Sample records for abyssal hill faults

  1. Abyssal hills: Influence of topography on benthic foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.

    2016-11-01

    Abyssal plains, often thought of as vast flat areas, encompass a variety of terrains including abyssal hills, features that constitute the single largest landscape type on Earth. The potential influence on deep-sea benthic faunas of mesoscale habitat complexity arising from the presence of abyssal hills is still poorly understood. To address this issue we focus on benthic foraminifera (testate protists) in the >150-μm fraction of Megacorer samples (0-1 cm layer) collected at five different sites in the area of the Porcupine Abyssal Plain Sustained Observatory (NE Atlantic, 4850 m water depth). Three sites are located on the tops of small abyssal hills (200-500 m elevation) and two on the adjacent abyssal plain. We examined benthic foraminiferal assemblage characteristics (standing stock, diversity, composition) in relation to seafloor topography (hills vs. plain). Density and rarefied diversity were not significantly different between the hills and the plain. Nevertheless, hills do support a higher species density (i.e. species per unit area), a distinct fauna, and act to increase the regional species pool. Topographically enhanced bottom-water flows that influence food availability and sediment type are suggested as the most likely mechanisms responsible for these differences. Our findings highlight the potential importance of mesoscale heterogeneity introduced by relatively modest topography in regulating abyssal foraminiferal diversity. Given the predominance of abyssal hill terrain in the global ocean, we suggest the need to include faunal data from abyssal hills in assessments of abyssal ecology.

  2. Internal tide generation by abyssal hills using analytical theory

    NASA Astrophysics Data System (ADS)

    Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.

    2013-11-01

    Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.

  3. Seafloor Age-Stacking Reveals No Evidence for Milankovitch Cycle Influence on Abyssal Hills at Intermediate, Fast and Super-Fast Spreading Rates

    NASA Astrophysics Data System (ADS)

    Goff, J.; Zahirovic, S.; Müller, D.

    2017-12-01

    Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The

  4. Observations on Cretaceous abyssal hills in the northeast Pacific

    USGS Publications Warehouse

    Eittreim, S.L.; Piper, D.Z.; Chezar, H.; Jones, D.R.; Kaneps, A.

    1984-01-01

    An abyssal hills area of 50 ?? 60 km in the northeast Pacific was studied using bottom transponder navigation, closely spaced survey lines, and long-traverse oblique photography. The block-faulted north-south hills are bounded by scarps, commonly with 40?? slopes. On these steep scarps sedimentation is inhibited and pillow basalts often crop out. An ash layer of high acoustic reflectivity at about 7 m subbottom depth blankets the area. This ash occurs in multiple beds altered to phillipsite and is highly consolidated. A 24 m.y. age for the ash is based on ichthyolith dates from samples in the overlying sediments. Acoustically transparent Neogene sediments above the ash are thickest in trough bottoms and are absent or thin on steep slopes. These Neogene sediments are composed of pale-brown pelagic clays of illite, quartz, smectite, chlorite and kaolinite. Dark-brown pelagic clays, rich in smectite and amorphous iron oxides, underlie the Neogene surficial sediments. Manganese nodules cover the bottom in varying percentages. The nodules are most abundant near basement outcrops and where the subbottom ash layer is absent. ?? 1984.

  5. Hydrothermal Mineral Deposits From a Young (0.1Ma) Abyssal Hill on the Flank of the Fast-Spreading East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Benjamin, S. B.; Haymon, R. M.

    2004-12-01

    It has been estimated from heat flow measurements that at least 40% of the total hydrothermal heat lost from oceanic lithosphere is removed from 0.1-5 Ma abyssal hill terrain on mid-ocean ridge flanks. Despite the large magnitude of estimated hydrothermal heat loss from young abyssal hills, little is known about characteristics of hydrothermal vents and mineral deposits in this setting. This study describes the first abyssal hill hydrothermal samples to be collected on the flank of a fast-spreading ridge. The mineral deposits were discovered at "Tevnia Site" on the axis-facing fault scarp of an abyssal hill, located on ˜0.1 Ma lithosphere ˜5 km east of the East Pacific Rise (EPR) axis at 10\\deg 20'N. Observations of Galatheid crabs, "dandelion" siphonophores, and colonies of dead, yet still intact, Tevnia worm tubes at this site during Alvin dives in 1994 suggests relatively recent hydrothermal activity. The deposits are friable hydrothermal precipitates incorporating volcanic clasts brecciated at both the micro and macro scales. The petrographic sequence of brecciation, alteration, and cementation exhibited by the samples suggests that they formed from many pulses of hydrothermal venting interspersed with, and perhaps triggered by, repeated tectonic events as the abyssal hill was uplifted and moved off-axis (see also Haymon et al., this session). Observed minerals include x-ray amorphous opaline silica and Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), an irregularly stratified mixed layer nontronite-celadonite, and residual calcite in sediment-derived microfossils incorporated into the breccia matrix. This mineral assemblage suggests that the deposits precipitated from moderately low-temperature (<140\\deg C) fluids, enriched in K, Fe, Si, and Mn, with a near-neutral pH. The presence of tubeworm casings at the site is evidence that the hydrothermal fluids carried H2S, however no metal sulfide phases were identified in the samples. Although

  6. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  7. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  8. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  9. GPS measurements of deformation associated with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert; Neugebauer, Helen; Strange, William

    1991-01-01

    Large station displacements observed from Imperial Valley Global Positioning System (GPS) campaigns are attributed to the November 24, 1987 Superstition Hills earthquake sequence. Thirty sites from a 42 station GPS network established in 1986 were reoccupied during 1988 and/or 1990. Displacements at three sites within 3 kilometers of the surface rupture approach 0.5 m. Eight additional stations within 20 km of the seismic zone are displaced at least 10 cm. This is the first occurrence of a large earthquake (M(sub S) 6.6) within a preexisting GPS network. Best-fitting uniform slip models of rectangular dislocations in an elastic half-space indicate 130 + or - 8 cm right-lateral displacement along the northwest-trending Superstition Hills fault and 30 + or - 10 cm left-lateral displacement along the conjugate northeast-trending Elmore Ranch fault. The geodetic moments are 9.4 x 10(exp 25) dyne-cm and 2.3 x 10(exp 25) dyne-cm for the Superstition Hills and Elmore Ranch faults, respectively, consistent with teleseismic source parameters. The data also suggest the post seismic slip along the Superstition Hills fault is concentrated at shallow depths. Distributed slip solutions using Singular Value Decomposition indicate near uniform displacement along the Elmore Ranch fault and concentrated slip to the northwest and southeast along the Superstition Hills fault. A significant component of non-seismic displacement is observed across the Imperial Valley, which is attributed in part to interseismic plate-boundary deformation.

  10. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  11. Evolution of the Puente Hills Thrust Fault

    NASA Astrophysics Data System (ADS)

    Bergen, K. J.; Shaw, J. H.; Dolan, J. F.

    2013-12-01

    This study aims to assess the evolution of the blind Puente Hills thrust fault system (PHT) by determining its age of initiation, lateral propagation history, and changes in slip rate over time. The PHT presents one of the largest seismic hazards in the United States, given its location beneath downtown Los Angeles. The PHT is comprised of three fault segments: the Los Angeles (LA), Santa Fe Springs (SFS), and Coyote Hills (CH). The LA and SFS segments are characterized by growth stratigraphy where folds formed by uplift on the fault segments have been continually buried by sediment from the Los Angeles and San Gabriel rivers. The CH segment has developed topography and is characterized by onlapping growth stratigraphy. This depositional setting gives us the unique opportunity to measure uplift on the LA and SFS fault segments, and minimum uplift on the CH fault segment, as the difference in sediment thicknesses across the buried folds. We utilize depth converted oil industry seismic reflection data to image the fold geometries. Identifying time-correlative stratigraphic markers for slip rate determination in the basin has been a problem for researchers in the past, however, as the faunal assemblages observed in wells are time-transgressive by nature. To overcome this, we utilize the sequence stratigraphic model and well picks of Ponti et al. (2007) as a basis for mapping time-correlative sequence boundaries throughout our industry seismic reflection data from the present to the Pleistocene. From the Pleistocene to Miocene we identify additional sequence boundaries in our seismic reflection data from imaged sequence geometries and by correlating industry well formation tops. The sequence and formation top picks are then used to build 3-dimensional surfaces in the modeling program Gocad. From these surfaces we measure the change in thicknesses across the folds to obtain uplift rates between each sequence boundary. Our results show three distinct phases of

  12. Exploring tectonomagmatic controls on mid-ocean ridge faulting and morphology with 3-D numerical models

    NASA Astrophysics Data System (ADS)

    Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.

    2016-12-01

    Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.

  13. Coastal Marine Terraces Define Late Quaternary Fault Activity and Deformation Within Northern East Bay Hills, San Francisco Bay Region

    NASA Astrophysics Data System (ADS)

    Kelson, K. I.

    2004-12-01

    Detailed mapping of uplifted marine platforms bordering the Carquinez Strait between Benicia and Pinole, California, provides data on the pattern and rate of late Quaternary deformation across the northern East Bay Hills. Field mapping, interpretation of early 20th-century topographic data, analysis of aerial photography, and compilation of onshore borehole data show the presence of remnants of three platforms, with back-edge elevations of about 4 m, 12 m, and 18 m. Based on U-series dates (Helley et al., 1993) and comparison of platform elevations to published sea-level curves, the 12-m-high and 18-m-high platforms correlate with substage 5e (ca. 120 ka) and stage 9 (ca. 330 ka) sea-level high stands, respectively. West of the Southhampton fault, longitudinal profiles of platform back-edges suggest that the East Bay Hills between Pinole and Vallejo have undergone block uplift at a rate of 0.05 +/- 0.01 m/ka without substantial tilting or warping. With uncertainty of <3 m, the 120 ka and 330 ka platforms are at the same elevations across the NW-striking Franklin fault. This west-vergent reverse fault previously was interpreted to have had late Pleistocene activity and to accommodate crustal shortening in the East Bay Hills. Our data indicate an absence of vertical displacement across the Franklin fault within at least the past 120ka and perhaps 330ka. In contrast, the stage 5e and 9 have up-on-the-east vertical displacement and gentle westward tilting across the N-striking Southhampton fault, with a late Pleistocene vertical slip rate of >0.02 m/ka. The northerly strike and prominent geomorphic expression of this potentially active fault differs from the Franklin fault. Our mapping of the Southhampton fault suggests that it accommodates dextral shear in the East Bay Hills, and is one of several left-stepping, en echelon N-striking faults (collectively, the "Contra Costa shear zone", CCSZ) in the East Bay Hills. Faults within this zone coincide with geomorphic

  14. Using UAVSAR to Estimate Creep Along the Superstition Hills Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Parker, J. W.; Pierce, M.; Wang, J.

    2012-12-01

    UAVSAR data were first acquired over the Salton Trough region, just north of the Mexican border in October 2009. Second passes of data were acquired on 12 and 13 April 2010, about one week following the 5 April 2010 M 7.2 El Mayor - Cucapah earthquake. The earthquake resulted in creep on several faults north of the main rupture, including the Yuha, Imperial, and Superstition Hills faults. The UAVSAR platform acquires data about every six meters in swaths about 15 km wide. Tropospheric effects and residual aircraft motion contribute to error in the estimation of surface deformation in the Repeat Pass Interferometry products. The Superstition Hills fault shows clearly in the associated radar interferogram; however, error in the data product makes it difficult to infer deformation from long profiles that cross the fault. Using the QuakeSim InSAR Profile tool we extracted line of site profiles on either side of the fault delineated in the interferogram. We were able to remove much of the correlated error by differencing profiles 250 m on either side of the fault. The result shows right-lateral creep of 1.5±.4 mm along the northern 7 km of the fault in the interferogram. The amount of creep abruptly changes to 8.4±.4 mm of right lateral creep along at least 9 km of the fault covered in the image to the south. The transition occurs within less than 100 m along the fault. We also extracted 2 km long line of site profiles perpendicular to this section of the fault. Averaging these profiles shows a step across the fault of 14.9±.3 mm with greater creep on the order of 20 mm on the northern two profiles and lower creep of about 10 mm on the southern two profiles. Nearby GPS stations P503 and P493 are consistent with this result. They also confirm that the creep event occurred at the time of the El Mayor - Cucapah earthquake. By removing regional deformation resulting from the main rupture we were able to invert for the depth of creep from the surface. Results indicate

  15. Relationship between 'live' and dead benthic foraminiferal assemblages in the abyssal NE Atlantic

    NASA Astrophysics Data System (ADS)

    Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.

    2017-03-01

    Dead foraminiferal assemblages within the sediment mixed layer provide an integrated, time-averaged view of the foraminiferal fauna, while the relationship between dead and live assemblages reflects the population dynamics of different species together with taphonomic processes operating over the last few hundred years. Here, we analysed four samples for 'live' (Rose-Bengal-stained) and dead benthic foraminifera (0-1 cm sediment layer, >150 μm) from four sites in the area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO; NE Atlantic, 4850 m water depth). Two sites were located on abyssal hills and two on the adjacent abyssal plain. Our results indicate that the transition from live to dead benthic foraminiferal assemblages involved a dramatic loss of delicate agglutinated and organic-walled tests (e.g. Lagenammina, Nodellum, Reophax) with poor preservation potential, and to a lesser extent that of some relatively fragile calcareous tests (mostly miliolids), possibly a result of dissolution. Other processes, such as the transport of tests by bottom currents and predation, are unlikely to have substantially altered the composition of dead faunas. Positive live to dead ratios suggest that some species (notably Epistominella exigua and Bolivina spathulata) may have responded to recent phytodetritus input. Although the composition of live assemblages seemed to be influenced by seafloor topography (abyssal hills vs. plain), no such relation was found for dead assemblages. We suggest that PAP-SO fossil assemblages are likely to be comparable across topographically contrasting sites, and dominated by calcareous and some robust agglutinated forms with calcitic cement (e.g. Eggerella).

  16. Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation

    PubMed Central

    Morris, Kirsty J.; Bett, Brian J.; Durden, Jennifer M.; Benoist, Noelie M. A.; Huvenne, Veerle A. I.; Jones, Daniel O. B.; Robert, Katleen; Ichino, Matteo C.; Wolff, George A.; Ruhl, Henry A.

    2016-01-01

    Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology. PMID:27681937

  17. The tectonic fabric of the ocean basins

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Müller, R. Dietmar; Wessel, Paul; Whittaker, Joanne M.

    2011-12-01

    We present a global community data set of fracture zones (FZs), discordant zones, propagating ridges, V-shaped structures and extinct ridges, digitized from vertical gravity gradient (VGG) maps. We use a new semi-automatic FZ tracking program to test the precision of our hand-digitized traces and find a Mean Absolute Deviation of less than 3.4 km from the raw VGG minima that most clearly delineate each feature, and less than 5.4 km from the FZ location predicted by fitting model profiles to the VGG data that represent the morphology of the individual FZs. These offsets are small considering gravity data only provide an approximation for the underlying basement morphology. We further investigate the origin of non-FZ seafloor fabric by combining published abyssal hill heights computed from gravity anomalies with global half-spreading rates. A residual abyssal hill height grid, with spreading rate effects removed, combined with our interpreted tectonic fabric reveals several types of seafloor fabric distinct from typical abyssal hills. Where discordant zones do not overprint abyssal hill signals, residual abyssal hill height anomalies correspond to seafloor that accreted near mantle thermal anomalies or zones of melt-depletion. Our analysis reveals several areas where residual abyssal hill height anomalies reflect pseudo-faults and extinct ridges associated with ridge propagation and/or microplate formation in the southern Pacific Ocean.

  18. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  19. Bathymetry (Part I), sedimentary regimes (Part II), and abyssal waste-disposal potential near the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bowles, Frederick A.; Vogt, Peter R.; Jung, Woo-Yeol

    1998-05-01

    Placing waste on the seafloor, with the intention that it remain in place and isolated from mankind, requires a knowledge of the environmental factors that may be applicable to a specific seafloor area. DBDB5 (Digital Bathymetric Database gridded at 5' latitude by 5' longitude cell dimension) is used here for regional assessments of seafloor depth, slope, and relief at five surrogate abyssal waste sites; two each in the western Atlantic and eastern Pacific, and one in the Gulf of Mexico. Only Pacific-1 exhibits a `high' slope (2°) by DBDB5 standards, whereas the remaining sites are located on almost level seafloor. Detailed examination of the sites using multibeam-based contour sheets show the area around Atlantic-1 to be a featureless plain. Atlantic-2 and both Pacific sites are surrounded by abyssal hill topography, with local slopes ranging from greater than 6° at all sites to above 15° at Pacific-2. Neither Pacific site features a seafloor as `flat' as at Atlantic-1 or at the Gulf of Mexico site. Locating waste sites on sedimented slopes could have serious consequences due to catastrophic slope failure and downslope displacement of waste by mass sediment-transport processes. Neither slumping nor sliding are perceived as critical processes affecting the surrogate sites because of their locations on negligibly sloping seafloors. However, debris flows and turbidity currents are capable of transporting large volumes of sediment for long distances over low gradients and, in the case of turbidity currents, at great speed. Dispersal of loose waste material by these processes is virtually assured, but less likely if the waste is bagged. The turbidity current problem is alleviated (but not eliminated) by locating waste sites on distal portions of abyssal plains. Both Pacific sites are surrounded by abyssal hills and, in the case of Pacific-2, far beyond the reach of land-derived turbidity currents. Thin sediment cover and low rates of sedimentation have also resulted

  20. Seismic constraints and coulomb stress changes of a blind thrust fault system, 1: Coalinga and Kettleman hills, California

    USGS Publications Warehouse

    Lin, Jian; Stein, Ross S.

    2006-01-01

    This report reviews the seismicity and surface ruptures associated with the 1982-1985 earthquake sequence in the Coalinga region in California, and the role of Coulomb stress in triggering the mainshock sequence and aftershocks. The 1982-1985 New Idria, Coalinga, and Kettleman Hills earthquakes struck on a series of west-dipping, en echelon blind thrust faults. Each earthquake was accompanied by uplift of a Quaternary anticline atop the fault, and each was accompanied by a vigorous aftershock sequence. Aftershocks were widely dispersed, and are seen above and below the thrust fault, as well as along the up-dip and down-dip projection of the main thrust fault. For the Coalinga and Kettleman Hills earthquakes, high-angle reverse faults in the core of the anticlines are evident in seismic reflection profiles, and many of these faults are associated with small aftershocks. The shallowest aftershocks extended to within 3-4 km of the ground surface. There is no compelling evidence for aftershocks associated with flexural slip faulting. No secondary surface rupture was found on any of the anticlines. In contrast, the 1983 Nu?ez rupture struck on a high-angle reverse fault 10 km west of the Coalinga epicenter, and over a 40-80-day period, up to 1 m of oblique surface slip occurred. The slip on this Holocene fault likely extended from the ground surface to a depth of 8-10 km. We argue that both the Nu?ez and Kettleman earthquakes were triggered by stresses imparted by the Coalinga mainshock, which was the largest of the four events in the sequence.

  1. Three-dimensional records of surface displacement on the Superstition Hills fault zone associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.; Saxton, J.L.

    1989-01-01

    Seven quadrilaterals, constructed at broadly distributed points on surface breaks within the Superstition Hills fault zone, were repeatedly remeasured after the pair of 24 November 1987 earthquakes to monitor the growing surface displacement. Changes in the dimensions of the quadrilaterals are recalculated to right-lateral and extensional components at millimeter resolution, and vertical components of change are resolved at 0.2mm precision. The displacement component data for four of the seven quadrilaterals record the complete fault movement with respect to an October 1986 base. The three-dimensional motion vectors all describe nearly linear trajectories throughout the observation period, and they indicate smooth shearing on their respective fault surfaces. The inclination of the shear surfaces is generally nearly vertical, except near the south end of the Superstition Hills fault zone where two strands dip northeastward at about 70??. Surface displacement on these strands is right reverse. Another kind of deformation, superimposed on the fault displacements, has been recorded at all quadrilateral sites. It consists of a northwest-southeast contraction or component of contraction that ranged from 0 to 0.1% of the quadrilateral lengths between November 1987 and April 1988. -from Authors

  2. Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Dygert, Nick; Liang, Yan

    2015-06-01

    Mantle peridotites from ophiolites are commonly interpreted as having mid-ocean ridge (MOR) or supra-subduction zone (SSZ) affinity. Recently, an REE-in-two-pyroxene thermometer was developed (Liang et al., 2013) that has higher closure temperatures (designated as TREE) than major element based two-pyroxene thermometers for mafic and ultramafic rocks that experienced cooling. The REE-in-two-pyroxene thermometer has the potential to extract meaningful cooling rates from ophiolitic peridotites and thus shed new light on the thermal history of the different tectonic regimes. We calculated TREE for available literature data from abyssal peridotites, subcontinental (SC) peridotites, and ophiolites around the world (Alps, Coast Range, Corsica, New Caledonia, Oman, Othris, Puerto Rico, Russia, and Turkey), and augmented the data with new measurements for peridotites from the Trinity and Josephine ophiolites and the Mariana trench. TREE are compared to major element based thermometers, including the two-pyroxene thermometer of Brey and Köhler (1990) (TBKN). Samples with SC affinity have TREE and TBKN in good agreement. Samples with MOR and SSZ affinity have near-solidus TREE but TBKN hundreds of degrees lower. Closure temperatures for REE and Fe-Mg in pyroxenes were calculated to compare cooling rates among abyssal peridotites, MOR ophiolites, and SSZ ophiolites. Abyssal peridotites appear to cool more rapidly than peridotites from most ophiolites. On average, SSZ ophiolites have lower closure temperatures than abyssal peridotites and many ophiolites with MOR affinity. We propose that these lower temperatures can be attributed to the residence time in the cooling oceanic lithosphere prior to obduction. MOR ophiolites define a continuum spanning cooling rates from SSZ ophiolites to abyssal peridotites. Consistent high closure temperatures for abyssal peridotites and the Oman and Corsica ophiolites suggests hydrothermal circulation and/or rapid cooling events (e.g., normal

  3. 3D Numerical Models of the Effect of Diking on the Faulting Pattern at Incipient Continental Rifts and Steady-State Spreading Centers

    NASA Astrophysics Data System (ADS)

    Tian, X.; Choi, E.; Buck, W. R.

    2015-12-01

    The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in

  4. Abyssal seafloor waste isolation: the concept

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Young, David K.; Sawyer, William B.; Wright, Thomas D.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and university participation, conducted an assessment of the concept of isolating certain wastes (i.e., sewage sludge, fly ash from municipal incinerators, and contaminated dredged material) on the oceans' abyssal seafloor. In this assessment the advantages, disadvantages, and economic and environmental viability of potential engineering methods for achieving abyssal waste isolation were identified and compared. This paper presents background to the Abyssal Plains Waste Isolation (APWI) Project, describes the characteristics of the waste streams and quantities potentially available for disposal via the abyssal isolation concept, summarizes regulations affecting use of the abyssal seafloor for disposal of wastes, and introduces the technical and scientific premises underlying implementation of the concept.

  5. Accelerating slip rates on the puente hills blind thrust fault system beneath metropolitan Los Angeles, California, USA

    USGS Publications Warehouse

    Bergen, Kristian J.; Shaw, John H.; Leon, Lorraine A.; Dolan, James F.; Pratt, Thomas L.; Ponti, Daniel J.; Morrow, Eric; Barrera, Wendy; Rhodes, Edward J.; Murari, Madhav K.; Owen, Lewis A.

    2017-01-01

    Slip rates represent the average displacement across a fault over time and are essential to estimating earthquake recurrence for proba-bilistic seismic hazard assessments. We demonstrate that the slip rate on the western segment of the Puente Hills blind thrust fault system, which is beneath downtown Los Angeles, California (USA), has accel-erated from ~0.22 mm/yr in the late Pleistocene to ~1.33 mm/yr in the Holocene. Our analysis is based on syntectonic strata derived from the Los Angeles River, which has continuously buried a fold scarp above the blind thrust. Slip on the fault beneath our field site began during the late-middle Pleistocene and progressively increased into the Holocene. This increase in rate implies that the magnitudes and/or the frequency of earthquakes on this fault segment have increased over time. This challenges the characteristic earthquake model and presents an evolving and potentially increasing seismic hazard to metropolitan Los Angeles.

  6. Morphogenesis of the SW Balearic continental slope and adjacent abyssal plain, Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Accettella, Daniela; Costa, Sergio; Lastras, Galderic; Acosta, Juan; Canals, Miquel; Wardell, Nigel

    2009-06-01

    We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW-NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW-ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in

  7. 3D Model of the McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15º eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.

  8. High-Resolution Seismic Reflection Profiling Across the Black Hills Fault, Clark County, Nevada: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zaragoza, S. A.; Snelson, C. M.; Jernsletten, J. A.; Saldana, S. C.; Hirsch, A.; McEwan, D.

    2005-12-01

    The Black Hills fault (BHF) is located in the central Basin and Range Province of western North America, a region that has undergone significant Cenozoic extension. The BHF is an east-dipping normal fault that forms the northwestern structural boundary of the Eldorado basin and lies ~20 km southeast of Las Vegas, Nevada. A recent trench study indicated that the fault offsets Holocene strata, and is capable of producing Mw 6.4-6.8 earthquakes. These estimates indicate a subsurface rupture length at least 10 km greater than the length of the scarp. This poses a significant hazard to structures such as the nearby Hoover Dam Bypass Bridge, which is being built to withstand a Mw 6.2-7.0 earthquake on local faults. If the BHF does continue in the subsurface, this structure, as well as nearby communities (Las Vegas, Boulder City, and Henderson), may not be as safe as previously expected. Previous attempts to image the fault with shallow seismics (hammer source) were inconclusive. However, gravity studies imply that the fault continues south of the scarp. Therefore, a new experiment utilizing high-resolution seismic reflection was performed to image subsurface geologic structures south of the scarp. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. This produced two 300 m reflection profiles, with a maximum depth of 500-600 m. A preliminary look at these data indicates the existence of two faults, potentially confirming that the BHF continues in the subsurface south of the scarp.

  9. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    USGS Publications Warehouse

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  10. Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite

    NASA Technical Reports Server (NTRS)

    Smith, Susan E.; Elthon, Don

    1988-01-01

    Mineral compositions of residual and cumulate rocks from the Lewis Hills massif of the Bay of Islands ophiolite complex are reported and interpreted in the context of magnetic processes involved in the geochemical evolution of spatially associated diabase dikes. The mineral compositions reflect greater degrees of partial melting than most abyssal peridotites do and appear to represent the most depleted end of abyssal peridotite compositions. Subsolidus equilibration between Cr-Al spinal and olivine generally has occurred at temperatures of 700 to 900 C. The spinel variations agree with the overall fractionation of basaltic magmas producing spinels with progressively lower Cr numbers. The compositions of clinopyroxenes suggest that the fractionation of two different magma series produced the various cumulate rocks.

  11. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake

    NASA Astrophysics Data System (ADS)

    Donnellan, Andrea; Parker, Jay; Hensley, Scott; Pierce, Marlon; Wang, Jun; Rundle, John

    2014-03-01

    4 April 2010 M 7.2 El Mayor-Cucapah earthquake that occurred in Baja California, Mexico and terminated near the U.S. Mexican border caused slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults. The pattern of slip was observed using radar interferometry from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument collected on 20-21 October 2009 and 12-13 April 2010. Right-lateral slip of 36 ± 9 and 14 ± 2 mm occurred on the Imperial and Superstition Hills Faults, respectively. Left-lateral slip of 9 ± 2 mm occurred on the East Elmore Ranch Fault. The widths of the zones of displacement increase northward suggesting successively more buried fault motion to the north. The observations show a decreasing pattern of slip northward on a series of faults in the Salton Trough stepping between the El Mayor-Cucapah rupture and San Andreas Fault. Most of the motion occurred at the time of the M 7.2 earthquake and the UAVSAR observations are consistent with field, creepmeter, GPS, and Envisat observations. An additional 28 ± 1 mm of slip at the southern end of the Imperial Fault over a <1 km wide zone was observed over a 1 day span a week after the earthquake suggesting that the fault continued to slip at depth following the mainshock. The total moment release on the three faults is 2.3 × 1023-1.2 × 1024 dyne cm equivalent to a moment magnitude release of 4.9-5.3, assuming shallow slip depths ranging from 1 to 5 km.

  12. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply

    NASA Astrophysics Data System (ADS)

    Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel

    2016-04-01

    Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.

  13. Geothermal influences on the abyssal ocean

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and

  14. Magnetotelluric study to characterize Kachchh Mainland Fault (KMF) and Katrol Hill Fault (KHF) in the western part of Kachchh region of Gujarat, India

    NASA Astrophysics Data System (ADS)

    Mohan, Kapil; Chaudhary, Peush; Patel, Pruthul; Chaudhary, B. S.; Chopra, Sumer

    2018-02-01

    The Kachchh Mainland Fault (KMF) is a major E-W trending fault in the Kachchh region of Gujarat extending >150 km from Lakhpat village in the west to the Bhachau town in the east. The Katrol Hill Fault (KHF) is an E-W trending intrabasinal fault located in the central region of Kachchh Basin and the south of KMF. The western parts of both of the faults are characterized, and the sediment thickness has been estimated in the region using a Magnetotelluric (MT) survey at 17 sites along a 55 km long north-south profile with a site spacing of 2-3 km. The analysis reveals that the maximum sediment thickness is 2.3 km (Quaternary, Tertiary, and Mesozoic) in the region, out of which, the Mesozoic sediments feature a maximum thickness of 2 km. The estimated sediment thickness is found consistent with the thickness suggested by a deep borehole (depth approx. 2.5 km) drilled by Oil and Natural Gas Corporation (ONGC) at Nirona (Northern part of the study area). From 2-D inversion of the MT data, three conductive zones are identified from north to south. The first conductive zone is dipping nearly vertical down to 7-8 km depth. It becomes north-dipping below 8 km depth and is inferred as KMF. The second conductive zone is found steeply dipping into the southern limbs near Manjal village (28 km south of Nirona), which is inferred as the KHF. A vertical-dipping (down to 20 km depth) conductive zone has also been observed near Ulat village, located 16 km north of Manjal village and 12 km south of Nirona village. This conductive zone becomes listric north-dipping beyond 20 km depth. It is reported first time by a Geophysical survey in the region.

  15. Geologic map of the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    John, David A.; du Bray, Edward A.; Box, Stephen E.; Vikre, Peter G.; Rytuba, James J.; Fleck, Robert J.; Moring, Barry C.

    2015-01-01

    The Bodie Hills covers about 1,200 km2 straddling the California-Nevada state boundary just north of Mono Lake in the western part of the Basin and Range Province, about 20 km east of the central Sierra Nevada. The area is mostly underlain by the partly overlapping, middle to late Miocene Bodie Hills volcanic field and Pliocene to late Pleistocene Aurora volcanic field (John and others, 2012). Upper Miocene to Pliocene sedimentary deposits, mostly basin-filling sediments, gravel deposits, and fanglomerates, lap onto the west, north, and east sides of the Bodie Hills, where they cover older Miocene volcanic rocks. Quaternary surficial deposits, including extensive colluvial, fluvial, glacial, and lacustrine deposits, locally cover all older rocks. Miocene and younger rocks are tilted ≤30° in variable directions. These rocks are cut by several sets of high-angle faults that exhibit a temporal change from conjugate northeast-striking left-lateral and north-striking right-lateral oblique-slip faults in rocks older than about 9 Ma to north- and northwest-striking dip-slip faults in late Miocene rocks. The youngest faults are north-striking normal and northeast-striking left-lateral oblique-slip faults that cut Pliocene-Pleistocene rocks. Numerous hydrothermal systems were active during Miocene magmatism and formed extensive zones of hydrothermally altered rocks and several large mineral deposits, including gold- and silver-rich veins in the Bodie and Aurora mining districts (Vikre and others, in press).

  16. Evolving transpressional strain fields along the San Andreas fault in southern California: implications for fault branching, fault dip segmentation and strain partitioning

    NASA Astrophysics Data System (ADS)

    Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil

    2014-05-01

    The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding

  17. New sidescan sonar and gravity evidence that the Nova-Canton Trough is a fracture zone

    NASA Astrophysics Data System (ADS)

    Joseph, Devorah; Taylor, Brian; Shor, Alexander N.

    1992-05-01

    A 1990 sidescan sonar survey in the eastern region of the Nova-Canton Trough mapped 138°-striking abyssal-hill fabric trending into 70°-striking trough structures. The location and angle of intersection of the abyssal hills with the eastern Nova-Canton Trough effectively disprove a spreading-center origin of this feature. Free-air gravity anomalies derived from satellite altimetry data show continuity, across the Line Islands, of the Nova-Canton Trough with the Clipperton Fracture Zone. The Canton-Clipperton trend is copolar, about a pole at 30°S, 152°W, with other coeval Pacific-Farallon fracture-zone segments, from the Pau to Marquesas fracture zones. This copolarity leads us to postulate a Pacific-Farallon spreading pattern for the magnetic quiet zone region north and east of the Manihiki Plateau, with the Nova-Canton Trough originating as a transform fault in this system.

  18. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998

  19. The West Beverly Hills Lineament and Beverly Hills High School: Ethical Issues in Geo-Hazard Communication

    NASA Astrophysics Data System (ADS)

    Gath, Eldon; Gonzalez, Tania; Roe, Joe; Buchiarelli, Philip; Kenny, Miles

    2014-05-01

    Results of geotechnical studies for the Westside Subway were disclosed in a public hearing on Oct. 19, 2011, showing new "active faults" of the Santa Monica fault and the West Beverly Hills Lineament (WBHL), identified as a northern extension of the Newport-Inglewood fault. Presentations made spoke of the danger posed by these faults, the possibility of killing people, and how it was good news that these faults had been discovered now instead of later. The presentations were live and are now memorialized as YouTube videos, (http://www.youtube.com/watch?v=Omx2BTIpzAk and others). No faults had been physically exposed or observed by the study; the faults were all interpreted from cone penetrometer probes, supplemented by core borings and geophysical transects. Several of the WBHL faults traversed buildings of the Beverly Hills High School (BHHS), triggering the school district to geologically map and characterize these faults for future planning efforts, and to quantify risk to the students in the 1920's high school building. 5 exploratory trenches were excavated within the high school property, 12 cone penetrometers were pushed, and 26-cored borings were drilled. Geologic logging of the trenches and borings and interpretation of the CPT data failed to confirm the presence of the mapped WBHL faults, instead showing an unfaulted, 3° NE dipping sequence of mid-Pleistocene alluvial fan deposits conformably overlying an ~1 Ma marine sand. Using 14C, OSL, and soil pedology for stratigraphic dating, the BHHS site was cleared from fault rupture hazards and the WBHL was shown to be an erosional margin of Benedict Canyon, partially buttressed by 40-200 ka alluvial deposits from Benedict Wash. The consequence of the Westside Subway's active fault maps has been the unexpected expenditure of millions of dollars for emergency fault investigations at BHHS and several other private properties within a densely developed urban highrise environment. None of these studies have found

  20. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California

    NASA Astrophysics Data System (ADS)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.

    2017-11-01

    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin

  1. Global variations in abyssal peridotite compositions

    NASA Astrophysics Data System (ADS)

    Warren, Jessica M.

    2016-04-01

    Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, 10% of abyssal peridotites are refractory (0% clinopyroxene

  2. Geology of a Stable Intraplate Region: The Cape Verde/Canary Basin,

    DTIC Science & Technology

    1982-03-01

    reflection records indicate a possible Eocene age up- lifting. Extensive island volcanism and sill and dike emplacement occurred during Miocene. Many abyssal...hills and small scale faults are related to this Miocene tectonic phase. Island volcanism has a con- tinuing influence on the sedimentary sections. The...Plate is capable of generating zones of weak- nesses. These weakness zones could be expected to localize island volcanism , create north/south-trending

  3. Effect of bend faulting on the hydration state of oceanic crust: Electromagnetic constraints from the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2017-12-01

    In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward

  4. South Virgin-White Hills detachment fault system of SE Nevada and NW Arizona: Applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Paul G.; Duebendorfer, Ernest M.; Faulds, James E.; O'Sullivan, Paul

    2009-04-01

    The South Virgin-White Hills detachment (SVWHD) in the central Basin and Range province with an along-strike extent of ˜60 km is a major continental detachment fault system. Displacement on the SVWHD decreases north to south from ˜17 to <6 km. This is accompanied by a change in fault and footwall rock type from mylonite overprinted by cataclasite to chlorite cataclasite and then fault breccia reflecting decreasing fault displacement and footwall exhumation. Apatite fission track (AFT) thermochronology was applied both along-strike and across-strike to assess this displacement gradient. The overall thermal history reflects Laramide cooling (˜75 Ma) and then rapid cooling beginning in the late early Miocene. Age patterns reflect some complexity but extension along the SVWHD appears synchronous with rapid cooling initiated at ˜17 Ma due to tectonic exhumation. Slip rate is more rapid (˜8.6 km/Ma) in the north compared to ˜1 km/Ma in the south. The displacement gradient results from penecontemporaneous along-strike motion and formation of the SVWHD by linkage of originally separate fault segments that have differential displacements and hence differential slip rates. East-west transverse structures likely play a role in linkage of different fault segments. The preextension paleogeothermal gradient is well constrained in the Gold Butte block as 18-20°C/km. We present a new thermochronologic approach to constrain fault dip during slip, treating the vertical exhumation rate and the slip as vectors, with the angle between them used to constrain fault dip during slip through the closure temperature of a particular thermochronometer. AFT data from the western rim of the Colorado Plateau constrain the initiation of timing of cooling associated with the Laramide Orogeny at ˜75 Ma, and a reheating event in the late Eocene/early Oligocene associated with burial by sediments ("rim gravels") most likely shed from the Kingman High to the west of the plateau.

  5. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.

    2001-01-01

    The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.

  6. The Laurentian Fan: Sohm Abyssal Plain

    USGS Publications Warehouse

    Piper, D.J.W.; Stow, D.A.V.; Normark, W.R.

    1984-01-01

    The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees. ?? 1984 Springer-Verlag New York Inc.

  7. Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test

    PubMed Central

    Hardy, Sarah M.; Smith, Craig R.; Thurnherr, Andreas M.

    2015-01-01

    Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686

  8. New Marine Heat Flow measurements at the Costa Rica Rift, Panama Basin

    NASA Astrophysics Data System (ADS)

    Harris, R. N.; Kolandaivelu, K. P.; Gregory, E. P. M.; Alshafai, R.; Lowell, R. P.; Hobbs, R. W.

    2016-12-01

    We report new heat flow measurements collected along the southern flank of the Costa Rica ridge. This ridge flank has been the site of numerous seismic, heat flow, and ocean drilling experiments and has become an important type location for investigations of off-axis hydrothermal processes. These data were collected as part of an interdisciplinary NERC and NSF-funded collaboration entitled: Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR), to better understand links between crustal evolution, hydrothermal heat loss and the impact of this heat loss and fluid mass discharge on deep ocean circulation. The heat flow measurements are collocated with a newly acquired high-resolution seismic profile collected using a GI-gun source to image the sedimentary and upper crustal section. The profile is tied to ODP Hole 504B and provides robust estimates of the sediment thickness as well as its internal structure. In total five heat flow stations consisting of 67 new heat flow measurements were made, spanning crustal ages between 1.3 and 5.4 Myr. The full spreading rate of 66 mm/yr gives rise to abyssal hill basement relief between 500 and 250 m. Sediment cover is relatively incomplete in this region and varies between 0 and 290 m. The majority of heat flow values fall below half-space cooling models indicating that significant amounts of heat are removed by hydrothermal circulation. Low heat flow values are observed in sediment ponds between abyssal hill relief and high values are generally associated with ridge-ward dipping faults bounding abyssal hills. These faults are likely high permeability pathways where heated fluids are discharging, providing an example where large-scale faulting and block rotation plays a major role in ventilated ridge flank fluid circulation. The heat flow fraction (qobs/qpred) varies between varies between 0.01 and 4.1 and has a mean of 0.3 indicating that on average 70

  9. Age and paragenesis of mineralisation at Coronation Hill uranium deposit, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Orth, Karin; Meffre, Sebastien; Davidson, Garry

    2014-06-01

    Coronation Hill is a U + Au + platinum group elements deposit in the South Alligator Valley (SAV) field in northern Australia, south of the better known unconformity-style U East Alligator Rivers (EAR) field. The SAV field differs from the EAR by having a more complex basin-basement architecture. A volcanically active fault trough (Jawoyn Sub-basin) developed on older basement and then was disrupted by renewed faulting, before being buried beneath regional McArthur Basin sandstones that are also the main hanging wall to the EAR deposits. Primary mineralisation at Coronation Hill formed at 1607 ± 26 Ma (rather than 600-900 Ma as previously thought), and so it is likely that the SAV was part of a single west McArthur Basin dilational event. Most ore is hosted in sub-vertical faults and breccias in the competent volcanic cover sequence. This favoured fluid mixing, acid buffering (forming illite) and oxidation of Fe2+ and reduced C-rich assemblages as important uranium depositional mechanisms. However, reduction of U in fractured older pyrite (Pb model age of 1833 ± 67 Ma) is an important trap in diorite. Some primary ore was remobilised at 675 ± 21 Ma to form coarse uraninite + Ni-Co pyrite networks containing radiogenic Pb. Coronation Hill is polymetallic, and in this respect resembles the `egress'-style U deposits in the Athabascan Basin (Canada). However, these are all cover-hosted. A hypothesis for further testing is that Coronation Hill is also egress-style, with ores formed by fluids rising through basement-hosted fault networks (U reduction by diorite pyrite and carbonaceous shale), and into veins and breccias in the overlying Jawoyn Sub-basin volcano-sedimentary succession.

  10. Abyssal Upwelling in Mid-Ocean Ridge Fracture Zones

    NASA Astrophysics Data System (ADS)

    Clément, Louis; Thurnherr, Andreas M.

    2018-03-01

    Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.

  11. New slip rate estimates for the Mission Creek strand of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Blisniuk, K.; Scharer, K. M.; Sharp, W. D.; Burgmann, R.; Rymer, M. J.; Williams, P. L.

    2013-12-01

    The potential for a large-magnitude earthquake (Mw ≥ 6.7) on the southern San Andreas fault zone (SAFZ) is generally considered high (Working Group on California Earthquake Probabilities, 2007). However, the proportion of slip accommodated by each of its three major fault strands (Mission Creek, Banning, and Garnet Hill, from north to south) in the Indio Hills is poorly constrained. Each of these strands cut through San Gorgonio Pass west to the Los Angeles metropolitan region. To better assess the relative importance of these faults and their potential for a major earthquake, we dated offsets at two sites on the Mission Creek fault in the central Indio Hills, an offset channel at Pushawalla Canyon and an offset debris cone at a small unnamed canyon located ~1.5 km farther southeast. Previous work on this strand at Biskra Palms, in the southern Indio Hills, demonstrated a slip rate between 12 and 22 mm/yr, with a preferred rate of 14-17 mm/yr (Behr et al., GSAB, 2010). It is generally assumed that the slip rate on the Mission Creek fault decreases northwestwards from Biskra Palms (e.g. Fumal et al., BSSA, 2002) towards these two sites in the central Indio Hills. However, our initial results from uranium-series dating of pedogenic carbonate and 10Be cosmogenic exposure dating of surface clasts from deposits offset 1.3-1.6 km since ~70 ka and 44-50 m since ~2.5 ka indicate that during the late Pleistocene and Holocene slip on the Mission Creek fault in the central Indio Hills has occurred at a relatively constant and unexpectedly high rate of ~20 mm/yr. Combined with published paleoseismic studies for the Mission Creek fault, which show an average earthquake recurrence interval of 225 years for the past 5 events since 900 AD (Fumal et al., 2002), these data imply an average slip-per-event of ~4.5 m. The last earthquake to rupture this section of the Mission Creek fault occurred over 300 years ago (ca. 1690), which indicates that ca. 5.0 to 7.5 m of strain may have

  12. Shallow seismic reflection profiles and geological structure in the Benton Hills, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Hoffman, D.; Stephenson, W.J.; Odum, J.K.; Williams, R.A.

    1997-01-01

    During late May and early June of 1993, we conducted two shallow, high-resolution seismic reflection surveys (Mini-Sosie method) across the southern escarpment of the Benton Hills segment of Crowleys Ridge. The reflection profiles imaged numerous post-late Cretaceous faults and folds. We believe these faults may represent a significant earthquake source zone. The stratigraphy of the Benton Hills consists of a thin, less than about 130 m, sequence of mostly unconsolidated Cretaceous, Tertiary and Quaternary sediments which unconformably overlie a much thicker section of Paleozoic carbonate rocks. The survey did not resolve reflectors within the upper 75-100 ms of two-way travel time (about 60-100 m), which would include all of the Tertiary and Quaternary and most of the Cretaceous. However, the Paleozoic-Cretaceous unconformity (Pz) produced an excellent reflection, and, locally a shallower reflector within the Cretaceous (K) was resolved. No coherent reflections below about 200 ms of two-way travel time were identified. Numerous faults and folds, which clearly offset the Paleozoic-Cretaceous unconformity reflector, were imaged on both seismic reflection profiles. Many structures imaged by the reflection data are coincident with the surface mapped locations of faults within the Cretaceous and Tertiary succession. Two locations show important structures that are clearly complex fault zones. The English Hill fault zone, striking N30??-35??E, is present along Line 1 and is important because earlier workers indicated it has Pleistocene Loess faulted against Eocene sands. The Commerce fault zone striking N50??E, overlies a major regional basement geophysical lineament, and is present on both seismic lines at the southern margin of the escarpment. The fault zones imaged by these surveys are 30 km from the area of intense microseismicity in the New Madrid seismic zone (NMSZ). If these are northeast and north-northeast oriented fault zones like those at Thebes Gap they are

  13. Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, P

    2001-10-01

    A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreasmore » Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases

  14. High-resolution image of Calaveras fault seismicity

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Beroza, G.C.; Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ~92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13 from the fault normal, supporting previous interpretations that this fault is weak.

  15. Engineering concepts for the placement of wastes on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management

  16. Late Quaternary Surface Displacement Across a Normal-Fault Structural Boundary on the Northern Lost River Fault Zone (Idaho, USA)

    NASA Astrophysics Data System (ADS)

    DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.

    2017-12-01

    In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have

  17. Determining the origin of enigmatic bedrock structures using apatite (U-Th)/He thermochronology: Alabama and Poverty Hills, Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Ali, G. A.; Reiners, P. W.; Ducea, M.

    2008-12-01

    The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down

  18. Biogeochemical evidence of vigorous mixing in the abyssal ocean

    NASA Astrophysics Data System (ADS)

    Lampitt, Richard S.; Popova, Ekaterina E.; Tyrrell, Toby

    2003-05-01

    The metabolic activities of biological communities living at the abyssal seabed create a strong source of nutrients and a sink for oxygen. If the published estimates of vertical mixing based on instantaneous microstructure measurements are correct, near to the abyssal seabed away from rough topographic features there should be enhanced concentrations of nitrate and phosphate and depletion of oxygen. Recent data on the vertical concentration profiles of inorganic nutrients and oxygen over the bottom 1000 m of the water column (World Ocean Circulation Experiment - WOCE) provide no such evidence. It is concluded that the effective vertical mixing rates are much more vigorous than previously indicated and may even be higher than estimates of average basin scale rates based on temperature and salinity distributions. We propose that the enhanced mixing associated with rough topography influences the entire volume of the abyssal ocean on short time scales (e.g., one month - one year).

  19. Abyssal BEnthic Laboratory (ABEL): a novel approach for long-term investigation at abyssal depths

    NASA Astrophysics Data System (ADS)

    Berta, M.; Gasparoni, F.; Capobianco, M.

    1995-03-01

    This study assesses the feasibility of a configuration for a benthic underwater system, called ABEL (Abyssal BEnthic Laboratory), capable of operating both under controlled and autonomous modes for periods of several months to over one year at abyssal depths up to 6000 m. A network of stations, capable of different configurations, has been identified as satisfying the widest range of scientific expectations, and at the same time to address the technological challenge to increase the feasibility of scientific investigations, even when the need is not yet well specified. The overall system consists of a central Benthic Investigation Laboratory, devoted to the execution of the most complex scientific activities, with fixed Satellite Stations acting as nodes of a measuring network and a Mobile Station extending ABEL capabilities with the possibility to carry out surveys over the investigation area and interventions on the fixed stations. ABEL architecture also includes a dedicated deployment and recovery module, as well as sea-surface and land-based facilities. Such an installation constitutes the sea-floor equivalent of a meteorological or geophysical laboratory. Attention has been paid to selecting investigation tools supporting the ABEL system to carry out its mission with high operativity and minimal risk and environmental impact. This demands technologies to enable presence and operation at abyssal depths for the required period of time. Presence can be guaranteed by proper choice of power supply and communication systems. Operations require visual and manipulative capabilities, as well as deployment and retrieval capabilities. Advanced control system architectures must be considered, along with knowledge based approaches, to comply with the requirements for autonomous control. The results of this investigation demonstrate the feasibility of the ABEL concept and the pre-dimensioning of its main components.

  20. The Ocean's Abyssal Mass Flux Sustained Primarily By the Wind: Vector Correlation of Time Series in Upper and Abyssal Layers

    NASA Astrophysics Data System (ADS)

    Hancock, L. O.

    2003-12-01

    As Wunsch has recently noted (2002), use of the term "thermohaline circulation" is muddled. The term is used with at least seven inconsistent meanings, among them abyssal circulation, the circulation driven by density and pressure differences in the deep ocean, the global conveyor, and at least four others. The use of a single term for all these concepts can create an impression that an understanding exists whereby in various combinations the seven meanings have been demonstrated to mean the same thing. But that is not the case. A particularly important consequence of the muddle is the way in which abyssal circulation is sometimes taken to be driven mostly or entirely by temperature and density differences, and equivalent to the global conveyor. But in fact the distinction between abyssal and upper-layer circulation has not been measured. To find out whether available data justifies a distinction between the upper-layer and abyssal circulations, this study surveyed velocity time series obtained by deep current meter moorings. Altogether, 114 moorings were identified, drawn from about three dozen experiments worldwide over the period 1973-1996, each of which deployed current meters in both the upper (200abyssal (z>3750) layers. For each pair of current meters, the Kundu and Crosby measures of vector correlation were estimated, as well as coherences for periods from 10 to 60 days. In the North Atlantic, for example, Kundu vector correlation (50-day window): 0.48 +/- .03 Crosby vector correlation (absolute value, 50 day window): 0.46 +/- .07 Coherence at 60 days: .36 +/- .07 - at 30 days: 0.40 +/- .06 - at 10 days: 0.22 +/- .05 Most figures for the South Atlantic, Pacific and Southern Oceans are similar. Those obtained in the Indian Ocean or near the Equator are somewhat different. The statistics obtained here are consistent with the work of Wunsch (1997), and tend to confirm Wunsch's result that current velocities at depth are linked with those in the

  1. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    USGS Publications Warehouse

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  2. Deformation and Quaternary Faulting in Southeast Missouri across the Commerce Geophysical Lineament

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Pratt, T.L.; Harrison, R.W.; Hoffman, D.

    1999-01-01

    High-resolution seismic-reflection data acquired at three sites along the surface projection of the Commerce geophysical lineament in southeast Missouri reveal a complex history of post-Cretaceous faulting that has continued into the Quaternary. Near Qulin, Missouri, approximately 20 m of apparent vertical fault displacement has occurred in the Quaternary. Reflection data collected at Idalia Hill, about 45 km to the northeast, reveal a series of reverse and possibly right-lateral strike-slip faults with Quaternary displacement. In the Benton Hills, 45 km northeast of Idalia Hill, seismic data image a complicated series of anticlinal and synclinal fault-bounded blocks immediately north of the Commerce fault. We infer that most of the deformation imaged in the upper 400 m of these three data sets occurred since post-Cretaceous time, and a significant portion of it occurred during Quaternary time. Collectively, these seismic data along with geomorphic and surface-geologic evidence suggest (1) the existence of at least one potential seismogenic structure in southeastern Missouri outside the main zones of New Madrid seismicity, and (2) these structures have been active during the Quaternary. The geographic location of the imaged deformation suggests it is related to structures along with the Commerce geophysical lineament.

  3. The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain)

    NASA Astrophysics Data System (ADS)

    Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.

    2018-06-01

    The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.

  4. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  5. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  6. The regional structural setting of the 2008 Wells earthquake and Town Creek Flat Basin: implications for the Wells earthquake fault and adjacent structures

    USGS Publications Warehouse

    Henry, Christopher S.; Colgan, Joseph P.

    2011-01-01

    The 2008 Wells earthquake occurred on a northeast-striking, southeast-dipping fault that is clearly delineated by the aftershock swarm to a depth of 10-12 km below sea level. However, Cenozoic rocks and structures around Wells primarily record east-west extension along north- to north-northeast-striking, west-dipping normal faults that formed during the middle Miocene. These faults are responsible for the strong eastward tilt of most basins and ranges in the area, including the Town Creek Flat basin (the location of the earthquake) and the adjacent Snake Mountains and western Windermere Hills. These older west-dipping faults are locally overprinted by a younger generation of east-dipping, high-angle normal faults that formed as early as the late Miocene and have remained active into the Quaternary. The most prominent of these east-dipping faults is the set of en-échelon, north-striking faults that bounds the east sides of the Ruby Mountains, East Humboldt Range, and Clover Hill (about 5 km southwest of Wells). The northeastern-most of these faults, the Clover Hill fault, projects northward along strike toward the Snake Mountains and the approximately located surface projection of the Wells earthquake fault as defined by aftershock locations. The Clover Hill fault also projects toward a previously unrecognized, east-facing Quaternary fault scarp and line of springs that appear to mark a significant east-dipping normal fault along the western edge of Town Creek Flat. Both western and eastern projections may be northern continuations of the Clover Hill fault. The Wells earthquake occurred along this east-dipping fault system. Two possible alternatives to rupture of a northern continuation of the Clover Hill fault are that the earthquake fault (1) is antithetic to an active west-dipping fault or (2) reactivated a Mesozoic thrust fault that dips east as a result of tilting by the west-dipping faults along the west side of the Snake Mountains. Both alternatives are

  7. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  8. Geologic map of the northern White Hills, Mohave County, Arizona

    USGS Publications Warehouse

    Howard, Keith A.; Priest, Susan S.; Lundstrom, Scott C.; Block, Debra L.

    2017-07-10

    IntroductionThe northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located

  9. Abyssal ocean overturning shaped by seafloor distribution.

    PubMed

    de Lavergne, C; Madec, G; Roquet, F; Holmes, R M; McDougall, T J

    2017-11-08

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows-referred to as the abyssal overturning circulation-is key to quantifying the ocean's ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  10. Abyssal ocean overturning shaped by seafloor distribution

    NASA Astrophysics Data System (ADS)

    de Lavergne, C.; Madec, G.; Roquet, F.; Holmes, R. M.; McDougall, T. J.

    2017-11-01

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  11. New insights into the abyssal sponge fauna of the Kurile-Kamchatka plain and Trench region (Northwest Pacific)

    NASA Astrophysics Data System (ADS)

    Downey, Rachel V.; Janussen, Dorte

    2015-01-01

    The under-explored abyssal depths of the Kurile-Kamchatka region have been re-examined during the KuramBio (Kurile-Kamchatka Biodiversity Study) expedition. Combining new KuramBio data with previous expedition data in this region has enhanced our understanding abyssal sponge fauna, in particular, the patchiness, rarity, and exceptional richness of the Cladorhizidae family. In total, 14 sponge species, from 7 genera, in 5 families, within two classes (Demospongiae and Hexactinellida) were collected. Of the 14 species, 29% (4 spp.) have been found previously in this region, 36% (5 spp.) were new to the regional abyssal fauna, and 21% (3 spp.) were new to science. The number of abyssal species in this region has now been increased by 26% (8 spp.) and genera by nearly 15% (2 genera). Rarity is a prominent feature of this abyssal fauna, with more than half of species only found at one station, and 83% (19 spp.) of species found previously in this region were not re-found during KuramBio. Cladorhizid sponges dominate demosponge species and genera richness in the abyssal Kurile-Kamchatka region; accounting for 87% (20 spp.) of all demosponge species, and accounting for over 60% (5 genera) of all demosponge genera. Sponge richness in this region is potentially aided by the productivity of the ocean waters, the geological age of the Pacific Ocean, low population densities, and the varied topographic features (ridges, trenches, and seamounts) found in this region. Unusually, the dominance of demosponges in the Kurile-Kamchatka sponge faunal composition is not replicated in other well-sampled abyssal regions, which tend to be richer in deep-sea hexactinellid fauna. Broad depth, latitudinal and longitudinal ranges in Kurile-Kamchatka abyssal fauna are a key characteristic of this faunal assemblage. Strong abyssal faunal connectivity is found between the Kurile-Kamchatka region and North Pacific abyssal fauna, with weaker faunal connections found with the adjacent semi

  12. Neogene Fault and Feeder Dike Patterns in the Western Ross Sea

    NASA Astrophysics Data System (ADS)

    Magee, W. R.; Wilson, T. J.

    2010-12-01

    In Antarctica, where much of the continent is covered by water and ice, geophysical data from the Antarctic submarine continental shelf is a fundamental part of reconstructing geological history. Multibeam sonar from the western Ross Sea has revealed elongate volcanic edifices and fields of elongate submarine hills on the seafloor. Origin of the submarine hills as carbonate mounds and drumlins have been proposed. The hills are up to ~8000m long and ~3500m wide, and rise 50-100m above the seafloor. Morphometric analysis of the hills shows they are elongate, with axial ratios ranging from 1.2:1 to 2:1, and some hills are linked to form elongate ridges. Seismic profiles show significant pull-ups directly below the hills, consistent with narrow, higher-density magmatic bodies; thus we favor an origin as volcanic seamounts above subsurface feeder dikes. If this volcanic hypothesis is correct, feeder dikes below the hills and elongate volcanic ridges may document magmatically-forced extension within the Terror Rift. The seamount field forms part of a regional en echelon array of volcanic ridges extending NNW from Beaufort Island toward Drygalski Ice Tongue. The ridges and elongate seamount cluster trend NNE, subparallel to mapped fault trends in this sector of the Terror Rift. This geometry is compatible with right-lateral transtension along this zone, as previously proposed for the Terror Rift as a whole. Volcanic islands and dredged volcanic ridges within the en echelon array are dated at ~7-4 Ma, implying Neogene deformation. We are completing a detailed analysis of orientation patterns and cross-cutting relations between faults and volcanic hills and their feeder systems to test this model for Neogene rift kinematics.

  13. Teaching the abyss: living the art-science of nursing.

    PubMed

    Ramey, Sandra L; Bunkers, Sandra Schmidt

    2006-10-01

    This column addresses how nurse educators can provide the teaching-learning experiences for novice nurses to develop the leadership competence to effectively practice nursing in an extremely demanding healthcare environment. The authors delve into Mitchell and Bunkers' use of the metaphor of an abyss to explore the lived experience of risking being with others in extremely intense interpersonal situations. Using reflection, students' journal narratives affirm connections made among past experiences and the new knowledge gleaned from exploring and naming the phenomenon of the abyss. Several teaching-learning strategies are offered as ways for addressing the leadership issues related to dealing with intense relational experiences in nursing practice, including exploring nurse theorist Rosemarie Rizzo Parse's essentials of leadership.

  14. Interseismic Strain Accumulation Across Metropolitan Los Angeles: Puente Hills Thrust

    NASA Astrophysics Data System (ADS)

    Argus, D.; Liu, Z.; Heflin, M. B.; Moore, A. W.; Owen, S. E.; Lundgren, P.; Drake, V. G.; Rodriguez, I. I.

    2012-12-01

    Twelve years of observation of the Southern California Integrated GPS Network (SCIGN) are tightly constraining the distribution of shortening across metropolitan Los Angeles, providing information on strain accumulation across blind thrust faults. Synthetic Aperture Radar Interferometry (InSAR) and water well records are allowing the effects of water and oil management to be distinguished. The Mojave segment of the San Andreas fault is at a 25° angle to Pacific-North America plate motion. GPS shows that NNE-SSW shortening due to this big restraining bend is fastest not immediately south of the San Andreas fault across the San Gabriel mountains, but rather 50 km south of the fault in northern metropolitan Los Angeles. The GPS results we quote next are for a NNE profile through downtown Los Angeles. Just 2 mm/yr of shortening is being taken up across the San Gabriel mountains, 40 km wide (0.05 micro strain/yr); 4 mm/yr of shortening is being taken up between the Sierra Madre fault, at the southern front of the San Gabriel mountains, and South Central Los Angeles, also 40 km wide (0.10 micro strain/yr). We find shortening to be more evenly distributed across metropolitan Los Angeles than we found before [Argus et al. 2005], though within the 95% confidence limits. An elastic models of interseismic strain accumulation is fit to the GPS observations using the Back Slip model of Savage [1983]. Rheology differences between crystalline basement and sedimentary basin rocks are incorporated using the EDGRN/EDCMP algorithm of Wang et al. [2003]. We attempt to place the Back Slip model into the context of the Elastic Subducting Plate Model of Kanda and Simons [2010]. We find, along the NNE profile through downtown, that: (1) The deep Sierra Madre Thrust cannot be slipping faster than 2 mm/yr, and (2) The Puente Hills Thrust and nearby thrust faults (such as the upper Elysian Park Thrust) are slipping at 9 ±2 mm/yr beneath a locking depth of 12 ±5 km (95% confidence limits

  15. SRTM Colored and Shaded Topography: Haro and Kas Hills, India

    NASA Image and Video Library

    2001-04-12

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake. The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an "anticline," which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant "dike," which is an igneous intrusion into older "host" rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies. In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top). http://photojournal.jpl.nasa.gov/catalog/PIA03300

  16. Upper crustal densities derived from sea floor gravity measurements: Northern Juan De Fuca Ridge

    USGS Publications Warehouse

    Holmes, Mark L.; Johnson, H. Paul

    1993-01-01

    A transect of sea floor gravity stations has been analyzed to determine upper crustal densities on the Endeavour segment of the northern Juan de Fuca Ridge. Data were obtained using ALVIN along a corridor perpendicular to the axis of spreading, over crustal ages from 0 to 800,000 years. Calculated elevation factors from the gravity data show an abrupt increase in density with age (distance) for the upper 200 m of crust. This density change is interpreted as a systematic reduction in bulk porosity of the upper crustal section, from 23% for the axial ridge to 10% for the off-axis flanking ridges. The porosity decrease is attributed to the collapse and filling of large-scale voids as the abyssal hills move out of the crustal formation zone. Forward modeling of a plausible density structure for the near-axis region agrees with the observed anomaly data only if the model includes narrow, along-strike, low-density regions adjacent to both inner and outer flanks of the abyssal hills. The required low density zones could be regions of systematic upper crustal fracturing and faulting that were mapped by submersible observers and side-scan sonar images, and whose presence was suggested by the distribution of heat flow data in the same area.

  17. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  18. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    NASA Astrophysics Data System (ADS)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  19. Loss estimates for a Puente Hills blind-thrust earthquake in Los Angeles, California

    USGS Publications Warehouse

    Field, E.H.; Seligson, H.A.; Gupta, N.; Gupta, V.; Jordan, T.H.; Campbell, K.W.

    2005-01-01

    Based on OpenSHA and HAZUS-MH, we present loss estimates for an earthquake rupture on the recently identified Puente Hills blind-thrust fault beneath Los Angeles. Given a range of possible magnitudes and ground motion models, and presuming a full fault rupture, we estimate the total economic loss to be between $82 and $252 billion. This range is not only considerably higher than a previous estimate of $69 billion, but also implies the event would be the costliest disaster in U.S. history. The analysis has also provided the following predictions: 3,000-18,000 fatalities, 142,000-735,000 displaced households, 42,000-211,000 in need of short-term public shelter, and 30,000-99,000 tons of debris generated. Finally, we show that the choice of ground motion model can be more influential than the earthquake magnitude, and that reducing this epistemic uncertainty (e.g., via model improvement and/or rejection) could reduce the uncertainty of the loss estimates by up to a factor of two. We note that a full Puente Hills fault rupture is a rare event (once every ???3,000 years), and that other seismic sources pose significant risk as well. ?? 2005, Earthquake Engineering Research Institute.

  20. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Martínez Arbizu, Pedro

    2015-01-01

    We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ

  1. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    USGS Publications Warehouse

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  2. Frictional properties of low-angle normal fault gouges and implications for low-angle normal fault slip

    NASA Astrophysics Data System (ADS)

    Haines, Samuel; Marone, Chris; Saffer, Demian

    2014-12-01

    The mechanics of slip on low-angle normal faults (LANFs) remain an enduring problem in structural geology and fault mechanics. In most cases, new faults should form rather than having slip occur on LANFs, assuming values of fault friction consistent with Byerlee's Law. We present results of laboratory measurements on the frictional properties of natural clay-rich gouges from low-angle normal faults (LANF) in the American Cordillera, from the Whipple Mts. Detachment, the Panamint range-front detachment, and the Waterman Hills detachment. These clay-rich gouges are dominated by neoformed clay minerals and are an integral part of fault zones in many LANFs, yet their frictional properties under in situ conditions remain relatively unknown. We conducted measurements under saturated and controlled pore pressure conditions at effective normal stresses ranging from 20 to 60 MPa (corresponding to depths of 0.9-2.9 km), on both powdered and intact wafers of fault rock. For the Whipple Mountains detachment, friction coefficient (μ) varies depending on clast content, with values ranging from 0.40 to 0.58 for clast-rich material, and 0.29-0.30 for clay-rich gouge. Samples from the Panamint range-front detachment were clay-rich, and exhibit friction values of 0.28 to 0.38, significantly lower than reported from previous studies on fault gouges tested under room humidity (nominally dry) conditions, including samples from the same exposure. Samples from the Waterman Hills detachment are slightly stronger, with μ ranging from 0.38 to 0.43. The neoformed gouge materials from all three localities exhibits velocity-strengthening frictional behavior under almost all of the experimental conditions we explored, with values of the friction rate parameter (a - b) ranging from -0.001 to +0.025. Clast-rich samples exhibited frictional healing (strength increases with hold time), whereas clay-rich samples do not. Our results indicate that where clay-rich neoformed gouges are present along

  3. Transpressional deformation style and AMS fabrics adjacent to the southernmost segment of the San Andreas fault, Durmid Hill, CA

    NASA Astrophysics Data System (ADS)

    French, M.; Wojtal, S. F.; Housen, B.

    2006-12-01

    In the Salton Trough, the trace of the San Andreas Fault (SAF) ends where it intersects the NNW-trending Brawley seismic zone at Durmid Hill (DH). The topographic relief of DH is a product of faulting and folding of Pleistocene Borrego Formation strata (Babcock, 1974). Burgmann's (1991) detailed mapping and analysis of the western part of DH showed that the folds and faults accommodate transpression. Key to Burgmann's work was the recognition that the ~2m thick Bishop Ash, a prominent marker horizon, has been elongated parallel to the hinges of folds and boudinaged. We are mapping in detail the eastern portion of DH, nearer to the trace of the SAF. Folds in the eastern part of DH are tighter and thrust faulting is more prominent, consistent with greater shortening magnitude oblique to the SAF. Boudinage of the ash layer again indicates elongation parallel to fold hinges and subparallel to the SAF. The Bishop Ash locally is <1m thick along fold limbs in eastern DH, suggesting that significant continuous deformation accompanied the development of map-scale features. We measured anisotropy of magnetic susceptibility (AMS) fabrics in the Bishop Ash in order to assess continuous deformation in the Ash at DH. Because the Bishop Ash at DH is altered, consisting mainly of silica glass and clay minerals, samples from DH have significantly lower magnetic susceptibilities than Bishop Ash samples from elsewhere in the Salton Trough. With such low susceptibilities, there is significant scatter in the orientation of magnetic foliation and lineation in our samples. Still, in some Bishop samples within 1 km of the SAF, magnetic foliation is consistent with fold-related flattening. Magnetic lineation in these samples is consistently sub-parallel to fold hinges, parallel to the elongation direction inferred from boudinage. Even close to the trace of the SAF, this correlation breaks down in map-scale zones where fold hinge lines change attitude, fold shapes change, and the

  4. Structure, metamorphism, and geochronology of the Cosmos Hills and Ruby Ridge, Brooks Range schist belt, Alaska

    USGS Publications Warehouse

    Christiansen, Peter B.; Snee, Lawrence W.

    1994-01-01

    The boundary of the internal zones of the Brooks Range orogenic belt (the schist belt) is a fault contact that dips toward the hinterland (the Yukon-Koyukuk province). This fault, here referred to as the Cosmos Hills fault zone, juxtaposes oceanic rocks and unmetamorphosed sedimentary rocks structurally above blueschist-to-greenschist facies metamorphic rocks of the schist belt. Near the fault contact, schist belt rocks are increasingly affected by a prominent, subhorizontal transposition foliation that is locally mylonitic in the fault zone. Structural and petrologic observations combined with 40Ar/39Ar incremental-release geochronology give evidence for a polyphase metamorphic and deformational history beginning in the Middle Jurassic and continuing until the Late Cretaceous. Our 40Ar/39Ar cooling age for Jurassic metamorphism is consistent with stratigraphic and other evidence for the onset of Brooks Range orogenesis. Jurassic metamorphism is nearly everywhere overprinted by a regional greenschist-facies event dated at 130–125 Ma. Near the contact with the Cosmos Hills fault zone, the schist belt is increasingly affected by a younger greenschist metamorphism that is texturally related to a prominent foliation that folds and transposes an older fabric. The 40Ar/39Ar results on phengite and fuchsite that define this younger fabric give recrystallization ages ranging from 103 to less than 90 Ma. We conclude that metamorphism that formed the transposition fabric peaked around 100 Ma and may have continued until well after 90 Ma. This age for greenschist metamorphism is broadly synchronous with the depositional age of locally derived, shallow-marine clastic sedimentary strata in the hanging wall of the fault zone and thus substantiates the interpretation that the fault zone accommodated extension in the Late Cretaceous. This extension unroofed and exhumed the schist belt during relative subsidence of the Yukon-Koyukuk province.

  5. GLORIA mosaic of the Gulf of Alaska and the British Columbia margin: Deep-sea channels, margin deformation, and the Queen Charlotte fault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruns, T.R.; Carlson, P.R.; Stevenson, A.J.

    1990-05-01

    GLORIA images collected from 1986 to 1989 show sea-floor morphology from the shelf break seaward to 400 km in the Gulf of Alaska and a 70-km-wide swath along British Columbia. Along the Aleutian convergent margin sediment is dominantly trapped in mid-slope basins, where few canyons reach the trench. Accretionary wedge structures range from highly discontinuous to long and continuous. The Yakutat transition margin is either extensively cut by dendritic drainages or, at sea-valley mouths, covered by glacially derived sediment. Young structures underlie the slope from Middleton Island to Pamplona Spur, but are absent from Pamplona Spur to Cross Sound. Alongmore » the southeast Alaska transform margin the Queen Charlotte fault is imaged as a narrow linear feature. The fault steps westward at Tuzo Wilson Knolls, which likely is a spreading ridge segment. Large anticlines lie seaward of and trend parallel to the fault. On the abyssal plain off the Shumagin margin inherited structural and bathymetric features trend parallel to magnetic anomalies, and trench parallel features reflect faulting as the ocean plate bends into the trench. To the north, three turbidite systems drain the margin. The Surveyor system begins between Pamplona Spur and Alsek Canyon and empties into the Aleutian Trench. The Chirikof system arises near Cross Sound and ends in turbidite fans south of the Kodiak-Bowie Seamount chain, a relic Chirikov channel that once carried sediment westward to the Aleutian Trench. The Mukluk and Horizon channels start along southeast Alaska and end 1,000 km away on the Tufts abyssal plain.« less

  6. Possible reactivation of the Vincent-Chocolate Mountains thrust in the Gavilan Hills area, southeasternmost California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OSmore » in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.« less

  7. Orogenic, Ophiolitic, and Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Bodinier, J.-L.; Godard, M.

    2003-12-01

    "Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting

  8. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply.

    PubMed

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2015-10-16

    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth. Copyright © 2015, American Association for the Advancement of Science.

  9. Reconnaissance Seismic Refraction Studies at Calico Hills, Wahmonie, and Yucca Mountain, Southwest Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Pankratz, L.W.

    1982-01-01

    Reconnaissance refraction surveys consisting off a total of 5 spreads were conducted in the Calico Hills, Wahmonie and Yucca Mountain areas, southwestern Nevada Test Site (NTS). Data from Calico Hills and Wahmonie are generally high in quality; data from Yucca Mountain are for the most part low in quality. At Calico Hills and Wahmonie, special attention was focused on the possible occurrence of a major intrusive body at depth. At Calico Hills this occurrence is supported by an inferred dome-shaped velocity interface. possibly associated with the roof of an altered phase of argillite. However, if an intrusive body is present, its top must be buried deeper than 3 km or it must be so pervasively altered that its velocity is similar to that of the calcareous argillite encountered at the bottom of drill hole DE 25a-3. At Wahmonie, the seismic data suggest the occurrence of a massive lenticular unit within 60 m of the ground surface, probably consisting of argillite but possibly consisting of intensively altered intrusive rock. At Yucca Mountain, preliminary interpretations of the most reliable data suggest the occurrence of a major, steeply inclined velocity interface 500 m from the southwest end of the Yucca C spread. This interface may represent a major fault or erosional feature separating the Topopah Spring and Tiva Canyon Members with Paintbrush Tuff at depth. This interface is 800 m east of a previously mapped fault. On the basis of poor-quality data obtained at Yucca Mountain, the subsurface velocity distribution appears to be complex. For example, one spread near drill hole UE25 a-I suggests not only a much thicker section of Tiva but also that this material is down thrown in the valley. This may suggest faulting with throws exceeding 100 meters or an equivalent erosional feature.

  10. Orphan strontium-87 in abyssal peridotites: daddy was a granite.

    PubMed

    Snow, J E; Hart, S R; Dick, H J

    1993-12-17

    The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  11. Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite

    NASA Astrophysics Data System (ADS)

    Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.

    1993-12-01

    The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  12. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Billett, D. S. M.; Bett, B. J.; Rice, A. L.; Thurston, M. H.; Galéron, J.; Sibuet, M.; Wolff, G. A.

    A radical change in the abundance of invertebrate megafauna on the Porcupine Abyssal Plain is reported over a period of 10 years (1989-1999). Actiniarians, annelids, pycnogonids, tunicates, ophiuroids and holothurians increased significantly in abundance. However, there was no significant change in wet weight biomass. Two holothurian species, Amperima rosea and Ellipinion molle, increased in abundance by more than two orders of magnitude. Samples from the Porcupine Abyssal Plain over a longer period (1977-1999) show that prior to 1996 these holothurian species were always a minor component of the megafauna. From 1996 to 1999 A. rosea was abundant over a wide area of the Porcupine Abyssal Plain indicating that the phenomenon was not a localised event. Several dominant holothurian species show a distinct trend in decreasing body size over the study period. The changes in megafauna abundance may be related to environmental forcing (food supply) rather than to localised stochastic population variations. Inter-annual variability and long-term trends in organic matter supply to the seabed may be responsible for the observed changes in abundance, species dominance and size distributions.

  13. The SCEC 3D Community Fault Model (CFM-v5): An updated and expanded fault set of oblique crustal deformation and complex fault interaction for southern California

    NASA Astrophysics Data System (ADS)

    Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.

    2014-12-01

    Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from

  14. Puente Hills blind-thrust system, Los Angeles, California

    USGS Publications Warehouse

    Shaw, J.H.; Plesch, A.; Dolan, J.F.; Pratt, T.L.; Fiore, P.

    2002-01-01

    We describe the three-dimensional geometry and Quaternary slip history of the Puente Hills blind-thrust system (PHT) using seismic reflection profiles, petroleum well data, and precisely located seismicity. The PHT generated the 1987 Whittier Narrows (moment magnitude [Mw] 6.0) earthquake and extends for more than 40 km along strike beneath the northern Los Angeles basin. The PHT comprises three, north-dipping ramp segments that are overlain by contractional fault-related folds. Based on an analysis of these folds, we produce Quaternary slip profiles along each ramp segment. The fault geometry and slip patterns indicate that segments of the PHT are related by soft-linkage boundaries, where the fault ramps are en echelon and displacements are gradually transferred from one segment to the next. Average Quaternary slip rates on the ramp segments range from 0.44 to 1.7 mm/yr, with preferred rates between 0.62 and 1.28 mm/yr. Using empirical relations among rupture area, magnitude, and coseismic displacement, we estimate the magnitude and frequency of single (Mw 6.5-6.6) and multisegment (Mw 7.1) rupture scenarios for the PHT.

  15. Environmental and bathymetric influences on abyssal bait-attending communities of the Clarion Clipperton Zone

    NASA Astrophysics Data System (ADS)

    Leitner, Astrid B.; Neuheimer, Anna B.; Donlon, Erica; Smith, Craig R.; Drazen, Jeffrey C.

    2017-07-01

    The Clarion-Clipperton Zone (CCZ) is one of the richest manganese nodule provinces in the world and has recently become a focus area for manganese nodule mining interests. However, this vast area remains poorly studied and highly undersampled. In this study, the abyssal bait-attending fauna is documented for the first time using a series of baited camera deployments in various locations across the CCZ. A bait-attending community intermediate between those typical of the California margin and Hawaii was found in the larger CCZ area, generally dominated by rattail fishes, dendrobranchiate shrimp, and zoarcid and ophidiid fishes. Additionally, the western and eastern ends of the CCZ had different communities, with the western region characterized by decreased dominance of rattails and small shrimps and increased dominance of ophidiids (especially Bassozetus sp. and Barathrites iris) and large shrimps. This trend may be related to increasing distance from the continental margin. We also test the hypothesis that bait-attending communities change across the CCZ in response to key environmental predictors, especially topography and nodule cover. Our analyses showed that higher nodule cover and elevated topography, as quantified using the benthic positioning index (BPI), increase bait-attending community diversity. Elevated topography generally had higher relative abundances, but taxa also showed differing responses to the BPI metric and bottom temperature, causing significant community compositional change over varying topography and temperatures. Larger individuals of the dominant scavenger in the CCZ, Coryphaenoides spp., were correlated with areas of higher nodule cover and with abyssal hills, suggesting these areas may be preferred habitat. Our results suggest that nodule cover is important to all levels of the benthic ecosystem and that nodule mining could have negative impacts on even the top-level predators and scavengers in the CCZ. Additionally, there is

  16. Water-rich bending faults at the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, Samer; Key, Kerry; Constable, Steven; Evans, Rob L.

    2015-09-01

    The portion of the Central American margin that encompasses Nicaragua is considered to represent an end-member system where multiple lines of evidence point to a substantial flux of subducted fluids. The seafloor spreading fabric of the incoming Cocos plate is oriented parallel to the trench such that flexural bending at the outer rise optimally reactivates a dense network of normal faults that extend several kilometers into the upper mantle. Bending faults are thought to provide fluid pathways that lead to serpentinization of the upper mantle. While geophysical anomalies detected beneath the outer rise have been interpreted as broad crustal and upper mantle hydration, no observational evidence exists to confirm that bending faults behave as fluid pathways. Here we use seafloor electromagnetic data collected across the Middle America Trench (MAT) offshore of Nicaragua to create a comprehensive electrical resistivity image that illuminates the infiltration of seawater along bending faults. We quantify porosity from the resistivity with Archie's law and find that our estimates for the abyssal plain oceanic crust are in good agreement with independent observations. As the Cocos crust traverses the outer rise, the porosity of the dikes and gabbros progressively increase from 2.7% and 0.7% to 4.8% and 1.7%, peaking within 20 km of the trench axis. We conclude that the intrusive crust subducts twice as much pore water as previously thought, significantly raising the flux of fluid to the seismogenic zone and the mantle wedge.

  17. 186Os-187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; Warren, Jessica M.

    2017-03-01

    Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history. Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ± 21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ± 20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ± 25), and 186Os

  18. Edwardsia sojabio sp. n. (Cnidaria: Anthozoa: Actiniaria: Edwardsiidae), a new abyssal sea anemone from the Sea ofJapan

    NASA Astrophysics Data System (ADS)

    Sanamyan, Nadya; Sanamyan, Karen

    2013-02-01

    The paper describes new deep-water edwardsiid sea anemone Edwardsia sojabio sp. n. which is very common on soft muddy bottoms at lower bathyal and upper abyssal depths in the Sea of Japan. It was recorded in high quantity in depths between 2545 and 3550 m and is the second abyssal species of the genus Edwardsia.

  19. Composition of abyssal macrofauna along the Vema Fracture Zone and the hadal Puerto Rico Trench, northern tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Brandt, A.; Frutos, I.; Bober, S.; Brix, S.; Brenke, N.; Guggolz, T.; Heitland, N.; Malyutina, M.; Minzlaff, U.; Riehl, T.; Schwabe, E.; Zinkann, A.-C.; Linse, K.

    2018-02-01

    We analyzed composition and variations in benthic macrofaunal communities along a transect of the entire length of the Vema-Fracture Zone on board of RV Sonne (SO-237) between December 2014 and January 2015 in order to test whether the Mid-Atlantic Ridge serves as a barrier limiting benthic taxon distribution in the abyssal basins on both sides of the ridge or whether the fracture zone permits the migration of species between the western and eastern abyssal Atlantic basins. The Puerto Rico Trench, much deeper than the surrounding abyssal West Atlantic, was sampled to determine whether the biodiversity of its hadal macrofauna differs from that of the abyssal Atlantic. The composition of the macrofauna from the epibenthic sledge catches yielded a total of 21,332 invertebrates. Crustacea occurred most frequently (59%) with 12,538 individuals followed by Annelida (mostly Polychaeta) (26%) with 5491 individuals, Mollusca (7%) with 1458 individuals, Echinodermata (4%) with 778 individuals, Nematoda (2%) with 502 individuals and Chaetognatha (1%) with 152 and Porifera (1%) with 131 individuals. All other taxa occurred with overall less than ten individuals (Hemichordata, Phoronida, Priapulida, Brachiopoda, invertebrate Chordata, Echiurida, Foraminifera (here refereed to macrofaunal Komokiacea only), Chelicerata, Platyhelminthes). Within the Crustacea, Peracarida (62.6%) with 7848 individuals and Copepoda (36.1%) with 44,526 individuals were the most abundant taxa. Along the abyssal Vema-Fracture Zone macrofaunal abundances (ind./1000 m2) were generally higher on the eastern side, while the highest normalized abundance value was reported in the Puerto Rico Trench at abyssal station 14-1 2313 individuals/1000 m2. The lowest abundance was reported at station 11-4 with 120 ind./1000 m2 located at the western side of the Vema-Fracture Zone. The number of major macrofaunal taxa (phylum, class) ranged between five (stations 12-5, 13-4 and 13-5 at hadal depths in the Puerto Rico

  20. Holocene geologic slip rate for the Mission Creek strand of the Southern San Andreas Fault, northern Coachella Valley, CA.

    NASA Astrophysics Data System (ADS)

    Munoz, J. J.; Behr, W. M.; Sharp, W. D.; Fryer, R.; Gold, P. O.

    2016-12-01

    Slip on the southern San Andreas fault in the northwestern Coachella Valley in Southern California is partitioned between three strands, the Mission Creek, Garnet Hill, and Banning strands. In the vicinity of the Indio Hills, the NW striking Mission Creek strand extends from the Indio Hills into the San Bernardino Mountains, whereas the Banning and Garnet Hill strands strike WNW and transfer slip into the San Gorgonio Pass region. Together, these three faults accommodate 20 mm/yr of right-lateral motion. Determining which strand accommodates the majority of fault slip and how slip rates on these strands have varied during the Quaternary is critical to seismic hazard assessment for the southern California region. Here we present a new Holocene geologic slip rate from an alluvial fan offset along the Mission Creek strand at the Three Palms site in the Indio Hills. Field mapping and remote sensing using the B4 LiDAR data indicates that the Three Palms fan is offset 57 +/- 3 meters. U-series dating on pedogenic carbonate rinds collected at 25-100 cm depth within the fan deposit constrain the minimum depositional age to 3.49 +/- 0.92 ka, yielding a maximum slip rate of 16 +6.1/-3.8 mm/yr. This Holocene maximum slip rate overlaps within errors with a previously published late Pleistocene slip rate of 12-22 mm/yr measured at Biskra Palms, a few kilometers to the south. Cosmogenic 10Be surface exposure samples were also collected from the fan surface to bracket the maximum depositional age. These samples have been processed and are currently awaiting AMS measurement.

  1. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    NASA Astrophysics Data System (ADS)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  2. Geophysical Survey of Proposed Construction Site with Possible Faulting, East San Francisco Bay Hills, California

    NASA Astrophysics Data System (ADS)

    Galvin, J. L.; Deqiang, C.; Abimbola, A.; Shuler, S.; Hayashi, K.; Fox, J.; Craig, M. S.; Strayer, L. M.; Drumm, P.

    2015-12-01

    We conducted a geophysical study at a site proposed for a new dorm building prior to trenching planned as part of a separate fault investigation study. The study area was located on the south side of the CSU East Bay campus, roughly 100 - 300 m SSE of the current dorm complex. In addition to its proximity to the Hayward Fault, several smaller faults have been previously mapped within the proposed location, including the East and West Dibblee Faults. These faults are thought to represent contacts between the Leona Rhyolite and the Knoxville Formation. Data acquisition included seismic, resistivity, and GPS data collected in an effort to develop a better understanding of the geological and structural profile of this area, including the location of lithologic contacts, faults, and the thickness of soil and fill. Geophysical profiles were collected over the locations of future trenches. The survey included geophysical lines that were located coincident with two planned trenching sites, which were chosen to intersect mapped faults. Survey positions were recorded using differential GPS. Seismic refraction and MASW (multichannel analysis of surface waves) surveys were performed over two of the planned trench sites using a 48-channel seismographic system with 4.5 Hz geophones and a 10-lb sledgehammer. For one of the lines, geophones were spaced every 3 m with a total spread length of 141 m and a shot spacing of 9 m. For the second line, geophones were spaced every 4 m with a total spread length of 188 m. Shots were taken every 12 m. Resistivity surveys were also performed along one of the line locations using both a capacitively-coupled dipole (CCD) system and 48-electrode system. Geospatial data for the survey area were compiled, including 0.3 m color orthoimagery and vector line files for geologic unit boundaries and presumed fault locations. The products of this study will include the geophysical response of geologic formations, location of unit contacts and faults

  3. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  4. Neotectonic Investigation of the southern Rodgers Creek fault, Sonoma County, California

    NASA Astrophysics Data System (ADS)

    Randolph, C. E.; Caskey, J.

    2001-12-01

    The 60-km-long Rodgers Creek fault (RCF) between San Pablo Bay and Santa Rosa strikes approximately N35W, and is characterized by a late Holocene right-lateral slip rate of 6.4-10.4 mm/yr. Recent field studies along the southern section of the fault have resulted in: 1) new insight concerning the structural relations across the fault and the long-term slip budget on the system of faults that make up the East Bay fault system; 2) a new annotated map documenting details of the tectonic geomorphology of the fault zone; 3) and new paleoseismic data. Structural relations found west of the RCF indicate that previously mapped thrust klippen of Donnell Ranch Volcanic's (DRV)(Ar/Ar 9-10 Ma), were emplaced over the Petaluma formation (Ar/Ar 8.52 Ma) along east-vergent thrust faults, rather than along west-vergent thrusts that splay from the RCF as previously proposed. This implies that: 1) the allochthonous DRV which have been correlated to volcanic rocks in the Berkeley Hills (Ar/Ar 9-10 Ma) must have orginated from west of the Tolay fault; and 2) much of the 45 km of northward translation of the DRV from the Berkeley Hills was accomplished along the Hayward-Tolay-Petaluma Valley system of faults, and not the RCF. Long-term offset along the RCF can be more reasonably estimated by matching similar aged Sonoma volcanic rocks (Ar/Ar 3-8 Ma) across the fault which suggests only about 10-15 km of net right-lateral translation across the fault. This estimate is more consistent with independently derived offsets across the RCF using paleogeographic reconstructions of the Roblar Tuff as well as Pliocene sedimentary units (Sarna-Wojcicki, 1992; Mclaughlin, 1996) An annotated strip map compiled from 1:6000 scale aerial photos for the southern 25 km of the fault has resulted in unprecedented new details on the surficial and bedrock deposits, and tectonic geomorphology along the fault. The new maps together with GPR surveys provided the basis for a site specific paleoseimic

  5. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    PubMed

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Direct observation of episodic growth in an abyssal xenophyophore (Protista)

    NASA Astrophysics Data System (ADS)

    Gooday, A. J.; Bett, B. J.; Pratt, D. N.

    1993-11-01

    Three specimens of the xenophyophore Reticulammina labyrinthica were photographed on the Madeira Abyssal Plain (31°6.1'N, 21°10.9'W; 4944 m) using the Bathysnap time-lapse camera system. During the 8 month observation period, the specimens underwent an estimated 3-10 fold increase in volume. Growth occurred episodically in several distinct phases, each lasting 2-3 days, during which sediment was collected and incorporated into the test. These phases were separated by fairly regular periods of about 2 months when the organisms showed little obvious activity. The growth phases were approximately synchronous between specimens. However, it is not clear whether the periodicity and apparent synchronization of these events resulted from an external (environmental) cue or whether growth is internally controlled and the synchronization arose by chance. These unique observations, which represent the first direct measurement of growth in any abyssal organism living outside a hydrothermal vent field, suggest that xenophyophores combine test growth with deposit feeding. The tests appear to grow more quickly, and to be more active, dynamic structures, than previously believed.

  7. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  8. Evidence from Ocean Drilling Program Leg 149 mafic igneous rocks for oceanic crust in the Iberia Abyssal Plain ocean-continent transition zone

    NASA Astrophysics Data System (ADS)

    Seifert, Karl E.; Chang, Cheng-Wen; Brunotte, Dale A.

    1997-04-01

    Leg 149 of the Ocean Drilling Program explored the ocean-continent transition (OCT) on the Iberia Abyssal Plain and its role in the opening of the Atlantic Ocean approximately 130 Ma. Mafic igneous rocks recovered from Holes 899B and 900A have Mid-Ocean Ridge Basalt (MORB) trace element and isotopic characteristics indicating that a spreading center was active during the opening of the Iberia Abyssal Plain OCT. The Hole 899B weathered basalt and diabase clasts have transitional to enriched MORB rare earth element characteristics, and the Hole 900A metamorphosed gabbros have MORB initial epsilon Nd values between +6 and +11. During the opening event the Iberia Abyssal Plain OCT is envisioned to have resembled the central and northern parts of the present Red Sea with localized spreading centers and magma chambers producing localized patches of MORB mafic rocks. The lack of a normal ocean floor magnetic anomaly pattern in the Iberia Abyssal Plain means that a continuous spreading center similar to that observed in the present southern Red Sea was not formed before spreading ceased in the Iberia Abyssal Plain OCT and jumped to the present Mid-Atlantic Ridge.

  9. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  10. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slidesmore » and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.« less

  11. Arcadia Planitia Hills

    NASA Image and Video Library

    2018-04-25

    The rounded hills in this VIS image are located in Arcadia Planitia. Broad linear ridges and groups of hills in this region are part of Phlegra Dorsa (ridges) and Phlegra Montes (hills). Orbit Number: 71248 Latitude: 30.6712 Longitude: 171.018 Instrument: VIS Captured: 2018-01-05 17:05 https://photojournal.jpl.nasa.gov/catalog/PIA22377

  12. Is there a "blind" strike-slip fault at the southern end of the San Jacinto Fault system?

    NASA Astrophysics Data System (ADS)

    Tymofyeyeva, E.; Fialko, Y. A.

    2015-12-01

    We have studied the interseismic deformation at the southern end of the San Jacinto fault system using Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. To complement the continuous GPS measurements from the PBO network, we have conducted campaign-style GPS surveys of 19 benchmarks along Highway 78 in the years 2012, 2013, and 2014. We processed the campaign GPS data using GAMIT to obtain horizontal velocities. The data show high velocity gradients East of the surface trace of the Coyote Creek Fault. We also processed InSAR data from the ascending and descending tracks of the ENVISAT mission between the years 2003 and 2010. The InSAR data were corrected for atmospheric artifacts using an iterative common point stacking method. We combined average velocities from different look angles to isolate the fault-parallel velocity field, and used fault-parallel velocities to compute strain rate. We filtered the data over a range of wavelengths prior to numerical differentiation, to reduce the effects of noise and to investigate both shallow and deep sources of deformation. At spatial wavelengths less than 2km the strain rate data show prominent anomalies along the San Andreas and Superstition Hills faults, where shallow creep has been documented by previous studies. Similar anomalies are also observed along parts of the Coyote Creek Fault, San Felipe Fault, and an unmapped southern continuation of the Clark strand of the San Jacinto Fault. At wavelengths on the order of 20km, we observe elevated strain rates concentrated east of the Coyote Creek Fault. The long-wavelength strain anomaly east of the Coyote Creek Fault, and the localized shallow creep observed in the short-wavelength strain rate data over the same area suggest that there may be a "blind" segment of the Clark Fault that accommodates a significant portion of the deformation on the southern end of the San Jacinto Fault.

  13. Influence of Melting and Hydrothermal Alteration on Lead in Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Warren, J. M.; D'Errico, M. E.; Godard, M.; Coble, M. A.; Horan, M.

    2017-12-01

    The lead isotopic system is a key tracer of mantle convection, yet the abundance and mineralogical hosts of Pb in the upper mantle are poorly constrained. To address this, we analyzed the concentration of Pb in minerals and bulk rock powders of abyssal peridotites. These samples represent the oceanic upper mantle following melt extraction. They can be used to explore the mantle Pb budget, assuming that the amount of Pb lost during mantle melting and gained during seafloor alteration can be determined. We performed in situ analysis of the three main silicate phases (olivine, orthopyroxene, and clinopyroxene), which yield Pb concentrations of 2-30 ppb. Olivine is the main mineralogical host of Pb, unlike other trace elements, which are predominantly hosted in clinopyroxene. Sulfide contains an average of 3 ppm Pb, but these high concentrations are offset by low modal abundances (<0.01%), making this mineral a minor source of peridotite Pb. Whole rock Pb concentrations of abyssal peridotites measured by thermal ionization mass spectrometry range from 3 to 38 ppb. These values are close to the reconstructed whole rock values of 2 to 14 ppb, calculated from the mineral concentrations of Pb multiplied by their modes. In contrast, the average value among literature data for whole rock abyssal peridotites is >100 ppb [1, 2], measured by inductively-coupled plasma mass spectrometry. The higher values among literature data may reflect a combination of lower analytical sensitivity and effects of alteration. Samples in this study include an unaltered peridotite from the Gakkel Ridge, which shows the closest agreement between reconstructed and measured whole rock values. We estimate that our peridotites have undergone 5 to 9% melting [3], based on non-modal fractional melt modeling of rare earth element abundances. Assuming 18 to 23 ppb Pb in the depleted source mantle [4, 5], expected concentrations in abyssal peridotites after melting are <1 ppb. However, as suggested by [5

  14. Using 10Be erosion rates and fluvial channel morphology to constrain fault throw rates in the southwestern Sacramento River Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Cyr, A. J.

    2013-12-01

    The Sacramento - San Joaquin River Delta, California, USA, is a critical region for California water resources, agriculture, and threatened or endangered species. This landscape is affected by an extensive set of levees that enclose artificial islands created for agricultural use. In addition to their importance for sustaining agriculture, this levee system also supports extensive transport and power transmission infrastructure and urban/suburban development. These levees are susceptible to damage from even moderate ground shaking by either a large earthquake on one of the high-activity faults in the nearby San Francisco Bay region, or even a moderate earthquake on one of the low-activity faults in the Delta region itself. However, despite this danger the earthquake hazards in this region are poorly constrained due to our lack of understanding of faults in and near the Delta region. As part of an effort to better constrain the seismic hazard associated with known, but poorly constrained, faults in the region, a geomorphic analysis of the Dunnigan Hills, northwest of Woodland, CA, is being combined with cosmogenic 10Be catchment-averaged erosion rates. The Dunnigan Hills are a low-relief (maximum elevation 87 m) landscape generated by fault-bend folding above the west-vergent Sweitzer reverse fault that soles into a blind east-vergent reverse fault. These faults have been imaged by seismic reflection data, and local microseismicity indicates that this system is actively propagating to the east. However, the throw rates on the faults in this system remain unconstrained, despite the potential for significant shaking such as that experienced in the nearby April, 1892 earthquake sequence between Winters and Vacaville, Ca, ~25 km to the south, which has been estimated at magnitude 6.0 or greater. Geomorphic and cosmogenic 10Be analyses from 12 catchments draining the eastern flank of the Dunnigan Hills will be used to infer vertical rock uplift rates to better constrain

  15. Sediment dispersal patterns within the Nares Abyssal Plain: observations from GLORIA Sonographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shephard, L.E.; Tucholke, B.E.; Fry, V.A.

    1985-01-01

    Features evident on GLORIA sonographs from the Nares Abyssal Plain suggest a sediment dispersal pattern for turbidity currents that varies temporally and spatially, resulting in randomly distributed turbidite deposits in the distal abyssal plain east of 64/sup 0/W. Regional variations in backscatter intensities across the abyssal plain are related to the frequency and thickness of near-surface silt beds, basement highs disrupting the seafloor, and subtle changes in surface and sub-surface bedforms related to low-relief turbidite flow paths, biologic activity, and possibly erosion. High backscatter intensities, prevalent west of 64/sup 0/W, are generally associated with those areas containing thicker silt bedsmore » and very regular subbottom reflectors on 3.5 kHz profiles. Low backscatter intensities, prevalent east of 64/sup 0/W, are associated with those areas containing thin silt beds or stringers with a much higher percentage of pelagic clay. Seafloor lineaments occur throughout the survey area but decrease in abundance east of 64/sup 0/W. These features have no apparent relief when crossed by surface-towed seismic reflection profiles. In some instances the lineaments may correspond to low-relief turbidite flow paths that contain varying textural compositions resulting in increased backscatter. These features would be indicative of sediment transport directions. Other possible origins for the lineaments, that often appear trackline parallel, include near-surface morphology that is preferentially detected and aligned by GLORIA, or possibly the lineaments result from complex subbottom interference patterns that would not be readily apparent in areas with a more irregular seafloor.« less

  16. The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae)

    NASA Astrophysics Data System (ADS)

    Riehl, Torben; Lins, Lidia; Brandt, Angelika

    2018-02-01

    The largest habitat on Earth, the abyssal oceans below 3500 m depth, is commonly assumed to represent a continuous environment due to homogeneity of environmental factors and the lack of physical barriers. Yet, the presence of bathymetric features, such as Mid-Ocean Ridges, and hadal trenches provide a discontinuation. During the Vema-TRANSIT expedition in 2014/2015 to the tropical North Atlantic, a transatlantic transect was studied following the full extent of the Vema Fracture Zone in an east-west direction and including the Puerto Rico Trench (PRT). The aim of this study was to test whether large bathymetric features represent barriers to dispersal and may lead to differentiation and eventually speciation. In this study, these potential barriers included the Mid-Atlantic Ridge (MAR) and the transition ( 3000 m) from the hadal PRT to the adjacent abyss. Genetic differentiation and differences in community structure (species composition) from east and west of the MAR, as well as abyssal and hadal depth zones were tested for using the poor dispersers Macrostylidae (Crustacea, Isopoda) as a model Distribution patterns showed that certain macrostylid species have ranges extending more than 2000 km, in some cases across oceanic ridges and trench-abyss transitions. Contrastingly, there was a clear signal for geographic population structure coinciding with the east-west division of the Atlantic by the MAR as well as with the abyss-hadal zonation. These results support the hypotheses that depth gradients as well as oceanic ridges reduce dispersal even though barriers may not be absolute. Additionally, positive correlation between genetic- and geographic distances showed that the vast size of the deep sea itself is a factor responsible for creating diversity.

  17. Lithology and characteristic of landslide in Gombel Hill by 2D geoelectric resistivity method using dipole-dipole configuration

    NASA Astrophysics Data System (ADS)

    Setyawan, Agus; Satria Fikri, Muhammad; Endro Suseno, Jatmiko; Fuad, Muhamad

    2018-05-01

    Gombel hill locates at Semarang, Central Java, Indonesia. Base on Semarang’s susceptiblity map zone, Gombel hill is belong to high susceptibility and instability zone. Instability may cause faults to Gombel hill area, unfortunately the geosciences research in Gombel is still lack. The geophysical survey has been conducted using 2D geoelectric resistivity method with dipole – dipole configuration to identify the lithology of landslide at Gombel hill. The data have been collected from three lines. The first and third line have 100 m length, and the second line have 80 m length with 5 m space in each lines. The data were processed and modelled using Res2Dinv software. From the first line, suspected there are two layers which formed the structure of the subsurface. The second line suspected there are three layers which formed the structure of the subsurface. And the last line suspected there are two layers which formed the structure of the subsurface. Overall, the landslide of Gombel hill area can be found with depth 5 m – 6 m and found at contact between clay and clay rock layer. We expect the results can be used for mitigation hazard and planning the developing infrastructure in Gombel area.

  18. Mooring Measurements of the Abyssal Circulations in the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, F.

    2016-12-01

    A scientific observing network in the western tropical Pacific has initially been established by the Institute of Oceanology, Chinese Academy of Sciences (IOCAS). Using fifteen moorings that gives unprecedented measurements in the intermediate and abyssal layers, we present multi-timescale variations of the deep ocean circulations prior to and during 2015 El Niño event. The deep ocean velocities increase equatorward with high standard deviation and nearly zero mean. The deep ocean currents mainly flow in meridional direction in the central Philippine Basin, and are dominated by a series of alternating westward and eastward zonal jets in the Caroline Basin. The currents in the deep channel connecting the East and West Mariana Basins mainly flow southeastward. Seasonal variation is only present in the deep jets in the Caroline Basin, associating with vertical propagating annual Rossby wave. The high-frequency flow bands are dominated by diurnal, and semi-diurnal tidal currents, and near-inertial currents. The rough topography has a strong influence on the abyssal circulations, including the intensifications in velocity and internal tidal energy, and the formation of upwelling flow.

  19. Earthquake-by-earthquake fold growth above the Puente Hills blind thrust fault, Los Angeles, California: Implications for fold kinematics and seismic hazard

    USGS Publications Warehouse

    Leon, L.A.; Christofferson, S.A.; Dolan, J.F.; Shaw, J.H.; Pratt, T.L.

    2007-01-01

    Boreholes and high-resolution seismic reflection data collected across the forelimb growth triangle above the central segment of the Puente Hills thrust fault (PHT) beneath Los Angeles, California, provide a detailed record of incremental fold growth during large earthquakes on this major blind thrust fault. These data document fold growth within a discrete kink band that narrows upward from ???460 m at the base of the Quaternary section (200-250 m depth) to 82% at 250 m depth) folding and uplift occur within discrete kink bands, thereby enabling us to develop a paleoseismic history of the underlying blind thrust fault. The borehole data reveal that the youngest part of the growth triangle in the uppermost 20 m comprises three stratigraphically discrete growth intervals marked by southward thickening sedimentary strata that are separated by intervals in which sediments do not change thickness across the site. We interpret the intervals of growth as occurring after the formation of now-buried paleofold scarps during three large PHT earthquakes in the past 8 kyr. The intervening intervals of no growth record periods of structural quiescence and deposition at the regional, near-horizontal stream gradient at the study site. Minimum uplift in each of the scarp-forming events, which occurred at 0.2-2.2 ka (event Y), 3.0-6.3 ka (event X), and 6.6-8.1 ka (event W), ranged from ???1.1 to ???1.6 m, indicating minimum thrust displacements of ???2.5 to 4.5 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw > 7). Cumulative, minimum uplift in the past three events was 3.3 to 4.7 m, suggesting cumulative thrust displacement of ???7 to 10.5 m. These values yield a minimum Holocene slip rate for the PHT of ???0.9 to 1.6 mm/yr. The borehole and seismic reflection data demonstrate that dip within the kink band is acquired incrementally, such that older strata that have been deformed by more earthquakes dip more steeply than younger

  20. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal

  1. Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars

    USGS Publications Warehouse

    McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B. A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S. W.; Arvidson, R. E.; Rica, J.W.; Treguier, E.; d'Uston, C.; Grant, J. A.; McSween, H.Y.; Golombek, M.P.; Haldemann, A.F.C.; de Souza, P.A.

    2008-01-01

    The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15-32??) for bedding on the main edifice of the Columbia Hill are steeper than local topography (???8-10??). Outcrops measured on West Spur are conformable in strike with shallower dips (7-15??) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills. Copyright 2008 by the American Geophysical Union.

  2. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

      Based on volcanic stratigraphy, geochronology, remnant paleosurfaces, and paleopotentiometric surfaces in mining districts and alteration zones, present landforms in the Bodie Hills volcanic field reflect incremental construction of stratovolcanoes and large- to small-volume flow-domes, magmatic inflation, and fault displacements. Landform evolution began with construction of the 15–13 Ma Masonic and 13–12 Ma Aurora volcanic centers in the northwestern and northeastern parts of the field, respectively. Smaller volcanoes erupted at ~11–10 Ma in, between, and south of these centers as erosional detritus accumulated north of the field in Fletcher Valley. Distally sourced, 9.7–9.3 Ma Eureka Valley Tuff filled drainages and depressions among older volcanoes and was partly covered by nearly synchronous eruptives during construction of four large 10–8 Ma volcanoes, in the southern part of the field. The lack of significant internal fault displacement, distribution of Eureka Valley Tuff, and elevation estimates derived from floras, suggest that the Bodie Hills volcanic field attained present elevations mostly through volcano construction and magmatic inflation, and that maximum paleoelevations (>8,500 ft) at the end of large volume eruptions at ~8 Ma are similar to present elevations.

  3. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay

    2017-08-01

    The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the

  4. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna

    PubMed Central

    Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A.; Menot, Lenaick; Arbizu, Pedro Martínez

    2016-01-01

    Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m2), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones. PMID:27245847

  5. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna.

    PubMed

    Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A; Menot, Lenaick; Arbizu, Pedro Martínez

    2016-06-01

    Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m(2)), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.

  6. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4000 m)

    NASA Astrophysics Data System (ADS)

    Huffard, Christine L.; Kuhnz, Linda A.; Lemon, Larissa; Sherman, Alana D.; Smith, Kenneth L.

    2016-03-01

    Holothurians are among the most abundant benthic megafauna at abyssal depths, and important consumers and bioturbators of organic carbon on the sea floor. Significant fluctuations in abyssal holothurian density are often attributed to species-specific responses to variable particulate organic carbon flux (food supply) stemming from surface ocean events. We report changes in densities of 19 holothurian species at the abyssal monitoring site Station M in the northeast Pacific, recorded during 11 remotely operated vehicle surveys between Dec 2006 and Oct 2014. Body size demographics are presented for Abyssocucumis abyssorum, Synallactidae sp. 1, Paelopatides confundens, Elpidia sp. A, Peniagone gracilis, Peniagone papillata, Peniagone vitrea, Peniagone sp. A, Peniagone sp. 1, and Scotoplanes globosa. Densities were lower and species evenness was higher from 2006-2009 compared to 2011-2014. Food supply of freshly-settled phytodetritus was exceptionally high during this latter period. Based on relationships between median body length and density, numerous immigration and juvenile recruitment events of multiple species appeared to take place between 2011 and 2014. These patterns were dominated by elpidiids (Holothuroidea: Elasipodida: Elpidiidae), which consistently increased in density during a period of high food availability, while other groups showed inconsistent responses. We considered minimum body length to be a proxy for size at juvenile recruitment. Patterns in density clustered by this measure, which was a stronger predictor of maximum density than median and mean body length.

  7. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    USGS Publications Warehouse

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early

  8. Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Popp, B. N.; Linley, T. D.; Jamieson, A. J.; Drazen, J. C.

    2017-03-01

    The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from 6000-8200 m, comprising the dominant ichthyofauna in at least five trenches worldwide. Little is known about the biology of these deepest-living fishes, nor the factors that drive their success at hadal depths. Using recent collections from the Mariana Trench, Kermadec Trench, and neighboring abyssal plains, this study investigates the potential role of trophic ecology in structuring fish communities at the abyssal-hadal boundary. Stomach contents were analyzed from two species of hadal snailfishes, Notoliparis kermadecensis and a newly-discovered species from the Mariana Trench. Amphipods comprised the majority (Kermadec: 95.2%, Mariana: 97.4% index of relative importance) of stomach contents in both species. Decapod crustaceans, polychaetes (N. kermadecensis only), and remains of carrion (squid and fish) were minor dietary components. Diet analyses of abyssal species (families Macrouridae, Ophidiidae, Zoarcidae) collected from near the trenches and the literature are compared to those of the hadal liparids. Stomachs from abyssal fishes also contained amphipods, however macrourids had a higher trophic plasticity with a greater diversity of prey items, including larger proportions of carrion and fish remains; supporting previous findings. Suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench - where amphipods are abundant. More generalist feeders and scavengers relying on carrion, such as macrourids, might not benefit from this nutritional advantage at hadal depths. Compound specific isotope analysis of amino acids was used to estimate trophic level of these species (5.3±0.2 Coryphaenoides armatus, 5.2±0.2 C. yaquinae, 4.6±0.2 Spectrunculus grandis, 4.2±0.2 N. kermadecensis, 4.4±0.2 Mariana snailfish). Source amino acid δ15N values were especially high in hadal liparids (8.0±0.3‰ Kermadec, 6.7±0.2

  9. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2017-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault

  10. EFFECTS OF THE 1906 EARTHQUAKE ON THE BALD HILL OUTLET SYSTEM, SAN MATEO COUNTY, CALIFORNIA.

    USGS Publications Warehouse

    Pampeyan, Earl H.

    1986-01-01

    Following the earthquake of April 18, 1906, it was discovered that a brick forebay and other parts of the reservoir outlet system were in the slip zone of the San Andreas fault. The original outlet through which water was directed to San Francisco consisted of two tunnels joined at the brick forebay; one tunnel extends 2,820 ft to the east under Bald Hill on Buri Buri Ridge, and the other tunnel intersects the lake bottom about 250 ft west of the forebay. In 1897 a second intake was added to the system, also joining the original forebay. During the present study the accessible parts of this original outlet system were examined with the hope of learning how the system had been affected by fault slip in 1906.

  11. Highly siderophile element systematics of abyssal peridotites from intermediate and fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Brown, D. B.; Day, J. M.; Waters, C. L.

    2016-12-01

    Abyssal peridotites are residues of both modern and ancient partial melt extraction at oceanic ridges and can be used to examine melting processes and mantle heterogeneity. The highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re, and the 187Re-187Os system embedded within them), are useful for investigating these issues, as they are generally strongly compatible. To date, limited data on HSE and Os isotopes has been obtained on abyssal peridotites from fast spreading centers. Here, we report new HSE abundance and 187Os/188Os data for Pacific Antarctic Ridge (PAR) and East Pacific Rise (EPR) abyssal peridotites. Samples from the PAR were dredged from two separate localities along the Udintsev Fracture Zone, and EPR samples were taken from Hess Deep. The PAR full spreading rate ranges from 54-83mm/year [1,2] and is 75 mm/year [2] at the Udintsev Fracture Zone. These spreading rates characterize the PAR as an intermediate spreading ridge, whereas the fast spreading EPR has a full rate ranging from 128-157 mm/year [3]. The 187Os/188Os ratios for whole-rocks from the PAR range from 0.114 to 0.134, with Re depletion ages (TRD) varying from 1 Ga to present. Despite the large variation in 187Os/188Os, HSE patterns are primitive mantle-like [4], with Ru/Ir ratios ranging from 1.5-2.1. Depletions in Re and Pd are present, as is expected in partial melt residues, and the samples have undergone 4-15% partial melting based on the rare earth elements (REE). The EPR exhibits higher levels of melt depletion ranging from 18-24%. New results show Hess Deep samples have 187Os/188Os ratios of 0.123 and 0.125 for whole-rocks. These findings indicate that PAR and EPR Os isotopic data overlap with the global record of abyssal peridotites from slower ridges and that Os isotopic heterogeneities are preserved across a wide range of spreading rates and degrees of melt extraction. [1] Géli, L., et al. (1997), Science, 278, 1281-1284; [2] Castillo, P.R., et al. (1998) EPSL, 154

  12. A transect through the base of the Bronson Hill Terrane in western New Hampshire

    USGS Publications Warehouse

    Walsh, Gregory J.; Valley, Peter M.; Sicard, Karri R.; Thompson, Thelma Barton; Thompson, Peter J.

    2012-01-01

    This trip will present the preliminary results of ongoing bedrock mapping in the North Hartland and Claremont North 7.5-minute quadrangles in western New Hampshire. The trip will travel from the Lebanon pluton to just north of the Sugar River pluton (Fig. 1) with the aim of examining the lower structural levels of the Bronson Hill anticlinorium (BHA), and the nature of the boundary with the rocks of the Connecticut Valley trough (CVT). Spear and others (2002, 2003, 2008) proposed that western New Hampshire was characterized by five major faults bounding five structural levels including, from lowest to highest, the “chicken yard line”, Western New Hampshire Boundary Thrust, Skitchewaug nappe, Fall Mountain nappe, and Chesham Pond nappe. Lyons and others (1996, 1997) showed the lowest level cored by the Cornish nappe and floored by the Monroe fault. Thompson and others (1968) explained the geometry of units by folding without major thrust faults, and described the second level as the Skitchewaug nappe. This trip will focus on the two lowest levels which we have revised to call the Monroe and Skitchewaug Mountain thrust sheets. Despite decades of geologic mapping in the northeastern United States at various scales, little 1:24,000-scale (or larger scale) modern bedrock mapping has been published for the state of New Hampshire. In fact, of the New England states, New Hampshire contains the fewest published, modern bedrock geologic maps. Conversely, adjacent Vermont has a relatively high percentage of modern bedrock maps due to focused efforts to create a new state-wide bedrock geologic map over the last few decades. The new Vermont map (Ratcliffe and others, 2011) has identified considerable gaps in our knowledge of the bedrock geology in adjacent New Hampshire where published maps are, in places, more than 50 years old and at scales ranging from 1:62,500 to 1:250,000. Fundamental questions remain concerning the geology across the Connecticut River, especially in

  13. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  14. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria.

    PubMed

    Dahlgren, Thomas G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G

    2016-01-01

    We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys.

  15. Phytopigments as biomarkers of selectivity in abyssal holothurians; interspecific differences in response to a changing food supply

    NASA Astrophysics Data System (ADS)

    FitzGeorge-Balfour, Tania; Billett, David S. M.; Wolff, George A.; Thompson, Anu; Tyler, Paul A.

    2010-08-01

    Holothurians dominate the abyssal megabenthos. They are key consumers and bioturbators of surficial sediment. Compounds essential for holothurian reproduction, such as carotenoids, are in short supply in the deep ocean. Holothurians cannot synthesise carotenoids de novo; the compounds are supplied with the flux of phytodetritus. Therefore, the supply of these compounds may play an important role in regulating processes on the seafloor. This study examines the link between the diet of abyssal holothurians and their ovarian carotenoid biochemistry. Phytodetritus, surficial sediment, holothurian gut content and ovaries were sampled in June 2004 and in July 2005 at the Porcupine Abyssal Plain (PAP), NE Atlantic. Gut content chlorophyll a concentration showed that Amperima rosea, Peniagone diaphana and Oneirophanta mutabilis fed selectively on fresh organic matter, although when this was scarce, O. mutabilis was outcompeted and fed on more refractory material. All three species display consistent ovarian carotenoid profiles and have relatively high carotenoid concentrations in their ovaries. Psychropotes longicauda, Paroriza prouhoi, Pseudostichopus aemulatus, P. villosus and Molpadia blakei fed less selectively and exhibited low ovarian carotenoid concentrations with inconsistent profiles. The results suggest that abyssal holothurian ovarian biochemistry is a complex function of OM supply, holothurian feeding guild and reproductive adaptation. Changes in upper ocean biogeochemistry, altering the composition of organic matter reaching the deep-sea floor, may favour certain holothurian species, as suggested by the interspecific differences in holothurian ovarian biochemistry. This may lead to large community changes as seen at the PAP, which can alter the reworking rates of sediment, probably affecting carbon burial. The study also demonstrated that using the presence of biomarkers in gut contents to infer feeding selectivity should be used with caution. Only biomarkers

  16. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria

    PubMed Central

    Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G

    2016-01-01

    Abstract Background We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). New information Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys. PMID:27660533

  17. Fault failure with moderate earthquakes

    USGS Publications Warehouse

    Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.

    1987-01-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.

  18. The absence of sharks from abyssal regions of the world's oceans

    PubMed Central

    Priede, Imants G; Froese, Rainer; Bailey, David M; Bergstad, Odd Aksel; Collins, Martin A; Dyb, Jan Erik; Henriques, Camila; Jones, Emma G; King, Nicola

    2006-01-01

    The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales. We propose that they are excluded from the abyss by high-energy demand, including an oil-rich liver for buoyancy, which cannot be sustained in extreme oligotrophic conditions. Sharks are apparently confined to ca 30% of the total ocean and distribution of many species is fragmented around sea mounts, ocean ridges and ocean margins. All populations are therefore within reach of human fisheries, and there is no hidden reserve of chondrichthyan biomass or biodiversity in the deep sea. Sharks may be more vulnerable to over-exploitation than previously thought. PMID:16777734

  19. The absence of sharks from abyssal regions of the world's oceans.

    PubMed

    Priede, Imants G; Froese, Rainer; Bailey, David M; Bergstad, Odd Aksel; Collins, Martin A; Dyb, Jan Erik; Henriques, Camila; Jones, Emma G; King, Nicola

    2006-06-07

    The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales. We propose that they are excluded from the abyss by high-energy demand, including an oil-rich liver for buoyancy, which cannot be sustained in extreme oligotrophic conditions. Sharks are apparently confined to ca 30% of the total ocean and distribution of many species is fragmented around sea mounts, ocean ridges and ocean margins. All populations are therefore within reach of human fisheries, and there is no hidden reserve of chondrichthyan biomass or biodiversity in the deep sea. Sharks may be more vulnerable to over-exploitation than previously thought.

  20. Diversity of macrofaunal Mollusca of the abyssal Vema Fracture Zone and hadal Puerto Rico Trench, Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Linse, Katrin; Schwabe, Enrico

    2018-02-01

    While biodiversity patterns of Atlantic deep-sea bivalves and gastropods have served as model taxa for setting global latitudinal and bathymetric hypotheses, less is known on abyssal, amphi-Atlantic molluscan assemblage compositions. The Vema-TRANSIT expedition sampled 17 stations in the Vema Fracture Zone (VFZ) and the Puerto Rico Trench (PRT) by epibenthic sledge. These samples comprised a total of 1333 specimens and 64 morphospecies of the classes Caudofoveata (7 species), Solenogastres (7 spp.), Bivalvia (22 spp.), Gastropoda (24 spp.), and Scaphopoda (4 spp.) while Cephalopoda, Monoplacophora and Polyplacophora were absent. The majority of species was rare with 21 uniques (32.8% of all species) and 10 duplicates (15.6% of all species) and of these 15 (48% of rare/23.4% of all species) morphospecies were singletons and 8 (25.8% of rare/12.5% of all species) morphospecies were doubletons. Overall bivalves (686 specimens) were most abundant, followed by scaphopods (314 spec.), while solenogastres (180 spec.), caudofoveates (86 spec.) and gastropods (67 spec.) were less abundant. The abyssal macro-molluscan species composition did not vary significantly between the eastern and western Atlantic sides of the VFZ while abundances standardized to 1000 m2 trawled area were higher on the eastern side. The abyssal PRT stations resembled the VFZ ones in species composition and abundances, in the latter the eastern VFZ. The hadal PRT differed in species composition from the abyssal VFZ and PRT and abundances were similarly low like the western VFZ. The Mid-Atlantic Ridge appeared not to be a barrier for the dispersal of the mostly lecitotrophic or plankotrophic larval stages of the reported molluscan species in this study.

  1. Frictional constraints on crustal faulting

    USGS Publications Warehouse

    Boatwright, J.; Cocco, M.

    1996-01-01

    seismicity and the coseismic slip for the 1966 Parkfield, 1979 Coyote Lake, and 1984 Morgan Hill earthquakes. The interevent seismicity and aftershocks appear to occur on fault areas outside the regions of significant slip: these regions are interpreted as either weak seismic or compliant, depending on whether or not they manifest interevent seismicity.

  2. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone

  3. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    USGS Publications Warehouse

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  4. Late Quaternary history of the Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beanland, S.; Clark, M.M.

    1993-04-01

    The right-lateral Owens Valley fault zone (OVFZ) in eastern California extends north about 100 km from near the northwest shore of Owens Lake to beyond Big Pine. It passes through Lone Pine near the eastern base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. Data from one site suggest an average net slip rate for the OVFZ of 1.5 [+-] 1 mm/yr for the past 300 ky. Several other sites yield an average Holocenemore » net slip rate of 2 [+-] 1 mm/yr. The OVFZ apparently has experienced three major Holocene earthquakes. The minimum average recurrence interval is 5,000 years at the subsidiary Lone Pine fault, whereas it is 3,300 to 5,000 years elsewhere along the OVFZ. The prehistoric earthquakes are not dated, so an average recurrence interval need not apply. However, roughly equal (characteristic) displacement apparently happened during each Holocene earthquake. The Owens Valley fault zone accommodates some of the relative motion (dextral shear) between the North American and Pacific plates along a discrete structure. This shear occurs in the Walker Lane belt of normal and strike-slip faults within the mainly extensional Basin and Range Province. In Owens Valley displacement is partitioned between the OVFZ and the nearby, subparallel, and purely normal range-front faults of the Sierra Nevada. Compared to the OVFZ, these range-front normal faults are very discontinuous and have smaller Holocene slip rates of 0.1 to 0.8 mm/yr, dip slip. Contemporary activity on adjacent faults of such contrasting styles suggests large temporal fluctuations in the relative magnitudes of the maximum and intermediate principal stresses while the extension direction remains consistently east-west.« less

  5. Identification of repeating earthquakes and spatio-temporal variations of fault zone properties around the Parkfield section of the San Andreas fault and the central Calaveras fault

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Peng, Z.

    2008-12-01

    We systemically identify repeating earthquakes and investigate spatio-temporal variations of fault zone properties associated with the 2004 Mw6.0 Parkfield earthquake along the Parkfield section of the San Andreas fault, and the 1984 Mw6.2 Morgan Hill earthquake along the central Calaveras fault. The procedure for identifying repeating earthquakes is based on overlapping of the source regions and the waveform similarity, and is briefly described as follows. First, we estimate the source radius of each event based on a circular crack model and a normal stress drop of 3 MPa. Next, we compute inter-hypocentral distance for events listed in the relocated catalog of Thurber et al. (2006) around Parkfield, and Schaff et al. (2002) along the Calaveras fault. Then, we group all events into 'initial' clusters by requiring the separation distance between each event pair to be less than the source radius of larger event, and their magnitude difference to be less than 1. Next, we calculate the correlation coefficients between every event pair within each 'initial' cluster using a 3-s time window around the direct P waves for all available stations. The median value of the correlation coefficients is used as a measure of similarity between each event pair. We drop an event if the median similarity to the rest events in that cluster is less than 0.9. After identifying repeating clusters in both regions, our next step is to apply a sliding window waveform cross-correlation technique (Niu et al., 2003; Peng and Ben-Zion, 2006) to calculate the delay time and decorrelation index for each repeating cluster. By measuring temporal changes in waveforms of repeating clusters at different locations and depth, we hope to obtain a better constraint on spatio-temporal variations of fault zone properties and near-surface layers associated with the occurrence of major earthquakes.

  6. Structural development of the Red Hill portion of the Feather River ultramafic complex, Pulmas County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberg, C.W.

    1979-01-01

    The Feather River Ultramafic Complex is a partially serpentinized body of metamorphosed alpine peridotite and gabbro that lies along the northern part of the Melones fault zone, a NNW trending belt in the Northern Sierra Nevada. The complex was studied in the area of Red Hill, near the canyon of the North Fork, Feather River. The complex is separated from the Calaveras Terrain and Arlington Formation country rocks by steep faults; the Melones Fault on the east and the Rich Bar Fault on the west. Units recognized within the complex include Rich Bar metamorphic rocks, peridotite, metaperidotite, tremolite-olivine schist, hornblendemore » schist, and layered metagabbro. The Rich Bar metamorphic rocks are tectonic slices of amphibolite grade hornblende schist, mica schist, and quartzite found along the Rich Bar Fault. The complex shows evidence of 4 major events. E-1 (Pennsylvania-Permian) was formation of the peridotite-gabbro complex. E-2 (Permo-Triassic) consisted of pervasive shearing parallel to the Rich Bar Fault associated with initial emplacement within the Sierra Nevada. E-3 is believed to be compression and metamorphism (serpentinization) associated with the Nevadan orogeny. E-4 was associated with intrusion of nearby plutons. The regional association of the complex with late paleozoic arc volcanics of the Taylorsville area suggest formation near or under an island arc. Metamorphism during emplacement indicates association with the arc at that time. Left-lateral shear during emplacement along the Rich Bar Fault indicates NW directed thrusting when the layering in metagabbro is rotated to horizontal.« less

  7. Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata)

    NASA Astrophysics Data System (ADS)

    Gubili, Chrysoula; Ross, Elizabeth; Billett, David S. M.; Yool, Andrew; Tsairidis, Charalampos; Ruhl, Henry A.; Rogacheva, Antonina; Masson, Doug; Tyler, Paul A.; Hauton, Chris

    2017-03-01

    Despite the plethora of studies on swallow-water invertebrates, almost nothing is known about the evolution and population structure of deep-sea species at the global scale. The aim of this study was to assess phylogeographic patterns of a common and cosmopolitan, predominantly abyssal sea cucumber, Psychropotes longicauda, based on samples from the Atlantic, Southern, Indian and Pacific oceans. Sequences of the mitochondrial COI and 16S genes were analysed for 128 specimens of P. longicauda. In addition, temporal genetic variation was investigated at one site, the Porcupine Abyssal Plain, NE Atlantic Ocean over a period of 34 years. Two distinct lineages within the global distribution were identified. The sister clades probably could be classified as separate species based on the observed genetic divergence (>5.0%) and phylogenetic reconstruction with indications of a Southern Hemisphere origin. Moreover, significant population differentiation was detected between the North Atlantic and localities in both the Pacific and Indian oceans. No bathymetric structuring was detected among lineages. Temporal genetic shifts were detected in a time series of samples from 1977 to 2011. Our data confirm the previously suspected cryptic species diversity throughout the wide distributional range previously attributed to the single species P. longicauda. The presence of sympatric species in the North Pacific and Indian Oceans has been underestimated by previous morphological analyses. The differentiation at the population level detected in the main lineages among the four oceans could suggest restricted gene flow despite wide-scale dispersal potential of the species.

  8. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  9. Deriving earthquake history of the Knidos Fault Zone, SW Turkey, using cosmogenic 36Cl surface exposure dating of the fault scarp.

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Ersen Aksoy, Murat; Akif Sarikaya, Mehmet; Tuysuz, Okan; Genc, S. Can; Ertekin Doksanalti, Mustafa; Sahin, Sefa; Benedetti, Lucilla; Tesson, Jim; Aster Team

    2016-04-01

    Formation of bedrock fault scarps in extensional provinces is a result of large and successive earthquakes that ruptured the surface several times. Extraction of seismic history of such faults is critical to understand the recurrence intervals and the magnitude of paleo-earthquakes and to better constrain the regional seismic hazard. Knidos on the Datca Peninsula (SW Turkey) is one of the largest cities of the antique times and sits on a terraced hill slope formed by en-echelon W-SW oriented normal faults. The Datça Peninsula constitutes the southern boundary of the Gulf of Gökova, one of the largest grabens developed on the southernmost part of the Western Anatolian Extensional Province. Our investigation relies on cosmogenic 36Cl surface exposure dating of limestone faults scarps. This method is a powerful tool to reconstruct the seismic history of normal faults (e.g. Schlagenhauf et al 2010, Benedetti et al. 2013). We focus on one of the most prominent fault scarp (hereinafter Mezarlık Fault) of the Knidos fault zone cutting through the antique Knidos city. We collected 128 pieces of tablet size (10x20cm) 3-cm thick samples along the fault dip and opened 4 conventional paleoseismic trenches at the base of the fault scarp. Our 36Cl concentration profile indicates that 3 to 4 seismic events ruptured the Mezarlık Fault since Last Glacial Maximum (LGM). The results from the paleoseismic trenching are also compatible with 36Cl results, indicating 3 or 4 seismic events that disturbed the colluvium deposited at the base of the scarp. Here we will present implications for the seismic history and the derived slip-rate of the Mezarlık Fault based on those results. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 113Y436) and it was conducted with the Decision of the Council of Ministers with No. 2013/5387 on the date 30.09.2013 and was done with the permission of Knidos Presidency of excavation in

  10. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    Los Planes highway, the fault steps to the right 2km with no overlap. The fault is inactive until ~3km south of the Los Planes highway where scarp heights in the Quaternary sediments rise to ~3-11m for ~11km with an average trend of 160°, implying increasing slip rate. The fault then steps left 2km with no overlap, trending 145°. Scarp heights range from 3-6m in the step. The southernmost 9km of the fault zone, trending 200°, is marked by discontinuous scarps and embayed bedrock, reflecting diminished fault activity. The footwall landscape in this area is characterized by a broad, gently-sloping, low-relief pediment surface with thin Quaternary cover, disrupted by inselberg-like hills. The young scarp-forming fault appears to have reactivated older faults to rupture this pediment, reflecting the episodic nature of slip along this fault zone. Preliminary OSL ages of the youngest faulted deposit imply a Late Pleistocene-Holocene slip rate of 0.1-1mm/yr. The SJPFZ is thus characterized by reactivation of pre-existing faults to rupture a pre-existing low relief erosional landscape. Whereas the entire region might have experienced the quiescent period that allowed for development of the low- relief, stable surface along the SJPFZ, we speculate that while the SJPFZ was dormant, other faults within the gulf-margin system were actively accommodating strain.

  11. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    USGS Publications Warehouse

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  12. SRTM Colored and Shaded Topography: Haro and Kas Hills, India

    NASA Technical Reports Server (NTRS)

    2001-01-01

    On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake.

    The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an 'anticline,' which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant 'dike,' which is an igneous intrusion into older 'host' rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies.

    In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same

  13. Microstructural evidence for northeastward movement on the Chocolate Mountains fault zone, southeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1990-01-10

    Microstructural analysis of rocks from the Chocolate Mountains fault zone, Gavilan Hills area, southeastern California, show unequivocal evidence for northeast directed transport of the upper plate gneisses over lower plate Orocopia schists. Samples were taken from transects through the fault zone. Prefaulting fabrics in upper plate gneisses show a strong component of northeast directed rotational deformation under lower amphibolite facies conditions. In contrast, prefaulting lower plate Orocopia schists show strongly coaxial fabrics (minimum stretch value of 2.2) formed at greenschist grade. Mylonitic fabrics associated with the Chocolate Mountains fault are predominantly northeast directed shear bands that are unidirectional (northeastward) inmore » the gneisses but bi-directional in the schists, suggesting a significant component of nonrotational deformation occurred in the Orocopia schists during and after emplacement of the upper plate. The kinematic findings are in agreement with Dillon et al. (1989), who found that the vergence of asymmetrical folds within the fault zone indicates overthrusting to the northeast, toward the craton, in this region. The available evidence favors a single protracted northeastward movement on the Chocolate Mountains fault zone with temperatures waning as deformation proceeded.« less

  14. Antigravity hills are visual illusions.

    PubMed

    Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica

    2003-09-01

    Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon were systematically varied in four experiments. We conclude that antigravity-hill effects follow from a misperception of the eye level relative to gravity, caused by the presence of either contextual inclines or a false horizon line.

  15. Long-term change in benthopelagic fish abundance in the abyssal northeast Pacific Ocean.

    PubMed

    Bailey, D M; Ruhl, H A; Smith, K L

    2006-03-01

    Food web structure, particularly the relative importance of bottom-up and top-down control of animal abundances, is poorly known for the Earth's largest habitats: the abyssal plains. A unique 15-yr time series of climate, productivity, particulate flux, and abundance of primary consumers (primarily echinoderms) and secondary consumers (fish) was examined to elucidate the response of trophic levels to temporal variation in one another. Towed camera sled deployments in the abyssal northeast Pacific (4100 m water depth) showed that annual mean numbers of the dominant fish genus (Coryphaenoides spp.) more than doubled over the period 1989-2004. Coryphaenoides spp. abundance was significantly correlated with total abundance of mobile epibenthic megafauna (echinoderms), with changes in fish abundance lagging behind changes in the echinoderms. Direct correlations between surface climate and fish abundances, and particulate organic carbon (POC) flux and fish abundances, were insignificant, which may be related to the varied response of the potential prey taxa to climate and POC flux. This study provides a rare opportunity to study the long-term dynamics of an unexploited marine fish population and suggests a dominant role for bottom-up control in this system.

  16. On the origin of Hill's causal criteria.

    PubMed

    Morabia, A

    1991-09-01

    The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.

  17. Persistent fine-scale fault structures control rupture development in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2016-12-01

    We investigate the fine-scale geometry and structure of the San Andreas Fault (SAF) near Parkfield, CA, and their role in the development of the 1966 and 2004 M6 earthquakes. Both events broke the fault mainly unilaterally with similar length ( 30 km) but in opposite directions. Seismic slip occurred in a narrow zone between 5 and 10 km depth, as outlined by the concentration of aftershocks along the edge of the slip area. Across fault distribution of the 2004 aftershocks show a rapid decrease of event density away from the fault core. The damage zone is narrower in the Parkfield section (few 100 meters) than in the creeping section ( 1 km). We observe a similar but broader distribution during the interseismic periods. This implies that stress accumulates in a volume around the fault during interseismic periods, whereas coseismic deformation is more localized on the mature SAF. Large aftershocks are concentrated at both rupture tips, characterized by strong heterogeneities in the fault structure at the surface and at depth: i) in the south near Gold Hill-Cholame, a large releasing bend (>25°) separates the Parkfield section from the southern section of the SAF; ii) in the north at Middle Mountain, the surface fault trace goes through an ancient restraining step-over connecting the Parkfield and creeping sections. Fine-scale analysis of the 2004 aftershocks reveals a change in the fault dip and local variations of the fault strike (up to 25°) beneath Middle Mountain, in good agreement with focal mechanisms, which show oblique normal and reverse faulting. We observe these variations during the interseismic periods before and after the 2004 event, suggesting that the structural heterogeneities persisted through at least two earthquake cycles. These heterogeneities act as barriers to rupture propagation of moderate size earthquakes at Parkfield, but also as stress concentrations where rupture initiates.

  18. Following the Cantabrian (Ventaniella) fault into the Bay of Biscay: a deeply incised canyon, a change of trend, and 20002 km of unstable continental slope

    NASA Astrophysics Data System (ADS)

    Fernandez Viejo, G.; Lopez-Fernandez, C.; Dominguez-Cuesta, M.

    2012-12-01

    The Cantabrian fault, known traditionally with the local name of Ventaniella fault is a long-lived rectilinear feature that runs in a NW-SE direction for more than 200 km across northwest Spain. Its origins are linked to the end of the Variscan orogeny, but its important role took place during the extensional processes of the Mesozoic that led Iberia to become a microplate separated from Europe and Africa. With the initiation of the alpine orogeny Iberia converges with Europe pushed from the south by Africa, and the Ventaniella fault acted as a dextral strike slip fault with an important reverse component. It has a relatively low topographic expression, although its NE block is slightly uplifted with respect to the SW one. Traditionally it has been mapped offshore following the trace of the Aviles canyon, a deeply incised canyon 7 miles from the coast, oblique to the E-W coast trend and which descents from 160 m in the continental shelf , down to 4750 m in the abyssal plain of the Bay of Biscay . All this incision occurs along just 50 km length of the narrow continental shelf in this area, making the Aviles canyon one of the steepest in the Atlantic. Through seismic reflection lines across the continental shelf and slope, a bathymetric model up to date and a 3D geological model the fault has been mapped into the sea integrating the seismicity associated to its SW block and the newest geological mapping on land. At the same time, what is observed in the northwest prolongation and termination of the fault against the oceanic crust of the abyssal plain is a continental slope that is full of mass-wasting processes along more than 80 km length, showing gravitational and submarine slide processes in an area that roughly occupies 2000 km 2 and involves a volume of unstable mass estimated in more than 1000 km3 . One of the biggest displaced masses made the Aviles canyon change its trend to N-S in an almost 90° bend close to the middle slope. Although the displaced masses

  19. Geology and geochemistry of samples from Los Alamos National Laboratory HDR Well EE-2, Fenton Hill, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, R.; Laughlin, A.W.; Aldrich, M.J. Jr.

    1981-07-01

    Petrologic, geochemical, and structural analyses of cores and cuttings obtained from 3000 to 4389-m true vertical depth in drill hole EE-2 indicate that this deeper part of the Precambrian section at Fenton Hill, New Mexico is composed primarily of a very heterogeneous and structurally anisotropic metamorphic complex, locally intruded by dikes and sills of granodioritic and monzogranitic composition. In this borehole none of these igneous bodies approach in size the 335-m-thick biotite-granodiorite body encountered at 2591-m depth beneath Fenton Hill in the other two drill holes. Contacts between the igneous and metamorphic rocks range from sharp and discordant to gradational.more » Analysis of cuttings indicates that clay-rich alteration zones are relatively common in the openhole portion of EE-2. These zones average about 20 m in thickness. Fracture sets in the Precambrian basement rock intersected by the EE-2 well bore mostly trend northeast and are steeply dipping to vertical; however, one of the sets dips gently to the northwest. Slickensided fault planes are present in a core (No.5) taken from a true vertical depth of 4195 m. Available core orientation data and geologic inference suggest that the faults dip steeply and trend between N.42/sup 0/ and 59/sup 0/E.« less

  20. Extensional reactivation of the Chocolate Mountains subduction thrust in the Gavilan Hills of southeastern California

    USGS Publications Warehouse

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    1997-01-01

    The NE vergent Chocolate Mountains fault of south-eastern California has been interpreted as either a subduction thrust responsible for burial and prograde metamorphism of the ensimatic Orocopia Schist or as a normal fault involved in the exhumation of the schist. Our detailed structural analysis in the Gavilan Hills area provides new evidence to confirm the latter view. A zone of deformation is present at the top of the Orocopia Schist in which lineations are parallel to those in the upper plate of the Chocolate Mountains fault but oblique to ones at relatively deep levels in the schist. Both the Orocopia Schist and upper plate contain several generations of shear zones that show a transition from crystalloblastic through mylonitic to cataclastic textures. These structures formed during retrograde metamorphism and are considered to record the exhumation of the Orocopia Schist during early Tertiary time as a result of subduction return flow. The Gatuna fault, which places low-grade, supracrustal metasediments of the Winterhaven Formation above the gneisses of the upper plate, also seems to have been active at this time. Final unroofing of the Orocopia Schist occurred during early to middle Miocene regional extension and may have involved a second phase of movement on the Gatuna fault. Formation of the Chocolate Mountains fault during exhumation indicates that its top-to-the-NE sense of movement provides no constraint on the polarity of the Orocopia Schist subduction zone. This weakens the case for a previous model involving SW dipping subduction, while providing support for the view that the Orocopia Schist is a correlative of the Franciscan Complex.

  1. Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore Southern California

    USGS Publications Warehouse

    Marlow, M. S.; Gardner, J.V.; Normark, W.R.

    2000-01-01

    Recently acquired high-resolution multibeam bathymetric data reveal several linear traces that are the surficial expressions of seafloor rupture of Holocene faults on the upper continental slope southeast of the Palos Verdes Peninsula. High-resolution multichannel and boomer seismic-reflection profiles show that these linear ruptures are the surficial expressions of Holocene faults with vertical to steep dips. The most prominent fault on the multibeam bathymetry is about 10 km to the west of the mapped trace of the Palos Verdes fault and extends for at least 14 km between the shelf edge and the base of the continental slope. This fault is informally called the Avalon Knoll fault for the nearby geographic feature of that name. Seismic-reflection profiles show that the Avalon Knoll fault is part of a northwest-trending complex of faults and anticlinal uplifts that are evident as scarps and bathymetric highs on the multibeam bathymetry. This fault complex may extend onshore and contribute to the missing balance of Quaternary uplift determined for the Palos Verdes Hills and not accounted for by vertical uplift along the onshore Palos Verdes fault. We investigate the extent of the newly located offshore Avalon Knoll fault and use this mapped fault length to estimate likely minimum magnitudes for events along this fault.

  2. Fault Deformation and Segmentation of the Newport-Inglewood Rose Canyon, and San Onofre Trend Fault Systems from New High-Resolution 3D Seismic Imagery

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2016-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these data volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on this new data, we've mapped several small fault strands associated with the SOT that appear to link up with a westward jog in right-lateral fault splays of the NIRC Fault on the shelf and then narrowly radiate southwards. Our

  3. Mechanical coupling between earthquakes and volcanoes inferred from stress transfer models: evidence from Vesuvio, Etna and Alban Hills (Italy)

    NASA Astrophysics Data System (ADS)

    Cocco, M.; Feuillet, N.; Nostro, C.; Musumeci, C.

    2003-04-01

    We investigate the mechanical interactions between tectonic faults and volcanic sources through elastic stress transfer and discuss the results of several applications to Italian active volcanoes. We first present the stress modeling results that point out a two-way coupling between Vesuvius eruptions and historical earthquakes in Southern Apennines, which allow us to provide a physical interpretation of their statistical correlation. Therefore, we explore the elastic stress interaction between historical eruptions at the Etna volcano and the largest earthquakes in Eastern Sicily and Calabria. We show that the large 1693 seismic event caused an increase of compressive stress along the rift zone, which can be associated to the lack of flank eruptions of the Etna volcano for about 70 years after the earthquake. Moreover, the largest Etna eruptions preceded by few decades the large 1693 seismic event. Our modeling results clearly suggest that all these catastrophic events are tectonically coupled. We also investigate the effect of elastic stress perturbations on the instrumental seismicity caused by magma inflation at depth both at the Etna and at the Alban Hills volcanoes. In particular, we model the seismicity pattern at the Alban Hills volcano (central Italy) during a seismic swarm occurred in 1989-90 and we interpret it in terms of Coulomb stress changes caused by magmatic processes in an extensional tectonic stress field. We verify that the earthquakes occur in areas of Coulomb stress increase and that their faulting mechanisms are consistent with the stress perturbation induced by the volcanic source. Our results suggest a link between faults and volcanic sources, which we interpret as a tectonic coupling explaining the seismicity in a large area surrounding the volcanoes.

  4. The wister mud pot lineament: Southeastward extension or abandoned strand of the San Andreas fault?

    USGS Publications Warehouse

    Lynch, D.K.; Hudnut, K.W.

    2008-01-01

    We present the results of a survey of mud pots in the Wister Unit of the Imperial Wildlife Area. Thirty-three mud pots, pot clusters, or related geothermal vents (hundreds of pots in all) were identified, and most were found to cluster along a northwest-trending line that is more or less coincident with the postulated Sand Hills fault. An extrapolation of the trace of the San Andreas fault southeastward from its accepted terminus north of Bombay Beach very nearly coincides with the mud pot lineament and may represent a surface manifestation of the San Andreas fault southeast of the Salton Sea. Additionally, a recent survey of vents near Mullet Island in the Salton Sea revealed eight areas along a northwest-striking line where gas was bubbling up through the water and in two cases hot mud and water were being violently ejected.

  5. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    NASA Astrophysics Data System (ADS)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques

  6. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading

  7. 2014 M=6.0 South Napa earthquake triggered widespread aftershocks and stressed several major faults and exotic fault clusters

    USGS Publications Warehouse

    Toda, Shinji; Stein, Ross

    2015-01-01

    The strongest San Francisco Bay area earthquake since the 1989 Mw 7.0 Loma Prieta shock struck near Napa on 24 August 2014. Field mapping (Dawson et al., 2014; Earthquake Engineering Research Institute [EERI], 2014; Brocher et al., 2015) and seismic and geodetic source inversions (Barnhart et al., 2015; Dreger et al., 2015; Wei et al., 2015) indicate that a 15-km-long northwest-trending section of the West Napa Valley fault ruptured in the earthquake. Remarkably, it was the first indisputable surface rupture in the Bay area since 1906. The Napa event, along with other smaller earthquakes such as the 1980 Mw 5.8 Livermore and 1984 Mw 6.2 Morgan Hill events on the Calaveras and Hayward faults over the past 3–4 decades, may indicate that the Bay area region is emerging from the stress shadow of the 1906 Mw 7.8 San Francisco earthquake (Harris and Simpson, 1998; Pollitz et al., 2004). Since 1979, there has been a 140% increase in the rate of Mw≥4.1 shocks (Fig. 1) in the broader Bay area, with most concentrated in a corridor extending north from the 1989 Loma Prieta aftershock zone through the Calaveras, Greenville, Green Valley, Napa, and Rodgers Creek faults east of the San Francisco Bay (Fig. 1a). This corridor roughly coincides with the 1906 stress shadow that is being eroded away by more than a century of stress reaccumulation. The Napa event, as well as the surrounding faults on which we calculate the resulting hazard increases, all lie within this zone.

  8. Reevaluation of the Piermont-Frontenac allochthon in the Upper Connecticut Valley: Restoration of a coherent Boundary Mountains–Bronson Hill stratigraphic sequence

    USGS Publications Warehouse

    Rankin, Douglas W.; Tucker, Robert D.; Amelin, Yuri

    2013-01-01

    The regional extent and mode and time of emplacement of the Piermont-Frontenac allochthon in the Boundary Mountains–Bronson Hill anticlinorium of the Upper Connecticut Valley, New Hampshire–Vermont, are controversial. Moench and coworkers beginning in the 1980s proposed that much of the autochthonous pre–Middle Ordovician section of the anticlinorium was a large allochthon of Silurian to Early Devonian rocks correlated to those near Rangeley, Maine. This ∼200-km-long allochthon was postulated to have been transported westward in the latest Silurian to Early Devonian as a soft-sediment gravity slide on a hypothesized Foster Hill fault. New mapping and U-Pb geochronology do not support this interpretation. The undisputed Rangeley sequence in the Bean Brook slice is different from the disputed sequence in the proposed larger Piermont-Frontenac allochthon, and field evidence for the Foster Hill fault is lacking. At the type locality on Foster Hill, the postulated “fault” is a stratigraphic contact within the Ordovician Ammonoosuc Volcanics. The proposed Foster Hill fault would place the Piermont-Frontenac allochthon over the inverted limb of the Cornish(?) nappe, which includes the Emsian Littleton Formation, thus limiting the alleged submarine slide to post-Emsian time. Mafic dikes of the 419 Ma Comerford Intrusive Complex intrude previously folded strata attributed to the larger Piermont-Frontenac allochthon as well as the autochthonous Albee Formation and Ammonoosuc Volcanics. The Lost Nation pluton intruded and produced hornfels in previously deformed Albee strata. Zircons from an apophysis of the pluton in the hornfels have a thermal ionization mass spectrometry 207Pb/206Pb age of 444.1 ± 2.1 Ma. Tonalite near Bath, New Hampshire, has a zircon sensitive high-resolution ion microprobe 206Pb/238U age of 492.5 ± 7.8 Ma. The tonalite intrudes the Albee Formation, formerly interpreted as the Silurian Perry Mountain Formation of the proposed allochthon

  9. Black Hills Region, SD, USA

    NASA Image and Video Library

    1973-06-22

    SL2-81-157 (22 June 1973) --- This view of the Black Hills Region, SD (44.0N, 104.0W) shows the scenic Black Hills where Mt. Rushmore and other monuments are located. Cities and towns in this view include: Rapid City, Deadwood, and Belle Fourche with the nearby Belle Fourche Reservoir. Notable in this scene are the recovering burn scars (seen as irregular shaped light toned patches) from a 1959 forest fire in the Black Hills National Forest near the edge of the photo. Photo credit: NASA

  10. Calcareous sponges from abyssal and bathyal depths in the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Rapp, Hans Tore; Janussen, Dorte; Tendal, Ole S.

    2011-03-01

    Calcareous sponges have traditionally been regarded as shallow-water organisms, a persistent myth created by Hentschel (1925), partly supported by the problematic question of calcareous skeletal secretion under high partial CO 2-pressure below the CCD in the abyss. Up to now, only few species world-wide of the sponge class Calcarea have been described from depths below 2000 m. By far, the largest number of records of Antarctic Calcarea is known from shelf areas between 50 and 400 m depth. They have only been sporadically recorded on the lower shelf and the upper slope from depths between 570 and 850 m. From abyssal depths in the Antarctic there are no previous records of calcareous sponges. It was therefore a big surprise when the first true deep-sea Calcarea from the Antarctic were collected at depths between 1120 and 4400 m during the ANDEEP I, II and III expeditions ( Janussen et al., 2006). To date, five calcareous sponge species have been found, including three species new to science. The three new species belong to the genera Ascaltis, Clathrina and Leucetta. Although calcareous sponges are rare in the Antarctic deep sea, they seem to constitute a constant component of the fauna. Antarctic Calcarea shows all the characteristics of need for revision and further collection and investigation. Still, many new species are likely to be discovered in the Antarctic deep-sea.

  11. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  12. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, aftershock sequence

    USGS Publications Warehouse

    Michael, A.J.

    1988-01-01

    A three-dimensional velocity model for the area surrounding the 24 April 1984 Morgan Hill earthquake has been developed by simultaneously inverting local earthquake and refraction arrival-time data. This velocity model corresponds well to the surface geology of the region, predominantly showing a low-velocity region associated with the sedimentary sequence to the south-west of the Madrone Springs fault. The focal mechanisms were also determined for 946 earthquakes using both the one-dimensional and three-dimensional earth models. Both earth models yield similar focal mechanisms for these earthquakes. -from Author

  13. Comparisons of Low-Strain Amplification at Soft-Sediment, Hard-Rock, Topographic, and Fault-Zone Sites in the Hayward Fault Zone, California

    NASA Astrophysics Data System (ADS)

    Catchings, R.; Strayer, L. M.; Goldman, M.

    2014-12-01

    We used a temporary network of approximately 600 seismographs to record a seismic source generated by the collapse of a 13-story building near the active trace of the Hayward Fault. These data allow us to evaluate variations in ground shaking across a series of 30 2-km-long radial arrays centered on the seismic source. Individual seismographs were spaced at 200-m intervals, forming a series of 360°concentric arrays around the seismic source. The data show variations in amplification caused by (1) soft sediments within the East Bay alluvial plain (EBAP), (2) hard rocks within the East Bay hills (EBH), (3) low-velocity rocks within the Hayward Fault zone (HFZ), and (4) topography. Given that ground shaking varies strongly with distance from the source, the concentric arrays allowed us to measure variations in ground shaking as a function of azimuth at fixed distances from the source. On individual linear profiles within the concentric arrays, we observed decreases in peak ground velocity (PGV) across the HFZ and other faults within the EBH. However, for a given distance from the source, we observe four to five fold amplification from the EBAP sites compared to most sites in the EBH. Topographic and fault-zone amplification effects within the EBH, however, are greater than the EBAP sediment amplification. Thus, for future earthquakes, shaking at many sites within the EBH may be significantly stronger than many sites within the EBAP. These observations suggest amplification can be expected in unconsolidated sediments, but topographic and fault-zone amplification can be larger. This confirms the importance of site effects for hazard mitigation and in interpreting MMI for future and historical earthquakes.

  14. Continuing and New Measurements at the Abyssal ALOHA Cabled Observatory

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Potemra, J. T.; Butler, R.; Santiago-Mandujano, F.; Lukas, R.; Duennebier, F. K.; Karl, D. M.; Aucan, J.

    2016-02-01

    The ALOHA Cabled Observatory (ACO) is a general purpose "node" providing power, communications and timing connectivity for science use at Station ALOHA 100 km north of Oahu. Included are a suite of basic sensors making core measurements, some local and some sensing the water column. At 4728 m deep, it is the deepest scientific outpost on the planet with power and Internet. Importantly, Station ALOHA is the field site of the NSF-funded Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988, at a site that is representative of roughly 70% of the world ocean, sampling the ocean from top to bottom to monitor and study changes on scales of months to decades. The co-located Woods Hole mooring (WHOTS) provides meteorological and upper ocean physical data. The CMORE (Center for Microbial Oceanography Research and Education) and SCOPE (Simons Collaboration on Ocean Processes and Ecology) programs address their respective science topics at ALOHA. Together these programs provide a truly unique means for observing the ocean across all disciplines and regimes (deep sea, near surface, etc.). ACO has been operating in the abyss since June 2011, collecting temperature, salinity, velocity, acoustic, and video data (see for instance the abstract by Lukas et al., Spatial Analysis of Abyssal Temperature Variations Observed from the ALOHA Cabled Observatory and WHOTS Moorings). Using the University of Hawaii remotely operated vehicle ROV Lu`ukai, a basic sensor package was recently installed equipped with a Paroscientific nano-resolution pressure sensor, a WetLabs fluorometer/turbidity sensor, and a Seabird CTDO2 instrument. These data will be presented and described.

  15. Beacon Hill end moraine, Boston: new explanation of an important urban feature

    USGS Publications Warehouse

    Kaye, Clifford A.; Coates, Donald R.

    1976-01-01

    The usefulness of geology to engineers is in direct proportion to how well it helps us predict the subsurface; these predictions, in turn, depend on our knowledge of the geomorphic processes that molded the terrain. The uncertainties of interpretation are particularly great in glaciated terrain because our understanding of both glacial processes and history is so incomplete, a fact well illustrated in Beacon Hill. Recent construction activities in the eastern part of the hill, until now classified as a drumlin, have shown that it is better interpreted as an end moraine formed by a Wisconsonian glacial readvance. Instead of the firm till that was anticipated as foundation material, excavations exposed a complex of sand, gravel, and clay, with only minor zones of till. The structure of these deposits strongly suggests that originally they were plates of the glacial bed that froze to the glacier and were transported englacially. Thrust faulting and other deformations are glacial structures formed within the ice in the glacier's terminal zone. In spite of the complex englacial history, these deposits lost little of their original appearance and intergranular relationships. Upon deglaciation, the frozen moraine thawed, and slumping formed complex secondary structures on the ridge's lower flanks.

  16. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    USGS Publications Warehouse

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon

    2015-01-01

    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  17. Bait attending fishes of the abyssal zone and hadal boundary: Community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches

    NASA Astrophysics Data System (ADS)

    Linley, T. D.; Stewart, A. L.; McMillan, P. J.; Clark, M. R.; Gerringer, M. E.; Drazen, J. C.; Fujii, T.; Jamieson, A. J.

    2017-03-01

    Baited landers were deployed at 83 stations at four locations in the west Pacific Ocean from bathyal to hadal depths: The Kermadec Trench, the New Hebrides Trench, the adjoining South Fiji Basin and the Mariana Trench. Forty-seven putative fish species were observed. Distinct fish faunal groups were identified based on maximum numbers and percentage of observations. Both analyses broadly agreed on the community structure: A bathyal group at <3000 m in the New Hebrides and Kermadec trenches, an abyssal group (3039 - 4692 m) in the Kermadec Trench, an abyssal-hadal transition zone (AHTZ) group (Kermadec: 4707-6068 m, Mariana: 4506-6198 m, New Hebrides: 2578-6898 m, South Fiji Basin: 4074-4101 m), and a hadal group of endemic snailfish in the Kermadec and Mariana trenches (6750-7669 m and 6831-8143 m respectively). The abyssal and hadal groups were absent from the New Hebrides Trench. Depth was the single factor that best explained the biological variation between samples (16%), the addition of temperature and average surface primary production for the previous year increased this to 36% of variation. The absence of the abyssal group from the New Hebrides Trench and South Fiji Basin was due to the absence of macrourids (Coryphaenoides spp.), which defined the group. The macrourids may be energetically limited in these areas. In their absence the species of the AHTZ group appear released of competition with the macrourids and are found far shallower at these sites. The fish groups had distinct feeding strategies while attending the bait: The bathyal and abyssal groups were almost exclusively necrophagous, the AHTZ group comprised predatory and generalist feeders, while the hadal snailfishes were exclusively predators. With increasing depth, predation was found to increase while scavenging decreased. The data suggest scavenging fish fauna do not extend deeper than the hadal boundary.

  18. Abyssal intimacies and temporalities of care: How (not) to care about deformed leaf bugs in the aftermath of Chernobyl.

    PubMed

    Schrader, Astrid

    2015-10-01

    Prompted by a classroom discussion on knowledge politics in the aftermath of the Chernobyl disaster, this article offers a reading of Hugh Raffles' Insectopedia entry on Chernobyl. In that entry, Raffles describes how Swiss science-artist and environmental activist Cornelia Hesse-Honegger collects, studies, and paints morphologically deformed leaf bugs that she finds in the proximity of nuclear power plants. In exploring how to begin to care about beings, such as leaf bugs, this article proposes a notion of care that combines an intimate knowledge practice with an ethical relationship to more-than-human others. Jacques Derrida's notion of 'abyssal intimacy' is central to such a combination. Hesse-Honegger's research practices enact and her paintings depict an 'abyssal intimacy' that deconstructs the oppositions between concerns about human suffering and compassion for seemingly irrelevant insects and between knowledge politics and ethics. At the heart of such a careful knowledge production is a fundamental passivity, based on a shared vulnerability. An abyssal intimacy is not something we ought to recognize; rather, it issues from particular practices of care that do not identify their subjects of care in advance. Caring or becoming affected thus entails the dissociation of affection not only from the humanist subject, but also from movements in time: from direct helping action and from the assumption that advocacy necessarily means speaking for an other, usually assumed to be inferior.

  19. Response of deformation patterns to reorganization of the southern San Andreas fault system since ca. 1.5 Ma

    NASA Astrophysics Data System (ADS)

    Fattaruso, Laura A.; Cooke, Michele L.; Dorsey, Rebecca J.; Housen, Bernard A.

    2016-12-01

    Between 1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault zone and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault zone, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that initiation and growth of the San Jacinto fault zone led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical-axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the modeled fault evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of incipient faulting, and support the notion of north-to-south propagation of the San Jacinto fault during its initiation.

  20. Ocean-Bottom Topography: The Divide between the Sohm and Hatteras Abyssal Plains.

    PubMed

    Pratt, R M

    1965-06-18

    A compilation of precision echo soundings has delineated the complex topography between the Sohm and Hatteras abyssal plains off the Atlantic coast of the United States. At present the divide between the two plains is a broad, flat area about 4950 meters deep; however, the configuration of channels and depressions suggests spillage of turbidity currents from the Sohm Plain into the Hatteras Plain and a shifting of the divide toward the northeast. Hudson Canyon terminates in the divide area and has probably fed sediment into both plains.

  1. A Controllable Earthquake Rupture Experiment on the Homestake Fault

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Gwaba, D.; Elsworth, D.; Lowell, R. P.; Onstott, T. C.

    2010-12-01

    Fault-slip is typically simulated in the laboratory at the cm-to-dm scale. Laboratory results are then up-scaled by orders of magnitude to understand faulting and earthquakes processes. We suggest an experimental approach to reactivate faults in-situ at scales ~10-100 m using thermal techniques and fluid injection to modify in situ stresses and the fault strength to the point where the rock fails. Mines where the modified in-situ stresses are sufficient to drive faulting, present an opportunity to conduct such experiments. During our recent field work in the former Homestake gold mine in the northern Black Hills, South Dakota, we found a large fault present on multiple mine levels. The fault is subparallel to the local foliation in the Poorman formation, a Proterozoic metamorphic rock deformed into regional-scale folds with axes plunging ~40° to the SSE. The fault extends at least 1.5 km along strike and dip, with a center ~1.5 km deep. It strikes ~320-340° N, dips ~45-70° NE, and is recognized by a ~0.3-0.5 m thick distinct gouge that contains crushed host rock and black material that appears to be graphite. Although we could not find clear evidence for fault displacement, secondary features suggest that it is a normal fault. The size and distinct structure of this fault make it a promising target for in-situ experimentation of fault strength, hydrological properties, and slip nucleation processes. Most earthquakes are thought to be the result of unstable slip on existing faults, Activation of the Homestake fault in response to the controlled fluid injection and thermally changing background stresses is likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a small earthquake (dynamic) rupture. This controlled instability is intimately related to the dependence of the fault strength on the slip process and has been

  2. Tectonic creep in the Hayward fault zone, California

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Bonilla, M.G.

    1966-01-01

    Tectonic creep is slight apparently continuous movement along a fault. Evidence of creep has been noted at several places within the Hayward fault zone--a zone trending northwestward near the western front of the hills bordering the east side of San Francisco Bay. D. H. Radbruch of the Geological Survey and B. J. Lennert, consulting engineer, confirmed a reported cracking of a culvert under the University of California stadium. F. B. Blanchard and C. L. Laverty of the East Bay Municipal Utility District of Oakland studied cracks in the Claremont water tunnel in Berkeley. M. G. Bonilla of the Geological Survey noted deformation of railroad tracks in the Niles district of Fremont. Six sets of tracks have been bent and shifted. L. S. Cluff of Woodward-Clyde-Sherard and Associates and K. V. Steinbrugge of the Pacific Fire Rating Bureau noted that the concrete walls of a warehouse in the Irvington district of Fremont have been bent and broken, and the columns forced out of line. All the deformations noted have been right lateral and range from about 2 inches in the Claremont tunnel to about 8 inches on the railroad tracks. Tectonic creep almost certainly will continue to damage buildings, tunnels, and other structures that cross the narrow bands of active movement within the Hayward fault zone.

  3. Active out-of-sequence thrust faulting in the central Nepalese Himalaya.

    PubMed

    Wobus, Cameron; Heimsath, Arjun; Whipple, Kelin; Hodges, Kip

    2005-04-21

    Recent convergence between India and Eurasia is commonly assumed to be accommodated mainly along a single fault--the Main Himalayan Thrust (MHT)--which reaches the surface in the Siwalik Hills of southern Nepal. Although this model is consistent with geodetic, geomorphic and microseismic data, an alternative model incorporating slip on more northerly surface faults has been proposed to be consistent with these data as well. Here we present in situ cosmogenic 10Be data indicating a fourfold increase in millennial timescale erosion rates occurring over a distance of less than 2 km in central Nepal, delineating for the first time an active thrust fault nearly 100 km north of the surface expression of the MHT. These data challenge the view that rock uplift gradients in central Nepal reflect only passive transport over a ramp in the MHT. Instead, when combined with previously reported 40Ar-39Ar data, our results indicate persistent exhumation above deep-seated, surface-breaking structures at the foot of the high Himalaya. These results suggest that strong dynamic interactions between climate, erosion and tectonics have maintained a locus of active deformation well to the north of the Himalayan deformation front.

  4. Red Hill

    EPA Pesticide Factsheets

    Information about the Red Hill Bulk Fuel Storage Facility in Hawaii Administrative Order on Consent (AOC), an enforceable agreement of the Hawaii Department of Health, the Environmental Protection Agency, and the U.S. Navy -- Defense Logistics Agency.

  5. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    PubMed Central

    van Oevelen, Dick

    2018-01-01

    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403

  6. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  7. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  8. Directional Site Amplification Effect on Tarzana Hill, California

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Shakal, A.

    2003-12-01

    Significantly amplified ground accelerations at the Tarzana Hill station were recorded during the 1987 Mw 5.9 Whittier Narrows and the 1994 Mw 6.7 Northridge earthquakes. Peak horizontal ground acceleration at the Tarzana station during the 1999 Mw 7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. The Tarzana site was drilled to a depth of 100 m. A low shear-wave velocity near the surface of 100 m/sec increasing to near 750 m/sec at 100 m depth was measured. The 20 m high hill was found to be well drained with a water table near 17 m. Modelo formation (extremely weathered at the surface to fresh at depth) underlies the hill. The subsurface geology and velocities obtained allow classification of this location as a soft-rock site. After the Northridge earthquake the California Strong Motion Instrumentation Program significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. More than twenty events, including the Hector Mine earthquake, were recorded by all these instruments at Tarzana. Comparison of recordings and response spectra demonstrates strong directional resonance on the top of the hill in a direction perpendicular to the strike of the hill in the period range from 0.04 to 0.8 sec (1.2 to 25 Hz). There is practically no amplification from the bottom to the top of the hill for the component parallel to the strike of the hill. In contrast to accelerations recorded during the Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site

  9. Delineation of faulting and basin geometry along a seismic reflection transect in urbanized San Bernardino Valley, California

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Anderson, M.L.

    2002-01-01

    Fourteen kilometers of continuous, shallow seismic reflection data acquired through the urbanized San Bernardino Valley, California, have revealed numerous faults between the San Jacinto and San Andreas faults as well as a complex pattern of downdropped and uplifted blocks. These data also indicate that the Loma Linda fault continues northeastward at least 4.5 km beyond its last mapped location on the southern edge of the valley and to within at least 2 km of downtown San Bernardino. Previously undetected faults within the valley northeast of the San Jacinto fault are also imaged, including the inferred western extension of the Banning fault and several unnamed faults. The Rialto-Colton fault is interpreted southwest of the San Jacinto fault. The seismic data image the top of the crystalline basement complex across 70% of the profile length and show that the basement has an overall dip of roughly 10?? southwest between Perris Hill and the San Jacinto fault. Gravity and aeromagnetic data corroborate the interpreted location of the San Jacinto fault and better constrain the basin depth along the seismic profile to be as deep as 1.7 km. These data also corroborate other fault locations and the general dip of the basement surface. At least 1.2 km of apparent vertical displacement on the basement is observed across the San Jacinto fault at the profile location. The basin geometry delineated by these data was used to generate modeled ground motions that show peak horizontal amplifications of 2-3.5 above bedrock response in the 0.05- to 1.0-Hz frequency band, which is consistent with recorded earthquake data in the valley.

  10. Principal facts for gravity data along the Hayward fault and vicinity, San Francisco Bay area, northern California

    USGS Publications Warehouse

    Ponce, David A.

    2001-01-01

    The U.S. Geological Survey (USGS) established over 940 gravity stations along the Hayward fault and vicinity. The Hayward fault, regarded as one of the most hazardous faults in northern California (Working Group on California Earthquake Probabilities, 1999), extends for about 90 km from Fremont in the southeast to San Pablo Bay in the northwest. The Hayward fault is predominantly a right-lateral strike-slip fault that forms the western boundary of the East Bay Hills. These data and associated physical property measurement were collected as part of on-going studies to help determine the earthquake hazard potential of major faults within the San Francisco Bay region. Gravity data were collected between latitude 37°30' and 38°15' N and longitude 121°45' and 122°30' W. Gravity stations were located on the following 7.5 minute quadrangles: Newark, Niles, San Leandro, Hayward, Dublin, Oakland West, Oakland East, Las Trampas Ridge, Diablo, Richmond, Briones Valley, Walnut Creek, and Clayton. All data were ultimately tied to primary gravity base station Menlo Park A, located on the campus of the U.S. Geological Survey in Menlo Park, Calif. (latitude 37°27.34' N, longitude 122°10.18' W, observed gravity value 979944.27 mGal).

  11. AmeriFlux US-Blk Black Hills

    DOE Data Explorer

    Meyers, Tilden [NOAA/ARL

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Blk Black Hills. Site Description - The Black Hills tower was established by the Institute for Atmospheric Studies of the South Dakota School of Mines and Technology.

  12. Preliminary paleoseismic observations along the western Denali fault, Alaska

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into

  13. High-resolution sub-bottom seismic and sediment core records from the Chukchi Abyssal Plain reveal Quaternary glaciation impacts on the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Joe, Y. J.; Seokhoon, Y.; Nam, S. I.; Polyak, L.; Niessen, F.

    2017-12-01

    For regional context of the Quaternary history of Arctic marine glaciations, such as glacial events in northern North America and on the Siberian and Chukchi margins, we used CHIRP sub-bottom profiles (SBP) along with sediment cores, including a 14-m long piston core ARA06-04JPC taken from the Chukchi abyssal plain during the RV Araon expedition in 2015. Based on core correlation with earlier developed Arctic Ocean stratigraphies using distribution of various sedimentary proxies, core 04JPC is estimated to extend to at least Marine Isotope Stage 13 (>0.5 Ma). The stratigraphy developed for SBP lines from the Chukchi abyssal plain to surrounding slopes can be divided into four major seismostratigraphic units (SSU 1-4). SBP records from the abyssal plain show well preserved stratification, whereas on the surrounding slopes this pattern is disrupted by lens-shaped, acoustically transparent sedimentary bodies interpreted as glaciogenic debris flow deposits. Based on the integration of sediment physical property and SBP data, we conclude that these debris flows were generated during several ice-sheet grounding events on the Chukchi and East Siberian margins, including adjacent ridges and plateaus, during the middle to late Quaternary.

  14. Response of deformation patterns to reorganizations of the southern San Andreas fault system since ca. 1.5 Ma

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.; Fattaruso, L.; Dorsey, R. J.; Housen, B. A.

    2015-12-01

    Between ~1.5 and 1.1 Ma, the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault and termination of slip on the extensional West Salton detachment fault. The southern San Andreas fault itself has also evolved since this time, with several shifts in activity among fault strands within San Gorgonio Pass. We use three-dimensional mechanical Boundary Element Method models to investigate the impact of these changes to the fault network on deformation patterns. A series of snapshot models of the succession of active fault geometries explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault, initiation of the San Jacinto fault, and shifts in activity of the San Andreas fault. Interpreted changes to uplift patterns are well matched by model results. These results support the idea that growth of the San Jacinto fault led to increased uplift rates in the San Gabriel Mountains and decreased uplift rates in the San Bernardino Mountains. Comparison of model results for vertical axis rotation to data from paleomagnetic studies reveals a good match to local rotation patterns in the Mecca Hills and Borrego Badlands. We explore the mechanical efficiency at each step in the evolution, and find an overall trend toward increased efficiency through time. Strain energy density patterns are used to identify regions of off-fault deformation and potential incipient faulting. These patterns support the notion of north-to-south propagation of the San Jacinto fault during its initiation. The results of the present-day model are compared with microseismicity focal mechanisms to provide additional insight into the patterns of off-fault deformation within the southern San Andreas fault system.

  15. Historic surface slip along the San Andreas Fault near Parkfield, California

    USGS Publications Warehouse

    Lienkaemper, J.J.; Prescott, W.H.

    1989-01-01

    The Parkfield Earthquake Prediction Experiment is focusing close attention on the 44-km-long section of the San Andreas fault that last ruptured seismically in 1966 (Ms 6.0). The 20-km-long central segment of the 1966 Parkfield rupture, extending from the mainshock epicenter at Middle Mountain southeastward to Gold Hill, forms a 1- to 2-km salient northeastward away from the dominant N40??W strike. Following the 1966 earthquake afterslip, aseismic slip has been nearly constant. Moderate Parkfield earthquakes have recurred on average every 21 years since 1857, when a great earthquake (M ~ 8) ruptured at least as far north as the southern Parkfield segment. Many measurements of slip have been made near Parkfield since 1966. Nevertheless, much of the history of surface slip remained uncertain, especially the total amount associated with the 1966 event. In 1985 we measured accumulated slip on the four oldest cultural features offset by the fault along the 1966 Parkfield rupture segment. -from Authors

  16. Features on Venus generated by plate boundary processes

    NASA Technical Reports Server (NTRS)

    Mckenzie, Dan; Ford, Peter G.; Johnson, Catherine; Parsons, Barry; Sandwell, David; Saunders, Stephen; Solomon, Sean C.

    1992-01-01

    Various observations suggest that there are processes on Venus that produce features similar to those associated with plate boundaries on earth. Synthetic aperture radar images of Venus, taken with a radar whose wavelength is 12.6 cm, are compared with GLORIA images of active plate boundaries, obtained with a sound source whose wavelength is 23 cm. Features similar to transform faults and to abyssal hills on slow and fast spreading ridges can be recognized within the Artemis region of Venus but are not clearly visible elsewhere. The composition of the basalts measured by the Venera 13 and 14 and the Vega 2 spacecraft corresponds to that expected from adiabatic decompression, like that which occurs beneath spreading ridges on earth. Structures that resemble trenches are widespread on Venus and show the same curvature and asymmetry as they do on earth. These observations suggest that the same simple geophysical models that have been so successfully used to understand the tectonics of earth can also be applied to Venus.

  17. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  18. Seeing mountains in mole hills: geographical-slant perception

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Creem, S. H.; Zosh, W. D.; Kaiser, M. K. (Principal Investigator)

    2001-01-01

    When observers face directly toward the incline of a hill, their awareness of the slant of the hill is greatly overestimated, but motoric estimates are much more accurate. The present study examined whether similar results would be found when observers were allowed to view the side of a hill. Observers viewed the cross-sections of hills in real (Experiment 1) and virtual (Experiment 2) environments and estimated the inclines with verbal estimates, by adjusting the cross-section of a disk, and by adjusting a board with their unseen hand to match the inclines. We found that the results for cross-section viewing replicated those found when observers directly face the incline. Even though the angles of hills are directly evident when viewed from the side, slant perceptions are still grossly overestimated.

  19. The timber resources of the Ohio Hill Country

    Treesearch

    Paul S. DeBald; Roger E. McCay

    1969-01-01

    This report presents 1967 forest resource statistics for the Hill Country-Ohio's portion of Appalachia. The Hill Country comprises 28 counties, which were divided into three geographic sampling units for this survey. The Hill Country of the 1952 Ohio forest survey contained 26 of these counties. The additional Appalachia counties are Brown and Clermont in the...

  20. Vema-TRANSIT - An interdisciplinary study on the bathymetry of the Vema-Fracture Zone and Puerto Rico Trench as well as abyssal Atlantic biodiversity

    NASA Astrophysics Data System (ADS)

    Riehl, Torben; Kaiser, Stefanie; Brandt, Angelika

    2018-02-01

    The seafloor below 3500 m remains largely unexplored. The paucity of knowledge of abyssal and hadal environments encompasses a wide spectrum of geological and biological patterns and processes as well as their interactions. Historically most marine research has been conducted in the North Atlantic. However, the high proportion of undescribed taxa frequently discovered at greater depth there underline the need to fill in these knowledge gaps. The Vema-TRANSIT campaign in northern winter 2014-2015 surveyed and sampled along almost the entire extent of one of the major offsets of the Mid-Atlantic Ridge (MAR), the Vema Fracture Zone (VFZ), as well as the deepest trench in the Atlantic, the Puerto Rico Trench (PRT). The discoveries that were made include new data on deep-sea habitats showing geologically complex features across all crust ages from 110 Ma until present. Moreover, some new species and genera of the abyssal and hadal benthos were described herein. Not only the taxa themselves, but also their distributions and genetic structure were elucidated. In this context, significant differences in abundances, community composition, and species distribution were detected that were affected by the MAR as well as by the depth transition between hadal PRT and the adjacent abyss. Despite significant differences between eastern and western communities, the MAR does not represent an absolute barrier. Instead, the VFZ, and especially the VTF may serve as a connecting feature between east and west and this may be exemplary for fracture zones across the whole Atlantic. Nevertheless, the MAR as well as the 3000-m-depth gradient between abyss and hadal appear to restrict gene flow for poor dispersers and thus contribute to speciation processes in the deep sea.

  1. Implications of spinel compositions for the petrotectonic history of abyssal peridotite from Southwest Indian Ridge (SWIR)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Jin, Z.; Wang, Y.; Tao, C.

    2012-12-01

    Abyssal peridotites generate at mid-ocean ridges. Lherzolite and harzburgite are the main rock types of peridotites in the uppermost mantle. The lherzolite subtype, less depleted and less common in ophiolites, characterizes mantle diapirs and slow-spreading ridges. Along the Earth's mid-ocean ridges, abyssal peridotites undergo hydration reactions to become serpentinite minerals, especially in slow to ultraslow spreading mid-ocean ridges. Spinel is common in small quantities in peridotites, and its compositions have often been used as petrogenetic indicators [1]. The Southwest Indian Ridge (SWIR) is one of the two ultraslow spreading ridges in the world. The studied serpentinized peridotite sample was collected by the 21st Voyage of the Chinese oceanic research ship Dayang Yihao (aka Ocean No. 1) from a hydrothermal field (63.5°E, 28.0°S, and 3660 m deep) in SWIR. The studied spinels in serpentinized lherzolite have four zones with different compositions: relic, unaltered core is magmatic Al-spinels; micro- to nano- sized ferrichromite zoned particles; narrow and discontinuous magnetite rim; and chlorite aureoles. The values Cr# of the primary Al-spinels indicate the range of melting for abyssal peridotites from SWIR extends from ~4% to ~7% [2]. The alteration rims of ferrichromite have a chemical composition characterized by Fe enrichment and Cr# increase indicating chromite altered under greenschist-amphibolite facies. Magnetites formed in syn- and post- serpentinization. Chlorite (clinochlore) formed at the boundary and crack of spinel indicating it had undergone with low-temperature MgO- and SiO2-rich hydrothermal fluids [3]. It suggests that serpentinized lherzolite from SWIR had undergone poly-stage hydration reactions with a wide range of temperature. Acknowledgments: EMPA experiment was carried out by Xihao Zhu and Shu Zheng in The Second Institute of Oceanography and China University of Geosciences, respectively. The work was supported by NSFC

  2. Tracking the Mediterranean Abyss

    NASA Astrophysics Data System (ADS)

    Aracri, S.; Schroeder, K.; Chiggiato, J.; Bryden, H. L.; McDonagh, E.; Josey, S. A.; Hello, Y.; Borghini, M.

    2016-02-01

    The Mediterranean Sea is well known to be a miniature ocean with small enough timescales to allow the observation of main oceanographic events, e.g. deep water formation and overturning circulation, in a human life time. This renders the Mediterranean Sea the perfect observatory to study and forecast the behaviour of the world ocean. Considering the coherence between NAO (North Atlantic Oscillation), AMO (Atlantic Multidecadal Oscillation) and Mediterranean oscillation and bearing in mind that the Mediterranean outflow at Gibraltar constitutes a constant source of intermediate, warm and saline water, it has been suggested that "the system composed of the North Atlantic, the Mediterranean Sea/Gibraltar Strait and the Arctic Sea/Fram Strait might work as a unique oceanographic entity, with the physical processes within the straits determining the exchange of the fresh and salty waters between the marginal seas and the open ocean".In the light of the present knowledge the Mediterranean might, then, be considered as a key oceanographic observatory site. The deep sea is still challenging to monitor, especially given the latest years lack of fundings and ships availability. Therefore optimizing the existing methods and instrumentation has become a priority. This work is focused on the North-Western Mediterranean basin, where deep water formation events often occur in the Gulf of Lion as well as deep convection in the neighbour Ligurian Sea. A different application of submarine robots - Mermaids- designed to observe underwater seismic waves aiming to improve ocean tomography is presented. In order to improve our knowledge of the North-Western Mediterranean abyssal circulation we track Mermaids extracting their velocity, correcting it and comparing it with the historically estimated values and with the geostrophic velocity extracted from a 40 years long hydrographic datasets.

  3. 77 FR 75120 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Black Hills National Forest Advisory Board will... copying. The public may inspect comments received at the Supervisor's Office, Black Hills National Forest...

  4. Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: Lysianassoidea) from the Peru-Chile Trench

    NASA Astrophysics Data System (ADS)

    Eustace, Ryan M.; Ritchie, Heather; Kilgallen, Niamh M.; Piertney, Stuart B.; Jamieson, Alan J.

    2016-03-01

    The globally ubiquitous lysianassoid amphipod, Eurythenes gryllus, has been shown to consist of multiple genetically distinct cryptic taxa, with depth considered a major driver of speciation and morphological divergence. Here we examine morphological variation of E. gryllus sensu lato through a continuous depth distribution that spans from abyssal (3000-6000 m) into hadal depths (>6000 m) in the Peru-Chile Trench (SE Pacific Ocean). Three distinct morphospecies were identified: one was confirmed as being E. magellanicus (4602-5329 m) based on DNA sequence and morphological similarity. The other two morphologically distinct species were named based upon depth of occurrence; Abyssal (4602-6173 m) and Hadal (6173-8074 m). The three Eurythenes morphospecies showed vertical ontogenetic stratification across their bathymetric range, where juveniles were found shallower in their depth range and mature females deeper. Potential ecological and evolutionary drivers that explain the observed patterns of intra and inter-specific structure, such as hydrostatic pressure and topographical isolation, are discussed.

  5. New Airborne LiDAR Survey of the Hayward Fault, Northern California

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Prentice, C. S.; Phillips, D. A.; Bevis, M.; Shrestha, R. L.

    2007-12-01

    push up ridges can easily be followed along the fault zone, as well as more subtle features. Landslides along the western flanks of the East Bay Hills were also imaged. We expect that these new LIDAR images will allow us to detect subtle geomorphic features associated with active faulting that may reveal previously undetected active strands or better delineate active strands in areas of pervasive landsliding (as well as better mapping of the landslides themselves). We also anticipate that they will aid in land use planning and identification of new paleoseismic sites. The LIDAR data are freely available at www.earthscope.org.

  6. Red Hill Updates

    EPA Pesticide Factsheets

    This and other periodic updates are intended to keep the public informed on major progress being made to protect public health and the environment at the Red Hill Underground Fuel Storage Facility in Hawaii.

  7. 78 FR 73187 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Black Hills National Forest Advisory Board (Board... the Black Hills National Forest in South Dakota; and (4) update and report on Mountain Pine Beetle...

  8. 77 FR 8214 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: USDA Forest Service. ACTION: Notice of intent to re-establish the Black Hills National Forest Advisory Board...-establish the Black Hills National Forest Advisory Board (Board). The purpose is to obtain advice and...

  9. 78 FR 65962 - Black Hills National Forest Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of cancellation of meeting of the Black Hills National Forest Advisory Board. SUMMARY: The U. S. Department of Agriculture, Forest Service, Black Hills National Forest cancelled the...

  10. Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions

    NASA Astrophysics Data System (ADS)

    Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.

    2015-01-01

    Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.

  11. Martha N. Hill: transformational leader.

    PubMed

    Coombs, V J

    1998-01-01

    Martha N. Hill, PhD, RN, FAAN, is a world-renowned researcher, educator, and nursing leader. Her election as president of the American Heart Association, effective June 1997, places her in one of the highest regarded positions in the field of cardiology. Despite her success on a national and international level, Dr. Hill has managed to continue to mentor and conduct clinical research with her nursing colleagues and students at The Johns Hopkins University in Baltimore, Maryland.

  12. The "House" in Half Hollow Hills

    ERIC Educational Resources Information Center

    Karnilow, Sheldon

    2006-01-01

    In this article, the author relates how he initiated a systemic improvement to Half Hollow Hills school district when he became its superintendent. He relates that although he came to Half Hollow Hills with a deep understanding of the models of systemic change, he did not bring with him a specific prescriptive plan for improvement. His plan for…

  13. Report on the Black Hills Alliance.

    ERIC Educational Resources Information Center

    Ryan, Joe

    1979-01-01

    A rally to save the Black Hills from coal- and uranium-greedy energy companies was held on July 6 and over 2,000 joined in a 15-mile walk on July 7 in Rapid City, South Dakota. The Black Hills Alliance, an Indian coalition concerned about energy development proposals in the Great Plains, sponsored the gathering. (NQ)

  14. Management Decisions and the "Dred" Hills

    Treesearch

    Steven W. Anderson

    1992-01-01

    An area of public land called the Red Hills was being so abused by the public that it was often called the "Dred" Hills. Some staff work had been accomplished to protect sensitive areas within the 7,200-acre site, but depreciative behavior continued. Primary destructive activities included off-road vehicle use and indiscriminate shooting and dumping. This...

  15. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    PubMed

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotopic compositions

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Andrews, A. H.; Huss, G. R.; Nagashima, K.; Popp, B. N.; Linley, T. D.; Gallo, N. D.; Clark, M. R.; Jamieson, A. J.; Drazen, J. C.

    2018-02-01

    Hadal trenches are isolated habitats that cover the greatest ocean depths (6,500-11,000 m) and are believed to host high levels of endemism across multiple taxa. A group of apparent hadal endemics is within the snailfishes (Liparidae), found in at least five geographically separated trenches. Little is known about their biology, let alone the reasons for their success at hadal depths around the world. This study investigated the life history of hadal liparids using sagittal otoliths of two species from the Kermadec (Notoliparis kermadecensis) and Mariana (Pseudoliparis swirei) trenches in comparison to successful abyssal macrourids found at the abyssal-hadal transition zone. Otoliths for each species revealed alternating opaque and translucent growth zones that could be quantified in medial sections. Assuming these annuli represent annual growth, ages were estimated for the two hadal liparid species to be from five to 16 years old. These estimates were compared to the shallower-living snailfish Careproctus melanurus, which were older than described in previous studies, expanding the potential maximum age for the liparid family to near 25 years. Age estimates for abyssal macrourids ranged from eight to 29 years for Coryphaenoides armatus and six to 16 years for C. yaquinae. In addition, 18O/16O ratios (δ18O) were measured across the otolith using secondary ion mass spectrometry (SIMS) to investigate the thermal history of the three liparids, and two macrourids. Changes in δ18O values were observed across the otoliths of C. melanurus, C. armatus, and both hadal liparids, the latter of which may represent a change of >5 °C in habitat temperature through ontogeny. The results would indicate there is a pelagic larval stage for the hadal liparids that rises to a depth above 1000 m, followed by a return to the hadal environment as these liparids grow. This result was unexpected for the hadal liparids given their isolated environment and large eggs, and the biological

  17. A Cone Shaped Hill

    NASA Image and Video Library

    2015-10-14

    There are many hills and knobs on Mars that reveal aspects of the local geologic history. Typically, the hills in the relatively-smooth region surrounding this image are flat topped erosional remnants or mesas with irregular or even polyhedral margins. These landforms suggest wide spread erosion of the soft or weakly-cemented sedimentary layers. This hill stands out because of is circular inverted-cone shape and apparent dark streaks along its flanks visible in lower resolution images. Close inspection from HiRISE reveals that the fine soils sloping down from the peak are intersected with radiating lines of rock and eroding rubble. This formation is similar to lava intrusions that form in the core of a volcano. As lava is squeezed up into a central conduit, radiating fractures fill with lava forming rock units called dikes. As the lava cools inside the ground and in the fractures, it forms into a harder rock that is more resistant to erosion. Later, as the surrounding sediments and soils erode, the resistant volcanic rock remains standing to tell a story of what happened underground long ago. http://photojournal.jpl.nasa.gov/catalog/PIA20003

  18. Three-Dimensional Analysis of dike/fault interaction at Mono Basin (California) using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    La Marra, D.; Battaglia, M.

    2013-12-01

    Mono Basin is a north-trending graben that extends from the northern edge of Long Valley caldera towards the Bodie Hills and is bounded by the Cowtrack Mountains on the east and the Sierra Nevada on the west. The Mono-Inyo Craters volcanic chain forms a north-trending zone of volcanic vents extending from the west moat of the Long Valley caldera to Mono Lake. The Hartley Springs fault transects the southern Mono Craters-Inyo Domes area between the western part of the Long Valley caldera and June Lake. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of ~1350 A.D. The spatial and temporal proximity between Hartley Springs Fault motion and the North Mono-Inyo eruption sequence suggests a possible relation between seismic events and eruptions. We investigate the interactions between slip along the Hartley Springs fault and dike intrusion beneath the Mono-Inyo craters using a three-dimensional finite element model of the Mono Basin. We employ a realistic representation of the Basin that includes topography, vertical and lateral heterogeneities of the crust, contact relations between fault planes, and a physical model of the pressure required to propagate the dike. We estimate (a) the distribution of Coulomb stress changes to study the influence of dike intrusion on Hartley Springs fault, and (b) the local stress and volumetric dilatation changes to understand how fault slip may influence the propagation of a dike towards the surface.

  19. The Oakland Conglomerate: a Hayward Fault Teconite?

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Allen, J. R.

    2008-12-01

    The Late Cretaceous Oakland Conglomerate (OC), a coarse-grained cobble and sandstone unit of the Great Valley Sequence is a tectonite. Faulted and shattered cobbles and well developed grain-on-grain contact features between clasts are ubiquitous and penetrative throughout conglomeratic lenses. The OC outcrops east of the Hayward fault (HF) and adjacent to the Chabot fault in the East Bay Hills. It overlies the Knoxville Formation and may have been buried beneath 4-6 km of younger units. The OC is a proximal submarine fan deposit with sediment sourced to the ancestral Klamath and Sierra Nevada. Clast types are dominated by volcanics, granitoids, as well as numerous quartzites, perhaps reflecting complex provenance:Klamath and pre-Sierran arc and pre-Cretaceous Basin and Range. And although there was a significant interval between the Late-K deposition of the OC and the inception of San Andreas faulting in the Bay Area, its 1-2 km proximity to the HF in the Oakland Metropolitan area strongly suggests that much of the brittle-plastic deformation within the OC may be due to earthquakes upon the nearby Hayward fault. Clasts with the OC are frequently shattered, fractured or faulted. Most have grain-on-grain contact features on their surfaces regardless of whether they are matrix or grain supported. Faulting in the cobbles ranges from outcrop scale, penetrative and often conjugate shear fracture sets that run through both cobbles and matrix (if present), to closely spaced en-echelon faults that clearly deform cobbles, and radially shattered specimens with nearly conical conjugate shear fractures that are clearly the result of point loading due to grain-on-grain contact. There are at least 3 types of contact structures, ranging from: 1) Type-H, bright circular halos with little or no surface dimpling, likely the result of intense microfracture at the contact; 2) Type-S, shattered, rounded 'firing-pin' structures that have pulverized, depressed contact that is the locus of

  20. Identification of Geomorphic Conditions Favoring Preservation of Multiple Individual Displacements Across Transform Faults

    NASA Astrophysics Data System (ADS)

    Williams, P. L.; Phillips, D. A.; Bowles-Martinez, E.; Masana, E.; Stepancikova, P.

    2010-12-01

    Terrestrial and airborne LiDAR data, and low altitude aerial photography have been utilized in conjunction with field work to identify and map single and multiple-event stream-offsets along all strands of the San Andreas fault in the Coachella Valley. Goals of the work are characterizing the range of displacements associated with the fault’s prehistoric surface ruptures, evaluating patterns of along-fault displacement, and disclosing processes associated with the prominent Banning-Mission Creek fault junction. Preservation offsets is associated with landscape conditions including: (1) well-confined and widely spaced source streams up-slope of the fault; (2) persistent geomorphic surfaces below the fault; (3) slope directions oriented approximately perpendicular to the fault. Notably, a pair of multiple-event offset sites have been recognized in coarse fan deposits below the Mission Creek fault near 1000 Palms oasis. Each of these sites is associated with a single source drainage oriented approximately perpendicular to the fault, and preserves a record of individual fault displacements affecting the southern portion of the Mission Creek branch of the San Andreas fault. The two sites individually record long (>10 event) slip-per-event histories. Documentation of the sites indicates a prevalence of moderate displacements and a small number of large offsets. This is consistent with evidence developed in systematic mapping of individual and multiple event stream offsets in the area extending 70 km south to Durmid Hill. Challenges to site interpretation include the presence of closely spaced en echelon fault branches and indications of stream avulsion in the area of the modern fault crossing. Conversely, strong bar and swale topography produce high quality offset indicators that can be identified across en echelon branches in most cases. To accomplish the detailed mapping needed to fully recover the complex yet well-preserved geomorphic features under investigation, a

  1. Does the Mid-Atlantic Ridge affect the distribution of abyssal benthic crustaceans across the Atlantic Ocean?

    NASA Astrophysics Data System (ADS)

    Bober, Simon; Brix, Saskia; Riehl, Torben; Schwentner, Martin; Brandt, Angelika

    2018-02-01

    A trans-Atlantic transect along the Vema Fracture Zone was sampled during the Vema-TRANSIT expedition in 2014/15. The aim of the cruise was to investigate whether the Mid-Atlantic Ridge (MAR) isolates the abyssal fauna of the western and eastern abyssal basins. Based on two genetic datasets of Macrostylidae and Desmosomatidae/Nannoniscidae studied by Riehl et al. and Brix et al. in this issue we found that most of the therein-delimitated species were found at only one side of the MAR. We analysed those species of Macrostylidae and Desmosomatidae that were sampled across the MAR and complemented these with one species of a third family: Munnopsidae. With these datasets we were further able to consider the effect of different niche adaptations: Macrostylidae are infaunal (burrowing), Munnopsidae are considered epifaunal with pronounced swimming capabilities and Desmosomatidae and Nannoniscidae are partly able to swim, but are not as well adapted to swimming as Munnopsidae. We concluded that the MAR seems to be a dispersal barrier for the non-swimming Macrostylidae as well as weakly-swimming Desmosomatidae and Nannoniscidae. However, four species of Macrostylidae and Desmosomatidae did cross the MAR, but evidence for regular unrestricted gene flow is still lacking. For the swimming Munnopsidae we were able to detect persistent gene flow across the MAR.

  2. 75. Southeast elevation of Forest Hills station looking Northwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. Southeast elevation of Forest Hills station - looking Northwest from junction of Washington and Walk Hill Streets. At left is the beginning of Section F-7 the exposed steel portion of elevated structure leading to the Forest Hills storage yard (demolished in 1985). - Boston Elevated Railway, Elevated Mainline, Washington Street, Boston, Suffolk County, MA

  3. A Wrench fault system and nappe emplacement in Southern Kenya and Northern Tanzania.- A key area for Pan-African continental collision in East Africa?

    NASA Astrophysics Data System (ADS)

    Bauernhofer, A.; Wallbrecher, E.; Hauzenberger, C.; Fritz, H.; Loizenbauer, J.; Hoinkes, G.; Muhongo, S.; Mathu, E.

    2003-04-01

    In the Voi Area of Southern Kenya, the granulite facies rocks of the Taita Hills and the Tsavo East National Park (Galana River) can be divided into three structural domains: The Galana-East unit consists of an intercalation of flat lying metapelites and marbles of continental margin origin. These metasediments can be traced further east to the Umba Steppe (Between Mombasa and Tanga). Galana-West consists of a N-S oriented wrench fault zone with vertical foliation planes and horizontal stretching lineation. Numerous shear sense indicators always show sinistral shear sense. Amphibolites of MORB affinity are involved in this wrench fault zone. To the west, this zone is bordered by calc-alkaline metatonalites of the Sagala Hills. The westernmost unit consists of the Taita Hills. They form an imbricated pile of southwestward thrusted nappe sheets containing metapelites, marbles, and ultramafics. The Taita Hills may be explained as part of an accretionary wedge. Southwestward nappe thrusting is also the prominent structure in the Pare and Usambara Mountains of Northern Tanzania. The following model may may explain these observations: The Southern Kenya -- Northern Tanzania section of the Mozambique Belt is the result of continental collision tectonics. Remnants of an island arc and of an accretionary wedge that occur at least in the Voi area may be part of a former subduction zone. An oceanic domain between an eastern passive continental margin and a western terrane, now represented by the Tanzanian granulite belt has been closed incorporating island arc and accretionary wedge material. Oblique convergence of two continental blocks is suggested from wrench tectonics. The age of convergent tectonics is 530 -- 580 Ma, dated by Sm-Nd garnet-whole rock analysis. This is interpreted as the age of peak metamorphism.

  4. Confidence Hills Mineralogy and Chemin Results from Base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.; hide

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.

  5. Autonomous Legged Hill and Stairwell Ascent

    DTIC Science & Technology

    2011-11-01

    environments with little burden to a human operator. Keywords: autonomous robot , hill climbing , stair climbing , sequential composition, hexapod, self...X-RHex robot on a set of stairs with laser scanner, IMU, wireless repeater, and handle payloads. making them useful for both climbing hills and...reconciliation into that more powerful (but restrictive) framework. 1) The Stair Climbing Behavior: RHex robots have been climbing single-flight stairs

  6. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be

  7. Chocolate Hills Rock

    NASA Image and Video Library

    2010-02-16

    This false-color image, taken by the panoramic camera on NASA rover Opportunity, shows the rock Chocolate Hills, perched on the rim of the 10-meter 33-foot wide Concepcion crater. This rock has a thick, dark-colored coating resembling chocolate.

  8. Abyssal Upwelling and Downwelling and the role of boundary layers

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Ferrari, R. M.

    2016-02-01

    The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.

  9. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...

  10. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...

  11. 27 CFR 9.190 - Red Hill Douglas County, Oregon.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...

  12. Reconstructed Paleo-topography of the Columbia Hills, Mars

    NASA Astrophysics Data System (ADS)

    Cole, S. B.; Watters, W. A.; Aron, F.; Squyres, S. W.

    2013-12-01

    From June 2004 through March 2010, the Mars Exploration Rover Spirit conducted a detailed campaign examining the Columbia Hills of Gusev Crater. In addition to mineralogical and chemical investigations, Spirit's stereo panoramic (Pancam) and navigation (Navcam) cameras obtained over 7,000 images of geologic targets along the West Spur of the Columbia Hills and Husband Hill, the highest peak. We have analyzed the entirety of this dataset, which includes stereo coverage of several outcrop exposures with apparent bedding. We have measured the bedding plane orientations of hundreds of fine-scale (~1-100cm) features on all of the potentially in-place outcrops using Digital Terrain Models (DTMs) derived from the rover's Pancam stereo image data, and mapped these orientations on a regional HiRISE image and DTM. Assuming that the bedding material was deposited conformably on the topography at the time of emplacement, we reconstruct the paleo-topography of the Columbia Hills. Our reconstructed paleo-topography is similar to the modern shape of Husband Hill, but with steeper slopes, consistent with a substantial amount of erosion since deposition. The Columbia Hills are an irregular, nearly-triangular edifice of uncertain origin, situated near the center of the 160km-diameter crater and hypothesized to be either the remnant of a central peak structure, or overlapping crater rims. They span ~6.6 km in the northerly direction by ~3.6 km in the easterly direction, and rise 90m above the basaltic plains that fill the floor of Gusev Crater and embay the Hills. The topography is as irregular as the perimeter, and is cut by numerous valleys of varying lengths, widths, and directional trends. Along the traverse, Spirit examined several rock classes as defined by elemental abundances from the Alpha Particle X-ray Spectrometer (APXS) and identified remotely by the Miniature Thermal Emission Spectrometer (Mini-TES). Unlike the Gusev Plains, the rocks of the Columbia Hills show

  13. Age and isotopic systematics of Cretaceous borehole and surface samples from the greater Los Angeles Basin region: Implications for the types of crust that might underlie Los Angeles and their distribution along late Cenozoic fault systems

    USGS Publications Warehouse

    Premo, Wayne R.; Morton, Douglas M.; Kistler, Ronald W.

    2014-01-01

    Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.

  14. Magnetic Fabric Associated with Faulting of Poorly Consolidated Basin Sediments of the Rio Grande Rift, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hudson, M. R.; Minor, S. A.; Caine, J. S.

    2015-12-01

    Permanent strain in sediments associated with shallow fault zones can be difficult to characterize. Anisotropy of magnetic susceptibility (AMS) data were obtained from 120 samples at 6 sites to assess the nature of fault-related AMS fabrics for 4 faults cutting Miocene-Pliocene basin fill sediments of the Rio Grande rift of north-central New Mexico. The San Ysidro (3 sites), Sand Hill, and West Paradise faults within the northern Albuquerque basin have normal offset whereas an unnamed fault near Buckman in the western Española basin has oblique strike-slip offset. Previous studies have shown that detrital magnetite controls magnetic susceptibility in rift sandstones, and in a 50-m-long hanging wall traverse of the San Ysidro fault, non-gouge samples have typical sedimentary AMS fabrics with Kmax and Kint axes (defining magnetic foliation) scattered within bedding. For the 5 normal-fault sites, samples from fault cores or adjacent mixed zones that lie within 1 m of the principal slip surface developed common deformation fabrics with (1) magnetic foliation inclined in the same azimuth but more shallowly dipping than the fault plane, and (2) magnetic lineation plunging down foliation dip with nearly the same trend as the fault striae, although nearer for sand versus clay gouge samples. These relations suggest that the sampled fault materials deformed by particulate flow with alignment of magnetite grains in the plane of maximum shortening. For a 2-m-long traverse at the Buckman site, horizontal sedimentary AMS foliation persists to < 15 cm to the fault slip surface, wherein foliation in sand and clay gouge rotates toward the steeply dipping fault plane in a sense consistent with sinistral offset. Collectively these data suggest permanent deformation fabrics were localized within < 1 m of fault surfaces and that AMS fabrics from gouge samples can provide kinematic information for faults in unconsolidated sediments which may lack associated slickenlines.

  15. The Camp Hill Project: Objectives and Design

    ERIC Educational Resources Information Center

    Mattingly, John B.

    1976-01-01

    Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)

  16. Near-surface structure of the Carpathian Foredeep marginal zone in the Roztocze Hills area

    NASA Astrophysics Data System (ADS)

    Majdański, M.; Grzyb, J.; Owoc, B.; Krogulec, T.; Wysocka, A.

    2018-03-01

    Shallow seismic survey was made along 1280 m profile in the marginal zone of the Carpathian Foredeep. Measurements performed with standalone wireless stations and especially designed accelerated weight drop system resulted in high fold (up to 60), long offset seismic data. The acquisition has been designed to gather both high-resolution reflection and wide-angle refraction data at long offsets. Seismic processing has been realised separately in two paths with focus on the shallow and deep structures. Data processing for the shallow part combines the travel time tomography and the wide angle reflection imaging. This difficult analysis shows that a careful manual front mute combined with correct statics leads to detailed recognition of structures between 30 and 200 m. For those depths, we recognised several SW dipping tectonic displacements and a main fault zone that probably is the main fault limiting the Roztocze Hills area, and at the same time constitutes the border of the Carpathian Forebulge. The deep interpretation clearly shows a NE dipping evaporate layer at a depth of about 500-700 m. We also show limitations of our survey that leads to unclear recognition of the first 30 m, concluding with the need of joint interpretation with other geophysical methods.

  17. After runaway: The trans-Hill stage of planetesimal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lithwick, Yoram

    2014-01-01

    When planetesimals begin to grow by coagulation, they first enter an epoch of runaway, during which the biggest bodies grow faster than all the others. The questions of how runaway ends and what comes next have not been answered satisfactorily. We show that runaway is followed by a new stage—the 'trans-Hill stage'—that commences when the bodies that dominate viscous stirring ('big bodies') become trans-Hill, i.e., when their Hill velocity matches the random speed of the small bodies they accrete. Subsequently, the small bodies' random speed grows in lockstep with the big bodies' sizes, such that the system remains in themore » trans-Hill state. Trans-Hill growth is crucial for determining the efficiency of growing big bodies, as well as their growth timescale and size spectrum. Trans-Hill growth has two sub-stages. In the earlier one, which occurs while the stirring bodies remain sufficiently small, the evolution is collisionless, i.e., collisional cooling among all bodies is irrelevant. The efficiency of forming big bodies in this collisionless sub-stage is very low, ∼10α << 1, where α ∼ 0.005(a/AU){sup –1} is the ratio between the physical size of a body and its Hill radius. Furthermore, the size spectrum is flat (equal mass per size decade, i.e., q = 4). This collisionless trans-Hill solution explains results from previous coagulation simulations for both the Kuiper Belt and the asteroid belt. The second trans-Hill sub-stage commences once the stirring bodies grow big enough (>α{sup –1} × the size of the accreted small bodies). After that time, collisional cooling among small bodies controls the evolution. The efficiency of forming big bodies rises and the size spectrum becomes more top heavy. Trans-Hill growth can terminate in one of two ways, depending on the sizes of the small bodies. First, mutual accretion of big bodies can become significant and conglomeration proceeds until half of the total mass is converted into big bodies. This mode

  18. Shocking Path of Least Resistance Shines Light on Subsurface by Revealing the Paths of Water and the Presence of Faults: Stacked EM Case Studies over Barite Hills Superfund Site in South Carolina

    NASA Astrophysics Data System (ADS)

    Haggar, K. S.; Nelson, H. R., Jr.; Berent, L. J.

    2017-12-01

    The Barite Hills/Nevada Gold Fields mines are in Late Proterozoic and early Paleozoic rocks of the gold and iron sulfides rich Carolina slate belt. The mines were active from 1989 to1995. EPA and USGS site investigations in 2003 resulted in the declaration of the waste pit areas as a superfund site. The USGS and private consulting firms have evaluated subsurface water flow paths, faults & other groundwater-related features at this superfund site utilizing 2-D conductivity & 3-D electromagnetic (EM) surveys. The USGS employed conductivity to generate instantaneous 2-D profiles to evaluate shallow groundwater patterns. Porous regolith sediments, contaminated water & mine debris have high conductivity whereas bedrock is identified by its characteristic low conductivity readings. Consulting contractors integrated EM technology, magnetic & shallow well data to generate 3-D images of groundwater flow paths at given depths across the superfund site. In so doing several previously undetected faults were identified. Lighting strike data was integrated with the previously evaluated electrical and EM data to determine whether this form of natural-sourced EM data could complement and supplement the more traditional geophysical data described above. Several lightning attributes derived from 3-D lightning volumes were found to correlate to various features identified in the previous geophysical studies. Specifically, the attributes Apparent Resistivity, Apparent Permittivity, Peak Current & Tidal Gravity provided the deepest structural geological framework & provided insights into rock properties & earth tides. Most significantly, Peak Current showed remarkable coincidence with the preferred groundwater flow map identified by one of the contractors utilizing EM technology. This study demonstrates the utility of robust integrated EM technology applications for projects focused on hydrology, geohazards to dams, levees, and structures, as well as mineral and hydrocarbon exploration.

  19. A Thermal Technique of Fault Nucleation, Growth, and Slip

    NASA Astrophysics Data System (ADS)

    Garagash, D.; Germanovich, L. N.; Murdoch, L. C.; Martel, S. J.; Reches, Z.; Elsworth, D.; Onstott, T. C.

    2009-12-01

    Fractures and fluids influence virtually all mechanical processes in the crust, but many aspects of these processes remain poorly understood largely because of a lack of controlled field experiments at appropriate scale. We have developed an in-situ experimental approach to create carefully controlled faults at scale of ~10 meters using thermal techniques to modify in situ stresses to the point where the rock fails in shear. This approach extends experiments on fault nucleation and growth to length scales 2-3 orders of magnitude greater than are currently possible in the laboratory. The experiments could be done at depths where the modified in situ stresses are sufficient to drive faulting, obviating the need for unrealistically large loading frames. Such experiments require an access to large rock volumes in the deep subsurface in a controlled setting. The Deep Underground Science and Engineering Laboratory (DUSEL), which is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota, presents an opportunity for accessing locations with vertical stresses as large as 60 MPa (down to 2400 m depth), which is sufficient to create faults. One of the most promising methods for manipulating stresses to create faults that we have evaluated involves drilling two parallel planar arrays of boreholes and circulating cold fluid (e.g., liquid nitrogen) to chill the region in the vicinity of the boreholes. Cooling a relatively small region around each borehole causes the rock to contract, reducing the normal compressive stress throughout much larger region between the arrays of boreholes. This scheme was evaluated using both scaling analysis and a finite element code. Our results show that if the boreholes are spaced by ~1 m, in several days to weeks, the normal compressive stress can be reduced by 10 MPa or more, and it is even possible to create net tension between the borehole arrays. According to the Mohr

  20. Jack Hills, Australia

    NASA Image and Video Library

    2009-06-02

    This image acquired by NASA Terra spacecraft, shows the oldest material on Earth which has yet been dated by man is a zircon mineral of 4.4 billion years old from a sedimentary gneiss in the Jack Hills of the Narre Gneiss Terrane of Australia.

  1. Interacting faults

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Nixon, C. W.; Rotevatn, A.; Sanderson, D. J.; Zuluaga, L. F.

    2017-04-01

    The way that faults interact with each other controls fault geometries, displacements and strains. Faults rarely occur individually but as sets or networks, with the arrangement of these faults producing a variety of different fault interactions. Fault interactions are characterised in terms of the following: 1) Geometry - the spatial arrangement of the faults. Interacting faults may or may not be geometrically linked (i.e. physically connected), when fault planes share an intersection line. 2) Kinematics - the displacement distributions of the interacting faults and whether the displacement directions are parallel, perpendicular or oblique to the intersection line. Interacting faults may or may not be kinematically linked, where the displacements, stresses and strains of one fault influences those of the other. 3) Displacement and strain in the interaction zone - whether the faults have the same or opposite displacement directions, and if extension or contraction dominates in the acute bisector between the faults. 4) Chronology - the relative ages of the faults. This characterisation scheme is used to suggest a classification for interacting faults. Different types of interaction are illustrated using metre-scale faults from the Mesozoic rocks of Somerset and examples from the literature.

  2. Analogue modelling of strike-slip fault propagation across a rheological/morphological crustal anisotropy: implications for the morphotectonic evolution of the Gloria Fault - Tore Madeira Rise area in NE Atlantic.

    NASA Astrophysics Data System (ADS)

    Tomás, Ricardo; Rosas, Filipe M.; Duarte, João C.; Terrinha, Pedro; Kullberg, Maria C.; Almeida, Jaime; Barata, Frederico; Carvalho, Bruno; Almeida, Pedro

    2015-04-01

    The Gloria Fault (GF) marks the E-W dextral transcurrent plate boundary between Eurasia and Africa in NE Atlantic, displaying complying high magnitude (historical and instrumental) seismic activity (e.g. M=7.1 in 1939 and M=8.4 in 1941, Bufforn et al., 1988), and cutting across a NNE-SSW 1000 km long bathymetric ridge: the so called Tore-Madeira Rise - TMR (rising in average 3km above the abyssal plain). The precise origin and tectono-magmatic evolution of the TMR is still not fully understood, although reported wide-angle refraction data points to a rheological configuration comprising an isostatically compensated thickened oceanic crust, possibly formed during a period of high accretion in the Mid-Atlantic Ridge (Pierce and Barton, 1991). Widespread evidence for volcanic activity has also been recognized, spanning from late Cretaceous to Present (Geldmacher et al. 2006, Merle et al. 2009), noticeably with the most recent volcanism (~500 Ky) occurring as tectonically aligned volcanic plugs, distributed along the E-W tectonic trend of the GF-related structures. To better understand the complex interference at play in this key area between the tectonic structures (essentially determined by the Gloria Fault system), the present and past magmatic activity and the resulting seafloor morphology, a series of dynamically scaled analogue modelling experiments have been conceived and carried out. The main focus of this experimental work was to decipher the potential influence of a rheological vs. morphological anisotropy (accounting for the TMR) on the lateral propagation of a major right-lateral strike-slip fault (representing the GF). The preliminary comparison of the obtained experimental results with the natural morphotectonic pattern in the study area reveals, not only a strong tectonic control of the ongoing volcanism, manifested by the observed preferred directions of aligned volcanic plugs, but also a so far unsuspected deflection/distributed pattern of several

  3. Fault recovery characteristics of the fault tolerant multi-processor

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1990-01-01

    The fault handling performance of the fault tolerant multiprocessor (FTMP) was investigated. Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles byzantine or lying faults. It is pointed out that these weak areas in the FTMP's design increase the probability that, for any hardware fault, a good LRU (line replaceable unit) is mistakenly disabled by the fault management software. It is concluded that fault injection can help detect and analyze the behavior of a system in the ultra-reliable regime. Although fault injection testing cannot be exhaustive, it has been demonstrated that it provides a unique capability to unmask problems and to characterize the behavior of a fault-tolerant system.

  4. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    NASA Astrophysics Data System (ADS)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  5. Tectonics of the ophiolite belt from Naga Hills and Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.; Ray, K. K.; Sengupta, S.

    1990-06-01

    The ophiolitic rocks of Naga Hills-Andaman belt occur as rootless slices, gently dipping over the Paleogene flyschoid sediments, the presence of blue-schists in ophiolite melange indicates an involvement of the subduction process. Subduction was initiated prior to mid-Eocene as proved by the contemporaneous lower age limit of ophiolite-derived cover sediment as against the accreted ophiolites and olistostromal trench sediment. During the late Oligocene terminal collision between the Indian and Sino-Burmese blocks, basement slivers from the Sino-Burmese block, accreted ophiolites and trench sediments from the subduction zone were thrust westward as nappe and emplaced over the down-going Indian plate. The geometry of the ophiolites and the presence of a narrow negative gravity anomaly flanking their map extent, run counter to the conventional view that the Naga-Andaman belt marks the location of the suture. The root-zone of the ophiolite nappe representing the suture is marked by a partially-exposed eastern ophiolite belt of the same age and gravity-high zone, passing through central Burma-Sumatra-Java. The ophiolites of the Andaman and Naga Hills are also conventionally linked with the subduction activity, west of Andaman islands. This activity began only in late Miocene, much later than onland emplacement of the ophiolites; it further developed west of the suture in its southern part. Post-collisional northward movement of the Indian plate subparallel to the suture, also developed leaky dextral transcurrent faults close to the suture and caused Neogene-Quatemary volcanism in central Burma and elsewhere.

  6. Colleges as Shining Cities on a Hill

    ERIC Educational Resources Information Center

    Townsend, Kathleen Kennedy

    2012-01-01

    In this article, the author proposes that the notion of America be reintroduced as the "shining city on a hill," that abiding image from American history. The image of the shining city on a hill captures the imagination because it reflects the abiding truth that people become fully human in society, not outside of it. People need one…

  7. Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya

    PubMed Central

    Malonza, Patrick K.; Mulwa, David M.; Nyamache, Joash O.; Jones, Georgina

    2018-01-01

    The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This ‘hybrid’ species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 38 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment. PMID:29515091

  8. Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya.

    PubMed

    Malonza, Patrick K; Mulwa, David M; Nyamache, Joash O; Jones, Georgina

    2018-03-18

    The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This 'hybrid' species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 36 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment.

  9. Audio-magnetotelluric (AMT) study to investigate the genesis of Mujil hill

    NASA Astrophysics Data System (ADS)

    Rahmania, Suryanto, Wiwit

    2017-07-01

    Gunung Mujil is an isolated hill located near Pondoworejo village, Kalibawang sub-district, Kulon Progo district, and Special Province of Yogyakarta. The hill is part of the eastern Kulon Progo mountain range extended relatively in the North-South direction. The lithology of the hill consists of andesite breccia and it's similar with the Old Andesite Formation that built the Kulon Progo Mountains. There are at least two hypothesis about the genesis and the formation mechanism of this hill, (1) it was formed by debris mass from Kulon Progo Mountains, and (2) ) it was formed by an intrusion. Our study intended to determine the subsurface resistivity below the hill and to relating those results to with the scenario of the genesis of the Mujil hill. We conducted Audio-magnetotellurics (AMT) measurements along two lines survey crossing the Mujil hill consisting of 20 measurements. Since the measurements are located near the villages, most of the data has a fair to bad quality and only one station yielded an excellent data. A 1D Forward modeling was then applied to find best-fit model of the AMT data. The results shows that the Mujil hill was built by debris mass of the Old Andesite Formation from Kulon Progo mountain which is represented by a lower resistivity value under the Mujil hill.

  10. Lost Hills Subsidence Animation

    NASA Image and Video Library

    2012-02-06

    This frame from an animation depicts ground subsidence resulting from the extraction of oil. The oil fields are located near the community of Lost Hills, California, approximately 100 km northwest of Bakersfield.

  11. Abyssal near-bottom dispersal stages of benthic invertebrates in the Clarion-Clipperton polymetallic nodule province

    NASA Astrophysics Data System (ADS)

    Kersten, Oliver; Smith, Craig R.; Vetter, Eric W.

    2017-09-01

    Growing interest in polymetallic nodule mining has intensified the need to characterize the abundance, community structure and vertical flux of meroplankton in the Clarion-Clipperton Zone (CCZ) to facilitate the estimation of larval supply and potential connectivity of benthic populations. These ecological parameters are essential to predict recolonization processes following the expected large-scale, high intensity disturbances associated with nodule extraction. Here, we present the first description of the composition, abundance, temporal variability, and mesoscale distribution of dispersing stages of the benthos in two study areas in the eastern CCZ. Samples from free-vehicle plankton pumps showed little variation in meroplankton diversity and abundance over scales of 30-100 km for time scales of days to weeks. However, sediment-trap samples revealed high temporal variability in vertical flux over weeks to months. Larval abundances and fluxes measured in the abyssal CCZ are 1-2 orders of magnitude lower than observed at deep-sea ridge and hydrothermal-vent habitats. We found significantly higher downward larval fluxes at 11 m above the bottom (mab) than at 146 mab, indicating accumulation or retention of meroplankton within the Benthic Boundary Layer (BBL). The high abundance of meroplankton in the BBL emphasizes its importance to dispersing stages and suggests that the creation of large sediment plumes in the BBL during nodule mining could compromise the dispersal and recruitment abilities of the abyssal benthos, potentially slowing rates and altering patterns of benthic community recovery following mining disturbance.

  12. Methods to enhance seismic faults and construct fault surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Xinming; Zhu, Zhihui

    2017-10-01

    Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.

  13. Abnormal fault-recovery characteristics of the fault-tolerant multiprocessor uncovered using a new fault-injection methodology

    NASA Technical Reports Server (NTRS)

    Padilla, Peter A.

    1991-01-01

    An investigation was made in AIRLAB of the fault handling performance of the Fault Tolerant MultiProcessor (FTMP). Fault handling errors detected during fault injection experiments were characterized. In these fault injection experiments, the FTMP disabled a working unit instead of the faulted unit once in every 500 faults, on the average. System design weaknesses allow active faults to exercise a part of the fault management software that handles Byzantine or lying faults. Byzantine faults behave such that the faulted unit points to a working unit as the source of errors. The design's problems involve: (1) the design and interface between the simplex error detection hardware and the error processing software, (2) the functional capabilities of the FTMP system bus, and (3) the communication requirements of a multiprocessor architecture. These weak areas in the FTMP's design increase the probability that, for any hardware fault, a good line replacement unit (LRU) is mistakenly disabled by the fault management software.

  14. Hume, Mill, Hill, and the Sui Generis Epidemiologic Approach to Causal Inference

    PubMed Central

    Morabia, Alfredo

    2013-01-01

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified. PMID:24071010

  15. Hume, Mill, Hill, and the sui generis epidemiologic approach to causal inference.

    PubMed

    Morabia, Alfredo

    2013-11-15

    The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified.

  16. Is long-term change in the abyssal Northeast Atlantic driven by qualitative changes in export flux? Evidence from selective feeding in deep-sea holothurians

    NASA Astrophysics Data System (ADS)

    Wigham, in deep-sea holothurians [review article] B. D.; Hudson, I. R.; Billett, D. S. M.; Wolff, G. A.

    2003-12-01

    The Porcupine Abyssal Plain (NE Atlantic) time-series has shown large, wide-scale, changes in the composition of the benthic community at 4800 m depth (48°50‧N, 16°30‧W). The abundance of holothurians has increased significantly since 1996 and one species in particular, Amperimarosea, has increased in abundance by three orders of magnitude. Environmental forcing in the form of phytodetrital food supply to the benthos is believed to be driving these changes. Chlorophyll and carotenoid pigments were determined from the gut sediments of seven species of abyssal holothurian, sampled from the Porcupine Abyssal Plain during Autumn 2000 and Spring 2002. These two samples fell either side of the main phytoplankton bloom in the NE Atlantic, providing an opportunity for seasonal comparisons. Significant inter-species differences in pigment profiles were observed among the seven species. Seasonal differences were noted among four species sampled in both time periods. All seven species were collected from the same geographical area and depth. As algal pigments cannot be synthesised by the holothurians, they provide good biomarkers for the composition of the phytodetritus. Differences in pigments from gut sediment profiles are indicative of selective feeding among the holothurians. A.rosea had a gut profile dominated by the pigments zeaxanthin, chlorophyll a/echineone and β-carotene; these pigments were all present in significantly smaller quantities in the other species. The high quantities of these pigments are indicative of a diet rich in cyanobacteria. The gut sediments of A. rosea also lacked many chloropigments characteristic of other phytoplankton groups, which were observed in the guts of other holothurian species. Ovarian tissue for the five species taken in the pre-spring bloom 2002 sample were examined. All species showed similar carotenoid profiles, dominated by zeaxanthin, echinenone and β-carotene, all of which are important compounds for reproductive

  17. Geologic and paleoecologic studies of the Nebraska Sand Hills

    USGS Publications Warehouse

    Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt

    1980-01-01

    PART A: The Nebraska Sand Hills are an inactive, late Quaternary, most probably Holocene, dune field (covering 57,000 km 2 ) that have been eroded along streams and in blowouts, resulting in excellent lateral and vertical exposures of the stratification of dune and interdune sediments. This paper presents new data on the geometry, primary sedimentary structures, modification of sedimentary structures, direction of sand movement, and petrography of these eolian deposits. Eolian deposits of the Sand Hills occur as relatively thin (9-24 m) 'blanket' sands, composed of a complex of dune and discontinuous, diachronous interdune deposits unconformably overlying fluviolacustrine sediments. The internal stratification of large dunes in the Sand Hills (as high as 100 m), is similar to the internal stratification of smaller dunes of the same type in the Sand Hills, differing only in scale. Studies of laminae orientation in the Sand Hills indicate that transverse, barchan, and blowout dunes can be differentiated in rocks of eolian origin using both the mean dip angle of laminae and the mean angular deviation of dip direction. A variety of secondary structures modify or replace primary eolian stratification in the Sand Hills, the more common of which are dissipation structures and bioturbation. Dissipation structures in the Sand Hills may develop when infiltrating water deposits clay adjacent to less permeable layers in the sand, or along the upper margins of frozen layers that form in the sands during winter. Cross-bed measurements from dunes of the Nebraska Sand Hills necessitate a new interpretation of the past sand transport directions. The data from these measurements indicate a general northwest-to-southeast drift of sand, with a more southerly drift in the southeast part of the Sand Hills. A large area of small dunes < 100 m high) described by Smith (1965) as linear or seif in the central part of the Sand Hills was interpreted by him on the basis of morphology only. We

  18. Rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott

    2011-10-01

    We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.

  19. The man and the hill

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1962-01-01

    He was sitting on a large slab of rock. As he looked at the cloud of dust hanging hazily on the horizon, the piece of antler and the block of flint he held in his hand hung as if they were suspended from their previous rapid motion. The man gazed intently across the swaying grass which rose in wave-like billows across the distant hills. What was that dust - a herd of buffalo, a band of hunters, or were coyotes chasing the antelope again? After watching for a while he started again to chip the flint with a rapid twisting motion of the bone in his right hand. The little chips of flint fell in the grass before him. It is the same hill but the scene has changed. Seated on the same rock, holding the reins of a saddle horse, a man dressed in buckskin took the fur cap off his head and wiped his brow. He was looking intently across a brown and desolate landscape at a cloud of dust on the far horizon. Was it the hostile tribe of Indians? It could be buffalo. Nervously he kicked at the ground with the deerhide moccasin, pushing the flint chips out of the way. He wiped the dust from his long rifle. What a terrible place - no water, practically no grass, everything bare and brown. Now at sunset, slanting across the hills green with springtime, a cowman sits on a big rock, pushes his sombrero back on his head, and looks across the valley at a large but quiet herd of stock, moving slowly as each steer walks from one lush patch of grass to another, nibbling. Suddenly he stood up. Far on the horizon some dark objects were moving. Is it the sheepmen? Could it be the stage coach from Baggs to the Sweetwater Crossing?Same hill - a gray truck was grinding slowly toward the summit. It pulled up near a small fenced enclosure where there were some instruments painted a bright silver color. A man stepped out of the truck and turned to his younger companion, "You've never found an arrowhead? Maybe you have never thought about it correctly. If you want to find where an Indian camped long

  20. The epistemological function of Hill's criteria.

    PubMed

    Bird, Alexander

    2011-10-01

    This article outlines an epistemological framework for understanding how Hill's criteria may aid us in establishing a causal hypothesis (A causes B) in an observational study. We consider Hill's criteria in turn with respect to their ability or otherwise to exclude alternative hypotheses (B causes A; there is a common cause of A and B; there is no causal connection between A and B). We may classify Hill's criteria according to which of the alternative hypotheses they are able to exclude, and also on the basis of whether they relate to (a) evidence from within observational study or (b) evidence independent of that study. It is noted that no criterion is able to exclude the common cause hypothesis in a systematic way. Observational studies are typically weaker than experimental studies, since the latter can systematically exclude competing hypotheses, whereas observational studies lack a systematic way of ruling out the common cause hypothesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Post-middle Miocene Tuffs of Bodie Hills and Mono Basin, California: Paleomagnetic Reference Directions and Vertical Axis Rotation

    NASA Astrophysics Data System (ADS)

    Lindeman, J. R.; Pluhar, C. J.; Farner, M. J.

    2013-12-01

    The relative motions of the Pacific and North American plates about the Sierra Nevada-North American Euler pole is accommodated by dextral slip along the San Andreas Fault System (~75%) and the Walker Lane-Eastern California Shear Zone system of faults, east of the Sierra Nevada microplate (~25%). The Bodie Hills and Mono Basin regions lie within the Walker Lane and partially accommodate deformation by vertical axis rotation of up to 60o rotation since ~9.4 Ma. This region experienced recurrent eruptive events from mid to late Miocene, including John et al.'s (2012) ~12.05 Ma Tuff of Jack Springs (TJS) and Gilbert's (1968) 11.1 - 11.9 Ma 'latite ignimbrite' east of Mono Lake. Both tuffs can be identified by phenocrysts of sanidine and biotite in hand specimens, with TJS composed of a light-grey matrix and the latite ignimbrite composed of a grey-black matrix. Our paleomagnetic results show these units to both be normal polarity, with the latite ignimbrite exhibiting a shallow inclination. TJS's normal polarity is consistent with emplacement during subchron C5 An. 1n (12.014 - 12.116 Ma). The X-ray fluorescence analyses of fiamme from TJS in Bodie Hills and the latite ignimbrite located east of Mono Lake reveal them both to be rhyolites with the latite ignimbrite sharing elevated K composition seen in the slightly younger Stanislaus Group (9.0 - 10.2 Ma). We establish a paleomagnetic reference direction of D = 352.8o I = 42.7o α95 = 7.7o n = 5 sites (42 samples) for TJS in the Bodie Hills in a region hypothesized by Carlson (2012) to have experienced low rotation. Our reference for Gilbert's latite ignimbrite (at Cowtrack Mountain) is D = 352.9o I = 32.1o α95 = 4.7o. This reference locality is found on basement highland likely to have experienced less deformation then the nearby Mono Basin since ignimbrite emplacement. Paleomagnetic results from this latite ignimbrite suggests ~98.2o × 5.5o of clockwise vertical axis rotation of parts of eastern Mono Basin since

  2. Dunes Streaming through Hills

    NASA Image and Video Library

    2014-02-26

    This dramatic image observed by NASA Mars Reconnaissance Orbiter shows dark rippled bodies of sand, sometimes in the form of dunes, streaming through Ganges Chasma. The floor of the canyon is covered by hills and mesas.

  3. Home page of Hill Air Force Base

    Science.gov Websites

    ; -- Victor Me... Twitter Logo He may only have one arm, but the youth sports director at #HillAFB doesn't let story on controlled burns at #HillAFB. The next one will be mid-June when firefighters will torch the Motorcycle Rodeo 4th Annual Motorcycle Rodeo It's time to ride 4th Annual Motorcycle Rodeo One arm, no sweat

  4. Microaftershock survey of the 1978 Bermuda rise earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishenko, S.P.; Purdy, G.M.; Ewing, J.I.

    1982-12-10

    On March 24, 1978, a magnitude 6.0 intraplate earthquake occurred 380 km southwest of Bermuda near magnetic anomaly M4 (roughly-equal118 m.y.B.P.). A catalog of seismicity for the Bermuda rise indicates that this is an area of significant intraplate seismicity in the western North Atlantic Ocean. The fault plane solution for the 1978 event is of thrust type and strikes 340/sup 0/, in an intermediate direction to the trends of major fracture zones (300/sup 0/) and abyssal hill topography (035/sup 0/) in the area. The P axis of this mechanism is nearly horizontal and trends 259/sup 0/, subparallel to the absolutemore » plate motion vector for North America. Aftershock activity was detected teleseismically for approximately 8 months after March 24, and the entire sequence is best described as a prolonged mainshock-aftershock series. During June 18--28, 1978, we conducted a microaftershock survey of the area using ocean bottom hydrophones and recorded 250 events (0« less

  5. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  6. FTAPE: A fault injection tool to measure fault tolerance

    NASA Technical Reports Server (NTRS)

    Tsai, Timothy K.; Iyer, Ravishankar K.

    1995-01-01

    The paper introduces FTAPE (Fault Tolerance And Performance Evaluator), a tool that can be used to compare fault-tolerant computers. The tool combines system-wide fault injection with a controllable workload. A workload generator is used to create high stress conditions for the machine. Faults are injected based on this workload activity in order to ensure a high level of fault propagation. The errors/fault ratio and performance degradation are presented as measures of fault tolerance.

  7. Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2003-10-01

    A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be

  8. Quantum theory of rotational isomerism and Hill equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.

    2012-06-15

    The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, containsmore » branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.« less

  9. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  10. Branimycins B and C, Antibiotics Produced by the Abyssal Actinobacterium Pseudonocardia carboxydivorans M-227.

    PubMed

    Braña, Alfredo F; Sarmiento-Vizcaíno, Aida; Pérez-Victoria, Ignacio; Otero, Luis; Fernández, Jonathan; Palacios, Juan José; Martín, Jesús; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Reyes, Fernando; García, Luis A; Blanco, Gloria

    2017-02-24

    Two new antibiotics, branimycins B (2) and C (3), were produced by fermentation of the abyssal actinobacterium Pseudonocardia carboxydivorans M-227, isolated from deep seawater of the Avilés submarine Canyon. Their structures were elucidated by HRMS and NMR analyses. These compounds exhibit antibacterial activities against a panel of Gram-positive bacteria, including Corynebacterium urealyticum, Clostridium perfringens, and Micrococcus luteus, and against the Gram-negative bacterium Neisseria meningitidis. Additionally, branimycin B displayed moderate antibacterial activity against other Gram-negative bacteria such as Bacteroides fragilis, Haemophilus influenzae, and Escherichia coli, and branimycin C against the Gram-positive Enterococcus faecalis and methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

  11. 75 FR 63465 - Hill-Lake Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-137-000] Hill-Lake Gas Storage, LLC; Notice of Filing October 7, 2010. Take notice that on September 30, 2010, Hill-Lake Gas Storage, LLC (Hill-Lake) filed a revised Statement of Operating Conditions (SOC) for its Storage Services...

  12. Mars Exploration Rover APXS Results from Matijevic Hill

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Clark, B. C.; Gellert, R.; Klingelhoefer, G.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R. V.; Schrader, C. M.; Schroeder, C.; Yen, A. S.; hide

    2013-01-01

    Correlation analysis of APXS results on the eastern slope rocks indicate that the Matijevic Hill rocks are overall compositionally distinct from the Shoemaker Formation rocks [6]. Compared to the Shoemaker impactites, Matijevic Hill rocks are higher in Al, Si, and Ni, and lower in Ti, Fe, and Zn. No significant variation is evident in the APXS analyses that indicate the presence of a smectite or other phyllosilicate, as opposed to basaltic rocks. However, APXS data cannot in themselves rule out phyllosilicates. If indeed this material contains smectite, as seen from orbit, it implies that the rock has been isochemically altered to create the phyllosilicate content. The Cl content of the Cape York rocks is relatively high, and whereas the S/Cl ratio in the Burns Formation is 4x higher than in soil, in the Cape York rocks it is lower than in soil. These trends indicate that the alteration processes and types of aqueous salt loads were different between Cape York and Meridiani. In addition, significant deviations from the Martian Mn/Fe ratio are observed in Whitewater Lake coatings and the altered Grasford/Deadwood rocks (Fig. 3). These variations indicate that the redox/pH conditions during alteration of the Shoemaker Formation rocks and the Matijevic Hill rocks were similar, but that the Deadwood/Grasberg unit may have undergone alteration under different conditions, possibly at a later time. The Matijevic Hill outcrops appear to share a common genetic origin. It is not yet clear whether both the Shoemaker impactites and Matijevic Hill rocks are related to the formation of Endeavour Crater, or whether the Matijevic Hill suite represents a prior episode of Martian impact or volcanism. Opportunity continues to investigate both hypotheses.

  13. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  14. Experimental investigation of flow over two-dimensional multiple hill models.

    PubMed

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke

    2017-12-31

    The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill

    2009-03-31

    as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.« less

  16. Geometry and kinematics of the eastern Lake Mead fault system in the Virgin Mountains, Nevada and Arizona

    USGS Publications Warehouse

    Beard, Sue; Campagna, David J.; Anderson, R. Ernest

    2010-01-01

    The Lake Mead fault system is a northeast-striking, 130-km-long zone of left-slip in the southeast Great Basin, active from before 16 Ma to Quaternary time. The northeast end of the Lake Mead fault system in the Virgin Mountains of southeast Nevada and northwest Arizona forms a partitioned strain field comprising kinematically linked northeast-striking left-lateral faults, north-striking normal faults, and northwest-striking right-lateral faults. Major faults bound large structural blocks whose internal strain reflects their position within a left step-over of the left-lateral faults. Two north-striking large-displacement normal faults, the Lakeside Mine segment of the South Virgin–White Hills detachment fault and the Piedmont fault, intersect the left step-over from the southwest and northeast, respectively. The left step-over in the Lake Mead fault system therefore corresponds to a right-step in the regional normal fault system.Within the left step-over, displacement transfer between the left-lateral faults and linked normal faults occurs near their junctions, where the left-lateral faults become oblique and normal fault displacement decreases away from the junction. Southward from the center of the step-over in the Virgin Mountains, down-to-the-west normal faults splay northward from left-lateral faults, whereas north and east of the center, down-to-the-east normal faults splay southward from left-lateral faults. Minimum slip is thus in the central part of the left step-over, between east-directed slip to the north and west-directed slip to the south. Attenuation faults parallel or subparallel to bedding cut Lower Paleozoic rocks and are inferred to be early structures that accommodated footwall uplift during the initial stages of extension.Fault-slip data indicate oblique extensional strain within the left step-over in the South Virgin Mountains, manifested as east-west extension; shortening is partitioned between vertical for extension-dominated structural

  17. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  18. Photomosaics and logs of trenches on the San Andreas Fault, Thousand Palms Oasis, California

    USGS Publications Warehouse

    Fumal, Thomas E.; Frost, William T.; Garvin, Christopher; Hamilton, John C.; Jaasma, Monique; Rymer, Michael J.

    2004-01-01

    We present photomosaics and logs of the walls of trenches excavated for a paleoseismic study at Thousand Palms Oasis (Fig. 1). The site is located on the Mission Creek strand of the San Andreas fault zone, one of two major active strands of the fault in the Indio Hills along the northeast margin of the Coachella Valley (Fig. 2). The Coachella Valley section is the most poorly understood major part of the San Andreas fault with regard to slip rate and timing of past large-magnitude earthquakes, and therefore earthquake hazard. No large earthquakes have occurred for more than three centuries, the longest elapsed time for any part of the southern San Andreas fault. In spite of this, the Working Group on California Earthquake Probabilities (1995) assigned the lowest 30-year conditional probability on the southern San Andreas fault to the Coachella Valley. Models of the behavior of this part of the fault, however, have been based on very limited geologic data. The Thousand Palms Oasis is an attractive location for paleoseismic study primarily because of the well-bedded late Holocene sedimentary deposits with abundant layers of organic matter for radiocarbon dating necessary to constrain the timing of large prehistoric earthquakes. Previous attempts to develop a chronology of paleoearthquakes for the region have been hindered by the scarcity of in-situ 14C-dateable material for age control in this desert environment. Also, the fault in the vicinity of Thousand Palms Oasis consists of a single trace that is well expressed, both geomorphically and as a vegetation lineament (Figs. 2, 3). Results of our investigations are discussed in Fumal et al. (2002) and indicate that four and probably five surface-rupturing earthquakes occurred along this part of the fault during the past 1200 years. The average recurrence time for these earthquakes is 215 ± 25 years, although interevent times may have been as short as a few decades or as long as 400 years. Thus, although the elapsed

  19. CO 2 storage and potential fault instability in the St. Lawrence Lowlands sedimentary basin (Quebec, Canada): Insights from coupled reservoir-geomechanical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinovskaya, E.; Rutqvist, J.; Malo, M.

    2014-01-21

    In this paper, coupled reservoir-geomechanical (TOUGH-FLAC) modeling is applied for the first time to the St. Lawrence Lowlands region to evaluate the potential for shear failure along pre-existing high-angle normal faults, as well as the potential for tensile failure in the caprock units (Utica Shale and Lorraine Group). This activity is part of a general assessment of the potential for safe CO 2 injection into a sandstone reservoir (the Covey Hill Formation) within an Early Paleozoic sedimentary basin. Field and subsurface data are used to estimate the sealing properties of two reservoir-bounding faults (Yamaska and Champlain faults). The spatial variationsmore » in fluid pressure, effective minimum horizontal stress, and shear strain are calculated for different injection rates, using a simplified 2D geological model of the Becancour area, located ~110 km southwest of Quebec City. The simulation results show that initial fault permeability affects the timing, localization, rate, and length of fault shear slip. Contrary to the conventional view, our results suggest that shear failure may start earlier for a permeable fault than for a sealing fault, depending on the site-specific geologic setting. In simulations of a permeable fault, shear slip is nucleated along a 60 m long fault segment in a thin and brittle caprock unit (Utica Shale) trapped below a thicker and more ductile caprock unit (Lorraine Group) – and then subsequently progresses up to the surface. In the case of a sealing fault, shear failure occurs later in time and is localized along a fault segment (300 m) below the caprock units. The presence of the inclined low-permeable Yamaska Fault close to the injection well causes asymmetric fluid-pressure buildup and lateral migration of the CO 2 plume away from the fault, reducing the overall risk of CO 2 leakage along faults. Finally, fluid-pressure-induced tensile fracturing occurs only under extremely high injection rates and is localized below the

  20. "This Delightfull Garden": "Rabbit Hill" and the Pastoral Tradition.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Contends that Robert Lawson's children's book "Rabbit Hill" (1944) falls within the genre of pastoral literature, in the tradition of Edmund Spenser's "Faerie Queen." Examines the history of the genre and finds reasons for classifying Lawson's book as pastoral. Cites classic elements in "Rabbit Hill." Gives five…

  1. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.

    2017-02-01

    The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj

  2. Boundary current-controlled turbidite deposition: A sedimentation model for the Southern Nares Abyssal Plain, Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Kuijpers, A.; Duin, E. J. Th.

    1986-03-01

    Examination of 38 sediment cores, bottom photographs, 7,000 km of 3.5 kHz reflection profiles and other seismic data from the southern part of the Nares Abyssal Plain suggests that complex sedimentary patterns and high sedimentation rates can be largely attributed to effects of a deep boundary current flowing eastward along the north flank of the Greater Antilles Outer Ridge. It is concluded that the areal dispersal pattern of turbidites on the plain results mainly from Quaternary climatically-induced fluctuations of the boundary current intensity.

  3. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    USGS Publications Warehouse

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  4. Active Fault Topography and Fault Outcrops in the Central Part of the Nukumi fault, the 1891 Nobi Earthquake Fault System, Central Japan

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Ueta, K.; Inoue, D.; Aoyagi, Y.; Yanagida, M.; Ichikawa, K.; Goto, N.

    2010-12-01

    It is important to evaluate the magnitude of earthquake caused by multiple active faults, taking into account the simultaneous effects. The simultaneity of adjacent active faults are often decided on the basis of geometric distances except for known these paleoseismic records. We have been studied the step area between the Nukumi fault and the Neodani fault, which appeared as consecutive ruptures in the 1891 Nobi earthquake, since 2009. The purpose of this study is to establish innovation in valuation technique of the simultaneity of adjacent active faults in addition to the paleoseismic record and the geometric distance. Geomorphological, geological and reconnaissance microearthquake surveys are concluded. The present work is intended to clarify the distribution of tectonic geomorphology along the Nukumi fault and the Neodani fault by high-resolution interpretations of airborne LiDAR DEM and aerial photograph, and the field survey of outcrops and location survey. The study area of this work is the southeastern Nukumi fault and the northwestern Neodani fault. We interpret DEM using shaded relief map and stereoscopic bird's-eye view made from 2m mesh DEM data which is obtained by airborne laser scanner of Kokusai Kogyo Co., Ltd. Aerial photographic survey is for confirmation of DEM interpretation using 1/16,000 scale photo. As a result of topographic survey, we found consecutive tectonic topography which is left lateral displacement of ridge and valley lines and reverse scarplets along the Nukumi fault and the Neodani fault . From Ogotani 2km southeastern of Nukumi pass which is located at the southeastern end of surface rupture along the Nukumi fault by previous study to Neooppa 9km southeastern of Nukumi pass, we can interpret left lateral topographies and small uphill-facing fault scarps on the terrace surface by detail DEM investigation. These topographies are unrecognized by aerial photographic survey because of heavy vegetation. We have found several new

  5. Nose Hill Artifacts

    ERIC Educational Resources Information Center

    Hansen, Vivian

    2008-01-01

    A Blackfoot woman, caught in the act of adultery, was condemned at this site to have her nose cut off as a penalty for her actions. People do not know her story. The tribe cast it on the ground. And so She, Nose Hill, was named. John Laurie Boulevard holds her mound in a circlet of asphalt, defining the map of her "terra incognita." She…

  6. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    USGS Publications Warehouse

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron

    2015-01-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  7. Predeployment validation of fault-tolerant systems through software-implemented fault insertion

    NASA Technical Reports Server (NTRS)

    Czeck, Edward W.; Siewiorek, Daniel P.; Segall, Zary Z.

    1989-01-01

    Fault injection-based automated testing (FIAT) environment, which can be used to experimentally characterize and evaluate distributed realtime systems under fault-free and faulted conditions is described. A survey is presented of validation methodologies. The need for fault insertion based on validation methodologies is demonstrated. The origins and models of faults, and motivation for the FIAT concept are reviewed. FIAT employs a validation methodology which builds confidence in the system through first providing a baseline of fault-free performance data and then characterizing the behavior of the system with faults present. Fault insertion is accomplished through software and allows faults or the manifestation of faults to be inserted by either seeding faults into memory or triggering error detection mechanisms. FIAT is capable of emulating a variety of fault-tolerant strategies and architectures, can monitor system activity, and can automatically orchestrate experiments involving insertion of faults. There is a common system interface which allows ease of use to decrease experiment development and run time. Fault models chosen for experiments on FIAT have generated system responses which parallel those observed in real systems under faulty conditions. These capabilities are shown by two example experiments each using a different fault-tolerance strategy.

  8. Pesticides, Neurodevelopmental Disagreement, and Bradford Hill's Guidelines.

    PubMed

    Shrader-Frechette, Kristin; ChoGlueck, Christopher

    2016-06-27

    Neurodevelopmental disorders such as autism affect one-eighth of all U.S. newborns. Yet scientists, accessing the same data and using Bradford-Hill guidelines, draw different conclusions about the causes of these disorders. They disagree about the pesticide-harm hypothesis, that typical United States prenatal pesticide exposure can cause neurodevelopmental damage. This article aims to discover whether apparent scientific disagreement about this hypothesis might be partly attributable to questionable interpretations of the Bradford-Hill causal guidelines. Key scientists, who claim to employ Bradford-Hill causal guidelines, yet fail to accept the pesticide-harm hypothesis, fall into errors of trimming the guidelines, requiring statistically-significant data, and ignoring semi-experimental evidence. However, the main scientists who accept the hypothesis appear to commit none of these errors. Although settling disagreement over the pesticide-harm hypothesis requires extensive analysis, this article suggests that at least some conflicts may arise because of questionable interpretations of the guidelines.

  9. The abyssal and deep circulation of the Northeast Pacific Basin

    NASA Astrophysics Data System (ADS)

    Hautala, Susan L.

    2018-01-01

    Three-dimensional abyssal and deep circulation of the region to the east and north of the Emperor Seamount Chain/Hawaiian Ridge is determined from a compilation of CTD and Argo float data, using a new overdetermined inverse technique for the geostrophic reference velocity and diapycnal/lateral mixing coefficients. The Northeast Pacific Basin is primarily sourced from its northern boundary, at a rate of 3.5 Sv across 47°N below 3000 m. Bottom water in the western subarctic gyre recirculates cyclonically between the Emperor Seamount Chain and 155°W. Bottom water east of 155°W takes a more direct path southward along the flank of a broad topographic slope. In the deep water, a ridge of potential vorticity lying along the Mendocino Fracture Zone separates circulation systems north and south of ∼40°N. The region has very weak diapycnal and lateral mixing, and an aspect ratio for the overturning circulation that is correspondingly flat, with bottom water parcels rising less than 1 km during their long transit from the Aleutian Trench to the latitude of Hawaii.

  10. 1. HISTORIC PHOTOGRAPH, VIEW OF ROUND HILL ROAD BRIDGE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HISTORIC PHOTOGRAPH, VIEW OF ROUND HILL ROAD BRIDGE, LOOKING WEST, CA. 1940. CONNECTICUT DEPARTMENT OF TRANSPORTATION. - Merritt Parkway, Round Hill Road Bridge, Spanning Merritt Parkway at 3.5 mile mark, Greenwich, Fairfield County, CT

  11. Classification of Broken Hill-Type Pb-Zn-Ag Deposits: A Refinement

    NASA Astrophysics Data System (ADS)

    Spry, P. G.; Teale, G. S.; Steadman, J. A.

    2009-05-01

    Broken Hill Hill-type Pb-Zn-Ag (BHT) deposits constitute some of the largest ore deposits in the world. The Broken Hill deposit is the largest accumulation of Pb, Zn, and Ag on Earth and the Cannington deposit is currently the largest silver deposit. Characteristic features of BHT deposits include: 1. high Pb+Zn+Ag values with Pb > Zn; 2. Metamorphism to amphibolite-granulite facies; 3. Paleo-to Mesoprotoerozoic clastic metasedimentary host rocks; 4. Sulfides that are spatially associated with bimodal (felsic and mafic) volcanic rocks, and stratabound gahnite- and garnet-bearing rocks and iron formations, 5. Stacked orebodies with characteristic Pb:Zn:Ag ratios and skarn-like Fe-Mn-Ca-F gangue assemblages, and the presence of Cu, Au, Bi, As, and Sb; and 6. Sulfur-poor assemblages. Broken Hill (Australia) has a prominent footwall feeder zone whereas other BHT deposits have less obvious alteration zones (footwall garnet spotting and stratabound alteration haloes). Deposits previously regarded in the literature as BHT deposits are Broken Hill, Cannington, Oonagalabie, Menninie Dam, and Pegmont (Australia), Broken Hill, Swartberg, Big Syncline, and Gamsberg (South Africa), Zinkgruvan (Sweden), Sullivan, Cottonbelt, and Foster River (Canada), and Boquira (Brazil). Of these deposits, only the Broken Hill (Australia, South Africa), Pinnacles, Cannington, Pegmont, and Swartberg deposits are BHT deposits. Another BHT deposit includes the Green Parrot deposit, Jervois Ranges (Northern Territory). The Foster River, Gamsberg, and Sullivan deposits are considered to be "SEDEX deposits with BHT affinities", and the Oonagalabie, Green Mountain (Colorado), and Zinkgruvan are "VMS deposits with BHT affinities". In the Broken Hill area (Australia), Corruga-type Pb-Zn-Ag deposits occur in calc-silicate rocks and possess some BHT characteristics; the Big Syncline, Cottonbelt, Menninie Dam, and Saxberget deposits are Corruga-type deposits. SEDEX deposits with BHT affinities, VMS

  12. Geochemistry of tectonically expelled fluids from the northern Coast ranges, Rumsey Hills, California, USA

    USGS Publications Warehouse

    Davisson, M.L.; Presser, T.S.; Criss, R.E.

    1994-01-01

    component that is under abnormal fluid pressures cannot be ruled out. Basinal fluids elsewhere commonly show dilution trends with local meteoric water, and in the case of the Rumsey Hills, some of the dilute saline waters may indicate deep penetration of meteoric water (> 1 km) in the Pleistocene before the latest tectonic uplift. Geothermometry of the spring waters (maximum ~90??C) suggest an origin from as deep as 4.0 km. This depth is consistent with the depth of the core of a fault propagation anticline below the surface of the Rumsey Hills developed by active internal deformation of an east-tapering wedge beneath the southwestern Sacramento Valley. Active tectonic compression causes near-lithostatic fluid pressures in the shallow subsurface below the Rumsey Hills and volume strain within the core of the anticline that results in upward expulsion of the saline fluids from the indicated depths. ?? 1994.

  13. Using zircon (U-Th)/He damage-diffusivity patterns to quantify detachment-related basement exhumation in the Mecca Hills, CA

    NASA Astrophysics Data System (ADS)

    Moser, A. C.; Ault, A. K.; Evans, J. P.; Reiners, P. W.; Stearns, M.; Guenthner, W.

    2017-12-01

    Exposures of gneiss and Orocopia Schist (OS) in the Mecca Hills, California, adjacent to the southernmost San Andreas Fault system, preserve the exhumation history of Oligocene detachment faulting. We investigate the duration, magnitude, and mechanisms of exhumation of these units at regional and local scales using in situ U-Pb zircon dating (n = 248), (U-Th)/He (He) thermochronometry (n = 39), and He date-effective U (eU) patterns. Zircons with variable preserved visual metamictization were targeted for He analyses to purposefully build a dataset with a range in eU concentration and zircon He closure temperatures, as well as induce a He date-eU correlation. Analyzed zircon crystals range from clear and transparent to purple-brown and translucent in each sample. Zircon cathodoluminescence images reveal oscillatory and sector chemical zoning. Each sample contains a population of largely Proterozoic U-Pb dates implying some grains accumulated radiation damage since 1.9-1.1 Ga. Zircon (U-Th)/He dates from seven samples of OS and gneiss yield a mean date of 24 ± 3.5 Ma (n = 32) and uniform dates over an 90-2950 ppm eU range. One gneiss sample yields a mean date of 65 ± 5.6 Ma (n = 7) over a limited eU spread ( 500-950 ppm). Mean zircon He dates from these two units overlap, but dates are broadly younger in northeastern exposures dominated by OS. Preliminary thermal history simulations integrating zircon U-Pb data, He date-eU patterns, and independent geologic constraints require at least 200 °C of cooling through the zircon He partial retention zone 30-21 Ma and show that the pre-70 Ma thermal history does not affect the predicted date-eU correlation. This shared rapid cooling history documented in the OS and gneiss imply these units were juxtaposed prior to 30 Ma and exhumed as a coherent structural block within the footwall of the Orocopia Mountains Detachment Fault in the Mecca Hills. Spatio-temporal variation in mean zircon He dates may delineate time

  14. Serpentinisation and fluid flow associated with a detachment fault in Tasna OCT, South-east Switzerland

    NASA Astrophysics Data System (ADS)

    Engström, A. V.; Skelton, A. D.

    2003-04-01

    The well-studied Iberia Abyssal Plain (ODP legs 149 and 173) is a non-volcanic passive margin where continental crust and oceanic crust are separated by a “mantle window” composed of serpentinised peridotites. The exhumation of the mantle at this transitional zone is under debate and several models involving detachment faulting, shear zones or magmatic intrusions have been proposed to explain the formation of the ocean-continent transition (OCT). The mechanical behaviour of serpentinite, with its low density, strength and permeability, and the timing of the serpentinisation process in relation to the exhumation, are crucial parameters in understanding non-volcanic rifting processes. Beneath Iberia Abyssal Plain, sampling is restricted to ocean ridges, the recovery is very poor and in addition, drillcores only give one-dimensional data, implicitly any data is not statistically well represented. However, there are several land analogues of past ocean-continent margins which give excellent opportunities to study the timing and evolution of fluids and serpentinisation in several dimensions. The Tasna OCT is a “mantle window” situated in the Swiss Alps displaying exhumed mantle (serpentinised peridotite) in contact with basement rocks or sediments. For this study several sampling profiles have been conducted across the mantle boundary. Field observations together with ignition experiments and thin section analyses indicate that the degree of serpentinisation is not continously increasing with depth as may be expected. In contrast, high serpentinite contents were recorded at the top of the mantle sequence as well as deeper down. The general pattern of serpentinisation shows “saw tooth” geometry as the content fluctuate from high to low and back to higher values again. This implies that the fluid flow has been channeled. Oxygen isotope studies from the Iberia margin (Skelton and Valley 2000) show deformation channeled fluid flow. Several heavily eroded

  15. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  16. Ecology, silviculture, and management of Black Hills ponderosa pine

    Treesearch

    Wayne D. Shepperd; Michael A. Battaglia

    2002-01-01

    This paper presents a broad-based synthesis of the general ecology of the ponderosa pine ecosystem in the Black Hills. This synthesis contains information and results of research on ponderosa pine from numerous sources within the Black Hills ecosystem. We discuss the silvical characteristics of ponderosa pine, natural disturbances that govern ecosystem processes,...

  17. Active faulting induced by the slip partitioning in the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, Frédérique; Feuillet, Nathalie

    2010-05-01

    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pel

  18. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    NASA Technical Reports Server (NTRS)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  19. Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30more » to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).« less

  20. Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.

    2013-12-01

    Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si

  1. VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, FROM AMMUNITION (IGLOO) HILL. (Part 2 of a 3 view panorama; see also CA-2398-J-1 and CA-2398-16.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA

  2. Fault finder

    DOEpatents

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  3. Rocks of the Columbia Hills

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Blaney, D.L.; Clark, B. C.; Crumpler, L.; Farrand, W. H.; Gorevan, S.; Herkenhoff, K. E.; Hurowitz, J.; Kusack, A.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Ruff, S.W.; Wang, A.; Yen, A.

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic or impact in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in Martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present. Copyright 2006 by the American Geophysical Union.

  4. Drought in the Black Hills

    NASA Image and Video Library

    2005-05-18

    Despite good rainfall and record-setting snowstorms in the spring of 2005, most of northeastern Wyoming, the Black Hills, and western South Dakota remained in the midst of a severe drought. These images are from NASA Terra spacecraft.

  5. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    NASA Astrophysics Data System (ADS)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  6. Trans-Pacific Bathymetry Survey crossing over the Pacific, Antarctic, and Nazca plates

    NASA Astrophysics Data System (ADS)

    Abe, N.; Fujiwara, T.

    2013-12-01

    Multibeam bathymetric data reveals seafloor fabrics, i.e. abyssal hills and fracture zones, distribution of seamounts and/or knolls and are usually smaller than the detectable size by global prediction derived from satellite altimetry. The seafloor depths combined with shipboard gravity data indicate the structure of oceanic lithosphere, thermal state, and mantle dynamics and become more accurate data set to estimate fine-scale crustal structures and subsurface mass distribution. We present the ~22000 km long survey line from the northeast Japan through to the equator at the mid-Pacific on to the southwest Chilean coast collected during the JAMSTEC R/V Mirai MR08-06 Leg-1 cruise in January-March 2009. The cruise was as a part of SORA2009 (Abe, 2009 Cruise report) for geological and geophysical studies in the southern Pacific, and was an unprecedented opportunity to collect data in the regions of the Pacific Ocean where it has been sparsely surveyed using state-of-the-art echo-sounding technology. Our multibeam bathymetric and shipboard gravity survey track crossed over the Pacific, the Antarctic, and the Nazca plates, and covered lithospheric ages varying from zero to 150 Ma. Strikes of lineated abyssal hills give critical evidences for future studies of the plate reconstruction and tectonic evolution of the old Pacific Plate because magnetic lineations are unconstrained on the seafloor in the Cretaceous magnetic quiet (125-80 Ma) zone. Consecutive trends of lineated abyssal hills and fracture zones indicate stable tectonic stress field originated from the Pacific Antarctic Ridge (PAR) and the Chile Ridge spreading systems. The seafloor fabric morphology revealed a clear boundary between the PAR and the Chile Ridge domains. The observed bathymetric boundary is probably a part of a trace of the Pacific-Antarctic-Farallon (Nazca) plate's triple junction. The result will be constraint for future studies of the plate reconstruction and tectonic evolution of the PAR

  7. Kinematic Model for the Sierra Nevada Frontal Fault Zone, California: Paleomagnetism of the Eureka Valley Tuff

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.

    2005-12-01

    We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the

  8. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.

    2013-08-01

    The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.

  9. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  10. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults

  11. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    der Woerd, J v; Klinger, Y; Sieh, K

    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposuremore » history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.« less

  12. Fault diagnosis

    NASA Technical Reports Server (NTRS)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  13. Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications.

    PubMed

    Drazen, Jeffrey C; Phleger, Charles F; Guest, Michaela A; Nichols, Peter D

    2008-09-01

    The lipid, fatty acid (FA), and sterol composition of two ophiuroids and four holothurians from the abyssal eastern North Pacific were analysed to assess their feeding habits and to ascertain their composition for use in a larger study to examine food web dynamics and trophic ecology. Holothurians were rich in phytosterols and algal derived FA such as docosahexaenoic acid and eicosapentaenoic suggesting tight trophic coupling to phytodetritus. Large proportions of stanols were found, probably a result of enteric bacteria but they may come from sterol metabolism in the holothurians themselves. Oneirophanta mutabilis was distinct with much higher levels of stanols and bacterially derived FA suggesting specific selection of bacteria rich detrital particles or the activity of enteric and integumental bacteria. The ophiuroids sterol and FA compositions differed greatly from the holothurians and reflected consumption of animal material in addition to phytodetritus. Large proportions of energy storage lipids suggested a sporadic food supply. Several unusual fatty acids were found in these abyssal echinoderms. Tetracosahexaenoic acid, 24:6omega3, in ophiuroids and 23:1 in holothurians may be good biomarkers for food web studies. We report the first occurrence of alphaOH 24:1 in holothurians with none detected in ophiuroids. Its function is presently unknown.

  14. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone

    PubMed Central

    Amon, Diva J.; Ziegler, Amanda F.; Dahlgren, Thomas G.; Glover, Adrian G.; Goineau, Aurélie; Gooday, Andrew J.; Wiklund, Helena; Smith, Craig R.

    2016-01-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km2 stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m−2. Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity. PMID:27470484

  15. Computational tools for fitting the Hill equation to dose-response curves.

    PubMed

    Gadagkar, Sudhindra R; Call, Gerald B

    2015-01-01

    Many biological response curves commonly assume a sigmoidal shape that can be approximated well by means of the 4-parameter nonlinear logistic equation, also called the Hill equation. However, estimation of the Hill equation parameters requires access to commercial software or the ability to write computer code. Here we present two user-friendly and freely available computer programs to fit the Hill equation - a Solver-based Microsoft Excel template and a stand-alone GUI-based "point and click" program, called HEPB. Both computer programs use the iterative method to estimate two of the Hill equation parameters (EC50 and the Hill slope), while constraining the values of the other two parameters (the minimum and maximum asymptotes of the response variable) to fit the Hill equation to the data. In addition, HEPB draws the prediction band at a user-defined confidence level, and determines the EC50 value for each of the limits of this band to give boundary values that help objectively delineate sensitive, normal and resistant responses to the drug being tested. Both programs were tested by analyzing twelve datasets that varied widely in data values, sample size and slope, and were found to yield estimates of the Hill equation parameters that were essentially identical to those provided by commercial software such as GraphPad Prism and nls, the statistical package in the programming language R. The Excel template provides a means to estimate the parameters of the Hill equation and plot the regression line in a familiar Microsoft Office environment. HEPB, in addition to providing the above results, also computes the prediction band for the data at a user-defined level of confidence, and determines objective cut-off values to distinguish among response types (sensitive, normal and resistant). Both programs are found to yield estimated values that are essentially the same as those from standard software such as GraphPad Prism and the R-based nls. Furthermore, HEPB also has

  16. Changes in the Orientation of Local Stresses Prior to and During Magmatic Activity at the Soufriere Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Roman, D. C.; Neuberg, J.; Luckett, R. R.; White, R. A.

    2005-12-01

    Systematic changes in the orientation of double-couple fault-plane solutions (FPS) for volcanotectonic (VT) earthquakes have been linked to stress changes induced by the dilation of the magmatic conduit system and may precede the onset of eruption by weeks to months, potentially providing advance warning of an impending eruption. To determine whether analysis of FPS for VT earthquakes recorded during the ongoing eruption of the Soufriere Hills Volcano, Montserrat, could be used to detect the arrival of magma in the mid-level conduit system, we produced a large catalog of high-quality FPS that spanned several phases of the eruption, and then analyzed this catalog to determine whether a temporal correlation exists between eruptive activity and FPS orientation. We repicked VT earthquakes recorded on the Montserrat Volcano Observatory analog and digital seismic networks from the beginning of the eruption in 1995 to May 2005 and relocated them using a 1D velocity model. We then determined well-constrained FPS for the relocated earthquakes. Well-contrained FPS for 607 VT earthquakes indicate primarily oblique strike-slip faulting. In August 1995 (prior to the onset of lava extrusion in September 1995), October 1996-June 1997 (during a period of dome-building), May-November 1999 (prior to the restart of the eruption in November 1999 following a year-long pause), and April-May 2005 (prior to the restart of the eruption in June-August 2005 following a two year pause), FPS pressure (p-) axes are oriented approximately perpendicular to the inferred direction of regional maximum compressive stress around Montserrat. In contrast, FPS p-axes for earthquakes accompanying a pause in the eruption in 1998-1999, and from December 1999-March 2005 are oriented approximately parallel to regional maximum compression. VT earthquakes with FPS p-axes oriented perpendicular to regional maximum compression are thought to reflect local stresses induced by the inflation of a dike-like magmatic

  17. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into themore » nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.« less

  18. 3. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO THE SOUTHWEST. BUILDINGS NOTED IN ID-29-2 APPEAR, IN ADDITION TO DRY ORE PLANT AND BONNOT COAL PULVERIZING EQUIPMENT BUILDING ON THE RIGHT. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID

  19. The origin of Mauna Loa's Nīnole Hills: Evidence of rift zone reorganization

    USGS Publications Warehouse

    Zurek, Jeffrey; Williams-Jones, Glyn; Trusdell, Frank A.; Martin, Simon

    2015-01-01

    In order to identify the origin of Mauna Loa volcano's Nīnole Hills, Bouguer gravity was used to delineate density contrasts within the edifice. Our survey identified two residual anomalies beneath the Southwest Rift Zone (SWRZ) and the Nīnole Hills. The Nīnole Hills anomaly is elongated, striking northeast, and in inversions both anomalies merge at approximately −7 km above sea level. The positive anomaly, modeled as a rock volume of ~1200 km3 beneath the Nīnole Hills, is associated with old eruptive vents. Based on the geologic and geophysical data, we propose that the gravity anomaly under the Nīnole Hills records an early SWRZ orientation, now abandoned due to geologically rapid rift-zone reorganization. Catastrophic submarine landslides from Mauna Loa's western flank are the most likely cause for the concurrent abandonment of the Nīnole Hills section of the SWRZ. Rift zone reorganization induced by mass wasting is likely more common than currently recognized.

  20. 83. GENERAL VIEW FROM NORTH END OF GUN HILL PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    83. GENERAL VIEW FROM NORTH END OF GUN HILL PLATFORM OF 3RD AVENUE EL SHOWING THE SOUTHBOUND TRACK APPROACH INTO GUN HILL STATION. 7TH AVENUE EXPRESS EL ABOVE. - Interborough Rapid Transit Company, Third Avenue Elevated Line, Borough of the Bronx, New York County, NY

  1. A New Kinematic Model for Polymodal Faulting: Implications for Fault Connectivity

    NASA Astrophysics Data System (ADS)

    Healy, D.; Rizzo, R. E.

    2015-12-01

    Conjugate, or bimodal, fault patterns dominate the geological literature on shear failure. Based on Anderson's (1905) application of the Mohr-Coulomb failure criterion, these patterns have been interpreted from all tectonic regimes, including normal, strike-slip and thrust (reverse) faulting. However, a fundamental limitation of the Mohr-Coulomb failure criterion - and others that assume faults form parallel to the intermediate principal stress - is that only plane strain can result from slip on the conjugate faults. However, deformation in the Earth is widely accepted as being three-dimensional, with truly triaxial stresses and strains. Polymodal faulting, with three or more sets of faults forming and slipping simultaneously, can generate three-dimensional strains from truly triaxial stresses. Laboratory experiments and outcrop studies have verified the occurrence of the polymodal fault patterns in nature. The connectivity of polymodal fault networks differs significantly from conjugate fault networks, and this presents challenges to our understanding of faulting and an opportunity to improve our understanding of seismic hazards and fluid flow. Polymodal fault patterns will, in general, have more connected nodes in 2D (and more branch lines in 3D) than comparable conjugate (bimodal) patterns. The anisotropy of permeability is therefore expected to be very different in rocks with polymodal fault patterns in comparison to conjugate fault patterns, and this has implications for the development of hydrocarbon reservoirs, the genesis of ore deposits and the management of aquifers. In this contribution, I assess the published evidence and models for polymodal faulting before presenting a novel kinematic model for general triaxial strain in the brittle field.

  2. Diversity and biogeography of land snails (Mollusca, Gastropoda) in the limestone hills of Perak, Peninsular Malaysia

    PubMed Central

    Foon, Junn Kitt; Clements, Gopalasamy Reuben; Liew, Thor-Seng

    2017-01-01

    Abstract Limestone hills are now gaining global conservation attention as hotspots for short-range endemic species. Levels of land snail endemism can be high at limestone hills, especially at hill clusters that are geographically isolated. In the State of Perak, Peninsular Malaysia, limestone hills have been opportunistically surveyed for land snails in the past, but the majority have yet to be surveyed. To address this knowledge gap, we systematically surveyed the terrestrial malacofauna of 12 limestone hills that, based on our opinion, are a representation of the limestone land snail assemblages within the State. Our inventory yielded high sampling completeness (>85%). We found 122 species of land snails, of which 34 species were unique to one of the surveyed hills. We identified 30 species that are potentially new to science. The number of land snail species recorded at each hill ranged between 39 and 63 species. Four of the sampled limestone hills namely, Prk 01 G. Tempurung, Prk 55 G. Pondok, Prk 47 Kanthan, and Prk 64 Bt Kepala Gajah, have high levels of species richness and unique species, representing 91% of the total species recorded in this study. We identified two clusters of limestone hills in central Perak with distinct differences in land snail species composition – a northern hill cluster on elevated granite bedrock and southern hill cluster in a low-lying valley surrounded by alluvial soils. As limestone hills continue to be quarried to meet the cement demand, the four identified limestone hills, along with other hills from the two clusters, warrant urgent conservation attention in order to maintain high species diversity within Perak’s terrestrial malacofauna. PMID:28769723

  3. Fault tree models for fault tolerant hypercube multiprocessors

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Tuazon, Jezus O.

    1991-01-01

    Three candidate fault tolerant hypercube architectures are modeled, their reliability analyses are compared, and the resulting implications of these methods of incorporating fault tolerance into hypercube multiprocessors are discussed. In the course of performing the reliability analyses, the use of HARP and fault trees in modeling sequence dependent system behaviors is demonstrated.

  4. Fault Tree Analysis.

    PubMed

    McElroy, Lisa M; Khorzad, Rebeca; Rowe, Theresa A; Abecassis, Zachary A; Apley, Daniel W; Barnard, Cynthia; Holl, Jane L

    The purpose of this study was to use fault tree analysis to evaluate the adequacy of quality reporting programs in identifying root causes of postoperative bloodstream infection (BSI). A systematic review of the literature was used to construct a fault tree to evaluate 3 postoperative BSI reporting programs: National Surgical Quality Improvement Program (NSQIP), Centers for Medicare and Medicaid Services (CMS), and The Joint Commission (JC). The literature review revealed 699 eligible publications, 90 of which were used to create the fault tree containing 105 faults. A total of 14 identified faults are currently mandated for reporting to NSQIP, 5 to CMS, and 3 to JC; 2 or more programs require 4 identified faults. The fault tree identifies numerous contributing faults to postoperative BSI and reveals substantial variation in the requirements and ability of national quality data reporting programs to capture these potential faults. Efforts to prevent postoperative BSI require more comprehensive data collection to identify the root causes and develop high-reliability improvement strategies.

  5. Mineralogy of the Pahrump Hills Region, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Vaniman, D. T.; Blake, D. F.; Chipera, S. J.; Morris, R. V.; Bish, D. L.; Cavanagh, P. D.; Achilles, C. N.; Bristow, T. F.; hide

    2015-01-01

    The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rocks in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September, 2014, and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three rock samples to its internal instruments, including the CheMin XRD/XRF. The three targets, Confidence Hills, Mojave 2, and Telegraph Peak, contain variable amounts of plagioclase, pyroxene, iron oxides, jarosite, phyllosilicates, and X-ray amorphous material. Hematite was predicted at the base of Mount Sharp from orbital visible/near-IR spectroscopy, and CheMin confirmed this detection. The presence of jarosite throughout Pahrump Hills suggests the sediments experienced acid-sulfate alteration, either in-situ or within the source region of the sediments. This acidic leaching environment is in stark contrast to the environment preserved within the Sheepbed mudstone on the plains of Gale crater. The minerals within Sheepbed, including Fe-saponite, indicate these sediments were deposited in a shallow lake with circumneutral pH that may have been habitable.

  6. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Black Hills-Rapid City Intrastate Air... Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region. The Rapid City Intrastate Air Quality Control Region (South Dakota) has been renamed the Black Hills-Rapid...

  7. 40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Black Hills-Rapid City Intrastate Air... Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region. The Rapid City Intrastate Air Quality Control Region (South Dakota) has been renamed the Black Hills-Rapid...

  8. Investigation of Hill's optical turbulence model by means of direct numerical simulation.

    PubMed

    Muschinski, Andreas; de Bruyn Kops, Stephen M

    2015-12-01

    For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.

  9. Hot pressing in conduit faults during lava dome extrusion: Insights from Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Ryan, Amy G.; Friedlander, Elizabeth A.; Russell, James K.; Heap, Michael J.; Kennedy, Lori A.

    2018-01-01

    Rhyodacitic volcanoes such as Mount St. Helens (MSH), Soufrière Hills, Mount Unzen and Mount Pelée erupt spines mantled by layers of magma-derived cataclasite and fault gouge. MSH produced seven lava spines from 2004-2008 composed of low-porosity, compositionally uniform, crystalline dacite. Dome extrusion was attended by continuous 'drumbeat' seismicity, derived from faulting along the conduit margin at 0.5-1 km depth, and evidenced by the enveloping gouge layers. We describe the properties of the gouge-derived fault rocks, including laboratory measurements of porosity and permeability. The gouge varies from unconsolidated powder to lithified low-porosity low-permeability fault rocks. We reconstruct the subsurface ascent of the MSH magma using published field observations and create a model that reconciles the diverse properties of the gouge with conditions in the conduit during ascent (i.e. velocity, temperature). We show lithification of the gouge to be driven by 'hot pressing' processes, wherein the combination of elevated temperature, confining pressure and dwell-time cause densification and solid-state sintering of the comminuted, crystal-rich (glass-poor) gouge. The degree of gouge lithification corresponds with residence time in the conduit such that well-lithified materials reflect extended times in the subsurface due to slower ascent rates. With this insight, we suggest that gouge competence can be used as a first-order estimate of lava ascent rates. Furthermore we posit gouge lithification, which reduces porosity and permeability, inhibits volcanic outgassing thereby increasing the potential for explosive events at spine-producing volcanoes.

  10. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    NASA Astrophysics Data System (ADS)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  11. OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC MINE LOOKING EAST. THE OPENING TO THE TALC MINE IS IN THE DARK AREA AT CENTER LEFT EDGE. WARM SPRINGS CAMP IS OUT OF FRAME TO THE RIGHT. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  12. 1. BUNKER HILL LEAD SMELTER. VIEW IS FROM CENTRAL IMPOUNDMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BUNKER HILL LEAD SMELTER. VIEW IS FROM CENTRAL IMPOUNDMENT AREA LOOKING SOUTH. PLANT DRY IS IN CENTER FOREGROUND, SLAG FUMING PLANT IS IN RIGHT FOREGROUND, AND BAG HOUSE IS IN RIGHT BACKGROUND. VARIOUS PLANT STACKS ARE ALSO VISIBLE. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID

  13. Kinematics of Deformation in West-Central Walker Lane; Paleomagnetic Testing of Fault-Block Rotation and Doming Models, Eastern California and Western Nevada

    NASA Astrophysics Data System (ADS)

    Fredrickson, S. M.; Pluhar, C. J.; Carlson, C. W.

    2013-12-01

    Walker Lane is a broad (~100-200 km) zone of dextral shear located between the Sierra Nevada microplate and the Basin and Range Province. We consider Bodie Hills a part of the greater Walker Lane because it has experienced clockwise, vertical-axis rotation of crustal blocks due to dextral shear accommodation. This strain is variable, resulting in rotations ranging from ~10°-70° depending on location. The Miocene Eureka Valley Tuff (EVT) is an ideal strain marker, because it is a geologically instantaneous and laterally extensive unit. We use paleomagnetic analysis of ignimbrites to improve the resolution of strain domain boundaries as well as test for doming in Bodie Hills. EVT site mean directions were compared to reference directions of the Tollhouse Flat and By Day Members collected from the stable Sierra Nevada to determine magnitudes of vertical-axis rotation. Three new sites and three previously sampled sites define a high-rotation domain including Bridgeport Valley and the East Walker River Canyon with an average clockwise rotation of ~50°-60°. We define the eastern boundary of this high-rotation domain as coinciding with a mapped fault exhibiting 11.7°×7.9° rotation of the presumed footwall. Our data corroborates and improves on Carlson's (2012) kinematic model in which the greater Bodie Hills has rotated clockwise ~30° since EVT emplacement. Eutaxitic textures, dipping up to 90°, are gross indicators of true tilt, but are also influenced by original dips in some localities, complicating interpretations. John et al. (2012) describe a simple doming model of Bodie Hills since EVT emplacement, supported by the high elevation of outflow channels compared to source areas. Our paleomagnetic data does not support simple doming, suggesting that there is either no doming of Bodie Hills, or that vertical crustal displacements have occurred without large-scale folding. John et al. (2012) dated undifferentiated EVT in Bodie Hills at ~9.4 Ma; using

  14. Fertility in Hill Korwas -- a primitive tribe of Madhya Pradesh.

    PubMed

    Pandey, G D; Tiwary, R S

    1996-12-01

    This study examines fertility behavior among 604 eligible couples in Hill Korwa tribes in Madhya Pradesh state, India. Low fertility patterns are compared to those of neighboring Gonds and nontribals from rural Jabalpur. The Hill Korwa are a subtribe of the Korwa, who remained in the hills and dense forests. Over 60% live in three tehsils of Surguja district, including Ambikapur tehsil where the study was conducted. Data were obtained in March 1991. Eligible couples were those where both partners live together and the noncontracepting wife is under age 50 and nonmenopausal. Only 3% were literate. Female marriage age was about 15 years. The median age was 23.8 years. 92% lived below the poverty line. The average number of children ever born (CEB) per couple was 1.9, compared to 2.5 for the Gond and 2.9 for nontribal couples. The CEB in a reproductive lifetime was 2.9, compared to 5.3 for Gond women and 5.9 for nontribal women. Fecundity among Hill Korwa women was 66% lower at younger ages (16-17 years and 17-18 years), and the differences increased with an increase in age at marriage. Hill Korwas had a low female age at marriage, low literacy, low percentages engaged in agriculture, and higher percentages living above the poverty line.

  15. The Bradford Hill criteria and zinc-induced anosmia: a causality analysis.

    PubMed

    Davidson, Terence M; Smith, Wendy M

    2010-07-01

    To apply the Bradford Hill criteria, which are widely used to establish causality between an environmental agent and disease, to evaluate the relationship between over-the-counter intranasal zinc gluconate therapy and anosmia. Patient and literature review applying the Bradford Hill criteria on causation. University of California, San Diego, Nasal Dysfunction Clinic. The study included 25 patients who presented to the University of California, San Diego, Nasal Dysfunction Clinic complaining of acute-onset anosmia after intranasal application of homeopathic zinc gluconate gel. Each of the 9 Bradford Hill criteria--strength of association, consistency, specificity, temporality, biological gradient (dose-response), biological plausibility, biological coherence, experimental evidence, and analogy--was applied to intranasal zinc gluconate therapy and olfactory dysfunction using published, peer-reviewed medical literature and reported clinical experiences. Clinical, biological, and experimental data support the Bradford Hill criteria to demonstrate that intranasal zinc gluconate therapy causes hyposmia and anosmia. The Bradford Hill criteria represent an important tool for scientifically determining cause between environmental exposure and disease. Increased Food and Drug Administration oversight of homeopathic medications is needed to monitor the safety of these popular remedies.

  16. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  17. The Rocks of the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.; Arvidson, Raymond E.; Blaney, Diana L.; Clark, Benton C.; Crumpler, Larry; Farrand, William H.; Gorevan, Stephen; Herkenhoff, Kenneth; Hurowitz, Joel; Kusack, Alastair; hide

    2006-01-01

    The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.

  18. Reproduction among protobranch bivalves of the family Nuculidae from sublittoral, bathyal, and abyssal depths off the New England coast of North America

    NASA Astrophysics Data System (ADS)

    Scheltema, Rudolf S.; Williams, Isabelle P.

    2009-09-01

    Protobranch bivalve species of the family Nuculidae pass through either a planktonic lecithotrophic larval stage or a direct non-planktonic development. Oogenesis of the three sublittoral species examined is synchronous. Deposition of egg masses by Nucula delphinodonta and spawning by Nucula annulata and Nucula proxima occur only during summer months. Among the four bathyal and abyssal species, Ennucula similis, Ennucula granulosa, Deminucula atacellana, and Brevinucula verrilli, oogenesis is asynchronous and there is no discernable pattern of periodicity of spawning. Absence of periodicity in reproduction in these deep-sea species is confirmed by examination of individuals from dredge samples taken at different times of the year. The median apparent fecundity among both sublittoral and deep-sea species is directly related to size (i.e. shell length) and age. Among the Nuculidae the median apparent fecundity is greater among sublittoral than bathyal and abyssal species. The geographic distribution of a species depends on its capacity to disperse. The dispersal of the planktonic lecithotrophic larvae of the sublittoral species N. annulata and N. proxima is limited to the continental shelf of the northwestern Atlantic by inshore bottom circulation and because these very small planktonic larvae (<2.5 mm) lack the capacity to move vertically upward through the water column into the offshore currents. On the other hand, the bathyal and abyssal species having lecithotrophic larvae have a very wide amphi-Atlantic distribution extending from 60°N to 40°S latitude along the North and South American coasts and from 55°N to ca. 19°S from off Europe southwards to the coast of West Africa as a consequence of dispersal by planktonic lecithotrophic larvae along the seafloor. The amphi-Atlantic dispersal must occur stepwise between deep-sea populations (e.g., off Greenland). Such a geographic distribution indicates a widespread dispersal and is supported by the genetic

  19. Kettleman Hills (en español)

    EPA Pesticide Factsheets

    EPA is currently reviewing an application from Chemical Waste Management, Inc. (CWM) to renew and modify its permits to store and dispose of polychlorinated biphenyl (PCB) waste at its Kettleman Hills Facility (KHF).

  20. Fault zone property near Xinfengjiang Reservoir using dense, across-fault seismic array

    NASA Astrophysics Data System (ADS)

    Lee, M. H. B.; Yang, H.; Sun, X.

    2017-12-01

    Properties of fault zones are important to the understanding of earthquake process. Around the fault zone is a damaged zone which is characterised by a lower seismic velocity. This is detectable as a low velocity zone and measure some physical property of the fault zone, which is otherwise difficult sample directly. A dense, across-fault array of short period seismometer is deployed on an inactive fault near Xinfengjiang Reservoir. Local events were manually picked. By computing the synthetic arrival time, we were able to constrain the parameters of the fault zone Preliminary result shows that the fault zone is around 350 m wide with a P and S velocity increase of around 10%. The fault is geologically inferred, and this result suggested that it may be a geological layer. The other possibility is that the higher velocity is caused by a combination of fault zone healing and fluid intrusion. Whilst the result was not able to tell us the nature of the fault, it demonstrated that this method is able to derive properties from a fault zone.

  1. Possible Meteorites in the Martian Hills

    NASA Technical Reports Server (NTRS)

    2006-01-01

    From its winter outpost at 'Low Ridge' inside Gusev Crater, NASA's Mars Exploration Rover Spirit took this spectacular, color mosaic of hilly, sandy terrain and two potential iron meteorites. The two light-colored, smooth rocks about two-thirds of the way up from the bottom of the frame have been labeled 'Zhong Shan' and 'Allan Hills.'

    The two rocks' informal names are in keeping with the rover science team's campaign to nickname rocks and soils in the area after locations in Antarctica. Zhong Shang is an Antarctic base that the People's Republic of China opened on Feb. 26, 1989, at the Larsemann Hills in Prydz Bay in East Antarctica. Allan Hills is a location where researchers have found many Martian meteorites, including the controversial ALH84001, which achieved fame in 1996 when NASA scientists suggested that it might contain evidence for fossilized extraterrestrial life. Zhong Shan was the given name of Dr. Sun Yat-sen (1866-1925), known as the 'Father of Modern China.' Born to a peasant family in Guangdong, Sun moved to live with his brother in Honolulu at age 13 and later became a medical doctor. He led a series of uprisings against the Qing dynasty that began in 1894 and eventually succeeded in 1911. Sun served as the first provisional president when the Republic of China was founded in 1912.

    The Zhong Shan and Allan Hills rocks, at the left and right, respectively, have unusual morphologies and miniature thermal emission spectrometer signatures that resemble those of a rock known as 'Heat Shield' at the Meridiani site explored by Spirit's twin, Opportunity. Opportunity's analyses revealed Heat Shield to be an iron meteorite.

    Spirit acquired this approximately true-color image on the rover's 872nd Martian day, or sol (June 16, 2006), using exposures taken through three of the panoramic camera's filters, centered on wavelengths of 600 nanometers, 530 nanometers, and 480 nanometers.

  2. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  3. The susitna glacier thrust fault: Characteristics of surface ruptures on the fault that initiated the 2002 denali fault earthquake

    USGS Publications Warehouse

    Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.

  4. Microhabitats of Merriam's turkeys in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble; Stanley H. Anderson

    1996-01-01

    Merriam’s Turkeys (Meleagris gallopavo merriami) are associated with ponderosa pine (Pinus ponderosa) forests in the western United States, but are not native to the ponderosa pine forest of the Black Hills, South Dakota. The Black Hills population was established by transplanting birds from New Mexico and Colorado between 1948 and...

  5. Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department of Agriculture, Forest Service, Region 5. L. Glenn Hall, landscape engineer. 11-5-35. - Pine Hills Station, Barracks, West Side of Boulder Creek Road at Engineers Road, Julian, San Diego County, CA

  6. Novel benthic foraminifera are abundant and diverse in an area of the abyssal equatorial Pacific licensed for polymetallic nodule exploration

    NASA Astrophysics Data System (ADS)

    Goineau, Aurélie; Gooday, Andrew J.

    2017-04-01

    The benthic biota of the Clarion-Clipperton Zone (CCZ, abyssal eastern equatorial Pacific) is the focus of a major research effort linked to possible future mining of polymetallic nodules. Within the framework of ABYSSLINE, a biological baseline study conducted on behalf of Seabed Resources Development Ltd. in the UK-1 exploration contract area (eastern CCZ, ~4,080 m water depth), we analysed foraminifera (testate protists), including ‘live’ (Rose Bengal stained) and dead tests, in 5 cores (0-1 cm layer, >150-μm fraction) recovered during separate megacorer deployments inside a 30 by 30 km seafloor area. In both categories (live and dead) we distinguished between complete and fragmented specimens. The outstanding feature of these assemblages is the overwhelming predominance of monothalamids, a group often ignored in foraminiferal studies. These single-chambered foraminifera, which include agglutinated tubes, spheres and komokiaceans, represented 79% of 3,607 complete tests, 98% of 1,798 fragments and 76% of the 416 morphospecies (live and dead combined) in our samples. Only 3.1% of monothalamid species and 9.8% of all species in the UK-1 assemblages are scientifically described and many are rare (29% singletons). Our results emphasise how little is known about foraminifera in abyssal areas that may experience major impacts from future mining activities.

  7. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    NASA Astrophysics Data System (ADS)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to

  8. AmeriFlux US-SdH Nebraska SandHills Dry Valley

    DOE Data Explorer

    Arkebauer, Tim J. [University of Nebraska; Billesbach, Dave [University of Nebraska

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SdH Nebraska SandHills Dry Valley. Site Description - The Nebraska SandHills Dry Valley tower is located on public land owned by the University of Nebraska-Lincoln. The site is on a research cattle ranch where grazing primarily takes place.

  9. Accounting for imperfect detection in Hill numbers for biodiversity studies

    USGS Publications Warehouse

    Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.

    2015-01-01

    The occupancy-based Hill number estimators are always at their asymptotic values (i.e. as if an infinite number of samples have been taken for the study region), therefore making it easy to compare biodiversity between different assemblages. In addition, the Hill numbers are computed as derived quantities within a Bayesian hierarchical model, allowing for straightforward inference.

  10. Dark Hill on Asteroid Vesta Movie

    NASA Image and Video Library

    2011-12-06

    This still from a movie shows an image taken by NASA Dawn spacecraft layered on a digital terrain model of an unusual hill containing a dark-rayed impact crater and nearby dark deposit on asteroid Vesta.

  11. The Fault Block Model: A novel approach for faulted gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ursin, J.R.; Moerkeseth, P.O.

    1994-12-31

    The Fault Block Model was designed for the development of gas production from Sleipner Vest. The reservoir consists of marginal marine sandstone of Hugine Formation. Modeling of highly faulted and compartmentalized reservoirs is severely impeded by the nature and extent of known and undetected faults and, in particular, their effectiveness as flow barrier. The model presented is efficient and superior to other models, for highly faulted reservoir, i.e. grid based simulators, because it minimizes the effect of major undetected faults and geological uncertainties. In this article the authors present the Fault Block Model as a new tool to better understandmore » the implications of geological uncertainty in faulted gas reservoirs with good productivity, with respect to uncertainty in well coverage and optimum gas recovery.« less

  12. Fault detection and fault tolerance in robotics

    NASA Technical Reports Server (NTRS)

    Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.

    1992-01-01

    Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.

  13. Patty Smith Hill, Gifted Early Childhood Educator of the Progressive Era.

    ERIC Educational Resources Information Center

    Rudnitski, Rose A.

    1995-01-01

    This article chronicles the development of Patty Smith Hill, eminent educator of the Progressive Era. Hill was largely responsible for adding kindergarten to the elementary school curriculum, was the author of the "Happy Birthday" song, and a member of the Woman's Suffrage Movement. (DB)

  14. Fault reactivation: The Picuris-Pecos fault system of north-central New Mexico

    NASA Astrophysics Data System (ADS)

    McDonald, David Wilson

    The PPFS is a N-trending fault system extending over 80 km in the Sangre de Cristo Mountains of northern New Mexico. Precambrian basement rocks are offset 37 km in a right-lateral sense; however, this offset includes dextral strike-slip (Precambrian), mostly normal dip-slip (Pennsylvanian), mostly reverse dip-slip (Early Laramide), limited strike-slip (Late Laramide) and mostly normal dip-slip (Cenozoic). The PPFS is broken into at least 3 segments by the NE-trending Embudo fault and by several Laramide age NW-trending tear faults. These segments are (from N to S): the Taos, the Picuris, and the Pecos segments. On the east side of the Picuris segment in the Picuris Mountains, the Oligocene-Miocene age Miranda graben developed and represents a complex extension zone south of the Embudo fault. Regional analysis of remotely sensed data and geologic maps indicate that lineaments subparallel to the trace of the PPFS are longer and less frequent than lineaments that trend orthogonal to the PPFS. Significant cross cutting faults and subtle changes in fault trends in each segment are clear in the lineament data. Detailed mapping in the eastern Picuris Mountains showed that the favorably oriented Picuris segment was not reactivated in the Tertiary development of the Rio Grande rift. Segmentation of the PPFS and post-Laramide annealing of the Picuris segment are interpreted to have resulted in the development of the subparallel La Serna fault. The Picuris segment of the PPFS is offset by several E-ESE trending faults. These faults are Late Cenozoic in age and interpreted to be related to the uplift of the Picuris Mountains and the continuing sinistral motion on the Embudo fault. Differential subsidence within the Miranda graben caused the development of several synthetic and orthogonal faults between the bounding La Serna and Miranda faults. Analysis of over 10,000 outcrop scale brittle structures reveals a strong correlation between faults and fracture systems. The dominant

  15. Red Hill Administrative Order on Consent

    EPA Pesticide Factsheets

    Orderequiring the Navy and DLA to take actions, subject to DOH and EPA approval, to address fuel releases and implement infrastructure improvements to protect human health and the environment Red Hill Bulk Fuel Storage Facility in Hawaii.

  16. Confidence Hills Drill Powder in Scoop

    NASA Image and Video Library

    2014-11-04

    This image from NASA Curiosity rover shows a sample of powdered rock extracted by the rover drill from the Confidence Hills target -- the first rock drilled after Curiosity reached the base of Mount Sharp in September 2014.

  17. Exploring Hill Ciphers with Graphing Calculators.

    ERIC Educational Resources Information Center

    St. John, Dennis

    1998-01-01

    Explains how to code and decode messages using Hill ciphers which combine matrix multiplication and modular arithmetic. Discusses how a graphing calculator can facilitate the matrix and modular arithmetic used in the coding and decoding procedures. (ASK)

  18. Stafford fault system: 120 million year fault movement history of northern Virginia

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  19. 2. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO THE SOUTH. IN FOREGROUND, PLANT DRY, SLAG FUMING PLANT, BLAST FURNACE, SMELTER OFFICE, LEAD AND SILVER REFINERIES ARE VISIBLE, L. TO R. HIGH VELOCITY FLUE LEADS FROM LOWER PLANT TO BAG HOUSE AND STACKS AT TOP OF SMELTING FACILITY. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID

  20. Fault-scale controls on rift geometry: the Bilila-Mtakataka Fault, Malawi

    NASA Astrophysics Data System (ADS)

    Hodge, M.; Fagereng, A.; Biggs, J.; Mdala, H. S.

    2017-12-01

    Border faults that develop during initial stages of rifting determine the geometry of rifts and passive margins. At outcrop and regional scales, it has been suggested that border fault orientation may be controlled by reactivation of pre-existing weaknesses. Here, we perform a multi-scale investigation on the influence of anisotropic fabrics along a major developing border fault in the southern East African Rift, Malawi. The 130 km long Bilila-Mtakataka fault has been proposed to have slipped in a single MW 8 earthquake with 10 m of normal displacement. The fault is marked by an 11±7 m high scarp with an average trend that is oblique to the current plate motion. Variations in scarp height are greatest at lithological boundaries and where the scarp switches between following and cross-cutting high-grade metamorphic foliation. Based on the scarp's geometry and morphology, we define 6 geometrically distinct segments. We suggest that the segments link to at least one deeper structure that strikes parallel to the average scarp trend, an orientation consistent with the kinematics of an early phase of rift initiation. The slip required on a deep fault(s) to match the height of the current scarp suggests multiple earthquakes along the fault. We test this hypothesis by studying the scarp morphology using high-resolution satellite data. Our results suggest that during the earthquake(s) that formed the current scarp, the propagation of the fault toward the surface locally followed moderately-dipping foliation well oriented for reactivation. In conclusion, although well oriented pre-existing weaknesses locally influence shallow fault geometry, large-scale border fault geometry appears primarily controlled by the stress field at the time of fault initiation.

  1. Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher William

    The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral

  2. Indian Hills Community College Vocational Outreach Program: Business/Industry and Indian Hills...Partners in Progress.

    ERIC Educational Resources Information Center

    Poort, Stephen M.; Williamson, Tom

    Structured interviews were conducted by selected vocational education instructors at Indian Hills Community College (IHCC) to determine current and projected employment and training needs of private-sector businesses with 200 employees or less and to assess opinions of IHCC programs. Employers were asked to provide information on the number of…

  3. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  4. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Sallarès, Valentí; Martínez-Loriente, Sara; Prada, Manel; Gràcia, Eulàlia; Ranero, César; Gutscher, Marc-André; Bartolome, Rafael; Gailler, Audrey; Dañobeitia, Juan José; Zitellini, Nevio

    2013-03-01

    The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5-3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust-mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70-80% under the top of Gorringe Bank to less than 5% at a depth of ˜20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean-continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW-SE trending Eurasia-Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate

  5. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Sharan; Zhao, Qing

    2016-12-01

    This paper presents a novel data driven technique for the detection and isolation of faults, which generate impacts in a rotating equipment. The technique is built upon the principles of empirical mode decomposition (EMD), envelope analysis and pseudo-fault signal for fault separation. Firstly, the most dominant intrinsic mode function (IMF) is identified using EMD of a raw signal, which contains all the necessary information about the faults. The envelope of this IMF is often modulated with multiple vibration sources and noise. A second level decomposition is performed by applying pseudo-fault signal (PFS) assisted EMD on the envelope. A pseudo-fault signal is constructed based on the known fault characteristic frequency of the particular machine. The objective of using external (pseudo-fault) signal is to isolate different fault frequencies, present in the envelope . The pseudo-fault signal serves dual purposes: (i) it solves the mode mixing problem inherent in EMD, (ii) it isolates and quantifies a particular fault frequency component. The proposed technique is suitable for real-time implementation, which has also been validated on simulated fault and experimental data corresponding to a bearing and a gear-box set-up, respectively.

  6. Origin of salt giants in abyssal serpentinite systems

    NASA Astrophysics Data System (ADS)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  7. Assessment of lithogenic radioactivity in the Euganean Hills magmatic district (NE Italy).

    PubMed

    Tositti, Laura; Cinelli, Giorgia; Brattich, Erika; Galgaro, Antonio; Mostacci, Domiziano; Mazzoli, Claudio; Massironi, Matteo; Sassi, Raffaele

    2017-01-01

    The Euganean Hills of North East Italy have long been recognised as an area characterized by a higher than average natural radiation background. This is due to two main reasons: a) primary lithogenic radiation due to rhyolitic and trachytic outcrops, which are "acidic alkaline" magmatic rocks potentially enriched in uranium and thorium; b) secondary sources related to a geothermal field - widely exploited for spa tourism in the area since the Roman age - producing surface release of radon-enriched fluids. Though radioactivity levels in the Euganean district have been often investigated in the past - including recent works aimed at assessing the radiation doses from radon and/or total gamma radiation - no effort has been put so far into producing a thorough assessment linking radiation protection data to geological-structural features (lithology, faults, water, organic matter content, etc.). This work represents the first part of the interdisciplinary project "Geological and geochemical control on Radon occurrence and natural radioactivity in the Euganean Hills district (North-Eastern Italy)", aimed at producing detailed results of the actual radiation levels in connection mainly with lithological parameters. A detailed sampling strategy, based on lithostratigraphy, petrology and mineralogy, has been adopted. The 151 rock samples collected were analyzed by high resolution γ-ray spectrometry with ex situ HPGe detectors. Statistical and geostatistical analyses were performed, and outlier values of U and Th - possibly associated with anomalies in the geological formation - were identified. U, Th and K concentration maps were developed using both the entire database and then again after expunging the outliers; the two were then compared. In all maps the highest values can be associated to trachyte and rhyolite lithologies, and the lowest ones to sedimentary formations. The external dose due to natural radionuclides in the soil - the so called terrestrial gamma dose

  8. Fault-Tree Compiler

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  9. Complex permeability structure of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Aydin, A.; Hazelton, G.

    2013-12-01

    Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a

  10. Multi-version software reliability through fault-avoidance and fault-tolerance

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.

    1989-01-01

    A number of experimental and theoretical issues associated with the practical use of multi-version software to provide run-time tolerance to software faults were investigated. A specialized tool was developed and evaluated for measuring testing coverage for a variety of metrics. The tool was used to collect information on the relationships between software faults and coverage provided by the testing process as measured by different metrics (including data flow metrics). Considerable correlation was found between coverage provided by some higher metrics and the elimination of faults in the code. Back-to-back testing was continued as an efficient mechanism for removal of un-correlated faults, and common-cause faults of variable span. Software reliability estimation methods was also continued based on non-random sampling, and the relationship between software reliability and code coverage provided through testing. New fault tolerance models were formulated. Simulation studies of the Acceptance Voting and Multi-stage Voting algorithms were finished and it was found that these two schemes for software fault tolerance are superior in many respects to some commonly used schemes. Particularly encouraging are the safety properties of the Acceptance testing scheme.

  11. George William Hill, the Great but Unknown 19th Century Celestial Mechanician

    NASA Astrophysics Data System (ADS)

    Corbin, Brenda G.

    2012-01-01

    George William Hill (1838-1914) has long been considered one of the most famous and talented celestial mechanicians of the past century and a half. However, many people have never heard of him and his work. Simon Newcomb said he "will easily rank as the greatest master of mathematical astronomy during the last quarter of the nineteenth century.” After receiving a B.A. at Rutgers in 1859, Hill began work in 1861 at the office of the American Ephemeris and Nautical Almanac in Cambridge, MA. He moved to Washington with the group in 1882 which then became part of the U. S. Naval Observatory. Newcomb, beginning his work on planetary motion, assigned the theory of Jupiter and Saturn to him, calling it about the most difficult topic. Hill's work was published by the USNO in 1890 as A New Theory of Jupiter and Saturn. From 1898 to 1901, Hill lectured on the subject of celestial mechanics at Columbia University in a position created just for him. After 1892 and until his death, he lived at the family homestead in West Nyack, NY. He never married, was something of a recluse, and spent most of his time with his books and research. Hill was an amateur botanist and enjoyed exploring on long walks in the countryside. Many honors and awards came to him during his lifetime, both from the U.S. and abroad, including serving as president of the American Mathematical Society. All of Hill's mathematical and astronomical research was incorporated in The Collected Mathematical Works of George William Hill. This work, containing a preface in French by Poincare, was published in 4 large volumes by the Carnegie Institution of Washington in 1905.

  12. 76 FR 30338 - Hill-Lake Gas Storage, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-110-000] Hill-Lake Gas Storage, LLC; Notice of Filing Take notice that on May 13, 2011, Hill-Lake Gas Storage, LLC filed to update its address and to clarify definitions for Maximum Daily Withdrawal Quantity and Maximum Daily...

  13. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought

  14. 4. BUNKER HILL LEAD SMELTER. VIEW IS FROM RIDGE ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUNKER HILL LEAD SMELTER. VIEW IS FROM RIDGE ABOVE GOVERNMENT GULCH LOOKING TO THE EAST. IN THE RIGHT MID GROUND, CARPENTER SHOP BUILDINGS AND FRAMING SHEDS ARE VISIBLE. THE BACKGROUND FACILITIES VISIBLE FROM L. TO R. ARE: SMELTER OFFICE, REFINERIES, SLAG FUMING STACKS, HIGH VELOCITY FLUE, BAG HOUSE, 200-FOOT STACK, AND 715-FOOT STACK. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID

  15. Environmental Assessment: Proposed Training Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2013-08-08

    FA8201-09-D-0002 Facilities, Hill Air Force Base, Utah 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Klein, Randal 5d...PERFORMING ORGANIZATION REPORT NUMBER Streamline Consulting, LLC 1713 N. Sweetwater Lane Farmington, Utah 84025...proposes to construct new training facilities at Hill Air Force Base, Utah . The findings of this EA indicate that the proposed action would not have

  16. 2. General view of Fort Hill Farm, view looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. General view of Fort Hill Farm, view looking north from (F) two-room cabin. From left to right, buildings visible are (I) log tobacco barn; (H and D) shed and center chimney four-room cabin; (E and (A) one-room cabin in front of mansion; (J) hay barn. - Fort Hill Farm, West of Staunton (Roanoke) River between Turkey & Caesar's Runs, Clover, Halifax County, VA

  17. 78 FR 48466 - Comcast Cable, West Division Customer Care, Morgan Hill, California; Notice of Negative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Division Customer Care, Morgan Hill, California; Notice of Negative Determination on Reconsideration On... Reconsideration for the workers and former workers of Comcast Cable, West Division Customer Care, Morgan Hill... the petition for group eligibility of Comcast Cable, West Division Customer Care, Morgan Hill...

  18. New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.

    2015-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward

  19. A Log-Scaling Fault Tolerant Agreement Algorithm for a Fault Tolerant MPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hursey, Joshua J; Naughton, III, Thomas J; Vallee, Geoffroy R

    The lack of fault tolerance is becoming a limiting factor for application scalability in HPC systems. The MPI does not provide standardized fault tolerance interfaces and semantics. The MPI Forum's Fault Tolerance Working Group is proposing a collective fault tolerant agreement algorithm for the next MPI standard. Such algorithms play a central role in many fault tolerant applications. This paper combines a log-scaling two-phase commit agreement algorithm with a reduction operation to provide the necessary functionality for the new collective without any additional messages. Error handling mechanisms are described that preserve the fault tolerance properties while maintaining overall scalability.

  20. Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest

    Treesearch

    Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly

    2014-01-01

    Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...

  1. Structure Of The Elevated Precambrian Terranes Rising Above The Brahmaputra Plains In Northeastern India.

    NASA Astrophysics Data System (ADS)

    Gaur, V. K.; Hazarika, N. K.; Mitra, S.; Priestley, K.

    2007-12-01

    We present new evidence for a thinner crust beneath most of the Shillong plateau as well as its northeast extension in Mikir Hills of northeastern India.Both these Precambrian terranes rise above the Brahmaputra plains whose crust is thicker in comparison by atleast 4~km. Although Bouger gravity over the Mikir Hills still remains to be determined, its near zero value over the ~1 km high plateau and the near normal upper mantle beneath the region, require that these elevated terranes must have been uplifted between reversed faults and continue to be supported by them under compression. The southern edge of the Shillong plateau is indeed marked by the prominent Dauki fault which swerves northeastward at the south eastern margin of the plateau to merge with the Naga thrusts that bound the Mikir Hills on the east. A similar fault bounding the plateau on the north as hypothesized by Bilham et al (2000) -the Oldham fault- is therfore required to swerve northeastward near the northeastern margin of the plateau to demarcate the Mikir Hills from the thicker crust Brahmaputra plains to its north and west. This could be explained by a strike slip offset of the Oldham fault caused by the as yet obsure but active tectonics of the NNW trending Kopili lineament that ensues from the inflexion in the Dauki-Naga thrust fault system.

  2. Source-To-Sink Perspectives On The Mississippi River System, Miocene To Present, Mountain To Abyss

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Blum, M. D.

    2013-12-01

    . The objective of this study is to present a synthesis of the Mississippi River source-to-sink system, from montane source to abyssal sink, to elucidate specific geomorphic components and boundaries in the system, controls on mass transfer, and resultant geomorphic and statigraphic development. The Mississippi River source-to-sink system constitutes one of the largest sources, conduits, and depocenters of sediment on Earth, extending from elevations of 3.7 km in the Rocky Mountains to the Gulf of Mexico abyssal plain. Despite being one of the most intensely studied fluvial-marine systems in the world, comprehensive understanding and management of the system's resources remain a challenge. The system is valuable in many ways: it provides navigation and water to the heart of North America, and sustains extensive marine fisheries. The river has built a delta that is home to millions of people and yet is subsiding rapidly. Ancestral Mississippi fluvial-marine deposits continue to yield high-value petroleum resources to exploration. To address the range of temporal and spatial scales over which the system has developed and continues to evolve, we will focus on three geological time spans that display contrasting geologic forcing and response: Miocene, Pleistocene, and late Holocene. The present configuration of source, conduit, and sink were established during the Miocene epoch, when tectonics (via the uplifting southern Rockies, and later the rejuvenated Appalachians) and climate (wet in the east and dry in the west) provided abundant water and sediment to prograde the shelf margin and initiate deep-sea fan growth. Pleistocene continental glaciation, eustasy, and catastrophic drainage events further sculpted the alluvial valley, and extended the shelf margin, and fan. Studies of Modern processes and Holocene delta development have provided keys to both the delta's past and future evolution, in terms of cyclic autogenic lobe-switching, mass-transport events, storm

  3. Experimental study on propagation of fault slip along a simulated rock fault

    NASA Astrophysics Data System (ADS)

    Mizoguchi, K.

    2015-12-01

    Around pre-existing geological faults in the crust, we have often observed off-fault damage zone where there are many fractures with various scales, from ~ mm to ~ m and their density typically increases with proximity to the fault. One of the fracture formation processes is considered to be dynamic shear rupture propagation on the faults, which leads to the occurrence of earthquakes. Here, I have conducted experiments on propagation of fault slip along a pre-cut rock surface to investigate the damaging behavior of rocks with slip propagation. For the experiments, I used a pair of metagabbro blocks from Tamil Nadu, India, of which the contacting surface simulates a fault of 35 cm in length and 1cm width. The experiments were done with the similar uniaxial loading configuration to Rosakis et al. (2007). Axial load σ is applied to the fault plane with an angle 60° to the loading direction. When σ is 5kN, normal and shear stresses on the fault are 1.25MPa and 0.72MPa, respectively. Timing and direction of slip propagation on the fault during the experiments were monitored with several strain gauges arrayed at an interval along the fault. The gauge data were digitally recorded with a 1MHz sampling rate and 16bit resolution. When σ is 4.8kN is applied, we observed some fault slip events where a slip nucleates spontaneously in a subsection of the fault and propagates to the whole fault. However, the propagation speed is about 1.2km/s, much lower than the S-wave velocity of the rock. This indicates that the slip events were not earthquake-like dynamic rupture ones. More efforts are needed to reproduce earthquake-like slip events in the experiments. This work is supported by the JSPS KAKENHI (26870912).

  4. 27 CFR 9.197 - Clements Hills.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., photoinspected 1978; (2) Lockeford, Calif., 1968, photorevised 1979, minor revision 1993; (3) Clements, Calif., 1968, minor revision 1993; (4) Wallace, Calif., 1962; (5) Valley Springs SW., Calif., 1962, photoinspected 1973; and (6) Linden, Calif., 1968, minor revision 1993. (c) Boundary. The Clements Hills...

  5. 33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...

  6. 33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...

  7. 33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...

  8. 33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...

  9. 33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...

  10. The GRADE approach and Bradford Hill's criteria for causation.

    PubMed

    Schünemann, Holger; Hill, Suzanne; Guyatt, Gordon; Akl, Elie A; Ahmed, Faruque

    2011-05-01

    This article describes how the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to grading the quality of evidence and strength of recommendations considers the Bradford Hill criteria for causation and how GRADE may relate to questions in public health. A primary concern in public health is that evidence from non-randomised studies may provide a more adequate or best available measure of a public health strategy's impact, but that such evidence might be graded as lower quality in the GRADE framework. GRADE, however, presents a framework that describes both criteria for assessing the quality of research evidence and the strength of recommendations that includes considerations arising from the Bradford Hill criteria. GRADE places emphasis on recommendations and in assessing quality of evidence; GRADE notes that randomisation is only one of many relevant factors. This article describes how causation may relate to developing recommendations and how the Bradford Hill criteria are considered in GRADE, using examples from the public health literature with a focus on immunisation.

  11. Uranium series dating of Allan Hills ice

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1986-01-01

    Uranium-238 decay series nuclides dissolved in Antarctic ice samples were measured in areas of both high and low concentrations of volcanic glass shards. Ice from the Allan Hills site (high shard content) had high Ra-226, Th-230 and U-234 activities but similarly low U-238 activities in comparison with Antarctic ice samples without shards. The Ra-226, Th-230 and U-234 excesses were found to be proportional to the shard content, while the U-238 decay series results were consistent with the assumption that alpha decay products recoiled into the ice from the shards. Through this method of uranium series dating, it was learned that the Allen Hills Cul de Sac ice is approximately 325,000 years old.

  12. Evaluation of abyssal meiobenthos in the eastern central Pacific (Clarion-Clipperton fracture zone)

    NASA Astrophysics Data System (ADS)

    Renaud-Mornant, Jeanne; Gourbault, Nicole

    Meiobenthos were sampled from 17 stations in the abyssal deep-sea system of the central Pacific centered around 14°N, 130°W at depths 4960-5154m, during the Nixo 47 R/V Jean Charcot cruise. Meiofaunal density range from 45-89 ind. 10cm 2. Predominant taxa are nematodes (84-100%) and copepods (0-10%). Rotifera, Polychaeta, and Acarina also occur. Nematodes are uniformly distributed spatially with 45 species or so; Monhysteridae is the dominant taxon, and Syringolaimus sp. (Ironidae) co-occurs faithfully. Low biomass (0.4-70.6μg 10cm 2) are attributed to supposed dwarfism of metazoan meiofauna and very high proportion (60-80%) of juveniles and pre-adult forms. The majority of protozoans and metazoans are detritus- or deposit-feeders; in addition symbiotic associations, coprophagy and gardening activities are frequent. In such an oligotrophic environment, low food supply may limit meiofaunal abundance, biomass and maturation, and to a lesser extent species richness.

  13. Fault Management Metrics

    NASA Technical Reports Server (NTRS)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  14. Sidescan Sonar Imagery of the Escanaba Trough, Southern Gorda Ridge, Offshore Northern California

    USGS Publications Warehouse

    Ross, Stephanie L.; Zierenberg, Robert A.

    2009-01-01

    This map features sidescan imagery of the northern Escanaba (NESCA) site at the Escanaba Trough, southern Gorda Ridge, offshore northern California. The Escanaba Trough, a largely sediment-covered seafloor spreading center, contains at least six large massive sulfide deposits. It is a slow spreading center (2.5 cm/yr) with axial depths locally exceeding 3,300 m. Discrete igneous centers occur at 5- to 10-km intervals along this slow-spreading ridge. Basaltic magma intrudes the sediment fill of the axial valley, creating uplifted sediment hills, and, in some areas, erupts onto the sea floor. Large massive sulfide deposits occur along the margins of the uplifted sediment hills. The only active hydrothermal system is located on Central Hill where 220 deg C fluids construct anhydrite chimneys on pyrrhotite-rich massive sulfide mounds (Campbell and others, 1994). Central Hill is bounded by both ridge-parallel basement faults and a concentric set of faults that rim the top of the hill and may be associated with sill intrusion. Central Hill was one of the primary drill sites for Ocean Drilling Program (ODP) Leg 169. The sidescan sonar data (mosaics A, B, C, D) were collected aboard the National Oceanic and Atmospheric Administration (NOAA) research vessel Discoverer in the summer of 1996 with a 60-kHz system towed 100 to 200 m above the sea floor. Major faults and contacts are interpreted from the sidescan mosaics and 4.5-kHz seismic profiles collected simultaneously, as well as from previously conducted camera transects and submersible dives. The seismic profiles (lines 9, 11, 13) provide high-resolution subbottom structure and stratigraphy to a depth of about 50 m. In the sidescan images (mosaics A, B, C, D), bright areas denote high-energy returns from hard reflectors such as volcanic flows, sulfide deposits, or seafloor scarps. Dark areas denote low-energy returns and generally signify relatively undisturbed surface sediment. The grid lines mark one-minute intervals

  15. 78 FR 21817 - Amendment of Restricted Area R-6601; Fort A.P. Hill, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ...; Airspace Docket No. 12-AEA-7] RIN 2120-AA66 Amendment of Restricted Area R-6601; Fort A.P. Hill, VA AGENCY... limits and time of designation of restricted area R-6601, Fort A.P. Hill, VA. The U.S. Army requested... limits and increase the time of designation of restricted area R-6601, Fort A.P. Hill, VA, (77 FR 35308...

  16. Stratigraphy and depositional environments of Fox Hills Formation in Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided bothmore » stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.« less

  17. Critical fault patterns determination in fault-tolerant computer systems

    NASA Technical Reports Server (NTRS)

    Mccluskey, E. J.; Losq, J.

    1978-01-01

    The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics.

  18. SOUTH ELEVATION OF GOLD HILL MILL, LOOKING NORTH. THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF GOLD HILL MILL, LOOKING NORTH. THE PRIMARY ORE BIN IS A CENTER, WITH A JAW CRUSHER JUST TO THE RIGHT. A CONVEYOR (MISSING) WAS USED TO CARRY CRUSHED ORE UP AND INTO THE SECONDARY ORE BIN. THE STONE RAMP TO THE LEFT OF THE ORE BIN WAS USED TO DRIVE TRUCKS UP TO DUMPING LEVEL. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  19. Quaternary crustal deformation along a major branch of the San Andreas fault in central California

    USGS Publications Warehouse

    Weber, G.E.; Lajoie, K.R.; Wehmiller, J.F.

    1979-01-01

    Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore. At Half Moon Bay, right-lateral slip and N-S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace. Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5-3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0

  20. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  1. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  2. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  3. Isotopic and geothermometric constraints on the structural and metamorphic evolution of Homestake gold deposit, Black Hills, South Dakota (USA)

    NASA Astrophysics Data System (ADS)

    Terry, M.; Dahl, P.; Frei, R.

    2003-04-01

    -tectonic leucogranite in the Black Hills. Regionally, the N-S orientation, 1746--1715 Ma timing, and sinistral-transpressive motion combine to suggest that this major shear zone in the northern Black Hills represents a northerly extension of the Hartville fault, which is exposed in SE Wyoming, ˜200 km SSW. Correlation of these shear zones would have important implications for Proterozoic terrane assembly in this part of Laurentia.

  4. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  5. Assessing Interval Estimation Methods for Hill Model ...

    EPA Pesticide Factsheets

    The Hill model of concentration-response is ubiquitous in toxicology, perhaps because its parameters directly relate to biologically significant metrics of toxicity such as efficacy and potency. Point estimates of these parameters obtained through least squares regression or maximum likelihood are commonly used in high-throughput risk assessment, but such estimates typically fail to include reliable information concerning confidence in (or precision of) the estimates. To address this issue, we examined methods for assessing uncertainty in Hill model parameter estimates derived from concentration-response data. In particular, using a sample of ToxCast concentration-response data sets, we applied four methods for obtaining interval estimates that are based on asymptotic theory, bootstrapping (two varieties), and Bayesian parameter estimation, and then compared the results. These interval estimation methods generally did not agree, so we devised a simulation study to assess their relative performance. We generated simulated data by constructing four statistical error models capable of producing concentration-response data sets comparable to those observed in ToxCast. We then applied the four interval estimation methods to the simulated data and compared the actual coverage of the interval estimates to the nominal coverage (e.g., 95%) in order to quantify performance of each of the methods in a variety of cases (i.e., different values of the true Hill model paramet

  6. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca

    PubMed Central

    Wiklund, Helena; Taylor, John D.; Dahlgren, Thomas G.; Todt, Christiane; Ikebe, Chiho; Rabone, Muriel; Glover, Adrian G.

    2017-01-01

    Abstract We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ), central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature ‘cf’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. PMID:29118626

  7. Rare Plants and Animals of the Texas Hill Country: Educator's Guide.

    ERIC Educational Resources Information Center

    Texas State Dept. of Parks and Wildlife, Austin.

    Texas Hill Country is a land of fresh water springs, stony hills, and steep canyons and home to many rare plants and animals. Six activities for grades 3-5 and six activities for grades 6-12 are contained in this guide. Elementary activity highlights include using "The Lorax" by Dr. Seuss to stimulate critical thinking about…

  8. Transform fault earthquakes in the North Atlantic: Source mechanisms and depth of faulting

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.; Solomon, Sean C.

    1987-01-01

    The centroid depths and source mechanisms of 12 large earthquakes on transform faults of the northern Mid-Atlantic Ridge were determined from an inversion of long-period body waveforms. The earthquakes occurred on the Gibbs, Oceanographer, Hayes, Kane, 15 deg 20 min, and Vema transforms. The depth extent of faulting during each earthquake was estimated from the centroid depth and the fault width. The source mechanisms for all events in this study display the strike slip motion expected for transform fault earthquakes; slip vector azimuths agree to 2 to 3 deg of the local strike of the zone of active faulting. The only anomalies in mechanism were for two earthquakes near the western end of the Vema transform which occurred on significantly nonvertical fault planes. Secondary faulting, occurring either precursory to or near the end of the main episode of strike-slip rupture, was observed for 5 of the 12 earthquakes. For three events the secondary faulting was characterized by reverse motion on fault planes striking oblique to the trend of the transform. In all three cases, the site of secondary reverse faulting is near a compression jog in the current trace of the active transform fault zone. No evidence was found to support the conclusions of Engeln, Wiens, and Stein that oceanic transform faults in general are either hotter than expected from current thermal models or weaker than normal oceanic lithosphere.

  9. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria

    PubMed Central

    Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban

    2016-01-01

    The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838

  10. Geochemical impacts of waste disposal on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Jahnke, Richard A.

    1998-05-01

    The response of pore water oxygen, nitrate, sulfate, sulfide, ammonium and methane and particulate organic carbon distributions to the input of 8.5 million m 3 (3.8×10 12 g) of organic-rich waste materials is simulated. The deposit is assumed to be conical with a maximum thickness of approximately 20 m. Remineralization reactions within the deposit rapidly deplete any initially available pore water oxidants such as oxygen, nitrate and sulfate, and are subsequently dominated by fermentation reactions. Diffusion downward of reduced metabolites, sulfide, ammonium and methane, depletes the available oxidants in the pore waters below the waste pile, increasing the thickness of the anoxic layer. While the impacted region is limited to essentially the deposition site, recovery of the pore waters is estimated to be >10 4 years. The overall computational results are corroborated by the pore water distributions observed at turbidite boundaries. Numerous uncertainties in the parameterizations limit the overall accuracy of the calculations presented. The most significant of these are: (1) A quantitatively accurate assessment of the remineralization rate of the deposited organic matter including its rate of inoculation by abyssal microorganisms; (2) a detailed assessment of potential non-diffusive pore water transport processes including advection due to compaction and buoyancy-driven flows and enhanced exchange due to macrobenthic irrigation activities and (3) an assessment of the potential alteration of pore space and methane reactivity due to gas hydrate formation.

  11. Hill Ciphers over Near-Fields

    ERIC Educational Resources Information Center

    Farag, Mark

    2007-01-01

    Hill ciphers are linear codes that use as input a "plaintext" vector [p-right arrow above] of size n, which is encrypted with an invertible n x n matrix E to produce a "ciphertext" vector [c-right arrow above] = E [middle dot] [p-right arrow above]. Informally, a near-field is a triple [left angle bracket]N; +, *[right angle bracket] that…

  12. Slip on the San Andreas fault at Parkfield, California, over two earthquake cycles, and the implications for seismic hazard

    USGS Publications Warehouse

    Murray, J.; Langbein, J.

    2006-01-01

    Parkfield, California, which experienced M 6.0 earthquakes in 1934, 1966, and 2004, is one of the few locales for which geodetic observations span multiple earthquake cycles. We undertake a comprehensive study of deformation over the most recent earthquake cycle and explore the results in the context of geodetic data collected prior to the 1966 event. Through joint inversion of the variety of Parkfield geodetic measurements (trilateration, two-color laser, and Global Positioning System), including previously unpublished two-color data, we estimate the spatial distribution of slip and slip rate along the San Andreas using a fault geometry based on precisely relocated seismicity. Although the three most recent Parkfield earthquakes appear complementary in their along-strike distributions of slip, they do not produce uniform strain release along strike over multiple seismic cycles. Since the 1934 earthquake, more than 1 m of slip deficit has accumulated on portions of the fault that slipped in the 1966 and 2004 earthquakes, and an average of 2 m of slip deficit exists on the 33 km of the fault southeast of Gold Hill to be released in a future, perhaps larger, earthquake. It appears that the fault is capable of partially releasing stored strain in moderate earthquakes, maintaining a disequilibrium through multiple earthquake cycles. This complicates the application of simple earthquake recurrence models that assume only the strain accumulated since the most recent event is relevant to the size or timing of an upcoming earthquake. Our findings further emphasize that accumulated slip deficit is not sufficient for earthquake nucleation.

  13. 3. General view of Fort Hill Farm, view looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. General view of Fort Hill Farm, view looking west from (B) two-story hall-and-parlor house. Buildings visible, from left to right, are (B) parlor house porch; (E) one-room cabin; (D) center chimney four-room cabin; (J) hay barn; (I) log tobacco barn; (A) mansion, obscured by trees; (M) stable; (K) small barn. - Fort Hill Farm, West of Staunton (Roanoke) River between Turkey & Caesar's Runs, Clover, Halifax County, VA

  14. Earthquake Nucleation and Fault Slip: Possible Experiments on a Natural Fault

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Murdoch, L. C.; Garagash, D.; Reches, Z.; Martel, S. J.; Johnston, M. J.; Ebenhack, J.; Gwaba, D.

    2011-12-01

    High-resolution deformation and seismic observations are usually made only near the Earths' surface, kilometers away from where earthquake nucleate on active faults and are limited by inverse-cube-distance attenuation and ground noise. We have developed an experimental approach that aims at reactivating faults in-situ using thermal techniques and fluid injection, which modify in-situ stresses and the fault strength until the fault slips. Mines where in-situ stresses are sufficient to drive faulting present an opportunity to conduct such experiments. The former Homestake gold mine in South Dakota is a good example. During our recent field work in the Homestake mine, we found a large fault that intersects multiple mine levels. The size and distinct structure of this fault make it a promising target for in-situ reactivation, which would likely to be localized on a crack-like patch. Slow patch propagation, moderated by the injection rate and the rate of change of the background stresses, may become unstable, leading to the nucleation of a dynamic earthquake rupture. Our analyses for the Homestake fault conditions indicate that this transition occurs for a patch size ~1 m. This represents a fundamental limitation for laboratory experiments and necessitates larger-scale field tests ~10-100 m. The opportunity to observe earthquake nucleation on the Homestake Fault is feasible because slip could be initiated at a pre-defined location and time with instrumentation placed as close as a few meters from the nucleation site. Designing the experiment requires a detailed assessment of the state-of-stress in the vicinity of the fault. This is being conducted by simulating changes in pore pressure and effective stresses accompanying dewatering of the mine, and by evaluating in-situ stress measurements in light of a regional stress field modified by local perturbations caused by the mine workings.

  15. Conditioning exercises in ski jumping: biomechanical relationship of squat jumps, imitation jumps, and hill jumps.

    PubMed

    Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus

    2017-11-22

    As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.

  16. Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Alder, S.; Smith, S. A. F.; Scott, J. M.

    2016-10-01

    The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the

  17. AGSM Functional Fault Models for Fault Isolation Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    This project implements functional fault models to automate the isolation of failures during ground systems operations. FFMs will also be used to recommend sensor placement to improve fault isolation capabilities. The project enables the delivery of system health advisories to ground system operators.

  18. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    PubMed

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  19. Seismic images and fault relations of the Santa Monica thrust fault, West Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.

    2001-01-01

    In May 1997, the US Geological Survey (USGS) and the University of Southern California (USC) acquired high-resolution seismic reflection and refraction images on the grounds of the Wadsworth Veterans Administration Hospital (WVAH) in the city of Los Angeles (Fig. 1a,b). The objective of the seismic survey was to better understand the near-surface geometry and faulting characteristics of the Santa Monica fault zone. In this report, we present seismic images, an interpretation of those images, and a comparison of our results with results from studies by Dolan and Pratt (1997), Pratt et al. (1998) and Gibbs et al. (2000). The Santa Monica fault is one of the several northeast-southwest-trending, north-dipping, reverse faults that extend through the Los Angeles metropolitan area (Fig. 1a). Through much of area, the Santa Monica fault trends subparallel to the Hollywood fault, but the two faults apparently join into a single fault zone to the southwest and to the northeast (Dolan et al., 1995). The Santa Monica and Hollywood faults may be part of a larger fault system that extends from the Pacific Ocean to the Transverse Ranges. Crook et al. (1983) refer to this fault system as the Malibu Coast-Santa Monica-Raymond-Cucamonga fault system. They suggest that these faults have not formed a contiguous zone since the Pleistocene and conclude that each of the faults should be treated as a separate fault with respect to seismic hazards. However, Dolan et al. (1995) suggest that the Hollywood and Santa Monica faults are capable of generating Mw 6.8 and Mw 7.0 earthquakes, respectively. Thus, regardless of whether the overall fault system is connected and capable of rupturing in one event, individually, each of the faults present a sizable earthquake hazard to the Los Angeles metropolitan area. If, however, these faults are connected, and they were to rupture along a continuous fault rupture, the resulting hazard would be even greater. Although the Santa Monica fault represents

  20. Fire history at the eastern Great Plains margin, Missouri River Loess Hills

    Treesearch

    Michael C. ​Stambaugh; Richard P. Guyette; Erin R. McMurry; Daniel C. Dey

    2006-01-01

    The purpose of this paper is to provide quantitative fire history information for a geographically unique region, the Loess Hills of northwest Missouri. We sampled 33 bur oak (Quercus macrocarpa Michx.), chinkapin oak (Q. muehlenbergii Engelm.), and black oak (Q. velutina Lam.) trees from the Brickyard Hill...

  1. Needs Analysis for the West Hills College at Lemoore, West Hills Community College District. Commission Report.

    ERIC Educational Resources Information Center

    California State Postsecondary Education Commission, Sacramento.

    This report reviews the proposal by the West Hills Community College District (WHCCD) (California) to transition its off-campus center to full college status. The proposal's objectives include: (1) establishing a new comprehensive college that will serve approximately 1,700 full-time-equivalent students by 2015; and (2) providing greater access to…

  2. Measurements of the near-surface flow over a hill

    NASA Astrophysics Data System (ADS)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL gap 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL lsim 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  3. Perspectives on the Chaine Des Puys and Limagne Fault UNESCO World Heritage Project

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Olive, Cécile

    2015-04-01

    The Chaîne des Puys and Limagne fault project is acknowledged to have Outstanding Universal Value (38th session of the World Heritage UNESCO committee, June 2014). One ongoing challenge for the project is to consolidate the outreach, and to work with other sites to increase the public perception of Earth sciences. The Chaîne des Puys volcanic field in central France, became a celebrated mecca for 18/19th Century scientists, only once the volcanoes were 'discovered'. Beforehand they were only hills, but the ability to interpret landscape with prior knowledge allowed these early geologists to create a popular understanding of the geology. Since that time, the Chaîne des Puys has become a well-known volcanic site to a worldwide audience through textbooks, tourism, and commerce. To the 19th century geologists, the Limagne escarpment was just as fascinating, but lacking the ability to fully interpret this rift margin, the idea of a fault did not percolate down to the general public. With the advent of the current UNESCO project, it became clear that the geological link between the volcanoes and the fault could be exploited, not only to raise the profile of the volcanoes, but to create a greater awareness of the tectonics in the greater public. Not only have the volcanoes, become better known and more clearly understood than previously, but the fault has begun to emerge as a feature in public consciousness. We will demonstrate the many communication techniques at all levels that have been used in the project. We explain the rationale between creating a geological scale model that works on processes as well as landforms to raise the public awareness. The success is that we show how geological features can be made readable by the general public, something highly important for conservation of heritage, but also for risk perception. The increased education efforts of the scientists have also lead to an increase in science. The more informed and participatory the public is

  4. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  5. Model-based fault detection and isolation for intermittently active faults with application to motion-based thruster fault detection and isolation for spacecraft

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2008-01-01

    The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.

  6. Seismic Hazard and Fault Length

    NASA Astrophysics Data System (ADS)

    Black, N. M.; Jackson, D. D.; Mualchin, L.

    2005-12-01

    If mx is the largest earthquake magnitude that can occur on a fault, then what is mp, the largest magnitude that should be expected during the planned lifetime of a particular structure? Most approaches to these questions rely on an estimate of the Maximum Credible Earthquake, obtained by regression (e.g. Wells and Coppersmith, 1994) of fault length (or area) and magnitude. Our work differs in two ways. First, we modify the traditional approach to measuring fault length, to allow for hidden fault complexity and multi-fault rupture. Second, we use a magnitude-frequency relationship to calculate the largest magnitude expected to occur within a given time interval. Often fault length is poorly defined and multiple faults rupture together in a single event. Therefore, we need to expand the definition of a mapped fault length to obtain a more accurate estimate of the maximum magnitude. In previous work, we compared fault length vs. rupture length for post-1975 earthquakes in Southern California. In this study, we found that mapped fault length and rupture length are often unequal, and in several cases rupture broke beyond the previously mapped fault traces. To expand the geologic definition of fault length we outlined several guidelines: 1) if a fault truncates at young Quaternary alluvium, the fault line should be inferred underneath the younger sediments 2) faults striking within 45° of one another should be treated as a continuous fault line and 3) a step-over can link together faults at least 5 km apart. These definitions were applied to fault lines in Southern California. For example, many of the along-strike faults lines in the Mojave Desert are treated as a single fault trending from the Pinto Mountain to the Garlock fault. In addition, the Rose Canyon and Newport-Inglewood faults are treated as a single fault line. We used these more generous fault lengths, and the Wells and Coppersmith regression, to estimate the maximum magnitude (mx) for the major faults in

  7. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    PubMed Central

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  8. Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers.

    PubMed

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the "effective number of species") are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally) equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the

  9. 75 FR 28302 - American Food and Vending Spring Hill, TN; Notice of Negative Determination Regarding Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... Spring Hill, TN; Notice of Negative Determination Regarding Application for Reconsideration By... negative determination applicable to workers and former workers at American Food and Vending, Spring Hill... eligible for TAA because they are service workers who provided services to General Motors, Spring Hill...

  10. Low-velocity zone and topography as a source of site amplification effect on Tarzana hill, California

    USGS Publications Warehouse

    Graizer, V.

    2009-01-01

    Tarzana station is located in the foothills of the Santa Monica Mountains in California near the crest of a low (<20 m) natural hill with gentle slopes. The hill is about 500 m in length by 130 m in width and is formed of extremely weathered shale at the surface to fresh at depth. Average S-wave is about 250 m/s in the top 17-18 m, and S- and P-wave velocities significantly increase below this depth. According to the NEHRP classification based on VS30???300 m/s it is a site class D. Strong-motion instrumentation at Tarzana consisted of an accelerograph at the top of the hill, a downhole instrument at 60 m depth, and an accelerograph at the base of the hill. More than 20 earthquakes were recorded by at least three instruments at Tarzana from 1998 till 2003. Comparisons of recordings and Fourier spectra indicate strong directional resonance in a direction perpendicular to the strike of the hill. The dominant peaks in ground motion amplification on the top of the hill relative to the base are at frequencies ???3.6 and 8-9 Hz for the horizontal components. Our hypothesis is that the hill acts like a wave trap. This results in an amplification at predominant frequencies f=V/4 h (h is layer's thickness) at f???3.6 Hz for S-waves (using average VS17=246 m/s and h=17 m) and f???7.9 Hz for P-waves (using average VP17=535 m/s and h=17 m). As was shown by Bouchon and Barker [Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 1996;86(1A):66-72], topography of this hill amplifies and polarizes ground motion in the frequency range of 3-5 Hz. Hill acts as a magnifying polarizing glass: It polarizes ground motion in the direction perpendicular to the strike of the hill and also amplifies ground motions that had been also amplified by a low-velocity layer.

  11. 76 FR 6457 - Hill-Lake Gas Storage, LLC; Notice of Baseline Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-134-001] Hill-Lake Gas Storage, LLC; Notice of Baseline Filings January 31, 2011. Take notice that on January 28, 2011, Hill-Lake submitted a revised baseline filing of their Statement of Operating Conditions for services provided under...

  12. 76 FR 7186 - Hill-Lake Gas Storage, LLC; Notice of Baseline Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-134-002] Hill-Lake Gas Storage, LLC; Notice of Baseline Filings February 2, 2011. Take notice that on February 1, 2011, Hill-Lake submitted a revised baseline filing of their Statement of Operating Conditions for services provided under...

  13. Environmental Assessment Proposed Demolition Plan Hill Air Force Base, Utah

    DTIC Science & Technology

    2010-04-01

    1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty...Demolition Plan Hill Air Force Base, Utah 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) United States Air Force - Air Force Material Command,Hill Air Force

  14. 1. General view of Fort Hill Farm, view looking southsoutheast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of Fort Hill Farm, view looking south-southeast. From left to right, buildings visible are (B) two-story hall-and-parlor house; (k) small barn; (A) mansion' (G( shed; (H) shed; (I) log tobacco barn; (H and D) shed and center chimney four-room cabin; (E and (A) one-room cabin in front of mansion; (J) hay barn. - Fort Hill Farm, West of Staunton (Roanoke) River between Turkey & Caesar's Runs, Clover, Halifax County, VA

  15. Holocene Geologic Slip Rate for the Banning Strand of the Southern San Andreas Fault near San Gorgonio Pass, Southern California

    NASA Astrophysics Data System (ADS)

    Gold, P. O.; Behr, W. M.; Rood, D. H.; Kendrick, K. J.; Rockwell, T. K.; Sharp, W. D.

    2014-12-01

    We present the first Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault in southern California. The southern San Andreas Fault splays into the sub-parallel Banning and Mission Creek strands in the northwestern Coachella Valley, and although it has long been surmised that the Banning strand eventually accommodates the majority of displacement and transfers it into San Gorgonio Pass, until now it has been uncertain how slip is actually partitioned between these two fault strands. Our new slip rate measurement, critically located at the northwestern end of the Banning strand, overlaps within errors with the published rate for the southern San Andreas Fault measured at Biskra Palms Oasis. This indicates that the majority of southern San Andreas Fault displacement transfers from the southeastern Mission Creek strand northwest to the Banning strand and into San Gorgonio Pass. Our result corroborates the UCERF3 hazard model, and is consistent with most previous interpretations of how slip is partitioned between the Banning and Mission Creek fault strands. To measure this slip rate, we used B4 airborne LiDAR to identify the apex of an alluvial fan offset laterally 30 ± 5 m from its source. We calculated the depositional age of the fan using 10Be in-situ cosmogenic exposure dating of 5 cobbles and a depth profile. We calculated a most probable fan age of 4.0 +2.0/-1.6 ka (1σ) by combining the inheritance-corrected cobble ages assuming Gaussian uncertainty. However, the probability density function yielded a multi-peaked distribution, which we attribute to variable 10Be inheritance in the cobbles, so we favor the depth profile age of 2.2-3.6 ka. Combined, these measurements yield a late Holocene slip rate for the Banning strand of the southern San Andreas Fault of 11.1 +3.1/-3.3 mm/yr. This slip rate does not preclude possibility that some slip transfers north along the Mission Creek strand and the Garnet Hill fault, but it does confirm

  16. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi

    NASA Astrophysics Data System (ADS)

    Broom-Fendley, Sam; Brady, Aoife E.; Horstwood, Matthew S. A.; Woolley, Alan R.; Mtegha, James; Wall, Frances; Dawes, Will; Gunn, Gus

    2017-10-01

    Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 × 6 km) and slightly older (134.6 ± 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1-C3). Early C1 carbonatite is scarce and is composed of medium-coarse-grained calcite carbonatite containing zircons with a U-Pb age of 132.9 ± 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.

  17. True 3-D View of 'Columbia Hills' from an Angle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic of images from NASA's Mars Exploration Rover Spirit shows a panorama of the 'Columbia Hills' without any adjustment for rover tilt. When viewed through 3-D glasses, depth is much more dramatic and easier to see, compared with a tilt-adjusted version. This is because stereo views are created by producing two images, one corresponding to the view from the panoramic camera's left-eye camera, the other corresponding to the view from the panoramic camera's right-eye camera. The brain processes the visual input more accurately when the two images do not have any vertical offset. In this view, the vertical alignment is nearly perfect, but the horizon appears to curve because of the rover's tilt (because the rover was parked on a steep slope, it was tilted approximately 22 degrees to the west-northwest). Spirit took the images for this 360-degree panorama while en route to higher ground in the 'Columbia Hills.'

    The highest point visible in the hills is 'Husband Hill,' named for space shuttle Columbia Commander Rick Husband. To the right are the rover's tracks through the soil, where it stopped to perform maintenance on its right front wheel in July. In the distance, below the hills, is the floor of Gusev Crater, where Spirit landed Jan. 3, 2004, before traveling more than 3 kilometers (1.8 miles) to reach this point. This vista comprises 188 images taken by Spirit's panoramic camera from its 213th day, or sol, on Mars to its 223rd sol (Aug. 9 to 19, 2004). Team members at NASA's Jet Propulsion Laboratory and Cornell University spent several weeks processing images and producing geometric maps to stitch all the images together in this mosaic. The 360-degree view is presented in a cylindrical-perspective map projection with geometric seam correction.

  18. Frictional heterogeneities on carbonate-bearing normal faults: Insights from the Monte Maggio Fault, Italy

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Scuderi, M. M.; Collettini, C.; Marone, C.

    2014-12-01

    Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the Mw 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault, located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that (1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; (2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and (3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.

  19. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting

  20. Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc

    USGS Publications Warehouse

    John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.

    2012-01-01

    until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime throughout the lifespan of the Bodie Hills volcanic field. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with the inferred cessation of subduction.Numerous hydrothermal systems were operative in the Bodie Hills during the Miocene. Several large systems caused alteration of volcaniclastic rocks in areas as large as 30 km2, but these altered rocks are mostly devoid of economic mineral concentrations. More structurally focused hydrothermal systems formed large epithermal Au-Ag vein deposits in the Bodie and Aurora mining districts. Economically important hydrothermal systems are temporally related to intermediate to silicic composition domes.Rock types, major and trace element compositions, petrographic characteristics, and volcanic features of the Bodie Hills volcanic field are similar to those of other large Miocene volcanic fields in the southern segment of the ancestral Cascade arc. Relative to other parts of the ancestral arc, especially north of Lake Tahoe in northeastern California, the scarcity of mafic rocks, relatively K-rich calc-alkaline compositions, and abundance of composite dome fields in the Bodie Hills may reflect thicker crust beneath the southern ancestral arc segment. Thicker crust may have inhibited direct ascent and eruption of mafic, mantle-derived magma, instead stalling its ascent in the lower or middle crust, thereby promoting differentiation to silicic compositions and development of porphyritic textures characteristic of the southern ancestral arc segment.

  1. Soufriere Hills Volcano Resumes Activity

    NASA Image and Video Library

    2017-12-08

    A massive eruption of Montserrat’s Soufrière Hills Volcano covered large portions of the island in debris. The eruption was triggered by a collapse of Soufrière Hills’ summit lava dome on February 11, 2010. Pyroclastic flows raced down the northern flank of the volcano, leveling trees and destroying buildings in the village of Harris, which was abandoned after Soufrière Hills became active in 1995. The Montserrat Volcano Observatory reported that some flows, about 15 meters (49 feet) thick, reached the sea at Trant’s Bay. These flows extended the island’s coastline up to 650 meters (2,100 feet). These false-color satellite images show the southern half of Montserrat before and after the dome collapse. The top image shows Montserrat on February 21, 2010, just 10 days after the event. For comparison, the bottom image shows the same area on March 17, 2007. Red areas are vegetated, clouds are white, blue/black areas are ocean water, and gray areas are covered by flow deposits. Fresh deposits tend to be lighter than older deposits. On February 21, the drainages leading down from Soufrière Hills, including the White River Valley, the Tar River Valley, and the Belham River Valley, were filled with fresh debris. According to the Montserrat Volcano Observatory, pyroclastic flows reached the sea through Aymers Ghaut on January 18, 2010, and flows entered the sea near Plymouth on February 5, 2010. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. To read more go to: earthobservatory.nasa.gov/IOTD/view.php?id=42792 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  2. Evidence for Acid-Sulfate Alteration in the Pahrump Hills Region, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Bish, D. L.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Vaniman. D. T.; Chipera, S. J.; hide

    2015-01-01

    The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rock in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September 2014 and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three mudstone samples (targets Confidence Hills, Mojave 2, and Telegraph Peak) to its internal instruments, including the CheMin XRD/XRF.

  3. Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Ogawa, Y.; Fuji-Ta, K.; Ujihara, N.; Inokuchi, H.; Oshiman, N.

    2010-04-01

    An audio-frequency magnetotelluric (AMT) survey was undertaken at ten sites along a transect across the Hijima fault, a major segment of the Yamasaki fault system, Japan. The data were subjected to dimensionality analysis, following which two-dimensional inversions for the TE and TM modes were carried out. This model is characterized by (1) a clear resistivity boundary that coincides with the downward projection of the surface trace of the Hijima fault, (2) a resistive zone (>500 Ω m) that corresponds to Mesozoic sediment, and (3) shallow and deep two highly conductive zones (30-40 Ω m) along the fault. The shallow conductive zone is a common feature of the Yamasaki fault system, whereas the deep conductor is a newly discovered feature at depths of 800-1,800 m to the southwest of the fault. The conductor is truncated by the Hijima fault to the northeast, and its upper boundary is the resistive zone. Both conductors are interpreted to represent a combination of clay minerals and a fluid network within a fault-related fracture zone. In terms of the development of the fluid networks, the fault core of the Hijima fault and the highly resistive zone may play important roles as barriers to fluid flow on the northeast and upper sides of the conductive zones, respectively.

  4. New Data on Quaternary Surface Offset and Slip Rates of the Oquirrh Fault (Utah, USA) from DSMs made with Structure-from-Motion Methods

    NASA Astrophysics Data System (ADS)

    Bunds, M. P.; Andreini, J.; Larsen, K.; Fletcher, A.; Arnold, M.; Toke, N. A.

    2016-12-01

    We generated two high-resolution digital surface models (DSMs) using imagery collected with inexpensive quadcopters and processed with structure-from-motion software to measure offsets of pluvial Lake Bonneville shorelines along the Oquirrh Fault in Utah, USA. The Oquirrh Fault is a west-dipping normal fault that bounds the populous Tooele Valley and is likely contiguous with the East Great Salt Lake Fault to the north and Southern Oquirrh and Topliff Hill Faults to the south, forming a fault system >200 km long, the second longest in Utah. However, knowledge of the fault's parameters is based primarily on one trenching study on the northern section of the fault (Olig et al., 1996). The two DSMs were made using a 24 Mpixel Sony A5100 and 12 Mpixel GoPro camera, have 5 and 10 cm pixels, and span 3.9 km of the fault's trace at the boundary between its central and southern sections. Vertical RMS error of the DSMs relative to bare-ground checkpoints is 5.8 and 9.5 cm for the Sony and GoPro-derived DSMs, respectively. Shoreline features interpreted to have formed < 14,000, 18,000-23,000, and > 23,000 ybp (Godsey et al., 2011; Oviatt, 2015) are offset 2.8-3.0, 5.6-6.7, and 8.1-9.3 m, respectively. From these offsets we infer three surface-rupturing earthquakes with displacements of 2.8-3.0, 2.6-3.8, and 1.3-3.8 m, and estimate the slip rate to be 0.24 - 0.37 mm/yr. These results are consistent with those of the prior study to the north, suggesting co-rupturing of the northern, central and northernmost part of the southern section of the fault. In addition, the inferred large single event displacements suggest even longer surface ruptures. We have used the same methods to construct 5 cm pixel DSMs up to 4.4 km2 in area to support several additional paleoseismological, paleotsunami, and neotectonic investigations, which highlights the many benefits to geoscience research of the capacity to quickly produce accurate, high resolution DSMs from inexpensive equipment.

  5. Heat flow in the western abyssal plain of the Gulf of Mexico: Implications for thermal evolution of the old oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Sclater, J. G.; Phillips, J. D.; Behrens, E. W.; Lewis, T.; Lawver, L. A.; Nakamura, Y.; Garcia-Abdeslem, J.; Maxwell, A. E.

    1996-02-01

    The seafloor depth of an oceanic basin reflects the average temperature of the lithosphere. Thus the western abyssal plain of the Gulf of Mexico, which has tectonically subsided much (>1 km) deeper than other basins of comparable ages (late Jurassic), should be underlain by an anomalously cold lithosphere. In order to examine this hypothesis, we made suites of high-accuracy heat flow measurements at 10 sites along a line connecting Deep Sea Drilling Project (DSDP) sites 90 and 91 in the Sigsbee abyssal plain. The new heat flow sites were initially surveyed by 3.5-kHz echo sounding, 4-channel seismic reflection, seismic refraction with eight ocean bottom seismometers, and nine piston cores. We occupied a total of 48 heat flow stations along the seismic survey line (3 to 6 at each site), including 28 where we measured in situ thermal conductivities over the practical depth interval (4 m) of the new multioutrigger bow heat flow probe. We determined the heat flow associated with the lithosphere by correcting the values measured at the seafloor (41 to 45 mW/m2) for (1) the thermal effect of the sedimentation and (2) the additional heat from the radioactive elements within the sediments. The sedimentation history, required for the first, was reconstructed at each heat flow site based on ages and thicknesses of the major seismic stratigraphical sequences, age data from the DSDP cores, 3.5-kHz subbottom reflectors, and correlation of turbidite units found in the piston cores. Radiogenic heat production was measured for 55 sediment samples from four DSDP holes in the gulf, whose age ranged from present to Early Cretaceous (0.83 μW/m3 on the average). This provided the correction for the second. The effects of these two secondary factors approximately cancel one another. The lithospheric heat flow under the abyssal plain thus estimated ranges from 40 to 47 mW/m2. These heat flow values are among the lowest in the Mesozoic ocean basins where highly reliable data (45 to 55 m

  6. Quantifying Vertical Exhumation in Intracontinental Strike-Slip Faults: the Garlock fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Chinn, L.; Blythe, A. E.; Fendick, A.

    2012-12-01

    New apatite fission-track ages show varying rates of vertical exhumation at the eastern terminus of the Garlock fault zone. The Garlock fault zone is a 260 km long east-northeast striking strike-slip fault with as much as 64 km of sinistral offset. The Garlock fault zone terminates in the east in the Avawatz Mountains, at the intersection with the dextral Southern Death Valley fault zone. Although motion along the Garlock fault west of the Avawatz Mountains is considered purely strike-slip, uplift and exhumation of bedrock in the Avawatz Mountains south of the Garlock fault, as recently as 5 Ma, indicates that transpression plays an important role at this location and is perhaps related to a restricting bend as the fault wraps around and terminates southeastward along the Avawatz Mountains. In this study we complement extant thermochronometric ages from within the Avawatz core with new low temperature fission-track ages from samples collected within the adjacent Garlock and Southern Death Valley fault zones. These thermochronometric data indicate that vertical exhumation rates vary within the fault zone. Two Miocene ages (10.2 (+5.0/-3.4) Ma, 9.0 (+2.2/-1.8) Ma) indicate at least ~3.3 km of vertical exhumation at ~0.35 mm/yr, assuming a 30°C/km geothermal gradient, along a 2 km transect parallel and adjacent to the Mule Spring fault. An older Eocene age (42.9 (+8.7/-7.3) Ma) indicates ~3.3 km of vertical exhumation at ~0.08 mm/yr. These results are consistent with published exhumation rates of 0.35 mm/yr between ~7 and ~4 Ma and 0.13 mm/yr between ~15 and ~9 Ma, as determined by apatite fission-track and U-Th/He thermochronometry in the hanging-wall of the Mule Spring fault. Similar exhumation rates on both sides of the Mule Spring fault support three separate models: 1) Thrusting is no longer active along the Mule Spring fault, 2) Faulting is dominantly strike-slip at the sample locations, or 3) Miocene-present uplift and exhumation is below detection levels

  7. Subsurface structure of the East Bay Plain ground-water basin: San Francisco Bay to the Hayward fault, Alameda County, California

    USGS Publications Warehouse

    Catchings, R.D.; Borchers, J.W.; Goldman, M.R.; Gandhok, G.; Ponce, D.A.; Steedman, C.E.

    2006-01-01

    The area of California between the San Francisco Bay, San Pablo Bay, Santa Clara Valley, and the Diablo Ranges (East Bay Hills), commonly referred to as the 'East Bay', contains the East Bay Plain and Niles Cone ground-water basins. The area has a population of 1.46 million (2003 US Census), largely distributed among several cities, including Alameda, Berkeley, Fremont, Hayward, Newark, Oakland, San Leandro, San Lorenzo, and Union City. Major known tectonic structures in the East Bay area include the Hayward Fault and the Diablo Range to the east and a relatively deep sedimentary basin known as the San Leandro Basin beneath the eastern part of the bay. Known active faults, such as the Hayward, Calaveras, and San Andreas pose significant earthquake hazards to the region, and these and related faults also affect ground-water flow in the San Francisco Bay area. Because most of the valley comprising the San Francisco Bay area is covered by Holocene alluvium or water at the surface, our knowledge of the existence and locations of such faults, their potential hazards, and their effects on ground-water flow within the alluvial basins is incomplete. To better understand the subsurface stratigraphy and structures and their effects on ground-water and earthquake hazards, the U.S. Geological Survey (USGS), in cooperation with the East Bay Municipal Utility District (EBMUD), acquired a series of high-resolution seismic reflection and refraction profiles across the East Bay Plain near San Leandro in June 2002. In this report, we present results of the seismic imaging investigations, with emphasis on ground water.

  8. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  9. Fault linkage and continental breakup

    NASA Astrophysics Data System (ADS)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  10. Off-fault tip splay networks: a genetic and generic property of faults indicative of their long-term propagation, and a major component of off-fault damage

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Manighetti, I.; Gaudemer, Y.

    2015-12-01

    Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).

  11. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    PubMed

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Fractures, Faults, and Hydrothermal Systems of Puna, Hawaii, and Montserrat, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Kenedi, Catherine Lewis

    seismic velocity under the field that is thought to be an intrusion and the heat source of the hydrothermal system. A shear wave splitting study suggested the PHS fracture system is largely oriented rift-parallel with some orthogonal fractures. Shear wave splitting data also were used in a tomographic inversion for fracture density. The fracture density is high in the PHS, which indicates high permeability and potential for extensive fluid circulation. This has been confirmed by high fluid flow and energy generation. The high fracture density is consistent with the interpretation of a transfer zone between the rift segments where a fracture mesh would be expected. In Puna the transfer zone is a relay ramp. The results from the PHS are used as an example to examine the proposed hydrothermal system at St. George's Hill, Montserrat. In southern Montserrat, hot springs and fumaroles suggest a deep hydrothermal system heated by local magmatism. A magnetotelluric study obtained resistivity data that suggest focused alteration under southeastern Montserrat that is likely to be along fault segments. Several faults intersect under SGH, making it the probable center of the hydrothermal system. At Puna, and also Krafla, Iceland, where faults interact is an area of increased permeability, acting as a model to be applied to southern Montserrat. The conclusion is that in both Puna and Montserrat large faults interact to produce local areas of stress transfer that lead to fracturing and permeable networks; these networks allow for high-temperature hydrothermal circulation.

  13. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  14. On Identifiability of Bias-Type Actuator-Sensor Faults in Multiple-Model-Based Fault Detection and Identification

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.

    2012-01-01

    This paper explores a class of multiple-model-based fault detection and identification (FDI) methods for bias-type faults in actuators and sensors. These methods employ banks of Kalman-Bucy filters to detect the faults, determine the fault pattern, and estimate the fault values, wherein each Kalman-Bucy filter is tuned to a different failure pattern. Necessary and sufficient conditions are presented for identifiability of actuator faults, sensor faults, and simultaneous actuator and sensor faults. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have biases.

  15. Fault Injection Campaign for a Fault Tolerant Duplex Framework

    NASA Technical Reports Server (NTRS)

    Sacco, Gian Franco; Ferraro, Robert D.; von llmen, Paul; Rennels, Dave A.

    2007-01-01

    Fault tolerance is an efficient approach adopted to avoid or reduce the damage of a system failure. In this work we present the results of a fault injection campaign we conducted on the Duplex Framework (DF). The DF is a software developed by the UCLA group [1, 2] that uses a fault tolerant approach and allows to run two replicas of the same process on two different nodes of a commercial off-the-shelf (COTS) computer cluster. A third process running on a different node, constantly monitors the results computed by the two replicas, and eventually restarts the two replica processes if an inconsistency in their computation is detected. This approach is very cost efficient and can be adopted to control processes on spacecrafts where the fault rate produced by cosmic rays is not very high.

  16. The San Andreas Fault and a Strike-slip Fault on Europa

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay.

    The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left).

    A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements.

    Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled

  17. Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific

    NASA Astrophysics Data System (ADS)

    Kuhnz, Linda A.; Ruhl, Henry A.; Huffard, Christine L.; Smith, Kenneth L.

    2014-05-01

    The abyssal seafloor community in the NE Pacific (Station M, ∼4000 m depth) was studied between 2006 and 2012 using remotely operated vehicles (ROVs) as part of a continuing 24-year time-series study. New patterns continue to emerge showing that the deep-sea can be dynamic on short time scales, rather than static over long periods. In just over 2 years the community shifted from a sessile, suspension-feeding, sponge-dominated community to a mobile, detritus-feeding, sea cucumber-dominated assemblage. In 2006 megafaunal diversity (Simpson’s Diversity Index, SDI) was high, yet the community was depauperate in terms of density compared to later periods. Over an 18-month period beginning in spring 2011, the densities of mobile organisms increased by nearly an order of magnitude while diversity decreased below 2006 levels. In late 2012 four sea cucumbers (two Peniagone spp., Elpidia sp. A, and Scotoplanes globosa) were at the highest densities recorded since investigations began at Station M in 1989. For a group of 10 echinoderms investigated over the entire study period, we saw evidence of a long-term cycle spanning 2 decades. These changes can be tied to a variable food supply originating in shallow water. Large variations over decadal-scales indicate that remote abyssal communities are dynamic and likely subject to impacts from anthropogenic changes like ocean warming, acidification, and pollution manifested in the upper ocean. The degree of dynamism indicates that one-time or short-term investigations are not sufficient for assessing biological community structure in conservation or exploitation studies in the deep sea.

  18. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Brenneman, M. J.; Bykerk-Kauffman, A.

    2012-12-01

    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial

  19. Fault Interaction and Stress Accumulation in Chaman Fault System, Balouchistan, Pakistan, Since 1892

    NASA Astrophysics Data System (ADS)

    Riaz, M. S.; Shan, B.; Xiong, X.; Xie, Z.

    2017-12-01

    The curved-shaped left-lateral Chaman fault is the Western boundary of the Indian plate, which is approximately 1000 km long. The Chaman fault is an active fault and also locus of many catastrophic earthquakes. Since the inception of strike-slip movement at 20-25Ma along the western collision boundary between Indian and Eurasian plates, the average geologically constrained slip rate of 24 to 35 mm/yr accounts for a total displacement of 460±10 km along the Chaman fault system (Beun et al., 1979; Lawrence et al., 1992). Based on earthquake triggering theory, the change in Coulomb Failure Stress (DCFS) either halted (shadow stress) or advances (positive stress) the occurrence of subsequent earthquakes. Several major earthquakes occurred in Chaman fault system, and this region is poorly studied to understand the earthquake/fault interaction and hazard assessment. In order to do so, we have analyzed the earthquakes catalog and collected significant earthquakes with M ≥6.2 since 1892. We then investigate the evolution of DCFS in the Chaman fault system is computed by integration of coseismic static and postseismic viscoelastic relaxation stress transfer since the 1892, using the codePSGRN/PSCMP (Wang et al., 2006). Moreover, for postseismic stress transfer simulation, we adopted linear Maxwell rheology to calculate the viscoelastic effects in this study. Our results elucidate that three out of four earthquakes are triggered by the preceding earthquakes. The 1892-earthquake with magnitude Mw6.8, which occurred on the North segment of Chaman fault has not influence the 1935-earthquake which occurred on Ghazaband fault, a parallel fault 20km east to Chaman fault. The 1935-earthquake with magnitude Mw7.7 significantly loaded the both ends of rupture with positive stress (CFS ≥0.01 Mpa), which later on triggered the 1975-earthquake with 23% of its rupture length where CFS ≥0.01 Mpa, on Chaman fault, and 1990-earthquke with 58% of its rupture length where CFS ≥0

  20. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  1. Meiofauna communities along an abyssal depth gradient in the Drake Passage

    NASA Astrophysics Data System (ADS)

    Gutzmann, E.; Martínez Arbizu, P.; Rose, A.; Veit-Köhler, G.

    2004-07-01

    Meiofauna standing stocks and community structure are reported for the first time for abyssal soft-sediment samples in Antarctic waters. At seven stations within a depth range of 2274-5194 m a total of 128 sediment cores were retrieved with a multiple corer (MUC) on board of the R.V. Polarstern during the ANDEEP-1 cruise (ANT XIX/3). The metazoan meiofauna (defined by a lower size limit of 40 μm) was identified and counted, and one core per station was preserved for CPE, C/N, TOM and grain size analyses. Meiofauna densities are in the range of 2731 Ind./10 cm 2 at 2290 m depth and 75 Ind./10 cm 2 at 3597 m depth, with nematodes being the dominant group at all stations. Nematodes account for 84-94% followed by copepods with 2-8% of the total meiofauna. Other frequent taxa found at each station are kinorhynchs, loriciferans, tantulocarids, ostracods and tardigrades. There is a general tendency of decreasing abundances of metazoan meiofauna with increasing depth, but not all higher level taxa displayed this pattern. In addition, a tendency of decreasing higher taxon density with increasing depth was observed. Standing stocks are higher than the average found at similar depths in other oceans.

  2. Species-area relations of song birds in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble; Brian L. Dykstra; Lester D. Flake

    2000-01-01

    We investigated the effects of stand size resulting from current logging practices on occurrence and species richness of song birds in the Black Hills. Richness of forest interior and forest interior/edge songbirds was not related to stand area (P > 0.40) in stands of ponderosa pine (Pinus ponderosa) in the Black Hills. Brown creepers (...

  3. Hill functions for stochastic gene regulatory networks from master equations with split nodes and time-scale separation

    NASA Astrophysics Data System (ADS)

    Lipan, Ovidiu; Ferwerda, Cameron

    2018-02-01

    The deterministic Hill function depends only on the average values of molecule numbers. To account for the fluctuations in the molecule numbers, the argument of the Hill function needs to contain the means, the standard deviations, and the correlations. Here we present a method that allows for stochastic Hill functions to be constructed from the dynamical evolution of stochastic biocircuits with specific topologies. These stochastic Hill functions are presented in a closed analytical form so that they can be easily incorporated in models for large genetic regulatory networks. Using a repressive biocircuit as an example, we show by Monte Carlo simulations that the traditional deterministic Hill function inaccurately predicts time of repression by an order of two magnitudes. However, the stochastic Hill function was able to capture the fluctuations and thus accurately predicted the time of repression.

  4. Genetic diversity and structure in hill rice (Oryza sativa L.) landraces from the North-Eastern Himalayas of India.

    PubMed

    Roy, Somnath; Marndi, B C; Mawkhlieng, B; Banerjee, A; Yadav, R M; Misra, A K; Bansal, K C

    2016-07-13

    Hill rices (Oryza sativa L.) are direct seeded rices grown on hill slopes of different gradients. These landraces have evolved under rainfed and harsh environmental conditions and may possess genes governing adaptation traits such as tolerance to cold and moisture stress. In this study, 64 hill rice landraces were collected from the state of Arunachal Pradesh of North-Eastern region of India, and assessed by agro-morphological variability and microsatellite markers polymorphism. Our aim was to use phenotypic and genetic diversity data to understand the basis of farmers' classification of hill rice landraces into two groups: umte and tening. Another goal was to understand the genetic differentiation of hill rices into Indica or japonica subspecies. According to farmers' classification, hill rices were categorized into two groups: umte (large-grained, late maturing) and tening (small-grained, early maturing). We did not find significant difference in days to 50 % flowering between the groups. Principal component analysis revealed that two groups can be distinguished on the basis of kernel length-to-width ration (KLW), kernel length (KL), grain length (GrL), grain length-to-width ration (GrLW) and plant height (Ht). Stepwise canonical discriminant analysis identified KL and Ht as the main discriminatory characters between the cultivar groups. Genetic diversity analysis with 35 SSR markers revealed considerable genetic diversity in the hill rice germplasm (gene diversity: 0.66; polymorphism information content: 0.62). Pair-wise allelic difference between umte and tening groups was not statistically significant. The model-based population structure analysis showed that the hill rices were clustered into two broad groups corresponding to Indica and Japonica. The geographic distribution and cultivars grouping of hill rices were not congruent in genetic clusters. Both distance- and model-based approaches indicated that the hill rices were predominantly japonica or

  5. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  6. Water level and strain changes preceding and following the August 4, 1985 Kettleman Hills, California, earthquake

    USGS Publications Warehouse

    Roeloffs, E.; Quilty, E.

    1997-01-01

    Two of the four wells monitored near Parkfield, California, during 1985 showed water level rises beginning three days before the M4 6.1 Kettleman Hills earthquake. In one of these wells, the 3.0 cm rise was nearly unique in five years of water level data. However, in the other well, which showed a 3.8 cm rise, many other changes of comparable size have been observed. Both wells that did not display pre-earthquake rises tap partially confined aquifers that cannot sustain pressure changes due to tectonic strain having periods longer than several days. We evaluate the effect of partial aquifer confinement on the ability of these four wells to display water level changes in response to aquifer strain. Although the vertical hydraulic diffusivities cannot be determined uniquely, we can find a value of diffusivity for each site that is consistent with the site's tidal and barometric responses as well as with the rate of partial recovery of the coseismic water level drops. Furthermore, the diffusivity for one well is high enough to explain why the preseismic rise could not have been detected there. For the fourth well, the diffusivity is high enough to have reduced the size of the preseismic signal as much as 50%, although it should still have been detectable. Imperfect confinement cannot explain the persistent water level changes in the two partially confined aquifers, but it does show that they were not due to volume strain. The pre-earthquake water level rises may have been precursors to the Kettleman Hills earthquake. If so, they probably were not caused by accelerating slip over the part of the fault plane that ruptured in that earthquake because they are of opposite sign to the observed coseismic water level drops.

  7. Fault diagnosis of power transformer based on fault-tree analysis (FTA)

    NASA Astrophysics Data System (ADS)

    Wang, Yongliang; Li, Xiaoqiang; Ma, Jianwei; Li, SuoYu

    2017-05-01

    Power transformers is an important equipment in power plants and substations, power distribution transmission link is made an important hub of power systems. Its performance directly affects the quality and health of the power system reliability and stability. This paper summarizes the five parts according to the fault type power transformers, then from the time dimension divided into three stages of power transformer fault, use DGA routine analysis and infrared diagnostics criterion set power transformer running state, finally, according to the needs of power transformer fault diagnosis, by the general to the section by stepwise refinement of dendritic tree constructed power transformer fault

  8. Large earthquakes and creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  9. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    PubMed

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Voices across the Hills: Thailand's Hill Areas Education Project. Education for All: Making It Work. Innovation Series.

    ERIC Educational Resources Information Center

    Guttman, Cynthia

    Developed in the early 1980s, the Hill Areas Education project provides basic education to children and adults of Thailand's six ethnic minority groups, who live in the remote mountainous region of northern Thailand. The project delivers a locally relevant curriculum, equivalent to the six compulsory grades of the formal education system; promotes…

  11. Patterns of volcanotectonic seismicity and stress during the ongoing eruption of the Soufrière Hills Volcano, Montserrat (1995-2007)

    USGS Publications Warehouse

    Roman, D.C.; De Angelis, S.; Latchman, J.L.; White, Rickie

    2008-01-01

    The ongoing eruption of the Soufrière Hills Volcano, Montserrat, has been accompanied throughout by varying levels of high-frequency, ‘volcanotectonic’ (VT), seismicity. These earthquakes reflect the brittle response of the host rock to stresses generated within the magmatic system and thus reveal interesting and useful information about the structure of the volcanic conduit system and processes occurring within it. In general, systematic changes in the rate, location, and fault-plane solutions of VT earthquakes correspond to changes in the volcano's behavior, and indicate that the main conduit for the eruption is a dike or system of dikes trending NE–SW and centered beneath the eruptive vent. To date, the eruption has comprised three extrusive phases, separated by two ~ 1–2 year-long periods of residual activity. Prior to the start of each extrusive phase, VT earthquakes with fault-plane solution p-axes oriented perpendicular to inferred regional maximum compression dominate the data set, consistent with stresses induced by the inflation of the mid-level conduit system. ~ 90°-rotated VT fault-plane solutions are also observed preceding a change in eruption style from effusive to explosive in 1997. While increases in the rate of VT earthquakes precede eruption phase onsets, high rates of VT seismicity are also observed during the first period of residual activity and in this case appear to reflect the relaxation of host rock following withdrawal of magma from the mid-crustal system. Most VT earthquakes are located directly beneath the eruptive vent, although two ‘distal VT clusters’ were observed during the first six months of the eruption (late 1995–early 1996). Both of these distal clusters likely resulted from stresses generated during the establishment of the main conduit system.

  12. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip

  13. An Unlikely Student Hits Capitol Hill

    ERIC Educational Resources Information Center

    Hoover, Eric

    2009-01-01

    Todd Sollar, a laid-off autoworker from Ohio who is studying for an associate degree in engineering at Sinclair Community College, in Dayton, OH, went to Capitol Hill to help educate lawmakers about the importance of including support for community colleges in the economic-stimulus bill. Mr. Sollar came to Washington with Sinclair's president, and…

  14. Ocean Hill-Brownsville, 40 Years Later

    ERIC Educational Resources Information Center

    Kahlenberg, Richard D.

    2008-01-01

    Forty years ago--on May 9, 1968--the local school board in Brooklyn's black ghetto of Ocean Hill-Brownsville sent telegrams to 19 unionized educators, informing them that their employment in the district was terminated. Eighteen were white. One black teacher was mistakenly included on the list, but reinstated almost immediately after the error was…

  15. KM3NeT-ORCA: Oscillation Research with Cosmics in the Abyss

    NASA Astrophysics Data System (ADS)

    Coyle, Paschal; KM3NeT Collaboration

    2017-09-01

    KM3NeT, currently under construction in the abysses of the Mediterranean Sea, is a distributed research infrastructure that will host a km3-scale neutrino telescope (ARCA) for high-energy neutrino astronomy, and a megaton scale detector (ORCA) for neutrino oscillation studies of atmospheric neutrinos. ORCA is optimised for a measurement of the mass hierarchy, providing a sensitivity of 3σ after 3-4 years. It will also measure the atmospheric mixing parameters Δm2 atm and θ23 with a precision comparable to the NOvA and T2K experiments using both the muon neutrino disappearance and tau neutrino appearance channels. It will provide a measurement of the tau neutrino appearance rate with better than 10% precision, a crucial ingredient for tests of unitarity. It will probe the octant of the mixing angle θ23 via matter resonance effects on neutrinos and antineutrinos crossing the core and mantle, which are largely independent on the CP phase. The observation of neutrino oscillations over a wide range of baselines and energies will provide broad sensitivity to new physics such as non-standard neutrino interactions (NSI) and sterile neutrinos.

  16. Community change in the variable resource habitat of the abyssal northeast Pacific.

    PubMed

    Ruhl, Henry A

    2008-04-01

    Research capable of differentiating resource-related community-level change from random ecological drift in natural systems has been limited. Evidence for nonrandom, resource-driven change is presented here for an epibenthic megafauna community in the abyssal northeast Pacific Ocean from 1989 to 2004. The sinking particulate organic carbon food supply is linked not only to species-specific abundances, but also to species composition and equitability. Shifts in rank abundance distributions (RADs) and evenness, from more to less equitable, correlated to increased food supply during La Niña phases of the El Niño Southern Oscillation. The results suggest that each taxon exhibited a differential response to a sufficiently low dimension resource, which led to changes in community composition and equitability. Thus the shifts were not likely due to random ecological drift. Although the community can undergo population-level variations of one or more orders of magnitude, and the shape of the RADs was variable, the organization retained a significant consistency, providing evidence of limits for such changes. The growing evidence for limited resource-driven changes in RADs and evenness further emphasizes the potential importance of temporally variable disequilibria in understanding why communities have certain basic attributes.

  17. Sharing the Gift of Jazz: An Interview with Willie L. Hill Jr.

    ERIC Educational Resources Information Center

    Howe, Brad

    2011-01-01

    This article presents an interview with Willie L. Hill Jr., founder and director of the Society for Jazz Education. Currently a professor of music education at the University of Massachusetts-Amherst and the director of the UMass Fine Arts Center, Hill has served as director of education for the Thelonious Monk Institute of Jazz. He is a past…

  18. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    NASA Astrophysics Data System (ADS)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  19. Fracturing alliance improves profitability of Lost Hills field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, M.; Stewart, D.; Gaona, M.

    1994-11-21

    About 2 billion bbl of oil-in-place are present in the massive diatomite deposits of California's Lost Hills field, about 45 miles north-west of Bakersfield, Calif. Massive hydraulic fracturing treatments, 2,500-3,000 lb of proppant/net perforated ft, are an integral part of developing these reserves. An exclusive fracturing alliance initiated in 1990 between Chevron U.S.A. and Schlumberger Dowell has improved profitability of the Los Hills field. the paper describes the geology, the field before 1987, the 1987--90 period when hydraulic fracturing stimulation was found to be very costly, and after 1990 when the alliance was formed. The paper also describes the fracturingmore » fluid, proppants, engineering evaluation, and execution of the job.« less

  20. Influence of fault steps on rupture termination of strike-slip earthquake faults

    NASA Astrophysics Data System (ADS)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  1. Geology of the Joe Davis Hill quadrangle, Dolores and San Miguel counties, Colorado

    USGS Publications Warehouse

    Cater, Fred W.; Bell, Henry

    1953-01-01

    The Joe Davis Hill quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of these quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that range in age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by hih-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confined to Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Belt". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstones of favorable composition.

  2. Model-Based Fault Tolerant Control

    NASA Technical Reports Server (NTRS)

    Kumar, Aditya; Viassolo, Daniel

    2008-01-01

    The Model Based Fault Tolerant Control (MBFTC) task was conducted under the NASA Aviation Safety and Security Program. The goal of MBFTC is to develop and demonstrate real-time strategies to diagnose and accommodate anomalous aircraft engine events such as sensor faults, actuator faults, or turbine gas-path component damage that can lead to in-flight shutdowns, aborted take offs, asymmetric thrust/loss of thrust control, or engine surge/stall events. A suite of model-based fault detection algorithms were developed and evaluated. Based on the performance and maturity of the developed algorithms two approaches were selected for further analysis: (i) multiple-hypothesis testing, and (ii) neural networks; both used residuals from an Extended Kalman Filter to detect the occurrence of the selected faults. A simple fusion algorithm was implemented to combine the results from each algorithm to obtain an overall estimate of the identified fault type and magnitude. The identification of the fault type and magnitude enabled the use of an online fault accommodation strategy to correct for the adverse impact of these faults on engine operability thereby enabling continued engine operation in the presence of these faults. The performance of the fault detection and accommodation algorithm was extensively tested in a simulation environment.

  3. Detection of CMOS bridging faults using minimal stuck-at fault test sets

    NASA Technical Reports Server (NTRS)

    Ijaz, Nabeel; Frenzel, James F.

    1993-01-01

    The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.

  4. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The "virtual beam", a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  5. Fault Identification by Unsupervised Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Nandan, S.; Mannu, U.

    2012-12-01

    Contemporary fault identification techniques predominantly rely on the surface expression of the fault. This biased observation is inadequate to yield detailed fault structures in areas with surface cover like cities deserts vegetation etc and the changes in fault patterns with depth. Furthermore it is difficult to estimate faults structure which do not generate any surface rupture. Many disastrous events have been attributed to these blind faults. Faults and earthquakes are very closely related as earthquakes occur on faults and faults grow by accumulation of coseismic rupture. For a better seismic risk evaluation it is imperative to recognize and map these faults. We implement a novel approach to identify seismically active fault planes from three dimensional hypocenter distribution by making use of unsupervised learning algorithms. We employ K-means clustering algorithm and Expectation Maximization (EM) algorithm modified to identify planar structures in spatial distribution of hypocenter after filtering out isolated events. We examine difference in the faults reconstructed by deterministic assignment in K- means and probabilistic assignment in EM algorithm. The method is conceptually identical to methodologies developed by Ouillion et al (2008, 2010) and has been extensively tested on synthetic data. We determined the sensitivity of the methodology to uncertainties in hypocenter location, density of clustering and cross cutting fault structures. The method has been applied to datasets from two contrasting regions. While Kumaon Himalaya is a convergent plate boundary, Koyna-Warna lies in middle of the Indian Plate but has a history of triggered seismicity. The reconstructed faults were validated by examining the fault orientation of mapped faults and the focal mechanism of these events determined through waveform inversion. The reconstructed faults could be used to solve the fault plane ambiguity in focal mechanism determination and constrain the fault

  6. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (<2 Ma). The initiation of these young faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  7. Geologic Map of the Bodie Hills Volcanic Field, California and Nevada: Anatomy of Miocene Cascade Arc Magmatism in the Western Great Basin

    NASA Astrophysics Data System (ADS)

    John, D. A.; du Bray, E. A.; Blakely, R. J.; Box, S.; Fleck, R. J.; Vikre, P. G.; Rytuba, J. J.; Moring, B. C.

    2011-12-01

    The Bodie Hills Volcanic Field (BHVF) is a >700 km2, long-lived (~9 Ma) but episodic, Miocene eruptive center in the southern part of the ancestral Cascade magmatic arc. A 1:50,000-scale geologic map based on extensive new mapping, combined with 40Ar/39Ar dates, geochemical data, and detailed gravity and aeromagnetic surveys, defines late Miocene magmatic and hydrothermal evolution of the BHVF and contrasts the subduction-related BHVF with the overlying, post-subduction, bimodal Plio-Pleistocene Aurora Volcanic Field (AVF). Important features of the BHVF include: Eruptions occurred during 3 major eruptive stages: dominantly trachyandesite stratovolcanoes (~14.7 to 12.9 Ma), mixed silicic trachyandesite, dacite, and rhyolite (~11.3 to 9.6 Ma), and dominantly silicic trachyandesite to dacite domes (~9.2 to 8.0 Ma). Small rhyolite domes were emplaced at ~6 Ma. Trachyandesitic stratovolcanoes with extensive debris flow aprons form the outer part of BHVF, whereas silicic trachyandesite to rhyolite domes are more centrally located. Geophysical data suggest that many BHVF volcanoes have shallow plutonic roots that extend to depths ≥1-2 km below the surface, and much of the Bodie Hills may be underlain by low density plutons presumably related to BHVF volcanism. BHVF rocks contain ~50 to 78% SiO2 (though few rocks have <55% SiO2), have high-K calc-alkaline compositions, and have negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. BHVF rocks include mafic trachyandesite/basaltic andesite (50%), silicic trachyandesite-dacite (40%), and rhyolite (10%). Approximately circular, polygenetic volcanoes and scarcity of dikes suggest a low differential horizontal stress field during formation of BHVF. Subduction ceased beneath the Bodie Hills at ~10 Ma, but the composition and eruptive style of volcanism continued unchanged for 2 Ma. However, kinematic data for veins and faults in mining districts suggest a change

  8. Tectonic geomorphology and paleoseismology of strike-slip faults in Jamaica: Implications for distribution of strain and seismic hazard along the southern edge of the Gonave microplate

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Mann, P.; Brown, L. A.

    2009-12-01

    The east-west, left lateral strike-slip fault system forming the southern edge of the Gonave microplate crosses the110-km-long and 70-km-wide island of Jamaica. GPS measurements in the northeastern Caribbean are supportive of the microplate interpretation and indicate that ~ half of the Caribbean-North America left-lateral plate motion (8-14 mm/yr) is carried by the Plantain Garden (PGFZ) and associated faults in Jamaica. We performed Neotectonic mapping of the Plantain Garden fault along the southern rangefront of the Blue Mountains and conducted a paleoseismic study of the fault at Morant River. Between Holland Bay and Morant River, the fault is characterized by a steep, faceted, linear mountain front, prominent linear valleys and depressions, shutter ridges, and springs. At the eastern end of the island, the PGFZ is characterized by a left-stepping fault geometry that includes a major, active hot spring. The river cut exposure at Morant River exposes a 1.5-m-wide, sub-vertical fault zone juxtaposing sheared alluvium and faulted Cretaceous basement rocks. This section is overlain by an, unfaulted 3-m-thick fluvial terrace inset into a late Pleistocene terrace that is culturally modified. Upward fault terminations indicate the occurrence of three paleoearthquakes that occurred prior to deposition of the flat lying inset terrace around 341-628 cal yr BP. At this time, our radiocarbon results suggest that we can rule out the PGFZ as the source of the 1907 Kingston earthquake 102 years ago, as well as, the 1692 event that destroyed Port Royal 317 years ago and produced a major landslide at Yallahs. Pending OSL ages will constrain the age of the penultimate and most recent ruptures. Gently to steeply dipping rocks as young as Pliocene exposed in roadcuts within the low coastal hills south of and parallel to the Plantain Garden fault may indicate active folding and blind thrust faulting. These structures are poorly characterized and may accommodate an unknown amount of

  9. General Education at UNC-Chapel Hill

    ERIC Educational Resources Information Center

    Schalin, Jay; Robinson, Jenna Ashley

    2013-01-01

    The general education program at UNC-Chapel Hill has abandoned the concept of a core curriculum. Instead, students choose their "required" classes from lists of thousands of courses that may be as narrow and idiosyncratic as Love, Sex and Marriage in Soviet Culture (RUSS 277) or The Gardens, Shrines and Temples of Japan (ASIA 586).…

  10. Simulated fault injection - A methodology to evaluate fault tolerant microprocessor architectures

    NASA Technical Reports Server (NTRS)

    Choi, Gwan S.; Iyer, Ravishankar K.; Carreno, Victor A.

    1990-01-01

    A simulation-based fault-injection method for validating fault-tolerant microprocessor architectures is described. The approach uses mixed-mode simulation (electrical/logic analysis), and injects transient errors in run-time to assess the resulting fault impact. As an example, a fault-tolerant architecture which models the digital aspects of a dual-channel real-time jet-engine controller is used. The level of effectiveness of the dual configuration with respect to single and multiple transients is measured. The results indicate 100 percent coverage of single transients. Approximately 12 percent of the multiple transients affect both channels; none result in controller failure since two additional levels of redundancy exist.

  11. Assessing the likelihood of volcanic eruption through analysis of volcanotectonic earthquake fault plane solutions

    NASA Astrophysics Data System (ADS)

    Roman, D. C.; Neuberg, J.; Luckett, R. R.

    2006-08-01

    Episodes of volcanic unrest do not always lead to an eruption. Many of the commonly monitored signals of volcanic unrest, including surface deformation and increased degassing, can reflect perturbations to a deeper magma storage system, and may persist for years without accompanying eruptive activity. Signals of volcanic unrest can also persist following the end of an eruption. Furthermore, the most reliable eruption precursor, the occurrence of low-frequency seismicity, appears to reflect very shallow processes and typically precedes eruptions by only hours to days. Thus, the identification of measurable and unambiguous indicators that are sensitive to changes in the mid-level conduit system during an intermediate stage of magma ascent is of critical importance to the field of volcano monitoring. Here, using data from the ongoing eruption of the Soufrière Hills Volcano, Montserrat, we show that ˜90° changes in the orientation of double-couple fault-plane solutions for high-frequency 'volcanotectonic' (VT) earthquakes reflect pressurization of the mid-level conduit system prior to eruption and may precede the onset of eruptive episodes by weeks to months. Our results demonstrate that, once the characteristic stress field response to magma ascent at a given volcano is established, a relatively simple analysis of VT fault-plane solutions may be used to make intermediate-term assessments of the likelihood of future eruptive activity.

  12. The engine fuel system fault analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei

    2017-05-01

    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  13. Where's the Hayward Fault? A Green Guide to the Fault

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip

  14. HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes

    NASA Astrophysics Data System (ADS)

    Carlson, J. M.; Hillers, G.; Archuleta, R. J.

    2006-12-01

    We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a

  15. NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT EDGE IS THE SINGLE CYLINDER “HOT SHOT” ENGINE THAT PROVIDED POWER FOR THE MILL. JUST IN FRONT OF IT IS AN ARRASTRA. AT CENTER IS THE BALL MILL AND SECONDARY ORE BIN. JUST TO THE RIGHT OF THE BALL MILL IS A RAKE CLASSIFIER, AND TO THE RIGHT ARE THE CONCENTRATION TABLES. WARM SPRINGS CAMP IS IN THE DISTANCE. SEE CA-292-4 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  16. NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT EDGE IS THE SINGLE CYLINDER “HOT SHOT” ENGINE THAT PROVIDED POWER FOR THE MILL. JUST IN FRONT OF IT IS AN ARRASTRA. AT CENTER IS THE BALL MILL AND SECONDARY ORE BIN. JUST TO THE RIGHT OF THE BALL MILL IS A RAKE CLASSIFIER, AND TO THE RIGHT ARE THE CONCENTRATION TABLES. WARM SPRINGS CAMP IS IN THE DISTANCE. SEE CA-292-17 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  17. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  18. ENHANCED REMEDIATION DEMONSTRATIONS AT HILL AFB: INTRODUCTION

    EPA Science Inventory

    Nine enhanced aquifer remediation technologies were demonstrated side-by-side at a Hill Air Force Base Chemical Disposal Pit/Fire Training Area site. The demonstrations were performed inside 3 x 5 m cells isolated from the surrounding shallow aquifer by steel piling. The site w...

  19. Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR

    NASA Astrophysics Data System (ADS)

    Barnhart, William D.

    2017-01-01

    The Chaman fault is the major strike-slip structural boundary between the India and Eurasia plates. Despite sinistral slip rates similar to the North America-Pacific plate boundary, no major (>M7) earthquakes have been documented along the Chaman fault, indicating that the fault either creeps aseismically or is at a late stage in its seismic cycle. Recent work with remotely sensed interferometric synthetic aperture radar (InSAR) time series documented a heterogeneous distribution of fault creep and interseismic coupling along the entire length of the Chaman fault, including an 125 km long creeping segment and an 95 km long locked segment within the region documented in this study. Here I present additional InSAR time series results from the Envisat and ALOS radar missions spanning the southern and central Chaman fault in an effort to constrain the locking depth, dip, and slip direction of the Chaman fault. I find that the fault deviates little from a vertical geometry and accommodates little to no fault-normal displacements. Peak-documented creep rates on the fault are 9-12 mm/yr, accounting for 25-33% of the total motion between India and Eurasia, and locking depths in creeping segments are commonly shallower than 500 m. The magnitude of the 1892 Chaman earthquake is well predicted by the total area of the 95 km long coupled segment. To a first order, the heterogeneous distribution of aseismic creep combined with consistently shallow locking depths suggests that the southern and central Chaman fault may only produce small to moderate earthquakes (

  20. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.