kyoung
2009-01-01
STATEMENT OF PROBLEM Unlike screw-retention type, fixture-abutment retention in Locking taper connection depends on frictional force so it has possibility of abutment to sink. PURPOSE In this study, Bicon® Implant System, one of the conical internal connection implant system, was used with applying loading force to the abutments connected to the fixture. Then the amount of sinking was measured. MATERIAL AND METHODS 10 Bicon® implant fixtures were used. First, the abutment was connected to the fixture with finger force. Then it was tapped with a mallet for 3 times and loads of 20 kg corresponding to masticatory force using loading application instrument were applied successively. The abutment state, slightly connected to the fixture without pressure was considered as a reference length, and every new abutment length was measured after each load's step was added. The amount of abutment sinking (mm) was gained by subtracting the length of abutment-fixture under each loading condition from reference length. RESULTS It was evident, that the amount of abutment sinking in Bicon® Implant System increased as loads were added. When loads of 20 kg were applied more than 5 - 7 times, sinking stopped at 0.45 ± 0.09 mm. CONCLUSION Even though locking taper connection type implant shows good adaption to occlusal force, it has potential for abutment sinking as loads are given. When locking taper connection type implant is used, satisfactory loads are recommended for precise abutment location. PMID:21165262
ElHoussiney, Amr G; Zhang, He; Song, Jinlin; Ji, Ping; Wang, Lu; Yang, Sheng
2018-01-01
Purpose To compare the failure events and incidence of complications of different abutment materials in anterior and posterior regions. Failure was defined as complete loss of the abutment requiring replacement by a new abutment. Materials and methods Electronic searches using PubMed/Medline and Google Scholar complemented with manual searches were performed with specific search terms. Searches were restricted to publications in English between January 2006 and March 2016. Results A total of 863 and 1,264 implants were inserted in the anterior and posterior regions, respectively, in a total of 1,529 patients. No titanium abutments failed in anterior or posterior regions. On the other hand, 1.6% of zirconia abutments failed in the anterior region and 1.5% failed in the posterior region. Technical complications occurred mostly in the posterior region and mostly involved zirconia abutment. Meta-analysis was possible only for zirconia-abutment failure, due to considerable heterogeneity of studies and outcome variables. No significant difference in failure rate was found between anterior and posterior zirconia abutments (risk ratio 1.53, 95% CI 0.49–4.77; P=0.47). Conclusion This systematic review and meta-analysis showed similar outcomes of different abutment materials when used in anterior and posterior regions in terms of failure events and biological and aesthetic complications. The only significant finding was the increased incidence of technical complications in the posterior region, mostly involving zirconia abutments. Abutment-screw loosening was the most common technical complication. PMID:29520162
Physicochemical and microscopic characterization of implant-abutment joints.
Lopes, Patricia A; Carreiro, Adriana F P; Nascimento, Rubens M; Vahey, Brendan R; Henriques, Bruno; Souza, Júlio C M
2018-01-01
The purpose of this study was to investigate Morse taper implant-abutment joints by chemical, mechanical, and microscopic analysis. Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant-abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant-abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant-abutment joints. Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant-abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant-abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication.
Effect of Cyclic Loading on Micromotion at the Implant-Abutment Interface.
Karl, Matthias; Taylor, Thomas D
2016-01-01
Cyclic loading may cause settling of abutments mounted on dental implants, potentially affecting screw joint stability and implant-abutment micromotion. It was the goal of this in vitro study to compare micromotion of implant-abutment assemblies before and after masticatory simulation. Six groups of abutments (n = 5) for a specific tissue-level implant system with an internal octagon were subject to micromotion measurements. The implant-abutment assemblies were loaded in a universal testing machine, and an apparatus and extensometers were used to record displacement. This was done twice, in the condition in which they were received from the abutment manufacturer and after simulated loading (100,000 cycles; 100 N). Statistical analysis was based on analysis of variance, two-sample t tests (Welch tests), and Pearson product moment correlation (α = .05). The mean values for micromotion ranged from 33.15 to 63.41 μm and from 30.03 to 42.40 μm before and after load cycling. The general trend toward reduced micromotion following load cycling was statistically significant only for CAD/CAM zirconia abutments (P = .036) and for one type of clone abutment (P = .012), with no significant correlation between values measured before and after cyclic loading (Pearson product moment correlation; P = .104). While significant differences in micromotion were found prior to load cycling, no significant difference among any of the abutment types tested could be observed afterward (P > .05 in all cases). A quantifiable settling effect at the implant-abutment interface seems to result from cyclic loading, leading to a decrease in micromotion. This effect seems to be more pronounced in low-quality abutments. For the implant system tested in this study, retightening of abutment screws is recommended after an initial period of clinical use.
Rodriguez, Lucas C.; Saba, Juliana N.; Meyer, Clark A.; Chung, Kwok‐Hung; Wadhwani, Chandur
2016-01-01
Abstract Recent literature indicates that the long‐term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment – cementation, has been criticized because of recent links between residual cement and peri‐implant disease. Residual cement extrusion from crown‐abutment margins post‐crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D‐printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck‐margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post‐cement‐retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall. PMID:29744160
Trobos, Margarita; Johansson, Martin Lars; Jonhede, Sofia; Peters, Hanna; Hoffman, Maria; Omar, Omar; Thomsen, Peter; Hultcrantz, Malou
2018-06-01
In this prospective clinical pilot study, abutments with different topologies (machined versus polished) were compared with respect to the clinical outcome and the microbiological profile. Furthermore, three different sampling methods (retrieval of abutment, collection of peri-abutment exudate using paper-points, and a small peri-abutment soft-tissue biopsy) were evaluated for the identification and quantification of colonising bacteria. Twelve patients, seven with machined abutment and five with polished abutment, were included in the analysis. Three different sampling procedures were employed for the identification and quantification of colonising bacteria from baseline up to 12 months, using quantitative culturing. Clinical outcome measures (Holgers score, hygiene, pain, numbness and implant stability) were investigated. The clinical parameters, and total viable bacteria per abutment or in tissue biopsies did not differ significantly between the polished and machined abutments. The total CFU/mm 2 abutment and CFU/peri-abutment fluid space of anaerobes, aerobes and staphylococci were significantly higher for the polished abutment. Anaerobic bacteria were detected in the tissue biopsies before BAHS implantation. Anaerobes and Staphylococcus spp. were detected in all three compartments after BAHS installation. For most patients (10/12), the same staphylococcal species were found in at least two of the three compartments at the same time-point. The common skin coloniser Staphylococcus epidermidis was identified in all patients but one (11/12), whereas the pathogen Staphylococcus aureus was isolated in five of the patients. Several associations between clinical and microbiological parameters were found. There was no difference in the clinical outcome with the use of polished versus machined abutment at 3 and 12 months after implantation. The present pilot trial largely confirmed a suitable study design, sampling and analytical methodology to determine the effects of modified BAHS abutment properties. 2. Controlled prospective comparative study.
Does Abutment Collar Length Affect Abutment Screw Loosening After Cyclic Loading?
Siadat, Hakimeh; Pirmoazen, Salma; Beyabanaki, Elaheh; Alikhasi, Marzieh
2015-07-01
A significant vertical space that is corrected with vertical ridge augmentation may necessitate selection of longer abutments, which would lead to an increased vertical cantilever. This study investigated the influence of different abutment collar heights on single-unit dental implant screw-loosening after cyclic loading. Fifteen implant-abutment assemblies each consisted of an internal hexagonal implant were randomly assigned to 3 groups: Group1, consisting of 5 abutments with 1.5 mm gingival height (GH); Group2, 5 abutments with 3.5 mm GH; and Group3, 5 abutments with 5.5 mm GH. Each specimen was mounted in transparent auto-polymerizing acrylic resin block, and the abutment screw was tightened to 35 Ncm with an electric torque wrench. After 5 minutes, initial torque loss (ITL) was recorded for all specimens. Metal crowns were fabricated with 45° occlusal surface and were placed on the abutments. A cyclic load of 75 N and frequency of 1 Hz were applied perpendicular to the long axis of each specimen. After 500 000 cycles, secondary torque loss (STL) was recorded. One-way ANOVA analysis was used to evaluate the effects of abutment collar height before and after cyclic loading. One-way ANOVA showed that ITL among the groups was not significantly different (P = .52), while STL was significantly different among the groups (P = .008). Post-hoc Tukey HSD tests showed that STL values were significantly different between the abutments with 1.5 mm GH (Group1) and with 5.5 mm GH (Group3) (P = .007). A paired comparison t-test showed that cyclic loading significantly influenced the STL in comparison with the ITL in each group. Within the limitations of this study, it can be concluded that increase in height of the abutment collar could adversely affect the torque loss of the abutment screw.
Rodriguez, Lucas C; Saba, Juliana N; Meyer, Clark A; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C
2016-11-01
Recent literature indicates that the long-term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment - cementation, has been criticized because of recent links between residual cement and peri-implant disease. Residual cement extrusion from crown-abutment margins post-crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D-printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck-margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post-cement-retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall.
Two Different Percutaneous Bone-Anchored Hearing Aid Abutment Systems: Comparative Clinical Study.
Polat, Beldan; İşeri, Mete; Orhan, Kadir Serkan; Yılmazer, Ayça Başkadem; Enver, Necati; Ceylan, Didem; Kara, Ahmet; Güldiken, Yahya; Çomoğlu, Şenol
2016-04-01
To compare two different percutaneous bone-anchored hearing aid (BAHA) abutment systems regarding operation time, scar healing, quality of life, implant stability, audiologic results, and complications. The study involves a prospective multi-center clinical evaluation. Thirty-two consecutive patients who had undergone BAHA surgery from January 2011 to January 2013 in two tertiary centers were included in the study. The Glasgow Inventory Benefit Score was used to assess the patients at least 6 months after surgery. The operation time and complications were recorded. Implant stability quotient (ISQ) values were recorded using resonance frequency analysis. Holger's classification was used to evaluate skin reactions. The mean length of the operation was 39.2±4 min for standard abutment and 18.3±5.7 min for hydroxyapatite-coated abutment. ISQ scores were significantly better for standard abutment in all tests. The mean total Glasgow Inventory Benefit Score was 39.3±19 for the standard abutment and 46.3±24.5 for the hydroxyapatite-coated abutment groups, but there was no statistical significance between the two groups. There was no difference in audiological improvement between the two groups after surgery. Hydroxyapatite-coated abutment provided a shorter operation time that was significantly different from standard abutment. There were no significant differences between standard abutment and hydroxyapatite-coated abutment regarding audiologic improvement, quality of life, loading time, and complications.
6. VIEW OF SOUTH ABUTMENT. MASONRY ON BOTH ABUTMENTS IS ...
6. VIEW OF SOUTH ABUTMENT. MASONRY ON BOTH ABUTMENTS IS LAID UP IN SEMI-COURSED RUBBLE PATTERN. VIEW LOOKING SOUTHEAST. - Montgomery County Bridge No. 221, Metz Road spanning Towamencin Creek, Skippack, Montgomery County, PA
Upper bound of abutment scour in laboratory and field data
Benedict, Stephen
2016-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used those data to develop envelope curves that define the upper bound of abutment scour. To expand on this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment scour data from other sources and evaluate upper bound patterns with this larger data set. To facilitate this analysis, 446 laboratory and 331 field measurements of abutment scour were compiled into a digital database. This extensive database was used to evaluate the South Carolina abutment scour envelope curves and to develop additional envelope curves that reflected the upper bound of abutment scour depth for the laboratory and field data. The envelope curves provide simple but useful supplementary tools for assessing the potential maximum abutment scour depth in the field setting.
Moreira, Wagner; Hermann, Caio; Pereira, Jucélio Tomás; Balbinoti, Jean Anacleto; Tiossi, Rodrigo
2013-10-01
The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.
Physicochemical and microscopic characterization of implant–abutment joints
Lopes, Patricia A.; Carreiro, Adriana F. P.; Nascimento, Rubens M.; Vahey, Brendan R.; Henriques, Bruno; Souza, Júlio C. M.
2018-01-01
Objective: The purpose of this study was to investigate Morse taper implant–abutment joints by chemical, mechanical, and microscopic analysis. Materials and Methods: Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant–abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant–abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant–abutment joints. Statistics: Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Results: Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant–abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Conclusions: Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant–abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication. PMID:29657532
Behavior and analysis of an integral abutment bridge.
DOT National Transportation Integrated Search
2013-08-01
As a result of abutment spalling on the integral abutment bridge over 400 South Street in Salt Lake City, Utah, the Utah Department of Transportation (UDOT) instigated research measures to better understand the behavior of integral abutment bridges. ...
Lops, Diego; Bressan, Eriberto; Parpaiola, Andrea; Sbricoli, Luca; Cecchinato, Denis; Romeo, Eugenio
2015-12-01
Aim of this study was to verify if the type of implant abutment manufacturing, stock or cad-cam, could influence the maintenance of stable gingival margins around single restorations in anterior areas. After 16 weeks of healing, implants (Osseospeed, Astra Tech Dental Implant) were positioned. Depending on the different fixture inclination and the thickness of buccal peri-implant soft tissue, abutment selection resulted in four groups: Group 1 (patients with zirconia ZirDesign(®) stock abutments), Group 2 (titanium stock TiDesign(®) abutments), Group 3 (zirconia cad-cam abutments), and Group 4 (titanium cad-cam abutments). The following parameters were assessed: buccal gingival margin modification (BGM). The modification of the implant gingival margin was followed at 1 and 2 years of follow-up. A computerized analysis was performed for measurements. Differences between soft tissue margin at baseline and after 2 years measured the gingival margin recession. A general linear model was used to evaluate each group in relation to gingival recession after two years. Tukey's post hoc test was used to compare the mean REC indexes of each group of abutments. Seventy-two healthy patients (39 males and 33 females; mean age of 46 years) scheduled for single gap rehabilitation in anterior areas were enrolled. A 100% of implant survival rate was observed after 24 months of function. One failure occurred due to fracture of a Zirconia cad-cam abutment. Moreover, two abutment screw unscrewing were observed. Both for zirconia and titanium stock abutments (Group 1 and 2), the mean recession of implant buccal soft tissue was of 0.3 mm (SD of 0.3 and 0.4 mm, respectively). Soft tissue mean recession of zirconia and titanium cad-cam abutments (Group 3 and 4) was of 0.1 and -0.3 mm, respectively (SD of 0.3 and 0.4 mm, respectively). REC values of cad-cam titanium abutments (Group 4) were significantly lower than that of Group 1 (-0.57 mm), Group 2 (-0.61 mm), and Group 3 (-0.40 mm), respectively (Table 4). In the anterior area, the use of cad-cam abutments is related to a better soft tissue stability. Such a relationship is significant if cad-cam titanium abutments are compared to both titanium and zirconia stock abutments. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Influence of reverse torque values in abutments with or without internal hexagon indexes.
Cerutti-Kopplin, Daiane; Rodrigues Neto, Dimas João; Lins do Valle, Accácio; Pereira, Jefferson Ricardo
2014-10-01
The mechanical stability of the implant-abutment connection is of fundamental importance for successful implant-supported restorations. Therefore, understanding removal torque values is essential. The purpose of this study was to evaluate the reverse torque values of indexed and nonindexed abutments of the Morse Taper system. Twelve Morse taper implants with their respective abutments were divided into 2 groups (n=6): group NI, nonindexed abutments; and group IN, indexed abutments. Each abutment received a sequence of 2 consecutive torques for insertion (15 Ncm) at an interval of 10 minutes, and 1 reverse torque, all measured with a digital torque wrench. The Student t test with a 5% significance level was used to evaluate the data. Statistical analysis showed no significant difference in reverse torque values between nonindexed and indexed abutments (P=.57). When comparing insertion torque and reverse torque values between the groups, group NI presented a mean torque loosening percentage of 8% (P=.013), whereas group IN presented a loosening of 15.33% (P<.001). The use of indexed abutments for the Morse taper system presented similar biomechanical stability when compared with nonindexed abutments, both with a significant reduction in reverse torque values. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fracture resistance of different implant abutments supporting all-ceramic single crowns after aging.
Stimmelmayr, Michael; Heiß, Philipp; Erdelt, Kurt; Schweiger, Josef; Beuer, Florian
To test the mechanical properties of three different restorative materials for implant abutments supporting all-ceramic single crowns. Thirty implants with butt-joint connections were distributed into three test groups: Group A with 10 one-piece zirconia abutments, Group U with 10 titanium abutments, and Group T with 10 titanium-zirconia hybrid abutments. Monolithic zirconia single crowns were cemented and artificially aged. The crowns were loaded at a 30-degree angle in a universal testing machine until fracture or bending. Additionally, after removal of the restorations, the implant-abutment interface of the fixtures was inspected using a scanning electron microscope (SEM). In Group A, the abutments failed on average at 336.78 N, in Group U at 1000.12 N, and in Group T at 1296.55 N. The mean values between Groups T and U (P = 0.009), and between Group A and Groups T and U (P < 0.001) were significantly different. The abutments in Group A failed early due to fractures of the internal parts and parts close to the implant neck. In Groups T and U, failures occurred due to bending of the implant neck. This experimental study proves that hybrid and titanium abutments have similar mechanical properties. One-piece abutments made of zirconia showed significantly lower fracture resistance.
Pietruski, Jan K; Skurska, Anna; Bernaczyk, Anna; Milewski, Robert; Pietruska, Maria Julia; Gehrke, Peter; Pietruska, Małgorzata D
2018-05-02
While working on CAD/CAM-customized abutments, the use of standard impression copings with a circular diameter produces inconsistency within the emergence profile. It may begin with a collapse of the supra-implant mucosa during impression taking, then lead to a computer-generated mismatch of the position and outline of the abutment shoulder, and consequently result in a compromised outcome of anticipated treatment. The aim of the study was to compare the virtual and clinical positions of the abutment shoulder in relation to the mucosal margin after the abutment delivery. Conventional open-tray impression takings followed uncovering surgery. Master casts were scanned with a desktop scanner. Clinical examinations took place after abutment's insertion and temporization (T1) and prior to cementation of the definitive crown (T2). The distances between the abutment shoulder and marginal soft tissue were measured intraorally in four aspects and juxtaposed with those on the virtual model. The study evaluated 257 dental implants and CAD/CAM-customized abutments. As T1 and T2 showed, there was a positive correlation between the virtually designed abutment shoulder position and matching clinical location relative to the mucosal margin. In 42.1% of cases, the distance between the mucosal margin and the abutment shoulder did not change. It increased in 36.3% of cases while a decrease occurred in 21.6% of them. Computer-set position of the abutment shoulder in relation to the mucosal margin can be predictably implemented in clinical practice.
Detail, north abutment, from southeast, showing original squared cut stone ...
Detail, north abutment, from southeast, showing original squared cut stone masonry abutment and portion of non-original concrete apron at west base of abutment - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA
Comparison of observed and predicted abutment scour at selected bridges in Maine.
DOT National Transportation Integrated Search
2008-01-01
Maximum abutment-scour depths predicted with five different methods were compared to : maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a : median bridge age of 66 years. Prediction methods included the Froehli...
Yilmaz, Burak; Hashemzadeh, Shervin; Seidt, Jeremy D; Clelland, Nancy L
2018-04-01
To compare the displacements of CAD-CAM zirconia and titanium abutments into different internal connection systems after torquing. OsseoSpeed EV and OsseoSpeed TX implants (n=10) were placed in resin blocks. Zirconia and titanium abutments (n=5) were first hand tightened and then tightened to the recommended torque (20Ncm for TX and 25Ncm for EV). Displacements of abutments between screw tightening by hand and torque driver was measured using three-dimensional digital image correlation (3D DIC) technique. Displacements were measured in U (front/back), V (into/outward), W (right/left) directions and 3-dimensionally (3D). ANOVA with restricted maximum likelihood estimation method was used to analyze the data. Bonferroni-corrected t tests was used to determine the statistical differences (α=0.05). 3D displacement of zirconia and titanium abutments was significantly greater in OsseoSpeed EV implant (P<0.001). Displacement of zirconia and titanium abutments was not significantly different within implant systems, 3D (P≥0.386) and in each direction (P≥0.382). In U and V directions, zirconia and titanium abutments displaced significantly more towards negative in OsseoSpeed EV implant (P<0.019). Within the OsseoSpeed TX system, abutments displaced significantly more in V direction compared to the U and W (P≤0.005), and within the Osseospeed EV system, abutment displacements were significantly different amongst directions and displacements in V were the greatest (P<0.001). Abutments displaced more in the implant that required higher torque values to tighten the abutment. The amount of displacement in both systems was clinically small. Abutment material did not affect the magnitude of displacement. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Duarte, Antônio R C; Neto, João P Silva; Souza, Júlio C M; Bonachela, Wellington C
2013-06-01
Implant-abutment connections still present failures in the oral cavity due to the loosening of mechanical integrity by detorque and corrosion of the abutment screws. The objective of this study was to evaluate the detorque of dental abutment screws before and after immersion in fluoridated solutions. Five commercial implant-abutment assemblies were assessed in this investigation: (C) Conexão®, (E) Emfils®, (I) INP®, (S) SIN®, and (T) Titanium Fix®. The implants were embedded in an acrylic resin and then placed in a holding device. The abutments were first connected to the implants and torqued to 20 Ncm using a handheld torque meter. The detorque values of the abutments were evaluated after 10 minutes. After applying a second torque of 20 Ncm, implant-abutment assemblies were withdrawn every 3 hours for 12 hours in a fluoridated solution over a period of 90 days. After that period, detorque of the abutments was examined. Scanning electronic microscopy (SEM) associated to energy dispersive spectroscopy (EDS) was applied to inspect the surfaces of abutments. Detorque values of systems C, E, and I immersed in the fluoridated solution were significantly higher than those of the initial detorque. ANOVA demonstrated no significant differences in detorque values between designs S and T. Signs of localized corrosion could not be detected by SEM although chemical analysis by EDS showed the presence of elements involved in corrosive processes. An increase of detorque values recorded on abutments after immersion in fluoridated artificial saliva solutions was noticed in this study. Regarding chemical analysis, such an increase of detorque can result from a corrosion layer formed between metallic surfaces at static contact in the implant-abutment joint during immersion in the fluoridated solutions. © 2012 by the American College of Prosthodontists.
Mattheos, Nikos; Li, Xiaona; Zampelis, Antonios; Ma, Li; Janda, Martin
2016-11-01
The aim of this pilot study was to investigate the morphological micro-features of three commercially available implant-abutment joints, using compatible and original prosthetic components. Furthermore, possible correlations between the micromorphology and potential functional complications were investigated with the use of finite element analysis. Three abutments (one original and two compatibles) were torqued on original Straumann RN implants, as according to each of the manufacturer's instructions. The implant-abutment units were sliced in the microtome and photographed under different magnifications (10×-500×) through a scanning electron microscope. Finite element analysis models were reconstructed for each of the implant-abutment units using the precise measurements from the SEM. Differences in stress, strain and deformation for the three different abutments were then calculated using ANSYS Workbench v13. Major dimensional differences were identified between all studied contact areas of the three units. The tight contact in the implant shoulder was similar in all three units, but engagement of the internal connection and, in particular, the anti-rotation elements was seriously compromised in the compatible abutments. One compatible abutment demonstrated compromised engagement of the abutment screw as well. Equivalent stress and strain in the FEA were much higher for the compatible abutments. An evaluation of the sequence of preload application revealed differences in the pattern of deformation between the original and compatible abutments, which can have serious clinical implications. Compatible abutments can present critical morphological differences from the original ones. The differences in the cross-sectional geometry result in large differences in the overall contact areas, both in terms of quality and quantity which could have serious implications for the long-term stability of the prosthesis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ramakrishaniah, Ravikumar; Al Kheraif, Abdulaziz A; Elsharawy, Mohamed A; Alsaleh, Ayman K; Ismail Mohamed, Karem M; Rehman, Ihtesham Ur
2015-05-01
The purpose of this study was to investigate and compare the load distribution and displacement of cantilever prostheses with and without glass abutment by three dimensional finite element analysis. Micro-computed tomography was used to study the relationship between the glass abutment and the ridge. The external surface of the maxilla was scanned, and a simplified finite element model was constructed. The ZX-27 glass abutment and the maxillary first and second premolars were created and modified. The solid model of the three-unit cantilever fixed partial denture was scanned, and the fitting surface was modified with reference to the created abutments using the 3D CAD system. The finite element analysis was completed in ANSYS. The fit and total gap volume between the glass abutment and dental model were determined by Skyscan 1173 high-energy spiral micro-CT scan. The results of the finite element analysis in this study showed that the cantilever prosthesis supported by the glass abutment demonstrated significantly less stress on the terminal abutment and overall deformation of the prosthesis under vertical and oblique load. Micro-computed tomography determined a gap volume of 6.74162 mm(3). By contacting the mucosa, glass abutments transfer some amount of masticatory load to the residual alveolar ridge, thereby preventing damage to the periodontal microstructures of the terminal abutment. The passive contact of the glass abutment with the mucosa not only preserves the health of the mucosa covering the ridge but also permits easy cleaning. It is possible to increase the success rate of cantilever FPDs by supporting the cantilevered pontic with glass abutments. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Impact of abutment rotation and angulation on marginal fit: theoretical considerations.
Semper, Wiebke; Kraft, Silvan; Mehrhof, Jurgen; Nelson, Katja
2010-01-01
Rotational freedom of various implant positional index designs has been previously calculated. To investigate its clinical relevance, a three-dimensional simulation was performed to demonstrate the influence of rotational displacements of the abutment on the marginal fit of prosthetic superstructures. Idealized abutments with different angulations (0, 5, 10, 15, and 20 degrees) were virtually constructed (SolidWorks Office Premium 2007). Then, rotational displacement was simulated with various degrees of rotational freedom (0.7, 0.95, 1.5, 1.65, and 1.85 degrees). The resulting horizontal displacement of the abutment from the original position was quantified in microns, followed by a simulated pressure-less positioning of superstructures with defined internal gaps (5 µm, 60 µm, and 100 µm). The resulting marginal gap between the abutment and the superstructure was measured vertically with the SolidWorks measurement tool. Rotation resulted in a displacement of the abutment of up to 157 µm at maximum rotation and angulation. Interference of a superstructure with a defined internal gap of 5 µm placed on the abutment resulted in marginal gaps up to 2.33 mm at maximum rotation and angulation; with a 60-µm internal gap, the marginal gaps reached a maximum of 802 µm. Simulation using a superstructure with an internal gap of 100 µm revealed a marginal gap of 162 µm at abutment angulation of 20 degrees and rotation of 1.85 degrees. The marginal gaps increased with the degree of abutment angulation and the extent of rotational freedom. Rotational displacement of the abutment influenced prosthesis misfit. The marginal gaps between the abutment and the superstructure increased with the rotational freedom of the index and the angulation of the abutment.
Impact of abutment material on peri-implant soft tissue color. An in vitro study.
Sala, Leticia; Bascones-Martínez, Antonio; Carrillo-de-Albornoz, Ana
2017-09-01
The objectives of the present study is to determine the differences in peri-implant soft tissue color with the utilization of titanium, titanium gold-plated, white zirconia, Vita Classical (VC) A4-shaded zirconia, and fluorescent white zirconia abutments and to establish the influence of gingival thickness on the resulting color. Four implants were contralaterally inserted in 19 fresh pig mandibles, and the color of the peri-implant mucosa with the different abutments was spectrophotometrically measured at 1-, 2-, and 3-mm height from the margin. At 1-mm height, titanium significantly differed from all zirconia abutments in lightness (L*), chroma along red axis (a*), and chroma along yellow-blue axis (b*) parameters. At 2 mm, all zirconia abutments differed from titanium in b* but only fluorescent zirconia in a*. At 3 mm, titanium differed from VC A4-shaded and fluorescent zirconia abutments in b*. At soft tissue thicknesses <1 and 1-2 mm, titanium differed from fluorescent zirconia in a* and b* and from VC A4-shaded zirconia in b*; at thickness >2 mm, no differences were found among abutments. All abutments differed from natural teeth in a* and b* at all heights and thicknesses except for fluorescent zirconia at thickness >2 mm. The Euclidean distance (ΔΕ) differed between titanium abutments and gold, VC A4, and fluorescent zirconia at <1- and 1-2-mm thicknesses. The natural gingival color was not reproduced with any abutment at gingival thicknesses <2 mm. The worst color match was with titanium abutments and the best with fluorescent zirconia, followed by VC A4-shaded zirconia. At gingival thicknesses >2 mm, no differences were detected among abutments. This study demonstrates that the type of abutment and the gingival thickness affect the resulting peri-implant gingival color.
Comparison of fracture strength and failure mode of different ceramic implant abutments.
Elsayed, Adham; Wille, Sebastian; Al-Akhali, Majed; Kern, Matthias
2017-04-01
The whitish color of zirconia (ZrO 2 ) abutments offers favorable esthetics compared with the grayish color of titanium (Ti) abutments. Nonetheless, ZrO 2 has greater opacity, making it difficult to achieve natural tooth color. Therefore, lithium disilicate (LaT) abutments have been suggested to replace metal abutments. The purpose of this in vitro study was to evaluate the fracture strength and failure mode of single-tooth implant restorations using ZrO 2 and LaT abutments, and to compare them with titanium (Ti) abutments. Five different types of abutments, Ti; ZrO 2 with no metal base; ZrO 2 with a metal base (ZrT); LaT; and LaT combination abutment and crown (LcT) were assembled on 40 Ti implants and restored with LaT crowns. Specimens were subjected to quasistatic loading using a universal testing machine, until the implant-abutment connection failed. As bending of the metal would be considered a clinical failure, the values of force (N) at which the plastic deformation of the metal occurred were calculated, and the rate of deformation was analyzed. Statistical analysis was done using the Mann-Whitney U test (α=.05). Group ZrO 2 revealed the lowest resistance to failure with a mean of 202 ±33 N. Groups ZrT, LaT, and LaC withstood higher forces without fracture or debonding of the ceramic suprastructure, and failure was due to deformation of metal bases, with no statistically significant differences between these groups regarding the bending behavior. Within the limitations of this in vitro study, it was concluded that LaT abutments have the potential to withstand the physiological occlusal forces that occur in the anterior region and that ZrO 2 abutments combined with Ti inserts have much higher fracture strength than pure ZrO 2 abutments. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
21 CFR 872.3630 - Endosseous dental implant abutment.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Endosseous dental implant abutment. 872.3630... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3630 Endosseous dental implant abutment. (a) Identification. An endosseous dental implant abutment is a premanufactured prosthetic component...
6. View of east side abutment and wing wall. The ...
6. View of east side abutment and wing wall. The detail of this abutment and wing wall is the same for the similar abutment treatment at the west side. - Tipp-Elizabeth Road Bridge, Spanning Great Miami River, Tipp City, Miami County, OH
Menon, Neelima Sreekumar; Kumar, G. P. Surendra; Jnanadev, K. R.; Satish Babu, C. L.; Shetty, Shilpa
2016-01-01
Aim: The purpose of this in vitro study was to assess and compare the retention of zirconia copings luted with different luting agents onto zirconia and titanium abutments. Materials and Methods: Titanium and zirconia abutments were torqued at 35 N/cm onto implant analogs. The samples were divided into two groups: Group A consisted of four titanium abutments and 32 zirconia copings and Group B consisted of four zirconia abutments and 32 zirconia copings and four luting agents were used. The cemented copings were subjected to tensile dislodgement forces and subjected to ANOVA test. Results: Zirconia abutments recorded a higher mean force compared to titanium. Among the luting agents, resin cement recorded the highest mean force followed by zinc phosphate, glass ionomer, and noneugenol zinc oxide cement, respectively. Conclusion: Highest mean retention was recorded for zirconia implant abutments compared to titanium abutments when luted with zirconia copings. PMID:27141162
Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.
Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P
2018-01-01
A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic abutment components failed, supporting the research hypothesis with a reliability similar to that of all-metal abutment fixture systems. A lithium disilcate abutment with a Ti alloy sleeve in combination with an all-ceramic crown should be expected to function clinically in a satisfactory manner. © 2016 by the American College of Prosthodontists.
Influence of abutment screw preload on stress distribution in marginal bone.
Khraisat, Ameen
2012-01-01
Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.
The upper bound of abutment scour defined by selected laboratory and field data
Benedict, Stephen; Caldwell, Andral W.
2015-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, conducted a field investigation of abutment scour in South Carolina and used that data to develop envelope curves defining the upper bound of abutment scour. To expand upon this previous work, an additional cooperative investigation was initiated to combine the South Carolina data with abutment-scour data from other sources and evaluate the upper bound of abutment scour with the larger data set. To facilitate this analysis, a literature review was made to identify potential sources of published abutment-scour data, and selected data, consisting of 446 laboratory and 331 field measurements, were compiled for the analysis. These data encompassed a wide range of laboratory and field conditions and represent field data from 6 states within the United States. The data set was used to evaluate the South Carolina abutment-scour envelope curves. Additionally, the data were used to evaluate a dimensionless abutment-scour envelope curve developed by Melville (1992), highlighting the distinct difference in the upper bound for laboratory and field data. The envelope curves evaluated in this investigation provide simple but useful tools for assessing the potential maximum abutment-scour depth in the field setting.
Influence of repeated screw tightening on bacterial leakage along the implant-abutment interface.
do Nascimento, Cássio; Pedrazzi, Vinícius; Miani, Paola Kirsten; Moreira, Larissa Daher; de Albuquerque, Rubens Ferreira
2009-12-01
Bacterial penetration along the implant-abutment interface as a consequence of abutment screw loosening has been reported in a number of recent studies. The aim of this in vitro study was to investigate the influence of repeated tightening of the abutment screw on leakage of Streptococcus mutans along the interface between implants and pre-machined abutments. Twenty pre-machined abutments with a plastic sleeve were used. The abutment screws were tightened to 32 N cm in group 1 (n=10 - control) and to 32 N cm, loosened and re-tightened with the same torque twice in group 2 (n=10). The assemblies were completely immersed in 5 ml of Tryptic Soy Broth medium inoculated with S. mutans and incubated for 14 days. After this period, contamination of the implant internal threaded chamber was evaluated using the DNA Checkerboard method. Microorganisms were found on the internal surfaces of both groups evaluated. However, bacterial counts in group 2 were significantly higher than that in the control group (P<0.05). These results suggest that bacterial leakage between implants and abutments occurs even under unloaded conditions and at a higher intensity when the abutment screw is tightened and loosened repeatedly.
Costa, Luciana; do Nascimento, Cássio; de Souza, Valéria Oliveira Pagnano; Pedrazzi, Vinícius
2017-03-01
The aim of this study was assessing the changes in both clinical and microbiological parameters of healthy individuals after rehabilitation with removable partial denture (RPD). 11 women received unilateral or bilateral free-end saddle RPD in the mandibular arch. Clinical and microbiological parameters of abutment, non-abutment, and antagonist teeth were assessed at baseline (RPD installation) and after 7, 30, 90, and 180days of function. The Checkerboard DNA-DNA hybridization technique was used to identify and quantify up to 43 different microbial species from subgingival biofilm samples. Probing depth, gingival recession, and bleeding on probing were also investigated over time. The total and individual microbial genome counts were shown significantly increased after 180days with no significant differences between abutment, non-abutment, or antagonist teeth. Streptococcus spp., Aggregatibacter actinomycetemcomitans, and other species associated to periodontitis (Peptostreptococcus anaerobius, Prevotella nigrescens, and Tannerella forsythia), as well as opportunistic Candida spp., were recovered in moderate counts. Abutment teeth presented higher values of gingival recession when compared with non-abutment or antagonist teeth, irrespectively time of sampling (p<0.05). No significant differences were found between groups regarding bleeding on probing or probing depth over time. Overall, the microbial counts significantly increased after 6 months of denture loading for both abutment and non-abutment teeth with no significant differences regarding the microbial profile over time. Bleeding on probing and probing depth showed no significant difference between groups over time whereas gingival recession increased in the abutment teeth. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of Customized Abutments Made from Titanium and a Machinable Precious Alloy.
Lee, Jee-Ho; Park, Ji-Man; Park, Eun-Jin; Koak, Jai-Young; Kim, Seong-Kyun; Heo, Seong-Joo
2016-01-01
To investigate the clinical usefulness, a customized abutment produced with the Pd-Ag-In alloy was compared with a customized abutment produced with the conventional titanium alloy for discoloration and mechanical accuracy. Discoloration and resistance to corrosion of the Pd-Ag-In alloy were evaluated using chemical solutions. Marginal adaptation of internal-type implants and abutments was compared using 10 titanium abutments and 10 Pd-Ag-In abutments using a surface measuring system. A detorque test was performed on 12 implant-abutment complexes of each control and experimental group to investigate screw joint stability. Cyclic loading simulating a human's mastication movement for 1 year was applied after 30 Ncm initial tightening, and the removal torque was measured using a digital torque gauge. The noninferiority test was conducted to compare the Pd-Ag-In alloy with a titanium abutment with a 10% margin. The Pd-Ag-In alloy had a warm yellow color and displayed stable resistance to discoloration and corrosion, resulting in an advantageous esthetic property. When compared to the titanium alloy, it did not show noninferiority with respect to the gap between the implant and the abutment; the gap was approximately 13.3 μm on average, which was not significantly different from those observed in previous studies. After long-term use, it displayed statistically significant noninferiority in the removal torque value compared to the titanium group. The Pd-Ag-In alloy-based customized abutment had good mechanical properties of the implant-abutment complex as well as a superior esthetic property, and can provide favorable outcomes in anterior implant restoration.
NASA Astrophysics Data System (ADS)
Zhu, Sitao; Feng, Yu; Jiang, Fuxing
2016-05-01
This paper investigates the abutment pressure distribution in coal mines with extremely thick alluvium stratum (ETAS), which is a typical kind of mines encountering frequent intense rockbursts in China. This occurs due to poor understanding to abutment pressure distribution pattern and the consequent inappropriate mine design. In this study, a theoretical computational model of abutment pressure for ETAS longwall panels is proposed based on the analysis of load transfer mechanisms of key stratum (KS) and ETAS. The model was applied to determine the abutment pressure distribution of LW2302S in Xinjulong Coal Mine; the results of stress and microseismic monitoring verified the rationality of this model. The calculated abutment pressure of LW2302S was also used in the terminal mining line design of LW2301N for rockburst prevention, successfully protecting the main roadway from the adverse influence of the abutment pressure.
Implant abutment deformation during prosthetic cylinder screw tightening: an in vitro study.
Neto, Rafael Tobias Moretti; Moura, Marcio Silva; Souza, Edson Antonio Capello; Rubo, José Henrique
2009-01-01
Nonpassive fit frameworks are believed to lead to implant overload and consequently loss of osseointegration. This is one of the most commonly reported failures of implant prostheses. In an ideal situation of passive fit, when torque is applied to bring the abutment-cylinder interface together some amount of deformation can be expected, and it should be homogeneous along the periphery of the abutment. The aim of this study was to verify the amount of abutment deformation that can be expected when a free-standing cylinder is screwed into place. This could give insight into what should be accepted as passive fit. Strain gauges were bonded to the sides of five standard abutments that had machined palladium-silver cylinders or cobalt-chromium cast cylinders screwed into place. Measurements were taken to verify the deformation at each site. Values of abutment deformation after abutment screw tightening ranged from -127.70 to -590.27 microepsilon. The deformation recorded for palladium-silver prosthetic cylinder tightening ranged from 56.905 to -381.50 microepsilon (mean: 173.298 microepsilon) and from -5.62638 to -383.86 microepsilon (mean: 200.474 microepsilon) for cobalt-chromium cylinders. There was no statistically significant difference among the two groups. Both abutment screw tightening and prosthetic cylinder screw tightening result in abutment deformation, which is compressive most of the time.
Mechanical resistance of zirconium implant abutments: A review of the literature
Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.
2012-01-01
The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702
Kappel, Stefanie; Chepura, Taras; Schmitter, Marc; Rammelsberg, Peter; Rues, Stefan
To examine the in vitro effects of different cements, abutment surface preconditioning, and artificial aging on the maximum tensile force needed to detach cantilever fixed dental prostheses (FDPs) from dental implants with titanium abutments. A total of 32 tissue-level implants were combined with standardized titanium abutments. For each test group, eight cantilever FDPs were fabricated using selective laser melting (cobalt-chromium [CoCr] alloy). The inner surfaces of the cantilever FDPs and half of the abutments were sandblasted and then joined by use of four different cements (two permanent and two semi-permanent) in two different amounts per cement. Subgroups were tested after either artificial aging (thermocycling and chewing simulation) or 3 days of water storage. Finally, axial pull off-tests were performed for each abutment separately. Cement type and surface pretreatment significantly affected decementation behavior. The highest retention forces (approximately 1,200 N) were associated with sandblasted abutments and permanent cements. With unconditioned abutments, temporary cements (Fu < 100 N), as well as glass-ionomer cement (Fu ≈ 100 N), resulted in rather low retention forces. Zinc phosphate cement guaranteed high retention forces. After aging, retention was sufficient only for cementation with zinc phosphate cement and for the combination of sandblasted abutments and glass-ionomer cement. When glass-ionomer cement is used to fix cantilever FDPs on implants, sandblasting of standard titanium abutments may help prevent loss of retention. Retention forces were still high for FDPs fixed with zinc phosphate cement, even when the abutments were not pretreated. Use of permanent cements only, however, is recommended to prevent unwanted loosening of cantilever FDPs.
Sampatanukul, Teeratida; Serichetaphongse, Pravej; Pimkhaokham, Atiphan
2018-04-01
Improvements of soft tissue to the abutment surface results in more stable peri-implant conditions, however, few human histological studies have compared soft tissue responses around different abutment materials. To describe the peri-implant tissue around 3 abutment materials; titanium, zirconia, and gold alloy, over an 8-week healing period. Fifteen edentulous sites were treated with implants. Eight weeks later, peri-implant tissue was harvested and processed using a nonseparation resin embedded technique. The tissue attachment characteristics were assessed at clinical stages using the gingival index (GI) score, surgical stage (surgical score), and histological stage (histological attachment percentage). Additionally, the inflammatory responses were evaluated using inflammatory extent and inflammatory cellularity grades. Nonparametrical statistics were used to describe the GI and surgical scores, and analytical statistics were used to analyze the histological attachment percentages as well as the inflammatory extent and cellularity grades amongst the 3 groups. There were no statistically significant differences among the groups for GI score (P = .071) and surgical score (P = .262). Titanium and zirconia exhibited nearly similar mean histological attachment percentages while gold alloy had a significantly lower percentage (P = .004). For the inflammatory extent and cellularity grades, the odds of being one grade higher for gold alloy abutment was 5.18 and 17.8 times that of titanium abutment, respectively. However, for the zirconia abutment, the odds were 0.87 and 7.5 times higher than the titanium group. The tissue around the gold alloy abutments resulted in worse attachment conditions compared with the titanium and zirconia abutments. Inflammation tended to be higher in the tissue around the gold alloy abutments than the titanium and zirconia abutments. © 2017 Wiley Periodicals, Inc.
Glisić, Mirko; Stamenković, Dragoslav; Grbović, Aleksandar; Todorović, Aleksandar; Marković, Aleksa; Trifković, Branka
2016-01-01
Differences between the tooth and implant response to load can lead to many biological and technical implications in the conditions of occlusal forces. The objective of this study was to analyze load distribution in tooth/implant-supported fixed partial dentures with the use of resilient TSA (Titan Shock Absorber, BoneCare GmbH, Augsburg, Germany) abutment and conventional non-resilient abutment using finite element method. This study presents two basic 3D models. For one model a standard non-resilient abutment is used, and on the implant of the second model a resilient TSA abutment is applied. The virtual model contains drawn contours of tooth, mucous membranes, implant, cortical bones and spongiosa, abutment and suprastructure. The experiment used 500 N of vertical force, applied in three different cases of axial load. Calculations of von Mises equivalent stresses of the tooth root and periodontium, implants and peri-implant tissue were made. For the model to which a non-resilient abutment is applied, maximum stress values in all three cases are observed in the cortical part of the bone (maximum stress value of 49.7 MPa). Measurements of stress and deformation in the bone tissue in the model with application of the resilientTSA abutment demonstrated similar distribution; however, these values are many times lower than in the model with non-resilient TSA abutment (maximum stress value of 28.9 MPa). Application of the resilient TSA abutment results in more equal distribution of stress and deformations in the bone tissue under vertical forces. These values are many times lower than in the model with the non-resilient abutment.
Scour around vertical wall abutment in cohesionless sediment bed
NASA Astrophysics Data System (ADS)
Pandey, M.; Sharma, P. K.; Ahmad, Z.
2017-12-01
At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.
Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias
2014-11-01
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Van Weehaeghe, Manú; De Bruyn, Hugo; Vandeweghe, Stefan
2017-12-01
An angulation of the implant connection could overcome the problems related to angulated abutments. This study compares conventional implants with angulated abutment to tilted implants with an angulated connection. Twenty patients were treated in the edentulous mandible. In the posterior jaw locations, one conventional tilted implant with angulated abutment and one angulated implant without abutment were placed. In the anterior jaw, two conventional implants were placed, one with and one without abutment. Implants were immediately loaded and 3 months later, the final bridge (PFM or monolithic zirconia) was placed. After a follow-up of 48 months, 17 patients were available for clinical examination. The mean overall marginal bone loss (MBL) was 1.26 mm. No significant differences in implant survival, MBL, periodontal indices, patients' satisfaction, or complications was found between implants restored on abutment or implant level, between the posteriorly located angulated implant nor angulated abutment, and between both anterior implants with or without abutment. The posterior implants demonstrated less MBL compared to the anterior implants (P < .001). There was no significant difference in MBL between the implants restored with zirconia or PFM bridges (P = .294). Overall mean pocket depth was 2.83 mm. More plaque was found in the PFM group compared to the full-zirconia group, at the bridge (P = .042) and the implants (P = .029). There was no difference between both materials in pocket depth (P = .635) or bleeding (P = .821). One zirconia bridge fractured, two angulated abutment were replaced and four loose bridge screws connected to the angulated abutments had to be tightened. Patients were overall satisfied (4.74/5). An implant with angulated connection may results in a stronger connection but does not affect the marginal bone loss. No difference in MBL was seen between implants restored on abutment or implant level. Zirconia seems to reduce the amount of plaque. © 2017 Wiley Periodicals, Inc.
Clinical Characteristics of Abutment Teeth with Gingival Discoloration.
Ristic, Ljubisa; Dakovic, Dragana; Postic, Srdjan; Lazic, Zoran; Bacevic, Miljana; Vucevic, Dragana
2017-04-06
The grey-bluish discoloration of gingiva (known as "amalgam tattoo") does not appear only in the presence of amalgam restorations. It may also be seen in cases of teeth restored with cast dowels and porcelain-fused-to-metal (PFM) restorations. The aim of this article was to determine the clinical characteristics of abutment teeth with gingival discoloration. This research was conducted on 25 patients referred for cast dowel and PFM restorations. These restorations were manufactured from Ni-Cr alloys. Ninety days after cementing the fixed prosthodontic restorations, the abutment teeth (n = 61) were divided into a group with gingival discoloration (GD) (n = 25) and without gingival discoloration (NGD) (n = 36). The control group (CG) comprised the contralateral teeth (n = 61). Plaque index, gingival index, clinical attachment level, and probing depth were assessed before fabrication and also 90 days after cementation of the PFM restorations. The gingival index, clinical attachment level, and probing depths of the abutment teeth that had GD were statistically higher before restoration, in comparison with the abutment teeth in the NGD and control groups. Ninety days after cementation, the abutment teeth with GD had significantly lower gingival indexes and probing depths, compared to the abutment teeth in the NGD group. Both abutment teeth groups (GD and NGD) had significantly higher values of clinical attachment levels when compared to the control group. There were no statistically significant differences in plaque index values between the study groups. The results of this study indicated that impairment of periodontal status of abutment teeth seemed to be related to the presence of gingival discolorations. Therefore, fabrication of fixed prosthodontic restorations requires careful planning and abutment teeth preparation to minimize the occurrence of gingival discolorations. With careful preparation of abutment teeth for cast dowels and crown restorations it may be possible to decrease the frequency of gingival discolorations adjacent to abutment teeth. © 2017 by the American College of Prosthodontists.
Quek, H C; Tan, Keson B; Nicholls, Jack I
2008-01-01
Biomechanical load-fatigue performance data on single-tooth implant systems with different implant-abutment interface designs is lacking in the literature. This study evaluated the load fatigue performance of 4 implant-abutment interface designs (Brånemark-CeraOne; 3i Osseotite-STA abutment; Replace Select-Easy abutment; and Lifecore Stage-1-COC abutment system). The number of load cycles to fatigue failure of 4 implant-abutment designs was tested with a custom rotational load fatigue machine. The effect of increasing and decreasing the tightening torque by 20% respectively on the load fatigue performance was also investigated. Three different tightening torque levels (recommended torque, -20% recommended torque, +20% recommended torque) were applied to the 4 implant systems. There were 12 test groups with 5 samples in each group. The rotational load fatigue machine subjected specimens to a sinusoidally applied 35 Ncm bending moment at a test frequency of 14 Hz. The number of cycles to failure was recorded. A cutoff of 5 x 10(6) cycles was applied as an upper limit. There were 2 implant failures and 1 abutment screw failure in the Brånemark group. Five abutment screw failures and 4 implant failures was recorded for the 3i system. The Replace Select system had 1 implant failure. Five cone screw failures were noted for the Lifecore system. Analysis of variance revealed no statistically significant difference in load cycles to failure for the 4 different implant-abutment systems torqued at recommended torque level. A statistically significant difference was found between the -20% torque group and the +20% torque group (P < .05) for the 3i system. Load fatigue performance and failure location is system specific and related to the design characteristics of the implant-abutment combination. It appeared that if the implant-abutment interface was maintained, load fatigue failure would occur at the weakest point of the implant. It is important to use the torque level recommended by the manufacturer.
Protopapadaki, Maria; Monaco, Edward A; Kim, Hyeong-Il; Davis, Elaine L
2013-11-01
The predictable nature of the hot pressing ceramic technique has several applications, but no study was identified that evaluated its application to the fabrication of custom implant abutments. The purpose of this study was to compare the fracture resistance of an experimentally designed pressable metal ceramic custom implant abutment (PR) with that of a duplicate zirconia abutment (ZR). Two groups of narrow platform (NP) (Nobel Replace) implant abutment specimens were fabricated (n=10). The experimental abutment (PR) had a metal substructure cast with ceramic alloy (Lodestar) and veneered with leucite pressable glass ceramic (InLine PoM). Each PR abutment was individually scanned and 10 duplicate CAD/CAM ZR abutments were fabricated for the control group. Ceramic crowns (n=20) with the average dimensions of a human lateral incisor were pressed with lithium disilicate glass ceramic (IPS e.max Press) and bonded on the abutments with a resin luting agent (Multilink Automix). The specimens were subjected to thermocycling, cyclic loading, and finally static loading to failure with a computer-controlled Universal Testing Machine. An independent t test (1 sided) determined whether the mean values of the fracture load differed significantly (α=.05) between the 2 groups. No specimen failed during cyclic loading. Upon static loading, the mean (SD) load to failure was significantly higher for the PR group (525.89 [143.547] N) than for the ZR group (413.70 [35.515] N) for internal connection narrow platform bone-level implants (P=.025). Failure was initiated at the screw and internal connection level for both groups. It is possible to fabricate PR abutments that are stronger than ZR abutments for Nobel Biocare internal connection NP bone-level implants. The screw and the internal connection are the weak links for both groups. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira
2017-04-01
The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than conventional. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mühlemann, Sven; Truninger, Thomas C; Stawarczyk, Bogna; Hämmerle, Christoph H F; Sailer, Irena
2014-01-01
To test the fracture load and fracture patterns of zirconia abutments restored with all-ceramic crowns after fatigue loading, exhibiting internal and external implant-abutment connections as compared to restored and internally fixed titanium abutments. A master abutment was used for the customization of 5 groups of zirconia abutments to a similar shape (test). The groups differed according to their implant-abutment connections: one-piece internal connection (BL; Straumann Bonelevel), two-piece internal connection (RS; Nobel Biocare ReplaceSelect), external connection (B; Branemark MkIII), two-piece internal connection (SP, Straumann StandardPlus) and one-piece internal connection (A; Astra Tech AB OsseoSpeed). Titanium abutments with internal implant-abutment connection (T; Straumann Bonelevel) served as control group. In each group, 12 abutments were fabricated, mounted to the respective implants and restored with glass-ceramic crowns. All samples were embedded in acrylic holders (ISO-Norm 14801). After aging by means of thermocycling in a chewing simulator, static load was applied until failure (ISO-Norm 14801). Fracture load was analyzed by calculating the bending moments. Values of all groups were compared with one-way ANOVA followed by Scheffé post hoc test (P-value<0.05). Failure mode was analyzed descriptively. The mean bending moments were 464.9 ± 106.6 N cm (BL), 581.8 ± 172.8 N cm (RS), 556.7 ± 128.4 N cm (B), 605.4 ± 54.7 N cm (SP), 216.4 ± 90.0 N cm (A) and 1042.0 ± 86.8 N cm (T). No difference of mean bending moments was found between groups BL, RS, B and SP. Test group A exhibited significantly lower mean bending moment than the other test groups. Control group T had significantly higher bending moments than all test groups. Failure due to fracture of the abutment and/or crown occurred in the test groups. In groups BL and A, fractures were located in the internal part of the connection, whereas in groups RS and SP, a partial deformation of the implant components occurred and cracks and fractures of the zirconia abutment were detected. The differently connected zirconia abutments exhibited similar bending moments with the exception of one group. Hence, the type of connection only had a minor effect on the stability of restored zirconia abutments. In general, restored titanium abutments exhibited the highest bending moments. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Application of reverse engineering in the production of individual dental abutments.
NASA Astrophysics Data System (ADS)
Yunusov, A. V.; Kashapov, R. N.; Kashapov, L. N.; Statsenko, E. O.
2017-09-01
The purpose of the research is to develop a method of manufacturing individual dental abutments for a variety of dental implants. System of industrial X-ray microtomography Phoenix V|tome|X S 240 has been applied for creation of highly accurate model of the dental abutment. Scanning of dental abutment and the optimization of model was produced. The program of milling the individual abutment with a standard conical neck of hexagon was produced for the five-axis milling machine imes - icore 450i from the materials titanium and zirconium oxide.
Implant-abutment connections on single crowns: a systematic review.
Ceruso, F M; Barnaba, P; Mazzoleni, S; Ottria, L; Gargari, M; Zuccon, A; Bruno, G; DI Fiore, A
2017-01-01
Different implant-abutment connections have been developed in the effort of reducing mechanical and biological failure. The most frequent complications are screw loosening, abutment or implant fracture and marginal bone loss due to overload and bacterial micro-leakage. Ideal connection should work as a one-piece implant avoiding the formation of a micro-gap at the implant-abutment interface. Different in vitro and in vivo researches have been published to compare the implant-abutment connections actually available: external hexagon, internal hexagon and conical finding different amount of micro-gap, micro-leakage and marginal bone loss. The aim of this article is to describe, according to the most recent literature, different kind of fixture-abutment connections and their clinical and mechanical advantages or disadvantages.
Influence of different tightening forces before laser welding to the implant/framework fit.
da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César
2009-06-01
The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.
Aalaei, Shima; Rajabi Naraki, Zahra; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Shahrokhi Rad, Afsaneh
2017-01-01
Background. Screw-retained restorations are favored in some clinical situations such as limited inter-occlusal spaces. This study was designed to compare stresses developed in the peri-implant bone in two different types of screw-retained restorations (segmented vs. non-segmented abutment) using a finite element model. Methods. An implant, 4.1 mm in diameter and 10 mm in length, was placed in the first molar site of a mandibular model with 1 mm of cortical bone on the buccal and lingual sides. Segmented and non-segmented screw abutments with their crowns were placed on the simulated implant in each model. After loading (100 N, axial and 45° non-axial), von Mises stress was recorded using ANSYS software, version 12.0.1. Results. The maximum stresses in the non-segmented abutment screw were less than those of segmented abutment (87 vs. 100, and 375 vs. 430 MPa under axial and non-axial loading, respectively). The maximum stresses in the peri-implant bone for the model with segmented abutment were less than those of non-segmented ones (21 vs. 24 MPa, and 31 vs. 126 MPa under vertical and angular loading, respectively). In addition, the micro-strain of peri-implant bone for the segmented abutment restoration was less than that of non-segmented abutment. Conclusion. Under axial and non-axial loadings, non-segmented abutment showed less stress concentration in the screw, while there was less stress and strain in the peri-implant bone in the segmented abutment. PMID:29184629
Custom-made laser-welded titanium implant prosthetic abutment.
Iglesia-Puig, Miguel A
2005-10-01
A technique to create an individually modified implant prosthetic abutment is described. An overcasting is waxed onto a machined titanium abutment, cast in titanium, and joined to it with laser welding. With the proposed technique, a custom-made titanium implant prosthetic abutment is created with adequate volume and contour of metal to support a screw-retained, metal-ceramic implant-supported crown.
Tehini, George; Rifai, Khaldoun; Bou Nasser Eddine, Farah; Badran, Bassam; Akl, Haidar
2014-01-01
Leakage has been addressed as a major contributing factor to inflammatory reactions at the implant–abutment connection, leading to problems such as oral malodor, inflammation, and marginal bone loss. The aim of this study was to investigate in vitro the leakage at implant–abutment interface of OsseoSpeed™ implants connected to original and compatible abutments. A total of 28 OsseoSpeed implants were divided into four groups (n = 7). Each group was connected to four different abutments according to manufacturers’ recommendations: group A (TiDesign™); group B (Natea™); group C (Dual™); and group D (Implanet™) abutments. The inner volume of each implant–abutment combination was calculated and leakage was detected for each group with spectrophotometric analysis at 1 h (D0) and 48 h (D1) of incubation time using Rhodamine B. At 1 h, leakage volume was significantly lower in TiDesign and Dual than in Natea and Implanet (P < 0.001). At 48 h, however, leakage was significantly lower between TiDesign and all other systems (P < 0.005). Compatible abutments do not fit internal connection of OsseoSpeed implants perfectly, which increases the leakage of the final assembly. PMID:25342984
4. South Elevation Columbia Island Abutment Four; South Elevation ...
4. South Elevation - Columbia Island Abutment Four; South Elevation - Washington Abutment One - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC
The influence of implant-abutment connection on the screw loosening and microleakage.
Tsuruta, Katsuhiro; Ayukawa, Yasunori; Matsuzaki, Tatsuya; Kihara, Masafumi; Koyano, Kiyoshi
2018-04-09
There are some spaces between abutment and implant body which can be a reservoir of toxic substance, and they can penetrate into subgingival space from microgap at the implant-abutment interface. This penetration may cause periimplantitis which is known to be one of the most important factors associated with late failure. In the present study, three kinds of abutment connection system, external parallel connection (EP), internal parallel connection (IP), and internal conical connection (CC), were studied from the viewpoint of microleakage from the gap between the implant and the abutment and in connection with the loosening of abutment screw. We observed dye leakage from abutment screw hole to outside through microgap under the excessive compressive and tensile load and evaluated the anti-leakage characteristics of these connection systems. During the experiment, one abutment screw for EP and two screws for IP, out of seven samples in each group, were fractured. After the 2000 cycles of compressive tensile loadings, removal torque value (RTV) of abutment screw represented no statistical differences among three groups. Standard deviation was largest in the RTV of EP and smallest in that of CC. The results of microleakage of toluidine blue from implant-abutment connection indicated that microleakage generally increased as loading procedure progressed. The amount of microleakage was almost plateau at 2000 cycles in CC, but still increasing in other two groups. The value of microleakage greatly scattered in EP, but the deviation of that in CC is significantly smaller. At 500 cycles of loading, there were no significant differences in the amount of microleakage among the groups, but at 1000, 1500, and 2000 cycles of loading, the amount of microleakage in CC was significantly smaller than that in IP. Throughout the experiment, the amount of microleakage in EP was largest, but no statistical difference was indicated due to the high standard deviation. Within the limitation of the present study, CC was stable even after the loading in the RTV of abutment screw and it prevented microleakage from the microgap between the implant body and the abutment, among the three tested connections.
Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment
DE JESUS TAVAREZ, Rudys Rodolfo; BONACHELA, Wellington Cardoso; XIBLE, Anuar Antônio
2011-01-01
Objective The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. Material and Methods Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey’s post-hoc test (p<0.05). Results Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. Conclusion The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface. PMID:21437464
Byrne, Declan; Jacobs, Stuart; O'Connell, Brian; Houston, Frank; Claffey, Noel
2006-01-01
Abutment screw loosening, especially in the case of cemented single tooth restorations, is a cause of implant restoration failure. This study compared three screws (titanium alloy, gold alloy, and gold-coated) with similar geometry by recording the preload induced when torques of 10, 20, and 35 Ncm were used for fixation. Two abutment types were used-prefabricated preparable abutments and cast-on abutments. A custom-designed rig was used to measure preload in the abutment-screw-implant assembly with a strain gauge. Ten screws of each type were sequentially tightened to 10, 20, and 35 Ncm on ten of the two abutment types. The same screws were then loosened and re-tightened. This procedure was repeated. Thus, each screw was tightened on three occasions to the three insertion torques. A linear regression model was used to analyze the effects on preload values of screw type and abutment type for each of the three insertion torques. The results indicated that the gold-coated screw generated the highest preloads for all insertion torques and for each tightening episode. Further analysis focused on the effects of screw type and abutment type for each episode of tightening and for each fixation torque. The gold-coated screw, fixed to the prefabricated abutment, displayed higher preloads for the first tightening at 10, 20, and 35 Ncm. Conversely, the same screw fixed to the cast-on abutment showed higher values for the second and third tightening for all fixation torques. All screws showed decay in preload with the number of times tightened. Given the higher preloads generated using the gold-coated screw with both abutment types, it is more likely that this type of screw will maintain a secure joint when tightened for the second and third time. All screw types displayed some decay in preload with repeated tightening, irrespective of abutment type and insertion torque. The gold-coated screw showed markedly higher preloads for all insertion torques and for all instances of tightening when compared with the uncoated screws.
Park, Ji-Man; Baek, Chang-Hyun; Heo, Seong-Joo; Kim, Seong-Kyun; Koak, Jai-Young; Kim, Shin-Koo; Belser, Urs C
The aim of this study was to compare the loosening of interchangeable one-piece abutments connected to internal-connection-type implants after cyclic loading. Four implant abutment groups (n = 7 in each group) with Straumann tissue-level implants were assessed: Straumann solid abutment (group S), Southern Implants solid abutment (group SI), Implant Direct straight abutment (group ID), and Blue Sky Bio regular platform abutment (group BSB). The implant was firmly held in a special jig to ensure fixation. Abutment screws were tightened to manufacturers' recommended torque with a digital torque gauge. The hemispherical loading members were fabricated for the load cell of a universal testing machine to evenly distribute the force on the specimens and to fulfill the ISO 14801:2007 standard. A cyclic loading of 25 N at 30 degrees to the implant's long axis was applied for a duty of a half million cycles. Tightening torques were measured prior to the loading. Removal torques were measured after cyclic loading. The data were analyzed with one-way analysis of variance (ANOVA), and the significance level was set at P < .05. The mean removal torques after cyclic loading were 34.0 ± 1.1 Ncm (group S), 25.0 ± 1.5 Ncm (group SI), 23.9 ± 2.1 Ncm (group ID), and 27.9 ± 1.3 Ncm (group BSB). Removal torques of each group were statistically different in the order of group S > group BSB > groups SI and ID (P < .05). The mean reduction rates were -2.9% ± 3.2% (group S), -21.9% ± 4.8% (group SI), -20.2% ± 7.2% (group ID), and -6.9% ± 4.3% (group BSB) after a half million cycles, respectively. Reduction rates of groups S and BSB were statistically lower than those of groups SI and ID (P < .01). The standard deviation of group S was lower than group BSB. The removal torque of the original Straumann abutment was significantly higher than those of the copy abutments. The reduction rate of the groups S and BSB abutments was lower than those of the other copy abutments.
Cashman, Paul M; Schneider, Robert L; Schneider, Galen B; Stanford, Clark M; Clancy, James M; Qian, Fang
2011-10-01
This study analyzed baseline and post-fatigue reverse-torque values (RTVs) for a specific brand control abutment relative to a third party compatible abutment. The purpose of this study was to compare the abutments' fatigue resistance to simulated function, using RTVs as an indication of residual preload at the implant/abutment interface. Forty Straumann tissue-level implants were mounted in resin and divided into four groups (n = 10). Forty abutments were seated, 20 control and 20 third-party abutments, according to manufacturer guidelines. Ten abutments from each manufacturer were evaluated for RTV without fatigue loading, using a calibrated digital torque gauge to provide a baseline RTVs. Fatigue loading was carried out on the remaining ten specimens from each manufacturer according to ISO 14801 guidelines. A moving-magnet linear motor was used to load one specimen per sequence, alternating from 10 to 200 N at 15 Hz for 5×10(6) cycles. RTV was recorded post-fatigue loading. The results were subjected to two-sample t-testing and two-way ANOVA. Scanning electron microphotography was carried out on three specimens from both manufacturers at baseline and post-fatigue cycling to visualize thread geometry and the abutment/implant interface. The data indicated that mean post-fatigue RTV observed for the control group was significantly higher than the third-party group (RTV 42.65 ± 6.70 N vs. 36.25 ± 2.63 N, p= 0.0161). Visual differences at the macro/microscopic level were also apparent for thread geometry, with third-party abutments demonstrating considerably greater variation in geometrical architecture than control specimens. Within the limitations of this in vitro model, the effect of component manufacturer resulted in a significantly higher RTV in the control group (two-way ANOVA, p= 0.0032) indicating greater residual preload; however, there was no significant decrease in post-fatigue RTV for either manufacturer compared to baseline. © 2011 by The American College of Prosthodontists.
Blanco, Juan; Pico, Alexandre; Caneiro, Leticia; Nóvoa, Lourdes; Batalla, Pilar; Martín-Lancharro, Pablo
2018-01-01
The aim of this randomized clinical trial was to compare the effect on the interproximal implant bone loss (IBL) of two different heights (1 and 3 mm) of definitive abutments placed at bone level implants with a platform switched design. Twenty-two patients received forty-four implants (6.5-10 mm length and 3.5-4 mm diameter) to replace at least two adjacent missing teeth, one bridge set to each patient-two implants per bridge. Patients were randomly allocated, and two different abutment heights, 1 and 3 mm using only one abutment height per bridge, were used. Clinical and radiological measurements were performed at 3 and 6 months after surgery. Interproximal bone level changes were compared between treatment groups. The association between IBL and categorical variables (history of periodontitis, smoking, implant location, implant diameter, implant length, insertion torque, width of keratinized mucosa, bone density, gingival biotype and antagonist) was also performed. At 3 months, implants with a 1-mm abutment had significantly greater IBL (0.83 ± 0.19 mm) compared to implants with a 3-mm abutment (0.14 ± 0.08 mm). At 6 months, a greater IBL was observed at implants with 1-mm abutments compared to implants with 3-mm abutments (0.91 ± 0.19 vs. 0.11 ± 0.09 mm). The analysis of the relation between patient characteristics and clinical variables with IBL revealed no significant differences at any moment except for smoking. Abutment height is an important factor to maintain interproximal implant bone level in early healing. Short abutments led to a greater interproximal bone loss in comparison with long abutments after 6 months. Other variables except smoking showed no relation with interproximal bone loss in early healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ghanbarzadeh, Jalil; Dashti, Hossin; Karamad, Reza; Alikhasi, Marzieh; Nakhaei, Mohammadreza
2015-01-01
Background: The final position of the abutment changes with the amount of tightening torque. This could eventually lead to loss of passivity and marginal misfit of prostheses. The aim of this study was to evaluate the effect of three different tightening torques on the marginal adaptation of 3-unit cement-retained implant-supported fixed dental prostheses (FDPs). Materials and Methods: Two implants (Straumann) were inserted in an acrylic block so that one of the implants was placed vertically and the other at a 15° vertical angle. A straight abutment and a 15° angulated abutment were connected to the vertically and obliquely installed implants, respectively, so that the two abutments were parallel. Then, 10 cement-retained FDPs were waxed and cast. Abutments were tightened with 10, 20, and 35 Ncm torques, respectively. Following each tightening torque, FDPs were luted on respective abutments with temporary cement. The marginal adaptation of the retainers was evaluated using stereomicroscope. FDPs were then removed from the abutments and were sectioned at the connector sites. The retainers were luted again on their respective abutments. Luting procedures and marginal adaptation measurement were repeated. Data were analyzed by ANOVA and least significant difference tests (α = 0.05). After cutting the FDP connectors, the independent samples t-test was used to compare misfit values (α = 0.05). Results: Following 10, 20, and 35 Ncm tightening torques, the marginal discrepancy of the retainers of FDPs significantly increased (P < 0.05). There was no significant difference between the marginal discrepancies of these two retainers (P > 0.05). The marginal gap values of angulated abutment retainers (ANRs) were significantly higher than those of the straight abutment after cutting the connectors (P = 0.026). Conclusion: Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After cutting the connectors, the marginal misfit of the ANRs was higher than those of the straight abutment retainers. PMID:26288627
Ghanbarzadeh, Jalil; Dashti, Hossin; Karamad, Reza; Alikhasi, Marzieh; Nakhaei, Mohammadreza
2015-01-01
The final position of the abutment changes with the amount of tightening torque. This could eventually lead to loss of passivity and marginal misfit of prostheses. The aim of this study was to evaluate the effect of three different tightening torques on the marginal adaptation of 3-unit cement-retained implant-supported fixed dental prostheses (FDPs). Two implants (Straumann) were inserted in an acrylic block so that one of the implants was placed vertically and the other at a 15° vertical angle. A straight abutment and a 15° angulated abutment were connected to the vertically and obliquely installed implants, respectively, so that the two abutments were parallel. Then, 10 cement-retained FDPs were waxed and cast. Abutments were tightened with 10, 20, and 35 Ncm torques, respectively. Following each tightening torque, FDPs were luted on respective abutments with temporary cement. The marginal adaptation of the retainers was evaluated using stereomicroscope. FDPs were then removed from the abutments and were sectioned at the connector sites. The retainers were luted again on their respective abutments. Luting procedures and marginal adaptation measurement were repeated. Data were analyzed by ANOVA and least significant difference tests (α = 0.05). After cutting the FDP connectors, the independent samples t-test was used to compare misfit values (α = 0.05). Following 10, 20, and 35 Ncm tightening torques, the marginal discrepancy of the retainers of FDPs significantly increased (P < 0.05). There was no significant difference between the marginal discrepancies of these two retainers (P > 0.05). The marginal gap values of angulated abutment retainers (ANRs) were significantly higher than those of the straight abutment after cutting the connectors (P = 0.026). Within the limitations of this study, the marginal misfit of cement-retained FDPs increased continuously when the tightening torque increased. After cutting the connectors, the marginal misfit of the ANRs was higher than those of the straight abutment retainers.
Zhu, Lin; Xu, Pei-cheng; Lu, Liu-lei
2013-08-01
To study the variety of mechanical behavior of fixed bridge after abutments being intruded by micro screw implant and to provide theoretical principles for clinical practice of teeth preparation after intrusion of abutments under dynamic loads. Two-dimensional images of maxilla, teeth and supporting tissues of healthy people were scanned by spiral CT and were synthesized by Mimics10.01, Ansys13.0, etc. The three-dimensional finite element mathematical model of rigid fixed bridge repairing on double end of maxillary molar was developed. Under the condition of 10% simulative abutment alveolar absorption, vertical and oblique dynamic forces were applied in a circle of mastication(0.875 s) to build mathematical model after the abutment had been intruded for 0.5, 1.0, 1.5 and 2.0 mm. Stress variety of prosthesis, teeth, periodontal ligaments and supporting tissues were compared before and after intrusion of abutments. Stress variety of the prosthesis occurred, which had close relationship with the structure of prosthesis and teeth, the areas of periodontal ligaments increased, stress on the whole decreased along with the increase of the length of intrusion. With time accumulating, the stress value in prosthesis, teeth, periodontal ligaments and supporting tissues increased gradually and loads in oblique direction induced peak value stress in a masticatory cycle. Some residual stress left after unloading. By preparing the fixed bridge after abutment intrusion by micro screw implant, the service life of abutment and fixed bridge prosthesis can be reduced. The abutment and its related tissue have time-dependent mechanical behaviors during one mastication. The influence of oblique force on stress was greater than vertical force. There is some residual stress left after one mastication period. With the increase of the intrusion on abutment, residual stress reduced.
The fracture strength by a torsion test at the implant-abutment interface.
Watanabe, Fumihiko; Hiroyasu, Kazuhiko; Ueda, Kazuhiko
2015-12-01
Fractured connections between implants and implant abutments or abutment screws are frequently encountered in a clinical setting. The purpose of this study was to investigate fracture strength using a torsion test at the interface between the implant and the abutment. Thirty screw-type implant with diameters of 3.3, 3.8, 4.3, 5.0, and 6.0 mm were submitted to a torsion test. Implants of each size were connected to abutments with abutment screws tightened to 20 N · cm. Mechanical stress was applied with a rotational speed of 3.6 °/min until fracture occurred, and maximum torque (fracture torque) and torsional yield strength were measured. The mean values were calculated and then compared using Tukey's test. The abutments were then removed, and the implant-abutment interfaces were examined using a scanning electron microscope (SEM). No significant differences in mean fracture torque were found among 3.3, 3.8, and 4.3 mm-diameter implants, but significant differences were found between these sizes and 5.0 and 6.0 mm-diameter implants (p < 0.01). Concerning mean torsional yield strength, significant differences were found between 3.3, 3.8, and 4.3 mm-diameter and 5.0 and 6.0 mm-diameter implants (p < 0.01). Observations under the SEM showed that all the projections of the abutment corresponding to the internal notches of the implant body had been destroyed. Smaller diameter implants demonstrated lower fracture torque and torsional yield strength than implants with larger diameters. In internal tube-in-tube connections, three abutment projections corresponding to rotation-prevention notches were destroyed in each implant.
Sanz-Martín, Ignacio; Sanz-Sánchez, Ignacio; Carrillo de Albornoz, Ana; Figuero, Elena; Sanz, Mariano
2018-01-01
The purpose of this systematic review was to evaluate the impact of the abutment characteristics on peri-implant tissue health and to identify the most suitable material and surface characteristics. A protocol was developed aimed to answer the following focused question: "Which is the effect of the modification of the abutment design in regard to the maintenance of the peri-implant soft tissue health?" Further subanalysis aimed to investigate the impact of the abutment material, macroscopic design, surface topography and surface manipulation. Randomised controlled trials (RCTs) with a follow-up of at least 6 months after implant loading were considered as inclusion criteria. Meta-analyses were performed whenever possible. Nineteen final publications from thirteen investigations were included. The results from the meta-analysis indicated that zirconia abutments (Zi) experienced less increase in BOP values over time [n = 3; WMD = -26.96; 95% CI (-45.00; -8.92); p = .003] and less plaque accumulation [n = 1; MD = -20.00; 95% CI (-41.47; 1.47); p = .068] when compared with titanium abutments (Ti). Bone loss was influenced by the method of abutment decontamination [n = 1; MD = -0.44; 95% CI (-0.65; -0.23); p < .001]. The rest of the studied outcomes did not show statistically significant differences. The macroscopic design, the surface topography and the manipulation of the implant abutment did not have a significant influence on peri-implant inflammation. In contrast, the abutment material demonstrated increased BOP values over time for Ti when compared to Zi abutments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves
2014-02-01
The effect of veneering materials on screw joint stability remains inconclusive. Thus, this study evaluated the preload maintenance of abutment screws of single crowns fabricated with different abutments and veneering materials. Sixty crowns were divided into five groups (n = 12): UCLA abutment in gold alloy with ceramic (group GC) and resin (group GR) veneering, UCLA abutment in titanium with ceramic (group TiC) and resin (group TiR) veneering, and zirconia abutment with ceramic veneering (group ZiC). Abutment screws made of gold were used with a 35 Ncm insertion torque. Detorque measurements were obtained initially and after mechanical cycling. Data were analyzed by ANOVA and Fisher's exact test at a significance level of 5%. For the initial detorque means (in Ncm), group TiC (21.4 ± 1.78) exhibited statistically lower torque maintenance than groups GC (23.9 ± 0.91), GR (24.1 ± 1.34), and TiR (23.2 ± 1.33) (p < 0.05, Fisher's exact test). Group ZiC (21.9 ± 2.68) exhibited significantly lower torque maintenance than groups GC, GR, and TiR (p < 0.05, Fisher's exact test). After mechanical cycling, there was a statistically significant difference between groups TiC (22.1 ± 1.86) and GR (23.8 ± 1.56); between groups ZiC (21.7 ± 2.02) and GR; and also between groups ZiC and TiR (23.6 ± 1.30) (p < 0.05, Fisher's exact test). Detorque reduction occurred regardless of abutment type and veneering material. More irregular surfaces in the hexagon area of the castable abutments were observed. The superiority of any veneering material concerning preload maintenance was not established. © 2013 by the American College of Prosthodontists.
Wise, Sean R; LaRouere, Jacqueline S; Bojrab, Dennis I; LaRouere, Michael J
2018-04-01
To assess differences in the incidence, type, and management of complications encountered with implantation of percutaneous osseointegrated bone conduction devices when using a 9 mm abutment versus 6 mm abutment at initial implantation. Retrospective cohort study. One hundred thirty consecutive patients between January 2010 and December 2011 underwent single-stage percutaneous osseointegrated bone conduction device implantation using a 9 or 6 mm abutment. Clinical outcomes assessed for the two groups included the incidence, type, and management of postoperative complications. Abutment size, age, sex, indication for surgery, implant device type, duration of follow-up, and patient comorbidities were evaluated as potential factors affecting outcomes. Average duration of follow-up was 16 months (range 6-29 mo). Postoperative complications occurred in 38 (29.2%) patients. Twenty-four (18.4%) patients experienced minor complications requiring simple, local care; eight (6.1%) patients required in-office procedural intervention; and six (4.6%) patients required revision surgery in the operating room. Implant extrusion occurred in three (2.3%) patients. Eleven (8.5%) patients required placement of a longer abutment. Patients receiving the 6 mm abutment at initial surgery were significantly more likely to encounter a complication requiring in-office procedural intervention or revision surgery (p = 0.001). Minor complications after implantation of percutaneous osseointegrated bone conduction devices are common. The vast majority of these complications are due to localized skin reactions, most of which are readily addressed through local care. Patients receiving the 9 mm abutment during initial implantation are significantly less likely to require in-office procedural intervention or revision surgery postoperatively as compared with those receiving the shorter, 6 mm abutment.
Oh, Seon-Hee; Kim, Seok-Gyu
2015-10-01
The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. The effects of zirconia specimen thickness (P<.001), abutment shade (P<.001), and type of zirconia copings (P<.003) on the final shade of the zirconia restorations were significant. The average ΔE value of Lava specimens (1 mm) between the A2 composite resin and gold alloy abutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations.
Dailey, Bruno; Jordan, Laurence; Blind, Olivier; Tavernier, Bruno
2009-01-01
The passive fit of a superstructure on implant abutments is essential to success. One source of error when using a tapered cone-screw internal connection may be the difference between the tightening torque level applied to the abutments by the laboratory technician compared to that applied by the treating clinician. The purpose of this study was to measure the axial displacement of tapered cone-screw abutments into implants and their replicas as a function of the tightening torque level. Twenty tapered cone-screw abutments were selected. Two groups were created: 10 abutments were secured into 10 implants, and 10 abutments were secured into 10 corresponding implant replicas. Each abutment was tightened in increasing increments of 5 Ncm, from 0 Ncm to 45 Ncm, with a torque controller. The length of each sample was measured repeatedly with an Electronic Digital Micrometer. The mean axial displacement for the implant group and the replica group was calculated. The data were analyzed by the Mann-Whitney and Spearman tests. For both groups, there was always an axial displacement of the abutment upon each incremental application of torque. The mean axial displacement values varied between 7 and 12 microm for the implant group and between 6 and 21 microm for the replica group at each 5-Ncm increment. From 0 to 45 Ncm, the total mean axial displacement values were 89 microm for the implant group and 122 microm for the replica group. There was a continuous axial displacement of the abutments into implants and implant replicas when the applied torque was raised from 0 to 45 Ncm. Torque applied above the level recommended by the manufacturer increased the difference in displacement between the two groups.
Wasiluk, Grzegorz; Chomik, Ewa; Gehrke, Peter; Pietruska, Małgorzata; Skurska, Anna; Pietruski, Jan
2017-07-01
The aim of this study was to assess the frequency of cement residues after cementation of CAD/CAM monolithic zirconia crowns on customized CAD/CAM titanium abutments. Sixty premolars and molars were restored on Astra Tech Osseospeed TX ™ implants using single monolithic zirconia crowns fixed on two types of custom-made abutments: Atlantis ™ titanium or Atlantis ™ Gold Hue. Occlusal openings providing access to the abutment screws were designed for retrievability of the crown/abutment connection. After fixation with glass ionomer cement, the crown/abutment units were unscrewed to evaluate the presence of residual cement. Dichotomous assessment of the presence or absence of cement at the crown/abutment unit and peri-implant tissues was performed. Clinically undetected cement excess was visible on 44 of 60 restorations (73.3%). There was no interdependency between residual cement presence and implant location or diameter. However, a dependency between the presence of residual cement and the aspect of the abutment/crown connection could be noted. The majority of the residues were observed on the distal (17.9%) and mesial (15%) aspects. While on the palatal/lingual aspect, the cement was visible in 8.8%; only 3.4% of all surfaces displayed cement residues. Within the limitations of the study, it can be concluded that the use of customized CAD/CAM abutments do not guarantee avoidance of subgingival cement residues after crown cementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The bacterial sealing capacity of morse taper implant-abutment systems in vitro.
Ranieri, Rogerio; Ferreira, Andreia; Souza, Emmanuel; Arcoverde, Joao; Dametto, Fabio; Gade-Neto, Cicero; Seabra, Flavio; Sarmento, Carlos
2015-05-01
The use of Morse taper systems in dental implantology has been associated widely with a more precise adaptation between implants and their respective abutments. This may lead to an increase in the stability of the implant system and may also prevent microbial invasion through the implant-abutment interface. The aim of this study was to investigate in vitro the ability of four commercially available Morse taper system units to impede bacterial penetration through their implant-abutment interfaces. Abutments were screwed onto the implants, and the units were subsequently immersed in Streptococcus sanguinis bacterial broth (1 × 10(8) colony forming units/mL) for 48 hours. The units were examined by scanning electron microscopy (SEM) under three conditions: 1) with the implant-abutment components assembled as units to investigate for both the existence of microgaps and the presence of bacteria; 2) with the implants and abutments separated for examination of internal surfaces; and 3) with the implant-abutment components again assembled as units to measure any microgaps detected. The mean size of the microgaps in each unit was determined by measuring, under SEM, their width in four equidistant points. Microgaps were detected in all units with no significant differences in dimension (Kruskal-Wallis test, P >0.05). Within all units, the presence of bacteria was also observed. The seals provided by the interfaces of the commercially available Morse taper implant-abutment units tested were not sufficiently small to shield the implant from bacterial penetration.
Baj, A; Bolzoni, A; Russillo, A; Lauritano, D; Palmieri, A; Cura, F; Silvestre, F J; Giannì, A B
2017-01-01
Osseointegrated implants are very popular dental treatments today in the world. In osseointegrated implants, the occlusal forces are transmitted from prosthesis through an abutment to a dental implant. The abutment is connected to the implant by mean of a screw. A screw is the most used mean for connecting an implant to an abutment. Frequently the screws break and are lost. There is an alternative to screw retained abutment systems: the cone-morse connection (CMC). The CMC, thanks to the absence of the abutment screw, guarantees no micro-gaps, no micro-movements, and a reduction of bacterial leakage between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new CMC implants systems (Leone Spa®, Florence, Italy). To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Four cone-morse Leone implants (Leone® Spa, Florence, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was then measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 3% for P. gingivalis and 4% for T. forsythia. Cone-morse connection implant system has very low bacterial leakage percentage and is similar to one-piece implants.
Does Ferrule Effect Affect Implant-Abutment Stability?
Mohajerfar, Maryam; Beyabanaki, Elaheh; Geramy, Allahyar; Siadat, Hakimeh; Alikhasi, Marzieh
2016-12-01
This study investigated the influence of placing implant-supported crowns on the torque loss of the abutment screw before and after loading. Twenty implant-abutment assemblies were randomly assigned to two groups. The first group was consisted of abutments with abutment-level finishing line (abutment-level), and in the second group the crown margin was placed on the implant shoulder (implant-level). Initial torque loss was recorded for all specimens. After 500000 cyclic load of 75 N and frequency of 2 Hz, post loading torque loss was recorded. Finite element model of each group was also modeled and screw energy, and stress were analyzed and compared between two groups. ANOVA for repeated measurements showed that the torque loss did not change significantly after cyclic loading (P=0.73). Crown margin also had no significant effect on the torque loss (P=0.56). However, the energy and stress of screw in abutment-level model (4.49 mJ and 22.74 MPa) was higher than implant-level model (3.52 mJ and 20.81 MPa). Although embracing the implant with crown produced less stress and energy in the abutment-implant screw, it did not have any significant influence on the torque loss of the screw. Copyright© 2016 Dennis Barber Ltd
Microleakage Evaluation at Implant-Abutment Interface Using Radiotracer Technique
Siadat, Hakimeh; Arshad, Mahnaz; Mahgoli, Hossein-Ali; Fallahi, Babak
2016-01-01
Objectives: Microbial leakage through the implant-abutment (I-A) interface results in bacterial colonization in two-piece implants. The aim of this study was to compare microleakage rates in three types of Replace abutments namely Snappy, GoldAdapt, and customized ceramic using radiotracing. Materials and Methods: Three groups, one for each abutment type, of five implants and one positive and one negative control were considered (a total of 17 regular body implants). A torque of 35 N/cm was applied to the abutments. The samples were immersed in thallium 201 radioisotope solution for 24 hours to let the radiotracers leak through the I-A interface. Then, gamma photons received from the radiotracers were counted using a gamma counter device. In the next phase, cyclic fatigue loading process was applied followed by the same steps of immersion in the radioactive solution and photon counting. Results: Rate of microleakage significantly increased (P≤0.05) in all three types of abutments (i.e. Snappy, GoldAdapt, and ceramic) after cyclic loading. No statistically significant differences were observed between abutment types after cyclic loading. Conclusions: Microleakage significantly increases after cyclic loading in all three Replace abutments (GoldAdapt, Snappy, ceramic). Lowest microleakage before and after cyclic loading was observed in GoldAdapt followed by Snappy and ceramic. PMID:28392814
Paek, Janghyun; Woo, Yi-Hyung; Kim, Hyeong-Seob; Pae, Ahran; Noh, Kwantae; Lee, Hyeonjong; Kwon, Kung-Rock
2016-12-01
The aim of this study was to determine the stability of computer-aided design and manufacturing (CAD/CAM) and prefabricated abutment by measuring removal torque before and after cyclic loading. Three types of fixture and 2 types of abutments were used. Removable torque was measured after cyclic loading for 5000 cycles between 25 and 250 N for each group. The same procedure was performed twice. First, removal torque values (Newton centimeter) were measured for stock versus custom abutments as follows: group 1: 27.17 versus 26.67, group 2: 26.27 versus 26.33, and group 3: 37.33 versus 36.67. Second removal torque values (Newton centimeter) were also measured: group 1: 23 versus 23.5, group 2: 22.5 versus 22.33, and group 3: 32.67 versus 32.5. There was no significant difference between the stock and custom abutments in either the first or second removal torque values and also no significant difference among initial tightening torque, first or second removal torque (P > 0.05). With precise control of CAD/CAM abutments, good screw joint stability can be achieved.
Mendes, Stella de N C; Edwards Rezende, Carlos E; Moretti Neto, Rafael T; Capello Sousa, Edson A; Henrique Rubo, José
2013-04-01
Passive fit has been considered an important requirement for the longevity of implant-supported prostheses. Among the different steps of prostheses construction, casting is a feature that can influence the precision of fit and consequently the uniformity of possible deformation among abutments upon the framework connection. This study aimed at evaluating the deformation of abutments after the connection of frameworks either cast in one piece or after soldering. A master model was used to simulate a human mandible with 5 implants. Ten frameworks were fabricated on cast models and divided into 2 groups. Strain gauges were attached to the mesial and distal sides of the abutments to capture their deformation after the framework's screw retentions were tightened to the abutments. The mean values of deformation were submitted to a 3-way analysis of variance that revealed significant differences between procedures and the abutment side. The results showed that none of the frameworks presented a complete passive fit. The soldering procedure led to a better although uneven distribution of compression strains on the abutments.
Influence of abutment materials on the resultant color of heat-pressed lithium disilicate ceramics.
Shimada, Kazuki; Nakazawa, Motoko; Kakehashi, Yoshiyuki; Matsumura, Hideo
2006-03-01
The purpose of this study was to evaluate the influence of abutment materials on the color of IPS Empress 2 ceramic coping with different thicknesses. Ceramic coping specimens (12.0x12.0x0.8-2.0 mm) were fabricated from IPS Empress 2 material (Ingot-100, n=5/group). Abutment specimens were fabricated from a build-up composite, a gold alloy, or a silver-palladium alloy. Color was evaluated using a colorimeter according to the CIE L*a*b* system. The L*a*b* values of the ceramic coping specimens of different thicknesses on each abutment specimen were measured. Following which, the color difference (deltaE*ab) values between the ceramic coping specimens on various abutment specimens were calculated. Significant differences in deltaE*ab value were observed among different abutment specimens at certain ceramic coping thicknesses (P<0.05). Thus, it was concluded that the color of IPS Empress 2 coping material was influenced significantly by both the thickness of the coping and the color of the abutment material.
Design of piles for integral abutment bridges.
DOT National Transportation Integrated Search
1984-08-01
More and more, integral abutment bridges are being used in place : of the more traditional bridge designs with expansion releases. In : this study, states which use integral abutment bridges were surveyed : to determine their current practice in the ...
19. DETAIL, WEST ABUTMENT, FROM NORTH, SHOWING SQUARED STONE MASONRY ...
19. DETAIL, WEST ABUTMENT, FROM NORTH, SHOWING SQUARED STONE MASONRY ABUTMENT, WITH PORTION OF SUPERSTRUCTURE - Virginia Department of Transportation Bridge No. 6051, Spanning Catoctin Creek at State Route 673 (Featherbottom Road), Waterford, Loudoun County, VA
Read-In Integrated Circuits for Large-Format Multi-Chip Emitter Arrays
2015-03-31
chip has been designed and fabricated using ONSEMI C5N process to verify our approach. Keywords: Large scale arrays; Tiling; Mosaic; Abutment ...required. X and y addressing is not a sustainable and easily expanded addressing architecture nor will it work well with abutted RIICs. Abutment Method... Abutting RIICs into an array is challenging because of the precise positioning required to achieve a uniform image. This problem is a new design
Al-Almaie, Saad
2017-01-01
This rare case report describes prosthodontic complications resulting from a dental implant was placed surgically more distally in the area of the missing mandibular first molar with a cantilever effect and a crest width of >12 mm in a 59-year-old patient who had a history of bruxism. Fracture of abutment is a common complication in implant was placed in area with high occlusal forces. Inability to remove the broken abutment may most often end up in discarding the implant. Adding one more dental implant mesially to the previously placed implant, improvisation of technique to remove the broken abutment without sacrificing the osseointegrated dental implant, fabrication with cemented custom-made abutment to replace the broken abutment for the first implant, and the use of the two implants to replace a single molar restoration proved reliable and logical treatment solutions to avoid these prosthodontic complications.
Evaluation of Maryland abutment scour equation through selected threshold velocity methods
Benedict, S.T.
2010-01-01
The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.
Kutkut, Ahmad; Abu-Hammad, Osama; Frazer, Robert
2016-01-01
Impression techniques for implant restorations can be implant level or abutment level impressions with open tray or closed tray techniques. Conventional implant-abutment level impression techniques are predictable for maximizing esthetic outcomes. Restoration of the implant traditionally requires the use of the metal or plastic impression copings, analogs, and laboratory components. Simplifying the dental implant restoration by reducing armamentarium through incorporating conventional techniques used daily for crowns and bridges will allow more general dentists to restore implants in their practices. The demonstrated technique is useful when modifications to implant abutments are required to correct the angulation of malpositioned implants. This technique utilizes conventional crown and bridge impression techniques. As an added benefit, it reduces costs by utilizing techniques used daily for crowns and bridges. The aim of this report is to describe a simplified conventional impression technique for custom abutments and modified prefabricated solid abutments for definitive restorations. PMID:29563457
Esposito, Marco; Cardaropoli, Daniele; Gobbato, Luca; Scutellà, Fabio; Fabianelli, Andrea; Mascellani, Saverio; Delli Ficorelli, Gianluca; Mazzocco, Fabio; Sbricoli, Luca; Trullenque-Eriksson, Anna
To evaluate whether there are aesthetic and clinical benefits to using a newly designed abutment (Curvomax), over a conventional control abutment (GingiHue). A total of 49 patients, who required at least two implants, had two sites randomised according to a split-mouth design to receive one abutment of each type at seven different centres. The time of loading (immediate, early or delayed) and of prosthesis (provisional crowns of fixed prosthesis) was decided by the clinicians, but they had to restore both implants in a similar way. Provisional prostheses were replaced by definitive ones 3 months after initial loading, when the follow-up for the initial part of this study was completed. Outcome measures were: prosthesis failures, implant failures, complications, pink esthetic score (PES), peri-implant marginal bone level changes, and patient preference. In total, 49 Curvomax and 49 GingiHue abutments were delivered. Two patients dropped out. No implant failure, prosthesis failure or complication was reported. There were no differences at 3 months post-loading for PES (difference = -0.15, 95% CI -0.55 to 0.25; P (paired t test) = 0.443) and marginal bone level changes (difference = -0.02 mm, 95% CI -0.20 to 0.16; P (paired t test) = 0.817). The majority of the patients (30) had no preference regarding the two abutment designs; 11 patients preferred the Curvomax, while five patients preferred the GingiHue abutments (P (McNemar test) = 0.210). The preliminary results of the comparison between two different abutment designs did not disclose any statistically significant differences between the evaluated abutments. However the large number of missing radiographs and clinical pictures casts doubt on the reliability of the results. Longer follow-ups of wider patient populations are needed to better understand whether there is an effective advantage with one of the two abutment designs. Conflict of interest statement: This research project was originally partially funded by Biomax (Andover, MA, USA), the manufacturer of the Curvomax abutments evaluated in this investigation. Biomax, under pressure from some investigators, asked to modify the original agreed protocol. In a following phase, Zimmer-Biomet (Palm Beach Gardens, Florida, USA), the manufacturer of the implants and the GingiHue abutments, took over the funding of this project. Data belonged to the authors and the sponsors did not interfere with the publication of results.
Performance of conical abutment (Morse Taper) connection implants: a systematic review.
Schmitt, Christian M; Nogueira-Filho, Getulio; Tenenbaum, Howard C; Lai, Jim Yuan; Brito, Carlos; Döring, Hendrik; Nonhoff, Jörg
2014-02-01
In this systematic review, we aimed to compare conical versus nonconical implant-abutment connection systems in terms of their in vitro and in vivo performances. An electronic search was performed using PubMed, Embase, and Medline databases with the logical operators: "dental implant" AND "dental abutment" AND ("conical" OR "taper" OR "cone"). Names of the most common conical implant-abutment connection systems were used as additional key words to detect further data. The search was limited to articles published up to November 2012. Recent publications were also searched manually in order to find any relevant studies that might have been missed using the search criteria noted above. Fifty-two studies met the inclusion criteria and were included in this systematic review. As the data and methods, as well as types of implants used was so heterogeneous, this mitigated against the performance of meta-analysis. In vitro studies indicated that conical and nonconical abutments showed sufficient resistance to maximal bending forces and fatigue loading. However, conical abutments showed superiority in terms of seal performance, microgap formation, torque maintenance, and abutment stability. In vivo studies (human and animal) indicated that conical and nonconical systems are comparable in terms of implant success and survival rates with less marginal bone loss around conical connection implants in most cases. This review indicates that implant systems using a conical implant-abutment connection, provides better results in terms of abutment fit, stability, and seal performance. These design features could lead to improvements over time versus nonconical connection systems. © 2013 Wiley Periodicals, Inc.
2015-01-01
PURPOSE To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non-quantitatively. RESULTS All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented. PMID:25932314
The effect of repeated torque in small diameter implants with machined and premachined abutments.
Saboury, Abolfazl; Neshandar Asli, Hamid; Vaziri, Shahram
2012-05-01
Detorquing value is an important factor in the amount of preload stresses during abutment screw fastening. This study evaluated the percentage of detorque values in two-piece machined titanium and premachined cast abutments in small diameter implants. Three groups of five samples were evaluated. Group 1 (G1), machined titanium abutments, group 2 (G2), premachined cast straight abutments that cast with gold-palladium, and group 3 (G3), premachined angled cast abutments that cast with the same alloy, were angled before casting. Each abutment was torque to 24 Ncm according to the manufacturer's instructions and detorqued five times. The means of detorquing and torquing values in all groups were recorded. The mean of detorque in each group as a percentage of the toque value was calculated. The data for all groups were compared and calculated using analysis of variance (ANOVA) and t-test. Mean detorque values in G1, G2, and G3 were 88.1 ± 1.69, 93.1 ± 2.68, and 80.9 ± 4.95%, respectively. The ANOVA showed significant differences in mean of applied detorque (p < .001) and torque (p = .06) tightening among different groups. G2 had significantly greater detorque values (p < .05). No significant differences were found between G1 and G2. Surprisingly, abutment screw fracture occurred in three samples of G3. G3 showed significant percentage torque reduction (p < .05) and exhibited abutment screw fracture during evaluation. G2 presented the lowest torque reduction. Screw fracture occurred only in G3. © 2012 Wiley Periodicals, Inc.
Calcaterra, Roberta; Di Girolamo, Michele; Mirisola, Concetta; Baggi, Luigi
2016-01-01
Screw loosening can damage the interfaces of implant components, resulting in susceptibility to contamination of the internal parts by microorganisms. The aim of this study was to investigate the impact of abutment screw retightening on the leakage of two different types of bacteria, Streptococcus sanguinis and Fusobacterium nucleatum, and of the yeast Candida albicans. Two types of implant-abutment systems with tube-in-tube interfaces were tested. Groups A and B each used a different type of system that consisted of 20 different pieces that were assembled according to the manufacturer's torque recommendations; four samples in each group were closed just one time, four samples three times, four samples five times, four samples seven times, and four samples nine times. The implants of groups A and B were contaminated with 0.1 μL of microbial solution just before being assembled for the last time to minimize the possibility of contamination. Results showed a direct correlation between the number of colony-forming units grown in the plates and the closing/opening cycles of the implant-abutment systems. Within the limitations of this study, the results indicate the possibility that repeated closing/opening cycles of the implant-abutment unit may influence bacterial/yeast leakage, most likely as a consequence of decreased precision of the coupling between the abutment and the internal part of the dental implant. These findings suggest that a one-time abutment technique may avoid microbiologic leakage in cases of implant-abutment systems with tube-in-tube interfaces.
18. DETAIL, WEST ABUTMENT, FROM NORTHEAST, SHOWING SQUARED STONE MASONRY ...
18. DETAIL, WEST ABUTMENT, FROM NORTHEAST, SHOWING SQUARED STONE MASONRY ABUTMENT, WITH STRINGERS AND LATERAL BRACING - Virginia Department of Transportation Bridge No. 6051, Spanning Catoctin Creek at State Route 673 (Featherbottom Road), Waterford, Loudoun County, VA
Removal Torque and Biofilm Accumulation at Two Dental Implant-Abutment Joints After Fatigue.
Pereira, Jorge; Morsch, Carolina S; Henriques, Bruno; Nascimento, Rubens M; Benfatti, Cesar Am; Silva, Filipe S; López-López, José; Souza, Júlio Cm
2016-01-01
The aim of this study was to evaluate the removal torque and in vitro biofilm penetration at Morse taper and hexagonal implant-abutment joints after fatigue tests. Sixty dental implants were divided into two groups: (1) Morse taper and (2) external hexagon implant-abutment systems. Fatigue tests on the implant-abutment assemblies were performed at a normal force (FN) of 50 N at 1.2 Hz for 500,000 cycles in growth medium containing human saliva for 72 hours. Removal torque mean values (n = 10) were measured after fatigue tests. Abutments were then immersed in 1% protease solution in order to detach the biofilms for optical density and colony-forming unit (CFU/cm²) analyses. Groups of implant-abutment assemblies (n = 8) were cross-sectioned at 90 degrees relative to the plane of the implant-abutment joints for the microgap measurement by field-emission guns scanning electron microscopy. Mean values of removal torque on abutments were significantly lower for both Morse taper (22.1 ± 0.5 μm) and external hexagon (21.1 ± 0.7 μm) abutments after fatigue tests than those recorded without fatigue tests (respectively, 24 ± 0.5 μm and 24.8 ± 0.6 μm) in biofilm medium for 72 hours (P = .04). Mean values of microgap size for the Morse taper joints were statistically signicantly lower without fatigue tests (1.7 ± 0.4 μm) than those recorded after fatigue tests (3.2 ± 0.8 μm). Also, mean values of microgap size for external hexagon joints free of fatigue were statistically signicantly lower (1.5 ± 0.4 μm) than those recorded after fatigue tests (8.1 ± 1.7 μm) (P < .05). The optical density of biofilms and CFU mean values were lower on Morse taper abutments (Abs630nm at 0.06 and 2.9 × 10⁴ CFU/cm²) than that on external hexagon abutments (Abs630nm at 0.08 and 4.5 × 10⁴ CFU/cm²) (P = .01). The mean values of removal torque, microgap size, and biofilm density recorded at Morse taper joints were lower in comparison to those recorded at external hexagon implant-abutment joints after fatigue tests in a simulated oral environment for 72 hours.
Lops, Diego; Stellini, Edoardo; Sbricoli, Luca; Cea, Niccolò; Romeo, Eugenio; Bressan, Eriberto
2017-10-01
The aim of the present clinical trial was to analyze, through spectrophotometric digital technology, the influence of the abutment material on the color of the peri-implant soft tissue in patients with thin gingival biotype. Thirty-seven patients received an endosseous dental implant in the anterior maxilla. At time of each definitive prosthesis delivery, an all-ceramic crown has been tried on gold, titanium and zirconia abutment. Peri-implant soft-tissue color has been measured through a spectrophotometer after the insertion of each single abutment. Also facial peri-implant soft-tissue thickness was measured at the level of the implant neck through a caliper. A specific software has been utilized to identify a standardized tissue area and to collect the data before the statistical analysis in Lab* color space. ΔE parameters of the selected abutments were tested for correlation with mucosal thickness. Pearson correlation test was used. Only 15 patients met the study inclusion criteria on peri-implant soft-tissue thickness. Peri-implant soft-tissue color was different from that around natural teeth, no matter which type of restorative material was selected. Measurements regarding all the abutments were above the critical threshold of ΔE 8.74 for intraoral color distinction by the naked eye. The ΔE mean values of gold and zirconium abutments were similar (11.43 and 11.37, respectively) and significantly lower (P = 0.03 and P = 0.04, respectively) than the titanium abutment (13.55). In patients with a facial soft-tissue thickness ≤2 mm, the ΔE mean value of gold and zirconia abutments was significantly lower than that of titanium abutments (P = 0.03 and P = 0.04, respectively) and much more close to the reference threshold of 8.74. For peri-implant soft tissue of ≤2 mm, gold or zirconia abutments could be selected in anterior areas treatment. Moreover, the thickness of the peri-implant soft tissue seemed to be a crucial factor in the abutment impact on the color of soft tissues with a thickness of ≤2 mm. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ahmed, Ayman; Maroulakos, Georgios; Garaicoa, Jorge
2016-05-01
Abutment screw loosening represents a common and challenging technical complication of cement-retained implant prostheses. This article describes the fabrication of a simple and accurate poly(methyl methacrylate) guide for identifying the location and angulation of the abutment screw access channel of a cement-retained implant prosthesis with a loosened abutment screw. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Gehrke, Sergio Alexandre; Delgado-Ruiz, Rafael Arcesio; Prados Frutos, Juan Carlos; Prados-Privado, María; Dedavid, Berenice Anina; Granero Marín, Jose Manuel; Calvo Guirado, José Luiz
This study aimed to evaluate the misfit of three different implant-abutment connections before and after cycling load. One hundred twenty dental implants and correspondent prefabricated titanium abutments were used. Three different implant-abutment connections were evaluated: Morse taper (MT group), external hexagon (EH group), and internal hexagon (IH group). Forty implants and 40 abutments were used per group. The parameters for the mechanical evaluation were set as: 360,000 cycles, load of 150 N, and frequency of 4 Hz. Samples were sectioned in their longitudinal and transversal axes, and the misfit of the implant-abutment connection was evaluated by scanning electron microscopy analysis. One-way analyses of variance, Tukey post hoc analyses (α = .05), and t test (P < .05) were used to determine differences between groups. At the longitudinal direction, all the groups showed the presence of microgaps before cycling load; after cycling load, microgaps were reduced in all groups (P > .05). Transversally, only the MT group showed full fitting after cycling load compared with the other groups (EH and IH) (P < .0001). The application of cycling load produces an accommodation of the implant-abutment connection in internal, external, and Morse taper connections. In the longitudinal direction, the accommodation decreases and/or eliminates the gap observed initially (before load). In the horizontal direction, Morse cone implant-abutment connections experience a complete accommodation with the elimination of the gap.
Liu, Yang; Wang, Jiawei
2017-11-01
To review the influences and clinical implications of micro-gap and micro-motion of implant-abutment interface on marginal bone loss around the neck of implant. Literatures were searched based on the following Keywords: implant-abutment interface/implant-abutment connection/implant-abutment conjunction, microgap, micromotion/micromovement, microleakage, and current control methods available. The papers were then screened through titles, abstracts, and full texts. A total of 83 studies were included in the literature review. Two-piece implant systems are widely used in clinics. However, the production error and masticatory load result in the presence of microgap and micromotion between the implant and the abutment, which directly or indirectly causes microleakage and mechanical damage. Consequently, the degrees of microgap and micromotion further increase, and marginal bone absorption finally occurs. We summarize the influences of microgap and micromotion at the implant-abutment interface on marginal bone loss around the neck of the implant. We also recommend some feasible methods to reduce their effect. Clinicians and patients should pay more attention to the mechanisms as well as the control methods of microgap and micromotion. To reduce the corresponding detriment to the implant marginal bone, suitable Morse taper or hybrid connection implants and platform switching abutments should be selected, as well as other potential methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meijer, Henny J.A.; Kerdijk, Wouter; Raghoebar, Gerry M.; Cune, Marco
2016-01-01
Abstract Background Single‐tooth replacement often requires a prefabricated dental implant and a customized crown. The benefits of individualization of the abutment remain unclear. Purpose This randomized controlled clinical trial aims to study potential benefits of individualization of zirconia implant abutments with respect to preservation of marginal bone level and several clinical and patient‐based outcome measures. Material and Methods Fifty participants with a missing premolar were included and randomly assigned to standard (ZirDesign, DentsplySirona Implants, Mölndal, Sweden) or computer aided design/computer aided manufacturing (CAD/CAM) customized (Atlantis, DentsplySirona Implants, Mölndal, Sweden) zirconia abutment therapy. Peri‐implant bone level (primary outcome), Plaque‐index, calculus formation, bleeding on probing, gingiva index, probing pocket depth, recession, appearance of soft tissues and patients' contentment were assessed shortly after placement and one year later. Results No implants were lost and no complications related to the abutments were observed. Statistically significant differences between stock and CAD/CAM customized zirconia abutments could not be demonstrated for any of the operationalized variables. Conclusion The use of a CAD/CAM customized zirconia abutment in single tooth replacement of a premolar is not associated with an improvement in clinical performance or patients' contentment when compared to the use of a stock zirconia abutment. PMID:27476829
Schepke, Ulf; Meijer, Henny J A; Kerdijk, Wouter; Raghoebar, Gerry M; Cune, Marco
2017-02-01
Single-tooth replacement often requires a prefabricated dental implant and a customized crown. The benefits of individualization of the abutment remain unclear. This randomized controlled clinical trial aims to study potential benefits of individualization of zirconia implant abutments with respect to preservation of marginal bone level and several clinical and patient-based outcome measures. Fifty participants with a missing premolar were included and randomly assigned to standard (ZirDesign, DentsplySirona Implants, Mölndal, Sweden) or computer aided design/computer aided manufacturing (CAD/CAM) customized (Atlantis, DentsplySirona Implants, Mölndal, Sweden) zirconia abutment therapy. Peri-implant bone level (primary outcome), Plaque-index, calculus formation, bleeding on probing, gingiva index, probing pocket depth, recession, appearance of soft tissues and patients' contentment were assessed shortly after placement and one year later. No implants were lost and no complications related to the abutments were observed. Statistically significant differences between stock and CAD/CAM customized zirconia abutments could not be demonstrated for any of the operationalized variables. The use of a CAD/CAM customized zirconia abutment in single tooth replacement of a premolar is not associated with an improvement in clinical performance or patients' contentment when compared to the use of a stock zirconia abutment. © 2016 The Authors. Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.
Jugdev, Jasvinder; Borzabadi-Farahani, Ali; Lynch, Edward
2014-01-01
To assess the effect of airborne particle abrasion of metal implant abutments on tensile bond strength (TBS) of TempBond, Retrieve, and Premier implant cements. Specimens were designed to replicate a single metal implant crown cemented to both smooth and airborne particle-abraded Osteo-Ti implant abutments with zero degrees of taper. Twenty castings were fabricated and cemented to either a smooth surface abutment (SSA) or to an airborne particle-abraded abutment (AAA). TBS was measured with a 50-kg load and a crosshead speed of 0.5 cm/min in a universal testing machine. Each cement was tested 10 times on both abutment types. The mean TBS values (standard deviations, 95% confidence intervals) of SSAs for TempBond, Retrieve, and Premier cements were 115.89 N (26.44, 96.98-134.81), 134.43 N (36.95, 108.25-160.60), and 132.51 N (55.10, 93.09-171.93), respectively. The corresponding values for AAAs were 129.69 N (30.39, 107.95-151.43), 298.67 N (80.36, 241.19-356.16), and 361.17 N (133.23, 265.86-456.48), respectively. There was no significant difference in TBS among the dental cements when used with an SSA. Air abrasion of abutments did not increase the TBS of TempBond but significantly increased crown retention with Retrieve and Premier. For SSAs, all failures were adhesive on the abutment surface; for AAAs, mostly cohesive cement failures occurred. The retention of copings cemented with Retrieve or Premier to zero-degree-taper abutments was significantly increased after airborne particle abrasion of the abutments. However, this was not significant when TempBond was used. Airborne particle abrasion of abutments and the use of Retrieve or Premier can be recommended for nonretrievable prostheses. Although TempBond functioned similarly to the two other cements in SSAs, it is advisable to limit its use to provisional prostheses; its long-term performance needs to be assessed clinically.
Soil-structure interaction studies for understanding the behavior of integral abutment bridges.
DOT National Transportation Integrated Search
2012-03-01
Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...
Hydraulic Performance of Shallow Foundations for the Support of Vertical-Wall Bridge Abutments
DOT National Transportation Integrated Search
2017-02-01
This study combined abutment flume experiments with numerical modeling using computational fluid dynamics (CFD) to investigate flow fields and scour at vertical-wall abutments with shallow foundations. The focus was situations dominated by flow contr...
Nothdurft, Frank P; Doppler, Klaus E; Erdelt, Kurt J; Knauber, Andreas W; Pospiech, Peter R
2010-01-01
The aim of the study was to evaluate the influence of artificial aging on the fracture behavior of straight and angulated zirconia implant abutments used in ZirDesign (Astra Tech) implant/tooth-supported fixed partial dentures (FPDs) in the maxilla. Four different test groups (n = 8) representing anterior implant/tooth-supported FPDs were prepared. Groups 1 and 2 simulated a clinical situation with an ideal implant position (maxillary left central incisor) from a prosthetic point of view, which allowed for the use of a straight, prefabricated zirconia abutment. Groups 3 and 4 simulated a situation with a compromised implant position that required an angulated (20-degree) abutment. OsseoSpeed implants (4.5 3 13 mm, Astra Tech) as well as metal tooth analogs (maxillary right lateral incisor) with simulated periodontal mobility were mounted in polymethyl methacrylate. The FPDs (chromium-cobalt alloy) were cemented with glass ionomer. Groups 2 and 4 were thermomechanically loaded and subjected to static loading until failure. Statistical analysis of force data at the fracture site was performed using nonparametric tests. All samples survived thermomechanical loading. Artificial aging did not lead to a significant decrease in load-bearing capacity in either the straight abutments or the angulated abutments. The restorations that used angulated abutments exhibited higher fracture loads than the restorations with straight abutments (group 1: 209.13 ± 39.11 N; group 2: 233.63 ± 30.68 N; group 3: 324.62 ± 108.07 N; group 4: 361.75 ± 73.82 N). This difference in load-bearing performance was statistically significant, both with and without artificial aging. All abutment fractures occurred below the implant shoulder. Compensation for angulated implant positions with an angulated zirconia abutment is possible without reducing the load-bearing capacity of implant/tooth-supported anterior FPDs.
Oh, Seon-Hee
2015-01-01
PURPOSE The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. MATERIALS AND METHODS Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. RESULTS The effects of zirconia specimen thickness (P<.001), abutment shade (P<.001), and type of zirconia copings (P<.003) on the final shade of the zirconia restorations were significant. The average ΔE value of Lava specimens (1 mm) between the A2 composite resin and gold alloy abutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. CONCLUSION This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations. PMID:26576252
Influence of implant abutment material on the color of different ceramic crown systems.
Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak
2016-11-01
Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P<.001). Clinically unacceptable results (ΔE 00 >2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P<.05). The color results (ΔE 00 >2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Gehrke, Sergio Alexandre; da Silva Neto, Ulisses Tavares
2016-06-01
The objective of the present study was to investigate the effect on bone tissue healing patterns in 1-mm area treated in the transmucosal surface of the abutment in the tibia of rabbits. Forty-six abutments were divided into two groups: control group (CG) with 14 abutments with smooth surface and experimental group (EG) with 32 abutments presenting a 1-mm area of the transmucosal surface treated through sandblasting with microparticles of titanium oxide followed by acid etching. Five samples of each group were analyzed using an optical laser profilometer for surface roughness characterization. Thirty-six Morse taper implants (3.5 mm in diameter and 7 mm in length) were inserted 1.5 mm subcrestal into the tibiae of nine rabbits. The implants were removed after 8, 10, and 12 weeks for histological analysis. The histological slides were prepared and analyzed qualitatively in relation to the new bone at the interface bone-abutment and quantitatively, in relation to bone height from the base of the implant. These data were computed and statistically compared inside the groups using analysis of variance and the U-test between groups for same time. Both groups exhibited bone growth in the direction and over the surface of the abutments, with good healing. However, the EG group showed an increased height of bone formation in the crestal direction, and highly significant differences were observed (p < .001) between these measured values. Under the limitations of the present study, histological follow-up at 8, 10, and 12 weeks showed that transmucosal 1-mm area of implant abutment with treatment of the surface facilitated the maintenance of bone height around the abutment compared with the same abutment with the totally smooth surface. © 2015 Wiley Periodicals, Inc.
Kim, Seok-Gyu; Park, Jae-Uk; Jeong, Jae-Heon; Bae, Chang; Bae, Tae-Soo; Chee, Winston
2009-01-01
The purpose of this study was to evaluate the clinical efficacy of implant prostheses retained by screws and cement (SCPs) by examining the reverse torque values (RTVs) of the abutment screws and the marginal openings of the implant prostheses. Two implants (3.8 x 13 mm; Camlog Biotechnologies) were embedded in an acrylic resin block 5 mm apart. Eighteen copies of this resin specimen were fabricated and randomly divided into two groups. Two-unit implant prostheses with two different designs-purely cement-retained implant prostheses (group 1) and SCPs (group 2)-were made out of type IV gold alloy and placed on the implants. After tightening to about 30 Ncm, the preloading RTVs of the abutment screws were measured. After retightening the abutment screws or cementing the prostheses, followed by cyclic loading, the postloading RTVs of the abutment screws were examined. Also, the marginal openings of the prostheses in the two groups were measured under a stereomicroscope. These measurements were compared statistically. The postloading RTVs and their differences from the preloading RTVs of the abutment screws demonstrated no significant differences between groups (P > .05). Group 2 prostheses showed significantly smaller marginal openings than group 1 prostheses (P < .05). The forces generated when torquing the abutment screw of the SCP did not cause more loosening of the abutment screws than the purely cement-retained implant prosthesis. The SCP showed better marginal adaptation of the cement-retained part than the purely cement-retained implant prosthesis, possibly as a result of the screw-retained abutment seating the restoration. Within the limitations of this in vitro test, the SCP showed no significant difference in RTV of the abutment screw and a smaller marginal gap compared to a purely cement-retained implant prosthesis.
Delgado-Ruiz, Rafael Arcesio; Calvo-Guirado, Jose Luis; Abboud, Marcus; Ramirez-Fernandez, Maria Piedad; Maté-Sánchez de Val, José Eduardo; Negri, Bruno; Gomez-Moreno, Gerardo; Markovic, Aleksa
2015-08-01
To describe contact, thickness, density, and orientation of connective tissue fibers around healing abutments of different geometries by means of a new method using coordinates. Following the bilateral extraction of mandibular premolars (P2, P3, and P4) from six fox hound dogs and a 2-month healing period, 36 titanium implants were inserted, onto which two groups of healing abutments of different geometry were screwed: Group A (concave abutments) and Group B (wider healing abutment). After 3 months the animals were sacrificed and samples extracted containing each implant and surrounding soft and hard tissues. Histological analysis was performed without decalcifying the samples by means of circularly polarized light under optical microscope and a system of vertical and horizontal coordinates across all the connective tissue in an area delimited by the implant/abutment, epithelium, and bone tissue. In no case had the connective tissue formed a connection to the healing abutment/implant in the internal zone; a space of 35 ± 10 μm separated the connective tissue fibers from the healing abutment surface. The total thickness of connective tissue in the horizontal direction was significantly greater in the medial zone in Group B than in Group A (p < .05). The orientation of the fibers varied according to the coordinate area so that internal coordinates showed a higher percentage of parallel fibers in Group A (p < .05) and a higher percentage of oblique fibers in Group B (p < .05); medial coordinates showed more oblique fibers (p < .05); and the area of external coordinates showed the highest percentage of perpendicular fibers (p < .05). The fiber density was higher in the basal and medial areas (p < .05). Abutment geometry influences the orientation of collagen fibers; therefore, an abutment with a profile wider than the implant platform favors oblique and perpendicular orientation of collagen fibers and greater connective tissue thickness. © 2013 Wiley Periodicals, Inc.
Canullo, Luigi; Dehner, Jan Friedrich; Penarrocha, David; Checchi, Vittorio; Mazzoni, Annalisa; Breschi, Lorenzo
2016-01-01
The aim of this preliminary prospective RCT was to histologically evaluate peri-implant soft tissues around titanium abutments treated using different cleaning methods. Sixteen patients were randomized into three groups: laboratory customized abutments underwent Plasma of Argon treatment (Plasma Group), laboratory customized abutments underwent cleaning by steam (Steam Group), and abutments were used as they came from industry (Control Group). Seven days after the second surgery, soft tissues around abutments were harvested. Samples were histologically analyzed. Soft tissues surrounding Plasma Group abutments predominantly showed diffuse chronic infiltrate, almost no acute infiltrate, with presence of few polymorphonuclear neutrophil granulocytes, and a diffuse presence of collagenization bands. Similarly, in Steam Group, the histological analysis showed a high variability of inflammatory expression factors. Tissues harvested from Control Group showed presence of few neutrophil granulocytes, moderate presence of lymphocytes, and diffuse collagenization bands in some sections, while they showed absence of acute infiltrate in 40% of sections. However, no statistical difference was found among the tested groups for each parameter (p > 0.05). Within the limit of the present study, results showed no statistically significant difference concerning inflammation and healing tendency between test and control groups.
A new system of implant abutment connection: how to improve a two piece implant system sealing.
Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F
2017-01-01
Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.
Wear at the Implant-Abutment Interface of Zirconia Abutments Manufactured by Three CAD/CAM Systems.
Pinheiro Tannure, Ana Luiza; Cunha, Alfredo Gonçalves; Borges Junior, Luiz Antônio; da Silva Concílio, Laís Regiane; Claro Neves, Ana Christina
To evaluate the changes in the external-hexagon surface of the titanium (Ti) implant before and after mechanical cycling, when coupled with zirconia (Zr) abutments (A) manufactured by three computer-aided design/computer-aided manufacturing (CAD/CAM) systems (Neodent Digital, Zirkonzahn, and AmannGirrbach) and the ZrTi abutment manufactured by Neodent. Four groups were formed (n = 6): titanium implant with Zr AmannGirrbach abutment (AZrAG), with Zr Zirkonzahn abutment (AZrZ), with Zr Neodent abutment (AZrN), and with Zr abutment with infrastructure in Ti Neodent (AZrTiN). Standardized abutments were made from three identical abutments milled in wax. Images of the surface of each side of the hexagons of the implant were obtained by scanning electron microscopy, before and after mechanical cycling, to evaluate the parameters: (1) scratches in the hexagon face; (2) hexagon superior shoulder kneading; (3) hexagon shoulder wear; (4) alterations on the hexagon base; and (5) scratches on the hexagon top. The abutments were coupled with the implants, and Cr-Co crowns were cemented. The implant/abutment/crown assemblies were submitted to mechanical cycling (400 N, 8.0 Hz) for 1 million cycles. The observed changes were classified as follows: absence (0), mild (1), moderate (2), and severe (3). The results were analyzed using the Mann-Whitney, Kruskal-Wallis, and Dunn tests (P < .05). For parameter 1, a significant difference (P = .008) was observed between AZrZ and AZrAG, with more scratches in AZrZ; and between AZrN and AZrTiN (P = .006), with more scratches in AZrN. For parameter 2, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with greater kneading in AZrZ; among AZrN and AZrTiN, there was no significant difference (P = .103). For parameter 3, a significant difference (P < .05) was observed between AZrZ and the other groups of Zr, with more wear in AZrZ; between AZrN and AZrTiN, there was no significant difference (P = .107). For parameter 4, a significant difference (P < .05) was observed between AZrZ and AZrN, with more scratches in AZrZ; a significant difference (P = .002) was also observed between AZrN and AZrTiN, with more scratches in AZrN. For parameter 5, a significant difference (P < .05) was observed between AZrZ and AZrAG and between AZrZ and AZrN, with the fewest scratches in AZrZ; a significant difference (P = .006) was also observed between AZrN and AZrTiN, with more alterations in AZrN. Considering all the alterations, the AZrZ group showed more surface alteration, 1.74 (0.99); followed by AZrN, 1.43 (0.92); AZrAG, 1.32 (0.96); and AZrTiN, 0.88 (0.94). Among the Neodent abutments, the AZrN group had shown more surface alterations. Among the Zr groups, AZrZ samples had shown the most altered surfaces, suggesting that alterations on the implant/Zr abutment hexagon surfaces are related to the abutment milled hexagon shape.
Potential-scour assessments and estimates of maximum scour at selected bridges in Iowa
Fischer, E.E.
1995-01-01
Although the abutment-scour equation predicted deep scour holes at many of the sites, the only significant abutment scour that was measured was erosion of the embankment at the left abutment at one bridge after a flood.
Prosthetic management of malpositioned implant using custom cast abutment
Chatterjee, Aishwarya; Ragher, Mallikarjuna; Patil, Sanket; Chatterjee, Debopriya; Dandekeri, Savita; Prabhu, Vishnu
2015-01-01
Two cases are reported with malpositioned implants. Both the implants were placed 6–7 months back. They had osseointegrated well with the surrounding bone. However, they presented severe facial inclination. Case I was restored with custom cast abutment with an auto polymerizing acrylic gingival veneer. Case II was restored with custom cast UCLA type plastic implant abutment. Ceramic was directly fired on the custom cast abutments. The dual treatment strategy resulted in functional and esthetic restorations despite facial malposition of the implants. PMID:26538957
Linkevicius, Tomas; Vaitelis, Julius
2015-09-01
The objective of this review was to analyze research with regard to the effect of zirconia or titanium as abutment material on soft peri-implant tissues. Clinical studies were selected via electronic and hand searches in English language journals until December 1, 2014. Only randomized clinical trials (RCTs) and prospective controlled clinical trials (CCTs) showing direct comparison between zirconia (Zr) and titanium (Ti) abutments in the same patient were considered. The outcome measures were (1) soft tissue color, (2) soft tissue recession, (3) peri-implant probing, (4) bleeding on probing, (5) esthetic indexes, (6) patient-reported outcome, (7) marginal bone level, and (8) biological complications. Nine relevant studies (11 papers) were identified: 4 RCTs and 5 CCTs. Due to heterogeneity in the study design, statistical methods, and reported results, a meta-analysis of the data was feasible only for soft tissue color. The outcome was found to be significantly superior for Zr abutments. For the other outcome measures, a qualitative analysis of the selected articles was performed. The studies did not show any statistically significant differences between Zr and Ti abutments on soft tissue recession, probing depths, bleeding on probing, marginal bone level, and patient-reported outcome. One study reported significantly higher pink esthetic score (PES) scores at Zr implants with Zr abutments, compared to metal implants and Ti abutments. Overall, the research does not support any obvious advantage of Ti or Zr abutments over each other. However, there is a significant tendency in Zr abutments evoking better color response of peri-implant mucosa and superior esthetic outcome measured by PES score. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mehl, Christian; Gassling, Volker; Schultz-Langerhans, Stephan; Açil, Yahya; Bähr, Telse; Wiltfang, Jörg; Kern, Matthias
The main aim of this study was to evaluate the influence of four different abutment materials and the adhesive joint of two-piece abutments on the cervical implant bone and soft tissue. Sixty-four titanium implants (Camlog Conelog; 4.3 ± 9 mm) were placed bone level into the edentulous arches of four minipigs. Four different types of abutments were placed at implant exposure: zirconium dioxide, lithium disilicate, and titanium bonded to a titanium luting base with resin cement; one-piece titanium abutments served as the control. The animals were sacrificed 6 months after implant exposure, and the bone-to-implant contact (BIC) area, sulcus depth, the length of the junctional epithelium and the connective tissue, the biologic width, and first cervical BIC-implant shoulder distance were measured using histomorphometry and light and fluorescence microscopy. Overall, 14 implants were lost (22%). At exposure, the implant shoulder-bone distance was 0.6 ± 0.7 mm. Six months later, the bone loss was 2.1 ± 1.2 mm measured histomorphometrically. There was a significant difference between the two measurements (P ≤ .0001). No significant influence could be found between any of the abutment materials with regard to bone loss or soft tissue anatomy (P > .05), with the exception of zirconium dioxide and onepiece titanium abutments when measuring the length of the junctional epithelium (P ≤ .01). The maxilla provided significantly more soft tissue and less bone loss compared with the mandible (P ≤ .02). All tested abutment materials and techniques seem to be comparable with regard to soft tissue properties and the cervical bone level.
NASA Astrophysics Data System (ADS)
Ishak, Muhammad Ikman; Shafi, Aisyah Ahmad; Rosli, M. U.; Khor, C. Y.; Zakaria, M. S.; Rahim, Wan Mohd Faizal Wan Abd; Jamalludin, Mohd Riduan
2017-09-01
The success of dental implant surgery is majorly dependent on the stability of prosthesis to anchor to implant body as well as the integration of implant body to bone. The attachment between dental implant body and abutment plays a vital role in attributing to the stability of dental implant system. A good connection between implant body cavity to abutment may minimize the complications of abutment loosening and implant fractures as widely reported in clinical findings. The aim of this paper is to investigate the effect of different abutment-implant connections on stress dispersion within the abutment and implant bodies as well as displacement of implant body via three-dimensional (3-D) finite element analysis (FEA). A 3-D model of mandible was reconstructed from computed tomography (CT) image datasets using an image-processing software with the selected region of interest was the left side covering the second premolar, first molar and second molar regions. The bone was modelled as compact (cortical) and porous (cancellous) structures. Besides, three implant bodies and three generic models of abutment with different types of connections - tapered interference fit (TIF), tapered integrated screwed-in (TIS) and screw retention (SR) were created using computer-aided design (CAD) software and all models were then analysed via 3D FEA software. Occlusal forces of 114.6 N, 17.2 N and 23.4 N were applied in the axial, lingual and mesio-distal directions, respectively, on the top surface of first molar crown. All planes of the mandibular bone model were rigidly fixed. The result exhibited that abutment with TIS connection produced the most favourable stress and displacement outcomes as compared to other attachment types. This is due to the existence of integrated screw at the bottom portion of tapered abutment which increases the motion resistance.
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi
2014-09-01
Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.
Wang, Qing-qing; Dai, Ruoxi; Cao, Chris Ying; Fang, Hui; Han, Min; Li, Quan-Li
2017-01-01
Objective This review aims to compare peri-implant tissue changes in terms of clinical and radiographic aspects of implant restoration protocol using one-time abutment to repeated abutment connection in platform switched implant. Method A structured search strategy was applied to three electronic databases, namely, Pubmed, Embase and Web of Science. Eight eligible studies, including seven randomised controlled studies and one controlled clinical study, were identified in accordance with inclusion/exclusion criteria. Outcome measures included peri-implant bone changes (mm), peri-implant soft tissue changes (mm), probing depth (mm) and postsurgical complications. Result Six studies were pooled for meta-analysis on bone tissue, three for soft tissue, two for probing depth and four for postsurgical complications. A total of 197 implants were placed in one-time abutment group, whereas 214 implants were included in repeated abutment group. The implant systems included Global implants, Ankylos, JDEvolution (JdentalCare), Straumann Bone level and Conelog-Screwline. One-time abutment group showed significantly better outcomes than repeated abutment group, as measured in the standardised differences in mean values (fixed- and random-effect model): vertical bone change (0.41, 3.23) in 6 months, (1.51, 14.81) in 12 months and (2.47, 2.47) in 3 years and soft tissue change (0.21, 0.23). No significant difference was observed in terms of probing depth and complications. Conclusion Our meta-analysis revealed that implant restoration protocol using one-time abutment is superior to repeated abutment for platform switched implant because of less bone resorption and soft tissue shifts in former. However, future randomised clinical trials should be conducted to further confirm these findings because of the small samples and the limited quality of the original research. PMID:29049323
Wang, Qing-Qing; Dai, Ruoxi; Cao, Chris Ying; Fang, Hui; Han, Min; Li, Quan-Li
2017-01-01
This review aims to compare peri-implant tissue changes in terms of clinical and radiographic aspects of implant restoration protocol using one-time abutment to repeated abutment connection in platform switched implant. A structured search strategy was applied to three electronic databases, namely, Pubmed, Embase and Web of Science. Eight eligible studies, including seven randomised controlled studies and one controlled clinical study, were identified in accordance with inclusion/exclusion criteria. Outcome measures included peri-implant bone changes (mm), peri-implant soft tissue changes (mm), probing depth (mm) and postsurgical complications. Six studies were pooled for meta-analysis on bone tissue, three for soft tissue, two for probing depth and four for postsurgical complications. A total of 197 implants were placed in one-time abutment group, whereas 214 implants were included in repeated abutment group. The implant systems included Global implants, Ankylos, JDEvolution (JdentalCare), Straumann Bone level and Conelog-Screwline. One-time abutment group showed significantly better outcomes than repeated abutment group, as measured in the standardised differences in mean values (fixed- and random-effect model): vertical bone change (0.41, 3.23) in 6 months, (1.51, 14.81) in 12 months and (2.47, 2.47) in 3 years and soft tissue change (0.21, 0.23). No significant difference was observed in terms of probing depth and complications. Our meta-analysis revealed that implant restoration protocol using one-time abutment is superior to repeated abutment for platform switched implant because of less bone resorption and soft tissue shifts in former. However, future randomised clinical trials should be conducted to further confirm these findings because of the small samples and the limited quality of the original research.
Christensen, Ann-Eva; Lorenzen, Henning
2017-01-01
ABSTRACT Objectives The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. Material and Methods A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. Results The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. Conclusions A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level. PMID:28496962
Farronato, Davide; Pieroni, Stefano; Mangano, Francesco Guido; Briguglio, Francesco; Re, Dino
2014-10-01
To evaluate the marginal adaptation at implant-abutment connection of an implant featuring a conical (45° taper) internal hexagonal abutment with a connection depth of 2.5mm, comparing the performance of two identical abutments of different material (titanium grade-4 and Co-Cr-alloy). Twenty implants (3.75 mm×15 mm) were connected to non-matching abutments (5.5 mm×10 mm) of two different materials (titanium grade-4: n=10; Co-Cr-alloy: n=10). The specimens were separately embedded in epoxylite resin, inside copper cylinders, and submerged without covering the most coronal portion (5 mm) of the fixture. Five specimens per group were stressed simulating a surgical 100 Ncm insertion torque, while the others had no torque simulation. All specimens were subjected to a non-axial static load (100 N) in a universal testing machine, under an angle of 30° with respect to the implant axis. Once 100 N load was reached, low shrinkage self-curing resin was injected inside the cylinders, and load was maintained until complete resin polymerization. Specimens were cut and analyzed with optical and scanning-electron-microscope (SEM) to evaluate the marginal adaptation at the implant-abutment connection. Statistical analysis was performed using one-way ANOVA (p=0.02). None of the 20 samples failed. The implant-abutment connection was able to guarantee a good optical seal; SEM analysis confirmed the absence of microgaps. Within the limits of this study (small sample size, limited time) the marginal adaptation of the implant-abutment connection was not affected by the abutment material nor by the application of surgical insertion torque. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Starch-Jensen, Thomas; Christensen, Ann-Eva; Lorenzen, Henning
2017-01-01
The objective was to test the hypothesis of no difference in implant treatment outcome after installation of implants with a scalloped implant-abutment connection compared to a flat implant-abutment connection. A MEDLINE (PubMed), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. No language or year of publication restriction was applied. The search provided 298 titles. Three studies fulfilled the inclusion criteria. The included studies were characterized by low or moderate risk of bias. Survival of suprastructures has never been compared within the same study. High implant survival rate was reported in all the included studies. Significantly more peri-implant marginal bone loss, higher probing depth score, bleeding score and gingival score was observed around implants with a scalloped implant-abutment connection. There were no significant differences between the two treatment modalities regarding professional or patient-reported outcome measures. Meta-analysis disclosed a mean difference of peri-implant marginal bone loss of 1.56 mm (confidence interval: 0.87 to 2.25), indicating significant more bone loss around implants with a scalloped implant-abutment connection. A scalloped implant-abutment connection seems to be associated with higher peri-implant marginal bone loss compared to a flat implant-abutment connection. Therefore, the hypothesis of the present systematic review must be rejected. However, further long-term randomized controlled trials assessing implant treatment outcome with the two treatment modalities are needed before definite conclusions can be provided about the beneficial use of implants with a scalloped implant-abutment connection on preservation of the peri-implant marginal bone level.
Krennmair, Gerald; Krainhöfner, Martin; Waldenberger, Otmar; Piehslinger, Eva
2007-01-01
The aim of this retrospective study was to present the results of implants and natural teeth used as combined abutments to support maxillary telescopic prostheses. Between 1997 and 2004, 22 patients with residual maxillary teeth underwent prosthodontic rehabilitation with supplementary implant placement of implant-tooth-supported telescopic prostheses. A total of 60 supplementary implants (mean: 2.9 implants; SD: 1.6; range: 1 to 5 per patient) were placed in strategic position and connected with 48 natural abutment teeth (mean: 2.2 teeth; SD: 0.9; range: 1 to 4 per patient) using telescopic crowns. The follow-up registration included implant and natural tooth survival rates and peri-implant and periodontal parameters, along with prosthodontic maintenance. Natural tooth abutments were additionally followed to compare their periodontal parameters at baseline to the follow-up examination. After a mean of 38 months (12 to 108 months) no implants or natural tooth abutments were lost (survival rate: 100%). There was no fracture, endodontic treatment, loss, or intrusion of natural teeth used for telescopic abutments. Implant abutments showed high stability and excellent periimplant soft tissue conditions. Natural tooth abutments used for double crowns also showed uneventful progress. A low rate of prosthodontic maintenance was seen, with implant screw abutment loosening as the most severe complication (3 of 60 implants; 5%). On the basis of this retrospective clinical review, the following conclusions were drawn: (1) successful function over a prolonged period and a minor complication rate of implant-tooth-supported telescopic maxillary dentures may be anticipated, and (2) the great variety of treatment modalities offered by tooth-implant support for telescopic prostheses appears to be useful as a treatment option for the maxilla in elderly patients.
Do Sealing Materials Influence Superstructure Attachment in Implants?
Biscoping, Stephanie; Ruttmann, Esther; Rehmann, Peter; Wöstmann, Bernd
This study aimed to evaluate the possible effect of sealing materials on superstructure attachment (ie, tightening/loosening torque and implant-abutment gap) in two different implant systems. A silicone, a chlorhexidine gel, and an industrial lubricant were tested. A 3D microscope was used for assessment of the implant-abutment gap, and the abutment screw was tightened and loosened with a digital torque screwdriver. A total of 20 implants per test group (10 BEGO Semados RI and 10 Nobel Biocare Replace Select Straight) were evaluated. The tested sealing materials did not influence the gap between implant and abutment, but the force necessary for loosening the abutment screws decreased significantly. Sealing materials may be useful against bacteria, but probably influence torque negatively.
The Evaluation of Unscrewing Torque Values of Implant-Abutment Connections: An In Vitro Study.
Bruna, Ezio; Fabianelli, Andrea; Mastriforti, Giacomo; Papacchini, Federica
This study investigated the stability of titanium screws in implant-abutment connections by measuring the force necessary to induce unscrewing. A total of 60 implant-abutment couplings were assigned to two groups (n = 30 each). The sequence 10-20-32 Ncm was tested in Group 1; the sequence 10-20-32-32-32 Ncm was tested in Group 2. The force necessary to unscrew each abutment-implant sample was recorded and statistically analyzed. The significance level was set at P < .05. Significant differences were found between the two sequences. Group 2 required higher forces than Group 1 to unscrew. The stability of the implant-abutment joint may be improved by tightening with the sequence 10-20-32-32-32 Ncm.
[A computer aided design approach of all-ceramics abutment for maxilla central incisor].
Sun, Yu-chun; Zhao, Yi-jiao; Wang, Yong; Han, Jing-yun; Lin, Ye; Lü, Pei-jun
2010-10-01
To establish the computer aided design (CAD) software platform of individualized abutment for the maxilla central incisor. Three-dimentional data of the incisor was collected by scanning and geometric transformation. Data mainly included the occlusal part of the healing abutment, the location carinae of the bedpiece, the occlusal 1/3 part of the artificial gingiva's inner surface, and so on. The all-ceramic crown designed in advanced was "virtual cutback" to get the original data of the abutment's supragingival part. The abutment's in-gum part was designed to simulate the individual natural tooth root. The functions such as "data offset", "bi-rail sweep surface" and "loft surface" were used in the process of CAD. The CAD route of the individualized all-ceramic abutment was set up. The functions and application methods were decided and the complete CAD process was realized. The software platform was basically set up according to the requests of the dental clinic.
Five-year multicenter study of magnetic attachments used for natural overdenture abutments.
Gonda, T; Yang, T C; Maeda, Y
2013-04-01
The purpose of this study was to examine a longitudinal clinical performance of magnetic attachments used for natural overdenture abutments. The study included 131 patients who had used removable prostheses (complete overdentures 31%, partial dentures 69%) more than 5 years (40-90 years old) with 211 magnetic attachments on natural abutments (Magfit 400 or 600; Aichi Steel co., Aichi, Japan) treated in 15 clinics using a standardized protocol. Analyses were performed on the degree of patient satisfaction regarding retention, complications of magnets (corrosion, detachment from denture base), abutments (pain during mastication, periodontal pocket formation, inflammation, mobility), and dentures (fracture etc.). Ninety-seven percent of patients were satisfied with the retention and stability of their dentures. No corrosion of magnet was observed, and 19 magnets were detached. Most frequent complication of abutments was periodontal pocket formation (52%), followed by the inflammation (29%), increase in mobility (27%) and pain (4%). Magnetic attachment on natural tooth abutments provided a viable and long-term treatment option. © 2013 Blackwell Publishing Ltd.
Esthetic abutment design for angulated screw channels: A technical report.
Sakamoto, Satoshi; Ro, Munehiko; Al Ardah, Aladdin; Goodacre, Charles
2017-11-15
Angulated screw channel system abutments (ASCs) have recently been introduced to address the problem with visible screw access that may compromise esthetics. ASCs allow the screw access to be modified up to 25 degrees relative to the implant axis. However, a widened channel, which may cause thinning of the facial ceramic, is needed at the implant screw head to allow for proper engagement of the screwdriver. This technical report introduces a custom titanium insert design, the Satoshi Sakamoto (SS) abutment. The SS abutment consists of a custom titanium metal insert and zirconia coping in which the access hole is located in an esthetic position with an ASC system. The SS abutment results in a crown with more normal crown dimensions that also provides more space for the soft tissues. This SS abutment design allows clinicians to obtain screw-retained restorations with optimal esthetics and mechanical strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Martinez, Arturo; Guitián, Francisco; López-Píriz, Roberto; Bartolomé, José F.; Cabal, Belén; Esteban-Tejeda, Leticia; Torrecillas, Ramón; Moya, José S.
2014-01-01
The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments. Three implants were placed in each mandible quadrant: in 2 of them, Glass/n-Ag coated abutments were connected to implant platform, 1 was covered with a Ti-mechanized abutment. Experimental peri-implantitis was induced in all implants after the submarginal placement of cotton ligatures, and three months after animals were euthanatized. Thickness and morphology of coating was studied in abutment cross-sections by SEM. Histology and histo-morphometric studies were carried on in undecalfied ground slides. After the induced peri-implantitis: 1.The abutment coating shown losing of thickness and cracking. 2. The histometry showed a significant less bone loss in the implants with glass/n-Ag coated abutments. A more symmetric cone of bone resorption was observed in the coated group. There were no significant differences in the peri-implantitis histological characteristics between both groups of implants. Within the limits of this in-vivo study, it could be affirmed that abutments coated with biocide soda-lime-glass-silver nanoparticles can reduce bone loss in experimental peri-implantitis. This achievement makes this coating a suggestive material to control peri-implantitis development and progression. PMID:24466292
Krejci, Ivo; Daher, René
2017-04-01
The goal of this short communication is to present finite element analysis comparison of the stress distribution between CAD/CAM full crowns made of Lava Ultimate and of IPS e.max CAD, adhesively luted to natural teeth and to implant abutments with the shape of natural teeth. Six 3D models were prepared using a 3D content-creating software, based on a micro-CT scan of a human mandibular molar. The geometry of the full crown and of the abutment was the same for all models representing Lava Ultimate full crowns (L) and IPS e.max CAD full crowns (E) on three different abutments: prepared natural tooth (n), titanium abutment (t) and zirconia abutment (z). A static load of 400 N was applied on the vestibular and lingual cusps, and fixtures were applied to the base of the models. After running the static linear analysis, the post-processing data we analyzed. The stress values at the interface between the crown and the abutment of the Lt and Lz groups were significantly higher than the stress values at the same interface of all the other models. The high stress concentration in the adhesive at the interface between the crown and the abutment of the Lava Ultimate group on implants might be one of the factors contributing to the reported debondings of crowns.
Effects of Screw Configuration on the Preload Force of Implant-Abutment Screws.
Zipprich, Holger; Rathe, Florian; Pinz, Sören; Schlotmann, Luca; Lauer, Hans-Christoph; Ratka, Christoph
The aim of this study was to investigate the effects of tightening torque, screw head angle, and thread number on the preload force of abutment screws. The test specimens consisted of three self-manufactured components (ie, a thread sleeve serving as an implant analog, an abutment analog, and an abutment screw). The abutment screws were fabricated with metric M1.6 external threads. The thread number varied between one and seven threads. The screw head angles were produced in eight varying angles (30 to 180 degrees). A sensor unit simultaneously measured the preload force of the screw and the torsion moment inside the screw shank. The tightening of the screw with the torque wrench was performed in five steps (15 to 35 Ncm). The torque wrench was calibrated before each step. Only the tightening torque and screw head angle affected the resulting preload force of the implant-abutment connection. The thread number had no effect. There was an approximately linear correlation between tightening torque and preload force. The tightening torque and screw head angle were the only study parameters that affected the resulting preload force of the abutment screw. The results obtained from this experiment are valid only for a single torque condition. Further investigations are needed that analyze other parameters that affect preload force. Once these parameters are known, it will add value for a strong, but detachable connection between the implant and abutment. Short implants and flat-to-flat connections especially will benefit significantly from this knowledge.
Load to failure of different zirconia implant abutments with titanium components.
Mascarenhas, Faye; Yilmaz, Burak; McGlumphy, Edwin; Clelland, Nancy; Seidt, Jeremy
2017-06-01
Abutments with a zirconia superstructure and a titanium insert have recently become popular. Although they have been tested under static load, their performance under simulated mastication is not well known. The purpose of this in vitro study was to compare the cyclic load to failure of 3 types of zirconia abutments with different mechanisms of retention of the zirconia to the titanium interface. Fifteen implants (n=5 per system) and abutments (3 groups: 5 friction fit [Frft]; 5 bonded; and 5 titanium ring friction fit [Ringfrft]) were used. Abutments were thermocycled in water between 5°C and 55°C for 15000 cycles and then cyclically loaded for 20000 cycles or until failure at a frequency of 2 Hz by using a sequentially increased loading protocol up to a maximum of 720 N. The load to failure for each group was recorded, and 1-way analysis of variance was performed. The mean load-to-failure values for the Frft group was 526 N, for the Bond group 605 N, and for the Ringfrft group 288 N. A statistically significant difference was found among all abutments tested (P<.05). Abutments with the bonded connection showed the highest load-to-failure value, and the abutment with the titanium ring friction fit connection showed the lowest load-to-failure value. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Stability of rock riprap for protection at the toe of abutments located at the floodplain.
DOT National Transportation Integrated Search
1991-09-01
This report presents the results of a research conducted in a hydraulic flume to : determine the stability of rock riprap protecting abutments located on flood : plains. The observed vulnerable zone for rock riprap failure is presented for : two abut...
DOT National Transportation Integrated Search
2011-01-01
Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand thei...
DOT National Transportation Integrated Search
2014-09-01
The primary objectives of this research are to monitor the : short-term and long-term behavior and performance of inservice : GRS-IBS abutments in the state of Louisiana, and to : verify important design factors and parameters for GRS-IBS : abutment,...
DOT National Transportation Integrated Search
2012-01-01
One of the major obstacles facing rapid bridge construction for typical span type bridges is the time required to construct bridge abutments and foundations. This can be remedied by using the controlled low strength materials (CLSM) bridge abutment. ...
Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok
2016-07-01
If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Chen, Yen-Yin; Chen, Weng-Pin; Chang, Hao-Hueng; Huang, Shih-Hao; Lin, Chun-Pin
2014-02-01
The aim of this study was to develop a novel dental implant abutment with a micro-motion mechanism that imitates the biomechanical behavior of the periodontal ligament, with the goal of increasing the long-term survival rate of dental implants. Computer-aided design software was used to design a novel dental implant abutment with an internal resilient component with a micro-motion capability. The feasibility of the novel system was investigated via finite element analysis. Then, a prototype of the novel dental implant abutment was fabricated, and the mechanical behavior was evaluated. The results of the mechanical tests and finite element analysis confirmed that the novel dental implant abutment possessed the anticipated micro-motion capability. Furthermore, the nonlinear force-displacement behavior apparent in this micro-motion mechanism imitated the movement of a human tooth. The slope of the force-displacement curve of the novel abutment was approximately 38.5 N/mm before the 0.02-mm displacement and approximately 430 N/mm after the 0.03-mm displacement. The novel dental implant abutment with a micro-motion mechanism actually imitated the biomechanical behavior of a natural tooth and provided resilient function, sealing, a non-separation mechanism, and ease-of-use. Copyright © 2013 Academy of Dental Materials. All rights reserved.
In Vitro Microbiological Analysis of Bacterial Seal in Hybrid Zirconia Abutment Tapered Connection.
Harlos, Maurício Marcelo; Bezerra da Silva, Thiago; Peruzzo, Daiane C; Napimoga, Marcelo H; Joly, Julio Cesar; Martinez, Elizabeth F
2017-04-01
The aim of this study was to evaluate the bacterial seal at the implant-hybrid zirconia abutment interface and Morse taper-type connections through in vitro microbiological analysis. Sixteen implants and their respective abutments were divided into 3 groups: test (10 sets), positive control (3 sets), and negative control (3 sets). In the test group, 10 implants were contaminated with Escherichia coli using a sterile inoculating loop to the inner portion of the implants, followed by torque application to the abutment (30 N·cm). The positive controls were also contaminated, but no torque was applied to the abutment screw. The negative control consisted of uncontaminated sets. All specimens were immersed in test tubes containing 5 mL brain heart infusion (BHI) broth, maintained in a microbiological incubator for 14 days at 37°C under aerobic conditions, and monitored every 24 hours for evidence of bacterial growth. During the 14 days of incubation, no significant increase in the number of cloudy culture media was observed in the test group (P = 0.448). No significant difference in broth turbidity ratio was observed (P > 0.05). Hybrid zirconia abutments can create an effective seal at the tapered abutment-implant interface with a 30-N·cm installation torque.
A study of possible ground-motion amplification at the Coyote Lake Dam, California
Boore, D.M.; Graizer, V.M.; Tinsley, J.C.; Shakal, A.F.
2004-01-01
The abutment site at the Coyote Lake Dam recorded an unusually large peak acceleration of 1.29g during the 1984 Morgan Hill earthquake. Following this earthquake another strong-motion station was installed about 700 m downstream from the abutment station. We study all events (seven) recorded on these stations, using ratios of peak accelerations, spectral ratios, and particle motion polarization (using holograms) to investigate the relative ground motion at the two sites. We find that in all but one case the motion at the abutment site is larger than the downstream site over a broad frequency band. The polarizations are similar for the two sites for a given event, but can vary from one event to another. This suggests that the dam itself is not strongly influencing the records. Although we can be sure that the relative motion is usually larger at the abutment site, we cannot conclude that there is anomalous site amplification at the abutment site. The downstream site could have lower-than-usual near-surface amplifications. On the other hand, the geology near the abutment site is extremely complex and includes fault slivers, with rapid lateral changes in materials and presumably seismic velocities. For this reason alone, the abutment site should not be considered a normal free-field site.
Removal torque of zirconia abutment screws under dry and wet conditions.
Nigro, Frederico; Sendyk, Claudio L; Francischone, Carlos Eduardo; Francischone, Carlos Eduardo
2010-01-01
The aim of this study was to verify whether screw abutment lubrication can generate higher preload values compared to non-lubricated screws, a titanium abutment was screwed onto an implant analog and scanned with the Procera System to generate 20 zirconia abutments. MKIII Brånemark implants were clamped to a precision torque device, and the abutments were distributed in dry and wet groups with 10 specimens each. In the wet groups, the inner threads of the implants were filled with artificial saliva. All abutments were fastened with a Torqtite screw under 32 Ncm. Ten detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean detorque values were calculated and compared by a Student's t test (α=0.05). The wet condition presented significantly higher mean detorque than the dry condition (31.5 ± 1.2 versus 27.5 ± 1.5 Ncm, respectively; p=0.0000024). In conclusion, there was always a loss in the initial torque values when the removal torque was measured under both conditions. The wet condition presented higher mean torque than the dry condition. Better preload values were established in the wet group, suggesting that the abutment screw must be lubricated in saliva to avoid further loosening.
Heat Generation on Implant Surface During Abutment Preparation at Different Elapsed Time Intervals.
Al-Keraidis, Abdullah; Aleisa, Khalil; Al-Dwairi, Ziad Nawaf; Al-Tahawi, Hamdi; Hsu, Ming-Lun; Lynch, Edward; Özcan, Mutlu
2017-10-01
The purpose of this study was to evaluate heat generation at the implant surface caused by abutment preparation using a diamond bur in a high-speed dental turbine in vitro at 2 different water-coolant temperatures. Thirty-two titanium-alloy abutments were connected to a titanium-alloy implant embedded in an acrylic resin placed within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each). Group 1: the temperature was maintained at 20 ± 1°C; and group 2: the temperature was maintained at 32 ± 1°C. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute. The temperature of the heat generated from abutment preparation was recorded and measured at 3 distinct time intervals. Water-coolant temperature (20°C vs 32°C) had a statistically significant effect on the implant's temperature change during preparation of the abutment (P < 0.0001). The use of water-coolant temperature of 20 ± 1°C during preparation of the implant abutment decreased the temperature recorded at the implant surface to 34.46°C, whereas the coolant temperature of 32 ± 1°C increased the implant surface temperature to 40.94°C.
Abutment Material Effect on Peri-implant Soft Tissue Color and Perceived Esthetics.
Kim, Aram; Campbell, Stephen D; Viana, Marlos A G; Knoernschild, Kent L
2016-12-01
The purpose of this study was to evaluate the effect of implant abutment material on peri-implant soft tissue color using intraoral spectrophotometric analysis and to compare the clinical outcomes with patient and clinician perception and satisfaction. Thirty patients and four prosthodontic faculty members participated. Abutments were zirconia, gold-hued titanium, and titanium. Peri-implant mucosa color of a single anterior implant restoration was compared to the patient's control tooth. Spectrophotometric analysis using SpectroShade TM Micro data determined the color difference (ΔE, ΔL*, Δa*, Δb*) between the midfacial peri-implant soft tissue for each abutment material and the marginal gingiva of the control tooth. Color difference values of the abutment groups were compared using ANOVA (α = 0.05). Patient and clinician satisfaction surveys were also conducted using a color-correcting light source. The results of each patient and clinician survey question were compared using chi-square analysis (α = 0.05). Pearson correlation analyses identified the relationship between the total color difference (ΔE) and the patient/clinician perception and satisfaction, as well as between ΔE and tissue thickness. Zirconia abutments displayed significantly smaller spectrophotometric gingival color difference (ΔE) compared to titanium and gold-hued titanium abutments (respectively, 3.98 ± 0.99; 7.22 ± 3.31; 5.65 ± 2.11; p < 0.05). Among ΔL*, Δa*, and Δb*, only Δa* (red-green spectrum) showed significant difference between groups. There was no significant correlation between measured soft tissue thickness and ΔE, but thick gingival phenotype, determined by a probe test, demonstrated a smaller ΔE than thin phenotype (4.82 ± 1.49; 6.41 ± 3.27; p = 0.097). There was no statistical difference in patient or clinician satisfaction among abutment materials, and no correlation between ΔE and the patient and clinician satisfaction. Patient satisfaction was significantly higher than clinician, and patient-perceived differences were lower than clinicians' (p < 0.01). Clinicians' satisfaction was higher for gingival (pink) esthetics than crown (white) esthetics (p < 0.05). Peri-implant mucosa with zirconia abutments demonstrated significantly lower mean color difference compared to titanium or gold-hued titanium abutments as measured spectrophotometrically; however, no statistical difference in patient or clinician perception/satisfaction among abutment materials was demonstrated. Patients were significantly more satisfied than clinicians. © 2015 by the American College of Prosthodontists.
Baj, A; Beltramini, G A; Bolzoni, A; Cura, F; Palmieri, A; Scarano, A; Ottria, L; Giannì, A B
2017-01-01
Bacterial leakage at the implant-abutment connection of a two-piece implant system is considered the main cause of peri-implantitis. Prevention of bacterial leakage at the implant-abutment connection is mandatory for reducing inflammation process around implant neck and achieving bone stability. Micro-cavities at implant-abutment connection level can favour bacterial leakage, even in modern two-piece implant systems. The conical connection with an internal octagon (CCIO) is considered to be more stable mechanically and allows a more tight link between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new two-implant system with an internal conical implant-abutment connection with internal octagon (Shiner XT, FMD Falappa Medical Devices S.p.A. Rome, Italy). To verify the ability of the implant in protecting the internal space from the external environment, the passage of genetically modified Escherichia c oli across implant-abutment interface was evaluated. Four Shiner XT implants (FMD, Falappa Medical Devices®, Rome, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 6% for P. gingivalis and 5% for T. forsythia. Other comparable studies about the tightness of the tested implant system reported similar results. The gap size at the implant-abutment connection of CCIOs was measured by other authors discovering a gap size of 1–2μm of the AstraTech system and of 4μm for the Ankylos system. Bacterial leakage along implant-abutment connection of cylindrical and tapered implants, Shiner XT, (FMD Falappa Medical Devices S.p.A. Rome, Italy) showed better results compared to other implants. Additional studies are needed to explore the relationship in terms of microbiota of the CCIO. In addition, the dynamics of internal colonization needs to be thoroughly documented in longitudinal in vivo studies.
Martini, Ana Paula; Barros, Rosália Moreira; Júnior, Amilcar Chagas Freitas; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Ferraz, Cacilda Cunha; Pellegrin, Maria Cristina Jimenez; Anchieta, Rodolfo Bruniera
2013-12-01
The aim of this study was to evaluate stress distribution on the peri-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm × 5 mm) were created varying the platform (R, regular or S, switching) and the abutments (S, straight or A, angulated 15°). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (σmax) and minimum (σmin) principal stress values were obtained. For the cortical bone the highest stress values (σmax) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (σmax) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).
Borie, Eduardo; Leal, Eduardo; Orsi, Iara Augusta; Salamanca, Carlos; Dias, Fernando José; Weber, Benjamin
2018-01-01
The aim of this study was to analyze the influence of three different transmucosal heights of the abutments in single and multiple implant-supported prostheses through the finite element method. External hexagon implants, MicroUnit, and EsthetiCone abutments were scanned and placed in an edentulous maxillary model obtained from a tomography database. The simulations were divided into two groups: (1) one implant with 3.75 × 10 mm placed in the upper central incisor, simulating a single implant-supported fixed prosthesis with an EsthetiCone abutment; and (2) two implants with 3.75 × 10 mm placed in the upper lateral incisors with MicroUnit abutments, simulating a multiple implant-supported prosthesis. Subsequently, each group was subdivided into three models according to the transmucosal height (1, 2, and 3 mm). A static oblique load at an angle of 45 degrees to the long axis of the implant in palatal-buccal direction of 150 and 75 N was applied for multiple and single implant-supported prosthesis, respectively. The implants and abutments were assessed according to the equivalent Von Mises stress analyses while the bone and ceramics were analyzed through maximum and minimum principal stresses. The total deformation values increased in all models, while the transmucosal height was augmented. The transmucosal height of the abutments influences the stress values at the bone, ceramics, implants, and abutments of both the single and multiple implant-supported prostheses, with the transmucosal height of 1 mm showing the lowest stress values.
Management of overdenture abutments health by an innovative cleaning aid
Mall, Priyanka; Singh, Kamleshwar; Singh, Saumyendra Vikram; Agrawal, Kaushal Kishor; Siddharth, Ramashanker; Chand, Pooran
2012-01-01
This article describes a method for fabrication of a custom-made device for cleaning dome-shaped overdenture abutments. A kid toothbrush and a rubber cup were used for fabrication of a prophylactic device. After regular use of this device periodontal health status of the overdenture abutments patients improved satisfactorily. PMID:23230248
23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. ...
23. VIEW LOOKING UPSTREAM AND TOWARD LEFT ABUTMENT OF DAM. NOTE FORMS FOR LEFT GRAVITY ABUTMENT AT UPPER RIGHT CORNER OF PICTURE. ARCHES 3, 4, 5, AND 7 COMPLETED TO ELEVATION 1795. 5 OR 7.5 FEET BELOW TOP OF PARAPET WALL. November 29, 1938 - Bartlett Dam, Verde River, Phoenix, Maricopa County, AZ
Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments.
Basílio, Mariana de Almeida; Cardoso, Kátia Vieira; Antonio, Selma Gutierrez; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir
2016-08-01
Most ceramic abutments are fabricated from yttria-stabilized tetragonal zirconia (Y-TZP). However, Y-TZP undergoes hydrothermal degradation, a process that is not well understood. The purpose of this in vitro study was to assess the effects of artificial aging conditions on the fracture load, phase stability, and surface microstructure of a Y-TZP abutment. Thirty-two prefabricated Y-TZP abutments were screwed and tightened down to external hexagon implants and divided into 4 groups (n = 8): C, control; MC, mechanical cycling (1×10(6) cycles; 10 Hz); AUT, autoclaving (134°C; 5 hours; 0.2 MPa); and TC, thermal cycling (10(4) cycles; 5°/55°C). A single-load-to-fracture test was performed at a crosshead speed of 0.5 mm/min to assess the assembly's resistance to fracture (ISO Norm 14801). X-ray diffraction (XRD) analysis was applied to observe and quantify the tetragonal-monoclinic (t-m) phase transformation. Representative abutments were examined with high-resolution scanning electron microscopy (SEM) to observe the surface characteristics of the abutments. Load-to-fracture test results (N) were compared by ANOVA and Tukey test (α=.05). XRD measurements revealed the monoclinic phase in some abutments after each aging condition. All the aging conditions reduced the fracture load significantly (P<.001). Mechanical cycling reduced the fracture load more than autoclaving (P=.034). No differences were found in the process of surface degradation among the groups; however, the SEM detected grinding-induced surface flaws and microcracks. The resistance to fracture and the phase stability of Y-TZP implant abutments were susceptible to hydrothermal and mechanical conditions. The surface microstructure of Y-TZP abutments did not change after aging conditions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
SANNINO, G.; GLORIA, F.; OTTRIA, L.; BARLATTANI, A.
2010-01-01
SUMMARY Porpose. The aim of this study was to evaluate, by finite element analysis (FEA), the influence of finish line on stress distribution and resistance to the loads of a ZrO2 crown and porcelain in implant-supported. Material and methods. The object of this analysis consisted of a fxture, an abutment, a passing screw, a layer of cement, a framework crown, a feldspatic porcelain veneering. The abutment’s marginal design was used in 3 different types of preparation: feather edge, slight chamfer and 50°, each of them was of 1 mm depth over the entire circumference. The ZrO2Y-TZP coping was 0.6 mm thick. Two material matching for the abutment and the framework was used for the simulations: ZrO2 framework and ZrO2 abutment, ZrO2 framework and T abutment. A 600 N axial force distributed over the entire surface of the crown was applied. The numerical simulations with finite elements were used to verify the different distribution of equivalent von Mises stress for three different geometries of abutment and framework. Results Slight chamfer on the matching ZrO2 - ZrO2 is the geometry with minimum equivalent stress of von Mises. Even for T abutment and ZrO2 framework slight chamfer is the best configuration to minimize the localized stress. Geometry that has the highest average stress is one with abutment at 50°, we see a downward trend for all three configurations using only zirconium for both components. Conclusions Finite element analysis. performed for the manifacturing of implant-supported crown, gives exact geometric guide lines about the choice of chamfer preparation, while the analysis of other marginal geometries suggests a possible improved behavior of the mating between ZrO2 abutment and ZrO2 coping. for three different geometries of the abutment and the coping. PMID:23285359
Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I
2004-01-01
Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.
Creep and shrinkage effects on integral abutment bridges
NASA Astrophysics Data System (ADS)
Munuswamy, Sivakumar
Integral abutment bridges provide bridge engineers an economical design alternative to traditional bridges with expansion joints owing to the benefits, arising from elimination of expensive joints installation and reduced maintenance cost. The superstructure for integral abutment bridges is cast integrally with abutments. Time-dependent effects of creep, shrinkage of concrete, relaxation of prestressing steel, temperature gradient, restraints provided by abutment foundation and backfill and statical indeterminacy of the structure introduce time-dependent variations in the redundant forces. An analytical model and numerical procedure to predict instantaneous linear behavior and non-linear time dependent long-term behavior of continuous composite superstructure are developed in which the redundant forces in the integral abutment bridges are derived considering the time-dependent effects. The redistributions of moments due to time-dependent effects have been considered in the analysis. The analysis includes nonlinearity due to cracking of the concrete, as well as the time-dependent deformations. American Concrete Institute (ACI) and American Association of State Highway and Transportation Officials (AASHTO) models for creep and shrinkage are considered in modeling the time dependent material behavior. The variations in the material property of the cross-section corresponding to the constituent materials are incorporated and age-adjusted effective modulus method with relaxation procedure is followed to include the creep behavior of concrete. The partial restraint provided by the abutment-pile-soil system is modeled using discrete spring stiffness as translational and rotational degrees of freedom. Numerical simulation of the behavior is carried out on continuous composite integral abutment bridges and the deformations and stresses due to time-dependent effects due to typical sustained loads are computed. The results from the analytical model are compared with the published laboratory experimental and field data. The behavior of the laterally loaded piles supporting the integral abutments is evaluated and presented in terms of the lateral deflection, bending moment, shear force and stress along the pile depth.
Mahon, J M; Norling, B K; Phoenix, R D
2000-01-01
The purpose of this investigation was to evaluate the dissipation of a force applied to an assembled stack of implant components. The stack consisted of a 10-mm threaded implant, a screw-retained abutment and a screw-retained gold crown. The dissipation of force was analyzed in relation to varying the implant diameter with and without a concomitant change in abutment diameter. Two experimental groups were evaluated. The first group consisted of 25 titanium screw-form implants (Implant Innovations, Inc.). These implants measured 10 mm in length and 3.25 mm, 3.75 mm, 4.0 mm, 5.0 mm, and 6.0 mm in diameter. The second group included 15 titanium screw-form implants (Nobel Biocare, Inc.) measuring 10 mm in length and 3.75 mm, 4.0 mm, and 5.0 mm in diameter. All implants were embedded in standardized photoelastic resin blocks. Points of interest were marked on each block using standardized templates to ensure consistency. Implants were restored using system-specific conical abutments and standardized single-unit restorations. A strain gauge was affixed to each abutment, and an eccentric load of 176 N was applied to the restoration. Periimplant stresses were measured using photoelastic analysis. Abutment strain was determined using an electronic strain indicator. Data were collated and compared using ANOVA and the Duncan multiple range statistical tests. When stress was analyzed at points on the resin-implant interface or a fixed distance from the interface, stress tended to decrease from the 5-mm-wide implant to the 6-mm-wide implant. Stress in relation to the 3.25-mm, 3.75-mm, and 4.0-mm implant was not as well defined, indicating the possibility that some deformation of implants was occurring. Increased abutment width resulted in decreased abutment strain. Therefore, using a wider abutment may be helpful in preventing preload reduction in clinical applications. This may reduce the incidence of loosening and fracture of abutment and restoration screws.
Baker, Shaun; Centric, Aaron; Chennupati, Sri Kiran
2015-10-01
Bone-anchored hearing devices are an accepted treatment option for hearing restoration in various types of hearing loss. Traditional devices have a percutaneous abutment for attachment of the sound processor that contributes to a high complication rate. Previously, our institution reported on the Sophono (Boulder, CO, USA) abutment-free system that produced similar audiologic results to devices with abutments. Recently, Cochlear Americas (Centennial, CO, USA) released an abutment-free bone-anchored hearing device, the BAHA Attract. In contrast to the Sophono implant, the BAHA Attract utilizes an osseointegrated implant. This study aims to demonstrate patient benefit abutment-free devices, compare the results of the two abutment-free devices, and examine complication rates. A retrospective chart review was conducted for the first eleven Sophono implanted patients and for the first six patients implanted with the BAHA Attract at our institution. Subsequently, we analyzed patient demographics, audiometric data, clinical course and outcomes. Average improvement for the BAHA Attract in pure-tone average (PTA) and speech reception threshold (SRT) was 41dB hearing level (dBHL) and 56dBHL, respectively. Considering all frequencies, the BAHA Attract mean improvement was 39dBHL (range 32-45dBHL). The Sophono average improvement in PTA and SRT was 38dBHL and 39dBHL, respectively. The mean improvement with Sophono for all frequencies was 34dBHL (range 24-43dBHL). Significant improvements in both pure-tone averages and speech reception threshold for both devices were achieved. In direct comparison of the two separate devices using the chi-square test, the PTA and SRT data between the two devices do not show a statistically significant difference (p-value 0.68 and 0.56, respectively). The complication rate for these abutment-free devices is lower than that of those featuring the transcutaneous abutment, although more studies are needed to further assess this potential advantage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Messias, Ana; Rocha, Salomão; Calha, Nuno; Neto, Maria Augusta; Nicolau, Pedro; Guerra, Fernando
2017-01-01
Implant-abutment assembly stability is critical for the success of implant-supported rehabilitation. The intentional removal of the prosthetic components may hamper the achievement of the essential stability due to preload reduction in the screw joint and implant-screw mating surface changes. To evaluate the effect of intentional abutment disconnection and reconnection in the stability of internal locking hex implants and corresponding abutments using the method of 3D digital image correlation. Ten conical shape and internal hexagon connection implants were embedded in acrylic resin and assembled to prosthetic abutments with 30 Ncm torque and assigned to two groups: group 1 - tested for static load-bearing capacity at 30° off-axis for two times and group 2 - underwent intentional disconnection and reconnection between tests. Micro-movements were captured with two high-speed photographic cameras and analyzed with video correlation system in three spacial axes U, V and W. Screw abutment and internal implant thread morphology was observed with a field-emission scanning electron microscopy. After the intentional disconnection of the abutment, group 2 showed generally higher maximum displacements for U and V directions. Under 50N load, mean difference was 24.7 μm (P = 0.008) for U direction and -7.7 μm (P = 0.008) for V direction. No significant differences were found for maximum and minimum displacements in the W direction. Mean displacement of the speckle surface presented was statistically different in the two groups (P = 0.016). SEM revealed non-homogenous screw surfaces with scoring on group 2 plus striations and debris in the implant threads. Micro-movements were higher for the group submitted to intentional disconnection and reconnection of the abutment, particularly under average bite forces. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rödiger, Matthias; Rinke, Sven; Ehret-Kleinau, Fenja; Pohlmeyer, Franziska; Lange, Katharina; Bürgers, Ralf
2014-01-01
PURPOSE To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: 5.7°; customized-long, height: 6.79 mm, taper: 4.8°; customized-short, height: 4.31 mm, taper: 4.8°) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: 5.7°) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting. PMID:25006388
Bressan, Eriberto; Grusovin, Maria Gabriella; D'Avenia, Ferdinando; Neumann, Konrad; Sbricoli, Luca; Luongo, Giuseppe; Esposito, Marco
To evaluate the influence of at least three abutment disconnections in conventional loaded implants against placement of a definitive abutment in immediately non-occlusal loaded implants on hard and soft tissue changes. A secondary aim was to evaluate whether the presence of less than 2 mm of keratinised mucosa is associated with increased peri-implant marginal bone loss and soft tissue recessions. Eighty patients requiring one single crown or one fixed partial prosthesis supported by a maximum of three implants were randomised, after implants were placed with more than 35 Ncm, according to a parallel group design to receive definitive abutments that were loaded immediately (definitive abutment or immediate loading group) or transmucosal abutments, which were delayed loaded after 3 months and removed at least three times: 1. At impression taking (3 months after implant placement); 2. When checking the zirconium core on titanium abutments at single crowns or the fitting the metal structure at prostheses supported by multiple implants; 3. At delivery of the definitive prostheses (repeated disconnection or conventional loading group). Patients were treated at four centres and each patient contributed to the study, with only one prosthesis followed for 3 years after initial loading. Outcome measures were: prosthesis failures, implant failures, complications, pink aesthetic score (PES), buccal recessions, patient satisfaction, peri-implant marginal bone level changes and height of the keratinised mucosa. Forty patients were randomly allocated to each group according to a parallel group design. Six patients from the definitive abutment group dropped out or died, and one left from the repeated disconnection group. One implant, from the repeated disconnection group, fractured (difference = 3%; CI 95%: -2%, 8%; P = 1). Four provisional crowns and one definitive single crown had to be remade because of poor fitting, and one definitive crown and one definitive prosthesis because of ceramic and implant fracture, respectively, in the repeated disconnection group vs one provisional prosthesis from the definitive abutment group due to frequent debondings (difference = 15%; CI 95%: 2%, 28%; P = 0.060). Five patients from the definitive abutment group and four patients from the repeated disconnection group were affected by complications (difference = 4%; CI 95%: -11%, 20%; P = 0.725). PES scores assessed at 3 years post-loading were 11.7 (standard deviation = 1.8) mm for the definitive abutment group and 11.3 (1.5) mm for the repeated abutment changes group (difference = 0.4; CI 95%: -0.4, 1.2; P = 0.315). However, there was a difference of 0.26 out of a maximum score of 2 in favour of the definitive abutment group for soft tissue contour only. Buccal recessions at 3 years post-loading amounted to -0.1 (0.8) mm for the definitive abutment group and -0.1 (1.2) mm for the repeated abutment changes group (it was actually a soft tissue gain; difference = 0.01 mm CI 95%: -0.48, 0.50; P = 0.965). All patients declared being very satisfied or satisfied with the function and aesthetics of the prostheses and said they would undergo the same procedure again, with the exception of one patient from the repeated disconnection group who was uncertain regarding function. Mean peri-implant marginal bone loss 3 years after loading was 0.07 (0.18) mm for the definitive abutment group and 0.50 (0.93) mm for the repeated abutment changes group (difference = 0.43 mm; CI 95%: 0.13, 0.74; P = 0.007). The height of keratinised mucosa at 3 years post-loading was 2.8 (1.3) mm for the definitive abutment group and 2.8 (1.6) mm for the repeated abutment changes group (difference = 0.03; CI 95%: -0.67, 0.73; P = .926). Up to 3 years after initial loading there were no statistically significant differences between the two procedures, with the exception of 0.4 mm more marginal bone loss at implants subjected to three abutment disconnections. There were no significantly increased marginal bone loss (difference = 0.1 mm, CI 95%: -0.3, 0.5, P = 0.590) or buccal recessions (difference = 0.1 mm, CI 95%: -0.4, 0.7, P = 0.674) at implants with less than 2 mm of keratinised mucosa at loading. Three-year post-loading data showed that repeated abutment disconnections significantly increased bone loss of 0.43 mm, but this difference may not be considered clinically relevant; therefore clinicians can use the procedure they find more convenient for each specific patient. Immediately non-occlusally loaded dental implants are a viable alternative to conventional loading and no increased bone loss or buccal recessions were noticed at implants with less than 2 mm of keratinised mucosa. Conflict of interest statement: This trial was partially funded by Dentsply Sirona Implants, the manufacturer of the implants and other products evaluated in this investigation. However, data belonged to the authors and by no means did the manufacturer interfere with the conduct of the trial or the publication of the results, with the exception of rejecting a proposal to change the protocol, after the trial was started, allowing the use of indexed abutments.
Retention Strength of Conical Welding Caps for Fixed Implant-Supported Prostheses.
Nardi, Diego; Degidi, Marco; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio
This study evaluated the retention strength of welding caps for Ankylos standard abutments using a pull-out test. Each sample consisted of an implant abutment and its welding cap. The tests were performed with a Zwick Roell testing machine with a 1-kN load cell. The retention strength of the welding caps increased with higher abutment diameters and higher head heights and was comparable or superior to the values reported in the literature for the temporary cements used in implant dentistry. Welding caps provide a reliable connection between an abutment and a fixed prosthesis without the use of cement.
Assessment of the NCHRP abutment scour prediction equations with laboratory and field data
Benedict, Stephen T.
2014-01-01
The U.S. Geological Survey, in coopeation with nthe National Cooperative Highway Research Program (NCHRP) is assessing the performance of several abutment-scour predcition equations developed in NCHRP Project 24-15(2) and NCHRP Project 24-20. To accomplish this assssment, 516 laboratory and 329 fiels measurements of abutment scor were complied from selected sources and applied tto the new equations. Results will be used to identify stregths, weaknesses, and limitations of the NCHRP abutment scour equations, providing practical insights for applying the equations. This paper presents some prelimiray findings from the investigation.
Salvaging an angled implant abutment with damaged internal threads: a clinical report.
Imam, Ahmad Y; Yilmaz, Burak; Özçelik, Tuncer Burak; McGlumphy, Edwin
2013-05-01
This clinical report describes a technique to fit an existing fixed detachable implant-supported prosthesis to a zygomatic implant abutment with stripped internal threads. The threads of the abutment were retapped and a wide diameter/wide head retaining screw was used to secure the existing prosthesis on the abutment. Care is needed in the retrieval of broken screws so as not to damage the internal threads of the implants, which might lead to irreversible complications. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Hasan, I; Röger, B; Heinemann, F; Keilig, L; Bourauel, C
2012-09-01
The aim of the present study was to investigate experimentally and numerically the influence of a fine threaded- against a roughened-cervical region of immediately loaded dental implants in combination with straight and 20°-angled abutments on the implant primary stability. A total of 30 implants were inserted in bovine rib-segments, 14 cervically roughened implants and 16 implants with fine cervical threads. Each implant system received two abutments, straight and 20°-angled. Implant displacements and rotations were measured using a biomechanical measurement system. Subsequently, eight samples were selected for geometrical reconstruction and numerical investigation of stress and strain distributions in the bone by means of the finite element method. Experimentally, both implant systems showed similar behaviour with the straight abutments concerning displacements and rotations. However, fine threaded implants showed much less displacement and rotation against roughened implants when angled abutments were considered. Numerically, stresses were within 35-45 MPa in the cortical bone for both implant systems. The strains showed highest values within the spongious bone with the roughened implants connected to angled abutments. The results indicate that implants with fine cervical threads could be recommended in particular with angled abutments. The outcomes of this study are currently confirmed by long-term clinical investigations. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Atash, Ramin; Boularbah, Mohamed-Reda; Sibel, Cetik
2016-12-01
The aim of this work is to evaluate different types of materials used for making implant abutments, by means of an in vitro study and a review of the literature, in order to identify the indications for a better choice of an implant-supported restoration in the anterior section. 5 implant abutments were tested in a random order in the superior anterior maxilla of pig gingiva (n = 8): titanium dioxide (Nobel Biocare); zirconium dioxide, Standard BO shade (Nobel Biocare, Kloten, Switzerland); zirconium dioxide, Light BI shade (Nobel Biocare); zirconium dioxide, Intense A 3.5 shade (Nobel Biocare); and aluminium oxide. Each abutment was tested for 2 mm and 3 mm thickness. To determine color variation, VITA Easyshade Advance spectrophotometer (Vita Zahnfabrik, Bad Sackingen, Germany) was used. Results showed that the color variation induced by the abutment would be affected by the abutment material and gingival thickness, when the gingival thickness is 2 mm. All materials except zirconium dioxide (Standard shade) caused a visible change of color. Then, as the thickness of the gingiva increased to 3 mm, the color variation was attenuated in a significant manner and became invisible for all types of abutments, except those made of aluminium oxide. Zirconium dioxide is the material causing the lowest color variation at 2 mm and at 3 mm, whereas aluminium oxide causes the highest color variation no matter the thickness.
Proussaefs, Periklis
2016-11-01
This article describes a technique in which a custom-made computer-aided design and computer-aided manufacturing (CAD-CAM) healing abutment milled from a poly(methyl methacrylate) (PMMA) block is fabricated and bonded to a titanium metal insert. An impression is made during dental implant surgery, and the CAD-CAM custom-made healing abutment is fabricated before second-stage surgery while appropriate healing time is allowed for the dental implant to osseointegrate. The contours of the healing abutment are based on the contours of a tentatively designed definitive prosthesis. The healing tissue obtains contours that will be compatible with the contours of the definitive prosthesis. After the milling process is complete, a titanium metal insert is bonded to the healing abutment. Placement of the custom-made CAD-CAM healing abutment at second-stage surgery allows the tissue to obtain contours similar to those of the definitive prosthesis. A custom-made CAD-CAM impression coping milled from a PMMA block and with a titanium insert is used for the definitive impression after the soft tissue has healed. This technique allows guided soft tissue healing by using a custom-made CAD-CAM healing abutment and impression coping. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Jiménez-Melendo, Manuel; Llena-Blasco, Oriol; Bruguera, August; Llena-Blasco, Jaime; Yáñez-Vico, Rosa-María; García-Calderón, Manuel; Vaquero-Aguilar, Cristina; Velázquez-Cayón, Rocío; Gutiérrez-Pérez, José-Luis
2014-01-01
Objectives: This study was undertaken to characterize the mechanical response of bare (as-received) and single-layer ceramized zirconia abutments with both internal and external connections that have been developed to enhanced aesthetic restorations. Material and Methods: Sixteen zirconia implant abutments (ZiReal Post®, Biomet 3i, USA) with internal and external connections have been analyzed. Half of the specimens were coated with a 0.5mm-thick layer of a low-fusing fluroapatite ceramic. Mechanical tests were carried out under static (constant cross-head speed of 1mm/min until fracture) and dynamic (between 100 and 400N at a frequency of 1Hz) loading conditions. The failure location was identified by electron microscopy. The removal torque of the retaining screws after testing was also evaluated. Results: The average fracture strength was above 300N for all the abutments, regardless of connection geometry and coating. In most of the cases (94%), failure occurred by abutment fracture. No significant differences were observed either in fatigue behavior and removal torque between the different abutment groups. Conclusions: Mechanical behavior of Zireal zirconia abutments is independent of the type of internal/external connection and the presence/absence of ceramic coating. This may be clinically valuable in dental rehabilitation to improve the aesthetic outcome of zirconia-based dental implant systems. Key words:Dental implant, zirconia, ceramic structure, mechanical properties. PMID:25674313
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
33 CFR 118.75 - Lights on single-opening drawbridges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... span. (c) Pier or abutment lights. Every swing bridge shall be lighted so that the end of each pier, abutment or fixed portion of the bridge adjacent to the navigable channel through the draw, or each end of the protection piers for such piers, abutments, or fixed portion of the bridge will be marked by a red...
Santosa, Robert E; Martin, William; Morton, Dean
2010-01-01
Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.
Critical bending moment of four implant-abutment interface designs.
Lee, Frank K; Tan, Keson B; Nicholls, Jack I
2010-01-01
Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
Microleakage at the Different Implant Abutment Interface: A Systematic Review
Chowdhary, Ramesh; Kumari, Shail
2017-01-01
Introduction Presence of gap at the implant-abutment interface, leads to microleakage and accumulation of bacteria which can affect the success of dental implants. Aim To evaluate the sealing capability of different implant connections against microleakage. Materials and Methods In January 2017 an electronic search of literature was performed, in Medline, EBSCO host and Pubmed data base. The search was focused on ability of different implant connections in preventing microleakage. The related titles and abstracts available in English were screened, and the articles that fulfilled the inclusion criteria were selected for full text reading. Results In this systematic review, literature search initially resulted in 78 articles among which 30 articles only fulfilled the criteria for inclusion and were finally included in the review. Almost all the studies showed that there was some amount of microleakage at abutment implant interface. Microleakage was very less in Morse taper implants in comparison to other implant connections. Majority of studies showed less microleakage in static loading conditions and microleakage increases in dynamic loading conditions. Conclusion In this systematic review maximum studies showed that there was some amount of microleakage at abutment implant interface. External hexagon implants failed completely to prevent microleakage in both static and dynamic loading conditions of implants. Internal hexagon implants mainly internal conical (Morse taper) implants are very promising in case of static loading and also showed less microleakage in dynamic loading conditions. Torque recommended by manufacturer should be followed strictly to get a better seal at abutment implant interface. Zirconia abutments are more to microleakage than Titanium abutments and there use should be discouraged. Zirconia abutments should be only restricted to cases where there was very high demand of aesthetics. PMID:28764310
Pita, Murillo S; do Nascimento, Cássio; Dos Santos, Carla G P; Pires, Isabela M; Pedrazzi, Vinícius
2017-07-01
The aim of this in vitro study was to identify and quantify up to 38 microbial species from human saliva penetrating through the implant-abutment interface in two different implant connections, external hexagon and tri-channel internal connection, both with conventional flat-head or experimental conical-head abutment screws. Forty-eight two-part implants with external hexagon (EH; n = 24) or tri-channel internal (TI; n = 24) connections were investigated. Abutments were attached to implants with conventional flat-head or experimental conical-head screws. After saliva incubation, Checkerboard DNA-DNA hybridization was used to identify and quantify up to 38 bacterial colonizing the internal parts of the implants. Kruskal-Wallis test followed by Bonferroni's post-tests for multiple comparisons was used for statistical analysis. Twenty-four of thirty-eight species, including putative periodontal pathogens, were found colonizing the inner surfaces of both EH and TI implants. Peptostreptococcus anaerobios (P = 0.003), Prevotella melaninogenica (P < 0.0001), and Candida dubliniensis (P < 0.0001) presented significant differences between different groups. Means of total microbial count (×10 4 , ±SD) for each group were recorded as follows: G1 (0.27 ± 2.04), G2 (0 ± 0), G3 (1.81 ± 7.50), and G4 (0.35 ± 1.81). Differences in the geometry of implant connections and abutment screws have impacted the microbial leakage through the implant-abutment interface. Implants attached with experimental conical-head abutment screws showed lower counts of microorganisms when compared with conventional flat-head screws. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lin, Ying-he; Man, Yi; Qu, Yi-li; Guan, Dong-hua; Lu, Xuan; Wei, Na
2006-01-01
To study the movement of long axis and the distribution of principal stress in the abutment teeth in removable partial denture which is retained by use of conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static loads were applied. The displacement of the long axis and the distribution of the principal stress in the abutment teeth was analyzed. There is no statistic difference of displacenat and stress distribution among different three-dimensional finite element models. Generally, the abutment teeth move along the long axis itself. Similar stress distribution was observed in each three-dimensional finite element model. The maximal principal compressive stress was observed at the distal cervix of the second premolar. The abutment teeth can be well protected by use of conical telescope.
Comparison of Observed and Predicted Abutment Scour at Selected Bridges in Maine
Lombard, Pamela J.; Hodgkins, Glenn A.
2008-01-01
Maximum abutment-scour depths predicted with five different methods were compared to maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a median bridge age of 66 years. Prediction methods included the Froehlich/Hire method, the Sturm method, and the Maryland method published in Federal Highway Administration Hydraulic Engineering Circular 18 (HEC-18); the Melville method; and envelope curves. No correlation was found between scour calculated using any of the prediction methods and observed scour. Abutment scour observed in the field ranged from 0 to 6.8 feet, with an average observed scour of less than 1.0 foot. Fifteen of the 50 bridge sites had no observable scour. Equations frequently overpredicted scour by an order of magnitude and in some cases by two orders of magnitude. The equations also underpredicted scour 4 to 14 percent of the time.
Vang, M S; Cho, J H
1990-04-01
An overdenture is a complete denture supported by both soft tissue and a few remaining natural teeth. The purpose of this study was to analyze the stress distribution of the teeth and supporting structures when various type of coping under overdenture was applied. The analysis was conducted by using the finite element method and changing the condition such as the direction of the load, the shape of coping on the abutment: The model included overdenture copings, abutment tooth and supporting structures. The results of analysis were as follows: 1. The short dome coping showed well distribution of stress. 2. The dome shaped design produced higher stress distribution than square and inclined plane design. 3. As the height of copings on the abutment was increased, the displacements increased. 4. The magnitude and direction of the abutment displacements were influenced by the direction of load application.
Evaluation of Dynamic Characteristics of the Footbridge with Integral Abutments
NASA Astrophysics Data System (ADS)
Pańtak, Marek; Jarek, Bogusław
2017-09-01
The paper presents the results of dynamic field tests and numerical analysis of the footbridge designed as a three-span composite structure with integral abutments. The adopted design solution which has allowed to achieve a high resistance of the structure to dynamic loads and to meet the requirements of the criteria of comfort of use with a large reserve has been characterized. For comparative purposes, numerical analyzes of three construction variants of the footbridge were presented: F-1 - construction with integral abutments (realized variant), F-2 - construction with girders anchored in the abutments by means of tension rocker bearings, F-3 - construction with concrete side spans.
Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.
Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin
To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.
The effect of the use of a counter-torque device on the abutment-implant complex.
Lang, L A; May, K B; Wang, R F
1999-04-01
Little is known about the condition of the abutment-screw joint before loading, after the development of the preload. This study examined the tightening force transmitted to the implant with and without the use of a counter-torque device during the tightening of the abutment screw. Forty Brânemark implants and 10 CeraOne, Estheticone, Procera, and AurAdapt abutments formed the experimental populations. Samples in each group were further divided into 2 groups, 1 group was tightened with a torque controller without the use of a counter-torque device, whereas the other used the counter-torque device. Samples were positioned in a special holder within the grips of a Tohnichi BTG-6 torque gauge for measuring transmitted forces. There were significant differences (P =. 0001) in the tightening forces transmitted to the implant with and without the use of a counter-torque device when tightening the abutment screws. An average of 91% of the recommended preload tightening torque was transmitted to the implant-bone interface in the absence of a counter-torque device. In all abutment systems, less than 10% of the recommended preload tightening torque was transmitted to the implant when the counter-torque device was used.
2013-01-01
Background Zirconia materials are known for their optimal aesthetics, but they are brittle, and concerns remain about whether their mechanical properties are sufficient for withstanding the forces exerted in the oral cavity. Therefore, this study compared the maximum deformation and failure forces of titanium implants between titanium-alloy and zirconia abutments under oblique compressive forces in the presence of two levels of marginal bone loss. Methods Twenty implants were divided into Groups A and B, with simulated bone losses of 3.0 and 1.5 mm, respectively. Groups A and B were also each divided into two subgroups with five implants each: (1) titanium implants connected to titanium-alloy abutments and (2) titanium implants connected to zirconia abutments. The maximum deformation and failure forces of each sample was determined using a universal testing machine. The data were analyzed using the nonparametric Mann–Whitney test. Results The mean maximum deformation and failure forces obtained the subgroups were as follows: A1 (simulated bone loss of 3.0 mm, titanium-alloy abutment) = 540.6 N and 656.9 N, respectively; A2 (simulated bone loss of 3.0 mm, zirconia abutment) = 531.8 N and 852.7 N; B1 (simulated bone loss of 1.5 mm, titanium-alloy abutment) = 1070.9 N and 1260.2 N; and B2 (simulated bone loss of 1.5 mm, zirconia abutment) = 907.3 N and 1182.8 N. The maximum deformation force differed significantly between Groups B1 and B2 but not between Groups A1 and A2. The failure force did not differ between Groups A1 and A2 or between Groups B1 and B2. The maximum deformation and failure forces differed significantly between Groups A1 and B1 and between Groups A2 and B2. Conclusions Based on this experimental study, the maximum deformation and failure forces are lower for implants with a marginal bone loss of 3.0 mm than of 1.5 mm. Zirconia abutments can withstand physiological occlusal forces applied in the anterior region. PMID:23688204
Influence of Abutment Color and Mucosal Thickness on Soft Tissue Color.
Ferrari, Marco; Carrabba, Michele; Vichi, Alessandro; Goracci, Cecilia; Cagidiaco, Maria Crysanti
Zirconia (ZrO₂) and titanium nitride (TiN) implant abutments were introduced mainly for esthetic purposes, as titanium's gray color can be visible through mucosal tissues. This study was aimed at assessing whether ZrO₂ and TiN abutments could achieve better esthetics in comparison with titanium (Ti) abutments, regarding the appearance of soft tissues. Ninety patients were included in the study. Each patient was provided with an implant (OsseoSpeed, Dentsply Implant System). A two-stage surgical technique was performed. Six months later, surgical reentry was performed. After 1 week, provisional restorations were screwed onto the implants. After 8 weeks, implant-level impressions were taken and soft tissue thickness was recorded, ranking thin (≤ 2 mm) or thick (≥ 2 mm). Patients were randomly allocated to three experimental groups, based on abutment type: (1) Ti, (2) TiN, and (3) ZrO₂. After 15 weeks, the final restorations were delivered. The mucosal area referring to each abutment was measured for color using a clinical spectrophotometer (Easyshade, VITA); color measurements of the contralateral areas referring to natural teeth were performed at the same time. The data were collected using the Commission Internationale de l'Eclairage (CIE) L*a*b* color system, and ΔE was calculated between peri-implant and contralateral soft tissues. A critical threshold of ΔE = 3.7 was selected. The chi-square test was used to identify statistically significant differences in ΔE between thin and thick mucosal tissues and among the abutment types. Three patients were lost at follow-up. No statistically significant differences were noticed as to the abutment type (P = .966). Statistically significant differences in ΔE were recorded between thick and thin peri-implant soft tissues (P < .001). Only 2 out of 64 patients with thick soft tissues showed a ΔE higher than 3.7: 1 in the TiN group and 1 in the ZrO₂ group. All the patients with thin soft tissues reported color changes that exceeded the critical threshold. The different abutment materials showed comparable results in terms of influence on soft tissue color. Regarding peri-implant soft tissue thickness, the influence of the tested abutments on soft tissue color became clinically relevant for values ≤ 2 mm.
Mechanical properties of resin glass fiber-reinforced abutment in comparison to titanium abutment
Andreasi Bassi, Mirko; Bedini, Rossella; Pecci, Raffella; Ioppolo, Pietro; Lauritano, Dorina; Carinci, Francesco
2015-01-01
Purpose: So far, definitive implant abutments have been performed with high elastic modulus materials, which prevented any type of shock absorption of the chewing loads and as a consequence, the protection of the bone-fixture interface. This is particularly the case when the esthetic restorative material chosen is ceramic rather than composite resin. The adoption of an anisotropic abutment, characterized by an elastic deformability, could allow decreasing the impulse of chewing forces transmitted to the crestal bone. Materials and Methods: According to research protocol, the mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment (TCFRA) prototype and compared to that of a titanium abutment (TA), thus eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging that the two types of abutments showed during the application of sinusoidal load was also analyzed. Results: In the TA group, both fracture and deformation occurred in 12.5% of samples while debonding 62.5%. In the TCFRA group, only debonding was present in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited a greater swinging during the application of sinusoidal load. In the TA group, the extrusion prevailed, whereas in the TCFRA group, the intrusion was more frequent. Conclusion: The greater elasticity of TCFRA to the flexural load allows absorbing part of the transversal load applied on the fixture during the chewing function, thus reducing the stress on the bone-implant interface. PMID:26229266
Abutment height influences the effect of platform switching on peri-implant marginal bone loss.
Galindo-Moreno, Pablo; León-Cano, Ana; Monje, Alberto; Ortega-Oller, Inmaculada; O'Valle, Francisco; Catena, Andrés
2016-02-01
The purpose was to radiographically analyze and compare the marginal bone loss (MBL) between implants with different mismatching distance and to study the influence of the prosthetic abutment height on the MBL in association with the related mismatching distances. This retrospective study included 108 patients in whom 228 implants were placed, 180 with diameter of 4.5 mm and 48 with diameter of 5 mm. All patients received OsseoSpeed™ implants with internal tapered conical connection (Denstply Implants). Different mismatching distances were obtained, given that all implants were loaded with the same uni-abutment type (Lilac; Denstply Implants). Data were gathered on age, gender, bone substratum, smoking habits, previous history of periodontitis, and prosthetic features. MBL was analyzed radiographically at 6 and 18 months post-loading. Mixed linear analysis of mesial and distal MBL values yielded significant effects of abutment, implant diameter, follow-up period, bone substratum, smoking, and abutment × time interaction. MBL was greater at 18 vs. 6 months, for short vs. long abutments, for grafted vs. pristine bone, for a heavier smoking habit, and for implants with a diameter of 5.0 vs. 4.5 mm. Greater mismatching does not minimize the MBL; abutment height, smoking habit, and bone substratum may play a role in the MBL over the short- and medium term. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zarrati, Simindokht; Bahrami, Mehran; Heidari, Fatemeh; Kashani, Jamal
2015-06-01
This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.
Saleh Saber, Fariba; Abolfazli, Nader; Jannatii Ataei, Soheil; Taghizade Motlagh, Mahsa; Gharekhani, Vahede
2017-01-01
Background. Since the misfit of crown has an important role in clinical performance of implant-supported prostheses, and due to the impact of the settling effect on misfit, the aim of this study was to investigate the impact of torque forces on the total lengths of narrow and short implant abutments in different internal implant‒abutment connections. Methods. In four different implant‒abutment connections, 8 analog implants with a normal diameter (4 mm) and narrow abutment (4.5 mm) were selected from groups of internal hex, internal octagon, morse hex 6° and morse hex 11°. Each of them was mounted within plaster type IV, and 32 samples were obtained. Then, the amount of vertical displacement was measured by closing the impression copings and applying torques of 20 25 and 30 Ncm. This stage was repeated for the abutment. In the next stage, the resin pattern was built and measurements were performed after applying the torques mentioned. Finally, after making the frame, this stage was repeated, and the settling effect was statistically analyzed with ANOVA. Results. In the stages of impression coping, resin pattern and final prosthesis, HEXAGONE had significantly the highest and OCTAGONE had the lowest rates of settling, and the settling of morse hex 11° and 6° was between them. Conclusion. Octagon implant had significantly the lowest settling in various clinical and laboratory stages by applying different torques.
Saleh Saber, Fariba; Abolfazli, Nader; Jannatii Ataei, Soheil; Taghizade Motlagh, Mahsa; Gharekhani, Vahede
2017-01-01
Background. Since the misfit of crown has an important role in clinical performance of implant-supported prostheses, and due to the impact of the settling effect on misfit, the aim of this study was to investigate the impact of torque forces on the total lengths of narrow and short implant abutments in different internal implant‒abutment connections. Methods. In four different implant‒abutment connections, 8 analog implants with a normal diameter (4 mm) and narrow abutment (4.5 mm) were selected from groups of internal hex, internal octagon, morse hex 6° and morse hex 11°. Each of them was mounted within plaster type IV, and 32 samples were obtained. Then, the amount of vertical displacement was measured by closing the impression copings and applying torques of 20 25 and 30 Ncm. This stage was repeated for the abutment. In the next stage, the resin pattern was built and measurements were performed after applying the torques mentioned. Finally, after making the frame, this stage was repeated, and the settling effect was statistically analyzed with ANOVA. Results. In the stages of impression coping, resin pattern and final prosthesis, HEXAGONE had significantly the highest and OCTAGONE had the lowest rates of settling, and the settling of morse hex 11° and 6° was between them. Conclusion. Octagon implant had significantly the lowest settling in various clinical and laboratory stages by applying different torques. PMID:28748052
Assessment of reliability of CAD-CAM tooth-colored implant custom abutments.
Guilherme, Nuno Marques; Chung, Kwok-Hung; Flinn, Brian D; Zheng, Cheng; Raigrodski, Ariel J
2016-08-01
Information is lacking about the fatigue resistance of computer-aided design and computer-aided manufacturing (CAD-CAM) tooth-colored implant custom abutment materials. The purpose of this in vitro study was to investigate the reliability of different types of CAD-CAM tooth-colored implant custom abutments. Zirconia (Lava Plus), lithium disilicate (IPS e.max CAD), and resin-based composite (Lava Ultimate) abutments were fabricated using CAD-CAM technology and bonded to machined titanium-6 aluminum-4 vanadium (Ti-6Al-4V) alloy inserts for conical connection implants (NobelReplace Conical Connection RP 4.3×10 mm; Nobel Biocare). Three groups (n=19) were assessed: group ZR, CAD-CAM zirconia/Ti-6Al-4V bonded abutments; group RC, CAD-CAM resin-based composite/Ti-6Al-4V bonded abutments; and group LD, CAD-CAM lithium disilicate/Ti-6Al-4V bonded abutments. Fifty-seven implant abutments were secured to implants and embedded in autopolymerizing acrylic resin according to ISO standard 14801. Static failure load (n=5) and fatigue failure load (n=14) were tested. Weibull cumulative damage analysis was used to calculate step-stress reliability at 150-N and 200-N loads with 2-sided 90% confidence limits. Representative fractured specimens were examined using stereomicroscopy and scanning electron microscopy to observe fracture patterns. Weibull plots revealed β values of 2.59 for group ZR, 0.30 for group RC, and 0.58 for group LD, indicating a wear-out or cumulative fatigue pattern for group ZR and load as the failure accelerating factor for groups RC and LD. Fractographic observation disclosed that failures initiated in the interproximal area where the lingual tensile stresses meet the compressive facial stresses for the early failure specimens. Plastic deformation of titanium inserts with fracture was observed for zirconia abutments in fatigue resistance testing. Significantly higher reliability was found in group ZR, and no significant differences in reliability were determined between groups RC and LD. Differences were found in the failure characteristics of group ZR between static and fatigue loading. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
López-López, Patricia J; Mareque-Bueno, Javier; Boquete-Castro, Ana; Aguilar-Salvatierra Raya, Antonio; Martínez-González, José M; Calvo-Guirado, José L
2016-01-01
The aim of this animal study was to compare the effects of narrow, concave-straight and wide anatomic healing abutments on changes to soft tissues and crestal bone levels around implants immediately placed into extraction sockets in foxhound dogs. Forty-eight titanium implants (Bredent Medical GMBH, Germany) of the same dimensions were placed in six foxhound dogs. They were divided into two groups (n = 24): test (implants with anatomic abutment) and control (implants with concave-straight abutment). The implants were inserted randomly in the post extraction sockets of P2 , P3 , P4, and M1 bilaterally in six dogs. After eight and twelve weeks, the animals were sacrificed and samples extracted containing the implants and the surrounding soft and hard tissues. Soft tissue and crestal bone loss (CBL) were evaluated by histology and histomorphometry. All implants were clinically and histologically osseointegrated. Healing patterns were examined microscopically at eight and twelve weeks. After eight and twelve weeks, for hard tissues, the distance from the implant shoulder to the first bone-to-implant contact (IS-C) was higher for control group in the lingual aspect with statistical significance (P < 0.05). For soft tissues (STL), the distance from the top of the peri-implant mucosa to the apical portion of the junction epithelium (PM-Je) was significantly less on the lingual aspect in the test group (with wider abutment) at eight and twelve weeks (P < 0.05). The distance from the top of the apical portion of the junction epithelium to the first bone-to-implant contact (Je-C) was significantly higher in the test group (wider abutment) in the lingual aspect at eight and twelve weeks (P < 0.05). There was no connective tissue contact with any abutment surface. Within the limitations of this animal study, anatomic healing abutments protect soft and hard tissues and reduce crestal bone resorption compared with concave-straight healing abutments. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Saab, Xavier E; Griggs, Jason A; Powers, John M; Engelmeier, Robert L
2007-02-01
Angled abutments are often used to restore dental implants placed in the anterior maxilla due to esthetic or spatial needs. The effect of abutment angulation on bone strain is unknown. The purpose of the current study was to measure and compare the strain distribution on the bone around an implant in the anterior maxilla using 2 different abutments by means of finite element analysis. Two-dimensional finite element models were designed using software (ANSYS) for 2 situations: (1) an implant with a straight abutment in the anterior maxilla, and (2) an implant with an angled abutment in the anterior maxilla. The implant used was 4x13 mm (MicroThread). The maxillary bone was modeled as type 3 bone with a cortical layer thickness of 0.5 mm. Oblique loads of 178 N were applied on the cingulum area of both models. Seven consecutive iterations of mesh refinement were performed in each model to observe the convergence of the results. The greatest strain was found on the cancellous bone, adjacent to the 3 most apical microthreads on the palatal side of the implant where tensile forces were created. The same strain distribution was observed around both the straight and angled abutments. After several iterations, the results converged to a value for the maximum first principal strain on the bone of both models, which was independent of element size. Most of the deformation occurred in the cancellous bone and ranged between 1000 and 3500 microstrain. Small areas of cancellous bone experienced strain above the physiologic limit (4000 microstrain). The model predicted a 15% higher maximum bone strain for the straight abutment compared with the angled abutment. The results converged after several iterations of mesh refinement, which confirmed the lack of dependence of the maximum strain at the implant-bone interface on mesh density. Most of the strain produced on the cancellous and cortical bone was within the range that has been reported to increase bone mass and mineralization.
Comparison of the fracture resistance of dental implants with different abutment taper angles.
Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei
2016-06-01
To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (P<0.05). In 4.0 mm-diameter abutment groups, as the taper angle was enlarged from 6° to 8° and 10°, the mean fracture value was increased from 1066.7 N ± 56.1 to 1241.4 N ± 6.4 and 1419.3 N ± 20.0, with the largest increasing rate of 33.1%, and the differences among the three groups were significant (P<0.05). The FEA results showed that stress values varied in implants with different abutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments. Copyright © 2016 Elsevier B.V. All rights reserved.
Ocelík, V; Schepke, U; Rasoul, H Haji; Cune, M S; De Hosson, J Th M
2017-08-01
Degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation was studied in detail by microstructural characterization using Electron Back Scatter Diffraction (EBSD). The amount and distribution of the monoclinic phase, the grain-size distribution and crystallographic orientations between tetragonal and monoclinic crystals in 3 mol.% yttria-stabilized polycrystalline zirconia (3Y-TZP) were determined in two different types of nano-crystalline dental abutments, even for grains smaller than 400 nm. An important and novel conclusion is that no substantial bulk degradation of 3Y-TZP dental implant abutments was detected after 1 year of clinical use.
Bai, Li-Ming; Li, Guo-Qiang; Zhang, Qiang; Dong, Xian
2016-08-01
To compare the stress distribution in abutment teeth and related tissues under the same material and different loading between improved major connector design and traditional major connector design. One 55-year-old male patient with unilateral maxillary first molar and second molar missing was chosen. The stress distribution in abutment teeth and related tissues were evaluated with spiral CT scanning, Mimics, Geomagic Studio software, a study model was built and finite element analysis was performed using ANSYS software. With the improved major connector design, the stress of abutment decreased significantly, the stress of periodontal decreased, the stress of edentulous mucosa increased significantly and became more balanced, the trend of stimulated absorption of alveolar bone decreased. For patients with distal free defect of dentition, the design of improved major connector has the effect of stress interruption, can protect the abutment better, detract the stress of the denture and has an good protective effect on the edentulous mucosa and alveolar bone.
Relation of channel stability to scour at highway bridges over waterways in Maryland
Doheny, Edward J.; ,
1993-01-01
Data from assessments of channel stability and observed-scour conditions at 876 highway bridges over Maryland waterways were entered into a database. Relations were found to exist among specific, deterministic variables and observed-scour and debris conditions. Relations were investigated between (1) high-flow angle of attack and pier- and abutment-footing exposure, (2)abutment location and abutment-footing exposure, (3) type of bed material and pier-footing exposure, (4) tree cover on channel banks and mass wasting of the channel banks, and (5) land use near the bridge and the presence of debris blockage at the bridge opening. The results of the investigation indicate the following: (1) The number of pier and abutment-footing exposures increased for increasing high-flow angles of attack, (2) the number of abutment-footing exposures increased for abutments that protrude into the channel, (3) pier-footing exposures were most common for bridges over streams with channel beds of gravel, (4) mass wasting of channel banks with tree cover of 50 percent or greater near the bridge was less than mass wasting of channel banks with tree cover of less than 50 percent near the bridge, and (5) bridges blockage than bridge in row crop and swamp basins.
Bacterial adhesion affinities of various implant abutment materials.
Yamane, Koichi; Ayukawa, Yasunori; Takeshita, Toru; Furuhashi, Akihiro; Yamashita, Yoshihisa; Koyano, Kiyoshi
2013-12-01
To investigate bacterial adhesion to various abutment materials. Thirty volunteers participated in this study. Resin splints were fabricated, and five types of disks were fabricated from pure titanium, gold-platinum alloy, zirconia, alumina, and hydroxyapatite with uniform surface roughness and attached to the buccal surface of each splint. After 4 days of use by the subjects, the plaque accumulated on the disk surfaces was analyzed. The bacterial community structure was evaluated using 16S rRNA gene profiling with terminal restriction fragment length polymorphism analysis. The total bacterial count on each disk was estimated using quantitative polymerase chain reaction. Terminal restriction fragment length polymorphism profiles were more similar between tested materials than between subjects, suggesting that the bacterial community structures on the abutment material were influenced more by the individuals than by the type of material. However, the total number of bacteria attached to a disk was significantly different among five materials (P < 0.001, Brunner-Langer test for longitudinal data). Fewer bacteria were attached to the gold-platinum alloy than to the other materials. Gold-platinum alloy appears to be useful material for abutments when considering the accumulation of plaque. However, alternative properties of the abutment material, such as effects on soft tissue healing, should also be taken into consideration when choosing an abutment material. © 2012 John Wiley & Sons A/S.
Non-linear 3D evaluation of different oral implant-abutment connections.
Streckbein, P; Streckbein, R G; Wilbrand, J F; Malik, C Y; Schaaf, H; Howaldt, H P; Flach, M
2012-12-01
Micro-gaps and osseous overload in the implant-abutment connection are the most common causes of peri-implant bone resorption and implant failure. These undesirable events can be visualized on standardized three-dimensional finite element models and by radiographic methods. The present study investigated the influence of 7 available implant systems (Ankylos, Astra, Bego, Brånemark, Camlog, Straumann, and Xive) with different implant-abutment connections on bone overload and the appearance of micro-gaps in vitro. The individual geometries of the implants were transferred to three-dimensional finite element models. In a non-linear analysis considering the pre-loading of the occlusion screw, friction between the implant and abutment, the influence of the cone angle on bone strain, and the appearance of micro-gaps were determined. Increased bone strains were correlated with small (< 15°) cone angles. Conical implant-abutment connections efficiently avoided micro-gaps but had a negative effect on peri-implant bone strain. Bone strain was reduced in implants with greater wall thickness (Ankylos) or a smaller cone angle (Bego). The results of our in silico study provide a solid basis for the reduction of peri-implant bone strain and micro-gaps in the implant-abutment connection to improve long-term stability.
Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values.
Xia, Dandan; Lin, Hong; Yuan, Shenpo; Bai, Wei; Zheng, Gang
2014-01-01
Implant-abutment assemblies are usually subject to long-term cyclic loading. To evaluate the dynamic fatigue performance of implant-abutment assemblies with different tightening torque values, thirty implant-abutment assemblies (Zimmer Dental, Carlsbad, CA, USA) were randomly assigned to three tightening groups (24 Ncm; 30 Ncm; 36 Ncm), each consisted of 10 implants. Five specimens from each group were unscrewed, and their reverse torque values recorded. The remaining specimens were subjected to a load between 30 N~300 N at a loading frequency of 15 Hz for 5 × 10(6) cycles. After fatigue tests, residual reverse torque values were recorded if available. In the 24 Ncm tightening group, all the implants fractured at the first outer thread of the implant after fatigue loading, with fatigue crack propagation at the fractured surface showed by SEM observation. For the 30 Ncm and 36 Ncm tightening groups, a statistical significant difference (p<0.05) between the unloaded and loaded groups was revealed. Compared with the unloaded specimens, the specimens went through fatigue loading had decreased reverse torque values. It was demonstrated that insufficient torque will lead to poor fatigue performance of dental implant-abutment assemblies and abutment screws should be tightened to the torque recommended by the manufacturer. It was also concluded that fatigue loading would lead to preload loss.
Burns, Ronda L.; Medalie, Laura
1997-01-01
Contraction scour for the modelled flows ranged from 1.0 to 2.7 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour ranged from 8.4 to 17.6 ft. The worst-case abutment scour for the right abutment occurred at the incipient-overtopping discharge. For the left abutment, the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Peng, Min; Fei, Wei; Mandana, Hosseini; Klaus, Gotfredsen
2013-04-01
To compare the gingival discoloration of implant supported all-ceramic and porcelain-fused-to-metal (PFM) restorations in anterior maxillary region by spectrophotometric evaluation. Eighteen patients with 29 implant-supported single crowns (11 all-ceramic restorations, 9 PFM restorations with titanium abutment and 9 PFM restorations with golden alloy abutment) in anterior maxillary area were recruited. The color difference between peri-implant gingiva and contra-lateral/neighboring mucosa was assessed using a spectrophotometer in CIELab coordinates. Subjective gingival discoloration scores were evaluated by clinician. SPSS17.0 software package was used to analyze the data. There was no significant difference between all-ceramic group (3.4±1.8) and PFM group (4.9±3.4) spectrophotometrically. No significant difference was found between all-ceramic restorations and PFM restorations with titanium abutment (3.5±2.5), and no significant difference was found between PFM restorations with titanium abutment and PFM restorations with gold alloy abutment (6.3±3.8) either. There was, however, significant difference between all-ceramic restorations and PFM restorations with gold alloy abutment (P=0.037). There was no significant difference between all-ceramic group and PFM group regarding the clinical gingival discoloration score (GDS), and this gingival discoloration score was found to have significant correlation with the spectrophotometric evaluation (rs=0.426, P=0.021). There is no significant difference between all-ceramic group and PFM group as regard to both spectrophotometric and clinical evaluation of gingival discoloration, but the PFM restorations with gold alloy abutment induce significantly higher discoloration than all-ceramic restorations.
Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga
2013-01-01
The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.
Almeida, Mariana Linhares; Tôrres, Ana Clara Soares de Paiva; de Oliveira, Kleiton Clécio; Calderon, Patrícia Dos Santos; Carreiro, Adriana da Fonte Porto; Gurgel, Bruno César de Vasconcelos
2018-03-06
To evaluate the effect of basic periodontal treatment on clinical periodontal parameters associated with abutment teeth of patients with mandibular Kennedy class I removable partial dentures (RPD) 18 months after treatment. Thirty patients with periodontal disease were treated and evaluated according to the following periodontal parameters: visible plaque index (VPI), bleeding on probing (BOP), probing depth (PD), gingival recession (GR), clinical attachment loss (CAL), and keratinized mucosa (KM). These parameters were compared between abutment teeth with direct and indirect retainers at baseline, and after 6 and 18 months. Data were analyzed by Friedman Test and Wilcoxon Test for all variables. Most patients (n = 26; 86.7%) included in the study were female and had a mean age of 61 years (±7.54). Results showed that VPI and BOP decreased over time, and that VPI values were higher in abutment teeth with direct retainers (p = 0.001). There was a reduction in PD after 6 months, which was maintained up to 18 months. In general, abutment teeth with direct retainers had significantly higher values for PD, GR, and CAL (p = 0.029). Data also indicated that the parameters for VPI, BOP, and PD improved; however, abutment teeth with direct retainers presented smaller improvements, compared with abutment teeth with indirect retainers, which presented significant improvements for almost all variables. Periodontal treatment and oral hygiene care of patients were adequate for maintenance of adequate periodontal conditions, regardless of the use of prostheses. © 2018 by the American College of Prosthodontists.
Cardoso, Mayra; Torres, Marcelo Ferreira; Lourenço, Eduardo José Veras; de Moraes Telles, Daniel; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria
2012-04-01
The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: (1) abutments without hexagon at the base and (2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that (1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, (2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and (3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws. © 2011 John Wiley & Sons A/S.
Keum, Eun-Cheol
2013-01-01
PURPOSE This study evaluated the effectiveness of various methods for removing provisional cement from implant abutments, and what effect these methods have on the retention of prosthesis during the definitive cementation. MATERIALS AND METHODS Forty implant fixture analogues and abutments were embedded in resin blocks. Forty cast crowns were fabricated and divided into 4 groups each containing 10 implants. Group A was cemented directly with the definitive cement (Cem-Implant). The remainder were cemented with provisional cement (Temp-Bond NE), and classified according to the method for cleaning the abutments. Group B used a plastic curette and wet gauze, Group C used a rubber cup and pumice, and Group D used an airborne particle abrasion technique. The abutments were observed using a stereomicroscope after removing the provisional cement. The tensile bond strength was measured after the definitive cementation. Statistical analysis was performed using one-way analysis of variance test (α=.05). RESULTS Group B clearly showed provisional cement remaining, whereas the other groups showed almost no cement. Groups A and B showed a relatively smooth surface. More roughness was observed in Group C, and apparent roughness was noted in Group D. The tensile bond strength tests revealed Group D to have significantly the highest tensile bond strength followed in order by Groups C, A and B. CONCLUSION A plastic curette and wet gauze alone cannot effectively remove the residual provisional cement on the abutment. The definitive retention increased when the abutments were treated with rubber cup/pumice or airborne particle abraded to remove the provisional cement. PMID:24049563
Implant Fixture Heat Transfer During Abutment Preparation.
Aleisa, Khalil; Alkeraidis, Abdullah; Al-Dwairi, Ziad Nawaf; Altahawi, Hamdi; Lynch, Edward
2015-06-01
The purpose of the study was to evaluate the effect of water flow rate on the heat transmission in implants during abutment preparation using a diamond bur in a high-speed dental turbine. Titanium-alloy abutments (n = 32) were connected to a titanium-alloy implant embedded in an acrylic resin within a water bath at a controlled temperature of 37°C. The specimens were equally distributed into 2 groups (16 each) according to the water flow rate used during the preparation phase. Group 1 had a water flow rate of 24 mL/min, and group 2 had a water flow rate of 40 mL/min. Each abutment was prepared in the axial plane for 1 minute and in the occlusal plane for 1 minute with a coarse tapered diamond bur using a high-speed dental handpiece. Thermocouples embedded at the cervix of the implant surface were used to record the temperature of heat transmission from the abutment preparation. Heat generation was measured at 3 distinct times (immediately and 30 seconds and 60 seconds after the end of preparation). Statistical analyses were carried out using 2-way analysis of variance and the Student t test. Water flow rates (24 mL vs 40 mL) and time interval had no statistically significant effect on the implant's temperature change during the abutment preparation stage (P = .431 and P = .064, respectively). Increasing the water flow rate from 24 to 40 mL/min had no influence on the temperature of the implant fixture recorded during preparation of the abutment.
Canullo, Luigi; Peñarrocha-Oltra, David; Marchionni, Silvia; Bagán, Leticia; Micarelli, Costanza
2014-01-01
Objectives: A randomized controlled trial was performed to assess soft tissue cell adhesion to implant titanium abutments subjected to different cleaning procedures and test if plasma cleaning can enhance cell adhesion at an early healing time. Study Design: Eighteen patients with osseointegrated and submerged implants were included. Before re-opening, 18 abutments were divided in 3 groups corresponding to different clinical conditions with different cleaning processes: no treatment (G1), laboratory customization and cleaning by steam (G2), cleaning by plasma of Argon (G3). Abutments were removed after 1 week and scanning electron microscopy was used to analyze cell adhesion to the abutment surface quantitatively (percentage of area occupied by cells) and qualitatively (aspect of adhered cells and presence of contaminants). Results: Mean percentages of area occupied by cells were 17.6 ± 22.7%, 16.5 ± 12.9% and 46.3 ± 27.9% for G1, G2 and G3 respectively. Differences were statistically significant between G1 and G3 (p=0.030), close to significance between G2 and G3 (p=0.056), and non-significant between G1 and G2 (p=0.530). The proportion of samples presenting adhered cells was homogeneous among the 3 groups (p-valor = 1.000). In all cases cells presented a flattened aspect; in 2 cases cells were less efficiently adhered and in 1 case cells presented filipodia. Three cases showed contamination with cocobacteria. Conclusions: Within the limits of the present study, plasma of Argon may enhance cell adhesion to titanium abutments, even at the early stage of soft tissue healing. Further studies with greater samples are necessary to confirm these findings. Key words:Connective tissue, dental abutments, randomized controlled trial, clinical research, glow discharged abutment, plasma cleaning. PMID:24121917
Gutmacher, Zvi; Levi, Guy; Blumenfeld, Israel; Machtei, Eli E
2015-10-01
The advantages of platform switching using narrower abutments remain controversial. Many researchers suggest that platform switching can yield enhanced clinical results, while others remain skeptical. We hypothesize that the effectiveness of platform switching might be associated with the degree of reduction in size of the abutment. To radiographically and clinically examine a new abutment design created to move the implant-abutment interface farther medially. This was a prospective, randomized controlled clinical trial that included 27 patients (41 MIS Lance Plus® implants; MIS Implant Technologies, Karmiel, Israel). The patients' age ranged from 39 to 75 years. At the second stage of the surgery, the implants were randomly assigned to either the new platform switch Tulip abutment (TA) design or to the standard platform abutment (SA). Implant probing depth (IPD) and bleeding on probing (BOP) were recorded at baseline and after 12 months. Standardized periapical radiographs were taken (at baseline and at 12 months) and the marginal bone height measured. All implants were successfully integrated. The mean IPD at 1 year post-op was 2.91 mm for the SA group and 2.69 mm for the TA group (p > .05). Similarly, the BOP at 1 year was almost identical in both groups. The mean values of bone resorption at baseline were 0.98 ± 0.37 mm and 0.69 ± 0.20 for the TA and SA groups, respectively (p > .05). Bone loss (baseline to 12 months) was significantly greater in the SA group compared with the TA group. Use of the new TA, with its significantly downsized diameter, resulted in reduced bone loss at 1 year. Further research will be required to assess the long-term effect of this abutment on peri-implant health. © 2014 Wiley Periodicals, Inc.
Stress analysis in platform-switching implants: a 3-dimensional finite element study.
Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito
2012-10-01
The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).
Kioleoglou, Ioannis; Pissiotis, Argirios
2018-01-01
Background The purpose of this study was to evaluate the accuracy of fitting of an implant supported screw-retained bar made on definitive casts produced by 4 different dental stone products. Material and Methods The dental stones tested were QuickRock (Protechno), FujiRock (GC), Jade Stone (Whip Mix) and Moldasynt (Heraeus). Three external hexagon implants were placed in a polyoxymethylene block. Definitive impressions were made using monophase high viscosity polyvinylsiloxane in combination with custom trays. Then, definitive models from the different types of dental stones were fabricated. Three castable cylinders with a machined non-enganging base were cast and connected with a very small quantity of PMMA to a cast bar, which was used to verify the marginal discrepancies between the abutments and the prosthetic platforms of the implants. For that purpose special software and a camera mounted on an optical microscope were used. The gap was measured by taking 10 measurements on each abutment, after the Sheffield test was applied. Twelve definitive casts were fabricated for each gypsum product and 40 measurements were performed for each cast. Mean, minimum, and maximum values were calculated. The Shapiro-Wilk test of normality was performed. Mann-Whitney test (P<.06) was used for the statistical analysis of the measurements. Results The non-parametric Kruskal-Wallis test revealed a statistically significant effect of the stone factor on the marginal discrepancy for all Sheffield test combinations: 1. Abutment 2 when screw was fastened on abutment 1 (χ2=3, df=35.33, P<0.01), 2. Abutment 3 when the screw was fastened on abutment 1 (χ2=3, df=37.74, P<0.01), 3. Abutment 1 when the screw was fastened on abutment 3 (χ2=3, df=39.79, P<0.01), 4. Abutment 2 when the screw was fastened on abutment 3 (χ2=3, df=37.26, P<0.01). Conclusions A significant correlation exists between marginal discrepancy and different dental gypsum products used for the fabrication of definitive casts for implant supported bars. The smallest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type III mounting stone. The biggest marginal discrepancy was noted on implant supported bars fabricated on definitive casts made by Type V dental stone. The marginal discrepancies presented on implant supported bars fabricated on definitive casts made by two types of Type IV dental stone were not significantly different. Key words:Dental implant, passive fit, dental stones, marginal discrepancy. PMID:29721227
NASA Astrophysics Data System (ADS)
Rubino, Caroline
Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper points were used to sample the peri-implant sulcus bacteria. All samples were then submitted to DNA purification, polymerase chain reaction (PCR), and sequencing protocols to assess relative numbers of bacterial species. Periodontal parameters were collected at both time points. Overall, our findings support several conclusions. Different implant abutment channel occluding materials appear to have no effect on the amount of observed microleakage and the peri-implant microbiome. Evidence for microleakage was found in the present study, corroborating existing in vivo evidence. Finally, we gained several insights regarding the peri implant microbiome. Of note, the peri-implant microbiome is well described by the classical periodontal microbial complexes, but a large portion consists of bacteria not previously classified into the microbial complexes.
Zhang, Jing; Zhang, Rimei; Ren, Guanghui; Zhang, Xiaojie
2017-02-01
This article describes a method that incorporates the solid modeling CAD software Solidworks with a dental milling machine to fabricate individual abutments in house. This process involves creating an implant library with 3-dimensional (3D) models and manufacturing a base, scan element, abutment, and crown anatomy. The 3D models can be imported into any dental computer-aided design and computer-aided (CAD-CAM) manufacturing system. This platform increases abutment design flexibility, as the base and scan elements can be designed to fit several shapes as needed to meet clinical requirements. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Rungcharassaeng, K; Kan, J Y
1999-02-01
A stable record base is essential for accurate interocclusal centric relation records in a completely edentulous patient. In implant prosthodontics, several procedures have been suggested for the fabrication of a stable record base. However, these procedures necessitate removal of the healing abutments during the interocclusal record procedure and the trial denture placement, which makes the procedures tedious and time-consuming. When the implant-prosthesis interface is subgingival, the patient may also experience discomfort during these procedures. This article describes a procedure for fabricating a stable record base that uses the healing abutments, which eliminates the necessity of the healing abutment removal and its consequences. Advantages and disadvantages of this procedure are also discussed.
Maxillary implant-retained partial overdenture with Dolder bar attachment: a clinical report.
Kim, Hyeongil; Buhite, Robert J; Monaco, Edward A
2015-03-01
This article describes a technique for maintaining a maxillary Kennedy III partial removable dental prosthesis design in a patient who had non-restorable failing abutments by replacing the abutments with dental implants. Two implants were placed immediately after extraction of the abutment teeth in the anterior maxilla. After the implants were fully integrated, a Dolder bar attachment was fitted onto the implants. A new maxillary partial removable dental prosthesis was fabricated using the implants and the remaining natural teeth as abutments to restore function and esthetics. With the aid of dental implants, this Kennedy III maxillary removable dental prosthesis design could provide additional retention and support by promoting cross-arch stability and tissue, implant and tooth support. The patient's satisfaction was significantly increased.
Maeda, Yoshinobu; Nakao, Katsuhiko; Yagi, Kazutomo; Matsuda, Shisuke
2006-08-01
Numerous methods for replacing missing removable partial denture abutments have been introduced, however, most of them are time consuming and require several visits to complete the procedure. Since magnetic attachments can provide support and bracing as well as retention for overdenture abutments, the remaining tooth root structure can be used to support the coping with the keeper. Through the use of composite resin and adhesive material, improved retention of the keeper to the root may be achieved, along with improved esthetics. This article describes a method for replacing the missing abutment of a removable partial denture with a magnetic attachment, and a composite resin coping with a keeper.
Markarian, Roberto Adrian; Galles, Deborah Pedroso; Gomes França, Fabiana Mantovani
To measure the microgap between dental implants and custom abutments fabricated using different computer-aided design/computer-aided manufacture (CAD/CAM) methods before and after mechanical cycling. CAD software (Dental System, 3Shape) was used to design a custom abutment for a single-unit, screw-retained crown compatible with a 4.1-mm external hexagon dental implant. The resulting stereolithography file was sent for manufacturing using four CAD/CAM methods (n = 40): milling and sintering of zirconium dioxide (ZO group), cobalt-chromium (Co-Cr) sintered via selective laser melting (SLM group), fully sintered machined Co-Cr alloy (MM group), and machined and sintered agglutinated Co-Cr alloy powder (AM group). Prefabricated titanium abutments (TI group) were used as controls. Each abutment was placed on a dental implant measuring 4.1× 11 mm (SA411, SIN) inserted into an aluminum block. Measurements were taken using scanning electron microscopy (SEM) (×4,000) on four regions of the implant-abutment interface (IAI) and at a relative distance of 90 degrees from each other. The specimens were mechanically aged (1 million cycles, 2 Hz, 100 N, 37°C) and the IAI width was measured again using the same approach. Data were analyzed using two-way analysis of variance, followed by the Tukey test. After mechanical cycling, the best adaptation results were obtained from the TI (2.29 ± 1.13 μm), AM (3.58 ± 1.80 μm), and MM (1.89 ± 0.98 μm) groups. A significantly worse adaptation outcome was observed for the SLM (18.40 ± 20.78 μm) and ZO (10.42 ± 0.80 μm) groups. Mechanical cycling had a marked effect only on the AM specimens, which significantly increased the microgap at the IAI. Custom abutments fabricated using fully sintered machined Co-Cr alloy and machined and sintered agglutinated Co-Cr alloy powder demonstrated the best adaptation results at the IAI, similar to those obtained with commercial prefabricated titanium abutments after mechanical cycling. The adaptation of custom abutments made by means of SLM or milling and sintering of zirconium dioxide were worse both before and after mechanical cycling.
Kelly, J Robert; Rungruanganunt, Patchnee
2016-01-01
Zirconia is being widely used, at times apparently by simply copying a metal design into ceramic. Structurally, ceramics are sensitive to both design and processing (fabrication) details. The aim of this work was to examine four computer-aided design/computer-assisted manufacture (CAD/CAM) abutments using a modified International Standards Organization (ISO) implant fatigue protocol to determine performance as a function of design and processing. Two full zirconia and two hybrid (Ti-based) abutments (n = 12 each) were tested wet at 15 Hz at a variety of loads to failure. Failure probability distributions were examined at each load, and when found to be the same, data from all loads were combined for lifetime analysis from accelerated to clinical conditions. Two distinctly different failure modes were found for both full zirconia and Ti-based abutments. One of these for zirconia has been reported clinically in the literature, and one for the Ti-based abutments has been reported anecdotally. The ISO protocol modification in this study forced failures in the abutments; no implant bodies failed. Extrapolated cycles for 10% failure at 70 N were: full zirconia, Atlantis 2 × 10(7) and Straumann 3 × 10(7); and Ti-based, Glidewell 1 × 10(6) and Nobel 1 × 10(21). Under accelerated conditions (200 N), performance differed significantly: Straumann clearly outperformed Astra (t test, P = .013), and the Glidewell Ti-base abutment also outperformed Atlantis zirconia at 200 N (Nobel ran-out; t test, P = .035). The modified ISO protocol in this study produced failures that were seen clinically. The manufacture matters; differences in design and fabrication that influence performance cannot be discerned clinically.
Safari, Sina; Hosseini Ghavam, Fereshteh; Amini, Parviz; Yaghmaei, Kaveh
2018-02-01
The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly ( P =.006). The difference in retention between the cemented and recemented copings was not statistically significant ( P =.40). Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.
Seol, Hyon-Woo; Heo, Seong-Joo; Koak, Jai-Young; Kim, Seong-Kyun; Kim, Shin-Koo
2015-01-01
To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading. Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection. The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups. Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.
Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah
2015-01-05
To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p < 0.001) fracture load compared to fused CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.
Influence of abutment material and luting cements color on the final color of all ceramics.
Dede, Dogu Ömür; Armaganci, Arzu; Ceylan, Gözlem; Cankaya, Soner; Celik, Ersan
2013-11-01
The purpose of this study is to evaluate the effects of different abutment materials and luting cements color on the final color of implant-supported all-ceramic restorations. Ten A2 shade IPS e.max Press disc shape all-ceramic specimens were prepared (11 × 1.5 mm). Three different shades (translucent, universal and white opaque) of disc shape luting cement specimens were prepared (11 × 0.2 mm). Three different (zirconium, gold-palladium and titanium) implant abutments and one composite resin disc shape background specimen were prepared at 11 mm diameter and appropriate thicknesses. All ceramic specimens colors were measured with each background and luting cement samples on a teflon mold. A digital spectrophotometer used for measurements and data recorded as CIE L*a*b* color co-ordinates. An optical fluid applied on to the samples to provide a good optical connection and measurements on the composite resin background was saved as the control group. ΔE values were calculated from the ΔL, Δa and Δb values between control and test groups and data were analyzed with one-way variance analysis (ANOVA) and mean values were compared by the Tukey HSD test (α = 0.05). One-way ANOVA of ΔL, Δa, Δb and ΔE values of control and test groups revealed significant differences for backgrounds and seldom for cement color groups (p the 0.05). Only zirconium implant abutment groups and gold palladium abutment with universal shade cement group were found to be clinically acceptable (ΔE ≤ 3.0). Using titanium or gold-palladium abutments for implant supported all ceramics will be esthetically questionable and white opaque cement will be helpful to mask the dark color of titanium abutment.
Safari, Sina; Amini, Parviz; Yaghmaei, Kaveh
2018-01-01
PURPOSE The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). RESULTS The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement. PMID:29503708
Alrabeah, Ghada O; Knowles, Jonathan C; Petridis, Haralampos
2016-01-01
The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant–abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6Al-4V) and cobalt–chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n=6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P<0.05). Titanium was the highest element to be released regardless of abutment size or connection (P<0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant–abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant–abutment couples. PMID:27357323
Mencio, F; Papi, P; Di Carlo, S; Pompa, G
2016-06-01
The occurrence of bacterial leakage in the internal surface of implants, through implant-abutment interface (IAI), is one of the parameters for analyzing the fabrication quality of the connections. The aim of this in vitro study is to evaluate two different types of implant-abutment connections: the screwed connection (Group 1) and the cemented connection (Group 2), analyzing the permeability of the IAI to bacterial colonization, using human saliva as culture medium. A total of twelve implants were tested, six in each experimental group. Five healthy patients were enrolled in this study. Two milliliters of non-stimulated saliva were collected from each subject and mixed in a test tube. After 14 days of incubation of the bacteria sample in the implant fixtures, a PCR-Real Time analysis was performed. Fisher's exact test was used to compare the proportions of implant-abutment assembled structures detected with bacterial leakage. Differences in the bacterial counts of the two groups were compared using the Mann-Whitney U test. A p value < 0.05 was considered significant. The results showed a decreased stability with the screwed implant-abutment connections compared to the cemented implant-abutment connections. A mean total bacterial count of 1.2E+07 (± 0.25E+07) for Group 1 and of 7.2E+04 (± 14.4E+04) for Group 2 was found, with a high level of significance, p = .0001. Within the limitations of this study it can be concluded that bacterial species from human saliva may penetrate along the implant-abutment interface in both connections, however the cemented connection implants showed the lowest amount of bacterial colonization.
Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide
This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.
The applicability of PEEK-based abutment screws.
Schwitalla, Andreas Dominik; Abou-Emara, Mohamed; Zimmermann, Tycho; Spintig, Tobias; Beuer, Florian; Lackmann, Justus; Müller, Wolf-Dieter
2016-10-01
The high-performance polymer PEEK (poly-ether-ether-ketone) is more and more being used in the field of dentistry, mainly for removable and fixed prostheses. In cases of screw-retained implant-supported reconstructions of PEEK, an abutment screw made of PEEK might be advantageous over a conventional metal screw due to its similar elasticity. Also in case of abutment screw fracture, a screw of PEEK could be removed more easily. M1.6-abutment screws of four different PEEK compounds were subjected to tensile tests to set their maximum tensile strengths in relation to an equivalent stress of 186MPa, which is aused by a tightening torque of 15Ncm. Two screw types were manufactured via injection molding and contained 15% short carbon fibers (sCF-15) and 40% (sCF-40), respectively. Two screw types were manufactured via milling and contained 20% TiO2 powder (TiO2-20) and >50% parallel orientated, continuous carbon fibers (cCF-50). A conventional abutments screw of Ti6Al4V (Ti; CAMLOG(®) abutment screw, CAMLOG, Wimsheim, Germany) served as control. The maximum tensile strength was 76.08±5.50MPa for TiO2-20, 152.67±15.83MPa for sCF-15, 157.29±20.11MPa for sCF-40 and 191.69±36.33MPa for cCF-50. The maximum tensile strength of the Ti-screws amounted 1196.29±21.4MPa. The results of the TiO2-20 and the Ti screws were significantly different from the results of the other samples, respectively. For the manufacturing of PEEK abutment screws, PEEK reinforced by >50% continuous carbon fibers would be the material of choice. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Abutment Disconnection/Reconnection Affects Peri-implant Marginal Bone Levels: A Meta-Analysis.
Koutouzis, Theofilos; Gholami, Fatemeh; Reynolds, John; Lundgren, Tord; Kotsakis, Georgios A
Preclinical and clinical studies have shown that marginal bone loss can be secondary to repeated disconnection and reconnection of abutments that affect the peri-implant mucosal seal. The aim of this systematic review and meta-analysis was to evaluate the impact of abutment disconnections/reconnections on peri-implant marginal bone level changes. To address this question, two reviewers independently performed an electronic search of three major databases up to October 2015 complemented by manual searches. Eligible articles were selected on the basis of prespecified inclusion and exclusion criteria after a two-phase search strategy and assessed for risk of bias. A random-effects meta-analysis was performed for marginal bone loss. The authors initially identified 392 titles and abstracts. After evaluation, seven controlled clinical studies were included. Qualitative assessment of the articles revealed a trend toward protective marginal bone level preservation for implants with final abutment placement (FAP) at the time of implant placement compared with implants for which there were multiple abutment placements (MAP). The FAP group exhibited a marginal bone level change ranging from 0.08 to 0.34 mm, whereas the MAP group exhibited a marginal bone level change ranging from 0.09 to 0.55 mm. Meta-analysis of the seven studies reporting on 396 implants showed significantly greater bone loss in cases of multiple abutment disconnections/reconnections. The weighted mean difference in marginal bone loss was 0.19 mm (95% confidence interval, 0.06-0.32 mm), favoring bone preservation in the FAP group. Within the limitations of this meta-analysis, abutment disconnection and reconnection significantly affected peri-implant marginal bone levels. These findings pave the way for revisiting current restorative protocols at the restorative treatment planning stage to prevent incipient marginal bone loss.
Yi, Yuseung; Koak, Jai-Young; Kim, Seong-Kyun; Lee, Shin-Jae; Heo, Seong-Joo
2018-04-01
The aim of this study was to compare the fracture of implant component behavior of external and internal type of implants to suggest directions for successful implant treatment. Data were collected from the clinical records of all patients who received WARANTEC implants at Seoul National University Dental Hospital from February 2002 to January 2014 for 12 years. Total number of implants was 1,289 and an average of 3.2 implants was installed per patient. Information about abutment connection type, implant locations, platform sizes was collected with presence of implant component fractures and their managements. SPSS statistics software (version 24.0, IBM) was used for the statistical analysis. Overall fracture was significantly more frequent in internal type. The most frequently fractured component was abutment in internal type implants, and screw fracture occurred most frequently in external type. Analyzing by fractured components, screw fracture was the most frequent in the maxillary anterior region and the most abutment fracture occurred in the maxillary posterior region and screw fractures occurred more frequently in NP (narrow platform) and abutment fractures occurred more frequently in RP (regular platform). In external type, screw fracture occurred most frequently, especially in the maxillary anterior region, and in internal type, abutment fracture occurred frequently in the posterior region. placement of an external type implant rather than an internal type is recommended for the posterior region where abutment fractures frequently occur.
Styranivska, Oksana; Kliuchkovska, Nataliia; Mykyyevych, Nataliya
2017-01-01
To analyze the stress-strain states of bone and abutment teeth during the use of different prosthetic designs of fixed partial dentures with the use of relevant mathematical modeling principles. The use of Comsol Multiphysics 3.5 (Comsol AB, Sweden) software during the mathematical modeling of stress-strain states provided numerical data for analytical interpretation in three different clinical scenarios with fixed dentures and different abutment teeth and demountable prosthetic denture with the saddle-shaped intermediate part. Microsoft Excel Software (Microsoft Office 2017) helped to evaluate absolute mistakes of stress and strain parameters of each abutment tooth during three modeled scenarios and normal condition and to summarize data into the forms of tables. In comparison with the fixed prosthetic denture supported by the canine, first premolar, and third molar, stresses at the same abutment teeth with the use of demountable denture with the saddle-shaped intermediate part decreased: at the mesial abutment tooth by 2.8 times, at distal crown by 6.1 times, and at the intermediate part by 11.1 times, respectively, the deformation level decreased by 3.1, 1.9, and 1.4 times at each area. The methods of mathematical modeling proved that complications during the use of fixed partial dentures based on the overload effect of the abutment teeth and caused by the deformation process inside the intermediate section of prosthetic construction.
SEM and fractography analysis of screw thread loosening in dental implants.
Scarano, A; Quaranta, M; Traini, T; Piattelli, M; Piattelli, A
2007-01-01
Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening.
Boehmler, Erick M.; Weber, Matthew A.
1997-01-01
Contraction scour for all modelled flows ranged from 0.0 to 0.3 ft. The worst-case contraction scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.2 to 9.4 ft. The worst-case abutment scour for the right abutment was 9.4 feet at the 100-year discharge. The worst-case abutment scour for the left abutment was 8.6 feet at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Evaluation of torque maintenance of abutment and cylinder screws with Morse taper implants.
Ferreira, Mayara Barbosa; Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Faverani, Leonardo Perez; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves
2012-11-01
The screw loosening of implant-supported prostheses is a common mechanical failure and is related to several factors as insertion torque and preload. The aim of this study was to evaluate the torque maintenance of retention screws of tapered abutments and cylinders of Morse taper implants submitted to retightening and detorque measurements. Two groups were obtained (n = 12): group I-tapered abutment connected to the implant with titanium retention screw and group II-cylinder with metallic base connected to tapered abutment with titanium retention screw. The detorque values were measured by an analogic torque gauge after 3 minutes of torque insertion. The detorque was measured 10 times for each retention screw of groups I and II, totalizing 120 detorque measurements in each group. Data were submitted to ANOVA and Fisher exact test (P < 0.05). Both groups presented reduced detorque value (P < 0.05) in comparison to the insertion torque in all measurement periods. There was a statistically significant difference (P < 0.05) between the detorque values of the first measurement and the other measurement periods for the abutment screw. However, there was no statistically significant difference (P > 0.05) for the detorque values of all measurement periods for the cylinder screw. In conclusion, the abutment and cylinder screws exhibited torque loss after insertion, which indicates the need for retightening during function of the implant-supported prostheses.
Redesign of a fixture mount to be used as an impression coping and a provisional abutment as well
Chang, Glenn Hsuan-Chen; Tian, Chen; Hung, Yuen-Siang
2011-01-01
Purpose: An integrated fixture mount/impression coping/ temporary abutment can provide many advantages for immediate loading of dental implants, such as simpler procedure, less chair time, cost reduction, and comfort for the patients. Materials and Methods: A newly designed dental implant fixture mount (DIFMA) can be used as an impression coping for taking an immediate impression. An immediate load provisional prosthesis can then be fabricated shortly after implant placement to immediately load the implants. This fixture mount can also serve as a temporary abutment for immediate chair-side fabrication of provisional prosthesis. Two clinical cases are presented. Results: A clinical case utilizing the fixture mount abutment (DIFMA)/implant assembly is presented. The precision of fitting between the impression copings and implants is secured with this system. The chair time for taking an immediate impression is greatly reduced. Less cost for the restoration is provided and patient comfort is delivered. Conclusions: More patient satisfaction can be conferred by employing the fixture mount in the process of immediate impression taking and as an immediate provisional abutment. PMID:22090763
Menini, Maria; Piccardo, Paolo; Baldi, Domenico; Dellepiane, Elena; Pera, Paolo
2015-02-01
This in vitro study investigated possible morphological and chemical changes induced by glycine or sodium bicarbonate powder air polishing on machined and acid-etched titanium surfaces. The glycine powder (granulometry <65 μm) and sodium bicarbonate powder (granulometry <150 μm) were applied on 2 machined healing abutments and on 2 acid-etched healing abutments. The samples were characterized by scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. The analyses were performed at different steps: (1) as received, right after opening the abutment packaging; (2) after 20 minutes air exposure; (3) after aging in artificial saliva; (4) after glycine or sodium bicarbonate powder air polishing for 5 seconds; (5) after repetition of steps 3 and 4 with longer time of polishing (20 seconds). Air polishing using glycine and sodium bicarbonate powder seemed to be safe for professional oral hygiene of titanium dental implants, although acid-etched abutments and abutments treated with bicarbonate harbored more salts. This might indicate a greater plaque accumulation in a clinical situation. However, this result has to be investigated in vivo to understand its clinical relevance.
Structural details below roadway, looking north from south abutment. ...
Structural details below roadway, looking north from south abutment. - Pleasantville Covered Bridge, Spanning Little Manatawny Creek at Covered Bridge Road (State Route 1030), Manatawny, Berks County, PA
Coppedê, Abílio Ricciardi; Bersani, Edmilson; de Mattos, Maria da Gloria Chiarello; Rodrigues, Renata Cristina Silveira; Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria
2009-01-01
The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments.
CORROSION RESISTANT JACKETED METAL BODY
Brugmann, E.W.
1958-08-26
S>Metal jacketed metallic bodies of the type used as feel elements fer nuclear reactors are presented. The fuel element is comprised of a plurality of jacketed cylindrical bodies joined in end to end abutting relationship. The abutting ends of the internal fissionable bodies are provided with a mating screw and thread means for joining the two together. The jacket material is of a corrosion resistant metal and overlaps the abutting ends of the internal bodies, thereby effectively sealing these bodies from contact with exteral reactive gases and liquids.
Lin, Wei-Shao; Harris, Bryan T; Zandinejad, Amirali; Martin, William C; Morton, Dean
2014-03-01
This report describes the fabrication of customized abutments consisting of prefabricated 2-piece titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone. The heat-pressed lithium disilicate provides esthetic customized anatomic structures and crowns independently of the computer-aided design and computer-aided manufacturing process. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
6. SOUTHEAST ABUTMENT AT CALVERT STREET, SHOWING LEON HERMANT ALLEGORICAL ...
6. SOUTHEAST ABUTMENT AT CALVERT STREET, SHOWING LEON HERMANT ALLEGORICAL RELIEF OF TRANSPORTATION BY AUTOMOBILE - Calvert Street Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC
OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. ...
OBLIQUE VIEW FROM SOUTHEAST LOOKING NORTHEAST. NOTE CORNERSTONE IN ABUTMENT. - Jackson Covered Bridge, Spanning Sugar Creek, CR 775N (Changed from Spanning Sugar Creek), Bloomingdale, Parke County, IN
Perspective view of span over French Creek and east abutment, ...
Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA
Influence of implant abutment material and ceramic thickness on optical properties.
Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai
2018-05-01
Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔE<3). Increasing ceramic restoration thickness over the abutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more esthetic color for the whole restoration. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang
2018-04-01
The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P < 0.01) had a significant effect on failure load. The abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P < 0.05). The FE analysis showed the peak compression and tension stress values of 7.5 mm post length were higher than that of 11 and 15 mm post length. The stress value of remaining tooth decreased as the post length was increased. Within the limitations of this experimental and FE analysis study, increasing the post length inside the root of endodontically treated premolar teeth restored with glass-fiber posts increase the fracture resistance to non-axial forces. Failure mode is more favorable with reduced abutment heights.
20. Detail view of west swing span abutment through swing ...
20. Detail view of west swing span abutment through swing span truss, looking north - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI
7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE ...
7. VIEW OF NORTHWEST PYLONS ON NORTH ABUTMENT, SUSPENSION CABLE AND 'U'-BOLT CONNECTIONS, LOOKING SOUTH - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT
10. VIEW TO NORTHEAST ALONG NORTHWEST SPILLWAY ABUTMENT; SERVICE VEHICLE ...
10. VIEW TO NORTHEAST ALONG NORTHWEST SPILLWAY ABUTMENT; SERVICE VEHICLE GARAGE IN BACKGROUND. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
3. Concrete and stone abutment at southeast end of Cedar ...
3. Concrete and stone abutment at southeast end of Cedar Avenue Bridge. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Cedar Avenue Bridge, Spanning Cedar Avenue at Railroad Alley, Scranton, Lackawanna County, PA
[Evaluation of cermet fillings in abutment teeth in removable partial prostheses].
Saulic, S; Tihacek-Sojic, Lj
2001-01-01
The aim of the study was to describe the clinical process of setting the purpose filling on abutment teeth, after finishing the removable partial dentures. The aim was also to investigate the use of cermet glass-ionomer cement for the purpose filling in the abutment teeth for removable partial dentures, as well as to investigate the surface of the purpose filling. For the clinical evaluation of purpose filling slightly modified criteria according to Ryg's were used in 20 patients with different type of edentulousness. Changes occurring on the surface of purpose filling have been experimentally established by the method of scanning electron microscopy on the half-grown third molars in seven patients. It could be concluded that cement glass-ionomer was not the appropriate material for the purpose fillings in abutment teeth for removable partial dentures.
Fit Analysis of Different Framework Fabrication Techniques for Implant-Supported Partial Prostheses.
Spazzin, Aloísio Oro; Bacchi, Atais; Trevisani, Alexandre; Farina, Ana Paula; Dos Santos, Mateus Bertolini
2016-01-01
This study evaluated the vertical misfit of implant-supported frameworks made using different techniques to obtain passive fit. Thirty three-unit fixed partial dentures were fabricated in cobalt-chromium alloy (n = 10) using three fabrication methods: one-piece casting, framework cemented on prepared abutments, and laser welding. The vertical misfit between the frameworks and the abutments was evaluated with an optical microscope using the single-screw test. Data were analyzed using one-way analysis of variance and Tukey test (α = .05). The one-piece casted frameworks presented significantly higher vertical misfit values than those found for framework cemented on prepared abutments and laser welding techniques (P < .001 and P < .003, respectively). Laser welding and framework cemented on prepared abutments are effective techniques to improve the adaptation of three-unit implant-supported prostheses. These techniques presented similar fit.
Composite drill pipe and method for forming same
Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem; Josephson, Marvin
2014-04-15
Metal inner and outer fittings configured, the inner fitting configured proximally with an external flange and projecting distally to form a cylindrical barrel and stepped down-in-diameter to form an abutment shoulder and then projecting further distally to form a radially inwardly angled and distally extending tapered inner sleeve. An outer sleeve defining a torque tube is configured with a cylindrical collar to fit over the barrel and is formed to be stepped up in diameter in alignment with the first abutment shoulder to then project distally forming a radially outwardly tapered and distally extending bonding surface to cooperate with the inner sleeve to cooperate with the inner sleeve in forming a annular diverging bonding cavity to receive the extremity of a composite pipe to abut against the abutment shoulders and to be bonded to the respective bonding surfaces by a bond.
Apaza-Bedoya, K; Tarce, M; Benfatti, C A M; Henriques, B; Mathew, M T; Teughels, W; Souza, J C M
2017-12-01
Two-piece implant systems are mainly used in oral implantology involving an osseointegrated implant connected to an abutment, which supports prosthetic structures. It is well documented that the presence of microgaps, biofilms and oral fluids at the implant-abutment connection can cause mechanical and biological complications. The aim of this review paper was to report the degradation at the implant-abutment connection by wear and corrosion processes taking place in the oral cavity. Most of the retrieved studies evaluated the wear and corrosion (tribocorrosion) of titanium-based materials used for implants and abutments in artificial saliva. Electrochemical and wear tests together with microscopic techniques were applied to validate the tribocorrosion behavior of the surfaces. A few studies inspected the wear on the inner surfaces of the implant connection as a result of fatigue or removal of abutments. The studies reported increased microgaps after fatigue tests. In addition, data suggest that micromovements occurring at the contacting surfaces can increase the wear of the inner surfaces of the connection. Biofilms and/or glycoproteins act as lubricants, although they can also amplify the corrosion of the surfaces. Consequently, loosening of the implant-abutment connection can take place during mastication. In addition, wear and corrosion debris such as ions and micro- and nanoparticles released into the surrounding tissues can stimulate peri-implant inflammation that can lead to pathologic bone resorption. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fatigue induced changes in conical implant-abutment connections.
Blum, Kai; Wiest, Wolfram; Fella, Christian; Balles, Andreas; Dittmann, Jonas; Rack, Alexander; Maier, Dominik; Thomann, Ralf; Spies, Benedikt Christopher; Kohal, Ralf Joachim; Zabler, Simon; Nelson, Katja
2015-11-01
Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fetner, Michael; Fetner, Alan; Koutouzis, Theofilos; Clozza, Emanuele; Tovar, Nick; Sarendranath, Alvin; Coelho, Paulo G; Neiva, Kathleen; Janal, Malvin N; Neiva, Rodrigo
2015-01-01
Implant design and the implant-abutment interface have been regarded as key influences on crestal bone maintenance over time. The aim of the present study was to determine crestal bone changes around implants placed at different depths in a dog model. Thirty-six two-piece dental implants with a medialized implant-abutment interface and Morse taper connection (Ankylos, Dentsply) were placed in edentulous areas bilaterally in six mongrel dogs. On each side of the mandible, three implants were placed randomly at the bone crest, 1.5 mm subcrestally, or 3.0 mm subcrestally. After 3 months, the final abutments were torqued into place. At 6 months, the animals were sacrificed and samples taken for microcomputed tomographic (micro-CT) and histologic evaluations. Micro-CT analysis revealed similar crestal or marginal bone loss among groups. Both subcrestal implant groups lost significantly less crestal and marginal bone than the equicrestal implants. Bone loss was greatest on the buccal of the implants, regardless of implant placement depth. Histologically, implants placed subcrestally were found to have bone in contact with the final abutment and on the implant platform. Implants with a centralized implant-abutment interface and Morse taper connection can be placed subcrestally without significant loss of crestal or marginal bone. Subcrestal placement of this implant system appears to be advantageous in maintaining bone height coronal to the implant platform.
Canullo, Luigi; Tallarico, Marco; Chu, Stephen; Peñarrocha, David; Özcan, Mutlu; Pesce, Paolo
American and European standards recommend sterilization of customized abutments before connecting them to implants, as customized abutments are considered semi-critical medical devices. Since standardized procedures could not be identified in the literature on implantology, this survey evaluated the protocols employed at different universities worldwide to clean, disinfect, and/or sterilize customized abutments before their connection to bone-level implants. The survey took place between October 2015 and January 2016. A single question acquiring information on how customized abutments were treated prior to connection to the implants was sent by email to researchers affiliated at 100 universities worldwide. To avoid any bias, the survey was kept rigorously anonymous. A total of 100 universities from Europe (56), USA and Canada (25), Latin America (9), South Africa (1), Asia (6), and Australia and New Zealand (3) were invited to participate in the survey. Altogether, 85 universities responded to the survey question, and 22 (25.9%) declared that no cleaning protocols were adopted. More than half of the respondents (n = 49, 57.6%) performed only one of the three procedures required by the standards (cleaning, disinfection, or sterilization). Twelve respondents (14.1%) adopted two procedures, and only two universities performed all three required procedures (2.4%). This survey indicated substantial heterogeneity in treating customized abutments before connecting them to implants. This study demonstrated that the majority of the universities applied either cleaning, disinfection, or sterilization which may not meet the prevailing standards.
Ayotte, Joseph D.; Hammond, Robert E.
1996-01-01
bridge consisting of one 27-foot clear-span concrete-encased steel beam deck superstructure (Vermont Agency of Transportation, written commun., August 25, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening while the opening-skew-to-roadway is 5 degrees. Both abutment footings were reported as exposed and the left abutment was reported to be undermined by 0.5 ft at the time of the Level I assessment. The only scour protection measure at the site was type-1 stone fill (less than 12 inches diameter) along the left abutment which was reported as failed. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.4 to 5.1 ft. with the worst-case occurring at the 500-year discharge. Abutment scour ranged from 9.9 to 20.3 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.
Bacterial microleakage at the abutment-implant interface, in vitro study.
Larrucea, Carlos; Conrado, Aparicio; Olivares, Denise; Padilla, Carlos; Barrera, Andrea; Lobos, Olga
2018-02-15
In implant rehabilitation, a microspace is created at the abutment-implant interface (AII). Previous research has shown that oral microbiome can proliferate in this microspace and affect periimplant tissues, causing inflammation in peri-implant tissues. Preventing microbial leakages through the AII is therefore an important goal in implantology. To determine the presence of marginal bacterial microleakage at the AII according to the torque applied to the prosthetic implant in vitro. Twenty-five Ticare Inhex internal conical implants (MG Mozo-Grau, Valladolid, España) were connected to a prosthetic abutment using torques of <10, 10, 20, 30, and 30 N and then sealed. The samples were submitted to cycles of occlusal loads and thermocycling, then one sample of each group was observed by micro TC, while the rest were mounted on devices according to the bacterial leakage model with Porphyromonas gingivalis. Bacterial leakage was observed only in the <10 and 10 N torque samples, and the same groups presented poor abutment/implant adjustment as determined by micro-CT. The different torques applied to the abutment-implant system condition the bacterial leakage at the implant interface. No microleakage was observed at 20 and 30 N. © 2018 Wiley Periodicals, Inc.
Striker, Lora K.; Ivanoff, Michael A.
1997-01-01
Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 5.6 to 10.0 ft at the left abutment and from 3.1 to 4.2 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Ivanoff, Michael A.
1997-01-01
Contraction scour computed for all modelled flows was zero ft. Abutment scour ranged from 6.2 to 9.7 ft. The worst-case abutment scour occurred at the 100-year discharge at the right abutment and at the 500-year discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Striker, L.K.; Ivanoff, M.A.
1997-01-01
Contraction scour for all modelled flows was 0 ft. Abutment scour ranged from 7.6 to 8.4 ft at the left abutment and from 9.9 to 14.8 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Dincer Kose, Onur; Karataslı, Burcin; Demircan, Sabit; Kose, Taha Emre; Cene, Erhan; Aya, Serhan Aydın; Erdem, Mehmet Ali; Cankaya, Abdulkadir Burak
2017-01-01
Preload is applied to screws manually or using a torque wrench in dental implant systems, and the preload applied must be appropriate for the purpose. The aim of this study was to assess screw loosening and bending/torsional moments applied by clinicians of various specialties following application of manual tightening torque to combinations of implants and abutments. Ten-millimeter implants of 3.7 and 4.1 mm diameters and standard or solid abutments were used. Each group contained five implant-abutment combinations. The control and experimental groups comprised 20 and 160 specimens, respectively. Implants in the experimental group were tightened by dentists of different specialties. Torsional and bending moments during tightening were measured using a strain gauge. Control group and implants with preload values close to the ideal preload were subjected to a dynamic loading test at 150 N, 15 Hz, and 85,000 cycles. The implants that deformed in this test were examined using an optical microscope to assess deformities. Manual tightening did not yield the manufacturer-recommended preload values. Dynamic loading testing suggested early screw loosening/fracture in samples with insufficient preload.
Demircan, Sabit; Cene, Erhan; Aya, Serhan Aydın; Erdem, Mehmet Ali; Cankaya, Abdulkadir Burak
2017-01-01
Preload is applied to screws manually or using a torque wrench in dental implant systems, and the preload applied must be appropriate for the purpose. The aim of this study was to assess screw loosening and bending/torsional moments applied by clinicians of various specialties following application of manual tightening torque to combinations of implants and abutments. Ten-millimeter implants of 3.7 and 4.1 mm diameters and standard or solid abutments were used. Each group contained five implant-abutment combinations. The control and experimental groups comprised 20 and 160 specimens, respectively. Implants in the experimental group were tightened by dentists of different specialties. Torsional and bending moments during tightening were measured using a strain gauge. Control group and implants with preload values close to the ideal preload were subjected to a dynamic loading test at 150 N, 15 Hz, and 85,000 cycles. The implants that deformed in this test were examined using an optical microscope to assess deformities. Manual tightening did not yield the manufacturer-recommended preload values. Dynamic loading testing suggested early screw loosening/fracture in samples with insufficient preload. PMID:28473988
Mechanics of the tapered interference fit in dental implants.
Bozkaya, Dinçer; Müftü, Sinan
2003-11-01
In evaluation of the long-term success of a dental implant, the reliability and the stability of the implant-abutment interface plays a great role. Tapered interference fits provide a reliable connection method between the abutment and the implant. In this work, the mechanics of the tapered interference fits were analyzed using a closed-form formula and the finite element (FE) method. An analytical solution, which is used to predict the contact pressure in a straight interference, was modified to predict the contact pressure in the tapered implant-abutment interface. Elastic-plastic FE analysis was used to simulate the implant and abutment material behavior. The validity and the applicability of the analytical solution were investigated by comparisons with the FE model for a range of problem parameters. It was shown that the analytical solution could be used to determine the pull-out force and loosening-torque with 5-10% error. Detailed analysis of the stress distribution due to tapered interference fit, in a commercially available, abutment-implant system was carried out. This analysis shows that plastic deformation in the implant limits the increase in the pull-out force that would have been otherwise predicted by higher interference values.
Burns, Ronda L.; Hammond, Robert E.
1997-01-01
Contraction scour for all modelled flows was zero ft. The left abutment scour ranged from 3.6 to 9.2 ft. The worst-case left abutment scour occurred at the 500-year discharge. The right abutment scour ranged from 9.8 to 12.6 ft. The worst case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Boehmler, Erick M.; Burns, Ronda L.
1997-01-01
There was no predicted contraction scour for any of the modelled flows. Abutment scour ranged from 4.9 to 11.6 ft. The worst-case abutment scour occurred at the right abutment for the 500-year discharge. However, historical information indicates the right abutment is in contact with bedrock at least in part. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Striker, Lora K.; Ivanoff, Michael A.
1997-01-01
Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 6.4 to 7.9 ft at the left abutment and from 11.8 to 14.9 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Striker, Lora K.; Medalie, Laura
1997-01-01
Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 5.8 to 6.8 ft at the left abutment and 9.4 to 14.4 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
SOUTHEAST SIDE, TAKEN FROM LOWER PARKING LOT, WITH ABUTTING FACILITY ...
SOUTHEAST SIDE, TAKEN FROM LOWER PARKING LOT, WITH ABUTTING FACILITY 346 IN FOREGROUND. - U.S. Naval Base, Pearl Harbor, Joint Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
12. DETAIL OF NORTH ABUTMENT, FROM BENEATH, SHOWING ARCH RIB ...
12. DETAIL OF NORTH ABUTMENT, FROM BENEATH, SHOWING ARCH RIB AND FLOOR BEAM. VIEW TO NORTHEAST. - Rock Valley Bridge, Spanning North Timber Creek at Old U.S. Highway 30, Marshalltown, Marshall County, IA
GRS bridge piers and abutments.
DOT National Transportation Integrated Search
2001-01-01
This report presents the following three recent projects on load testing of geosynthetic-reinforced soil (GRS) bridge abutments and piers: a full-scale bridge pier load test conducted by the Turner-Fairbank Highway Research Center, Federal Highway Ad...
Long-term behavior of integral abutment bridges.
DOT National Transportation Integrated Search
2011-01-01
Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical : highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To : expand ...
Evaluation of DOTD semi-integral bridge and abutment system.
DOT National Transportation Integrated Search
2005-03-01
The Louisiana Department of Transportation and Development (LADOTD) designed and constructed its first prototype semi-integral abutment bridge in 1989. In this design, large longitudinal movements due to expansion and contraction, creep, shrinkage, a...
11. DETAIL OF EXTREMELY DETERIORATED CONDITION OF ORIGINAL STONE DAM ...
11. DETAIL OF EXTREMELY DETERIORATED CONDITION OF ORIGINAL STONE DAM ABUTMENT AND REASON FOR ENCASING ABUTMENT IN CONCRETE, c. 1918. - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV
GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, ...
GENERAL VIEW OF NORTH SAN GABRIEL RIVER BRIDGE, NORTH ABUTMENT, LOOKING NORTHWEST. - North San Gabriel River Bridge, Spanning North Fork of San Gabriel River at Business Route 35, Georgetown, Williamson County, TX
NORTH ABUTMENT DETAIL. AveryBartholomew Patent Railroad Iron Bridge, Town ...
NORTH ABUTMENT DETAIL. - Avery-Bartholomew Patent Railroad Iron Bridge, Town park south of Route 222, west of Owasco Inlet (moved from Elm Street Extension spanning Fall Creek, Nubia, NY), Groton, Tompkins County, NY
NORTH NORTHWEST, SHOWING ABUTMENTS AND PIER MADE OF CUT, SQUARED ...
NORTH NORTHWEST, SHOWING ABUTMENTS AND PIER MADE OF CUT, SQUARED STONE WITH MORTARED JOINTS. - Crum Bridge, Spanning Little Muskingum River, TR 384A (formerly Old Camp Road), Rinard Mills, Monroe County, OH
Angulated Implants for Fabrication of Implant Supported Fixed Partial Denture in the Maxilla
Egbert, Nicholas; Ahuja, Swati; Selecman, Audrey; Wicks, Russell
2017-01-01
Until recently, angled abutments have been the only solution to correcting the trajectory of the emergence profile of labially inclined implants in the maxilla. However, the clinical implications of angled abutments reveal several shortcomings. Newly designed angulated implants with a 12-degree restorative platform angulation are an alternative to angled abutments. The purpose of this article was to report a case utilizing new angulated implants (Co-axis, Keystone dental, Burlington, MA, USA) in the premaxilla thereby facilitating fabrication of a multi-unit implant retained fixed dental prosthesis. PMID:29201975
Odaira, Chikayuki; Kobayashi, Takuya; Kondo, Hisatomo
2016-01-01
An impression technique called optical impression using intraoral scanner has attracted attention in digital dentistry. This study aimed to evaluate the accuracy of the optical impression, comparing a virtual model reproduced by an intraoral scanner to a working cast made by conventional silicone impression technique. Two implants were placed on a master model. Working casts made of plaster were fabricated from the master model by silicone impression. The distance between the ball abutments and the angulation between the healing abutments of 5 mm and 7 mm height at master model were measured using Computer Numerical Control Coordinate Measuring Machine (CNCCMM) as control. Working casts were then measured using CNCCMM, and virtual models via stereo lithography data of master model were measured by a three-dimensional analyzing software. The distance between ball abutments of the master model was 9634.9 ± 1.2 μm. The mean values of trueness of the Lava COS and working casts were 64.5 μm and 22.5 μm, respectively, greater than that of control. The mean of precision values of the Lava COS and working casts were 15.6 μm and 13.5 μm, respectively. In the case of a 5-mm-height healing abutment, mean angulation error of the Lava COS was greater than that of the working cast, resulting in significant differences in trueness and precision. However, in the case of a 7-mm-height abutment, mean angulation errors of the Lava COS and the working cast were not significantly different in trueness and precision. Therefore, distance errors of the optical impression were slightly greater than those of conventional impression. Moreover, the trueness and precision of angulation error could be improved in the optical impression using longer healing abutments. In the near future, the development of information technology could enable improvement in the accuracy of the optical impression with intraoral scanners. PMID:27706225
Wang, Yun-Chi; Kan, Joseph Y K; Rungcharassaeng, Kitichai; Roe, Phillip; Lozada, Jaime L
2015-01-01
Objectives This 1-year prospective study evaluated the implant success rate and marginal bone response of non-submerged implants with platform and non-platform switching abutments in posterior healed sites. Material and methods Nineteen patients (9 male, 10 female) with posterior partially edentulous spaces, between the ages of 23 and 76 (mean = 55.4 years), were included in this study. A total of 30 implants (15 implants restored with platform switching [PS] abutments [control] and 15 implants restored with non-platform switching [NPS] abutments [test]) were assigned between two groups using a randomization procedure. The definitive abutments with conical connections were placed at the time of surgery, and the definitive restorations were placed at 3 months. All patients were evaluated clinically and radiographically using standardized radiographs at time of implant placement (0), 3, 6 and 12 months after implant placement. Data were analyzed using Friedman test with post hoc pairwise comparisons, Mann–Whitney U-test, and Pearson's chi-square test at the significance level of α = 0.05. Results At 12 months, all 30 implants remained osseointegrated corresponding to a 100% success rate. The overall mean marginal bone level change at 12 months was −0.04 ± 0.08 mm for PS group and −0.19 ± 0.16 mm for NPS group. Statistically significant difference in the marginal bone level change was observed between groups at 0 to 12 months and 3 to 12 months (P < 0.05). Conclusions This 1-year randomized control study suggests that when a conical implant–abutment connection is present, similar peri-implant tissue responses can be achieved with platform switching and non-platform switching abutments. PMID:24383912
Hata, Utako; Yamamura, Osamu; Kawauchi, Daisuke; Fujii, Teruhisa
2006-01-01
Recently, the use of all-ceramic crowns has spread widely in clinical applications to meet the demand for both functional and esthetically-pleasing restorations. In making all-ceramic crowns, it is necessary to reproduce the shape and color near to those of the natural teeth. However, the color shades of abutments might influence the color of the copings which are made of material with high transparency. This study examined the influence of the color shades of the abutments on the final color of copings for three kinds of all-ceramic core materials: Empress, Empress 2 (IVOCLAR VIVADENT), and Procera AllCeram (Nobel Biocare). Copings with 0.5 mm in thickness were fabricated by using Empress (TC1), Empress 2 (100), and Procera AllCeram (white) core materials for an upper-right central incisor. Abutments were made by using six kinds of die materials of the Empress system (ST1, ST2, ST3, ST5, ST8, ST9), gold-silver-palladium alloy, gold alloy, and experimental black body. Copings were inserted in each abutment and the final color of the central part of the buccal surface was measured using a spectrophotometer according to the L*a*b* color system. Regardless of the color shades of the abutments, the chroma values of the copings rose in the order of Empress, Empress 2, and Procera, and the values of lightness rose in the order of Empress, Procera, and Empress 2. When the final color of each coping measured under the wet and dry conditions were compared, the difference in chroma was great. Within the limitations of this study, the results suggest that the influence of the color shades of the abutments on the final color of the three kinds of copings is small in the order of Empress, Procera, and Empress 2. In clinical and dental laboratory operations, it is hoped to observe and measure the color of copings and restorations under the wet condition.
Butkevica, Alena; Nathanson, Dan; Pober, Richard; Strating, Herman
2018-02-01
Repeated tightening and loosening of the abutment screw may alter its mechanical and physical properties affecting the optimal torque and ultimate reliability of an implant/abutment connection. The purpose of this study was to evaluate the effect of repeated tightening and loosening of implant/abutment screws on the loosening torque of implant/abutment connections of commercially available implant systems. Seven different implant/abutment connections and their modifications were tested. The screws of each system were tightened according to the manufacturer's specifications. After 20 minutes the screws were loosened. This procedure was repeated ten times, and the differences between the 1st and 10th cycle were expressed as a percentage change RTq(%) and correlated with initial torque, the number of threads, the length of shank, and thread surface area employing Spearman's analysis. All systems showed significant differences in residual torque (RTq) value (p < 0.05) between the 1st and 10th cycle except groups 6 and 11 (p > 0.05). All connections but group 3 (p = 1.000) showed a significant change from the initial torque (ITq) to the RTq values. The first successive RTq values increased in two connection groups 1 and 2. The remaining connections showed reduced RTq values ranging from -1.2 % (group 5) to -23.5% (group 6). The RTq values declined gradually with every repeated tightening in groups 1, 2, 3, 8, 9, 11, 12. In group 2, after the tenth tightening the RTq was still above the ITq value. Only length of shank demonstrated a correlation with the RTq(%) change over the successive tightening loosening cycles (p < 0.05). Repeated tightening and loosening of implant/abutment screws caused varying torque level changes among the different systems. These observations can probably be attributed to connection design. Limiting the number of tightening/loosening cycles in clinical and laboratory procedures is advisable for most of the implant systems tested. © 2016 by the American College of Prosthodontists.
Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila
To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P < .05). Nonetheless, torque loss values after loading were not shown to be significantly different from each other. Using a new screw could not significantly increase the value of removal torque. It was concluded that restricting the amount of screw tightening is more important than replacing the screw with a new one when an abutment is definitively placed.
Herbst, Paulo Eduardo; de Carvalho, Eduardo Bortolas; Salatti, Rafael C; Valgas, Laiz; Tiossi, Rodrigo
To study the force used for tightening tapered one-piece prosthetic abutments and their influence on the removal torque value and stress level of the prosthetic abutment after cyclic loading. Fourteen implants and prosthetic abutments were divided into two groups (n = 7): G1, 20 Ncm; and G2, 32 Ncm (manufacturer recommended). A 20-mm T-shaped horizontal bar was adapted to the abutments. A 12-Hz cyclic loading was applied to the specimens in an electrodynamic testing system with the maximum number of cycles set to 10 6 . Specimens were inclined by 15 degrees from the vertical axis, and a 5-mm off-center vertical load was applied to generate a combination of bending and torquing moments on the tapered connections. Progressive loads (from 164.85 to 362.85 N) were applied when the previous sample survived 10 6 cycles. The paired t test compared the screw removal torque with the initial tightening torque for each group (α = .05). A finite element analysis (FEA) of the mechanical testing analyzed the regions of stress concentration. No specimens failed after 10 6 cyclic loadings. The mean screw removal torque for both groups was similar to the initial abutment torque value applied for each group (G1, 20.36 ± 8.73 Ncm; and G2, 35.61 ± 6.99 Ncm) (P > .05). FEA showed similar stress behavior for both groups in the study despite the different simulated screw preloads (G1: 200 N; G2: 320 N). The coronal region of the implant body presented the highest strain values in both groups. Tightening tapered one-piece prosthetic abutments at 20 and 32 Ncm maintains a stable connection after cyclic loading. The stresses generated by the different tightening forces during cyclic loading are highest at the coronal level of the connection.
17. DETAIL OF DAM CREST FROM WEST ABUTMENT, SHOWING SERVICE ...
17. DETAIL OF DAM CREST FROM WEST ABUTMENT, SHOWING SERVICE ROAD AND PARAPET WALL, WITH DEDICATION PLAQUE MOUNTED ON WALL IN LEFT FOREGROUND. VIEW TO NORTHEAST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
Performance assessment of MSE abutment walls in Indiana : final report.
DOT National Transportation Integrated Search
2017-05-01
This report presents a numerical investigation of the behavior of steel strip-reinforced mechanically stabilized earth (MSE) direct bridge abutments under static loading. Finite element simulations were performed using an advanced two-surface boundin...
12. DETAIL VIEW OF WEST ABUTMENT AT Lo, SHOWING BRIDGE ...
12. DETAIL VIEW OF WEST ABUTMENT AT Lo, SHOWING BRIDGE SEAT, TIMBER PILES, STEEL SILL AND BACKWALL/WlNGWALL BOARDS, LOOKING NORTH - Cottonville Bridge, County Road D-61 at Farmer's Creek, Maquoketa, Jackson County, IA
Thermal response of integral abutment bridges with mechanically stabilized earth walls.
DOT National Transportation Integrated Search
2013-03-01
The advantages of integral abutment bridges (IABs) include reduced maintenance costs and increased useful life spans. : However, improved procedures are necessary to account for the impacts of cyclic thermal displacements on IAB components, : includi...
GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, ...
GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, SOUTH ABUTMENT, LOOKING SOUTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX
9. South abutment, detail of collapsed east wing wall; also ...
9. South abutment, detail of collapsed east wing wall; also detail of bottom lateral bracing and stringers; looking southeast - Dodd Ford Bridge, County Road 147 Spanning Blue Earth River, Amboy, Blue Earth County, MN
17. Underside of bridge and abutment with large boulder looking ...
17. Underside of bridge and abutment with large boulder looking ENE. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN
Continuous equal channel angular pressing
Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Raab, Georgy J.
2006-12-26
An apparatus that continuously processes a metal workpiece without substantially altering its cross section includes a wheel member having an endless circumferential groove, and a stationary constraint die that surrounds the wheel member, covers most of the length of the groove, and forms a passageway with the groove. The passageway has a rectangular shaped cross section. An abutment member projects from the die into the groove and blocks one end of the passageway. The wheel member rotates relative to the die in the direction toward the abutment member. An output channel in the die adjacent the abutment member has substantially the same cross section as the passageway. A metal workpiece is fed through an input channel into the passageway and carried in the groove by frictional drag in the direction towards the abutment member, and is extruded through the output channel without any substantial change in cross section.
Alumina-zirconia machinable abutments for implant-supported single-tooth anterior crowns.
Sadoun, M; Perelmuter, S
1997-01-01
Innovative materials and application techniques are constantly being developed in the ongoing search for improved restorations. This article describes a new material and the fabrication process of aesthetic machinable ceramic anterior implant abutments. The ceramic material utilized is a mixture of alumina (aluminum oxide) and ceria (cerium oxide) with partially stabilized zirconia (zirconium oxide). The initial core material is a cylinder with a 9-mm diameter and a 15-mm height, obtained by ceramic injection and presintering processes. The resultant alumina-zirconia core is porous and readily machinable. It is secured to the analog, and its design is customized by machining the abutment to suit the particular clinical circumstances. The machining is followed by glass infiltration, and the crown is finalized. The learning objective of this article is to gain a basic knowledge of the fabrication and clinical application of the custom machinable abutments.
Reddy, Jagan Mohan; Prashanti, E; Kumar, G Vinay; Suresh Sajjan, M C; Mathew, Xavier
2009-01-01
The dual-arch impression technique is convenient in that it makes the required maxillary and mandibular impressions, as well as the inter-occlusal record in one procedure. The accuracy of inter-abutment distance in dies fabricated from dual-arch impression technique remains in question because there is little information available in the literature. This study was conducted to evaluate the accuracy of inter-abutment distance in dies obtained from full arch dual-arch trays with those obtained from full arch stock metal trays. The metal dual-arch trays showed better accuracy followed by the plastic dual-arch and stock dentulous trays, respectively, though statistically insignificant. The pouring sequence did not have any effect on the inter-abutment distance statistically, though pouring the non-working side of the dual-arch impression first showed better accuracy.
Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun
2018-02-01
Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.
Abutment design for implant-supported indirect composite molar crowns: reliability and fractography.
Bonfante, Estevam Augusto; Suzuki, Marcelo; Lubelski, William; Thompson, Van P; de Carvalho, Ricardo Marins; Witek, Lukasz; Coelho, Paulo G
2012-12-01
To investigate the reliability of titanium abutments veneered with indirect composites for implant-supported crowns and the possibility to trace back the fracture origin by qualitative fractographic analysis. Large base (LB) (6.4-mm diameter base, with a 4-mm high cone in the center for composite retention), small base (SB-4) (5.2-mm base, 4-mm high cone), and small base with cone shortened to 2 mm (SB-2) Ti abutments were used. Each abutment received incremental layers of indirect resin composite until completing the anatomy of a maxillary molar crown. Step-stress accelerated-life fatigue testing (n = 18 each) was performed in water. Weibull curves with use stress of 200 N for 50,000 and 100,000 cycles were calculated. Probability Weibull plots examined the differences between groups. Specimens were inspected in light-polarized and scanning electron microscopes for fractographic analysis. Use level probability Weibull plots showed Beta values of 0.27 for LB, 0.32 for SB-4, and 0.26 for SB-2, indicating that failures were not influenced by fatigue and damage accumulation. The data replotted as Weibull distribution showed no significant difference in the characteristic strengths between LB (794 N) and SB-4 abutments (836 N), which were both significantly higher than SB-2 (601 N). Failure mode was cohesive within the composite for all groups. Fractographic markings showed that failures initiated at the indentation area and propagated toward the margins of cohesively failed composite. Reliability was not influenced by abutment design. Qualitative fractographic analysis of the failed indirect composite was feasible. © 2012 by the American College of Prosthodontists.
Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs
2015-12-01
Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.
2017-01-01
PURPOSE The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS Low levels of vertical wall taper, ≤ 10-degrees, were needed to resist rotational displacement in all wall height categories; 2–to–6–degrees is generally considered ideal, with 7–to–10–degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form. PMID:28874995
Axial displacements in external and internal implant-abutment connection.
Lee, Ji-Hye; Kim, Dae-Gon; Park, Chan-Jin; Cho, Lee-Ra
2014-02-01
The purpose of this study was to evaluate the axial displacement of the abutments during clinical procedures by the tightening torque and cyclic loading. Two different implant-abutment connection systems were used (external butt joint connection [EXT]; internal tapered conical connection [INT]). The master casts with two implant replicas, angulated 10° from each other, were fabricated for each implant connection system. Four types of impression copings were assembled and tightened with the corresponding implants (hex transfer impression coping, non-hex transfer impression coping, hex pick-up impression coping, non-hex pick-up impression coping). Resin splinted abutments and final prosthesis were assembled. The axial displacement was measured from the length of each assembly, which was evaluated repeatedly, after 30 Ncm torque tightening. After 250 N cyclic loading of final prosthesis for 1,000,000 cycles, additional axial displacement was recorded. The mean axial displacement was statistically analyzed (repeated measured ANOVA). There was more axial displacement in the INT group than that of the EXT group in impression copings, resin splinted abutments, and final prosthesis. Less axial displacement was found at 1-piece non-hex transfer type impression coping than other type of impression copings in the INT group. There was more axial displacement at the final prosthesis than resin splinted abutments in the INT and the EXT groups. After 250 N cyclic loading of final prosthesis, the INT group showed more axial displacement than that of the EXT group. Internal tapered conical connection demonstrated a varying amount of axial displacement with tightening torque and cyclic loading. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong
2015-06-01
This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.
Trestle #1, detail of southwest abutment and deck. View to ...
Trestle #1, detail of southwest abutment and deck. View to south - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Trestle #1, southwest abutment and wing wall. View to west ...
Trestle #1, southwest abutment and wing wall. View to west - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Trestle #1, northeast abutment and wing walls. View to north ...
Trestle #1, northeast abutment and wing walls. View to north - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
10. DETAIL OF RUBBLE MASONRY ABUTMENT ON THE SOUTH BANK ...
10. DETAIL OF RUBBLE MASONRY ABUTMENT ON THE SOUTH BANK AND DISINTEGRATING CONCRETE FACING; VIEW FROM WEST. - Mitchell's Mill Bridge, Spanning Winter's Run on Carrs Mill Road, west of Bel Air, Bel Air, Harford County, MD
Deterioration of J-bar reinforcement in abutments and piers.
DOT National Transportation Integrated Search
2011-12-31
Deterioration and necking of J-bars has been reportedly observed at the interface of the footing and stem wall during the demolition : of older retaining walls and bridge abutments. Similar deterioration has been reportedly observed between the pier ...
Integral bridge abutment-to-approach slab connection.
DOT National Transportation Integrated Search
2008-06-01
The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the "bump at the end of the bridge". A commonly recommended solution is to in...
Integral abutment bridge for Louisiana's soft and stiff soils.
DOT National Transportation Integrated Search
2008-02-01
The proposed research will be to field instrument, monitor, and analyze the design and construction of full integral abutment bridges for Louisianas soft and stiff soil conditions. Comparison of results will be submitted to the Louisiana Departmen...
Integral abutment bridges under thermal loading : field monitoring and analysis.
DOT National Transportation Integrated Search
2017-08-01
Integral abutment bridges (IABs) have gained popularity throughout the United States due to their low construction and maintenance costs. Previous research on IABs has been heavily focused on substructure performance, leaving a need for better unders...
Long-term behavior of integral abutment bridges : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
Integral abutment bridges, a type of jointless bridge, are the construction option of choice when designing highway bridges in many parts of the country. Rather than providing an expansion joint to separate the substructure from the superstructure to...
9. LOOKING NORTHWEST, A VIEW OF THE NORTH ABUTMENT, THE ...
9. LOOKING NORTHWEST, A VIEW OF THE NORTH ABUTMENT, THE DITCH AND THE EAST SIDE OF THE STRUCTURE FROM BELOW. - Wells County Bridge No. 74, Spanning Rock Creek Ditch at County Road 400, Bluffton, Wells County, IN
Geosynthetic reinforced soil for low-volume bridge abutments.
DOT National Transportation Integrated Search
2012-01-01
This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two : field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feas...
Experimental and analytical investigations of the piles and abutments of integral bridges.
DOT National Transportation Integrated Search
2002-01-01
This research investigated, through experimental and analytical studies, the complex interactions that take place between the structural components of an integral bridge and the adjoining soil. The ability of piles and abutments to withstand thermall...
Integral abutment bridges under thermal loading : numerical simulations and parametric study.
DOT National Transportation Integrated Search
2016-06-01
Integral abutment bridges (IABs) have become of interest due to their decreased construction and maintenance costs in : comparison to conventional jointed bridges. Most prior IAB research was related to substructure behavior, and, as a result, most :...
Thermal behavior of IDOT integral abutment bridges and proposed design modifications.
DOT National Transportation Integrated Search
2013-05-01
The Illinois Department of Transportation (IDOT) has increasingly constructed integral abutment bridges (IABs) : over the past few decades, similar to those in many other states. Because the length and skew limitations : currently employed by IDOT ha...
2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF ...
2. VIEW OF NORTH FACE SHOWING SUBSTRUCTURE AND ABUTMENTS OF BRIDGE CROSSING THE SOUTH FORK OF THE TUOLUMNE RIVER. - South Fork Tuolumne River Bridge, Spanning South Fork Tuolumne River on Tioga Road, Mather, Tuolumne County, CA
Papaspyridakos, Panos; Hirayama, Hiroshi; Chen, Chun-Jung; Ho, Chung-Han; Chronopoulos, Vasilios; Weber, Hans-Peter
2016-09-01
The aim of this study was to assess the effect of connection type and impression technique on the accuracy of fit of implant-supported fixed complete-arch dental prostheses (IFCDPs). An edentulous mandibular cast with five implants was fabricated to serve as master cast (control) for both implant- and abutment-level baselines. A titanium one-piece framework for an IFCDP was milled at abutment level and used for accuracy of fit measurements. Polyether impressions were made using a splinted and non-splinted technique at the implant and abutment level leading to four test groups, n = 10 each. Hence, four groups of test casts were generated. The impression accuracy was evaluated indirectly by assessing the fit of the IFCDP framework on the generated casts of the test groups, clinically and radiographically. Additionally, the control and all test casts were digitized with a high-resolution reference scanner (IScan D103i, Imetric, Courgenay, Switzerland) and standard tessellation language datasets were generated and superimposed. Potential correlations between the clinical accuracy of fit data and the data from the digital scanning were investigated. To compare the accuracy of casts of the test groups versus the control at the implant and abutment level, Fisher's exact test was used. Of the 10 casts of test group I (implant-level splint), all 10 presented with accurate clinical fit when the framework was seated on its respective cast, while only five of 10 casts of test group II (implant-level non-splint) showed adequate fit. All casts of group III (abutment-level splint) presented with accurate fit, whereas nine of 10 of the casts of test group IV (abutment-level non-splint) were accurate. Significant 3D deviations (P < 0.05) were found between group II and the control. No statistically significant differences were found between groups I, III, and IV compared with the control. Implant connection type (implant level vs. abutment level) and impression technique did affect the 3D accuracy of implant impressions only with the non-splint technique (P < 0.05). For one-piece IFCDPs, the implant-level splinted impression technique showed to be more accurate than the non-splinted approach, whereas at the abutment-level, no difference in the accuracy was found. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alves, Célia C; Muñoz, Fernando; Cantalapiedra, António; Ramos, Isabel; Neves, Manuel; Blanco, Juan
2015-09-01
The effect on the marginal peri-implant tissues following repeated platform switching abutment removal and subsequent reconnection was studied. Six adult female Beagle dogs were selected, and Pm3 and Pm4 teeth, both left and right sides, were extracted and the sites healed for 3 months. At this time, 24 bone level (BL) (Straumann, Basel, Switzerland) Ø 3.3/8 mm implants were placed, 2 in each side on Pm3 and Pm4 regions. In one side (control group), 12 bone level conical Ø 3.6 mm healing abutments and, on the other side (test group), 12 Narrow CrossFit (NC) multibase abutments (Straumann) , Basel, Switzerland) were connected at time of implant surgery. On test group, all prosthetic procedures were carried out direct to multibase abutment without disconnecting it, where in the control group, the multibase abutment was connected/disconnected five times (at 6/8/10/12/14 weeks) during prosthetic procedures. Twelve fixed metal bridges were delivered 14 weeks after implant placement. A cleaning/control appointment was scheduled 6 months after implant placement. The animals were sacrificed at 9 months of the study. Clinical parameters and peri-apical x-rays were registered in every visit. Histomorphometric analysis was carried out for the 24 implants. The distance from multibase abutment shoulder to the first bone implant contact (S-BIC) was defined as the primary histomorphometric parameter. Wilcoxon comparison paired test (n = 6) found no statistically significant differences (buccal P = 0.917; Lingual P = 0.463) between test and control groups both lingually and buccally for S-BIC distance. Only Pm3 buccal aBE-BC (distance from the apical end of the barrier epithelium to the first bone implant contact) (P = 0.046) parameter presented statistically significant differences between test and control groups. Control group presented 0.57 mm more recession than test group, being this difference statistically significant between the two groups (P < 0.001). It can be conclude, within the limits of this animal study, that the connection/disconnection of platform switching abutments during prosthetic phase of implant treatment does not induce bone marginal absorption. Furthermore, it may present a negative influence in the buccal connective tissue attachment that becomes shorter anyway preventing marginal hard tissue resorption, especially in thin biotypes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Small Smooth Units ('Young' Lavas?) Abutting Lobate Scarps on Mercury
NASA Astrophysics Data System (ADS)
Malliband, C. C.; Rothery, D. A.; Balme, M. R.; Conway, S. J.
2018-05-01
We have identified small units abutting, and so stratigraphy younger than, lobate scarps. This post dates the end of large scale smooth plains formation at the onset of global contraction. This elaborates the history of volcanism on Mercury.
Integral abutment bridge for Louisiana's soft and stiff soils.
DOT National Transportation Integrated Search
2016-03-01
Integral abutment bridges (IABs) have been designed and constructed in a few US states in the past few : decades. The initial purpose of building such bridges was to eliminate the expansion joints and resolve the : joint-induced problems. Although IA...
Automated Erosion System to Protect Highway Bridge Crossings at Abutments
DOT National Transportation Integrated Search
2010-06-01
A new instrument (Photo-Electronic Erosion Pin, or PEEP) was examined in collecting field data and remotely monitoring bank erosion near bridge abutments during floods. The performance of PEEPs was evaluated through a detailed field study to determin...
Trestle #1, wing wall on northwest side of northeast abutment. ...
Trestle #1, wing wall on northwest side of northeast abutment. View to northeast - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Integral abutment bridge for Louisiana's soft and stiff soils : tech summary.
DOT National Transportation Integrated Search
2016-03-01
In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...
Integral abutment bridge for Louisiana's soft and stiff soils : Tech summary.
DOT National Transportation Integrated Search
2016-03-01
In this project, fi eld-instrumentation, monitoring, and analyzing the design and : construction of full integral abutment bridges for Louisianas fi ne sand and silty sand : deposit and clay soil conditions were conducted. Comparison of results wa...
Detail, northwest wingwall of north abutment, from west, showing original ...
Detail, northwest wingwall of north abutment, from west, showing original squared cut stone masonry construction and portion of non-original concrete apron - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA
6. EASTERLY AERIAL VIEW SHOWING THE RIGHT ABUTMENT AND OUTLET ...
6. EASTERLY AERIAL VIEW SHOWING THE RIGHT ABUTMENT AND OUTLET CONTROL WORKS IN THE FOREGROUND.... Volume XX, No. 8, September 9, 1940. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
Maintenance and design of steel abutment piles in Iowa bridges.
DOT National Transportation Integrated Search
2014-09-01
Soil consolidation and erosion caused by roadway runoff have exposed the upper portions of steel piles at the abutments of : numerous bridges, leaving them susceptible to accelerated corrosion rates due to the abundance of moisture, oxygen, and : chl...
Long-term behavior of integral abutment bridges : appendix A, construction plans.
DOT National Transportation Integrated Search
2011-01-01
Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand thei...
Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.
DOT National Transportation Integrated Search
2011-12-01
We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...
3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...
3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...
2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA
9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, ...
9. VIEW OF SOUTHERN ROCKFACED DRESSED AND MORTARED STONE ABUTMENT, SHOWING STEEL CROSSBEAMS, TORSIONAL DIAGONAL STRUTS, AND WOODEN STRINGERS. FACING SOUTHWEST. - Coverts Crossing Bridge, Spanning Mahoning River along Township Route 372 (Covert Road), New Castle, Lawrence County, PA
NASA Technical Reports Server (NTRS)
Trosin, J.
1985-01-01
Use of the Display AButments (DAB) which plots PAN AIR geometries is presented. The DAB program creates hidden line displays of PAN AIR geometries and labels specified geometry components, such as abutments, networks, and network edges. It is used to alleviate the very time consuming and error prone abutment list checking phase of developing a valid PAN AIR geometry, and therefore represents a valuable tool for debugging complex PAN AIR geometry definitions. DAB is written in FORTRAN 77 and runs on a Digital Equipment Corporation VAX 11/780 under VMS. It utilizes a special color version of the SKETCH hidden line analysis routine.
Bacterial plaque colonization around dental implant surfaces.
Covani, Ugo; Marconcini, Simone; Crespi, Roberto; Barone, Antonio
2006-09-01
To examine the distribution of bacteria into the internal and external surfaces of failed implants using histologic analysis. There were 10 failed pure titanium and 5 failed hydroxyapatite-coated titanium implants consecutively removed various years after their placement. Criteria for fixture removal were peri-implant radiolucency and clinical mobility. The mobile fixtures were retrieved with the patients under local anesthesia. Fixtures were removed maintaining the abutments with the aim to observe the bacterial infiltration at the level of abutment/implant interface and on the implant surface. A thin radiolucent space was always present around all the failed implants. The abutments screws were tightly secured in all clinical cases. The bacterial cells were composed of cocci and filaments, which were adherent to the implant surface with an orientation perpendicular to the long axis of the implant. All the specimens included in this study showed bacteria at the level of implant/abutment interface. Histologic analysis at the level of abutment/implant interface in 2-stage implants identified heavy bacterial colonization. These findings appear to support those studies showing bacteria penetration at the level of the micro-gap, which can legitimate the hypothesis that the micro-gap at the bone level could present a risk for bone loss caused by bacterial colonization.
Heuer, W; Stiesch, M; Abraham, W R
2011-02-01
Supra- and subgingival biofilm formation is considered to be mainly responsible for early implant failure caused by inflammations of periimplant tissues. Nevertheless, little is known about the complex microbial diversity and interindividual similarities around dental implants. An atraumatic assessment was made of the diversity of microbial communities around titanium implants by single strand conformation polymorphism (SSCP) analysis of the 16S rRNA gene amplicons as well as subsequent sequence analysis. Samples of adherent supra- and subgingival periimplant biofilms were collected from ten patients. Additionally, samples of sulcusfluid were taken at titanium implant abutments and remaining teeth. The bacteria in the samples were characterized by SSCP and sequence analysis. A high diversity of bacteria varying between patients and within one patient at different locations was found. Bacteria characteristic for sulcusfluid and supra- and subgingival biofilm communities were identified. Sulcusfluid of the abutments showed higher abundance of Streptococcus species than from residual teeth. Prevotella and Rothia species frequently reported from the oral cavity were not detected at the abutments suggesting a role as late colonizers. Different niches in the human mouth are characterized by specific groups of bacteria. Implant abutments are a very valuable approach to study dental biofilm development in vivo.
Bacchi, Atais; Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro
2015-10-01
The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.
Olson, Scott A.; Hammond, Robert E.
1996-01-01
Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour at the left abutment ranged from 3.1 to 10.3 ft. with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 6.4 to 10.4 ft. with the worst-case occurring at the 100-year discharge.Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Burns, Ronda L.; Weber, Matthew A.
1997-01-01
Contraction scour for all modelled flows ranged from 0.6 to 1.5 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 3.5 to 8.9 ft. The worst-case abutment scour occurred at the incipient road-overtopping discharge for the left abutment and at the 100-year discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Burns, R.L.; Medalie, Laura
1998-01-01
Contraction scour for all modelled flows ranged from 0.0 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.7 to 8.7 ft. The worst-case left abutment scour occurred at the incipient roadway-overtopping discharge. Right abutment scour ranged from 7.8 to 9.5 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Boehmler, Erick M.; Ivanoff, Michael A.
1997-01-01
Contraction scour for all modelled flows ranged from 0.0 to 0.9 feet. The worst-case contraction scour occurred at the incipient-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.1 to 18.4 feet. The worst-case abutment scour occurred at the 500-year discharge for the right abutment and the incipient overtopping discharge for the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Cordaro, Luca; Ercoli, Carlo; Rossini, Carlo; Torsello, Ferruccio; Feng, Changyong
2005-10-01
The clinical outcome of complete-arch fixed prostheses supported by implants and natural tooth abutments in patients with normal or reduced periodontal support has been reported by few studies, with controversial results. The purpose of this study was to report on the implant success rate, prosthetic complications, and the occurrence of tooth intrusion, when complete-arch fixed prostheses, supported by a combination of implants and teeth, were fabricated for patients with normal and reduced periodontal support. Nineteen patients with residual teeth that served as abutments were consecutively treated with combined tooth- and implant-supported complete-arch fixed prostheses and were retrospectively evaluated after a period varying from 24 to 94 months. Nine patients showed reduced periodontal support as a result of periodontal disease and treatment (RPS group), and 10 patients had normal periodontal support of the abutment teeth (more than 2/3 of periodontal support [NPS group]). Ninety implants and 72 tooth abutments were used to support 19 fixed partial dentures. Screw- and cement-retained metal-ceramic and metal-resin prostheses were fabricated with rigid and nonrigid connectors. Implant survival and success rates, occurrence of caries and tooth intrusion, and prosthetic complications were recorded. The number of teeth, implants, prosthetic units, fixed partial dentures, and nonrigid connectors were compared with a t test to assess differences between the 2 groups, while data for the occurrence of intrusions and prosthetic complications were compared with the Fisher exact test (alpha=.05). One of the 90 implants was lost (99% survival rate) over 24 to 94 months, while 3 implants showed more than 2 mm of crestal bone loss (96% success rate) over the same period. No caries were detected, but 5.6% (4/72) of the abutment teeth exhibited intrusion. Intrusion of abutment teeth was noted in 3 patients who had normal periodontal support (13% of teeth in NPS group) of the abutment teeth and was associated with nonrigid connectors. No intrusion of teeth was noted in the patients exhibiting reduced periodontal support regardless of the type of connector or when a rigid connector was used for either group. The number of intruded teeth was significantly greater in patients with intact periodontal support (P=.03). Complete-arch fixed prosthesis supported by implant and tooth abutments may be associated with intrusion of teeth with intact periodontal support when nonrigid connectors are used to join the implant- and tooth-supported sections of the prostheses. However, fixed partial dentures supported by implants and teeth with reduced periodontal support were not associated with tooth intrusion, regardless of the type of connectors used.
Trestle #1, detail of bolts on northeast abutment lower vertical ...
Trestle #1, detail of bolts on northeast abutment lower vertical support timbers. View to north - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Trestle #1, detail of southwest abutment lower sill and gabion ...
Trestle #1, detail of southwest abutment lower sill and gabion baskets. View to west - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
Trestle #1, detail of southwest abutment upper timbers and gabion ...
Trestle #1, detail of southwest abutment upper timbers and gabion basket. View to west - Promontory Route Railroad Trestles, S.P. Trestle 779.91, One mile southwest of junction of State Highway 83 and Blue Creek, Corinne, Box Elder County, UT
48. Photographic copy of original construction plan (Wabasha St. Bridge, ...
48. Photographic copy of original construction plan (Wabasha St. Bridge, Plan of Masonry for Abutment, Piers No. 1 and 3, 1888); North abutment, first and second piers - Wabasha Street Bridge, Spanning Mississippi River at Wabasha Street, Saint Paul, Ramsey County, MN
Long-term behavior of integral abutment bridges : appendix D, Bowen lab soil borings.
DOT National Transportation Integrated Search
2011-01-01
Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand thei...
6. DETAIL OF SOUTHEAST ABUTMENT, SHOWING MANUFACTURER'S NAME ('PHOENIXUSA') ON ...
6. DETAIL OF SOUTHEAST ABUTMENT, SHOWING MANUFACTURER'S NAME ('PHOENIX-USA') ON HORIZONTAL MEMBER LEFT OF CENTER. - North Branch Quantico Creek Bridge, Prince William Forest Park, on NPS Route 406 spanning north branch of Quantico Creek, Dumfries, Prince William County, VA
DOT National Transportation Integrated Search
2017-07-01
One of the growing number of preventive bridge maintenance activities conducted by the Kentucky Transportation Cabinet (KYTC) is washing and applying thin film protective coatings to bridge abutments and piers. Previous work conducted by Kentucky Tra...
9. SEATING OF GIRDER SPAN AT SOUTH ABUTMENT. FABRICATOR'S PLATE ...
9. SEATING OF GIRDER SPAN AT SOUTH ABUTMENT. FABRICATOR'S PLATE READS 'VIRGINIA BRIDGE COMPANY 1950,' ACCOMPANIED BY THE LOGO OF UNITED STATES STEEL. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA
5. DETAIL OF SOUTHERN ARCH. PIER AND ABUTMENTS HAVE BEEN ...
5. DETAIL OF SOUTHERN ARCH. PIER AND ABUTMENTS HAVE BEEN REINFORCED WITH CONCRETE. INTRADOS HAS BEEN PARGED WITH MORTAR. - Core Creek County Bridge, Spanning Core Creek, approximately 1 mile South of State Route 332 (Newtown Bypass), Newtown, Bucks County, PA
Hjalmarsson, Lars; Smedberg, Jan-Ivan; Pettersson, Mattias; Jemt, Torsten
2011-01-01
Long-term comparisons of frameworks at the implant or abutment level are not available, and knowledge of the clinical function of cobalt-chromium (Co-Cr) alloy frameworks is limited. Primarily, the aim of this study was to compare the 5-year clinical performance of frameworks with or without abutment connections to implants. Secondly, the outcomes of prostheses made from Co-Cr alloy with porcelain veneers to those made of commercially pure titanium (CP Ti) with acrylic veneers were compared. The test groups comprised patients treated with screw-retained fixed prostheses made at the implant level according to the Cresco method in either dental porcelain-veneered Co-Cr alloy (n = 15) or acrylic-veneered CP Ti (n = 25). A control group of 40 randomly selected patients were provided with prostheses made at the standard abutment level in CP Ti with acrylic veneers. For all patients, clinical and radiologic 5-year data were retrospectively collected and evaluated. Five-year implant cumulative survival rates (CSRs) were 98.6% and 97.6% for test and control groups, respectively (P > .05). No major differences in bone level were demonstrated between the groups after 5 years (P > .05). Significantly more complications occurred in the test groups compared to the control group (P < .01), with the most common complications being mucositis and fracture of veneers. After 5 years, the clinical outcomes of implant-level prostheses made of porcelain-veneered Co-Cr or acrylic-veneered CP Ti seem comparable to acrylic-veneered titanium prostheses made at the standard abutment level regarding implant CSR and bone levels. However, more complications were registered in implant-level prostheses compared to the standard abutment-level prostheses.
Lima, Tiago; Carvalho, Ágata; Carvalho, Vasco
2012-01-01
ABSTRACT Objectives The aim of this study was to assess the clinical outcomes achieved with Computer-Assisted Design/Computer-Assisted Manufacturing implant abutments in the anterior maxilla. Material and Methods Nineteen patients with a mean age of 41 (range form 26 to 63) years, treated with 21 single tooth implants and 21 Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM) abutments in the anterior maxillary region were included in this study. The patients followed 4 criteria of inclusion: (1) had a single-tooth implant in the anterior maxilla, (2) had a CAD/CAM abutment, (3) had a contralateral natural tooth, (4) the implant was restored and in function for at least 6 months up to 2 years. Cases without contact point were excluded. Presence/absence of the interproximal papilla, inter tooth-implant distance (ITD) and distance from the base of the contact point to dental crest bone of adjacent tooth (CPB) were accessed. Results Forty interproximal spaces were evaluated, with an average mesial CPB of 5.65 (SD 1.65) mm and distal CPB of 4.65 (SD 1.98) mm. An average mesial ITD of 2.49 (SD 0.69) mm and an average distal ITD of 1.89 (SD 0.63) mm were achieved. Papilla was present in all the interproximal spaces accessed. Conclusions The restoration of dental implants using CAD/CAM abutments is a predictable treatment with improved aesthetic results. These type of abutments seem to help maintaining a regular papillary filling although the variations of the implant positioning or the restoration teeth relation. PMID:24422016
Setia, Gaurav; Yousef, Hoda; Ehrenberg, David; Luke, Allyn; Weiner, Saul
2013-08-01
The purpose of this study was to use an in vitro model system to compare the effects on the screw torque and screw dimensions within 2 commercially available implant systems from occlusal loading on a cantilevered-fixed partial denture. Cantilevered implant-supported 3-unit prostheses with 2 premolar abutments and 1 premolar pontic (7.3 mm in length) were made on resin casts containing 2 implant analogs for 2 implant systems: BioLok Silhouette Tapered Implant System (Birmingham, AL) and Zimmer Tapered Screw-Vent Implant System (Carlsbad, CA) with 10 samples in each group. Each sample was loaded with either of 2 protocols: (1) a load of 50 N on the cantilevered pontic unit and (2) a loading of 150 N on all 3 units. The outcome measures were (1) changes in residual torque of the abutment screws and (2) changes in screw dimension. The BioLok Silhouette Tapered Implant group demonstrated slight but statistically significant torque loss 18.8% to 28.5% in both abutment screws for both protocols, P ≤ 0.05, without any changes in screw dimension. In the Zimmer Tapered Screw-Vent Implant group, there was a significant elongation of the abutment screws and a markedly significant 44.4%, (P ≤ 0.01) loss in torque in the mesial screw and a 28.5%, (P ≤ 0.05) loss in torque in the distal screw when the cantilever alone was loaded. Differences in screw design influence the maintenance of preload and distortion of the shank. The influence of the interface design, namely an internal hex of 1 mm versus an external hex did not influence the preload. Cantilevered prostheses can cause loss of torque and dimensional changes in abutment screws.
Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants
Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos
2016-01-01
Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875
López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón
2015-01-01
The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.
Patil, Ratnadeep; Gresnigt, Marco M M; Mahesh, Kavita; Dilbaghi, Anjali; Cune, Marco S
2017-07-01
To correlate patients' satisfaction and dentists' observations regarding two abutment designs used for single crowns in the esthetic zone: a divergent one (control) and a curved one (experimental), with special emphasis on muco-gingival esthetics. Twenty-six patients with nonadjacent missing teeth in the esthetic zone were enrolled in a randomized clinical trial (within-subject comparison). Two implants placed in each were restored using abutments of different geometry. Patients' appreciation was assessed on a visual analog scale (VAS) by recording answers to three questions, and dentists' appreciation was determined by means of the Pink Esthetic Score (PES) at T0 (crown cementation, baseline) and at T12 (1 year post-cementation). ANOVA with post hoc analysis was used to identify differences between groups and at different moments in time. Pearson correlations were calculated between all variables, both at T0 and at T12. No statistically significant differences were found at any time between the control and experimental abutment design, either for the PES or for the VAS score. PES slightly improved after 1 year, as did the VAS rating related to functioning with the implant-crown compared to the natural teeth. All PES and VAS scores demonstrated highly significant correlation. Both patient satisfaction and professional appreciation of muco-gingival conditions after single implant treatment in the esthetic zone were high; however, the curved, experimental abutment design performed no better than the conventional, divergent type. Curved abutment design does not significantly impact crown or gingival esthetics as assessed by PES and VAS scored by dentists and patients, respectively. © 2016 by the American College of Prosthodontists.
Anchieta, Rodolfo Brunieira; Machado, Lucas Silveira; Hirata, Ronaldo; Bonfante, Estevam Augusto; Coelho, Paulo G
2016-08-01
The aim of this study was to evaluate the probability of survival of cemented and screwed three-unit implant-supported fixed dental prostheses (ISFDP) using different implant-abutment horizontal matching configurations (regular vs switching platforms). One hundred and sixty-eight implants with internal hexagon connection (4 mm diameter, 10 mm length, Emfils; Colosso Evolution System, Itú, SP, Brazil) were selected for this study according to the horizontal implant-abutment matching configuration (regular or switching) and retention method and divided in four groups (n = 21 per group) as follows: 1) regular platform cemented (IRC); 2) or screw-retained (IRS); 3) switched-platform cemented (ISC); or 4) screw-retained (ISS). Regular and platform-switched abutments (Colosso evolution, 4 mm and 3.3 mm, respectively) were torqued, and 84 three-unit metal bridges were fabricated (first molar pontic). Implants were embedded in polymethyl-methacrylate resin and subjected to step-stress accelerated life testing in water. Weibull distribution was used to determine the probability of survival for a mission of 100,000 cycles at 400 N (90% two-sided confidence intervals). Polarized light and scanning electron microscopes were used for fractographic analysis. The β values of 0.50, 1.19, 1.25, and 1.95 for groups IRC, IRS, ISC, and ISS respectively, indicated that fatigue accelerated the failure for all groups, except IRC. The cement-retained groups presented significantly higher probability of survival (IRC - 98%, ISC - 59%) than screw-retained groups (IRS - 23% and ISS - 0%). Screw-retained FDPs exclusively failed by abutment-screw fractures, whereas cement-retained presented implant/screw/abutment fractures. The probability of survival of cement-retained ISFDP was higher than screw-retained, irrespective of implant-abutment horizontal configuration. © 2015 Wiley Periodicals, Inc.
Retention of cast crown copings cemented to implant abutments.
Dudley, J E; Richards, L C; Abbott, J R
2008-12-01
The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.
Cosgarea, Raluca; Gasparik, Cristina; Dudea, Diana; Culic, Bogdan; Dannewitz, Bettina; Sculean, Anton
2015-05-01
To objectively determine the difference in colour between the peri-implant soft tissue at titanium and zirconia abutments. Eleven patients, each with two contralaterally inserted osteointegrated dental implants, were included in this study. The implants were restored either with titanium abutments and porcelain-fused-to-metal crowns, or with zirconia abutments and ceramic crowns. Prior and after crown cementation, multi-spectral images of the peri-implant soft tissues and the gingiva of the neighbouring teeth were taken with a colorimeter. The colour parameters L*, a*, b*, c* and the colour differences ΔE were calculated. Descriptive statistics, including non-parametric tests and correlation coefficients, were used for statistical analyses of the data. Compared to the gingiva of the neighbouring teeth, the peri-implant soft tissue around titanium and zirconia (test group), showed distinguishable ΔE both before and after crown cementation. Colour differences around titanium were statistically significant different (P = 0.01) only at 1 mm prior to crown cementation compared to zirconia. Compared to the gingiva of the neighbouring teeth, statistically significant (P < 0.01) differences were found for all colour parameter, either before or after crown cementation for both abutments; more significant differences were registered for titanium abutments. Tissue thickness correlated positively with c*-values for titanium at 1 mm and 2 mm from the gingival margin. Within their limits, the present data indicate that: (i) The peri-implant soft tissue around titanium and zirconia showed colour differences when compared to the soft tissue around natural teeth, and (ii) the peri-implant soft tissue around zirconia demonstrated a better colour match to the soft tissue at natural teeth than titanium. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2015-01-01
PURPOSE To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth Ankylos® implants. MATERIALS AND METHODS This was a retrospective clinical study that analyzed 450 single Ankylos® implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. RESULTS The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). CONCLUSION The Ankylos® implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture. PMID:26813443
Zhou, Lin-Yi; Shi, Jun-Yu; Zhu, Yu; Qian, Shu-Jiao; Lai, Hong-Chang; Gu, Ying-Xin
2018-05-14
To compare levels of pathogens from peri-implant sulcus versus abutment screw cavities after photodynamic therapy. Twenty patients were included. Photodynamic therapy (PDT) was applied both in sulcus and cavities after sampling following suprastructures loading, and repeated after 2 weeks. Two samples each containing four paper points were collected for each implant at baseline, 2 weeks, 3 months: (i) peri-implant sulcus and (ii) abutment screw cavities. Seventy-five percent ethanol was applied in another 20 patients as the control group in the same way. qPCR was used to quantify periodontal pathogens: Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans. PDT showed a better bacterial reduction than ethanol. P. g. and F. n. were most frequently detected, while less for S. m. P. gingivalis' proportion from both sites was significantly higher than the other two bacteria (P < 0.05), except for 2 weeks' peri-implant sulcus sample. Bacteria counts from abutment screw cavities were always less than those from peri-implant sulcus and was significantly lower for total bacteria at 3 months (P < 0.05). Total bacterial from abutment screw cavities significantly reduced at 3 months compared to baseline (P < 0.05). PDT appears to be effective in bacterial reduction compared to ethanol and can reduce P. gingivalis with short time intervals, as well as decreasing total bacteria counts within abutment screw cavities in the long run, suggesting PDT an effective way sterilizing inner surface of oral implant suprastrutures. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Shim, Hye Won; Yang, Byoung-Eun
2015-12-01
To evaluate the cumulative survival rate (CSR) and mechanical complications of single-tooth Ankylos® implants. This was a retrospective clinical study that analyzed 450 single Ankylos® implants installed in 275 patients between December 2005 and December 2012. The main outcomes were survival results CSR and implant failure) and mechanical complications (screw loosening, fracture, and cumulative fracture rate [CFR]). The main outcomes were analyzed according to age, sex, implant length or diameter, bone graft, arch, and position. The 8-year CSR was 96.9%. Thirteen (2.9%) implants failed because of early osseointegration failure in 3, marginal bone loss in 6, and abutment fracture in 4. Screw loosening occurred in 10 implants (2.2%), and 10 abutment fractures occurred. All abutment fractures were located in the neck, and concurrent screw fractures were observed. The CSR and rate of screw loosening did not differ significantly according to factors. The CFR was higher in middle-aged patients (5.3% vs 0.0% in younger and older patients); for teeth in a molar position (5.8% vs 0.0% for premolar or 1.1% for anterior position); and for larger-diameter implants (4.5% for 4.5 mm and 6.7% for 5.5 mm diameter vs 0.5% for 3.5 mm diameter) (all P<.05). The Ankylos® implant is suitable for single-tooth restoration in Koreans. However, relatively frequent abutment fractures (2.2%) were observed and some fractures resulted in implant failures. Middle-aged patients, the molar position, and a large implant diameter were associated with a high incidence of abutment fracture.
Paepoemsin, T; Reichart, P A; Chaijareenont, P; Strietzel, F P; Khongkhunthian, P
2016-01-01
The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer's recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading.
Sarfaraz, Hasan; Paulose, Anoopa; Shenoy, K. Kamalakanth; Hussain, Akhter
2015-01-01
Aims: The aim of the study was to evaluate the stress distribution pattern in the implant and the surrounding bone for a passive and a friction fit implant abutment interface and to analyze the influence of occlusal table dimension on the stress generated. Materials and Methods: CAD models of two different types of implant abutment connections, the passive fit or the slip-fit represented by the Nobel Replace Tri-lobe connection and the friction fit or active fit represented by the Nobel active conical connection were made. The stress distribution pattern was studied at different occlusal dimension. Six models were constructed in PRO-ENGINEER 05 of the two implant abutment connection for three different occlusal dimensions each. The implant and abutment complex was placed in cortical and cancellous bone modeled using a computed tomography scan. This complex was subjected to a force of 100 N in the axial and oblique direction. The amount of stress and the pattern of stress generated were recorded on a color scale using ANSYS 13 software. Results: The results showed that overall maximum Von Misses stress on the bone is significantly less for friction fit than the passive fit in any loading conditions stresses on the implant were significantly higher for the friction fit than the passive fit. The narrow occlusal table models generated the least amount of stress on the implant abutment interface. Conclusion: It can thus be concluded that the conical connection distributes more stress to the implant body and dissipates less stress to the surrounding bone. A narrow occlusal table considerably reduces the occlusal overload. PMID:26929518
Nawafleh, Noor; Öchsner, Andreas; George, Roy
2018-01-01
PURPOSE The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between 5℃ and 55℃. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments. PMID:29503716
PAEPOEMSIN, T.; REICHART, P. A.; CHAIJAREENONT, P.; STRIETZEL, F. P.; KHONGKHUNTHIAN, P.
2016-01-01
SUMMARY Purpose The aim of this study was to evaluate the removal torque of three different abutment screws and pull out strength of implant-abutment connection for single implant restorations after mechanical cyclic loading. Methods The study was performed in accordance with ISO 14801:2007. Three implant groups (n=15) were used: group A, PW Plus® with flat head screw; group B, PW Plus® with tapered screw; and group C, Conelog® with flat head screw. All groups had the same implant-abutment connection feature: cone with mandatory index. All screws were tightened with manufacturer’s recommended torque. Ten specimens in each group underwent cyclic loading (1×106 cycles, 10 Hz, and 250 N). Then, all specimens were un-tightened, measured for the removal torque, and underwent a tensile test. The force that dislodged abutment from implant fixture was recorded. The data were analysed using independent sample t-test, ANOVA and Tukey HSD test. Results Before cyclic loading, removal torque in groups A, B and C were significantly different (B> A> C, P<.05). After cyclic loading, removal torque in all groups decreased significantly (P<.05). Group C revealed significantly less removal torque than groups A and B (P<.005). Tensile force in all groups significantly increased after cyclic loading (P<.05), group A had significantly less tensile force than groups B and C (P<.005). Conclusions Removal torque reduced significantly after cyclic loading. Before cyclic loading, tapered screws maintained more preload than did flat head screws. After cyclic loading, tapered and flat head screws maintained even amounts of preload. The tensile force that dislodged abutment from implant fixture increased immensely after cyclic loading. PMID:28042450
Abduo, Jaafar; Chen, Chen; Le Breton, Eugene; Radu, Alexandra; Szeto, Josephine; Judge, Roy; Darby, Ivan
To compare the Encode impression protocol (Biomet 3i) with the conventional impression protocol in terms of treatment duration, clinical accuracy, and outcome up to the first postplacement review of single-implant crowns. A total of 45 implants were included in this study. The implants were randomly allocated to the Encode group (23 implants) or the conventional group (22 implants). At the time of surgery, all implants received two-piece Encode healing abutments. The implants were restored 3 months after insertion. In the conventional protocol, open-tray implant-level impressions were taken and the implants were restored with prefabricated abutments and porcelain-fused-to-metal (PFM) crowns. For the implants in the Encode group, closed-tray impressions of the healing abutments were taken. The generated casts were sent to the Biomet 3i scanning/milling center for custom abutment manufacturing on which PFM crowns were fabricated. Treatment duration (laboratory and clinical), clinical accuracy of occlusal and proximal contacts, and outcome (esthetics, patient satisfaction, and crown contour) were evaluated with the aid of a series of questionnaires. The Encode protocol required significantly less laboratory time (18 minutes) than the conventional protocol for adjustment of the abutments. The impression pour time, time for the laboratory to return the crown, time for crown insertion at the final appointment, and total clinical time for crown insertion did not differ significantly between the two protocols. Likewise, clinical accuracy, esthetics, and patient satisfaction were similar for the two protocols. The two protocols were clinically comparable. The Encode protocol is advantageous in reducing the laboratory time before crown fabrication.
Options for the fabrication of provisional restorations for ITI solid abutments.
Dumbrigue, H B; Esquivel, J F; Gurun, D C
2001-12-01
In this article, 4 techniques for fabricating provisional restorations for ITI solid abutments are described. The use of a burn-out coping, acrylic resin coping, impression cap, and protective cap are presented, and the advantages and disadvantages of each are discussed.
Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.
DOT National Transportation Integrated Search
2011-07-01
Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...
Long-term behavior of integral abutment bridges : appendix C, US231 over railroad spur soil borings.
DOT National Transportation Integrated Search
2011-01-01
Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand thei...
12. DETAIL OF NORTH ABUTMENT (EAST SIDE) AND PIER. LOOKING ...
12. DETAIL OF NORTH ABUTMENT (EAST SIDE) AND PIER. LOOKING NORTH. - Route 31 Bridge, New Jersey Route 31, crossing disused main line of Central Railroad of New Jersey (C.R.R.N.J.) (New Jersey Transit's Raritan Valley Line), Hampton, Hunterdon County, NJ
31. VIEW FROM SOUTHWEST TO CORNER WHERE SAMPLING/CRUSHING ADDITIONS ABUT ...
31. VIEW FROM SOUTHWEST TO CORNER WHERE SAMPLING/CRUSHING ADDITIONS ABUT CRUSHED OXIDIZED ORE BIN. INTACT BARREN SOLUTION TANK VISIBLE IN FRONT OF CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD
34. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY LARGE ...
34. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY - LARGE GEAR AT LEFT CENTER IS 'D' - REFER TO STRAUSS SHEETS #15 AND #18 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT
9. Terminal connection of arch structural member to concrete abutment ...
9. Terminal connection of arch structural member to concrete abutment on east of south end of bridge. Slightly oblique detail view west-northwest (from beside bridge). 150 mm lens. - Gault Bridge, Spanning Deer Creek at South Pine Street, Nevada City, Nevada County, CA
Bridge scour and change in contracted section, Razor Creek
Holnbeck, Stephen R.; Parrett, Charles; Tillinger, Todd N.; ,
1993-01-01
Two large floods, 3 and 4 times the estimated 100-year peak discharge, occurred in 1986 and 1991 at a timber-pile bridge over Razor Creek in Montana. A bridge section surveyed after the 1991 flood was compared with a 1955 design section and showed total scour of 0.85 m at the left abutment, 2.23 m at the right abutment, and 0. 94 m at the pile bents. Calculated total scour based on equations recommended by the Federal Highway Administration and data obtained after the 1991 flood was 3.20 m at the left abutment, 4.36 m at the right abutment, and 2.13 m at the pile bents. Residual scour from floods prior to 1986 was presumed to be negligible because no floods of significant magnitude were documented. Also, scour for the 1986 flood is believed to be significantly less than for the 1991 flood because the 1986 peak discharge was significantly smaller and the contracted section for the 1986 peak discharge was 22 m upstream from the bridge.
[A PhD completed 3. Soft tissue development around an implant in the aesthetic zone].
Patil, R C
2016-01-01
A randomised clinical trial was carried out in order to determine whether changes in the abutment design result in improved quality of the peri-implant mucosal tissue according to the parameters attachment strength, sotft tissue stability and developmemt, and maintenance of bone levels. Twenty-nine patients were included. They received 2, non-adjacent endosseous implants replacing missing teeth in the aesthetic zone. Subsequently, conventional (control) and experimental abutments (with an additional macro groove of about 0.5 mm in depth ) were placed. After 6 weeks and 1 year the effect of the 2 different abutment designs were measured according to the specified parameters. In addition, patients' and dentists' satisfaction concerning the muco-gingival results were compared. It was concluded that the 2 abutments produced no significantly different effect on muco-gingival aesthetics. On the basis of additional comparative research between Caucasian and Indian individuals it was concluded that the gingival biotype could best be determined quantitatively.
Flynn, Robert H.; Boehmler, Erick M.
1997-01-01
Contraction scour for all modelled flows was computed to be zero ft. Abutment scour ranged from 9.1 to 10.8 ft along the right abutment and from 9.8 to 12.3 ft along the left abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
NASA Astrophysics Data System (ADS)
Zhou, Hao; Pei, Fu-Ping; Zhang, Ying; Zhou, Zhong-Biao; Xu, Wen-Liang; Wang, Zhi-Wei; Cao, Hua-Hua; Yang, Chuan
2017-12-01
The origin and tectonic evolution of the early Paleozoic arc terranes abutting the northern margin of the North China Craton (NCC) are widely debated. This paper presents detrital zircon U-Pb and Hf isotopic data of early Paleozoic strata in the Zhangjiatun arc terrane of central Jilin Province, northeast (NE) China, and compares them with the Bainaimiao and Jiangyu arc terranes abutting the northern margin of the NCC. Detrital zircons from early Paleozoic strata in three arc terranes exhibit comparable age groupings of 539-430, 1250-577, and 2800-1600 Ma. The Paleoproterozoic to Neoarchean ages and Hf isotopic composition of the detrital zircons imply the existence of the Precambrian fragments beneath the arc terranes. Given the evidences from geology, igneous rocks, and detrital zircons, we proposed that the early Paleozoic arc terranes abutting the northern margin of the NCC are a united arc terrane including the exotic Precambrian fragments, and these fragments shared a common evolutionary history from Neoproterozoic to early-middle Paleozoic.
Peñarrocha-Oltra, David; Serra-Pastor, Blanca; Balaguer-Martí, José-Carlos; Peñarrocha-Diago, Miguel; Agustín-Panadero, Rubén
2017-12-01
Immediate loading protocols for the rehabilitation of edentulous or partially edentulous patients have become very popular, due to the conveniences they afford in comparison with conventional loading techniques. A preliminary study was carried out with 8 patients subjected to dental implant treatment with an immediate loading protocol involving a novel system of abutments with flexible screws. Implant survival was analyzed, together with marginal bone loss and patient and dentist satisfaction. A total of 35 implants were subjected to immediate loading using the abutments with flexible screws. The mean patient and dentist satisfaction score was 9.1 and 8.5, respectively. After 12 months the dental implant survival rate was 95.8%, with a mean marginal bone loss of 0.51 ± 0.12 mm. The novel system of abutments with flexible screws offers a good alternative to conventional immediate loading, since it allows rapid and simple manufacture of a reliable passive fit, fixed interim prosthesis after surgery. Key words: Dental implants, Flexafit®, Immediate loading, Immediate prosthesis.
Epprecht, Alyssa; Zeltner, Marco; Benic, Goran
2018-01-01
Abstract This study quantified the strain development after inserting implant‐borne fixed dental prosthesis (FDP) to various implant–abutment joints. Two bone‐level implants (∅ = 4.1 mm, RC, SLA 10 mm, Ti, Straumann) were inserted in polyurethane models (N = 3) in the area of tooth nos 44 and 47. Four‐unit veneered zirconium dioxide FDPs (n = 2) were fabricated, one of which was fixed on engaging (E; RC Variobase, ∅ = 4.5 mm, H = 3.5 mm) and the other on non‐engaging (NE) abutments (RC Variobase, ∅ = 4.5 mm, H = 5.5 mm). One strain gauge was bonded to the occlusal surface of pontic no. 46 on the FDP and the other two on the polyurethane model. Before (baseline) and after torque (35 Ncm), strain values were recorded three times. Data were analyzed using Kruskal–Wallis and Mann–Whitney U tests (α = 0.05). Mean strain values presented significant increase after torque for both E and NE implant–abutment connection type (baseline: E = 4.33 ± 4.38; NE = 4.85 ± 4.85; torque: E = 196.56 ± 188.02; NE = 275.63 ± 407.7; p < .05). Mean strain values based on implant level presented significant increase after torque for both E and NE implant–abutment connection (baseline: E = 4.94 ± 5.29; NE = 5.78 ± 5.69; torque: E = 253.78 ± 178.14; NE = 347.72 ± 493.06; p < .05). The position of the strain gauge on implants (p = .895), FDP (p = .275), and abutment connection type (p = .873) did not significantly affect the strain values. Strain levels for zirconium dioxide implant‐borne FDPs were not affected by the implant–abutment connection type. PMID:29744210
DOT National Transportation Integrated Search
2010-04-01
Approach slab pavement at integral abutment (I-A) bridges are prone to settlement and cracking, which has been long recognized by the Iowa Department of Transportation (DOT). A commonly recommended solution is to integrally attach the approach slab t...
DOT National Transportation Integrated Search
2011-01-01
Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand thei...
Remains of abutments for Bridge No. 1575 at MD Rt. ...
Remains of abutments for Bridge No. 1575 at MD Rt. 51 in Spring Gap, Maryland, looking northeast. (Compare with HAER MD-115 photos taken 1988). - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD
Regular and platform switching: bone stress analysis varying implant type.
Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes
2012-04-01
This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants. © 2012 by the American College of Prosthodontists.
Ivanoff, Michael A.
1997-01-01
Contraction scour for all modelled flows ranged from 2.1 to 4.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 14.3 to 14.4 ft. The worst-case left abutment scour occurred at the incipient roadwayovertopping and 500-year discharge. Right abutment scour ranged from 15.3 to 18.5 ft. The worst-case right abutment scour occurred at the 100-year and the incipient roadwayovertopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) give “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Fürhauser, Rudolf; Mailath-Pokorny, Georg; Haas, Robert; Busenlechner, Dieter; Watzek, Georg; Pommer, Bernhard
2017-02-01
Implant esthetics may benefit from individualized zirconia abutments copying the emergence profile of the natural tooth and delivered within days after immediate implant insertion. To investigate the esthetic outcome of the Copy-Abutment technique using the Pink Esthetic Score (PES). A total of 77 patients with single-tooth implants in the anterior maxilla restored at the day of immediate implant placement using Copy-Abutments and provisional crowns were followed-up after 1 week, 1 month, 4 months, 6 months, 1, 2, 3, 4, and 5 years to assess implant esthetics. PES ranged between 7 and 14 (median: 13) and improved significantly between the 6 month and 1 year follow-up (p < .001), then remained stable up to the fifth year. Significant improvement was seen for the variables PES-6 soft tissue color (p = .002) and PES-7 soft tissue texture (p < .001) up to the 1 year follow-up, while PES-5 alveolar process deficiency deteriorated (p = .016). Mean mucosal recession was 0.26 ± 0.86 mm (range: 0-1.6) after 5 years and not related to gingival biotype. Copy-Abutments for immediate restoration of implants in the esthetic zone show satisfactory long-term esthetic outcomes. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kang, Hongpu; Li, Jianzhong; Yang, Jinghe; Gao, Fuqiang
2017-02-01
In underground coal mining, high abutment loads caused by the extraction of coal can be a major contributor to many rock mechanic issues. In this paper, a large-scale physical modeling of a 2.6 × 2.0 × 1.0 m entry roof has been conducted to investigate the fundamentals of the fracture mechanics of entry roof strata subjected to high abutment loads. Two different types of roof, massive roof and laminated roof, are considered. Rock bolt system has been taken into consideration. A distinct element analyses based on the physical modeling conditions have been performed, and the results are compared with the physical results. The physical and numerical models suggest that under the condition of high abutment loads, the massive roof and the laminated roof fail in a similar pattern which is characterized as vertical tensile fracturing in the middle of the roof and inclined shear fracturing initiated at the roof and rib intersections and propagated deeper into the roof. Both the massive roof and the laminated roof collapse in a shear sliding mode shortly after shear fractures are observed from the roof surface. It is found that shear sliding is a combination of tensile cracking of intact rock and sliding on bedding planes and cross joints. Shear sliding occurs when the abutment load is much less than the compressive strength of roof.
Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro
2015-01-01
PURPOSE The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. MATERIALS AND METHODS Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 106 cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). RESULTS The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). CONCLUSION The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws. PMID:26576253
Boehmler, Erick M.
1997-01-01
Contraction scour for all modelled flows ranged from 20.1 to 25.2 and the worst-case contraction scour occurred at the 500-year discharge. Although this bridge has two piers, the flow through the spans between each abutment and pier is assumed to be negligible. Hence, abutment scour was computed assuming the forces contributing to scour actually occur on the main-span sides of each pier in this case. Abutment scour ranged from 8.8 to 10.6 and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2. A graph of the scour elevations is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Burns, Ronda L.; Degnan, James R.
1997-01-01
Contraction scour for all modelled flows ranged from 2.6 to 4.6 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. The left abutment scour ranged from 11.6 to 12.1 ft. The worst-case left abutment scour occurred at the incipient road-overtopping discharge. The right abutment scour ranged from 13.6 to 17.9 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Burns, R.L.; Severance, Timothy
1997-01-01
Contraction scour for all modelled flows ranged from 0.0 to 1.3 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. The right abutment scour ranged from 6.1 to 7.2 ft. The worstcase right abutment scour occurred at the incipient roadway-overtopping discharge. The left abutment scour ranged from 7.1 to 10.3 ft. The worst-case left abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented he
Flynn, Robert H.; Medalie, Laura
1997-01-01
Contraction scour for all modelled flows ranged from 0.0 to 2.7 ft. The worst-case contraction scour occurred at the maximum free-surface flow (with road overflow) discharge, which was less than the 100-year discharge. Abutment scour ranged from 9.8 to 10.7 ft along the left abutment and from 16.2 to 19.9 ft along the right abutment. The worstcase abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich and Hire equations (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
29. SECTION DRAWINGS OF HEADGATE IN RIGHT (WEST) ABUTMENT, SPILLWAY, ...
29. SECTION DRAWINGS OF HEADGATE IN RIGHT (WEST) ABUTMENT, SPILLWAY, AND PENSTOCK Sections and profiles of dam and pipe line, Exhibit J(3). Prepared by C. F. Uhden, electrical engineer, for the Okanogan Valley Power Company, 1916. - Enloe Dam, On Similkameen River, Oroville, Okanogan County, WA
5. GENERAL VIEW FROM EAST ABUTMENT ALONG AXIS OF DAM ...
5. GENERAL VIEW FROM EAST ABUTMENT ALONG AXIS OF DAM SHOWING STEEL SHEET PILE CUTOFF WALL COMPLETED, AND EMBANKMENT MATERIAL BEING COMPACTED INTO POSITION. Volume XVI, No. 11, July 21, 1939. - Prado Dam, Embankment, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA
14. A VIEW SOUTHEAST OF A PORTION OF THE LIMESTONE ...
14. A VIEW SOUTHEAST OF A PORTION OF THE LIMESTONE ABUTMENT, THE UNDERSIDE OF THE INCLINED END POST AND A PLATE USED TO ATTACH THE STRUCTURE TO THE ABUTMENT. - Wells County Bridge No. 74, Spanning Rock Creek Ditch at County Road 400, Bluffton, Wells County, IN
DOT National Transportation Integrated Search
2016-08-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Transportation, collected observations of clear-water abutment and contraction scour at 146 bridges in the Coastal Plain and Piedmont of South Carolina. Scour depths ran...
DOT National Transportation Integrated Search
2010-01-01
Scour around the foundations (piers and abutments) of a bridge due to river flow is often referred to as bridge scour. Bridge scour is a problem of national scope that has dramatic impacts on economics and safety of the traveling public. Bridge...
A U.S. Geological Survey marker embedded in the northeast corner ...
A U.S. Geological Survey marker embedded in the northeast corner of concrete abutment. This view also shows the basic abutment and tower footing arrangement. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD
33. EAST ABUTMENT, VIEW NORTHEAST OF OPERATING MACHINERY SMALL ...
33. EAST ABUTMENT, VIEW NORTHEAST OF OPERATING MACHINERY - SMALL GEAR IS IDENTIFIED AS 'C' - LARGE GEAR IS 'B' REFER TO GEARING DIAGRAMS - STRAUSS SHEET #15 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT
35. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY BASCULE ...
35. VIEW SOUTHEAST, WEST ABUTMENT OF OPERATING MACHINERY - BASCULE LEAF RAISED - LARGE GEAR AT LEFT CENTER IS 'D' - REFER TO STRAUSS SHEETS #15 AND #18 FOR POWER TRAIN RELATIONSHIPS - Tomlinson Bridge, Spanning Quinnipiac River at Forbes Street (U.S. Route 1), New Haven, New Haven County, CT
DOT National Transportation Integrated Search
1998-10-02
This report presents the results of slow, cyclic, lateral-loading centrifuge tests performed on models of pile-cap foundation systems and seat-type bridge abutements in dry Neveda sand of 75% relative density to study the lateral response of these sy...
Effect of metal opaquer on the final color of 3 ceramic crown types on 3 abutment configurations.
Arif, Rabia; Yilmaz, Burak; Mortazavi, Aras; Ozcelik, Tuncer B; Johnston, William M
2018-04-30
The effect of a recently introduced metal opaquer when used to mask the color of a titanium abutment under ceramic crown systems is unknown. The purpose of this study was to compare the color coordinates of 3 ceramic crown types-characterized monolithic lithium disilicate (LDC) (IPS e.max; Ivoclar Vivadent AG), layered lithium disilicate (LDL) (IPS e.max; Ivoclar Vivadent AG), and layered zirconia (ZL) (H.C. Starck)-on 3 abutment configurations, nonopaqued titanium (Ti), resin opaqued titanium (Op), and zirconia (Zir). In addition, the color differences (CIEDE2000) were evaluated among the 3 crown types on 3 different abutment substrates. Ten Ti disks (10×1 mm) were fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) to represent the Ti abutments. Five Ti specimens were opaqued (Op) (whiteMetal Opaquer wMO; Blue Sky Bio), and 5 were not opaqued (Ti). Ten zirconia disks were fabricated with CAD-CAM and sintered (10×1.2 mm). Five disks were used as backings to represent Zir abutments, and 5 disks were layered with 1 mm of porcelain (B1, IPS e.Max Ceram; Ivoclar Vivadent AG) to represent layered zirconia crowns (ZL). Ten lithium disilicate plates (14×14×1.2 mm) were sectioned from CAD blocks (B1 IPS e.Max CAD; Ivoclar Vivadent AG). Five plates were layered with the same porcelain (B1, 1 mm), and 5 plates were surface characterized and glazed. An LDL crown on a Zir abutment configuration was used as the control. The 3 simulated crown types (n=5) were optically connected to each of the 3 abutment types, and the color of the 9 groups was measured using a spectroradiometer. Measured data were reported in CIELab coordinates. CIELab data were used to calculate color differences between the control and the 8 experimental groups. Color data were summarized for each group, and analyzed by repeated-measures ANOVA. For pairwise comparisons, a Bonferroni correction of t tests was used, and for interpretive analysis of resulting color difference data, a 1-way ANOVA and subsequent Tukey testing for pairwise comparisons were used. The statistical significance of the analysis of color coordinates was found to be P≤.002. Although 3-way interaction was not found to be significant (P=.335), all three 2-way interactions of the main effects were found to be significant (P≤.002). All crown types on the Zir abutment revealed color differences from the control group. The color differences of the crown types on the Op and Zir abutment configurations compared with the control (LDL/Zir) were not (P>.05) statistically different. Colors of tested crown systems on Ti backing were each unacceptably different from the control group. Colors of these systems on zirconia backing were not perceivably different. Use of opaquer on titanium backing resulted in a small color difference from the control group (P>.05) for each crown system, demonstrating that it may be used to prevent the unfavorable metal show-through that can influence the final color of all ceramic crown systems tested. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam
NASA Astrophysics Data System (ADS)
Klishin, S. V.; Revuzhenko, A. F.
2017-09-01
Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.
DOT National Transportation Integrated Search
2010-05-01
The American Association of State Highway and Transportation Officials (AASHTO) Load and : Resistance Factor Design (LRFD) Bridge Design Specifications require that abutments and piers located : within a distance of 30.0 ft of the edge of the road...
DOT National Transportation Integrated Search
2011-09-30
A new bridge design and construction trend to help improve durability and rideability is to remove expansion joints over piers and abutments. One approach to achieve this is to make the deck continuous over the piers by means of a link slab while the...
21. Photocopy of drawing, Plan of Abutments for Bridge No. ...
21. Photocopy of drawing, Plan of Abutments for Bridge No. 79B at Main & Washington Sts., South Norwalk, N.Y. Div., N.Y., N.H. and H.R.R., dated November 22, 1895. Original on file with Metro North Commuter Railroad. - South Norwalk Railroad Bridge, South Main & Washington Streets, Norwalk, Fairfield County, CT
DOT National Transportation Integrated Search
2011-09-30
A new bridge design and construction trend to help improve durability and rideability is to remove expansion : joints over piers and abutments. One approach to achieve this is to make the deck continuous over the piers by : means of a link slab while...
Striker, Lora K.; Degnan, James R.
1997-01-01
Contraction scour for modelled flows ranged from 0.0 to 2.4 ft. Abutment scour ranged from 6.1 to 7.9 ft at the left abutment and 11.4 to 17.4 ft at the right abutment. The worstcase contraction and abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
2011-01-01
Background Most dental implant systems are presently made of two pieces: the implant itself and the abutment. The connection tightness between those two pieces is a key point to prevent bacterial proliferation, tissue inflammation and bone loss. The leak has been previously estimated by microbial, color tracer and endotoxin percolation. Methods A new nitrogen flow technique was developed for implant-abutment connection leakage measurement, adapted from a recent, sensitive, reproducible and quantitative method used to assess endodontic sealing. Results The results show very significant differences between various sealing and screwing conditions. The remaining flow was lower after key screwing compared to hand screwing (p = 0.03) and remained different from the negative test (p = 0.0004). The method reproducibility was very good, with a coefficient of variation of 1.29%. Conclusions Therefore, the presented new gas flow method appears to be a simple and robust method to compare different implant systems. It allows successive measures without disconnecting the abutment from the implant and should in particular be used to assess the behavior of the connection before and after mechanical stress. PMID:21492459
Bernardes, Sérgio Rocha; da Gloria Chiarello de Mattos, Maria; Hobkirk, John; Ribeiro, Ricardo Faria
2014-01-01
The purpose of this study was to determine whether abutment screw tightening and untightening influenced loss of preload in three different implant/abutment interfaces, or on the implant body. Five custom-fabricated machined titanium implants were used, each with its respective abutment, with different connection types, retention screws, and torque values (external hexagon with titanium screw/32 Ncm, external hexagon with coated screw/32 Ncm, internal hexagon/20 Ncm and internal conical/20 and 32 Ncm). Each implant tested had two strain gauges attached and was submitted to five tightening/untightening sequences. External hexagons resulted in the lowest preload values generated in the implant cervical third (mean of 27.75 N), while the internal hexagon had the highest values (mean of 219.61 N). There was no immediate significant loss of preload after screw tightening. Tightening/untightening sequences, regardless of the implant/abutment interface design or type of screw used in the study, did not result in any significant loss of initial preload. Conical implant connections demonstrated greater structural reinforcement within the internal connections.
Mushimoto, E
1981-09-01
Five overdenture wearers with a small number of remaining natural teeth were selected to evaluate the effect of the afferent input from periodontal mechanoreceptors on masseter activity in man. As a control, a full denture wearer was included. The subjects were instructed to chew a piece of gum, and/or tap their teeth. Surface EmG from the bilateral masseter muscles were recorded and analysed. When functional pressure was applied, during chewing, to the abutment teeth as well as to mucosa through the denture base, masseter activities were encouraged. Following application of anaesthesia to the periodontal membrane of the abutments, masseter activities were reduced. The duration of the silent period (SP) appearing in the EMG burst following tooth tapping was significantly increased with root support compared to mucosal support only. With topical anaesthesia of the periodontal tissues, SP duration decreased significantly. In conclusion, it has become apparent that the pressure sensibility of abutment teeth bearing functional pressure under an overdenture base is capable of facilitating masseter activity, as one of the sources of oral sensory input during mastication.
Flynn, Robert H.; Burns, Ronda L.
1997-01-01
The computed contraction scour for all modelled flows was 0.0 feet. Abutment scour ranged from 5.3 to 8.2 ft. The worst-case abutment scour occurred at the right abutment for the incipient-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Post and core build-ups in crown and bridge abutments: Bio-mechanical advantages and disadvantages.
Mamoun, John
2017-06-01
Dentists often place post and core buildups on endodontically treated abutments for crown and bridge restorations. This article analyzes the bio-mechanical purposes, advantages and disadvantages of placing a core or a post and core in an endodontically treated tooth and reviews literature on post and core biomechanics. The author assesses the scientific rationale of the claim that the main purpose of a post is to retain a core, or the claim that posts weaken teeth. More likely, the main function of a post is to help prevent the abutment, on which a crown is cemented, from fracturing such that the abutment separates from the tooth root, at a fracture plane that is located approximately and theoretically at the level of the crown (or ferrule) margin. A post essentially improves the ferrule effect that is provided by the partial fixed denture prosthesis. This paper also explores the difference between bio-mechanical failures of crowns caused by lack of retention or excess taper, versus failures due to a sub-optimal ferrule effect in crown and bridge prostheses.
Peñarrocha-Oltra, David; Serra-Pastor, Blanca; Balaguer-Martí, José-Carlos; Agustín-Panadero, Rubén
2017-01-01
Background Immediate loading protocols for the rehabilitation of edentulous or partially edentulous patients have become very popular, due to the conveniences they afford in comparison with conventional loading techniques. Material and Methods A preliminary study was carried out with 8 patients subjected to dental implant treatment with an immediate loading protocol involving a novel system of abutments with flexible screws. Implant survival was analyzed, together with marginal bone loss and patient and dentist satisfaction. Results A total of 35 implants were subjected to immediate loading using the abutments with flexible screws. The mean patient and dentist satisfaction score was 9.1 and 8.5, respectively. After 12 months the dental implant survival rate was 95.8%, with a mean marginal bone loss of 0.51 ± 0.12 mm. Conclusions The novel system of abutments with flexible screws offers a good alternative to conventional immediate loading, since it allows rapid and simple manufacture of a reliable passive fit, fixed interim prosthesis after surgery. Key words:Dental implants, Flexafit®, Immediate loading, Immediate prosthesis. PMID:29410752
Wu, Tingting; Fan, Hongyi; Ma, Ruiyang; Chen, Hongyu; Li, Zhi; Yu, Haiyang
2017-06-01
Biomechanical factors play a key role in the success of dental implants. Fracture and loosening of abutment screws are major issues. This study investigated the effect of lubricants on the stability of dental implant-abutment connection. As lubricants, graphite and vaseline were coated on the abutment screw surface, respectively, and a blank without lubricant served as the control. The total friction coefficient (μ tot ), clamping force, fatigue behavior and detorque of the joint combined with dynamic cyclic loading were measured under different lubricating conditions. Further, a three-dimensional finite element analysis was used to investigate stress distribution, in conjunction with experimental images. The results showed that the lubricant reduced μ tot , which in turn led to an increase in clamping force. Decrease in loading increased the fatigue life of the screw. However, use of lubricant at high load reduced the fatigue life. Ductile fracture at the first thread of the screw was the chief failure mode, which was due to maximum von Mises stress. Higher stress levels occurred in the lubricant groups. Lubricated screws resulted in lower detorque which made the joint easier to loosen. In conclusion, the lubricant cannot effectively improve the reliability of dental implant-abutment connection. Keeping the interfaces of implant-screw uncontaminated and strengthening the surface of the screw may be recommend for clinical operation and future design. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants.
Bozkaya, Dinçer; Müftü, Sinan
2005-01-01
The tapered implant-abutment interface is becoming more popular due to the mechanical reliability of retention it provides. Consequently, understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. This paper focuses on the tapered implant-abutment interface with a screw integrated at the bottom of the abutment. The tightening and loosening torques are the main factors in determining the reliability and the stability of the attachment. Analytical formulas are developed to predict tightening and loosening torque values by combining the equations related to the tapered interface with screw mechanics equations. This enables the identification of the effects of the parameters such as friction, geometric properties of the screw, the taper angle, and the elastic properties of the materials on the mechanics of the system. In particular, a relation between the tightening torque and the screw pretension is identified. It was shown that the loosening torque is smaller than the tightening torque for typical values of the parameters. Most of the tightening load is carried by the tapered section of the abutment, and in certain combinations of the parameters the pretension in the screw may become zero. The calculations performed to determine the loosening torque as a percentage of tightening torque resulted in the range 85-137%, depending on the values of taper angle and the friction coefficient.
Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses.
Seloto, Camila Berbel; Strazzi Sahyon, Henrico Badaoui; Dos Santos, Paulo Henrique; Delben, Juliana Aparecida; Assunção, Wirley Gonçalves
The aim of this study was to evaluate the effect of sealing agents on preload maintenance of screw joints. A total of four groups (n = 10 in each group) of abutment/implant systems, including external hexagon implants and antirotational UCLA abutments with a metallic collar in cobalt-chromium alloy, were assessed. In the control group (CG), no sealing agent was used at the abutment screw/implant interface. In the other groups, three different sealing agents were used at the abutment screw/implant interface: anaerobic sealing agent for medium torque (ASMT), anaerobic sealing agent for high torque (ASHT), and cyanoacrylate-based bonding agent (CYAB). All abutments were attached to the implants at 32 ± 1 N.cm. After 48 ± 2 hours of initial tightening, loosing torque (detorque) was measured using a digital torque wrench. Data were analyzed using Shapiro-Wilk, Wilcoxon, and Kruskal-Wallis tests, at 5% level of significance. In the CG and ASMT groups, detorque was lower than the insertion torque (24.6 ± 1.5 N.cm and 24.3 ± 1.1 N.cm, respectively). In the ASHT and CYAB groups, mean detorque increased in comparison to the insertion torque (51.0 ± 7.4 N.cm and 47.7 ± 15.1 N.cm, respectively). The ASHT was more efficient than the other sealing agents, increasing the remaining preload (detorque value) 58.88%. Although the cyanoacrylate-based bonding agent also generated high detorque values, the high standard deviation suggested its lower reliability.
Mechanical Properties of Abutments: Resin-Bonded Glass Fiber-Reinforced Versus Titanium.
Bassi, Mirko Andreasi; Bedini, Rosells; Pecci, Raffaela; Ioppolo, Pietro; Laritano, Dorina; Carinci, Francesco
2016-01-01
The clinical success and longevity of endosseous implants, after their prosthetic finalization, mainly depends on mechanical factors. Excessive mechanical stress has been shown to cause initial bone loss around implants in the presence of a rigid implant-prosthetic connection. The implant abutments are manufactured with high elastic modulus materials such as titanium, steel, precious alloys, or esthetic ceramics. These materials do not absorb any type of shock from the chewing loads or ensure protection of the bone-implant interface, especially when the esthetic restorative material is ceramic rather than composite resin. The mechanical resistance to cyclical load was evaluated in a tooth-colored fiber-reinforced abutment prototype (TCFRA) and compared to that of a similarly shaped titanium abutment (TA). Eight TCFRAs and eight TAs were adhesively cemented on as many titanium implants. The swinging the two types of abutments showed during the application of sinusoidal load was also analyzed. In the TA group, fracture and deformation occurred in 12.5% of samples, while debonding occurred in 62.5%. In the TCFRA group, only debonding was present, in 37.5% of samples. In comparison to the TAs, the TCFRAs exhibited greater swinging during the application of sinusoidal load. In the TA group extrusion prevailed, whereas in the TCFRA group intrusion was more frequent. TCFRA demonstrated a greater elasticity than did TAs to the flexural load, absorbing part of the transversal load applied on the fixture during the chewing function and thus reducing the stress on the bone-implant interface.
The effect of mucosal cuff shrinkage around dental implants during healing abutment replacement.
Nissan, J; Zenziper, E; Rosner, O; Kolerman, R; Chaushu, L; Chaushu, G
2015-10-01
Soft tissue shrinkage during the course of restoring dental implants may result in biological and prosthodontic difficulties. This study was conducted to measure the continuous shrinkage of the mucosal cuff around dental implants following the removal of the healing abutment up to 60 s. Individuals treated with implant-supported fixed partial dentures were included. Implant data--location, type, length, diameter and healing abutments' dimensions--were recorded. Mucosal cuff shrinkage, following removal of the healing abutments, was measured in bucco-lingual direction at four time points--immediately after 20, 40 and 60 s. anova was used to for statistical analysis. Eighty-seven patients (49 women and 38 men) with a total of 311 implants were evaluated (120 maxilla; 191 mandible; 291 posterior segments; 20 anterior segments). Two-hundred and five (66%) implants displayed thick and 106 (34%) thin gingival biotype. Time was the sole statistically significant parameter affecting mucosal cuff shrinkage around dental implants (P < 0.001). From time 0 to 20, 40 and 60 s, the mean diameter changed from 4.1 to 4.07, 3.4 and 2.81 mm, respectively. The shrinkage was 1%, 17% and 31%, respectively. The gingival biotype had no statistically significant influence on mucosal cuff shrinkage (P = 0.672). Time required replacing a healing abutment with a prosthetic element should be minimised (up to 20/40 s), to avoid pain, discomfort and misfit. © 2015 John Wiley & Sons Ltd.
Olson, Scott A.
1996-01-01
Contraction scour for all modelled flows ranged from 0.1 to 3.1 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour at the left abutment ranged from 10.4 to 12.5 ft with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 25.3 to 27.3 ft with the worst-case occurring at the incipient-overtopping discharge. The worst-case total scour also occurred at the incipient-overtopping discharge. The incipient-overtopping discharge was in between the 100- and 500-year discharges. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Digital versus conventional implant impressions for edentulous patients: accuracy outcomes.
Papaspyridakos, Panos; Gallucci, German O; Chen, Chun-Jung; Hanssen, Stijn; Naert, Ignace; Vandenberghe, Bart
2016-04-01
To compare the accuracy of digital and conventional impression techniques for completely edentulous patients and to determine the effect of different variables on the accuracy outcomes. A stone cast of an edentulous mandible with five implants was fabricated to serve as master cast (control) for both implant- and abutment-level impressions. Digital impressions (n = 10) were taken with an intraoral optical scanner (TRIOS, 3shape, Denmark) after connecting polymer scan bodies. For the conventional polyether impressions of the master cast, a splinted and a non-splinted technique were used for implant-level and abutment-level impressions (4 cast groups, n = 10 each). Master casts and conventional impression casts were digitized with an extraoral high-resolution scanner (IScan D103i, Imetric, Courgenay, Switzerland) to obtain digital volumes. Standard tessellation language (STL) datasets from the five groups of digital and conventional impressions were superimposed with the STL dataset from the master cast to assess the 3D (global) deviations. To compare the master cast with digital and conventional impressions at the implant level, analysis of variance (ANOVA) and Scheffe's post hoc test was used, while Wilcoxon's rank-sum test was used for testing the difference between abutment-level conventional impressions. Significant 3D deviations (P < 0.001) were found between Group II (non-splinted, implant level) and control. No significant differences were found between Groups I (splinted, implant level), III (digital, implant level), IV (splinted, abutment level), and V (non-splinted, abutment level) compared with the control. Implant angulation up to 15° did not affect the 3D accuracy of implant impressions (P > 0.001). Digital implant impressions are as accurate as conventional implant impressions. The splinted, implant-level impression technique is more accurate than the non-splinted one for completely edentulous patients, whereas there was no difference in the accuracy at the abutment level. The implant angulation up to 15° did not affect the accuracy of implant impressions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reduction of Tribocorrosion Products When using the Platform-Switching Concept.
Alrabeah, G O; Knowles, J C; Petridis, H
2018-03-01
The reduced marginal bone loss observed when using the platform-switching concept may be the result of reduced amounts of tribocorrosion products released to the peri-implant tissues. Therefore, the purpose of this study was to compare the tribocorrosion product release from various platform-matched and platform-switched implant-abutment couplings under cyclic loading. Forty-eight titanium implants were coupled with pure titanium, gold alloy, cobalt-chrome alloy, and zirconia abutments forming either platform-switched or platform-matched groups ( n = 6). The specimens were subjected to cyclic occlusal forces in a wet acidic environment for 24 h followed by static aqueous immersion for 6 d. The amount of metal ions released was measured using inductively coupled plasma mass spectrometry. Microscopic evaluations were performed pre- and postimmersion under scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy X-ray for corrosion assessment at the interface and wear particle characterization. All platform-switched groups showed less metal ion release compared with their platform-matched counterparts within each abutment material group ( P < 0.001). Implants connected to platform-matched cobalt-chrome abutments demonstrated the highest total mean metal ion release (218 ppb), while the least total mean ion release (11 ppb) was observed in the implants connected to platform-switched titanium abutments ( P ≤ 0.001). Titanium was released from all test groups, with its highest mean release (108 ppb) observed in the implants connected to platform-matched gold abutments ( P < 0.001). SEM images showed surface tribocorrosion features such as pitting and bands of fretting scars. Wear particles were mostly titanium, ranging from submicron to 48 µm in length. The platform-matched groups demonstrated a higher amount of metal ion release and more surface damage. These findings highlight the positive effect of the platform-switching concept in the reduction of tribocorrosion products released from dental implants, which consequently may minimize the adverse tissue reactions that lead to peri-implant bone loss.
Interaction of Dams and Landslides--Case Studies and Mitigation
Schuster, Robert L.
2006-01-01
In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.
Molina, Ana; Sanz-Sánchez, Ignacio; Martín, Conchita; Blanco, Juan; Sanz, Mariano
2017-04-01
To compare the effect of placing the definitive abutment at the time of implant placement versus at a later stage, on the soft and hard tissue changes around dental implants. Platform-switched implants were placed in the posterior maxilla or mandible of partial edentulous patients and they were randomized to receive the definitive abutment at the moment of implant placement, or 6-12 weeks later. Final prostheses were delivered 2-4 weeks later. Radiographic assessment of vertical bone level changes (primary outcome), clinical status of peri-implant tissues, changes in soft tissues margin, papilla filling, patient-related outcomes and adverse events were assessed 6 and 12 months after loading. 60 implants were placed in 40 patients, replacing single or multiple absent teeth. One implant was lost 1 week after insertion (overall survival rate: 98.3%). A statistically significant greater bone resorption from surgery to 6 months post-loading was observed for those implants subjected to abutment change (control group: -1.24 ± 0.79 mm; test group: -0.61 ± 0.40 mm; P = 0.028). Periodontal clinical parameters and patient-related outcomes, however, did not demonstrate significant differences between groups at any time point. A significant increase in papilla height was observed from loading to 12 months in all implants (control group: 1.17 ± 1.47 mm; test group: 0.98 ± 0.89 mm) and a slight but not significant coronal migration of the gingival margin. The connection and disconnection of healing abutments is associated with significantly increased bone loss during the healing period between implant placement and 6 months post-loading, when compared to one-time abutment placement. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
López-Píriz, Roberto; Solá-Linares, Eva; Rodriguez-Portugal, Mercedes; Malpica, Beatriz; Díaz-Güemes, Idoia; Enciso, Silvia; Esteban-Tejeda, Leticia; Cabal, Belén; Granizo, Juan José; Moya, José Serafín; Torrecillas, Ramón
2015-01-01
Objectives The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. Methods Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. Results During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). Significance Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression. PMID:26489088
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, J.R.; DeMarco, M.J.; Marshall, R.J.
1996-12-01
Although two-entry yield pillar-based gate roads supported by wooden cribs have been commonly used throughout longwalling in the Wasatch Plateau/Roan Cliffs coalfield of central Utah, a three-entry yield-abutment gate road configuration was recently trialed in the Hiawatha Seam at the Genwal Resources (GRI) Crandall Canyon No. 1 Mine, near Huntington, UT. Pillar, entry, and cable bolt performance were monitored through second panel mining using a fairly extensive array of geomechanical instruments installed over a span of four crosscuts. Ground pressure and entry closure measurements confirmed that the 9.1-m-wide (30-ft) yield pillar was partially shielded from first panel longwall loads bymore » the 36.6-m-wide (120-ft) abutment pillar, and consequently, experienced only minor yielding until the approach of the second panel face. Complete yielding of the 9.1-m-wide (30-ft) pillar occurred when the second panel was approximately 6.1 m (20 ft) in by the instrumentation site. Average cable bolt loads and differential roof sag remained low through second panel mining and tailgate entry ground conditions were excellent; however, very high ground pressures in the abutment and yield pillars, and second panel rib strongly suggest a high potential for coal bumps utilizing this gate road configuration at mining cover depths in excess of 396 to 457 m (1300 to 1500 ft). This conclusion is supported by the suspected occurrence of small coal bumps along the abutment pillar ribs, observed indirectly as fresh debris in the middle entry just behind the second face. This paper presents a case history developed from the geotechnical measurements and on-site observations of this unique application of a yield-abutment gate road configuration and cable support system in the Hiawatha Seam.« less
The effect of antimicrobial therapy on periimplantitis lesions. An experimental study in the dog.
Ericsson, I; Persson, L G; Berglundh, T; Edlund, T; Lindhe, J
1996-12-01
The objective of the present study was to evaluate the effect of systemic antibiotics and local debridement in the treatment of experimentally induced periimplantitis lesions. 5 Labrador dogs, and about 1-year old, were included in the study. In order to establish bilateral recipient sites for implants the mandibular right and left 1st molars, 4th and 3rd premolars were removed. 6 titanium fixtures (Brånemark System Nobelpharma AB, Göteborg, Sweden) were installed and standard abutments were connected 3 months after fixture installation. Cotton floss ligatures were placed in a submarginal position around the neck of the abutments and the animals were placed on a diet which allowed plaque accumulation. After 6-8 weeks, when the tissue destruction amounted to about 20% of the fixture length, the ligatures were removed. 1 month after ligature removal, an antibiotic regimen (amoxicillin and metronidazole) was initiated and maintained for 3 weeks. In the left side of the mandible, buccal and lingual mucoperiosteal flaps were elevated, the granulation tissue within the bone craters adjacent to the implants was curetted, and the abutments were removed. The exposed outer surface, the internal part of the fixtures, as well as the abutments were treated with a detergent, delmopinol. The cleaned abutments were autoclaved, and connected to the clean fixtures. The mucoperiosteal flaps were replaced to their original position, adapted to the abutments and sutured. A careful plaque control program was initiated for the left jaw quadrants. In the right side of the mandible no local treatment was given to the fixtures and the abutments following ligature removal. Furthermore, no plaque control was provided to the implant segments in the right jaws. After 4 months of healing block biopsies including one implant with adjacent hard and soft tissue were harvested and prepared for light microscopy. It was observed that systemic antimicrobial therapy, combined with implant cleaning, curettage of the bone defect and regular plaque control resulted in (i) resolution of the periimplantitis lesion, (ii) a significant recession of the marginal periimplant mucosa, and (iii) a minor additional apical shift of the base of the bone defect. In the untreated sites the plaque associated infiltrate remained and was in several sites examined in contact with the adjacent bone tissue.
Nader, Nabih; Aboulhosn, Maissa; Berberi, Antoine; Manal, Cordahi; Younes, Ronald
2016-01-01
The periimplant bone level has been used as one of the criteria to assess the success of dental implants. It has been documented that the bone supporting two-piece implants undergoes resorption first following the second-stage surgery and later on further to abutment connection and delivery of the final prosthesis. The aim of this multicentric randomized clinical trial was to evaluate the crestal bone resorption around internal connection dental implants using a new surgical protocol that aims to respect the biological distance, relying on the benefit of a friction fit connection abutment (test group) compared with implants receiving conventional healing abutments at second-stage surgery (control group). A total of partially edentulous patients were consecutively treated at two private clinics, with two adjacent two-stage implants. Three months after the first surgery, one of the implants was randomly allocated to the control group and was uncovered using a healing abutment, while the other implant received a standard final abutment and was seated and tightened to 30 Ncm. At each step of the prosthetic try-in, the abutment in the test group was removed and then retightened to 30 Ncm. Horizontal bone changes were assessed using periapical radiographs immediately after implant placement and at 3 (second-stage surgery), 6, 9 and 12 months follow-up examinations. At 12 months follow-up, no implant failure was reported in both groups. In the control group, the mean periimplant bone resorption was 0.249 ± 0.362 at M3, 0.773 ± 0.413 at M6, 0.904 ± 0.36 at M9 and 1.047 ± 0.395 at M12. The test group revealed a statistically significant lower marginal bone loss of 20.88% at M3 (0.197 ± 0.262), 22.25% at M6 (0.601 ± 0.386), 24.23% at M9 (0.685 ± 0.341) and 19.2% at M9 (0.846 ± 0.454). The results revealed that bone loss increased over time, with the greatest change in bone loss occurring between 3 and 6 months. Alveolar bone loss was significantly greater in the control condition than the test condition. The results of this prospective study demonstrated the benefit of placing a prosthetic component with a stable connection at second-stage surgery, in terms of reduced marginal bone remodeling when compared with conventional procedure. The use of a stable connection in a healing component during try-in stages prior to final restoration placement leads to less periimplant marginal bone loss.
1987-11-24
of the assortment of manufactured parts for partial and complete frames, as well as abutments , support walls, and bridgehead construction...Uniform Series II Generation based on anticipated spans; and • Increased effectiveness of prefabrication for steel and masonry bridge construction...support structures and abutments . Parallel to and on an equal par with standard primary construction trades already cited, the scientific-technical
18. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, ...
18. "Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, California, A.J. Logan, County Surveyor, H.J. Brunnier, Consulting Engineer, March 7, 1919," showing elevation of center pier, elevation and plan of north and south abutments, sections of abutments, pier, and pier footings - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA
Numerical simulation of abutment pressure redistribution during face advance
NASA Astrophysics Data System (ADS)
Klishin, S. V.; Lavrikov, S. V.; Revuzhenko, A. F.
2017-12-01
The paper presents numerical simulation data on the abutment pressure redistribution in rock mass during face advance, including isolines of maximum shear stress and pressure epures. The stress state of rock in the vicinity of a breakage heading is calculated by the finite element method using a 2D nonlinear model of a structurally heterogeneous medium with regard to plasticity and internal self-balancing stress. The thus calculated stress field is used as input data for 3D discrete element modeling of the process. The study shows that the abutment pressure increases as the roof span extends and that the distance between the face breast and the peak point of this pressure depends on the elastoplastic properties and internal self-balancing stress of a rock medium.
Influence of different restorative materials on the stress distribution in dental implants.
Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto
2018-05-01
To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.
Resistance of three implant-abutment interfaces to fatigue testing
RIBEIRO, Cleide Gisele; MAIA, Maria Luiza Cabral; SCHERRER, Susanne S.; CARDOSO, Antonio Carlos; WISKOTT, H. W. Anselm
2011-01-01
The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture. Objectives The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. Materials and Methods In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 106 load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. Results The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. Conclusion Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results. PMID:21710094
Comparison of the compressive strength of 3 different implant design systems.
Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter
2007-01-01
The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.
11. 100 foot through truss north east bearing abutment ...
11. 100 foot through truss - north east bearing abutment of the second through truss, showing that the bearing point is to the backmost position of the concrete pier. This bearing point is on a concrete extension of the original bearing point now covered by rock and soil. - Weidemeyer Bridge, Spanning Thomes Creek at Rawson Road, Corning, Tehama County, CA
Electromagnetic pump stator core
Fanning, A.W.; Olich, E.E.; Dahl, L.R.
1995-01-17
A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.
Electromagnetic pump stator core
Fanning, Alan W.; Olich, Eugene E.; Dahl, Leslie R.
1995-01-01
A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter.
25. A QUIRK ON THE FACING OF THE NORTHEASTERN ABUTMENT. ...
25. A QUIRK ON THE FACING OF THE NORTHEASTERN ABUTMENT. IT HAS BEEN CAST IN PLACE, THE GHOSTS OF THE WOODEN FORMERS CAN BE SEEN. EVEN THE MITRES WITHIN THE SUNK PORTIONS OF THE CASTING ARE VISIBLE. POISON IVY AND TRUMPET VINE CLING WELL TO THE ROUGH CONCRETE. - Main Street Bridge, Spanning East Fork Whitewater River, Richmond, Wayne County, IN
On the application of photogrammetry to the fitting of jawbone-anchored bridges.
Strid, K G
1985-01-01
Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.
Boehmler, Erick M.; Song, Donald L.
1997-01-01
Contraction scour for all modelled flows ranged from 0.0 to 1.4 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 2.3 to 8.9 feet. The worst-case abutment scour occurred at the 100-year discharge at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Passos, Sheila Pestana; Gressler May, Liliana; Faria, Renata; Özcan, Mutlu; Bottino, Marco Antonio
2013-10-01
Microorganisms from the oral cavity may settle at the implant-abutment interface (IAI). As a result, tissue inflammation could occur around these structures. The databases MEDLINE/PubMed and PubMed Central were used to identify articles published from 1981 through 2012 related to the microbial colonization in the implant-abutment gap and its consequence in terms of crest bone loss and osseointegration. The following considerations could be put forward, with respect to the clinical importance of IAI: (a) the space present at the IAI seems to allow bacterial leakage to occur, in spite of the size of this space; (b) bacterial leakage seems to occur at the IAI, irrespective of the type of connection. More studies are necessary to clarify the relationship between leakage at IAI and abutment connection designs; (c) losses at the peri-implant bone crests cannot be related to the IAI size, since few studies have shown no relationship. Also, the microbial leakage at the IAI cannot be related to the bone crest loss, since there are no articles reporting this relationship; remains controversial the influence of the IAI position on the bone crest losses. Copyright © 2013 Wiley Periodicals, Inc.
2017-01-01
Purpose To retrospectively evaluate the relationship between the vertical position of the implant-abutment interface and marginal bone loss over 3 years using radiological analysis. Methods In total, 286 implant surfaces of 143 implants from 61 patients were analyzed. Panoramic radiographic images were taken immediately after implant installation and at 6, 12, and 36 months after loading. The implants were classified into 3 groups based on the vertical position of the implant-abutment interface: group A (above bone level), group B (at bone level), and group C (below bone level). The radiographs were analyzed by a single examiner. Results Changes in marginal bone levels of 0.99±1.45, 1.13±0.91, and 1.76±0.78 mm were observed at 36 months after loading in groups A, B, and C, respectively, and bone loss was significantly greater in group C than in groups A and B. Conclusions The vertical position of the implant-abutment interface may affect marginal bone level change. Marginal bone loss was significantly greater in cases where the implant-abutment interface was positioned below the marginal bone. Further long-term study is required to validate our results. PMID:28861287
de Avila, Érica Dorigatti; de Barros-Filho, Luiz Antônio Borelli; de Andrade, Marcelo Ferrarezi; Mollo, Francisco de Assis; de Barros, Luiz Antônio Borelli
2014-01-01
When dental implants are malpositioned in relation to the adjacent teeth and alveolar bone or in an excessive buccal or lingual position, the final prosthesis rehabilitation impairs the peri-implant health of the gingival tissues and the aesthetics of the patient. Thus, the purpose of this case was to report and discuss a multidisciplinary protocol for the treatment of a compromised maxillary tooth in a patient with an abscess in his right central incisor due to an excessive buccal implant position. The patient presented with an implant-supported provisional restoration on his right maxillary central incisor and a traumatic injury in his left central incisor. The treatment protocol consisted in (i) abutment substitution to compensate the incorrect angulation of the implant, (ii) clinical crown lengthening, (iii) atraumatic extraction of the left central incisor, and (iv) immediate implant placement. Finally, (v) a custom abutment was fabricated to obtain a harmonious gingival contour around the prosthetic crown. In conclusion, when implants are incorrectly positioned in relation to the adjacent teeth, associated with soft-tissue defects, the challenge to create a harmonious mucogingival contours may be achieved with an interdisciplinary approach and with the placement of an appropriate custom abutment. PMID:24955259
Evaluation of screw loosening on new abutment screws and after successive tightening.
Barbosa, Gustavo Seabra; Silva-Neto, João Paulo da; Simamoto-Júnior, Paulo Cezar; Neves, Flávio Domingues das; Mattos, Maria da Gloria Chiarello de; Ribeiro, Ricardo Faria
2011-01-01
This study evaluated the loss of the torque applied after use of new screws and after successive tightening. Four infrastructures (IE), using UCLA castable abutment type, were cast in cobalt-chromium alloy and new abutment screws (G1) were used in a first moment. Subsequently, the same abutment screws were used a second time (G2) and more than two times (G3). The values of the torques applied and detorques were measured with a digital torque wrench to obtain the values of initial tightening loss (%). Data were analyzed by ANOVA and Tukey's test (?=0.05). Significant differences were observed between the G1 (50.71% ± 11.36) and G2 (24.01% ± 3.33) (p=0.000) and between G1 (50.71% ± 11.36) and G3 (25.60% ± 4.64) (p=0.000). There was no significant difference between G2 and G3 (p=0.774). Within the limitations of the study, it may be concluded that the percentage of the initial torque loss is lower when screws that already suffered the application of an initial torque were used, remaining stable after application of successive torques.
Flynn, Robert H.; Burns, Ronda L.
1997-01-01
Contraction scour for all modelled flows ranged from 0.4 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 8.4 to 30.7 ft. The worst-case abutment scour occurred at the 500-year discharge along the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
Finelle, Gary; Lee, Sang J
Digital technology has been widely used in the field of implant dentistry. From a surgical standpoint, computer-guided surgery can be utilized to enhance primary implant stability and to improve the precision of implant placement. From a prosthetic standpoint, computer-aided design/computer-assisted manufacture (CAD/CAM) technology has brought about various restorative options, including the fabrication of customized abutments through a virtual design based on computer-guided surgical planning. This case report describes a novel technique combining the use of a three-dimensional (3D) printed surgical template for the immediate placement of an implant, with CAD/CAM technology to optimize hard and soft tissue healing after bone grafting with the use of a socket sealing abutment.
Olson, Scott A.; Ivanoff, Michael A.
1997-01-01
skew-to-roadway. There is evidence of channel scour along the right bank from 190 feet upstream of the bridge and extending through the bridge along the right abutment. Under the bridge, the scour depth is approximately 0.5 feet below the mean thalweg depth. Scour protection measures at the site include type-3 stone fill (less than 48 inches diameter) along the right bank extending from the bridge to 192 feet upstream. Type-2 stone fill (less than 36 inches diameter) is along the right abutment and the right downstream bank to 205 feet downtream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.2 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.3 to 7.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Computed scour for the 100-year event does not go below the abutment footings. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.
The Impact of the Crown-Root Ratio on Survival of Abutment Teeth for Dentures.
Tada, S; Allen, P F; Ikebe, K; Zheng, H; Shintani, A; Maeda, Y
2015-09-01
Crown-root ratio (CRR) is commonly recorded when planning prosthodontic procedures. However, there is a lack of longitudinal clinical data evaluating the association between CRR and tooth survival. The aim of this longitudinal practice-based study was to assess the impact of CRR on the survival of abutment teeth for removable partial dentures (RPDs). Data were collected from 147 patients provided with RPDs at a dental hospital in Japan. In total, 236 clasp-retained RPDs and 856 abutment teeth were analyzed. Survival of abutment teeth was assessed using Kaplan-Meier methods and Cox's proportional hazard (PH) regression. The Cox PH regression was used to assess the prognostic significance of initial CRR value with adjustments for clinically relevant factors, including age, sex, frequency of periodontal maintenance programs, occlusal support area, type of abutment tooth, status of endodontic treatment, and probing pocket depth. Abutment teeth were divided into 1 of 5 risk groups according to CRR: A (≤0.75), B (0.76-1.00), C (1.01-1.25), D (1.26-1.50) and E (≥1.51). The 7-year survival rate was 89.1% for group A, 85.9% for group B, 86.5% for group C, 76.9% for group D, and 46.7% for group E. The survival curves of groups A, B, and C were illustrated to be quite similar and favorable. The multivariable analysis treating CRR as a continuous variable allowed estimation of the hazard ratio at any specific CRR value. When CRR = 0.80 was set as a reference, the estimated hazard ratio was 0.58 for CRR = 0.50 (95% confidence interval [CI], 0.36-0.91), 1.13 for CRR = 1.00 (95% CI, 0.93-1.37), 1.35 for CRR = 1.25 (95% CI, 1.02-1.80), 1.53 for CRR = 1.50 (95% CI, 1.15-2.08), or 1.95 for CRR = 2.00 (95% CI, 1.44-2.65). These practice-based longitudinal data provide information to improve the evidence-based prognosis of teeth in providing prosthodontic procedures. © International & American Associations for Dental Research.
Zipprich, Holger; Miatke, Sven; Hmaidouch, Rim; Lauer, Hans-Christoph
2016-01-01
This study aimed to test bacterial microleakage at the implant-abutment interface (IAI) before and after dynamic loading using a new chewing simulation. Fourteen implant systems (n = 5 samples of each) were divided into two groups: (1) systems with conical implant-abutment connections (IACs), and (2) systems with flat IACs. For collecting samples without abutment disconnection, channels (Ø = 0.3 mm) were drilled into implants perpendicularly to their axes, and stainless-steel cannulas were adhesively glued inside these channels to allow a sterilized rinsing solution to enter the implant interior and to exit with potential contaminants for testing. Implants were embedded in epoxy resin matrices, which were supported by titanium cylinders with lateral openings for inward and outward cannulas. Abutments were tightened and then provided with vertically adjustable, threaded titanium balls, which were cemented using composite cement. Specimens were immersed in a bacterial liquid and after a contact time of 15 minutes, the implant interior was rinsed prior to chewing simulation (0 N ≘ static seal testing). Specimens were exposed to a Frankfurt chewing simulator. Two hundred twenty force cycles per power level (110 in ± X-axis) were applied to simulate a daily masticatory load of 660 chewing cycles (equivalent to 1,200,000 cycles/5 years). The applied load was gradually increased from 0 N to a maximum load of 200 N in 25-N increments. The implant interior was rinsed to obtain samples before each new power level. All samples were tested using fluorescence microscopy; invading microorganisms could be counted and evaluated. No bacterial contamination was detected under static loading conditions in both groups. After loading, bacterial contamination was detected in one sample from one specimen in group 1 and in two samples from two specimens in group 2. Controlled dynamic loading applied in this study simulated a clinical situation and enabled time-dependent analysis regarding the bacterial seal of different implant systems. Conical IACs offer a better bacterial seal compared with flat IACs, which showed increased microleakage after dynamic loading. IAC design plays a crucial role in terms of bacterial colonization. Taking samples of the implant interior without abutment disconnection eliminates an error source.