Abyssal hills: Influence of topography on benthic foraminiferal assemblages
NASA Astrophysics Data System (ADS)
Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.
2016-11-01
Abyssal plains, often thought of as vast flat areas, encompass a variety of terrains including abyssal hills, features that constitute the single largest landscape type on Earth. The potential influence on deep-sea benthic faunas of mesoscale habitat complexity arising from the presence of abyssal hills is still poorly understood. To address this issue we focus on benthic foraminifera (testate protists) in the >150-μm fraction of Megacorer samples (0-1 cm layer) collected at five different sites in the area of the Porcupine Abyssal Plain Sustained Observatory (NE Atlantic, 4850 m water depth). Three sites are located on the tops of small abyssal hills (200-500 m elevation) and two on the adjacent abyssal plain. We examined benthic foraminiferal assemblage characteristics (standing stock, diversity, composition) in relation to seafloor topography (hills vs. plain). Density and rarefied diversity were not significantly different between the hills and the plain. Nevertheless, hills do support a higher species density (i.e. species per unit area), a distinct fauna, and act to increase the regional species pool. Topographically enhanced bottom-water flows that influence food availability and sediment type are suggested as the most likely mechanisms responsible for these differences. Our findings highlight the potential importance of mesoscale heterogeneity introduced by relatively modest topography in regulating abyssal foraminiferal diversity. Given the predominance of abyssal hill terrain in the global ocean, we suggest the need to include faunal data from abyssal hills in assessments of abyssal ecology.
Internal tide generation by abyssal hills using analytical theory
NASA Astrophysics Data System (ADS)
Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.
2013-11-01
Internal tide driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal tides can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-tide generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal tide generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal tide generation, especially over mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Goff, J.; Zahirovic, S.; Müller, D.
2017-12-01
Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The random nature of abyssal hills is consistent with a primarily faulted origin. .
Relationship between 'live' and dead benthic foraminiferal assemblages in the abyssal NE Atlantic
NASA Astrophysics Data System (ADS)
Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.
2017-03-01
Dead foraminiferal assemblages within the sediment mixed layer provide an integrated, time-averaged view of the foraminiferal fauna, while the relationship between dead and live assemblages reflects the population dynamics of different species together with taphonomic processes operating over the last few hundred years. Here, we analysed four samples for 'live' (Rose-Bengal-stained) and dead benthic foraminifera (0-1 cm sediment layer, >150 μm) from four sites in the area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO; NE Atlantic, 4850 m water depth). Two sites were located on abyssal hills and two on the adjacent abyssal plain. Our results indicate that the transition from live to dead benthic foraminiferal assemblages involved a dramatic loss of delicate agglutinated and organic-walled tests (e.g. Lagenammina, Nodellum, Reophax) with poor preservation potential, and to a lesser extent that of some relatively fragile calcareous tests (mostly miliolids), possibly a result of dissolution. Other processes, such as the transport of tests by bottom currents and predation, are unlikely to have substantially altered the composition of dead faunas. Positive live to dead ratios suggest that some species (notably Epistominella exigua and Bolivina spathulata) may have responded to recent phytodetritus input. Although the composition of live assemblages seemed to be influenced by seafloor topography (abyssal hills vs. plain), no such relation was found for dead assemblages. We suggest that PAP-SO fossil assemblages are likely to be comparable across topographically contrasting sites, and dominated by calcareous and some robust agglutinated forms with calcitic cement (e.g. Eggerella).
The tectonic fabric of the ocean basins
NASA Astrophysics Data System (ADS)
Matthews, Kara J.; Müller, R. Dietmar; Wessel, Paul; Whittaker, Joanne M.
2011-12-01
We present a global community data set of fracture zones (FZs), discordant zones, propagating ridges, V-shaped structures and extinct ridges, digitized from vertical gravity gradient (VGG) maps. We use a new semi-automatic FZ tracking program to test the precision of our hand-digitized traces and find a Mean Absolute Deviation of less than 3.4 km from the raw VGG minima that most clearly delineate each feature, and less than 5.4 km from the FZ location predicted by fitting model profiles to the VGG data that represent the morphology of the individual FZs. These offsets are small considering gravity data only provide an approximation for the underlying basement morphology. We further investigate the origin of non-FZ seafloor fabric by combining published abyssal hill heights computed from gravity anomalies with global half-spreading rates. A residual abyssal hill height grid, with spreading rate effects removed, combined with our interpreted tectonic fabric reveals several types of seafloor fabric distinct from typical abyssal hills. Where discordant zones do not overprint abyssal hill signals, residual abyssal hill height anomalies correspond to seafloor that accreted near mantle thermal anomalies or zones of melt-depletion. Our analysis reveals several areas where residual abyssal hill height anomalies reflect pseudo-faults and extinct ridges associated with ridge propagation and/or microplate formation in the southern Pacific Ocean.
NASA Astrophysics Data System (ADS)
Bowles, Frederick A.; Vogt, Peter R.; Jung, Woo-Yeol
1998-05-01
Placing waste on the seafloor, with the intention that it remain in place and isolated from mankind, requires a knowledge of the environmental factors that may be applicable to a specific seafloor area. DBDB5 (Digital Bathymetric Database gridded at 5' latitude by 5' longitude cell dimension) is used here for regional assessments of seafloor depth, slope, and relief at five surrogate abyssal waste sites; two each in the western Atlantic and eastern Pacific, and one in the Gulf of Mexico. Only Pacific-1 exhibits a `high' slope (2°) by DBDB5 standards, whereas the remaining sites are located on almost level seafloor. Detailed examination of the sites using multibeam-based contour sheets show the area around Atlantic-1 to be a featureless plain. Atlantic-2 and both Pacific sites are surrounded by abyssal hill topography, with local slopes ranging from greater than 6° at all sites to above 15° at Pacific-2. Neither Pacific site features a seafloor as `flat' as at Atlantic-1 or at the Gulf of Mexico site. Locating waste sites on sedimented slopes could have serious consequences due to catastrophic slope failure and downslope displacement of waste by mass sediment-transport processes. Neither slumping nor sliding are perceived as critical processes affecting the surrogate sites because of their locations on negligibly sloping seafloors. However, debris flows and turbidity currents are capable of transporting large volumes of sediment for long distances over low gradients and, in the case of turbidity currents, at great speed. Dispersal of loose waste material by these processes is virtually assured, but less likely if the waste is bagged. The turbidity current problem is alleviated (but not eliminated) by locating waste sites on distal portions of abyssal plains. Both Pacific sites are surrounded by abyssal hills and, in the case of Pacific-2, far beyond the reach of land-derived turbidity currents. Thin sediment cover and low rates of sedimentation have also resulted in highly stable slope (abyssal hill) deposits. Hence, the probability of locally derived, small-volume flows is low at these sites. Existing high sea levels have also resulted in a worldwide decrease in turbidity current activity relative to glacial times when sea levels were much lower.
NASA Astrophysics Data System (ADS)
Benjamin, S. B.; Haymon, R. M.
2004-12-01
It has been estimated from heat flow measurements that at least 40% of the total hydrothermal heat lost from oceanic lithosphere is removed from 0.1-5 Ma abyssal hill terrain on mid-ocean ridge flanks. Despite the large magnitude of estimated hydrothermal heat loss from young abyssal hills, little is known about characteristics of hydrothermal vents and mineral deposits in this setting. This study describes the first abyssal hill hydrothermal samples to be collected on the flank of a fast-spreading ridge. The mineral deposits were discovered at "Tevnia Site" on the axis-facing fault scarp of an abyssal hill, located on ˜0.1 Ma lithosphere ˜5 km east of the East Pacific Rise (EPR) axis at 10\\deg 20'N. Observations of Galatheid crabs, "dandelion" siphonophores, and colonies of dead, yet still intact, Tevnia worm tubes at this site during Alvin dives in 1994 suggests relatively recent hydrothermal activity. The deposits are friable hydrothermal precipitates incorporating volcanic clasts brecciated at both the micro and macro scales. The petrographic sequence of brecciation, alteration, and cementation exhibited by the samples suggests that they formed from many pulses of hydrothermal venting interspersed with, and perhaps triggered by, repeated tectonic events as the abyssal hill was uplifted and moved off-axis (see also Haymon et al., this session). Observed minerals include x-ray amorphous opaline silica and Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), an irregularly stratified mixed layer nontronite-celadonite, and residual calcite in sediment-derived microfossils incorporated into the breccia matrix. This mineral assemblage suggests that the deposits precipitated from moderately low-temperature (<140\\deg C) fluids, enriched in K, Fe, Si, and Mn, with a near-neutral pH. The presence of tubeworm casings at the site is evidence that the hydrothermal fluids carried H2S, however no metal sulfide phases were identified in the samples. Although the fluids were actively venting from an abyssal hill distal to the ridge crest, the presence of Fe- and K-rich nontronite-celadonite suggests an axial fluid source. However, the observed textures, minerals, and microfossils, combined with the absence of copper, zinc, and sulfur minerals, clearly distinguishes these near-axis samples from hydrothermal deposits formed at higher temperatures (>350\\deg C) on the mid-ocean ridge crest.
Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel
2016-04-01
Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.
NASA Astrophysics Data System (ADS)
Leitner, Astrid B.; Neuheimer, Anna B.; Donlon, Erica; Smith, Craig R.; Drazen, Jeffrey C.
2017-07-01
The Clarion-Clipperton Zone (CCZ) is one of the richest manganese nodule provinces in the world and has recently become a focus area for manganese nodule mining interests. However, this vast area remains poorly studied and highly undersampled. In this study, the abyssal bait-attending fauna is documented for the first time using a series of baited camera deployments in various locations across the CCZ. A bait-attending community intermediate between those typical of the California margin and Hawaii was found in the larger CCZ area, generally dominated by rattail fishes, dendrobranchiate shrimp, and zoarcid and ophidiid fishes. Additionally, the western and eastern ends of the CCZ had different communities, with the western region characterized by decreased dominance of rattails and small shrimps and increased dominance of ophidiids (especially Bassozetus sp. and Barathrites iris) and large shrimps. This trend may be related to increasing distance from the continental margin. We also test the hypothesis that bait-attending communities change across the CCZ in response to key environmental predictors, especially topography and nodule cover. Our analyses showed that higher nodule cover and elevated topography, as quantified using the benthic positioning index (BPI), increase bait-attending community diversity. Elevated topography generally had higher relative abundances, but taxa also showed differing responses to the BPI metric and bottom temperature, causing significant community compositional change over varying topography and temperatures. Larger individuals of the dominant scavenger in the CCZ, Coryphaenoides spp., were correlated with areas of higher nodule cover and with abyssal hills, suggesting these areas may be preferred habitat. Our results suggest that nodule cover is important to all levels of the benthic ecosystem and that nodule mining could have negative impacts on even the top-level predators and scavengers in the CCZ. Additionally, there is continuous change in diversity, dominance, and relative abundance across the CCZ and across gradients in bathymetric and oceanographic variables. This work increased the understanding of the biogeography of the demersal scavengers and top predators as well as the key environmental drivers of their distributions across the CCZ in order to better predict and manage the impacts of nodule mining.
NASA Astrophysics Data System (ADS)
Dekavalla, Maria; Argialas, Demetre
2017-07-01
The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.
Morris, Kirsty J.; Bett, Brian J.; Durden, Jennifer M.; Benoist, Noelie M. A.; Huvenne, Veerle A. I.; Jones, Daniel O. B.; Robert, Katleen; Ichino, Matteo C.; Wolff, George A.; Ruhl, Henry A.
2016-01-01
Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology. PMID:27681937
Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction
NASA Astrophysics Data System (ADS)
Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.
2011-11-01
The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.
Ocean-Bottom Topography: The Divide between the Sohm and Hatteras Abyssal Plains.
Pratt, R M
1965-06-18
A compilation of precision echo soundings has delineated the complex topography between the Sohm and Hatteras abyssal plains off the Atlantic coast of the United States. At present the divide between the two plains is a broad, flat area about 4950 meters deep; however, the configuration of channels and depressions suggests spillage of turbidity currents from the Sohm Plain into the Hatteras Plain and a shifting of the divide toward the northeast. Hudson Canyon terminates in the divide area and has probably fed sediment into both plains.
NASA Astrophysics Data System (ADS)
White, S. M.; Lee, A. J.; Rubin, K. H.
2015-12-01
Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active hydrothermal vents at either site. While these results do not support the idea of on-going and widespread volcanic activity associated with O-AMLs, a comprehensive survey may reveal smaller pockets of activity. A viable alternative is that off-axis activity is sparse and sporadic, perhaps focused by faults that tap into O-AML heat, and that O-AMLs warrant further investigation.
NASA Astrophysics Data System (ADS)
West, A. J.; Torres, M. A.; Nealson, K. H.
2014-12-01
Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active hydrothermal vents at either site. While these results do not support the idea of on-going and widespread volcanic activity associated with O-AMLs, a comprehensive survey may reveal smaller pockets of activity. A viable alternative is that off-axis activity is sparse and sporadic, perhaps focused by faults that tap into O-AML heat, and that O-AMLs warrant further investigation.
Mineral compositions of plutonic rocks from the Lewis Hills massif, Bay of Islands ophiolite
NASA Technical Reports Server (NTRS)
Smith, Susan E.; Elthon, Don
1988-01-01
Mineral compositions of residual and cumulate rocks from the Lewis Hills massif of the Bay of Islands ophiolite complex are reported and interpreted in the context of magnetic processes involved in the geochemical evolution of spatially associated diabase dikes. The mineral compositions reflect greater degrees of partial melting than most abyssal peridotites do and appear to represent the most depleted end of abyssal peridotite compositions. Subsolidus equilibration between Cr-Al spinal and olivine generally has occurred at temperatures of 700 to 900 C. The spinel variations agree with the overall fractionation of basaltic magmas producing spinels with progressively lower Cr numbers. The compositions of clinopyroxenes suggest that the fractionation of two different magma series produced the various cumulate rocks.
Sandwell, David T; Müller, R Dietmar; Smith, Walter H F; Garcia, Emmanuel; Francis, Richard
2014-10-03
Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins. Copyright © 2014, American Association for the Advancement of Science.
Elucidating Dynamical Processes Relevant to Flow Encountering Abrupt Topography (FLEAT)
2015-09-30
Encountering Abrupt Topography (FLEAT) Bo Qiu Dept of Oceanography, University of Hawaii at Manoa 1000 Pope Rd. Honolulu, HI 96822 phone: (808) 956...c) to explore relevant dynamics by using both simplified models and OGCM output with realistic topography and surface boundary conditions...scale abyssal circulation, we propose to use the Hallberg Isopycnal Model (HIM). The HIM allows sloping isopycnals to interact with bottom topography
Observations on Cretaceous abyssal hills in the northeast Pacific
Eittreim, S.L.; Piper, D.Z.; Chezar, H.; Jones, D.R.; Kaneps, A.
1984-01-01
An abyssal hills area of 50 ?? 60 km in the northeast Pacific was studied using bottom transponder navigation, closely spaced survey lines, and long-traverse oblique photography. The block-faulted north-south hills are bounded by scarps, commonly with 40?? slopes. On these steep scarps sedimentation is inhibited and pillow basalts often crop out. An ash layer of high acoustic reflectivity at about 7 m subbottom depth blankets the area. This ash occurs in multiple beds altered to phillipsite and is highly consolidated. A 24 m.y. age for the ash is based on ichthyolith dates from samples in the overlying sediments. Acoustically transparent Neogene sediments above the ash are thickest in trough bottoms and are absent or thin on steep slopes. These Neogene sediments are composed of pale-brown pelagic clays of illite, quartz, smectite, chlorite and kaolinite. Dark-brown pelagic clays, rich in smectite and amorphous iron oxides, underlie the Neogene surficial sediments. Manganese nodules cover the bottom in varying percentages. The nodules are most abundant near basement outcrops and where the subbottom ash layer is absent. ?? 1984.
New sidescan sonar and gravity evidence that the Nova-Canton Trough is a fracture zone
NASA Astrophysics Data System (ADS)
Joseph, Devorah; Taylor, Brian; Shor, Alexander N.
1992-05-01
A 1990 sidescan sonar survey in the eastern region of the Nova-Canton Trough mapped 138°-striking abyssal-hill fabric trending into 70°-striking trough structures. The location and angle of intersection of the abyssal hills with the eastern Nova-Canton Trough effectively disprove a spreading-center origin of this feature. Free-air gravity anomalies derived from satellite altimetry data show continuity, across the Line Islands, of the Nova-Canton Trough with the Clipperton Fracture Zone. The Canton-Clipperton trend is copolar, about a pole at 30°S, 152°W, with other coeval Pacific-Farallon fracture-zone segments, from the Pau to Marquesas fracture zones. This copolarity leads us to postulate a Pacific-Farallon spreading pattern for the magnetic quiet zone region north and east of the Manihiki Plateau, with the Nova-Canton Trough originating as a transform fault in this system.
Microaftershock survey of the 1978 Bermuda rise earthquake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishenko, S.P.; Purdy, G.M.; Ewing, J.I.
1982-12-10
On March 24, 1978, a magnitude 6.0 intraplate earthquake occurred 380 km southwest of Bermuda near magnetic anomaly M4 (roughly-equal118 m.y.B.P.). A catalog of seismicity for the Bermuda rise indicates that this is an area of significant intraplate seismicity in the western North Atlantic Ocean. The fault plane solution for the 1978 event is of thrust type and strikes 340/sup 0/, in an intermediate direction to the trends of major fracture zones (300/sup 0/) and abyssal hill topography (035/sup 0/) in the area. The P axis of this mechanism is nearly horizontal and trends 259/sup 0/, subparallel to the absolutemore » plate motion vector for North America. Aftershock activity was detected teleseismically for approximately 8 months after March 24, and the entire sequence is best described as a prolonged mainshock-aftershock series. During June 18--28, 1978, we conducted a microaftershock survey of the area using ocean bottom hydrophones and recorded 250 events (0« less
Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific
NASA Astrophysics Data System (ADS)
Kim, K.; Park, C.; Yoo, C.
2001-12-01
The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.
Biogeochemical evidence of vigorous mixing in the abyssal ocean
NASA Astrophysics Data System (ADS)
Lampitt, Richard S.; Popova, Ekaterina E.; Tyrrell, Toby
2003-05-01
The metabolic activities of biological communities living at the abyssal seabed create a strong source of nutrients and a sink for oxygen. If the published estimates of vertical mixing based on instantaneous microstructure measurements are correct, near to the abyssal seabed away from rough topographic features there should be enhanced concentrations of nitrate and phosphate and depletion of oxygen. Recent data on the vertical concentration profiles of inorganic nutrients and oxygen over the bottom 1000 m of the water column (World Ocean Circulation Experiment - WOCE) provide no such evidence. It is concluded that the effective vertical mixing rates are much more vigorous than previously indicated and may even be higher than estimates of average basin scale rates based on temperature and salinity distributions. We propose that the enhanced mixing associated with rough topography influences the entire volume of the abyssal ocean on short time scales (e.g., one month - one year).
Reconstructed Paleo-topography of the Columbia Hills, Mars
NASA Astrophysics Data System (ADS)
Cole, S. B.; Watters, W. A.; Aron, F.; Squyres, S. W.
2013-12-01
From June 2004 through March 2010, the Mars Exploration Rover Spirit conducted a detailed campaign examining the Columbia Hills of Gusev Crater. In addition to mineralogical and chemical investigations, Spirit's stereo panoramic (Pancam) and navigation (Navcam) cameras obtained over 7,000 images of geologic targets along the West Spur of the Columbia Hills and Husband Hill, the highest peak. We have analyzed the entirety of this dataset, which includes stereo coverage of several outcrop exposures with apparent bedding. We have measured the bedding plane orientations of hundreds of fine-scale (~1-100cm) features on all of the potentially in-place outcrops using Digital Terrain Models (DTMs) derived from the rover's Pancam stereo image data, and mapped these orientations on a regional HiRISE image and DTM. Assuming that the bedding material was deposited conformably on the topography at the time of emplacement, we reconstruct the paleo-topography of the Columbia Hills. Our reconstructed paleo-topography is similar to the modern shape of Husband Hill, but with steeper slopes, consistent with a substantial amount of erosion since deposition. The Columbia Hills are an irregular, nearly-triangular edifice of uncertain origin, situated near the center of the 160km-diameter crater and hypothesized to be either the remnant of a central peak structure, or overlapping crater rims. They span ~6.6 km in the northerly direction by ~3.6 km in the easterly direction, and rise 90m above the basaltic plains that fill the floor of Gusev Crater and embay the Hills. The topography is as irregular as the perimeter, and is cut by numerous valleys of varying lengths, widths, and directional trends. Along the traverse, Spirit examined several rock classes as defined by elemental abundances from the Alpha Particle X-ray Spectrometer (APXS) and identified remotely by the Miniature Thermal Emission Spectrometer (Mini-TES). Unlike the Gusev Plains, the rocks of the Columbia Hills show extensive evidence of aqueous alteration. Many of the outcrops are believed to have formed from volcanic and/or impact-related airfall material, which should drape the topography that existed at the time of emplacement. Outcrop bedding plane orientations are not consistent with the depositional material draping the current Columbia Hills edifice: dip magnitudes are steeper than the modern topographic slopes, and dip directions are not correlated with the modern topographic slope directions. There are, however, regional trends consistent with the outcrops draping an ancient underlying topography. Planes representing compositionally similar outcrops on the modern Husband Hill summit and to the northwest converge over the modern Tennessee Valley. If the paleo-structure culminated in the peak suggested by the bedding plane orientations, up to 100m of material may have been removed from the Columbia Hills.
Trans-Pacific Bathymetry Survey crossing over the Pacific, Antarctic, and Nazca plates
NASA Astrophysics Data System (ADS)
Abe, N.; Fujiwara, T.
2013-12-01
Multibeam bathymetric data reveals seafloor fabrics, i.e. abyssal hills and fracture zones, distribution of seamounts and/or knolls and are usually smaller than the detectable size by global prediction derived from satellite altimetry. The seafloor depths combined with shipboard gravity data indicate the structure of oceanic lithosphere, thermal state, and mantle dynamics and become more accurate data set to estimate fine-scale crustal structures and subsurface mass distribution. We present the ~22000 km long survey line from the northeast Japan through to the equator at the mid-Pacific on to the southwest Chilean coast collected during the JAMSTEC R/V Mirai MR08-06 Leg-1 cruise in January-March 2009. The cruise was as a part of SORA2009 (Abe, 2009 Cruise report) for geological and geophysical studies in the southern Pacific, and was an unprecedented opportunity to collect data in the regions of the Pacific Ocean where it has been sparsely surveyed using state-of-the-art echo-sounding technology. Our multibeam bathymetric and shipboard gravity survey track crossed over the Pacific, the Antarctic, and the Nazca plates, and covered lithospheric ages varying from zero to 150 Ma. Strikes of lineated abyssal hills give critical evidences for future studies of the plate reconstruction and tectonic evolution of the old Pacific Plate because magnetic lineations are unconstrained on the seafloor in the Cretaceous magnetic quiet (125-80 Ma) zone. Consecutive trends of lineated abyssal hills and fracture zones indicate stable tectonic stress field originated from the Pacific Antarctic Ridge (PAR) and the Chile Ridge spreading systems. The seafloor fabric morphology revealed a clear boundary between the PAR and the Chile Ridge domains. The observed bathymetric boundary is probably a part of a trace of the Pacific-Antarctic-Farallon (Nazca) plate's triple junction. The result will be constraint for future studies of the plate reconstruction and tectonic evolution of the PAR, the Chile Ridge, and the Antarctic Plate. Fluctuation of the seafloor fabric strikes on Chile Ridge off-ridge flank suggests instability of tectonic stress field. The seafloor fabric may be largely influenced by the tectonic structure of offsets at fracture zones system separated by short ridge segments. The offset length by fracture zones is short at the flank. The offset of fracture zone increases with age decrease due to ridge jumps (Bourgois et al., 2000 JGR) or change in spreading rates (Matsumoto et al., 2013 Geochem. J.). The dominant stress may vary spatially or temporally, during the fracture zone evolution. Abyssal hills elongated in the direction originated from the Chile Ridge system and fracture zones having long offset lengths distinctly bisect at right angles. We also detected many small seamounts and knolls superimposed on the seafloor fabrics. These are considered to be constructed by excess magmatism at a mid-ocean ridge or intra-plate volcanism.
Turning Ocean Mixing Upside Down
NASA Astrophysics Data System (ADS)
Ferrari, Raffaele; Mashayek, Ali; Campin, Jean-Michael; McDougall, Trevor; Nikurashin, Maxim
2015-11-01
It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that small-scale mixing is more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. It is shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and an equally large upwelling, driven by the reduced small-scale mixing along the ocean boundaries. Thus whether abyssal waters upwell or sink in the net cannot be inferred simply from the vertical profile of mixing intensity, but depends also on the ocean hypsometry, i.e. the shape of the bottom topography. The implications of this result for our understanding of the abyssal ocean circulation will be presented with a combination of numerical models and observations.
New Marine Heat Flow measurements at the Costa Rica Rift, Panama Basin
NASA Astrophysics Data System (ADS)
Harris, R. N.; Kolandaivelu, K. P.; Gregory, E. P. M.; Alshafai, R.; Lowell, R. P.; Hobbs, R. W.
2016-12-01
We report new heat flow measurements collected along the southern flank of the Costa Rica ridge. This ridge flank has been the site of numerous seismic, heat flow, and ocean drilling experiments and has become an important type location for investigations of off-axis hydrothermal processes. These data were collected as part of an interdisciplinary NERC and NSF-funded collaboration entitled: Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR), to better understand links between crustal evolution, hydrothermal heat loss and the impact of this heat loss and fluid mass discharge on deep ocean circulation. The heat flow measurements are collocated with a newly acquired high-resolution seismic profile collected using a GI-gun source to image the sedimentary and upper crustal section. The profile is tied to ODP Hole 504B and provides robust estimates of the sediment thickness as well as its internal structure. In total five heat flow stations consisting of 67 new heat flow measurements were made, spanning crustal ages between 1.3 and 5.4 Myr. The full spreading rate of 66 mm/yr gives rise to abyssal hill basement relief between 500 and 250 m. Sediment cover is relatively incomplete in this region and varies between 0 and 290 m. The majority of heat flow values fall below half-space cooling models indicating that significant amounts of heat are removed by hydrothermal circulation. Low heat flow values are observed in sediment ponds between abyssal hill relief and high values are generally associated with ridge-ward dipping faults bounding abyssal hills. These faults are likely high permeability pathways where heated fluids are discharging, providing an example where large-scale faulting and block rotation plays a major role in ventilated ridge flank fluid circulation. The heat flow fraction (qobs/qpred) varies between varies between 0.01 and 4.1 and has a mean of 0.3 indicating that on average 70% of the expected heat is advected. The mass flux associated with this heat advection is 5 x 10-6 kg/m2-s assuming temperature discharge on the ridge flank is 10° C above ambient.
Bifurcation of the Kuroshio Extension at the Shatsky Rise
NASA Astrophysics Data System (ADS)
Hurlburt, Harley E.; Metzger, E. Joseph
1998-04-01
A 1/16° six-layer Pacific Ocean model north of 20°S is used to investigate the bifurcation of the Kuroshio Extension at the main Shatsky Rise and the pathway of the northern branch from the bifurcation to the subarctic front. Upper ocean-topographic coupling via a mixed barotropic-baroclinic instability is essential to this bifurcation and to the formation and mean pathway of the northern branch as are several aspects of the Shatsky Rise complex of topography and the latitude of the Kuroshio Extension in relation to the topography. The flow instabilities transfer energy to the abyssal layer where it is constrained by geostrophic contours of the bottom topography. The topographically constrained abyssal currents in turn steer upper ocean currents, which do not directly impinge on the bottom topography. This includes steering of mean pathways. Obtaining sufficient coupling requires very fine resolution of mesoscale variability and sufficient eastward penetration of the Kuroshio as an unstable inertial jet. Resolution of 1/8° for each variable was not sufficient in this case. The latitudinal extent of the main Shatsky Rise (31°N-36°N) and the shape of the downward slope on the north side are crucial to the bifurcation at the main Shatsky Rise, with both branches passing north of the peak. The well-defined, relatively steep and straight eastern edge of the Shatsky Rise topographic complex (30°N-42°N) and the southwestward abyssal flow along it play a critical role in forming the rest of the Kuroshio northern branch which flows in the opposite direction. A deep pass between the main Shatsky Rise and the rest of the ridge to the northeast helps to link the northern fork of the bifurcation at the main rise to the rest of the northern branch. Two 1/16° "identical twin" interannual simulations forced by daily winds 1981-1995 show that the variability in this region is mostly nondeterministic on all timescales that could be examined (up to 7 years in these 15-year simulations). A comparison of climatologically forced and interannual simulations over the region 150°E-180°E, 29°N-47°N showed greatly enhanced abyssal and upper ocean eddy kinetic energy and much stronger mean abyssal currents east of the Emperor Seamount Chain (about 170°E) in the interannual simulations but little difference west of 170°E. This greatly enhanced the upper ocean-topographic coupling in the interannual simulations east of 170°E. This coupling affected the latitudinal positioning of the eastward branches of the Kuroshio Extension and tended to reduce latitudinal movement compared to the climatologically forced simulation, including a particularly noticeable impact from the Hess Rise. Especially in the interannual simulations, effects of almost all topographic features in the region could be seen in the mean upper ocean currents (more so than in instantaneous currents), including meanders and bifurcations of major and minor currents, closed circulations, and impacts from depressions and rises of large and small amplitudes.
Upper crustal densities derived from sea floor gravity measurements: Northern Juan De Fuca Ridge
Holmes, Mark L.; Johnson, H. Paul
1993-01-01
A transect of sea floor gravity stations has been analyzed to determine upper crustal densities on the Endeavour segment of the northern Juan de Fuca Ridge. Data were obtained using ALVIN along a corridor perpendicular to the axis of spreading, over crustal ages from 0 to 800,000 years. Calculated elevation factors from the gravity data show an abrupt increase in density with age (distance) for the upper 200 m of crust. This density change is interpreted as a systematic reduction in bulk porosity of the upper crustal section, from 23% for the axial ridge to 10% for the off-axis flanking ridges. The porosity decrease is attributed to the collapse and filling of large-scale voids as the abyssal hills move out of the crustal formation zone. Forward modeling of a plausible density structure for the near-axis region agrees with the observed anomaly data only if the model includes narrow, along-strike, low-density regions adjacent to both inner and outer flanks of the abyssal hills. The required low density zones could be regions of systematic upper crustal fracturing and faulting that were mapped by submersible observers and side-scan sonar images, and whose presence was suggested by the distribution of heat flow data in the same area.
Geology of a Stable Intraplate Region: The Cape Verde/Canary Basin,
1982-03-01
reflection records indicate a possible Eocene age up- lifting. Extensive island volcanism and sill and dike emplacement occurred during Miocene. Many abyssal...hills and small scale faults are related to this Miocene tectonic phase. Island volcanism has a con- tinuing influence on the sedimentary sections. The...Plate is capable of generating zones of weak- nesses. These weakness zones could be expected to localize island volcanism , create north/south-trending
Mooring Measurements of the Abyssal Circulations in the Western Pacific Ocean
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, F.
2016-12-01
A scientific observing network in the western tropical Pacific has initially been established by the Institute of Oceanology, Chinese Academy of Sciences (IOCAS). Using fifteen moorings that gives unprecedented measurements in the intermediate and abyssal layers, we present multi-timescale variations of the deep ocean circulations prior to and during 2015 El Niño event. The deep ocean velocities increase equatorward with high standard deviation and nearly zero mean. The deep ocean currents mainly flow in meridional direction in the central Philippine Basin, and are dominated by a series of alternating westward and eastward zonal jets in the Caroline Basin. The currents in the deep channel connecting the East and West Mariana Basins mainly flow southeastward. Seasonal variation is only present in the deep jets in the Caroline Basin, associating with vertical propagating annual Rossby wave. The high-frequency flow bands are dominated by diurnal, and semi-diurnal tidal currents, and near-inertial currents. The rough topography has a strong influence on the abyssal circulations, including the intensifications in velocity and internal tidal energy, and the formation of upwelling flow.
Dust-Mantled Topography near Zephyria Tholus
2010-03-31
This image captured by NASA Mars Reconnaissance Orbiter covers some high-standing topography just outside the rim of an impact crater about 30 kilometers 19 miles in diameter near a Martian hill named Zephyria Tholus.
Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration
NASA Astrophysics Data System (ADS)
Ortiz, E.; Tominaga, M.; Marcantonio, F.
2017-12-01
Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history of this area.
SRTM Colored and Shaded Topography: Haro and Kas Hills, India
2001-04-12
On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake. The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an "anticline," which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant "dike," which is an igneous intrusion into older "host" rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies. In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top). http://photojournal.jpl.nasa.gov/catalog/PIA03300
Costello, Mark John; Cheung, Alan; De Hauwere, Nathalie
2010-12-01
Depth and topography directly and indirectly influence most ocean environmental conditions, including light penetration and photosynthesis, sedimentation, current movements and stratification, and thus temperature and oxygen gradients. These parameters are thus likely to influence species distribution patterns and productivity in the oceans. They may be considered the foundation for any standardized classification of ocean ecosystems and important correlates of metrics of biodiversity (e.g., species richness and composition, fisheries). While statistics on ocean depth and topography are often quoted, how they were derived is rarely cited, and unless calculated using the same spatial resolution the resulting statistics will not be strictly comparable. We provide such statistics using the best available resolution (1-min) global bathymetry, and open source digital maps of the world's seas and oceans and countries' Exclusive Economic Zones, using a standardized methodology. We created a terrain map and calculated sea surface and seabed area, volume, and mean, standard deviation, maximum, and minimum, of both depth and slope. All the source data and our database are freely available online. We found that although the ocean is flat, and up to 71% of the area has a < 1 degree slope. It had over 1 million approximately circular features that may be seamounts or sea-hills as well as prominent mountain ranges or ridges. However, currently available global data significantly underestimate seabed slopes. The 1-min data set used here predicts there are 68,669 seamounts compared to the 30,314 previously predicted using the same method but lower spatial resolution data. The ocean volume exceeds 1.3 billion km(3) (or 1.3 sextillion liters), and sea surface and seabed areas over 354 million km(2). We propose the coefficient of variation of slope as an index of topographic heterogeneity. Future studies may improve on this database, for example by using a more detailed bathymetry, and in situ measured data. The database could be used to classify ocean features, such as abyssal plains, ridges, and slopes, and thus provide the basis for a standards based classification of ocean topography.
Abyssal Upwelling and Downwelling and the role of boundary layers
NASA Astrophysics Data System (ADS)
McDougall, T. J.; Ferrari, R. M.
2016-02-01
The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.
NASA Astrophysics Data System (ADS)
Fleischer, Peter; Bowles, Frederick A.; Richardson, Michael D.
1998-05-01
Identification of optimal sites for the isolation of waste on the abyssal seafloor was performed with two approaches: by the traditional method of map overlays of relevant attributes, and by a specially developed, automated Site-Selection Model (SSM). Five initial, Surrogate Sites, identified with the map-overlay approach, were then compared with the more rigorously produced scores from the SSM. The SSM, a process for optimization of site locations, accepts subjective, expert-based judgments and transforms them into a quantitative, reproducible, and documented product. The SSM is adaptable to any siting scenario. Forty-one factors relevant to the isolation scenario, including 21 weightable factors having a total of 123 scorable categories, have been entered into the SSM. Factors are grouped under project definition, unique environments, anthropogenic, geologic, biologic, weather, oceanographic and distance criteria. The factor scores are linked to a georeferenced database array of all factors, corresponding to 1°×1° latitude-longitude squares. The SSM includes a total of 2241 one-degree squares within 1000 n.m. of the U.S. coasts, including the western North Atlantic, the Gulf of Mexico, and the eastern North Pacific. Under a carefully weighted and scored scenario of isolation, the most favorable sites identified with the SSM are on the Hatteras and Nares Abyssal Plains in the Atlantic. High-scoring sites are also located in the Pacific abyssal hills province between the Murray and Molokai Fracture Zones. Acceptable 1° squares in the Gulf of Mexico are few and of lower quality, with the optimum location on the northern Sigsbee Abyssal Plain. Two of the five Surrogate Site locations, on the Hatteras and Sigsbee Abyssal Plains, correspond to the best SSM sites in each ocean area. Two Pacific and a second Atlantic Surrogate Site are located in low-scoring regions or excluded by the SSM. Site-selection results from the SSM, although robust, are an initial attempt to quantify the site-selection process. The SSM database exposes a significant lack of high-quality information for many areally mappable attributes on the abyssal seafloor, particularly bottom-current speed and measures of biologic productivity and flux. Terminologies and classifications of some measures, such as sediment types, suffer from parochialism and vary by ocean. Considerable research is needed even for a broad understanding of the environmental measures required to make sound societal decisions about use of the abyssal seafloor for disposal or other purposes.
Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes
2014-09-30
dependence of the energy conversion on the ratio of the IW beam slope to the topographic slope, SIW /Stopo. The top panel of Fig. 8 illustrates that...in the abyssal oceans, where typically SIW /Stopo > 1 for tall seamounts and ridges, the entire bottom topography contributes to the generation of...internal waves. In contrast, for (a) (b) 18 moderate ocean depths (say less than 4 km), where typically SIW /Stopo < 1 for seamounts and ridges, the
Seafloor spreading on the Amsterdam-St. Paul hotspot plateau
NASA Astrophysics Data System (ADS)
Conder, James A.; Scheirer, Daniel S.; Forsyth, Donald W.
2000-04-01
The Amsterdam-St. Paul (ASP) platform on the intermediate rate Southeast Indian Ridge (SEIR) is the only oceanic hotspot plateau outside the Atlantic Ocean containing an active, mid-ocean ridge spreading axis. Because the ASP hotspot is small and remotely located, it has been relatively unstudied, and the ridge axis location in many places near the ASP plateau was previously unknown or ambiguous. We mapped the SEIR out to 1 Ma crust (Jaramillo anomaly) both on and near the ASP platform. We located the spreading center to within a few kilometers, based on side-scan sonar reflectivity. Recent off-platform magnetic anomalies and lineated abyssal hill topography are consistent with a simple spreading history. Off-platform full spreading rates increase from ˜63 km/Myr on segment H to the north of the platform to ˜65.5 km/Myr on segment K to the south. In contrast, inversions of seafloor magnetization based on uniform and variable thickness magnetic source layers reflect a complex on-platform tectonic history with ridge jumps, off-axis volcanism, and propagating rifts. On one section of the ASP plateau the spreading location has stabilized and is beginning to rift the plateau apart, generating symmetric magnetic anomalies and lineated topography for the last several hundred thousand years. The larger, more stable, spreading segments of the ASP platform are aligned with major volcanic edifices, suggesting that along-axis magma flow away from plume-fed centers is an important influence on spreading geometry. Many complex tectonic features observed on the ASP plateau, such as ridge jumps, en echelon, oblique spreading centers, and transforms oblique to the spreading direction, are comparable to features observed on Iceland. The similarities suggest that moderate crustal thickening at an intermediate rate spreading center may have similar effects to pronounced thickening at a slow rate spreading center.
Alley Cropping: An Alternative to Slash and Burn in the Slopelands of the Mizo Hills
ERIC Educational Resources Information Center
Sailo, Andrew
2011-01-01
Population pressure in the Mizo Hills, a small mountainous region in northeast India, has shortened fallow periods of slash-and-burn (S&B) plots substantially, making its practice unsustainable. Conventional farming and modern technology cannot be applied in this remote tropical region due to its topography; hence, most farmers continue…
EAARL Topography-Sagamore Hill National Historic Site
Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Patterson, Matt; Travers, Laurinda J.
2007-01-01
This Web site contains lidar-derived bare earth (BE) and first return (FR) topography maps and GIS files for the Sagamore Hill National Historic Site. These lidar-derived topography maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Park Service (NPS), Northeast Coastal and Barrier Network, Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography wthin cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to costal resource managers.
Graizer, V.
2009-01-01
Tarzana station is located in the foothills of the Santa Monica Mountains in California near the crest of a low (<20 m) natural hill with gentle slopes. The hill is about 500 m in length by 130 m in width and is formed of extremely weathered shale at the surface to fresh at depth. Average S-wave is about 250 m/s in the top 17-18 m, and S- and P-wave velocities significantly increase below this depth. According to the NEHRP classification based on VS30???300 m/s it is a site class D. Strong-motion instrumentation at Tarzana consisted of an accelerograph at the top of the hill, a downhole instrument at 60 m depth, and an accelerograph at the base of the hill. More than 20 earthquakes were recorded by at least three instruments at Tarzana from 1998 till 2003. Comparisons of recordings and Fourier spectra indicate strong directional resonance in a direction perpendicular to the strike of the hill. The dominant peaks in ground motion amplification on the top of the hill relative to the base are at frequencies ???3.6 and 8-9 Hz for the horizontal components. Our hypothesis is that the hill acts like a wave trap. This results in an amplification at predominant frequencies f=V/4 h (h is layer's thickness) at f???3.6 Hz for S-waves (using average VS17=246 m/s and h=17 m) and f???7.9 Hz for P-waves (using average VP17=535 m/s and h=17 m). As was shown by Bouchon and Barker [Seismic response of a hill: the example of Tarzana, California. Bull Seism Soc Am 1996;86(1A):66-72], topography of this hill amplifies and polarizes ground motion in the frequency range of 3-5 Hz. Hill acts as a magnifying polarizing glass: It polarizes ground motion in the direction perpendicular to the strike of the hill and also amplifies ground motions that had been also amplified by a low-velocity layer.
NASA Astrophysics Data System (ADS)
Lo Bue, N.; Artale, V.; Marullo, S.; Marinaro, G.; Embriaco, D.; Favali, P.; Beranzoli, L.
2017-12-01
The past general idea that the ocean-deep circulation is in quasi-stationary motion, has conditioned the observations of deep layers for a long time, excluding them from the majority of the surveys around the ocean world and influencing studies on the deep ocean processes. After the pioneering work of Munk (1966) highlighting the importance of bottom mixing processes, an underestimation of these issue has continued to persist for decades, due also to the difficulty to make reliable observations in the abyssal layers. The real awareness about the unsteady state of the abyssal layers has only risen recently and encourages us to wonder how the deep mechanisms can induce an internal instability and, consequently, affect the ocean circulation. The NIWs are characterized by a frequency near the inertial frequency f and can be generated by a variety of mechanisms, including wind, nonlinear interactions wave-shear flow and wave-topography, and geostrophic adjustments. NIWs represent one of the main high-frequency variabilities in the ocean, and they contain around half the kinetic energy observed in the oceans (Simmons et al. 2012) appearing as a prominent peak rising well above the Garrett & Munk (1975) continuum internal wave spectrum. As such, they upset the mixing processes in the upper ocean and they can interact strongly with mesoscale and sub-mesoscale motions. Likewise, NIWs likely affect the mixing of the deep ocean in ways that are just beginning to be understood. The analysis carried out on yearly time series collected by the bottom observatory SN1, the Western Ionian node of EMSO (European Multidisciplinary Seafloor and water column Observatory) Research Infrastructure, provides new important understanding on the role of the NIWs in the abyssal ocean. Also, this analysis is very useful to shed light on the possible mechanism that can trigger deep processes such as the abyssal vortex chains found by Rubino et al. (2012) in the Ionian abyssal plain of the Eastern Mediterranean (EM) basin. Finally, spectral analysis, including the Singular Spectrum Analysis (SSA) and Wavelet, allow us to explain how the NIWs can contributes to activate and increase the mixing in the bottom layers with significant impact on overall abyssal and deep circulation at local and regional scale (Mediterranean Sea).
Inaja Fire - 1956, Pine Hills Fire - 1967...similar, yet different
Mark J. Schroeder; Bernadine B. Taylor
1968-01-01
Two fires burned in the same area in southern California under nearly similar weather conditions, 11 years apart. Yet the Inaja fire of 1956 was much more disastrous than the Pine Hills fire of 1967. The earlier fire claimed 11 lives, and covered an area five times larger than the 1967 fire. Differences in fuels, topography, fire behavior, fire-control action, and...
Relating past land-use, topography, and forest dynamics in the Illinois Ozark hills
Saskia van de Gevel; Trevor B. Ozier; Charles M. Ruffner; John W. Groninger
2003-01-01
Trail of Tears State Forest is a 5,200 acre tract in the Illinois Ozark Hills and represents one of the largest blocks of contiguous forest in the lower Midwest. A highly dissected terrain with long, narrow ridges that fall away sharply on either side characterizes the area. The forest cover is a mosaic of oak-hickory approaching "old growth" condition...
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
Internal Tide Generation by Steep Topography
2007-09-01
acting on the barotropic tide ( Foda and Hill 1998) was incomplete. Kunze will put this work in the context of recent internal tide research and...Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320-327. Foda , M.A., and D.F. Hill, 1998: Nonlinear energy...Bispectral analysis of energy transfer within the two-dimensional ocean internal wave field. . Phys. Oceanogr., 35, 2104-2109. Garrett, C., and E
3D Volumetric Strain Modelling of Eruptions at Soufrière Hills Volcano Montserrat
NASA Astrophysics Data System (ADS)
Young, N. K.; Gottsmann, J.
2015-12-01
Volumetric strain data has captured a number of Vulcanian explosions at Soufrière Hills Volcano, Montserrat, which involve the uppermost part of the magmatic system. We previously used volumetric strain data from during one of these explosions to elucidate the geometry of the shallow plumbing system and crustal mechanics at Montserrat for mechanically plausible depressurisation amplitudes. Our results from both forward and inverse 2D models found that it was necessary to incorporate a mechanically weak shallow crust and mechanically compliant halo of material around the highest part of the SHV magmatic system i.e. the conduit, in order to implement geologically realistic conditions of depressurisation and rock strength. However, this model lacks complexity that cannot be implemented in a 2D environment. Here, in the first study of its kind, we use Finite Element Analysis of volumetric strain data in a 3D domain incorporating topography and mechanical complexities as imaged by seismic and gravimetric data. Our model implements topography from a DEM covering the island and surrounding bathymetry and include the mechanically stiff extinct volcanic cores of the Silver Hills and the Centre Hills. Here we present our preliminary findings from the 3D strain modelling and the effect of the extinct volcanic cores on strain partitioning on Montserrat.
Structure, stratigraphy, and origin of Husband Hill, Columbia Hills, Gusev Crater, Mars
McCoy, T.J.; Sims, M.; Schmidt, M.E.; Edwards, L.; Tornabene, L.L.; Crumpler, L.S.; Cohen, B. A.; Soderblom, L.A.; Blaney, D.L.; Squyres, S. W.; Arvidson, R. E.; Rica, J.W.; Treguier, E.; d'Uston, C.; Grant, J. A.; McSween, H.Y.; Golombek, M.P.; Haldemann, A.F.C.; de Souza, P.A.
2008-01-01
The strike and dip of lithologic units imaged in stereo by the Spirit rover in the Columbia Hills using three-dimensional imaging software shows that measured dips (15-32??) for bedding on the main edifice of the Columbia Hill are steeper than local topography (???8-10??). Outcrops measured on West Spur are conformable in strike with shallower dips (7-15??) than observed on Husband Hill. Dips are consistent with observed strata draping the Columbia Hills. Initial uplift was likely related either to the formation of the Gusev Crater central peak or ring or through mutual interference of overlapping crater rims. Uplift was followed by subsequent draping by a series of impact and volcaniclastic materials that experienced temporally and spatially variable aqueous infiltration, cementation, and alteration episodically during or after deposition. West Spur likely represents a spatially isolated depositional event. Erosion by a variety of processes, including mass wasting, removed tens of meters of materials and formed the Tennessee Valley primarily after deposition. This was followed by eruption of the Adirondack-class plains basalt lava flows which embayed the Columbia Hills. Minor erosion, impact, and aeolian processes have subsequently modified the Columbia Hills. Copyright 2008 by the American Geophysical Union.
SRTM Colored and Shaded Topography: Haro and Kas Hills, India
NASA Technical Reports Server (NTRS)
2001-01-01
On January 26, 2001, the Kachchh region in western India suffered the most deadly earthquake in India's history. This shaded topography view of landforms northeast of the city of Bhuj depicts geologic structures that are of interest in the study the tectonic processes that may have led to that earthquake. However, preliminary field studies indicate that these structures are composed of Mesozoic rocks that are overlain by younger rocks showing little deformation. Thus these structures may be old, not actively growing, and not directly related to the recent earthquake.The Haro Hills are on the left and the Kas Hills are on the right. The Haro Hills are an 'anticline,' which is an upwardly convex elongated fold of layered rocks. In this view, the anticline is distinctly ringed by an erosion resistant layer of sandstone. The east-west orientation of the anticline may relate to the crustal compression that has occurred during India's northward movement toward, and collision with, Asia. In contrast, the largest of the Kas Hills appears to be a tilted (to the south) and faulted (on the north) block of layered rocks. Also seen here, the linear feature trending toward the southwest from the image center is an erosion-resistant 'dike,' which is an igneous intrusion into older 'host' rocks along a fault plane or other crack. These features are simple examples of how shaded topography can provide a direct input to geologic studies.In this image, colors show the elevation as measured by the Shuttle Radar Topography Mission (SRTM). Colors range from green at the lowest elevations, through yellow and red, to purple at the highest elevations. Elevations here range from near sea level to about 300 meters (about 1000 feet). Shading has been added, with illumination from the north (image top).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: 26.3 x 16.6 kilometers ( 16.3 x 10.3 miles) Location: 23.4 deg. North lat., 69.8 deg. East lon. Orientation: North toward the top Date Acquired: February 2000Tectonic Evolution of the Jurassic Pacific Plate
NASA Astrophysics Data System (ADS)
Nakanishi, M.; Ishihara, T.
2015-12-01
We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.
NASA Astrophysics Data System (ADS)
Howell, S. M.; Ito, G.; Behn, M. D.; Olive, J. A. L.; Kaus, B.; Popov, A.; Mittelstaedt, E. L.; Morrow, T. A.
2016-12-01
Previous two-dimensional (2-D) modeling studies of abyssal-hill scale fault generation and evolution at mid-ocean ridges have predicted that M, the ratio of magmatic to total extension, strongly influences the total slip, spacing, and rotation of large faults, as well as the morphology of the ridge axis. Scaling relations derived from these 2-D models broadly explain the globally observed decrease in abyssal hill spacing with increasing ridge spreading rate, as well as the formation of large-offset faults close to the ends of slow-spreading ridge segments. However, these scaling relations do not explain some higher resolution observations of segment-scale variability in fault spacing along the Chile Ridge and the Mid-Atlantic Ridge, where fault spacing shows no obvious correlation with M. This discrepancy between observations and 2-D model predictions illuminates the need for three-dimensional (3-D) numerical models that incorporate the effects of along-axis variations in lithospheric structure and magmatic accretion. To this end, we use the geodynamic modeling software LaMEM to simulate 3-D tectono-magmatic interactions in a visco-elasto-plastic lithosphere under extension. We model a single ridge segment subjected to an along-axis gradient in the rate of magma injection, which is simulated by imposing a mass source in a plane of model finite volumes beneath the ridge axis. Outputs of interest include characteristic fault offset, spacing, and along-axis gradients in seafloor morphology. We also examine the effects of along-axis variations in lithospheric thickness and off-axis thickening rate. The main objectives of this study are to quantify the relative importance of the amount of magmatic extension and the local lithospheric structure at a given along-axis location, versus the importance of along-axis communication of lithospheric stresses on the 3-D fault evolution and morphology of intermediate-spreading-rate ridges.
Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria
2016-01-01
The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.
Müller, R. Dietmar; Qin, Xiaodong; Sandwell, David T.; Dutkiewicz, Adriana; Williams, Simon E.; Flament, Nicolas; Maus, Stefan; Seton, Maria
2016-01-01
The pace of scientific discovery is being transformed by the availability of ‘big data’ and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth’s gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. PMID:26960151
NASA Astrophysics Data System (ADS)
Ma, Yulong; Liu, Heping
2017-12-01
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.
Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test
Hardy, Sarah M.; Smith, Craig R.; Thurnherr, Andreas M.
2015-01-01
Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686
EXTRACTING A RADAR REFLECTION FROM A CLUTTERED ENVIRONMENT USING 3-D INTERPRETATION
A 3-D Ground Penetrating Radar (GPR) survey at 50 MHz center frequency was conducted at Hill Air Force Base, Utah, to define the topography of the base of a shallow aquifer. The site for the survey was Chemical Disposal Pit #2 where there are many man-made features that generate ...
NASA Astrophysics Data System (ADS)
Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan
2018-01-01
Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.
Abyssal seafloor waste isolation: the concept
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Young, David K.; Sawyer, William B.; Wright, Thomas D.
1998-05-01
The Naval Research Laboratory (NRL), with industry and university participation, conducted an assessment of the concept of isolating certain wastes (i.e., sewage sludge, fly ash from municipal incinerators, and contaminated dredged material) on the oceans' abyssal seafloor. In this assessment the advantages, disadvantages, and economic and environmental viability of potential engineering methods for achieving abyssal waste isolation were identified and compared. This paper presents background to the Abyssal Plains Waste Isolation (APWI) Project, describes the characteristics of the waste streams and quantities potentially available for disposal via the abyssal isolation concept, summarizes regulations affecting use of the abyssal seafloor for disposal of wastes, and introduces the technical and scientific premises underlying implementation of the concept.
NASA Technical Reports Server (NTRS)
Drew, J. V. (Principal Investigator); Seevers, P. M.
1974-01-01
The author has identified the following significant results. Interpretations of imagery from the Earth Resources Technology Satellite (ERTS-1) indicate that soil associations and attendant range sites can be identified on the basis of vegetation and topography using multitemporal imagery. Optical density measurements of imagery from the visible red band of the multispectral scanner(MSS band 5) obtained during the growing season were related to field measurements of vegetative biomass, a factor that closely parallels range condition class on specific range sites. ERTS-1 imagery also permitted inventory and assessment of center-pivot irrigation systems in the Sand Hills region in relation to soil and topographic conditions and energy requirements. Four resource maps of the Upper Loup Natural Resource District located entirely within the Sand Hills region were prepared from ERTS-1 imagery.
Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya
Malonza, Patrick K.; Mulwa, David M.; Nyamache, Joash O.; Jones, Georgina
2018-01-01
The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This ‘hybrid’ species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 38 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment. PMID:29515091
Biogeography of the Shimba Hills ecosystem herpetofauna in Kenya.
Malonza, Patrick K; Mulwa, David M; Nyamache, Joash O; Jones, Georgina
2018-03-18
The Shimba Hills ecosystem along the south coast of Kenya is a key East African biodiversity hotspot. Historically, it is biogeographically assignable to the East African coastal biome. We examined the current Shimba Hills herpetofauna and their zoogeographical affinities to the coastal forests and nearby Eastern Arc Mountains biodiversity hotspots. The key studied sites included the Shimba Hills National Reserve, forest reserves, Kaya forests, and adjacent private land. Data on herpetofaunal richness were obtained from recent field surveys, literature, and specimens held at the National Museums of Kenya, Herpetology Section Collection, Nairobi. The Makadara, Mwele, and Longo-Mwagandi forests within the Shimba Hills National Reserve hosted the highest number of unique and rare species. Generally, the forest reserves and Kaya forests were important refuges for forest-associated species. On private land, Mukurumudzi Dam riparian areas were the best amphibian habitat and were host to three IUCN (Red List) Endangered-EN amphibian species, namely, Boulengerula changamwensis, Hyperolius rubrovermiculatus, and Afrixalus sylvaticus, as well as one snake species Elapsoidea nigra. Using herpetofauna as zoogeographic indicators, the Shimba Hills were determined to be at a crossroads between the coastal forests (13 endemic species) and the Eastern Arc Mountains (seven endemic species). Most of the Eastern Arc Mountains endemic species were from recent records, and thus more are likely to be found in the future. This 'hybrid' species richness pattern is attributable to the hilly topography of the Shimba Hills and their proximity to the Indian Ocean. This has contributed to the Shimba Hills being the richest herpetofauna area in Kenya, with a total of 89 and 36 reptile and amphibian species, respectively. Because of its unique zoogeography, the Shimba Hills ecosystem is undoubtedly a key biodiversity area for conservation investment.
Optical properties and surface topography of CdCl2 activated CdTe thin films
NASA Astrophysics Data System (ADS)
Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.
2018-05-01
The effect of post-CdCl2 heat treatment on optical properties and surface topography of evaporated CdTe thin films is investigated. The pristine and thermally annealed films were subjected to UV-Vis spectrophotometer and atomic force microscopy (AFM) to investigate the optical properties and surface topography, respectively. The absorbance is found to be maximum (˜90%) at 320°C temperature and transmittance found to be minimum and almost constant in ultraviolet and visible regions. The direct band gap is increased from 1.42 eV to 2.12 eV with post-CdCl2 annealing temperature. The surface topography revealed that the uniformity is improved with annealing temperature and average surface roughness is found in the range of 83.3-144.3 nm as well as grains have cylindrical hill-like shapes. The investigated results indicate that the post-CdCl2 treated films annealed at 320°C may be well-suitable for thin film solar cells as an absorber layer.
Influence of Topography on Root Processes in the Shale Hills-Susquehanna Critical Zone Observatory
NASA Astrophysics Data System (ADS)
Eissenstat, D. M.; Orr, A. S.; Adams, T. S.; Chen, W.; Gaines, K.
2015-12-01
Topography can strongly influence root and associated mycorrhizal fungal function in the Critical Zone. In the Shale Hills-Susquehanna Critical Zone Observatory (SSCZO), soil depths range from more than 80 cm deep in the valley floor to about 25 cm on the ridge top. Tree height varies from about 28 m tall at the valley floor to about 17 m tall at the ridge top. Yet total absorptive root length to depth of refusal is quite similar across the hillslope. We find root length density to vary as much at locations only 1-2 m apart as at scales of hundreds of meters across the catchment. Tree community composition also varies along the hillslope, including tree species that vary widely in thickness of their absorptive roots and type of mycorrhiza (arbuscular mycorrhizal and ectomycorrhizal). Studies of trees in a common garden of 16 tree species and in forests near SSCZO indicate that both root morphology and mycorrhizal type can strongly influence root foraging. Species that form thick absorptive roots appear more dependent on mycorrhizal fungi and thin-root species forage more by root proliferation. Ectomycorrhizal trees show more variation in foraging precision (proliferation in a nutrient-rich patch relative to that in an unenriched patch) of their mycorrhizal hyphae whereas AM trees show more variation in foraging precision by root proliferation, indicating alternative strategies among trees of different mycorrhizal types. Collectively, the results provide insight into how topography can influence foraging belowground.
NASA Technical Reports Server (NTRS)
Seevers, P. M.; Lewis, D. T.; Drew, J. V.
1974-01-01
Interpretations of imagery from the Earth Resources Technology Satellite (ERTS-1) indicate that soil associations and attendant range sites can be identified on the basis of vegetation and topography using multi-temporal imagery. Optical density measurements of imagery from the visible red band of the multispectral scanner (MSS band 5) obtained during the growing season were related to field measurements of vegetative biomass, a factor that closely parallels range condition class on specific range sites. ERTS-1 imagery also permitted inventory and assessment of center-pivot irrigation systems in the Sand Hills region in relation to soil and topographic conditions and energy requirements.
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2
This digital elevation map shows the topography of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Rover planners have plotted the safest route for Spirit to climb to the front hill, called 'West Spur.' The black line in the middle of the image represents the rover's traverse path, which starts at 'Hank's Hollow' and ends at the top of 'West Spur.' Scientists are sending Spirit up the hill to investigate the interesting rock outcrops visible in images taken by the rover. Data from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map. In figure 1, the digital map shows the slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Colors indicate the slopes of the hills, with red areas being the gentlest and blue the steepest. Rover planners have plotted the safest route for Spirit to climb the front hill, called 'West Spur.' The path is indicated here with a curved black line. Stereo images from the Mars Orbital Camera on the orbiting Mars Global Surveyor were used to create this 3-D map. In figure 2, the map shows the north-facing slopes of the 'Columbia Hills,' just in front of the Mars Exploration Rover Spirit's current position. Bright areas indicate surfaces sloping more toward the north than dark areas. To reach the rock outcrop at the top of the hill, engineers will aim to drive the rover around the dark areas, which would yield less solar power. The curved black line in the middle represents the rover's planned traverse path.Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply.
Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S
2015-10-16
Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth. Copyright © 2015, American Association for the Advancement of Science.
Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian
Watkins, D.K.; ,
2005-01-01
Upper Maastrichtian calcareous nannofossil assemblages, from eight cores on the South Carolina Coastal Plain (onshore set) and three deep sea drilling sites from the continental slope and abyssal hills (offshore set), were analyzed by correlation and principal component analysis to examine the ancient surface water thermal structure. In addition, a temperature index derived from independently published paleobiogeographic information was applied to the sample data. All three methods indicate a strong separation of the samples into onshore and offshore sets, with the offshore data set exhibiting significantly warmer paleotemperatures. The great disparity between these two sample sets indicates that there was a strong thermal contrast between the onshore and offshore surface water masses that persisted throughout the late Maastrichtian despite evident shortterm changes in fertility, productivity, and community structure. This suggests the Gulf Stream was present as a major oceanographic feature during the late Maastrichtian. Copyright 2005 by the American Geophysical Union.
Stand compositional dynamics in a mature Illinois Ozarks forest: implications for management
John W. Groninger; Trevor B. Ozier; Charles M. Ruffner
2003-01-01
The Ozark Hills region of southern Illinois is characterized by the severe topography typical of the Ozark Plateau, but is overlain by loess deposits and therefore supports site conditions more typical of mesophytic forests. As is common in lightly disturbed and undisturbed mesic upland sites throughout this region, mature stands in Trail of Tears State Forest are...
Jia, Jin Tian; Fu, Zhi Yong; Chen, Hong Song; Wang, Ke Lin; Zhou, Wei Jun
2016-06-01
Based on three manually excavated trenches (projection length of 21 m, width of 1 m) along a typical Karst hillslope, the changing trends for soil-bedrock structure, average water content of soil profile and soil-bedrock interface water content along each individual trench were studied. The effect of irregular bedrock topography on soil moisture distribution was discussed. The results showed that the surface topography was inconsistent with the bedrock topography in the Karst hill-slopes. The bedrock topography was highly irregular with a maximum variation coefficient of 82%. The distribution pattern of soil profile of moisture was significantly affected by the underlying undulant bedrock. The soil water content was related to slope position when the fluctuation was gentle, and displayed a linear increase from upslope to downslope. When the bedrock fluctuation increased, the downslope linear increasing trend for soil water content became unapparent, and the spatial continuity of soil moisture was weakened. The soil moisture was converged in rock dents and cracks. The average water content of soil profile was significantly positively correlated with the soil-bedrock interface water content, while the latter responded more sensitively to the bedrock fluctuation.
NASA Astrophysics Data System (ADS)
Downey, Rachel V.; Janussen, Dorte
2015-01-01
The under-explored abyssal depths of the Kurile-Kamchatka region have been re-examined during the KuramBio (Kurile-Kamchatka Biodiversity Study) expedition. Combining new KuramBio data with previous expedition data in this region has enhanced our understanding abyssal sponge fauna, in particular, the patchiness, rarity, and exceptional richness of the Cladorhizidae family. In total, 14 sponge species, from 7 genera, in 5 families, within two classes (Demospongiae and Hexactinellida) were collected. Of the 14 species, 29% (4 spp.) have been found previously in this region, 36% (5 spp.) were new to the regional abyssal fauna, and 21% (3 spp.) were new to science. The number of abyssal species in this region has now been increased by 26% (8 spp.) and genera by nearly 15% (2 genera). Rarity is a prominent feature of this abyssal fauna, with more than half of species only found at one station, and 83% (19 spp.) of species found previously in this region were not re-found during KuramBio. Cladorhizid sponges dominate demosponge species and genera richness in the abyssal Kurile-Kamchatka region; accounting for 87% (20 spp.) of all demosponge species, and accounting for over 60% (5 genera) of all demosponge genera. Sponge richness in this region is potentially aided by the productivity of the ocean waters, the geological age of the Pacific Ocean, low population densities, and the varied topographic features (ridges, trenches, and seamounts) found in this region. Unusually, the dominance of demosponges in the Kurile-Kamchatka sponge faunal composition is not replicated in other well-sampled abyssal regions, which tend to be richer in deep-sea hexactinellid fauna. Broad depth, latitudinal and longitudinal ranges in Kurile-Kamchatka abyssal fauna are a key characteristic of this faunal assemblage. Strong abyssal faunal connectivity is found between the Kurile-Kamchatka region and North Pacific abyssal fauna, with weaker faunal connections found with the adjacent semi-enclosed seas of Japan and Okhotsk. The importance of the dominant sub-Polar Gyre currents, the vast area of abyssal plain and similar levels of productivity, are likely to be driving the strong faunal connectivity in the North Pacific. The importance of utilising several forms of sampling equipment has been illustrated in this study, with half of all specimens caught with non-AGT (Agassiz trawl) equipment.
Columbia Hills, Mars: aeolian features seen from the ground and orbit
Greeley, Ronald; Whelley, Patrick L.; Neakrase, Lynn D.V.; Arvidson, Raymond E.; Bridges, Nathan T.; Cabrol, Nathalie A.; Christensen, Philip R.; Di, Kaichang; Foley, Daniel J.; Golombek, Matthew P.; Herkenhoff, Kenneth; Knudson, Amy; Kuzmin, Ruslan O.; Li, Ron; Michaels, Timothy; Squyres, Steven W.; Sullivan, Robert; Thompson, Shane D.
2008-01-01
Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts.
NASA Astrophysics Data System (ADS)
Tian, X.; Choi, E.; Buck, W. R.
2015-12-01
The offset of faults and related topographic relief varies hugely at both continental rifts and mid-ocean ridges (MORs). In some areas fault offset is measured in 10s of meters while in places marked by core complexes it is measured in 10s of kilometers. Variation in the magma supply is thought to control much of these differences. Magma supply is most usefully described by the ratio (M) between rates of lithospheric extension accommodated by magmatic dike intrusion and that occurring via faulting. 2D models with different values of M successfully explain much of the observed cross-sectional structure seen at rifts and ridges. However, magma supply varies along the axis of extension and the interactions between the tectonics and magmatism are inevitably three-dimensional. We investigate the consequences of this along-axis variation in diking in terms of faulting patterns and the associated structures using a 3D parallel geodynamic modeling code, SNAC. Many observed 3D structural features are reproduced: e.g., abyssal hill, oceanic core complex (OCC), inward fault jump, mass wasting, hourglass-shaped median valley, corrugation and mullion structure. An estimated average value of M = 0.65 is suggested as a boundary value for separating abyssal hills and OCCs formation. Previous inconsistency in the M range for OCC formation between 2D model results (M = 0.3˜0.5) and field observations (M < 0.3 or M > 0.5) is reconciled by the along-ridge coupling between different faulting regimes. We also propose asynchronous faulting-induced tensile failure as a new possibility for explaining corrugations seen on the surface of core complexes. For continental rifts, we will describe a suite of 2D and 3D model calculations with a range of initial lithospheric structures and values of M. In one set of the 2D models we limit the extensional tectonic force and show how this affects the maximum topographic relief produced across the rift. We are also interested in comparing models in which the value of M varies as the rift evolves with observations from real rifts and continental margins. Finally, we plan to show how the faulting pattern in 3D can depend on the distribution of dike opening rate along segments for incipient continental rifts.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 30 May 2002) Juventae Chasma is an enormous box canyon (250 km X 100 km) which opens to the north and forms the outflow channel Maja Vallis. Most Martian outflow channels such as Maja, Kasei, and Ares Valles begin at point sources such as box canyons and chaotic terrain and then flow unconfined into a basin region. This image captures a portion of the western floor of Juventae Chasma and shows a wide variety of landforms. Conical hills, mesas, buttes and plateaus of layered material dominate this scene and seem to be 'swimming' in vast sand sheets. The conical hills have a spur and gully topography associated with them while the flat topped buttes and mesas do not. This may be indicative of different materials that compose each of these landforms or it could be that the flat-topped layer has been completely eroded off of the conical hills thereby exposing a different rock type. Both the conical hills and flat-topped buttes and mesas have extensive scree slopes (heaps of eroded rock and debris). Ripples, which are inferred to be dunes, can also be seen amongst the hills. No impact craters can be seen in this image, indicating that the erosion and transport of material down the canyon wall and across the floor is occurring at a relatively rapid rate, so that any craters that form are rapidly buried or eroded.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.
2014-12-01
Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.
Columbia Hills, Mars: Aeolian features seen from the ground and orbit
Greeley, R.; Whelley, P.L.; Neakrase, L.D.V.; Arvidson, R. E.; Bridges, N.T.; Cabrol, N.A.; Christensen, P.R.; Di, K.; Foley, D.J.; Golombek, M.P.; Herkenhoff, K.; Knudson, A.; Kuzmin, R.O.; Li, R.; Michaels, T.; Squyres, S. W.; Sullivan, R.; Thompson, S.D.
2008-01-01
Abundant wind-related features occur along Spirit's traverse into the Columbia Hills over the basaltic plains of Gusev Crater. Most of the windblown sands are probably derived from weathering of rocks within the crater, and possibly from deposits associated with Ma'adim Vallis. Windblown particles act as agents of abrasion, forming ventifacts, and are organized in places, into various bed forms. Wind-related features seen from orbit, results from atmospheric models, and considerations of topography suggest that the general wind patterns and transport pathways involve: (1) winter nighttime winds that carry sediments from the mouth of Ma'adim. Vallis into the landing site area of Spirit, where they are mixed with locally derived sediments, and (2) winter daytime winds that transport the sediments from the landing site southeast toward Husband Hill; similar patterns occur in the summer but with weaker winds. Reversals of daytime flow out of Gusev Crater and nighttime wind flow into the crater can account for the symmetry of the bed forms and bimodal orientations of some ventifacts. Copyright 2008 by the American Geophysical Union.
Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.
2018-06-01
Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.
NASA Astrophysics Data System (ADS)
Seifert, Karl E.; Chang, Cheng-Wen; Brunotte, Dale A.
1997-04-01
Leg 149 of the Ocean Drilling Program explored the ocean-continent transition (OCT) on the Iberia Abyssal Plain and its role in the opening of the Atlantic Ocean approximately 130 Ma. Mafic igneous rocks recovered from Holes 899B and 900A have Mid-Ocean Ridge Basalt (MORB) trace element and isotopic characteristics indicating that a spreading center was active during the opening of the Iberia Abyssal Plain OCT. The Hole 899B weathered basalt and diabase clasts have transitional to enriched MORB rare earth element characteristics, and the Hole 900A metamorphosed gabbros have MORB initial epsilon Nd values between +6 and +11. During the opening event the Iberia Abyssal Plain OCT is envisioned to have resembled the central and northern parts of the present Red Sea with localized spreading centers and magma chambers producing localized patches of MORB mafic rocks. The lack of a normal ocean floor magnetic anomaly pattern in the Iberia Abyssal Plain means that a continuous spreading center similar to that observed in the present southern Red Sea was not formed before spreading ceased in the Iberia Abyssal Plain OCT and jumped to the present Mid-Atlantic Ridge.
Features on Venus generated by plate boundary processes
NASA Technical Reports Server (NTRS)
Mckenzie, Dan; Ford, Peter G.; Johnson, Catherine; Parsons, Barry; Sandwell, David; Saunders, Stephen; Solomon, Sean C.
1992-01-01
Various observations suggest that there are processes on Venus that produce features similar to those associated with plate boundaries on earth. Synthetic aperture radar images of Venus, taken with a radar whose wavelength is 12.6 cm, are compared with GLORIA images of active plate boundaries, obtained with a sound source whose wavelength is 23 cm. Features similar to transform faults and to abyssal hills on slow and fast spreading ridges can be recognized within the Artemis region of Venus but are not clearly visible elsewhere. The composition of the basalts measured by the Venera 13 and 14 and the Vega 2 spacecraft corresponds to that expected from adiabatic decompression, like that which occurs beneath spreading ridges on earth. Structures that resemble trenches are widespread on Venus and show the same curvature and asymmetry as they do on earth. These observations suggest that the same simple geophysical models that have been so successfully used to understand the tectonics of earth can also be applied to Venus.
NASA Astrophysics Data System (ADS)
Sanamyan, Nadya; Sanamyan, Karen
2013-02-01
The paper describes new deep-water edwardsiid sea anemone Edwardsia sojabio sp. n. which is very common on soft muddy bottoms at lower bathyal and upper abyssal depths in the Sea of Japan. It was recorded in high quantity in depths between 2545 and 3550 m and is the second abyssal species of the genus Edwardsia.
NASA Astrophysics Data System (ADS)
Hobbs, Richard
2017-04-01
The interdisciplinary OSCAR project is examining the heat and mass fluxes in the solid Earth and overlying ocean at the Costa Rica mid-ocean Ridge (CRR) in the Panama Basin. The 3500 m deep Panama basin is isolated from the wider Pacific Ocean below 2000 m by the Cocos and Carnegie Ridges except for a deep water channel along the Ecuador trench. This channel supplies cold abyssal water into the Basin at a rate of 0.35 Sv (million cubic metres per second)) at a temperature of 1.75°C. Within the basin the water is heated to 2°C. The energy for this heating is dominated by geothermal effects with a smaller contribution from mainly tidal induced mixing over the ridges. The main geophysical transect for the OSCAR survey links the CRR with the ODP 504B borehole which is drilled 2111 m into 5.9 Ma oceanic crust. Changes in the solid Earth properties from the CRR to 504B are mapped using a combination of seismic 2D- and 3D-refraction and synthetic-aperture reflection, magnetics, gravity, magnetotelluric data, swath bathymetry and heat-flow. Results show that the properties of layer 2 are variable and are more likely a function of changes in magma supply at the ridge rather than the effects of ageing. Of particular note is the abrupt change at 5 Ma. Older crust has a higher velocity and lower topography when compared with younger crust. Also the heat-flow over the older crust is largely through conduction whereas in the younger crust it is largely by advection. The physical oceanography data include conductivity temperature depth (CTD) casts, micro-structure casts, helium and other isotope data, together with seabed and moored temperature, pressure and Doppler current measurements. The inflowing water along the Ecuador trench initially mix with with the warmer water as it enters the basin. Mixing and heating continues as the water circulates into the western part of the basin where it shows no vertical density gradient for over 1000 m and an overall temperature increase of 0.25°C combined with a decrease of 0.01 psu in salinity. Evidence of hydrothermally driven plumes were also detected along the CRR but exact locations of their sources were not found. Our best estimate from the OSCAR data show that the geothermal contribution is over 70% to the abyssal water upwelling. This is the largest contribution yet observed in abyssal basins and is in line with a growing number of studies arguing that geothermal heating plays a significant role in driving the abyssal and global circulation.
Topographic enhancement of vertical turbulent mixing in the Southern Ocean
Mashayek, A.; Ferrari, R.; Merrifield, S.; Ledwell, J. R.; St Laurent, L.; Garabato, A. Naveira
2017-01-01
It is an open question whether turbulent mixing across density surfaces is sufficiently large to play a dominant role in closing the deep branch of the ocean meridional overturning circulation. The diapycnal and isopycnal mixing experiment in the Southern Ocean found the turbulent diffusivity inferred from the vertical spreading of a tracer to be an order of magnitude larger than that inferred from the microstructure profiles at the mean tracer depth of 1,500 m in the Drake Passage. Using a high-resolution ocean model, it is shown that the fast vertical spreading of tracer occurs when it comes in contact with mixing hotspots over rough topography. The sparsity of such hotspots is made up for by enhanced tracer residence time in their vicinity due to diffusion toward weak bottom flows. The increased tracer residence time may explain the large vertical fluxes of heat and salt required to close the abyssal circulation. PMID:28262808
A numerical world ocean general circulation model Part I. Basic design and barotropic experiment
NASA Astrophysics Data System (ADS)
Han, Young-June
1984-08-01
A new six-layer world ocean general circulation model based on the primitive system of equations is described in detail and its performance in the case of a homogeneous ocean is described. These test integrations show that the model is capable of reproducing the observed mean barotropic or vertically-integrated transport, as well as the seasonal variability of the major ocean gyres. The surface currents, however, are dominated by the Ekman transport, and such non-linear features as the western boundary currents and the equatorial countercurrents are poorly represented. The abyssal boundary countercurrents are also absent due to the lack of thermohaline forcing. The most conspicuous effect of the bottom topography on a homogeneous ocean is seen in the Southern ocean where the calculated Antarctic circumpolar transport through the Drake passage ( ≈ 10 Sv, with bathymetry included) greatly underestimates the observed transport (≈ 100 Sv).
NASA Astrophysics Data System (ADS)
Day, James M. D.; Walker, Richard J.; Warren, Jessica M.
2017-03-01
Abyssal peridotites are oceanic mantle fragments that were recently processed through ridges and represent residues of both modern and ancient melting. To constrain the nature and timing of melt depletion processes, and the composition of the mantle, we report high-precision Os isotope data for abyssal peridotites from three ocean basins, as well as for Os-rich alloys, primarily from Mesozoic ophiolites. These data are complemented by whole-rock highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re), trace- and major-element abundances for the abyssal peridotites, which are from the Southwest Indian (SWIR), Central Indian (CIR), Mid-Atlantic (MAR) and Gakkel Ridges. The results reveal a limited role for melt refertilization or secondary alteration processes in modifying abyssal peridotite HSE compositions. The abyssal peridotites examined have experienced variable melt depletion (2% to >16%), which occurred >0.5 Ga ago for some samples. Abyssal peridotites typically exhibit low Pd/Ir and, combined with high-degrees of estimated total melt extraction, imply that they were relatively refractory residues prior to incorporation into their present ridge setting. Recent partial melting processes and mid-ocean ridge basalt (MORB) generation therefore played a limited role in the chemical evolution of their precursor mantle domains. The results confirm that many abyssal peridotites are not simple residues of recent MORB source melting, having a more complex and long-lived depletion history. Peridotites from the Gakkel Ridge, SWIR, CIR and MAR indicate that the depleted MORB mantle has 186Os/188Os of 0.1198356 ± 21 (2SD). The Phanerozoic Os-rich alloys yield an average 186Os/188Os within uncertainty of abyssal peridotites (0.1198361 ± 20). Melt depletion trends defined between Os isotopes and melt extraction indices (e.g., Al2O3) allow an estimate of the primitive mantle (PM) composition, using only abyssal peridotites. This yields 187Os/188Os (0.1292 ± 25), and 186Os/188Os of 0.1198388 ± 29, both of which are within uncertainty of previous primitive mantle estimates. The 186Os/188Os composition of the PM is less radiogenic than for some plume-related lavas, with the latter requiring sources with high long-term time-integrated Pt/Os. Estimates of primitive mantle HSE concentrations using abyssal peridotites define chondritic Pd/Ir, which differs from previous supra-chondritic estimates for Pd/Ir based on peridotites from a range of tectonic settings. By contrast, estimates of PM yield supra-chondritic Ru/Ir. The cause of enhanced Ru in the mantle remains enigmatic, but may reflect variable partitioning behavior of Ru at high pressure and temperature.
Directional Site Amplification Effect on Tarzana Hill, California
NASA Astrophysics Data System (ADS)
Graizer, V.; Shakal, A.
2003-12-01
Significantly amplified ground accelerations at the Tarzana Hill station were recorded during the 1987 Mw 5.9 Whittier Narrows and the 1994 Mw 6.7 Northridge earthquakes. Peak horizontal ground acceleration at the Tarzana station during the 1999 Mw 7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. The Tarzana site was drilled to a depth of 100 m. A low shear-wave velocity near the surface of 100 m/sec increasing to near 750 m/sec at 100 m depth was measured. The 20 m high hill was found to be well drained with a water table near 17 m. Modelo formation (extremely weathered at the surface to fresh at depth) underlies the hill. The subsurface geology and velocities obtained allow classification of this location as a soft-rock site. After the Northridge earthquake the California Strong Motion Instrumentation Program significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. More than twenty events, including the Hector Mine earthquake, were recorded by all these instruments at Tarzana. Comparison of recordings and response spectra demonstrates strong directional resonance on the top of the hill in a direction perpendicular to the strike of the hill in the period range from 0.04 to 0.8 sec (1.2 to 25 Hz). There is practically no amplification from the bottom to the top of the hill for the component parallel to the strike of the hill. In contrast to accelerations recorded during the Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site amplification from the bottom of the hole to the surface at periods greater than 1.5 sec, in either direction. The directional effect at Tarzana hill seems to be azimuth dependent. Relatively higher amplification at the perpendicular component is produced for the earthquake sources located north of the station. We were not able to see any differences in hill response before and after development (a relatively small part of the hill was developed). The source of the site amplification that produces large motions at Tarzana is still under investigation with "the usual suspects" like topography and shear wave velocity profile not providing the explanation. New data recorded at Tarzana in recent years clearly show that the Tarzana effect is a very localized high-frequency effect observed only at the top of the hill. Drilling at Tarzana was co-funded by CSMIP and by the National Science Foundation through the Resolution of Site Response Issues from the Northridge Earthquake Project (ROSRINE).
Final Environmental Assessment: Proposed Fire Crash Rescue Station, Hill Air Force Base, Utah
2008-10-02
storage shed (Building 16) would be demolished and converted to parking ( see Figure 1 for the approximate locations). 1.3 Need for the Action The...existing facilities ( see Section 2.3.3.1), and other potential locations for siting the proposed fire crash rescue station ( see Section 2.3.3.2). 2.3...during scoping meetings, but eliminated from detailed consideration ( see Section 1.7.3) include: • geology and surface soils (seismicity, topography
Turbiditic systems on passive margins: fifteen years of fruitful industry-academic exchanges.
NASA Astrophysics Data System (ADS)
Guillocheau, F.
2012-04-01
During the last fifteen years, with the oil discovery in deep offshore plays, new tools have been developed that deeply modified our knowledge on sedimentary gravity processes on passive margins: geometry, physical processes, but also the importance of the topography and the quantification of the stratigraphic parameters of control. The major breakthrough was of course the extensive 3D seismic data available around most of the world margins with a focus on gravity-tectonics dominated margins. The first major progress was the characterization of the sinuous channels infilling, their diversity and different models for their origin. This also was a better knowledge of the different types of slopes (graded vs. above-graded) and the extension of the concept of accommodation to deep-water environments (ponded, healed-slope, incised submarine valley and slope accommodation). The second step was the understanding of the synsedimentary deformations for the location and the growth of turbiditic systems on margins dominated by gravity tectonics, with the importance of the sedimentary flux and its variation through time and space. The third step is now the integration of the sedimentary system, from the upstream erosional catchment to the abyssal plain (source to sink approach), with the question of the sediment routing system. During the last 100 Ma, continents experienced major changes of both topography and climate. In the case of Africa, those are (1) the growth of the plateaus (and mainly the South African one) around 90-80 Ma (Late Cretaceous) and 40-20 Ma (Late Eocene-Early Miocene) and (2) a climate evolution from hot humid (50-40 Ma) to hot dry conditions since 20-15 Ma. This evolution changed the topography, the processes of erosion and the volume and nature (weathered vs. non weathered rocks) materials. Those are primary processes for controlling the deposition of turbiditic systems, and then to predict the location of sands. This will be discussed along the Atlantic margin of Africa. Keywords: Turbidite, Passive margins, Topography, Deformation, Source to sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.P.; McCue, P.; Kato, T.
1981-11-01
The major objectives were to determine the presence and relative density of the San Joaquin kit fox and blunt-nosed leopard lizard on BLM lands in western Fresno and eastern San Benito and Monterey counties, California, and to determine the potential of these lands as critical habitat for these endangered species. A total of 6220 acres in the Ciervo Hills and 4000 acres near Coalinga were surveyed for both San Joaquin kit fox and blunt-nosed leopard lizards; 810 acres in the Griswold Hills were surveyed for kit fox only; and 2000 acres in the Tumey Hills were surveyed for blunt-nosed leopardmore » lizards only. Eight line transects per mile were used to gather information on: (1) kit fox dens, scats, tracks, and remains of their prey; (2) presence of blunt-nosed leopard lizards; (3) vegetation associations; (4) density of rodent burrows on lands surveyed for leopard lizards; (5) topography; (6) evidence of human activities; (7) presence of other wildlife species; and (8) any additional scientific data related to endangered species. Night spotlight surveys were conducted in the Ciervo Hills, Griswold Hills, and on lands adjacent to Coalinga and San Ardo to document presence of kit fox, their potential prey, and other vertebrates. Of BLM land surveyed in 1981, the Coalinga Land Unit had the highest potential as critical habitat for the San Joaquin kit fox, the Ciervo Hills Land Unit was ranked second,and parcels in the Griswold Hills received the lowest score given since inventories were initiated in 1979. Public lands in the Salinas Valley were too steep to serve as habitat for kit fox. Over 70% of the parcels had only fair to no potential as critical habitat for the blunt-nosed leopard lizard. BLM lands near Coalinga and those in the central plateau of the Tumey Hills visually appeared to have some potential as habitat for the species.« less
San Francisco, San Pablo Bay Area
1994-09-30
STS068-244-022 (30 September-11 October 1994) --- (San Francisco, San Pablo Bay Area) Photographed through the Space Shuttle Endeavour's flight deck windows, the heavily populated bay area is featured in this 70mm frame. The relatively low altitude of Endeavour's orbit (115 nautical miles) and the use of a 250mm lens on the Hasselblad camera allowed for capturing detail in features such as the Berkeley Marina (frame center). The region's topography is well depicted with the lowland areas heavily populated and the hills much more sparsely covered. The Oakland Hills in the right lower center appear to be re-vegetated after a devastating fire. The Golden Gate Recreation Area in the upper left also shows heavy vegetation. The three bridges across the main part of the bay and their connecting roads are prominent. Cultural features such as Golden Gate Park and the Presidio contrast with the gray of the city.
NASA Technical Reports Server (NTRS)
Seevers, P. M.; Drew, J. V. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Collection of ground truth data provided ground cover percent and the components of ground cover makeup. Percent bare soil appears to have greatest influence on imagery density of sites studied. Forage density estimates can be made on band 5 of MSS, provided site category identification is known. Additional data are provided concerning forage density and vegetation-soil relationship by color composites of MSS imagery. Reflectance differences shown on MSS bands 6 and 7 by Sand Hills lakes are related to water quality and possibly more specifically to total dissolved ions present in the water. Winter imagery with snow cover and low sun angle shows a marked enhancement of topography are associated with differences in forage density. High altitude color infrared photography appears to be a usable tool for recognition, measurement, and evaluation of go-back land.
North Atlantic Deep Water and the World Ocean
NASA Technical Reports Server (NTRS)
Gordon, A. L.
1984-01-01
North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.
NASA Astrophysics Data System (ADS)
Schmidt, Christina; Martínez Arbizu, Pedro
2015-01-01
We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ in occupancy of the top layer. Furthermore, sediment depth and abundance were strongly correlated, but the sediment texture itself and the grain sizes showed only slight correlations with abundance. In the trench slope no correlation between sediment texture and abundance was found. We suggest that sediment is not the only factor that affects meiofauna abundance in the study area. The results of our study were compared with other trench and nontrench studies, and in most cases, the abundance decreases with depth initially but increases again below a certain depth, especially in deep-sea trenches below productive waters. No generalization can be made, however, about the depth at which the reversal occurs; it depends on the area of investigation and on a mixture of many other factors (e.g., sediment heterogeneity, oxygen, redox potential, proximity to land masses, and season).
2010-04-01
Water Kit (dry system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user...diaphragm system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user adjustments...1st Stage Regulator with Abyss 2nd Stage and Integrated Intermediate Pressure Hose ..………………………….. A-2 A3 Modified Mares Proton Ice Extreme V32
Geothermal influences on the abyssal ocean
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Madec, G.
2017-12-01
Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and circulation. We conclude with a perspective on the role of conductive geothermal heat loss versus localized, advective hydrothermal heat flow on abyssal dynamics, and delineate unsolved research problems for the years ahead.
Observed and modeled mesoscale variability near the Gulf Stream and Kuroshio Extension
NASA Astrophysics Data System (ADS)
Schmitz, William J.; Holland, William R.
1986-08-01
Our earliest intercomparisons between western North Atlantic data and eddy-resolving two-layer quasi-geostrophic symmetric-double-gyre steady wind-forced numerical model results focused on the amplitudes and largest horizontal scales in patterns of eddy kinetic energy, primarily abyssal. Here, intercomparisons are extended to recent eight-layer model runs and new data which allow expansion of the investigation to the Kuroshio Extension and throughout much of the water column. Two numerical experiments are shown to have realistic zonal, vertical, and temporal eddy scales in the vicinity of the Kuroshio Extension in one case and the Gulf Stream in the other. Model zonal mean speeds are larger than observed, but vertical shears are in general agreement with the data. A longitudinal displacement between the maximum intensity in surface and abyssal eddy fields as observed for the North Atlantic is not found in the model results. The numerical simulations examined are highly idealized, notably with respect to basin shape, topography, wind-forcing, and of course dissipation. Therefore the zero-order agreement between modeled and observed basic characteristics of mid-latitude jets and their associated eddy fields suggests that such properties are predominantly determined by the physical mechanisms which dominate the models, where the fluctuations are the result of instability processes. The comparatively high vertical resolution of the model is needed to compare with new higher-resolution data as well as for dynamical reasons, although the precise number of layers required either kinematically or dynamically (or numerically) has not been determined; we estimate four to six when no attempt is made to account for bottom- or near-surface-intensified phenomena.
New Downhole Strong-Motion Data Recorded at Tarzana Array
NASA Astrophysics Data System (ADS)
Graizer, V.; Shakal, A.; Haddadi, H.
2001-12-01
Significantly amplified ground accelerations at the Tarzana station were recorded during many, but not all, earthquakes (e.g., Shakal et al., 1988). Peak horizontal ground acceleration at the Tarzana station during the M7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. After the Northridge earthquake the California Strong Motion Instrumentation Program (CSMIP) significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. Thirteen events, including the Hector Mine earthquake, were simultaneously recorded by these instruments at Tarzana. The downhole instrument (A) was used as a reference site to compare the amplification effects at the top of Tarzana hill (B) and at the foot of the hill (C). Spectral amplification from the bottom of the hole to the top of the hill (B/A) and to the foot of the hill (C/A) is similar along the component parallel to the strike of Tarzana hill. But B/A is almost double C/A along the component transverse to the strike of the hill in period range from 0.04 to 0.8 sec (1.2 to 25 Hz). Comparison of the response spectra demonstrates clear directional site response resonance (perpendicular to the strike of the hill) at Tarzana. In contrast to accelerations recorded during the Mw 7.1 Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site amplification from the bottom of the hole to the surface (B/A) at periods greater than 1.5 sec, in either direction. Ground displacements at other CSMIP downhole arrays which recorded the Hector Mine earthquake also demonstrate almost no near-surface site amplification at long periods. Comparison of empirical and theoretical site amplification effects at Tarzana was performed using SHAKE91 modeling motion separately in the longitudinal and transverse directions. The source of the site amplification that produces large motions at Tarzana is still under investigation. The topography, shear-wave velocity profile and three-dimensional structure of the site apparently all contribute to the higher amplification of ground motion at the Tarzana site. The studies of Tarzana were co-funded by CSMIP and by the National Science Foundation (NSF) through the Resolution of Site Response Issues from the Northridge Earthquake Project (ROSRINE).
NASA Astrophysics Data System (ADS)
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2017-04-01
Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.
Seafloor Tectonic Fabric from Satellite Altimetry
NASA Astrophysics Data System (ADS)
Smith, Walter H. F.
Ocean floor structures with horizontal scales of 10 to a few hundred kilometers and vertical scales of 100 m or more generate sea surface gravity anomalies observable with satellite altimetry. Prior to 1990, altimeter data resolved only tectonic lineaments, some seamounts, and some aspects of mid-ocean ridge structure. New altimeter data available since mid-1995 resolve 10-km--scale structures over nearly all the world's oceans. These data are the basis of new global bathymetric maps and have been interpreted as exhibiting complexities in the sea floor spreading process including ridge jumps, propagating rifts, and variations in magma supply. This chapter reviews the satellite altimetry technique and its resolution of tectonic structures, gives examples of intriguing tectonic phenomena, and shows that structures as small as abyssal hills are partially resolved. A new result obtained here is that the amplitude of the fine-scale (10--80 km) roughness of old ocean floor is spreading-rate dependent in the same that it is at mid-ocean ridges, suggesting that fine-scale tectonic fabric is generated nearly exclusively by ridge-axis processes.
Nuclear waste disposal in subseabed geologic formatons: the Seabed Disposal Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, D.R.
1979-05-01
The goal of the Seabed Disposal Program is to assess the technical and environmental feasibility of using geologic formations under the sea floor for the disposal of processed high-level radioactive wastes or repackaged spent reactor fuel. Studies are focused on the abyssal hill regions of the sea floors in the middle of tectonic plates and under massive surface current gyres. The red-clay sediments here are from 50 to 100 meters thick, are continuously depositional (without periods of erosion), and have been geologically and climatologically stable for millions of years. Mineral deposits and biological activity are minimal, and bottom currents aremore » weak and variable. Five years of research have revealed no technological reason why nuclear waste disposal in these areas would be impractical. However, scientific assessment is not complete. Also, legal political, and sociological factors may well become the governing elements in such use of international waters. These factors are being examined as part of the work of the Seabed Working Group, an international adjunct of the Seabed Program, with members from France, England, Japan, Canada, and the United States.« less
NASA Astrophysics Data System (ADS)
Dygert, Nick; Liang, Yan
2015-06-01
Mantle peridotites from ophiolites are commonly interpreted as having mid-ocean ridge (MOR) or supra-subduction zone (SSZ) affinity. Recently, an REE-in-two-pyroxene thermometer was developed (Liang et al., 2013) that has higher closure temperatures (designated as TREE) than major element based two-pyroxene thermometers for mafic and ultramafic rocks that experienced cooling. The REE-in-two-pyroxene thermometer has the potential to extract meaningful cooling rates from ophiolitic peridotites and thus shed new light on the thermal history of the different tectonic regimes. We calculated TREE for available literature data from abyssal peridotites, subcontinental (SC) peridotites, and ophiolites around the world (Alps, Coast Range, Corsica, New Caledonia, Oman, Othris, Puerto Rico, Russia, and Turkey), and augmented the data with new measurements for peridotites from the Trinity and Josephine ophiolites and the Mariana trench. TREE are compared to major element based thermometers, including the two-pyroxene thermometer of Brey and Köhler (1990) (TBKN). Samples with SC affinity have TREE and TBKN in good agreement. Samples with MOR and SSZ affinity have near-solidus TREE but TBKN hundreds of degrees lower. Closure temperatures for REE and Fe-Mg in pyroxenes were calculated to compare cooling rates among abyssal peridotites, MOR ophiolites, and SSZ ophiolites. Abyssal peridotites appear to cool more rapidly than peridotites from most ophiolites. On average, SSZ ophiolites have lower closure temperatures than abyssal peridotites and many ophiolites with MOR affinity. We propose that these lower temperatures can be attributed to the residence time in the cooling oceanic lithosphere prior to obduction. MOR ophiolites define a continuum spanning cooling rates from SSZ ophiolites to abyssal peridotites. Consistent high closure temperatures for abyssal peridotites and the Oman and Corsica ophiolites suggests hydrothermal circulation and/or rapid cooling events (e.g., normal faulting, unroofing) control the late thermal histories of peridotites from transform faults and slow and fast spreading centers with or without a crustal section.
NASA Astrophysics Data System (ADS)
Stepanjants, Sofia D.
2013-02-01
A report is given about Hydrozoa collected at depths between 455 and 3666 m in the Sea of Japan during the Russian-German expedition on R/V Akademik M.A. Lavrentyev. Ten species were found, with four of them being typical bathyal-abyssal and abyssal zones. A new species, Opercularella angelikae, is described, and it was the dominant hydroid in samples from 970 to 3660 m. Four eurybathic species characteristics of the Sea of Japan were sampled between 455 and 582 m. Abyssal (pseudoabyssal after Andriashev, 1979) hydroid fauna in the Sea of Japan is reported. The hypothesis that an exclusively deep-water fauna is lacking in abyssal regions of the Sea of Japan is disputed. The author's personal opinion considered concerning the borders of 1000 m between shallow and deep hydrozoan species in the Sea of Japan.
Abyssal Upwelling in Mid-Ocean Ridge Fracture Zones
NASA Astrophysics Data System (ADS)
Clément, Louis; Thurnherr, Andreas M.
2018-03-01
Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.
Gaither, Michelle R; Violi, Biagio; Gray, Howard W I; Neat, Francis; Drazen, Jeffrey C; Grubbs, R Dean; Roa-Varón, Adela; Sutton, Tracey; Hoelzel, A Rus
2016-11-01
Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (>4000m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Ocean. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formerly Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Romanov, A. N.; Kovrigin, A. O.; Lazarev, A. F.; Lubennikov, V. A.
2016-12-01
Air pollution by industry and motor vehicles, the use of coal ash for the construction of residential and nonresidential buildings, and the presence of dead zones in the residential sector are the main factors of carcinogenic risk to human health. Natural factors (such as topography and prevailing wind directions) can weaken or strengthen technogenic factors. Based on the estimate of pollutant concentrations in the snow cover of Barnaul, we reveal residential areas that are located at the crossroads of atmospheric transport of carcinogenic substances and characterized by concentrations considerably exceeding the maximum allowable concentration. These areas are characterized by the integral accumulation of carcinogenic substances concurrently from multiple sources; for almost any wind rose, the impact of one of the pollution sources is observed throughout the year. The assessment of the carcinogenic risk for a territory depends much on the correlation between local topography and the height of apartments above ground level. Using cancer register data for Barnaul, we reveal an increased level of the incidence of malignant neoplasms in people living in high-rise buildings located in areas with a sharp change in topography (such as ledges, hills, and lowlands). This may occur due to stagnant zones and wind shadows; under certain correlation between topography and the height and shape of buildings, carcinogenic substances accumulate maximally.
Global Distribution of Seamounts as Inferred from Ship Depth Soundings and Satellite Altimetry
NASA Astrophysics Data System (ADS)
Wessel, P.; Kim, S.; Sandwell, D. T.
2006-12-01
Traditionally, seamounts are active or extinct undersea volcanoes rising more than 1 km above the abyssal plain, but scientists now regularly apply the seamount label to features of just a few tens of meters in height. As constructional features they represent a small but significant fraction of the total volcanic extrusive budget for oceanic seafloor and their distribution provides key information on the variations in intraplate volcanic activity through space and time. Furthermore, they sustain significant ecological communities, determine habitats for fish, and act as obstacles to ocean currents, thus enhancing tidal energy dissipation and ocean mixing. Consequently, it is of some importance to locate and characterize seamounts. Two approaches are used to map the global distribution of seamounts. Depth soundings from single- and multi-beam echo sounders can provide the most detailed maps with up to 100--200 m horizontal resolution. However, soundings from the 5600 publicly available cruises sample only a small fraction of the ocean floor. Direct radar measurements of the ocean surface by satellite-borne altimeters have been used to infer the marine gravity field. By examining such gravity data one can characterize seamounts taller than ~2 km and such studies have produced seamount catalogues holding almost 15,000 seamounts. Recent retracking of the original radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a two-fold increase in resolution. By extrapolating the inferred power-law that relates seamount size to frequency we estimate that 45,000 smaller seamounts taller than 1.5 km still remain uncharted. Future altimetry missions could improve on resolution and decrease noise levels even further, allowing for an even larger number of small (1--1.5 km) seamounts to be separated from the background abyssal hill fabric. Mapping the complete global distribution of seamounts will help constrain competing models of seamount formation as well as facilitate the understanding of marine habitats and deep ocean circulation.
NASA Astrophysics Data System (ADS)
Brandt, A.; Frutos, I.; Bober, S.; Brix, S.; Brenke, N.; Guggolz, T.; Heitland, N.; Malyutina, M.; Minzlaff, U.; Riehl, T.; Schwabe, E.; Zinkann, A.-C.; Linse, K.
2018-02-01
We analyzed composition and variations in benthic macrofaunal communities along a transect of the entire length of the Vema-Fracture Zone on board of RV Sonne (SO-237) between December 2014 and January 2015 in order to test whether the Mid-Atlantic Ridge serves as a barrier limiting benthic taxon distribution in the abyssal basins on both sides of the ridge or whether the fracture zone permits the migration of species between the western and eastern abyssal Atlantic basins. The Puerto Rico Trench, much deeper than the surrounding abyssal West Atlantic, was sampled to determine whether the biodiversity of its hadal macrofauna differs from that of the abyssal Atlantic. The composition of the macrofauna from the epibenthic sledge catches yielded a total of 21,332 invertebrates. Crustacea occurred most frequently (59%) with 12,538 individuals followed by Annelida (mostly Polychaeta) (26%) with 5491 individuals, Mollusca (7%) with 1458 individuals, Echinodermata (4%) with 778 individuals, Nematoda (2%) with 502 individuals and Chaetognatha (1%) with 152 and Porifera (1%) with 131 individuals. All other taxa occurred with overall less than ten individuals (Hemichordata, Phoronida, Priapulida, Brachiopoda, invertebrate Chordata, Echiurida, Foraminifera (here refereed to macrofaunal Komokiacea only), Chelicerata, Platyhelminthes). Within the Crustacea, Peracarida (62.6%) with 7848 individuals and Copepoda (36.1%) with 44,526 individuals were the most abundant taxa. Along the abyssal Vema-Fracture Zone macrofaunal abundances (ind./1000 m2) were generally higher on the eastern side, while the highest normalized abundance value was reported in the Puerto Rico Trench at abyssal station 14-1 2313 individuals/1000 m2. The lowest abundance was reported at station 11-4 with 120 ind./1000 m2 located at the western side of the Vema-Fracture Zone. The number of major macrofaunal taxa (phylum, class) ranged between five (stations 12-5, 13-4 and 13-5 at hadal depths in the Puerto Rico Trench) and 14 (station 9-8) in the western abyssal basin of the Vema-Fracture Zone. Differences are seen in the distribution of Porifera at macrofaunal level between eastern and western sides of the Vema-Fracture Zone. Macrofaunal composition of the study area is compared with data from other expeditions in the Atlantic and the northwest Pacific Ocean.
A wind tunnel study on the effects of complex topography on wind turbine performance
NASA Astrophysics Data System (ADS)
Howard, Kevin; Hu, Stephen; Chamorro, Leonardo; Guala, Michele
2012-11-01
A set of wind tunnel experiments were conducted to study the response of a wind turbine under flow conditions typically observed at the wind farm scale, in complex terrain. A scale model wind turbine was placed in a fully developed turbulent boundary layer flow obtained in the SAFL Wind Tunnel. Experiments focused on the performance of a turbine model, under the effects induced by a second upwind turbine or a by three-dimensional, sinusoidal hill, peaking at the turbine hub height. High frequency measurements of fluctuating streamwise and wall normal velocities were obtained with a X-wire anemometer simultaneously with the rotor angular velocity and the turbine(s) voltage output. Velocity measurements in the wake of the first turbine and of the hill were used to determine the inflow conditions for the downwind test turbine. Turbine performance was inferred by the mean and fluctuating voltage statistics. Specific experiments were devoted to relate the mean voltage to the mean hub velocity, and the fluctuating voltage to the unsteadiness in the rotor kinematics induced by the perturbed (hill or turbine) or unperturbed (boundary layer) large scales of the incoming turbulent flow. Results show that the voltage signal can be used to assess turbine performance in complex flows.
Tectonic Evolution of the Southern tip of the Parece Vela Basin
NASA Astrophysics Data System (ADS)
Okino, K.; Ohara, Y.; Fujiwara, T.; Lee, S.; Nakamura, Y.; Wu, S.
2005-12-01
The southern tip of the Parece Vela Basin was mapped using state-of-the-art instruments for the first time. The basin is known as an extinct backarc basin behind the Mariana arc-trench system and has developed from ~26 to 12 Ma. The backarc spreading consists of two stages: early east-west spreading and later NE-SW spreading accompanied by several oceanic core complexes. The remnant spreading center, the Parece Vela Rift, seems to connect the Yap Trench at its southern end (~12°N) and is not traceable in the southern tip of the basin (9~11°N) west of the Yap Trench. The evolution of the area seems to be linked to the collision of the Caroline Ridge to the Yap Trench, however no systematic mapping had been done before and the tectonics of the area remained enigmatic. New mapping/seismic reflection/dredging results reveal the complex structure of the area, which cannot be seen in northern part of the basin. Relatively continuous N-S fabrics are found in the northern part of the studied area and these fabrics develops within a V-shaped triangle zone. The short NW-SE abyssal hills offset by the NE-SW fracture zones are recognized in the very narrow area just east of the V-shaped area of N-S fabrics. These fabrics indicate the southward propagation of the N-S trending ridge and following NE-SW opening as same as seen in the northern part of the basin, although the eastern wing of the basin was lost. The western part of the area is completely different from the other part of the basin. The most prominent morphology is en echelon, curved deeps near the Kyushu-Palau Ridge. Two deeps are crescent-shaped and curve towards northward. The northern deep is ~6100 m and the abyssal hills seem approximately perpendicular to the deep. The southwestern extension of the northern deep is a narrow curved rift trending 030° and the rift develops within a topographic high. The southern deep is characterized with voluminous dome, which consists of branched topographic highs. The morphological pattern with curved deeps is very much like those of the Pito Deep in the Easter Microplate and of the Endeavor Deep in the Juan Fernandez Microplate. It is likely that the rotational deformation associated with continuous rift propagation and with some finite broad transform zone is related to the origin of the deeps. The area may be the remnant old lithosphere created before the Parece Vela Basin formation and indicate the robust magmatism in the past.
Topographical and geological amplification: case studies and engineering implications
Celebi, M.
1991-01-01
Topographical and geological amplification that occurred during past earthquakes are quantified using spectral ratios of recorded motions. Several cases are presented from the 1985 Chilean and Mexican earthquakes as well as the 1983 Coalinga (California) and 1987 Supersition Hills (California) earthquake. The strong motions recorded in Mexico City during the 1985 Michoacan earthquake are supplemented by ambient motions recorded within Mexico City to quantify the now well known resonating frequencies of the Mexico City lakebed. Topographical amplification in Canal Beagle (Chile), Coalinga and Superstition Hills (California) are quantified using the ratios derived from the aftershocks following the earthquakes. A special dense array was deployed to record the aftershocks in each case. The implications of both geological and topographical amplification are discussed in light of current code provisions. The observed geological amplifications has already influenced the code provisions. Suggestions are made to the effect that the codes should include further provisions to take the amplification due to topography into account. ?? 1991.
NASA Astrophysics Data System (ADS)
Green, D. N.; Neuberg, J.; Cayol, V.
2006-05-01
Surface deformations recorded in close proximity to the active lava dome at Soufrière Hills volcano, Montserrat, can be used to infer stresses within the uppermost 1000 m of the conduit system. Most deformation source models consider only isotropic pressurisation of the conduit. We show that tilt recorded during rapid magma extrusion in 1997 could have also been generated by shear stresses sustained along the conduit wall; these stresses are a consequence of pressure gradients that develop along the conduit. Numerical modelling, incorporating realistic topography, can reproduce both the morphology and half the amplitude of the measured deformation field using a realistic shear stress amplitude, equivalent to a pressure gradient of 3.5 × 104 Pa m-1 along a 1000 m long conduit with a 15 m radius. This shear stress model has advantages over the isotropic pressure models because it does not require either physically unattainable overpressures or source radii larger than 200 m to explain the same deformation.
Application of MC1 to Wind Cave National Park: Lessons from a small-scale study: Chapter 8
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2015-01-01
MC1 was designed for application to large regions that include a wide range in elevation and topography, thereby encompassing a broad range in climates and vegetation types. The authors applied the dynamic global vegetation model MC1 to Wind Cave National Park (WCNP) in the southern Black Hills of South Dakota, USA, on the ecotone between ponderosa pine forest to the northwest and mixed-grass prairie to the southeast. They calibrated MC1 to simulate adequate fire effects in the warmer southeastern parts of the park to ensure grasslands there, while allowing forests to grow to the northwest, and then simulated future vegetation with climate projections from three GCMs. The results suggest that fire frequency, as affected by climate and/or human intervention, may be more important than the direct effects of climate in determining the distribution of ponderosa pine in the Black Hills region, both historically and in the future.
NASA Astrophysics Data System (ADS)
Riehl, Torben; Lins, Lidia; Brandt, Angelika
2018-02-01
The largest habitat on Earth, the abyssal oceans below 3500 m depth, is commonly assumed to represent a continuous environment due to homogeneity of environmental factors and the lack of physical barriers. Yet, the presence of bathymetric features, such as Mid-Ocean Ridges, and hadal trenches provide a discontinuation. During the Vema-TRANSIT expedition in 2014/2015 to the tropical North Atlantic, a transatlantic transect was studied following the full extent of the Vema Fracture Zone in an east-west direction and including the Puerto Rico Trench (PRT). The aim of this study was to test whether large bathymetric features represent barriers to dispersal and may lead to differentiation and eventually speciation. In this study, these potential barriers included the Mid-Atlantic Ridge (MAR) and the transition ( 3000 m) from the hadal PRT to the adjacent abyss. Genetic differentiation and differences in community structure (species composition) from east and west of the MAR, as well as abyssal and hadal depth zones were tested for using the poor dispersers Macrostylidae (Crustacea, Isopoda) as a model Distribution patterns showed that certain macrostylid species have ranges extending more than 2000 km, in some cases across oceanic ridges and trench-abyss transitions. Contrastingly, there was a clear signal for geographic population structure coinciding with the east-west division of the Atlantic by the MAR as well as with the abyss-hadal zonation. These results support the hypotheses that depth gradients as well as oceanic ridges reduce dispersal even though barriers may not be absolute. Additionally, positive correlation between genetic- and geographic distances showed that the vast size of the deep sea itself is a factor responsible for creating diversity.
Shaded Relief of Rio Sao Francisco, Brazil
2000-02-14
This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems. This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning. http://photojournal.jpl.nasa.gov/catalog/PIA02700
Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed
NASA Astrophysics Data System (ADS)
Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.
2018-02-01
Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.
NASA Astrophysics Data System (ADS)
Pearce, D.; Rea, B.; McDougall, D.
2012-04-01
The Tweedsmuir Hills, Southern Uplands, Scotland, contain excellent assemblages of glacial landforms, including hummocky moraine, classically associated with a Lateglacial deglaciation (c. 14.7 - 11.7 cal. ka BP) in the UK. Although initially documented in 1855, a detailed systematic geomorphological investigation has never been undertaken in the region, meaning reconstructions are patchy, outdated and lacking chronological control. This has resulted in conflicting styles of glaciation being inferred, with both plateau icefield and valley glaciers reconstructed in the Tweedsmuir Hills. Importantly, comprehensive numerical modelling experiments for the period, c. 38 -10.4 ka BP, predict a significant body of ice for the Tweedsmuir Hills at the onset and throughout the Younger Dryas (c. 12.9 - 11.7 cal. ka. BP). Field data, which at present, are missing means that the numerical modelling remains untested. Given the emerging evidence that ice-masses survived, during or throughout the Lateglacial in a number of regions in Scotland, the glacial geomorphology and reconstructions for this area will provide a key input of palaeo-glacier data for subsequent investigation of wider patterns of Lateglacial ice-mass distribution and climate gradients across the UK and NW Europe. Geomorphological mapping followed a morphostratigraphic approach using a combination of aerial photos, NEXTMapTM and mapping in the field using a ruggedized tablet PC, with built in GPS and ArcGIS 9.3. The glacial landforms indicate two separate landsystems. The first is characterised by elongate subglacial bedforms overriding the topography, trending SW to NE, suggested to be attributable to the Devensian glaciation. The second landsystem is characterised by closely spaced sharp crested moraines, oblique to the valley axis and confined by the topography, meltwater channels and single terrace systems, which are likely to have formed in a subsequent period of renewed glaciation i.e. Lateglacial. The Lateglacial landform assemblage indicates more extensive glaciation than previously envisaged, with both a transection ice-mass and icefield coexisting, reflecting different topographic controls. Interestingly, a geomorphic pattern is observable in more than one valley, which is interpreted as a synchronous recession of the outlet glaciers and a rapid deglaciation towards the summits. Whilst two landsystems have been mapped the second poses interesting problems regarding extent and timing of glaciation. The Loch Skene site has been traditionally associated with a small valley glacier. However, it appears to feed ice into a lower valley which exhibits a landform assemblage typical of Lateglacial deglaciation in Scotland. It is tentatively proposed that the Loch Skene glacier represents a retreat phase prior to complete deglaciation rather than the Younger Dryas maximum.
NASA Astrophysics Data System (ADS)
Ali, G. A.; Reiners, P. W.; Ducea, M.
2008-12-01
The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down-dropping from adjacent ranges. Apatite He ages in the Alabama Hills correlate with He ages of rocks about 2.5-3 km higher, near Mt. Whitney in the adjacent Sierra Nevada. This, coupled with the spatial pattern of ages, strongly suggests that the Alabama Hills are a down-dropped normal fault block along the Sierra Nevada frontal fault zone or a related fault. A structural reconstruction using tilt-corrected Sierran apatite He age-elevation correlations requires 2.6 km of vertical, and 1.5 km of eastward motion for the Alabama Hills. The proximity of this extensive down- dropped basement block, directly east of the highest topography in the Sierra Nevada, suggests the possibility of localized isostatic response as a cause for locally high elevation in the Mt. Whitney area.
Heat Capacity Mapping Mission investigation no. 25 (Tellus project)
NASA Technical Reports Server (NTRS)
Deparatesi, S. G. (Principal Investigator); Reiniger, P. (Editor)
1982-01-01
The TELLUS pilot project, utilizing 0.5 to 1.1 micron and 10.5 to 12.5 micron day and/or night imagery from the Heat Capacity Mapping Mission, is described. The application of remotely sensed data to synoptic evaluation of evapotranspiration and moisture in agricultural soils was considered. The influence of topography, soils, land use, and meteorology on surface temperature distribution was evaluated. Anthropogenic heat release was investigated. Test areas extended from semi-arid land in southern Italy to polders in the Netherlands, and from vine-growing hills in the Rhineland to grasslands in Buckinghamshire.
Teaching the abyss: living the art-science of nursing.
Ramey, Sandra L; Bunkers, Sandra Schmidt
2006-10-01
This column addresses how nurse educators can provide the teaching-learning experiences for novice nurses to develop the leadership competence to effectively practice nursing in an extremely demanding healthcare environment. The authors delve into Mitchell and Bunkers' use of the metaphor of an abyss to explore the lived experience of risking being with others in extremely intense interpersonal situations. Using reflection, students' journal narratives affirm connections made among past experiences and the new knowledge gleaned from exploring and naming the phenomenon of the abyss. Several teaching-learning strategies are offered as ways for addressing the leadership issues related to dealing with intense relational experiences in nursing practice, including exploring nurse theorist Rosemarie Rizzo Parse's essentials of leadership.
The Laurentian Fan: Sohm Abyssal Plain
Piper, D.J.W.; Stow, D.A.V.; Normark, W.R.
1984-01-01
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees. ?? 1984 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Munoz-Esparza, D.; Sauer, J.; Linn, R.
2015-12-01
Anomalous and unexpected fire behavior in complex terrain continues to result in substantial loss of property and extremely dangerous conditions for firefighting field personnel. We briefly discuss proposed hypotheses of fire interactions with atmospheric flows over complex terrain that can lead to poorly-understood and potentially catastrophic scenarios. Then, our recent results of numerical investigations via large-eddy simulation of coupled atmosphere-topography-fire phenomenology with the Los Alamos National Laboratory, HiGrad-Firetec model are presented as an example of the potential for increased understanding of these complex processes. This investigation focuses on the influence of downslope surface wind enhancement through stably stratified flow over an isolated hill, and the resulting dramatic changes in fire behavior including spread rate, and intensity. Implications with respect to counter-intuitive fire behavior and extreme fire events are discussed. This work demonstrates a tremendous opportunity to immediately create safer and more effective policy for field personnel through improved predictability of atmospheric conditions over complex terrain
NASA Astrophysics Data System (ADS)
Yamazaki, D.; Ikeshima, D.; Neal, J. C.; O'Loughlin, F.; Sampson, C. C.; Kanae, S.; Bates, P. D.
2017-12-01
Digital Elevation Models (DEM) are fundamental data for flood modelling. While precise airborne DEMs are available in developed regions, most parts of the world rely on spaceborne DEMs which include non-negligible height errors. Here we show the most accurate global DEM to date at 90m resolution by eliminating major error components from the SRTM and AW3D DEMs. Using multiple satellite data and multiple filtering techniques, we addressed absolute bias, stripe noise, speckle noise and tree height bias from spaceborne DEMs. After the error removal, significant improvements were found in flat regions where height errors were larger than topography variability, and landscapes features such as river networks and hill-valley structures became clearly represented. We found the topography slope of the previous DEMs was largely distorted in most of world major floodplains (e.g. Ganges, Nile, Niger, Mekong) and swamp forests (e.g. Amazon, Congo, Vasyugan). The developed DEM will largely reduce the uncertainty in both global and regional flood modelling.
Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic)
NASA Astrophysics Data System (ADS)
Billett, D. S. M.; Bett, B. J.; Rice, A. L.; Thurston, M. H.; Galéron, J.; Sibuet, M.; Wolff, G. A.
A radical change in the abundance of invertebrate megafauna on the Porcupine Abyssal Plain is reported over a period of 10 years (1989-1999). Actiniarians, annelids, pycnogonids, tunicates, ophiuroids and holothurians increased significantly in abundance. However, there was no significant change in wet weight biomass. Two holothurian species, Amperima rosea and Ellipinion molle, increased in abundance by more than two orders of magnitude. Samples from the Porcupine Abyssal Plain over a longer period (1977-1999) show that prior to 1996 these holothurian species were always a minor component of the megafauna. From 1996 to 1999 A. rosea was abundant over a wide area of the Porcupine Abyssal Plain indicating that the phenomenon was not a localised event. Several dominant holothurian species show a distinct trend in decreasing body size over the study period. The changes in megafauna abundance may be related to environmental forcing (food supply) rather than to localised stochastic population variations. Inter-annual variability and long-term trends in organic matter supply to the seabed may be responsible for the observed changes in abundance, species dominance and size distributions.
Turbulent Intensities and Velocity Spectra for Bare and Forested Gentle Hills: Flume Experiments
NASA Astrophysics Data System (ADS)
Poggi, Davide; Katul, Gabriel G.
2008-10-01
To investigate how velocity variances and spectra are modified by the simultaneous action of topography and canopy, two flume experiments were carried out on a train of gentle cosine hills differing in surface cover. The first experiment was conducted above a bare surface while the second experiment was conducted within and above a densely arrayed rod canopy. The velocity variances and spectra from these two experiments were compared in the middle, inner, and near-surface layers. In the middle layer, and for the canopy surface, longitudinal and vertical velocity variances ({σ_u^2,σ_w^2}) were in phase with the hill-induced spatial mean velocity perturbation (Δ u) around the so-called background state (taken here as the longitudinal mean at a given height) as predicted by rapid distortion theory (RDT). However, for the bare surface case, {σ_u^2 } and {σ_w^2 } remained out of phase with Δ u by about L/2, where L is the hill half-length. In the canopy layer, wake production was a significant source of turbulent energy for {σ_w^2 } , and its action was to re-align velocity variances with Δ u in those layers, a mechanism completely absent for the bare surface case. Such a lower ‘boundary condition’ resulted in longitudinal variations of {σ_w^2} to be nearly in phase with Δ u above the canopy surface. In the inner and middle layers, the spectral distortions by the hill remained significant for the background state of the bare surface case but not for the canopy surface case. In particular, in the inner and middle layers of the bare surface case, the effective exponents derived from the locally measured power spectra diverged from their expected - 5/3 value for inertial subrange scales. These departures spatially correlated with the hill surface. However, for the canopy surface case, the spectral exponents were near - 5/3 above the canopy though the minor differences from - 5/3 were also correlated with the hill surface. Inside the canopy, wake production and energy short-circuiting resulted in significant departures from - 5/3. These departures from - 5/3 also appeared correlated with the hill surface through the wake production contribution and its alignment with Δ u. Moreover, scales commensurate with Von Karman street vorticies well described wake production scales inside the canopy, confirming the important role of the mean flow in producing wakes. The spectra inside the canopy on the lee side of the hill, where a negative mean flow delineated a recirculation zone, suggested that the wake production scales there were ‘broader’ when compared to their counterpart outside the recirculation zone. Inside the recirculation zone, there was significantly more energy at higher frequencies when compared to regions outside the recirculation zone.
NASA Astrophysics Data System (ADS)
Linley, T. D.; Stewart, A. L.; McMillan, P. J.; Clark, M. R.; Gerringer, M. E.; Drazen, J. C.; Fujii, T.; Jamieson, A. J.
2017-03-01
Baited landers were deployed at 83 stations at four locations in the west Pacific Ocean from bathyal to hadal depths: The Kermadec Trench, the New Hebrides Trench, the adjoining South Fiji Basin and the Mariana Trench. Forty-seven putative fish species were observed. Distinct fish faunal groups were identified based on maximum numbers and percentage of observations. Both analyses broadly agreed on the community structure: A bathyal group at <3000 m in the New Hebrides and Kermadec trenches, an abyssal group (3039 - 4692 m) in the Kermadec Trench, an abyssal-hadal transition zone (AHTZ) group (Kermadec: 4707-6068 m, Mariana: 4506-6198 m, New Hebrides: 2578-6898 m, South Fiji Basin: 4074-4101 m), and a hadal group of endemic snailfish in the Kermadec and Mariana trenches (6750-7669 m and 6831-8143 m respectively). The abyssal and hadal groups were absent from the New Hebrides Trench. Depth was the single factor that best explained the biological variation between samples (16%), the addition of temperature and average surface primary production for the previous year increased this to 36% of variation. The absence of the abyssal group from the New Hebrides Trench and South Fiji Basin was due to the absence of macrourids (Coryphaenoides spp.), which defined the group. The macrourids may be energetically limited in these areas. In their absence the species of the AHTZ group appear released of competition with the macrourids and are found far shallower at these sites. The fish groups had distinct feeding strategies while attending the bait: The bathyal and abyssal groups were almost exclusively necrophagous, the AHTZ group comprised predatory and generalist feeders, while the hadal snailfishes were exclusively predators. With increasing depth, predation was found to increase while scavenging decreased. The data suggest scavenging fish fauna do not extend deeper than the hadal boundary.
Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.
2001-01-01
Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.
Global variations in abyssal peridotite compositions
NASA Astrophysics Data System (ADS)
Warren, Jessica M.
2016-04-01
Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, 10% of abyssal peridotites are refractory (0% clinopyroxene, spinel Cr# > 0.5, bulk Al2O3 < 1 wt.%) and some ridge sections are dominated by harzburgites while lacking a significant basaltic crust. Abyssal ultramafic samples thus indicate that the mantle is multi-component, probably consisting of at least three components (lherzolite, harzburgite, and pyroxenite). Overall, the large compositional range among residual and melt-added peridotites implies that the oceanic lithospheric mantle is heterogeneous, which will lead to the generation of further heterogeneities upon subduction back into the mantle.
Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?
NASA Astrophysics Data System (ADS)
Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard
2016-04-01
The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping followed by subsequent interglacial carbon burn-down and CO2 release. Abyssal Northwest Pacific sediments may have served as glacial carbon reservoir in particular since the onset of systematic 100 kyr ice age cycles at the end of the Mid-Pleistocene transition (MPT). Stagnant glacial Antarctic Bottom Water, which expanded primarily into abyssal South Atlantic basins during the MPT interim phase, thereafter seemed to flow preferentially into the deeper and larger abyssal Indo-Pacific basins, where it may have enabled more efficient carbon-trapping. More intensive scavenging of the Northwest Pacific surface ocean by enhanced glacial Asian dust flux is suggested by parallel TOC and quartz contents, enhancing glacial carbon accumulation despite potentially lower export production. The magnetic records also identify numerous partly consistent tephra layers, which can be matched between most records of the core transect.
NASA Astrophysics Data System (ADS)
Hancock, L. O.
2003-12-01
As Wunsch has recently noted (2002), use of the term "thermohaline circulation" is muddled. The term is used with at least seven inconsistent meanings, among them abyssal circulation, the circulation driven by density and pressure differences in the deep ocean, the global conveyor, and at least four others. The use of a single term for all these concepts can create an impression that an understanding exists whereby in various combinations the seven meanings have been demonstrated to mean the same thing. But that is not the case. A particularly important consequence of the muddle is the way in which abyssal circulation is sometimes taken to be driven mostly or entirely by temperature and density differences, and equivalent to the global conveyor. But in fact the distinction between abyssal and upper-layer circulation has not been measured. To find out whether available data justifies a distinction between the upper-layer and abyssal circulations, this study surveyed velocity time series obtained by deep current meter moorings. Altogether, 114 moorings were identified, drawn from about three dozen experiments worldwide over the period 1973-1996, each of which deployed current meters in both the upper (200
Action, an "Encompassing Ethic" and Academics in the Midst of the Climate Crisis
ERIC Educational Resources Information Center
Plowright, Susan
2016-01-01
In the midst of a crisis like the climate crisis and calls for "all hands on deck", what do academics, as a microcosm of humanity, see? In Hannah Arendt's terms, an "abyss of freedom" to act or a paralysing "abyss of nothingness"? Some from the academy themselves, including Tamboukou, Apple and Bourdieu, make…
Optimization and Flight Schedules of Pioneer Routes in Papua Province
NASA Astrophysics Data System (ADS)
Ronting, Y.; Adisasmita, S. A.; Hamid, S.; Hustim, M.
2018-04-01
The province of Papua has a very varied topography, ranging from swampy lowlands, hills, and plateaus up steep hills. The total area of land is 410,660 km2, which consists of 28 counties and one city, 389 districts and 5.420 villages. The population of Papua Province in 2017 was 3.265.202 people with an average growth of 4.21% per year. The transportation services is still low, especially in the mountainous region, which is isolated and could only be reached by an air transportation mode, causing a considerable price disparity between coastal and mountainous areas. The purpose of this paper is to develop the route optimization and pioneer flight schedules models as an airbridge. This research is conducted by collecting primary data and secondary data. Data is based on field surveys; interviews; discussions with airport authority, official government, etc; and also from various agencies. The analytical tools used to optimization flight schedule and route are analyzed by add-in solver in Microsoft Excel. The results of the analysis we can get a more optimal route so that it can save transportation costs by 7.26%.
Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth.
Nunoura, Takuro; Takaki, Yoshihiro; Hirai, Miho; Shimamura, Shigeru; Makabe, Akiko; Koide, Osamu; Kikuchi, Tohru; Miyazaki, Junichi; Koba, Keisuke; Yoshida, Naohiro; Sunamura, Michinari; Takai, Ken
2015-03-17
Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology.
ERIC Educational Resources Information Center
Süssekind, Maria Luiza
2014-01-01
This article presents an epistemological overview of abyssal thinking and its impact on the field of education, particularly in relation to teachers' work, as it is done and understood. It argues that the clearest expression of abyssal thinking is the hegemony of science which explains two school phenomena: the historical subalternisation of the…
Dahlgren, Thomas G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G
2016-01-01
We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys.
NASA Astrophysics Data System (ADS)
Linse, Katrin; Schwabe, Enrico
2018-02-01
While biodiversity patterns of Atlantic deep-sea bivalves and gastropods have served as model taxa for setting global latitudinal and bathymetric hypotheses, less is known on abyssal, amphi-Atlantic molluscan assemblage compositions. The Vema-TRANSIT expedition sampled 17 stations in the Vema Fracture Zone (VFZ) and the Puerto Rico Trench (PRT) by epibenthic sledge. These samples comprised a total of 1333 specimens and 64 morphospecies of the classes Caudofoveata (7 species), Solenogastres (7 spp.), Bivalvia (22 spp.), Gastropoda (24 spp.), and Scaphopoda (4 spp.) while Cephalopoda, Monoplacophora and Polyplacophora were absent. The majority of species was rare with 21 uniques (32.8% of all species) and 10 duplicates (15.6% of all species) and of these 15 (48% of rare/23.4% of all species) morphospecies were singletons and 8 (25.8% of rare/12.5% of all species) morphospecies were doubletons. Overall bivalves (686 specimens) were most abundant, followed by scaphopods (314 spec.), while solenogastres (180 spec.), caudofoveates (86 spec.) and gastropods (67 spec.) were less abundant. The abyssal macro-molluscan species composition did not vary significantly between the eastern and western Atlantic sides of the VFZ while abundances standardized to 1000 m2 trawled area were higher on the eastern side. The abyssal PRT stations resembled the VFZ ones in species composition and abundances, in the latter the eastern VFZ. The hadal PRT differed in species composition from the abyssal VFZ and PRT and abundances were similarly low like the western VFZ. The Mid-Atlantic Ridge appeared not to be a barrier for the dispersal of the mostly lecitotrophic or plankotrophic larval stages of the reported molluscan species in this study.
NASA Astrophysics Data System (ADS)
Riehl, Torben; Kaiser, Stefanie; Brandt, Angelika
2018-02-01
The seafloor below 3500 m remains largely unexplored. The paucity of knowledge of abyssal and hadal environments encompasses a wide spectrum of geological and biological patterns and processes as well as their interactions. Historically most marine research has been conducted in the North Atlantic. However, the high proportion of undescribed taxa frequently discovered at greater depth there underline the need to fill in these knowledge gaps. The Vema-TRANSIT campaign in northern winter 2014-2015 surveyed and sampled along almost the entire extent of one of the major offsets of the Mid-Atlantic Ridge (MAR), the Vema Fracture Zone (VFZ), as well as the deepest trench in the Atlantic, the Puerto Rico Trench (PRT). The discoveries that were made include new data on deep-sea habitats showing geologically complex features across all crust ages from 110 Ma until present. Moreover, some new species and genera of the abyssal and hadal benthos were described herein. Not only the taxa themselves, but also their distributions and genetic structure were elucidated. In this context, significant differences in abundances, community composition, and species distribution were detected that were affected by the MAR as well as by the depth transition between hadal PRT and the adjacent abyss. Despite significant differences between eastern and western communities, the MAR does not represent an absolute barrier. Instead, the VFZ, and especially the VTF may serve as a connecting feature between east and west and this may be exemplary for fracture zones across the whole Atlantic. Nevertheless, the MAR as well as the 3000-m-depth gradient between abyss and hadal appear to restrict gene flow for poor dispersers and thus contribute to speciation processes in the deep sea.
Abyssal BEnthic Laboratory (ABEL): a novel approach for long-term investigation at abyssal depths
NASA Astrophysics Data System (ADS)
Berta, M.; Gasparoni, F.; Capobianco, M.
1995-03-01
This study assesses the feasibility of a configuration for a benthic underwater system, called ABEL (Abyssal BEnthic Laboratory), capable of operating both under controlled and autonomous modes for periods of several months to over one year at abyssal depths up to 6000 m. A network of stations, capable of different configurations, has been identified as satisfying the widest range of scientific expectations, and at the same time to address the technological challenge to increase the feasibility of scientific investigations, even when the need is not yet well specified. The overall system consists of a central Benthic Investigation Laboratory, devoted to the execution of the most complex scientific activities, with fixed Satellite Stations acting as nodes of a measuring network and a Mobile Station extending ABEL capabilities with the possibility to carry out surveys over the investigation area and interventions on the fixed stations. ABEL architecture also includes a dedicated deployment and recovery module, as well as sea-surface and land-based facilities. Such an installation constitutes the sea-floor equivalent of a meteorological or geophysical laboratory. Attention has been paid to selecting investigation tools supporting the ABEL system to carry out its mission with high operativity and minimal risk and environmental impact. This demands technologies to enable presence and operation at abyssal depths for the required period of time. Presence can be guaranteed by proper choice of power supply and communication systems. Operations require visual and manipulative capabilities, as well as deployment and retrieval capabilities. Advanced control system architectures must be considered, along with knowledge based approaches, to comply with the requirements for autonomous control. The results of this investigation demonstrate the feasibility of the ABEL concept and the pre-dimensioning of its main components.
Is there a distinct continental slope fauna in the Antarctic?
NASA Astrophysics Data System (ADS)
Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.
2011-02-01
The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.
Catalogue of Diptera of Colombia: an introduction.
Wolff, Marta; Nihei, Silvio S; Carvalho, Claudio J B De
2016-06-14
Colombia has an imposing natural wealth due to its topography has many unique characteristics as a consequence of having Caribbean and Pacific shores, as well as sharing part of the Amazon basin and northern Andes mountains. Thus, many natural and biological features are due to the convergence of three biogeographical regions: Pacific, Andes and Amazonia. The Andean uplift created a complex mosaic of mountains and isolated valleys, including eleven biogeographical provinces (Morrone 2006). The Andes dominate the Colombian topography and cross the country south to north. There are three mountain ranges (Western, Central, and Eastern) with a maximum elevation of 5,775 m, and an average elevation of 2,000 m. The Magdalena and Cauca River valleys separate these ranges, that along with the Putumayo and Caquetá Rivers, the Catatumbo watershed, the Darién, Pique Hill, the Orinoquia Region (with its savannas), the Amazon region (with tropical rainforests), and some lower mountain ranges (Macarena and Chiribiquete), have generated the conditions for very high levels of endemism. This variety of conditions has resulted in an extremely diverse plant and animal biota, and in which 48% of the nation remains unexplored.
Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway
2011-11-18
currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A
Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth
Nunoura, Takuro; Takaki, Yoshihiro; Hirai, Miho; Shimamura, Shigeru; Makabe, Akiko; Koide, Osamu; Kikuchi, Tohru; Miyazaki, Junichi; Koba, Keisuke; Yoshida, Naohiro; Sunamura, Michinari; Takai, Ken
2015-01-01
Hadal oceans at water depths below 6,000 m are the least-explored aquatic biosphere. The Challenger Deep, located in the western equatorial Pacific, with a water depth of ∼11 km, is the deepest ocean on Earth. Microbial communities associated with waters from the sea surface to the trench bottom (0 ∼10,257 m) in the Challenger Deep were analyzed, and unprecedented trench microbial communities were identified in the hadal waters (6,000 ∼10,257 m) that were distinct from the abyssal microbial communities. The potentially chemolithotrophic populations were less abundant in the hadal water than those in the upper abyssal waters. The emerging members of chemolithotrophic nitrifiers in the hadal water that likely adapt to the higher flux of electron donors were also different from those in the abyssal waters that adapt to the lower flux of electron donors. Species-level niche separation in most of the dominant taxa was also found between the hadal and abyssal microbial communities. Considering the geomorphology and the isolated hydrotopographical nature of the Mariana Trench, we hypothesized that the distinct hadal microbial ecosystem was driven by the endogenous recycling of organic matter in the hadal waters associated with the trench geomorphology. PMID:25713387
NASA Astrophysics Data System (ADS)
Joe, Y. J.; Seokhoon, Y.; Nam, S. I.; Polyak, L.; Niessen, F.
2017-12-01
For regional context of the Quaternary history of Arctic marine glaciations, such as glacial events in northern North America and on the Siberian and Chukchi margins, we used CHIRP sub-bottom profiles (SBP) along with sediment cores, including a 14-m long piston core ARA06-04JPC taken from the Chukchi abyssal plain during the RV Araon expedition in 2015. Based on core correlation with earlier developed Arctic Ocean stratigraphies using distribution of various sedimentary proxies, core 04JPC is estimated to extend to at least Marine Isotope Stage 13 (>0.5 Ma). The stratigraphy developed for SBP lines from the Chukchi abyssal plain to surrounding slopes can be divided into four major seismostratigraphic units (SSU 1-4). SBP records from the abyssal plain show well preserved stratification, whereas on the surrounding slopes this pattern is disrupted by lens-shaped, acoustically transparent sedimentary bodies interpreted as glaciogenic debris flow deposits. Based on the integration of sediment physical property and SBP data, we conclude that these debris flows were generated during several ice-sheet grounding events on the Chukchi and East Siberian margins, including adjacent ridges and plateaus, during the middle to late Quaternary.
Pore fluids and the LGM ocean salinity-Reconsidered
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2016-03-01
Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum of the last glacial maximum (LGM) are analyzed using estimation methods deriving from linear control theory. With conventional diffusion coefficient values and no vertical advection, results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core data. None of the present results show statistically significant abyssal salinity values above the global average, and results remain consistent, apart from a general increase owing to diminished sea level, with a more conventional salinity distribution having deep values lower than the global mean. The Southern Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will only increase the resulting uncertainties, unless considerably more data can be obtained. Results are consistent with complex regional variations in abyssal salinity during deglaciation, but none are statistically significant.
Shaded Relief of Rio Sao Francisco, Brazil
NASA Technical Reports Server (NTRS)
2000-01-01
This topographic image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The scrub forest terrain shows relief of about 400 meters (1300 feet). Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. This region has little topographic relief, but even subtle changes in topography have far-reaching effects on regional ecosystems. The image covers an area of 57 km x 79 km and represents one quarter of the 225 km SRTM swath. Colors range from dark blue at water level to white and brown at hill tops. The terrain features that are clearly visible in this image include tributaries of the Sao Francisco, the dark-blue branch-like features visible from top right to bottom left, and on the left edge of the image, and hills rising up from the valley floor. The San Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.
This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Topography changes monitoring of small islands using camera drone
NASA Astrophysics Data System (ADS)
Bang, E.
2017-12-01
Drone aerial photogrammetry was conducted for monitoring topography changes of small islands in the east sea of Korea. Severe weather and sea wave is eroding the islands and sometimes cause landslide and falling rock. Due to rugged cliffs in all direction and bad accessibility, ground based survey methods are less efficient in monitoring topography changes of the whole area. Camera drones can provide digital images and movie in every corner of the islands, and drone aerial photogrammetry is powerful to get precise digital surface model (DSM) for a limited area. We have got a set of digital images to construct a textured 3D model of the project area every year since 2014. Flight height is in less than 100m from the top of those islands to get enough ground sampling distance (GSD). Most images were vertically captured with automatic flights, but we also flied drones around the islands with about 30°-45° camera angle for constructing 3D model better. Every digital image has geo-reference, but we set several ground control points (GCPs) on the islands and their coordinates were measured with RTK surveying methods to increase the absolute accuracy of the project. We constructed 3D textured model using photogrammetry tool, which generates 3D spatial information from digital images. From the polygonal model, we could get DSM with contour lines. Thematic maps such as hill shade relief map, aspect map and slope map were also processed. Those maps make us understand topography condition of the project area better. The purpose of this project is monitoring topography change of these small islands. Elevation difference map between DSMs of each year is constructed. There are two regions showing big negative difference value. By comparing constructed textured models and captured digital images around these regions, it is checked that a region have experienced real topography change. It is due to huge rock fall near the center of the east island. The size of fallen rock can be measured on the digital model exactly, which is about 13m*6m*2m (height*width*thickness). We believe that drone aerial photogrammetry can be an efficient topography changes detection method for a complicated terrain area.
Does deep ocean mixing drive upwelling or downwelling of abyssal waters?
NASA Astrophysics Data System (ADS)
Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.
2016-02-01
It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.
Abyssal ocean overturning shaped by seafloor distribution.
de Lavergne, C; Madec, G; Roquet, F; Holmes, R M; McDougall, T J
2017-11-08
The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows-referred to as the abyssal overturning circulation-is key to quantifying the ocean's ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.
Abyssal ocean overturning shaped by seafloor distribution
NASA Astrophysics Data System (ADS)
de Lavergne, C.; Madec, G.; Roquet, F.; Holmes, R. M.; McDougall, T. J.
2017-11-01
The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.
Orphan strontium-87 in abyssal peridotites: daddy was a granite.
Snow, J E; Hart, S R; Dick, H J
1993-12-17
The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.
Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite
NASA Astrophysics Data System (ADS)
Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.
1993-12-01
The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.
NASA Technical Reports Server (NTRS)
Hoppin, R. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Excellent imagery has been obtained from SL-3 along track 5 across the Bighorn Mountains and track 19 across the northern Black Hills. The red band is by far the best of the four black and white films of S-190A. Excellent detail is visible of topography, structure, resistant lithologies, and culture with good resolution obtainable at high magnification (30X). The infrared bands do not have as good resolution and are grainy at high magnification. They are of use as a complement to the red band particularly for relief enhancement in areas of heavy green grass and forest cover. S-190B high definition black and white is comparable to the red band (S-190A) in detail. Its main advantage is larger initial scale and slightly better resolution. High resolution color transparencies along track 19 allow detailed delineation of cultivated land and strip mining. A group of folds northwest of Billings stand out clearly. Light colored units in northwestern Black Hills and in the badlands can be mapped in great detail.
Olson, Scott A.
2006-01-01
Southwestern New Hampshire experienced damaging flooding on October 8 and 9, 2005. The flooding was the result of a storm producing at least 7 inches of rain in a 30-hour period. The heavy, intense rainfall resulted in runoff and severe flooding, especially in regions of steep topography that are vulnerable to flash flooding. Some of the worst property damage was in the towns of Alstead, Langdon, and Walpole, New Hampshire along Cold River and Warren Brook. Warren Brook was severely flooded and had flows that exceeded a 100-year recurrence interval upstream of Cooper Hill Road. Downstream of Cooper Hill Road, the flooding was worsened as a result of a sudden release of impounded water, making the flood levels greater than what would be experienced from a 500-year recurrence-interval flood. Along Cold River, upstream of its confluence with Warren Brook, flooding was at approximately a 100-year recurrence interval. Downstream of the confluence of Cold River and Warren Brook, the streamflows, which were swollen by the surge of water from Warren Brook, exceeded a 500year recurrence interval.
Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon
2014-01-01
Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.
NASA Astrophysics Data System (ADS)
Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.
2016-09-01
Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal peridotites and MORB from very slow-spreading ridges. Instead, the distinctive compositions of abyssal peridotites and MORB from very slow-spreading ridges could result from the presence of a thick lithospheric lid, leading to a lower average degree of melting, and a higher contribution to melting from more fertile mantle lithologies. Alternatively, spreading rate influences the thermal structure of the upper mantle such that the mantle beneath very slow-spreading ridges is cooler.
NASA Astrophysics Data System (ADS)
Gerringer, M. E.; Popp, B. N.; Linley, T. D.; Jamieson, A. J.; Drazen, J. C.
2017-03-01
The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from 6000-8200 m, comprising the dominant ichthyofauna in at least five trenches worldwide. Little is known about the biology of these deepest-living fishes, nor the factors that drive their success at hadal depths. Using recent collections from the Mariana Trench, Kermadec Trench, and neighboring abyssal plains, this study investigates the potential role of trophic ecology in structuring fish communities at the abyssal-hadal boundary. Stomach contents were analyzed from two species of hadal snailfishes, Notoliparis kermadecensis and a newly-discovered species from the Mariana Trench. Amphipods comprised the majority (Kermadec: 95.2%, Mariana: 97.4% index of relative importance) of stomach contents in both species. Decapod crustaceans, polychaetes (N. kermadecensis only), and remains of carrion (squid and fish) were minor dietary components. Diet analyses of abyssal species (families Macrouridae, Ophidiidae, Zoarcidae) collected from near the trenches and the literature are compared to those of the hadal liparids. Stomachs from abyssal fishes also contained amphipods, however macrourids had a higher trophic plasticity with a greater diversity of prey items, including larger proportions of carrion and fish remains; supporting previous findings. Suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench - where amphipods are abundant. More generalist feeders and scavengers relying on carrion, such as macrourids, might not benefit from this nutritional advantage at hadal depths. Compound specific isotope analysis of amino acids was used to estimate trophic level of these species (5.3±0.2 Coryphaenoides armatus, 5.2±0.2 C. yaquinae, 4.6±0.2 Spectrunculus grandis, 4.2±0.2 N. kermadecensis, 4.4±0.2 Mariana snailfish). Source amino acid δ15N values were especially high in hadal liparids (8.0±0.3‰ Kermadec, 6.7±0.2‰ Mariana), suggesting a less surface-derived food source than seen in the scavenging abyssal macrourids, C. armatus (3.5±0.3‰) and C. yaquinae (2.2±0.3‰). These results are compared to bulk muscle tissue isotopic compositions. This study provides the first comprehensive examination of the feeding ecology of the ocean's deepest-living fishes and informs new understanding of trophic interactions and fish community structure in and near the hadal zone.
NASA Astrophysics Data System (ADS)
Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria
2017-04-01
The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. This technology offers many future opportunities for providing additional functionality, especially on-the-fly big data analytics. Müller, R.D., Qin, X., Sandwell, D.T., Dutkiewicz, A., Williams, S.E., Flament, N., Maus, S. and Seton, M, 2016, The GPlates Portal: Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser, PLoS ONE 11(3): e0150883. doi:10.1371/ journal.pone.0150883
GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.R.; Cooper, A.K.; Gardner, J.V.
1987-05-01
During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slidesmore » and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, P.D.; Krason, J.; Dominic, K.
Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. Moremore » deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.« less
NASA Astrophysics Data System (ADS)
Huffard, Christine L.; Kuhnz, Linda A.; Lemon, Larissa; Sherman, Alana D.; Smith, Kenneth L.
2016-03-01
Holothurians are among the most abundant benthic megafauna at abyssal depths, and important consumers and bioturbators of organic carbon on the sea floor. Significant fluctuations in abyssal holothurian density are often attributed to species-specific responses to variable particulate organic carbon flux (food supply) stemming from surface ocean events. We report changes in densities of 19 holothurian species at the abyssal monitoring site Station M in the northeast Pacific, recorded during 11 remotely operated vehicle surveys between Dec 2006 and Oct 2014. Body size demographics are presented for Abyssocucumis abyssorum, Synallactidae sp. 1, Paelopatides confundens, Elpidia sp. A, Peniagone gracilis, Peniagone papillata, Peniagone vitrea, Peniagone sp. A, Peniagone sp. 1, and Scotoplanes globosa. Densities were lower and species evenness was higher from 2006-2009 compared to 2011-2014. Food supply of freshly-settled phytodetritus was exceptionally high during this latter period. Based on relationships between median body length and density, numerous immigration and juvenile recruitment events of multiple species appeared to take place between 2011 and 2014. These patterns were dominated by elpidiids (Holothuroidea: Elasipodida: Elpidiidae), which consistently increased in density during a period of high food availability, while other groups showed inconsistent responses. We considered minimum body length to be a proxy for size at juvenile recruitment. Patterns in density clustered by this measure, which was a stronger predictor of maximum density than median and mean body length.
NASA Astrophysics Data System (ADS)
FitzGeorge-Balfour, Tania; Billett, David S. M.; Wolff, George A.; Thompson, Anu; Tyler, Paul A.
2010-08-01
Holothurians dominate the abyssal megabenthos. They are key consumers and bioturbators of surficial sediment. Compounds essential for holothurian reproduction, such as carotenoids, are in short supply in the deep ocean. Holothurians cannot synthesise carotenoids de novo; the compounds are supplied with the flux of phytodetritus. Therefore, the supply of these compounds may play an important role in regulating processes on the seafloor. This study examines the link between the diet of abyssal holothurians and their ovarian carotenoid biochemistry. Phytodetritus, surficial sediment, holothurian gut content and ovaries were sampled in June 2004 and in July 2005 at the Porcupine Abyssal Plain (PAP), NE Atlantic. Gut content chlorophyll a concentration showed that Amperima rosea, Peniagone diaphana and Oneirophanta mutabilis fed selectively on fresh organic matter, although when this was scarce, O. mutabilis was outcompeted and fed on more refractory material. All three species display consistent ovarian carotenoid profiles and have relatively high carotenoid concentrations in their ovaries. Psychropotes longicauda, Paroriza prouhoi, Pseudostichopus aemulatus, P. villosus and Molpadia blakei fed less selectively and exhibited low ovarian carotenoid concentrations with inconsistent profiles. The results suggest that abyssal holothurian ovarian biochemistry is a complex function of OM supply, holothurian feeding guild and reproductive adaptation. Changes in upper ocean biogeochemistry, altering the composition of organic matter reaching the deep-sea floor, may favour certain holothurian species, as suggested by the interspecific differences in holothurian ovarian biochemistry. This may lead to large community changes as seen at the PAP, which can alter the reworking rates of sediment, probably affecting carbon burial. The study also demonstrated that using the presence of biomarkers in gut contents to infer feeding selectivity should be used with caution. Only biomarkers in gut contents that are not present in the tissues of the holothurians (e.g., chlorophyll a) should be used to determine their feeding selectivity.
Near-inertial waves and deep ocean mixing
NASA Astrophysics Data System (ADS)
Shrira, V. I.; Townsend, W. A.
2013-07-01
For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.
Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G
2016-01-01
Abstract Background We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). New information Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys. PMID:27660533
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2016-12-01
Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.
Sunda-Banda Arc Transition: Marine Wide-Angle Seismic Modeling
NASA Astrophysics Data System (ADS)
Shulgin, A.; Planert, L.; Kopp, H.; Mueller, C.; Lueschen, E.; Engels, M.; Flueh, E.; Djajadihardja, Y.; Sindbad Working Group, T
2008-12-01
The Sunda-Banda Arc transition is the region of active convergence and collision of the Indo-Australian and Eurasian Plates. The style of subduction changes from an oceanic-island arc subduction to a continental- island arc collision. The character of the incoming plate varies from the rough topography of the Roo Rise, to the smooth seafloor of the Abyssal Plain off Bali, Sumbawa. Forearc structures include well-developed forearc basins and an accretionary prism/outer forearc high of variable size and shape. To quantify the variability of structure of the lower plate and the effects on the upper plate a refraction seismic survey was carried during cruise SO190-2. A total of 245 ocean bottom seismometers were deployed along 1020 nm of wide-angle seismic profiles in four major north-south oriented corridors. To assess the velocity structure we used a tomographic method which jointly inverts for refracted and reflected phases. The sedimentary layers of the models, obtained by the analysis of high-resolution MCS data (see Lueschen et al), were incorporated into the starting model. The obtained models exhibit strong changes of the incoming oceanic crust for the different portions of the margin: The westernmost profile off eastern Java shows a crustal thickness of more than 15 km, most likely related to the presence of an oceanic plateau. Profiles off Lombok reveal an oceanic crust of 8-9 km average thickness in the Argo Abyssal Plain. Crustal and upper mantle velocities are slightly decreased within an area of about 50-60 km seaward of the trench, indicating fracturing and related serpentinization due to bending of the oceanic crust and associated normal faulting. The outer forearc high is characterized by velocities of 2.5-5.5 km/s. For the Lombok Basin, the profiles show a sedimentary infill of up to 3.5 km thick and typical sediment velocities of 1.75-3.0 km/s. A reflector at 16 km depth and velocity values of 7.4-7.8 km/s beneath it suggest the presence of a shallow forearc mantle and a hydrated mantle wedge in this part of the margin. See in this session Planert et al.
Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE
NASA Astrophysics Data System (ADS)
Mazloff, Matthew R.; Boening, Carmen
2016-04-01
Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.
NASA Astrophysics Data System (ADS)
Eustace, Ryan M.; Ritchie, Heather; Kilgallen, Niamh M.; Piertney, Stuart B.; Jamieson, Alan J.
2016-03-01
The globally ubiquitous lysianassoid amphipod, Eurythenes gryllus, has been shown to consist of multiple genetically distinct cryptic taxa, with depth considered a major driver of speciation and morphological divergence. Here we examine morphological variation of E. gryllus sensu lato through a continuous depth distribution that spans from abyssal (3000-6000 m) into hadal depths (>6000 m) in the Peru-Chile Trench (SE Pacific Ocean). Three distinct morphospecies were identified: one was confirmed as being E. magellanicus (4602-5329 m) based on DNA sequence and morphological similarity. The other two morphologically distinct species were named based upon depth of occurrence; Abyssal (4602-6173 m) and Hadal (6173-8074 m). The three Eurythenes morphospecies showed vertical ontogenetic stratification across their bathymetric range, where juveniles were found shallower in their depth range and mature females deeper. Potential ecological and evolutionary drivers that explain the observed patterns of intra and inter-specific structure, such as hydrostatic pressure and topographical isolation, are discussed.
Pagé, Lilianne; Hattori, Keiko
2017-12-19
Serpentinites are important reservoirs of fluid-mobile elements in subduction zones, contributing to volatiles in arc magmas and their transport into the Earth's mantle. This paper reports halogen (F, Cl, Br, I) and B abundances of serpentinites from the Dominican Republic, including obducted and subducted abyssal serpentinites and forearc mantle serpentinites. Abyssal serpentinite compositions indicate the incorporation of these elements from seawater and sediments during serpentinization on the seafloor and at slab bending. During their subduction and subsequent lizardite-antigorite transition, F and B are retained in serpentinites, whilst Cl, Br and I are expelled. Forearc mantle serpentinite compositions suggest their hydration by fluids released from subducting altered oceanic crust and abyssal serpentinites, with only minor sediment contribution. This finding is consistent with the minimal subduction of sediments in the Dominican Republic. Forearc mantle serpentinites have F/Cl and B/Cl ratios similar to arc magmas, suggesting the importance of serpentinite dehydration in the generation of arc magmatism in the mantle wedge.
NASA Technical Reports Server (NTRS)
Meyer, Peter; Larson, Steven A.; Hansen, Earl G.; Itten, Klaus I.
1993-01-01
Remotely sensed data have geometric characteristics and representation which depend on the type of the acquisition system used. To correlate such data over large regions with other real world representation tools like conventional maps or Geographic Information System (GIS) for verification purposes, or for further treatment within different data sets, a coregistration has to be performed. In addition to the geometric characteristics of the sensor there are two other dominating factors which affect the geometry: the stability of the platform and the topography. There are two basic approaches for a geometric correction on a pixel-by-pixel basis: (1) A parametric approach using the location of the airplane and inertial navigation system data to simulate the observation geometry; and (2) a non-parametric approach using tie points or ground control points. It is well known that the non-parametric approach is not reliable enough for the unstable flight conditions of airborne systems, and is not satisfying in areas with significant topography, e.g. mountains and hills. The present work describes a parametric preprocessing procedure which corrects effects of flight line and attitude variation as well as topographic influences and is described in more detail by Meyer.
Schrader, Astrid
2015-10-01
Prompted by a classroom discussion on knowledge politics in the aftermath of the Chernobyl disaster, this article offers a reading of Hugh Raffles' Insectopedia entry on Chernobyl. In that entry, Raffles describes how Swiss science-artist and environmental activist Cornelia Hesse-Honegger collects, studies, and paints morphologically deformed leaf bugs that she finds in the proximity of nuclear power plants. In exploring how to begin to care about beings, such as leaf bugs, this article proposes a notion of care that combines an intimate knowledge practice with an ethical relationship to more-than-human others. Jacques Derrida's notion of 'abyssal intimacy' is central to such a combination. Hesse-Honegger's research practices enact and her paintings depict an 'abyssal intimacy' that deconstructs the oppositions between concerns about human suffering and compassion for seemingly irrelevant insects and between knowledge politics and ethics. At the heart of such a careful knowledge production is a fundamental passivity, based on a shared vulnerability. An abyssal intimacy is not something we ought to recognize; rather, it issues from particular practices of care that do not identify their subjects of care in advance. Caring or becoming affected thus entails the dissociation of affection not only from the humanist subject, but also from movements in time: from direct helping action and from the assumption that advocacy necessarily means speaking for an other, usually assumed to be inferior.
Bathymetric limits of chondrichthyans in the deep sea: A re-evaluation
NASA Astrophysics Data System (ADS)
Musick, J. A.; Cotton, C. F.
2015-05-01
Chondrichthyans are largely absent in abyssal (>3000 m) habitats in most regions of the world ocean and are uncommon below 2000 m. The deeper-living chondrichthyans include certain rajids, squaliforms and holocephalans. Several hypotheses have been erected to explain the absence of chondrichthyans from the abyss. These are mostly based on energetics: deep-sea food webs are impoverished due to their distance from primary production, and chondrichthyans, occupying the highest trophic levels, cannot be supported due to entropy among trophic levels. We examined this hypothesis by comparing trophic levels, calculated from dietary data, of deep-sea chondrichthyans with those of deep-sea teleosts. Chondrichthyans were mostly above trophic level 4, whereas all the teleosts examined were below that level. Both small and medium squaloids, as well as sharks and skates of large size, feed on fishes, cephalopods and scavenged prey, and thus occupy the highest trophic levels in bathydemersal fish communities. In addition, whereas teleosts and chondrichthyans both store lipids in their livers to support long periods of fasting, chondrichthyans must devote much of their liver lipids to maintain neutral buoyancy. Consequently teleosts with swim bladders are better adapted to survive in the abyss where food sources are sparse and unpredictable. The potential prey field for both chondrichthyans and teleosts declines in biomass and diversity with depth, but teleosts have more flexibility in their feeding mechanisms and food habits, and occupy abyssal trophic guilds for which chondrichthyans are ill adapted.
The Importance of Long Wavelength Processes in Generating Landscapes
NASA Astrophysics Data System (ADS)
Roberts, Gareth G.; White, Nicky
2017-04-01
The processes responsible for generating landscapes observed on Earth and elsewhere are poorly understood. For example, the relative importance of long (>10 km) and short wavelength erosional processes in determining the evolution of topography is debated. Much work has focused on developing an observational and theoretical framework for evolution of longitudinal river profiles (i.e. elevation as a function of streamwise distance), which probably sets the pace of erosion in low-mid latitude continents. A large number of geomorphic studies emphasis the importance of short wavelength processes in sculpting topography (e.g. waterfall migration, interaction of biota and the solid Earth, hill slope evolution). However, it is not clear if these processes scale to generate topography observed at longer (>10 km) wavelengths. At wavelengths of tens to thousands of kilometers topography is generated by modification of the lithosphere (e.g. shortening, extension, flexure) and by sub-plate processes (e.g. dynamic support). Inversion of drainage patterns suggests that uplift rate histories can be reliably recovered at these long wavelengths using simple erosional models (e.g. stream power). Calculated uplift and erosion rate histories are insensitive to short wavelength (<10 km) or rapid (<100 ka) environmental changes (e.g. biota, precipitation, lithology). One way to examine the relative importance of short and long wavelength processes in generating topography is to transform river profiles into distance-frequency space. We calculate the wavelet power spectrum of a suite of river profiles and examine their spectral content. Big rivers in North America (e.g. Colorado, Rio Grande) and Africa (e.g. Niger, Orange) have a red noise spectrum (i.e. power inversely proportional to wavenumber-squared) at wavelengths > 100 km. More than 90% of river profile elevations in our inventory are determined at these wavelengths. At shorter wavelengths spectra more closely resemble pink noise (power inversely proportional to wavenumber). These observations suggest that short wavelength processes do not simply scale to generate the long wavelength changes in elevation. Instead we suggest that long wavelength processes (e.g. regional uplift, knickzone migration) determine the shape and evolution of nearly all topography. These results suggest that the erosional complexity observed in local geomorphic studies and the relative simplicity of erosional models required to fit continental-scale drainage patterns are not mutually exclusive. Rather that the problem of fluvial erosion is being tackled at different and probably unrelated scales.
NASA Astrophysics Data System (ADS)
Brantley, S. L.; Gu, X.; Sullivan, P. L.; Kim, H.; Stinchcomb, G. E.; Lebedeva, M.; Balashov, V. N.
2016-12-01
To first order, weathering is the reaction of rocks with oxidants (oxygen, nitrate, etc.), acids (carbonic, sulfuric, and organic acids), and water. To explore weathering we have been studying the depth intervals in soils, saprolite, and weathering rock where mineral reactions are localized - "reaction fronts". We limit the study to ridges or catchments in climates where precipitation is greater than potential evapotranspiration. For example, in the Susquehanna Shale Hills Critical Zone Observatory, we observe reaction fronts that generally define very rough surfaces in 3D that mimic the land surface topography, although with lower relief. Overall, the fronts form nested curved surfaces. In Shale Hills, the deepest reaction fronts are oxidation of pyrite, and dissolution of carbonate. The carbonate is inferred to dissolve at least partly due to the sulfuric acid produced by the pyrite. In addition to pyrite, chlorite also starts to oxidize at the water table. We hypothesize that these dissolution and oxidation reactions open pores and cause microfracturing that open the rock to infiltration of advecting meteoric waters. At much shallower depths, illite is observed to dissolve. In Shale Hills, these reaction fronts - pyrite, carbonate, illite - separate over meters beneath the ridges. Such separated reaction fronts have also been observed in other fractured lithologies where oxidation is the deepest reaction and is associated with weathering-induced fractures. In contrast, in some massive mafic rocks, reaction fronts are almost co-located. By studying the geometry of reaction fronts, it may be possible to elucidate the relative importance of how oxygen cracks rocks; carbonic, organic, and sulfuric acids dissolve rocks; and water mobilizes rock materials during weathering.
NASA Astrophysics Data System (ADS)
Raška, Pavel; Zábranský, Vilém; Brázdil, Rudolf; Lamková, Jana
2016-02-01
The beginning of the 1770s in the Czech Lands is well documented for its meteorological extremes and their social impacts. However, the effects of these extremes on geomorphic systems and on landslide occurrence and activity in particular have been minimally studied. In this paper, we use a complex set of written and iconographic documentary data to reconstruct the landslide calamity in North Bohemia, with a detailed case study of the Kozí vrch Hill landslide. The landslide calamity of 1770 is the oldest known landslide calamity in this region, including 14 documented events; and its reconstruction may therefore provide important data on landslide frequency, triggers, and impacts during the adverse weather patterns in the last part of the Little Ice Age (LIA). We focus on a case study of the Kozí vrch Hill landslide, and we use the documentary evidence and field techniques to reconstruct its location, extent, topography, kinematics, and triggers. Based on precipitation indices and weather descriptions, the extremely wet and rainy preceding year and the 1769/1770 winter were the major triggering factors that resulted in water saturation of Neogene volcaniclastics underlying the basalt lava flows and their subsequent collapse. Furthermore, we analyse the post-landslide terrain transformation and land use patterns during the 240 years following the landslide to illustrate the persistence of particular landslide features. We conclude that the major transformations, which obscured most of the landslide features, occurred in only the last 50-60 years. Finally, we discuss the role of documentary data and the current methodological advances in their use for the reconstruction of landslide frequency and impacts during the LIA.
NASA Astrophysics Data System (ADS)
Ba, Zhenning; Yin, Xiao
2016-06-01
A multidomain indirect boundary element method (IBEM) is proposed to study the wave scattering of plane SH waves by complex local site in a layered half-space. The new method, using both the full-space and layered half-space Green's functions as its fundamental solutions can also be regarded as a coupled method of the full-space IBEM and half-space IBEM. First, the whole model is decomposed into independent closed regions and an opened layered half-space region with all of the irregular interfaces; then, fictitious uniformly distributed loads are applied separately on the boundaries of each region, and scattered fields of the closed regions and the opened layered half-space region are constructed by calculating the full-space and layered half-space Green's functions, respectively; finally, all of the regions are assembled to establish the linear algebraic system that arises from discretization. The densities of the distributed loads are determined directly by solving the algebraic system. The accuracy and capability of the new approach are verified extensively by comparing its results with those of published approaches for a class of hills, valleys and embedded inclusions. And the capability of the new method is further displayed when it is used to investigate a hill-triple layered valley-hill coupled topography in a multilayered half-space. All of the numerical calculations presented in this paper demonstrate that the new method is very suitable for solving multidomain coupled multilayered wave scattering problems with the merits of high accuracy and representing the scattered fields in different kinds of regions more reasonably and flexibly.
Calvert, S.E.; Piper, D.Z.; Baedecker, P.A.
1987-01-01
The distribution of rare earth elements (REE) in ferromanganese nodules from DOMES Site A has been determined by instrumental neutron activation methods. The concentrations of the REE vary markedly. Low concentrations characterize samples from a depression (the valley), in which Quaternary sediments are thin or absent; high concentrations are found in samples from the surrounding abyssal hills (the highlands) where the Quaternary sediment section is relatively thick. Moreover, the valley nodules are strongly depleted in the light trivalent REE (LREE) and Ce compared with nodules from the highlands, some of the former showing negative Ce anomalies. The REE abundances in the nodules are strongly influenced by the REE abundances in coexisting bottom water. Some controls on the REE chemistry of bottom waters include: a) the more effective removal of the LREE relative to the HREE from seawater because of the greater degree of complexation of the latter elements with seawater ligands, b) the very efficient oxidative scavenging of Ce on particle surfaces in seawater, and c) the strong depletion of both Ce and the LREE in, or a larger benthic flux of the HREE into, the Antarctic Bottom Water (AABW) which flows through the valley. The distinctive REE chemistry of valley nodules is a function of their growth from geochemically evolved AABW. In contrast, the REE chemistry of highland nodules indicates growth from a local, less evolved seawater source. ?? 1987.
Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species
NASA Astrophysics Data System (ADS)
Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann
2018-02-01
Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment variability and local diversity. Although differences in sediment variability were significant across stations, these had to be considered without effect on the nematode community structure in the studied abyssal areas.
Sediment dispersal patterns within the Nares Abyssal Plain: observations from GLORIA Sonographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shephard, L.E.; Tucholke, B.E.; Fry, V.A.
1985-01-01
Features evident on GLORIA sonographs from the Nares Abyssal Plain suggest a sediment dispersal pattern for turbidity currents that varies temporally and spatially, resulting in randomly distributed turbidite deposits in the distal abyssal plain east of 64/sup 0/W. Regional variations in backscatter intensities across the abyssal plain are related to the frequency and thickness of near-surface silt beds, basement highs disrupting the seafloor, and subtle changes in surface and sub-surface bedforms related to low-relief turbidite flow paths, biologic activity, and possibly erosion. High backscatter intensities, prevalent west of 64/sup 0/W, are generally associated with those areas containing thicker silt bedsmore » and very regular subbottom reflectors on 3.5 kHz profiles. Low backscatter intensities, prevalent east of 64/sup 0/W, are associated with those areas containing thin silt beds or stringers with a much higher percentage of pelagic clay. Seafloor lineaments occur throughout the survey area but decrease in abundance east of 64/sup 0/W. These features have no apparent relief when crossed by surface-towed seismic reflection profiles. In some instances the lineaments may correspond to low-relief turbidite flow paths that contain varying textural compositions resulting in increased backscatter. These features would be indicative of sediment transport directions. Other possible origins for the lineaments, that often appear trackline parallel, include near-surface morphology that is preferentially detected and aligned by GLORIA, or possibly the lineaments result from complex subbottom interference patterns that would not be readily apparent in areas with a more irregular seafloor.« less
Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna
Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A.; Menot, Lenaick; Arbizu, Pedro Martínez
2016-01-01
Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m2), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones. PMID:27245847
Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna.
Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A; Menot, Lenaick; Arbizu, Pedro Martínez
2016-06-01
Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m(2)), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.
Microbial diversity and stratification of South Pacific abyssal marine sediments.
Durbin, Alan M; Teske, Andreas
2011-12-01
Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Carbonate to siliciclastic periplatform sediments: southwest Florida
Holmes, Charles W.
1988-01-01
Geophysical, geochemical, and sedimentological data suggest that the spatial relationships of these deposits are related to sea-level variations. During extreme lowstands, with much of the shelf exposed, the dominant sedimentation was in the form of siliciclastic deposition on the abyssal floor, and slope talus development at the edge of the shelf. During a subsequent rise in sea level, after carbonate production on the shelf was initiated, sediment was transported southward to the head of the canyons and funneled to the abyssal floor. Subsequent rising sea level shifted the axis of transport farther to the shelf, bypassing the canyons and funneling the sediment through breaks in the carbonate reef banks at the southern edge of the platform. At the sites of both the hemipelagic and the turbidite deposition, high-resolution seismic data indicate that at least three cycles of deposition have occurred. In the abyss, this cyclic nature has produced alternating layers of carbonate and noncarbonate sediments, recognizable in the sedimentary record as limestone units interlayered with fine shales. In the geologic record the hemipelagic deposits would be almost indistinguishable from deep-sea foraminiferal oozes.
Direct observation of episodic growth in an abyssal xenophyophore (Protista)
NASA Astrophysics Data System (ADS)
Gooday, A. J.; Bett, B. J.; Pratt, D. N.
1993-11-01
Three specimens of the xenophyophore Reticulammina labyrinthica were photographed on the Madeira Abyssal Plain (31°6.1'N, 21°10.9'W; 4944 m) using the Bathysnap time-lapse camera system. During the 8 month observation period, the specimens underwent an estimated 3-10 fold increase in volume. Growth occurred episodically in several distinct phases, each lasting 2-3 days, during which sediment was collected and incorporated into the test. These phases were separated by fairly regular periods of about 2 months when the organisms showed little obvious activity. The growth phases were approximately synchronous between specimens. However, it is not clear whether the periodicity and apparent synchronization of these events resulted from an external (environmental) cue or whether growth is internally controlled and the synchronization arose by chance. These unique observations, which represent the first direct measurement of growth in any abyssal organism living outside a hydrothermal vent field, suggest that xenophyophores combine test growth with deposit feeding. The tests appear to grow more quickly, and to be more active, dynamic structures, than previously believed.
Atmospheric Propagation Modeling Indicates Homing Pigeons use Loft-Specific Infrasonic 'Map' Cues
NASA Astrophysics Data System (ADS)
Hagstrum, J. T.; Baker, L. M.; Spritzer, J. M.; McKenna, M. H.
2011-12-01
Pigeons (Columba livia) released at distant sites commonly depart in directions significantly off the actual homeward bearing. Such site-dependent deviations, or biases, for birds from a given loft are generally stable over time, but can also change from hour to hour, day to day, and year to year. At some release sites, birds consistently vanish in random directions and have longer flight times and lower return rates. Release sites characterized by frequent disorientation are not uncommon for pigeon lofts in both Europe and the USA. One such site is the Jersey Hill fire tower in upstate New York located ~120 km W of the Cornell loft in Ithaca. Cornell birds released at Jersey Hill between 1968 and 1987 almost always vanished randomly, although birds from other lofts had little difficulty orienting there. The results for one day, however, stand out: on August 13, 1969, Cornell birds released at Jersey Hill vanished consistently to the NE (r = 0.921; n=7) and returned home after normal flight times. Cornell pigeons released the next day again showed 'normal' behavior for the site and departed randomly. If, in fact, the birds are using acoustic cues to navigate, the long-term acoustic 'dead' zone we propose for Jersey Hill, due to prevailing atmospheric conditions, indicates that the cues are coming from a single, relatively restricted area, most likely surrounding the home loft. We have modeled the transmission of infrasonic waves, presumably coupled to the atmosphere from ocean-generated microseisms (0.14 Hz), between the Cornell loft and a number of release sites using HARPA (Hamiltonian Acoustic Ray-tracing Program for the Atmosphere) and rawinsonde data collected near Albany and Buffalo, NY. The HARPA modeling shows that acoustic signals from the Cornell loft reached Jersey Hill only on a few release days with unusual atmospheric conditions, including August 13, and were launched at angles less than ~2° above horizontal, most likely from steep-sided terrain in the loft vicinity. Such low angles would require sound waves to be diffracted around intervening topography, and likely explains why birds released on August 13 vanished from Jersey Hill at a mean direction to the NE (33°) and not closer to the homeward bearing (85°). Cornell birds released at many sites have departure bearings consistent with such topographic effects. At the Dryden III release site just 13 km E of the Cornell loft, pigeons generally departed to the NW (321°, n=630), ~60° off the homeward bearing (258°). Apparently, infrasonic signals from the home loft area were being diffracted around higher terrain between the loft and release site.
NASA Astrophysics Data System (ADS)
Kuijpers, A.; Duin, E. J. Th.
1986-03-01
Examination of 38 sediment cores, bottom photographs, 7,000 km of 3.5 kHz reflection profiles and other seismic data from the southern part of the Nares Abyssal Plain suggests that complex sedimentary patterns and high sedimentation rates can be largely attributed to effects of a deep boundary current flowing eastward along the north flank of the Greater Antilles Outer Ridge. It is concluded that the areal dispersal pattern of turbidites on the plain results mainly from Quaternary climatically-induced fluctuations of the boundary current intensity.
The dynamics of biogeographic ranges in the deep sea.
McClain, Craig R; Hardy, Sarah Mincks
2010-12-07
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.
The dynamics of biogeographic ranges in the deep sea
McClain, Craig R.; Hardy, Sarah Mincks
2010-01-01
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884
NASA Technical Reports Server (NTRS)
Sharpton, V. L.; Head, J. W., III
1986-01-01
The range of 3 degree by 3 degree regional slopes of the Earth and Venus is similar (approximately 0.0-2.4 degrees), although the surface distribution of these values differs significantly. On earth, cratonic and abyssal plains form extensive regions of 0.0 degree slope. Within these regions a variety of features (mid-ocean ridges, volcanic island chains, subduction zones, and floded mountains) have regional slope characteristics influenced by seafloor spreading and plate recycling, as well as an active weathering regime. The plains provinces of Venus are much more rugged than earth's plains and are marked by numerous closely spaced circular and linear features (0.1-0.2 degree regional slope) concentrated into broad linear zones of global extent. Although Venus highlands are bounded by narrow zones of relatively steep slope, the margins of Aphrodite Terra and Beta Regio are not as steep as earth's continental margins and appear to be best developed parallel to the trends of major chasmata within these regions. Ishtar Terra's margins are significantly steeper and more continuous than other highland margins and are comparable to passive margins on earth. The Venus highlands do not contain appreciable smooth, flat interior regions, implying that highland topography is not significantly modified by erosion or deposition.
NASA Astrophysics Data System (ADS)
Tarakanov, R. Yu.; Morozov, E. G.; Gritsenko, A. M.; Demidova, T. A.; Makarenko, N. I.
2013-07-01
The structure of northerly overflow of Antarctic Bottom Water (AABW) through passages in the East Azores Ridge (37° N) in the East Atlantic from the Madeira Basin to the Iberian Basin is studied on the basis of hydrographic measurements carried out by the Institute of Oceanology, Russian Academy of Sciences (RAS) in October 2011, historical World Ocean Data Base 2009, and recent data on the bottom topography. The overflow of the coldest layers of this water occurs through two passages with close depths at 16° W (Discovery Gap) and at 19°30' W (nameless Western Gap). It is shown that it is likely that the role of the latter passage in water transport was underestimated in earlier publications because the water (2.01°C) found in the region north of the Western Gap was cooler than in the region north of the Discovery Gap (2.03°C). In 2011, we found a decrease of 0.01°C in the AABW temperature near the bottom compared to previous measurements in 1982 (from 2.011°C to 2.002°C). Analysis of the historical database shows that this decrease is most likely caused by the cooling trend in the abyssal waters in the East Atlantic basins.
NASA Astrophysics Data System (ADS)
Wigham, in deep-sea holothurians [review article] B. D.; Hudson, I. R.; Billett, D. S. M.; Wolff, G. A.
2003-12-01
The Porcupine Abyssal Plain (NE Atlantic) time-series has shown large, wide-scale, changes in the composition of the benthic community at 4800 m depth (48°50‧N, 16°30‧W). The abundance of holothurians has increased significantly since 1996 and one species in particular, Amperimarosea, has increased in abundance by three orders of magnitude. Environmental forcing in the form of phytodetrital food supply to the benthos is believed to be driving these changes. Chlorophyll and carotenoid pigments were determined from the gut sediments of seven species of abyssal holothurian, sampled from the Porcupine Abyssal Plain during Autumn 2000 and Spring 2002. These two samples fell either side of the main phytoplankton bloom in the NE Atlantic, providing an opportunity for seasonal comparisons. Significant inter-species differences in pigment profiles were observed among the seven species. Seasonal differences were noted among four species sampled in both time periods. All seven species were collected from the same geographical area and depth. As algal pigments cannot be synthesised by the holothurians, they provide good biomarkers for the composition of the phytodetritus. Differences in pigments from gut sediment profiles are indicative of selective feeding among the holothurians. A.rosea had a gut profile dominated by the pigments zeaxanthin, chlorophyll a/echineone and β-carotene; these pigments were all present in significantly smaller quantities in the other species. The high quantities of these pigments are indicative of a diet rich in cyanobacteria. The gut sediments of A. rosea also lacked many chloropigments characteristic of other phytoplankton groups, which were observed in the guts of other holothurian species. Ovarian tissue for the five species taken in the pre-spring bloom 2002 sample were examined. All species showed similar carotenoid profiles, dominated by zeaxanthin, echinenone and β-carotene, all of which are important compounds for reproductive success in echinoderms. The differences in gut pigment profiles highlight the potential for several species of deposit-feeding holothurians to partition the same phytodetrital food source, possibly providing a mechanism for maintaining the high diversity of deposit feeders at abyssal depths. The dominance of reproductively important carotenoids in the guts and gonads of A. rosea may highlight the ability of this species to rapidly utilise any change in the composition of the phytodetrital flux and translate that advantage into a successful reproductive and recruitment event. The results are discussed in relation to work on bathyal holothurians and the potential for food-driven regime shifts in both the abyssal and bathyal Northeast Atlantic.
NASA Astrophysics Data System (ADS)
Li, Jing; Sheng, Yu; Wu, Jichun; Feng, Ziliang; Ning, Zuojun; Hu, Xiaoying; Zhang, Xiumin
2016-09-01
The source area of the Yellow River (SAYR) lies in the eastern part of the Qinghai-Tibet Plateau (QTP). Glaciers are absent in the area, but permafrost is widespread because of the high elevations, typically 4200-5000 m a.s.l. Landforms in the SAYR were classified into seven basic types, based on their morphological characteristics and genesis, and further divided into 12 sub-classes based on geomorphic processes. Permafrost development and ground temperature in boreholes were analyzed on representative landforms in the SAYR. Permafrost was discontinuously distributed at 4300-4400 m a.s.l. in fluvial plains because of variations in local topography, sediments, vegetation and water content. In hills and low-relief mountains in the western part of the study area, permafrost is continuous above 4400 m a.s.l. even on unshaded south-facing slopes. In contrast, permafrost in the central part of the study area is discontinuous over this elevation range. Analysis of ground temperature measurements revealed that three macro-scale factors, latitude, longitude, and elevation, explain 72.8% of the variation in the measured mean annual ground temperature (MAGT). The remaining 27.2% can potentially be explained by variations in topography and land cover within the SAYR.
The effect of topography on pyroclastic flow mobility
NASA Astrophysics Data System (ADS)
Ogburn, S. E.; Calder, E. S.
2010-12-01
Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.
NASA Astrophysics Data System (ADS)
Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.
2013-08-01
The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.
Perspective view, Landsat overlay Pasadena, California
NASA Technical Reports Server (NTRS)
2000-01-01
This image shows a perspective view of the area around Pasadena, California, just north of Los Angeles. The cluster of hills surrounded by freeways on the left is the Verdugo Hills, which lie between the San Gabriel Valley in the foreground and the San Fernando Valley in the upper left. The San Gabriel Mountains are seen across the top of the image, and parts of the high desert near the city of Palmdale are visible along the horizon on the right. Several urban features can be seen in the image. NASA's Jet Propulsion Laboratory (JPL) is the bright cluster of buildings just right of center; the flat tan area to the right of JPL at the foot of the mountains is a new housing development devoid of vegetation. Two freeways (the 210 and the 134) cross near the southeastern end of the Verdugo Hills near a white circular feature, the Rose Bowl. The commercial and residential areas of the city of Pasadena are the bright areas clustered around the freeway. These data will be used for a variety of applications including urban planning and natural hazard risk analysis.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: Varies in a perspective view Location: 34.18 deg. North lat., 118.16 deg. West lon. Orientation: Looking Northwest Original Data Resolution: SRTM and Landsat: 30 meters (99 feet) Date Acquired: February 16, 2000Hawaii Ocean Mixing Experiment: Program Summary
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)
2002-01-01
It is becoming apparent that insufficient mixing occurs in the pelagic ocean to maintain the large scale thermohaline circulation. Observed mixing rates fall a factor of ten short of classical indices such as Munk's "Abyssal Recipe." The growing suspicion is that most of the mixing in the sea occurs near topography. Exciting recent observations by Polzin et al., among others, fuel this speculation. If topographic mixing is indeed important, it must be acknowledged that its geographic distribution, both laterally and vertically, is presently unknown. The vertical distribution of mixing plays a critical role in the Stommel Arons model of the ocean interior circulation. In recent numerical studies, Samelson demonstrates the extreme sensitivity of flow in the abyssal ocean to the spatial distribution of mixing. We propose to study the topographic mixing problem through an integrated program of modeling and observation. We focus on tidally forced mixing as the global energetics of this process have received (and are receiving) considerable study. Also, the well defined frequency of the forcing and the unique geometry of tidal scattering serve to focus the experiment design. The Hawaiian Ridge is selected as a study site. Strong interaction between the barotropic tide and the Ridge is known to take place. The goals of the Hawaiian Ocean Mixing Experiment (HOME) are to quantify the rate of tidal energy loss to mixing at the Ridge and to identify the mechanisms by which energy is lost and mixing generated. We are challenged to develop a sufficiently comprehensive picture that results can be generalized from Hawaii to the global ocean. To achieve these goals, investigators from five institutions have designed HOME, a program of historic data analysis, modeling and field observation. The Analysis and Modeling efforts support the design of the field experiments. As the program progresses, a global model of the barotropic (depth independent) tide, and two models of the baroclinic (depth varying) tide, all validated with near-Ridge data, will be applied, to reveal the mechanisms of tidal energy conversion along the Ridge, and allow spatial and temporal integration of the rate of conversion. Field experiments include a survey to identify "hot spots" of enhanced mixing and barotropic to baroclinic conversion, a Nearfield study identifying the dominant mechanisms responsible for topographic mixing, and a Farfield program which quantifies the barotropic energy flux convergence at the Ridge and the flux divergence associated with low mode baroclinic waves radiation. The difference is a measure of the tidal power available for mixing at the Ridge. Field work is planned from years 2000 through 2002, with analysis and modeling efforts extending through early 2006. If successful, HOME will yield an understanding of the dominant topographic mixing processes applicable throughout the global ocean. It will advance understanding of two central problems in ocean science, the maintenance of the abyssal stratification, and the dissipation of the tides. HOME data will be used to improve the parameterization of dissipation in models which presently assimilate TOPEX-POSEIDON observations. The improved understanding of the dynamics and spatial distribution of mixing processes will benefit future long-term programs such as CLIVAR.
NASA Astrophysics Data System (ADS)
Wang, N.; Li, J.; Borisov, D.; Gharti, H. N.; Shen, Y.; Zhang, W.; Savage, B. K.
2016-12-01
We incorporate 3D anelastic attenuation into the collocated-grid finite-difference method on curvilinear grids (Zhang et al., 2012), using the rheological model of the generalized Maxwell body (Emmerich and Korn, 1987; Moczo and Kristek, 2005; Käser et al., 2007). We follow a conventional procedure to calculate the anelastic coefficients (Emmerich and Korn, 1987) determined by the Q(ω)-law, with a modification in the choice of frequency band and thus the relaxation frequencies that equidistantly cover the logarithmic frequency range. We show that such an optimization of anelastic coefficients is more accurate when using a fixed number of relaxation mechanisms to fit the frequency independent Q-factors. We use curvilinear grids to represent the surface topography. The velocity-stress form of the 3D isotropic anelastic wave equation is solved with a collocated-grid finite-difference method. Compared with the elastic case, we need to solve additional material-independent anelastic functions (Kristek and Moczo, 2003) for the mechanisms at each relaxation frequency. Based on the stress-strain relation, we calculate the spatial partial derivatives of the anelastic functions indirectly thereby saving computational storage and improving computational efficiency. The complex-frequency-shifted perfectly matched layer (CFS-PML) is used for the absorbing boundary condition based on the auxiliary difference equation (Zhang and Shen, 2010). The traction image method (Zhang and Chen, 2006) is employed for the free-surface boundary condition. We perform several numerical experiments including homogeneous full-space models and layered half-space models, considering both flat and 3D Gaussian-shape hill surfaces. The results match very well with those of the spectral-element method (Komatitisch and Tromp, 2002; Savage et al., 2010), verifying the simulations by our method in the anelastic model with surface topography.
Local Climate Changes Forced by Changes in Land Use and topography in the Aburrá Valley, Colombia.
NASA Astrophysics Data System (ADS)
Zapata Henao, M. Z.; Hoyos Ortiz, C. D.
2017-12-01
One of the challenges in the numerical weather models is the adequate representation of soil-vegetation-atmosphere interaction at different spatial scales, including scenarios with heterogeneous land cover and complex mountainous terrain. The interaction determines the energy, mass and momentum exchange at the surface and could affect different variables including precipitation, temperature and wind. In order to quantify the long-term climate impact of changes in local land use and to assess the role of topography, two numerical experiments were examined. The first experiment allows assessing the continuous growth of urban areas within the Aburrá Valley, a complex terrain region located in Colombian Andes. The Weather Research Forecast model (WRF) is used as the basis of the experiment. The basic setup involves two nested domains, one representing the continental scale (18 km) and the other the regional scale (2 km). The second experiment allows drastic topography modification, including changing the valley configuration to a plateau. The control run for both experiments corresponds to a climatological scenario. In both experiments the boundary conditions correspond to the climatological continental domain output. Surface temperature, surface winds and precipitation are used as the main variables to compare both experiments relative to the control run. The results of the first experiment show a strong relationship between land cover and the variables, specially for surface temperature and wind speed, due to the strong forcing land cover imposes on the albedo, heat capacity and surface roughness, changing temperature and wind speed magnitudes. The second experiment removes the winds spatial variability related with hill slopes, the direction and magnitude are modulated only by the trade winds and roughness of land cover.
NASA Astrophysics Data System (ADS)
Shimabukuro, Maurício; Rizzo, Alexandra E.; Alfaro-Lucas, Joan M.; Fujiwara, Yoshihiro; Sumida, Paulo Y. G.
2017-12-01
A new polychaete species, Sphaerodoropsis kitazatoi (Annelida: Phyllodocida: Sphaerodoridae), is described from the abyssal Southwest Atlantic Ocean at the base of São Paulo Ridge (4204 m depth). This species was found in sediments impacted by a whale carcass. The new species has four longitudinal rows of macrotubercles and one transversal row per chaetiger and shares several characters with S. anae Aguado and Rouse, 2006 that is also associated with chemosynthetic environments. They can be clearly distinguished from S. anae and other Sphaerodoropsis species by the arrangement and the number of prostomial, body and parapodial papillae.
NASA Astrophysics Data System (ADS)
Slack, John F.; Turner, Robert J. W.; Ware, Paul L. G.
1998-05-01
Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (˜200 m depth) west of the Crimean Peninsula indicate an active sea-floor hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (˜100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.
Long-term change in benthopelagic fish abundance in the abyssal northeast Pacific Ocean.
Bailey, D M; Ruhl, H A; Smith, K L
2006-03-01
Food web structure, particularly the relative importance of bottom-up and top-down control of animal abundances, is poorly known for the Earth's largest habitats: the abyssal plains. A unique 15-yr time series of climate, productivity, particulate flux, and abundance of primary consumers (primarily echinoderms) and secondary consumers (fish) was examined to elucidate the response of trophic levels to temporal variation in one another. Towed camera sled deployments in the abyssal northeast Pacific (4100 m water depth) showed that annual mean numbers of the dominant fish genus (Coryphaenoides spp.) more than doubled over the period 1989-2004. Coryphaenoides spp. abundance was significantly correlated with total abundance of mobile epibenthic megafauna (echinoderms), with changes in fish abundance lagging behind changes in the echinoderms. Direct correlations between surface climate and fish abundances, and particulate organic carbon (POC) flux and fish abundances, were insignificant, which may be related to the varied response of the potential prey taxa to climate and POC flux. This study provides a rare opportunity to study the long-term dynamics of an unexploited marine fish population and suggests a dominant role for bottom-up control in this system.
Slack, J.F.; Turner, R.J.W.; Ware, P.L.G.
1998-01-01
Large submarine mud volcanoes in the abyssal part of the Black Sea south of the Crimean Peninsula are similar in many respects to synsedimentary mud volcanoes in the Mesoproterozoic Belt-Purcell basin. One of the Belt-Purcell mud volcanoes directly underlies the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia. Footwall rocks to the Sullivan deposit comprise variably tourmalinized siltstone, conglomerate, and related fragmental rock; local thin pyrrhotite-rich and spessartine-quartz beds are interpreted as Fe and Fe-Mn exhalites, respectively. Analogous Fe- and Mn-rich sediments occur near the abyssal Black Sea mud volcanoes. Massive pyrite crusts and associated carbonate chimneys discovered in relatively shallow waters (~200 m depth) west of the Crimean Peninsula indicate an active sea-floor-hydrothermal system. Subaerial mud volcanoes on the Kerch and Taman Peninsulas (~100 km north of the abyssal mud volcanoes) contain saline thermal waters that locally have very high B contents (to 915 mg/L). These data suggest that tourmalinites might be forming in or near submarine Black Sea mud volcanoes, where potential may also exist for Sullivan-type Pb-Zn mineralization.
NASA Astrophysics Data System (ADS)
Brown, D. B.; Day, J. M.; Waters, C. L.
2016-12-01
Abyssal peridotites are residues of both modern and ancient partial melt extraction at oceanic ridges and can be used to examine melting processes and mantle heterogeneity. The highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re, and the 187Re-187Os system embedded within them), are useful for investigating these issues, as they are generally strongly compatible. To date, limited data on HSE and Os isotopes has been obtained on abyssal peridotites from fast spreading centers. Here, we report new HSE abundance and 187Os/188Os data for Pacific Antarctic Ridge (PAR) and East Pacific Rise (EPR) abyssal peridotites. Samples from the PAR were dredged from two separate localities along the Udintsev Fracture Zone, and EPR samples were taken from Hess Deep. The PAR full spreading rate ranges from 54-83mm/year [1,2] and is 75 mm/year [2] at the Udintsev Fracture Zone. These spreading rates characterize the PAR as an intermediate spreading ridge, whereas the fast spreading EPR has a full rate ranging from 128-157 mm/year [3]. The 187Os/188Os ratios for whole-rocks from the PAR range from 0.114 to 0.134, with Re depletion ages (TRD) varying from 1 Ga to present. Despite the large variation in 187Os/188Os, HSE patterns are primitive mantle-like [4], with Ru/Ir ratios ranging from 1.5-2.1. Depletions in Re and Pd are present, as is expected in partial melt residues, and the samples have undergone 4-15% partial melting based on the rare earth elements (REE). The EPR exhibits higher levels of melt depletion ranging from 18-24%. New results show Hess Deep samples have 187Os/188Os ratios of 0.123 and 0.125 for whole-rocks. These findings indicate that PAR and EPR Os isotopic data overlap with the global record of abyssal peridotites from slower ridges and that Os isotopic heterogeneities are preserved across a wide range of spreading rates and degrees of melt extraction. [1] Géli, L., et al. (1997), Science, 278, 1281-1284; [2] Castillo, P.R., et al. (1998) EPSL, 154,109-125; [3] Warren, J.M., (2016) Lithos, 248-251, 193-219; [4] Becker, H., et al. (2006) GCA, 70, 4528-4550
Influence of Melting and Hydrothermal Alteration on Lead in Abyssal Peridotites
NASA Astrophysics Data System (ADS)
Warren, J. M.; D'Errico, M. E.; Godard, M.; Coble, M. A.; Horan, M.
2017-12-01
The lead isotopic system is a key tracer of mantle convection, yet the abundance and mineralogical hosts of Pb in the upper mantle are poorly constrained. To address this, we analyzed the concentration of Pb in minerals and bulk rock powders of abyssal peridotites. These samples represent the oceanic upper mantle following melt extraction. They can be used to explore the mantle Pb budget, assuming that the amount of Pb lost during mantle melting and gained during seafloor alteration can be determined. We performed in situ analysis of the three main silicate phases (olivine, orthopyroxene, and clinopyroxene), which yield Pb concentrations of 2-30 ppb. Olivine is the main mineralogical host of Pb, unlike other trace elements, which are predominantly hosted in clinopyroxene. Sulfide contains an average of 3 ppm Pb, but these high concentrations are offset by low modal abundances (<0.01%), making this mineral a minor source of peridotite Pb. Whole rock Pb concentrations of abyssal peridotites measured by thermal ionization mass spectrometry range from 3 to 38 ppb. These values are close to the reconstructed whole rock values of 2 to 14 ppb, calculated from the mineral concentrations of Pb multiplied by their modes. In contrast, the average value among literature data for whole rock abyssal peridotites is >100 ppb [1, 2], measured by inductively-coupled plasma mass spectrometry. The higher values among literature data may reflect a combination of lower analytical sensitivity and effects of alteration. Samples in this study include an unaltered peridotite from the Gakkel Ridge, which shows the closest agreement between reconstructed and measured whole rock values. We estimate that our peridotites have undergone 5 to 9% melting [3], based on non-modal fractional melt modeling of rare earth element abundances. Assuming 18 to 23 ppb Pb in the depleted source mantle [4, 5], expected concentrations in abyssal peridotites after melting are <1 ppb. However, as suggested by [5], mantle Pb abundance is poorly constrained by the Ce/Pb ratio of mid-ocean ridge basalt and the amount of Pb in the depleted mantle may be higher than current estimates. [1] Niu, 2004, J. Pet.; [2] Paulick et al., 2006, Chem. Geol.; [3] D'Errico et al., 2016, GCA; [4] Salters and Stracke, 2004, G-Cubed; [5] Workman and Hart, 2005 EPSL.
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Atmospheric flow simulations over and around the Soufriere Hills volcano in the island of Montserrat in the Caribbean are studied, through a series of numerical model experiments, in order to link interactions between the volcano and the atmosphere. A heated surface is added on the top of the mountain, in order to simulate the dome of an active volcano that is not undergoing an eruption. A series of simulations with different atmospheric conditions and control parameters for the volcano will be presented. Simulations are made using the Weather Research and Forecasting (WRF) model, with a high resolution digital elevation map of Montserrat. Simulations with an idealised topography have also been examined, in order for the results to have general applicability to similar-sized volcanoes located in the Tropics. The model was initialised with soundings from representative days of qualitatively different atmospheric conditions from the rainy season. The heated volcanic dome changes the orographic flow response significantly, depending upon the atmospheric conditions and the magnitude of the dome surface temperature anomaly. The flow regime and qualitative characteristic features, such orographic clouds and rainfall patterns, can all change significantly. For example, the orographic rainfall over the volcano can be significantly enhanced with increased dome temperatures. The implications of these changes on the eruptive behaviour of the volcano and resulting secondary volcanic hazards, such as lahars, will be discussed.
NASA Astrophysics Data System (ADS)
Bahrin Jaafar, Kamal
2016-04-01
The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.
An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.
Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire
2015-12-01
Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Braña, Alfredo F; Sarmiento-Vizcaíno, Aida; Pérez-Victoria, Ignacio; Otero, Luis; Fernández, Jonathan; Palacios, Juan José; Martín, Jesús; de la Cruz, Mercedes; Díaz, Caridad; Vicente, Francisca; Reyes, Fernando; García, Luis A; Blanco, Gloria
2017-02-24
Two new antibiotics, branimycins B (2) and C (3), were produced by fermentation of the abyssal actinobacterium Pseudonocardia carboxydivorans M-227, isolated from deep seawater of the Avilés submarine Canyon. Their structures were elucidated by HRMS and NMR analyses. These compounds exhibit antibacterial activities against a panel of Gram-positive bacteria, including Corynebacterium urealyticum, Clostridium perfringens, and Micrococcus luteus, and against the Gram-negative bacterium Neisseria meningitidis. Additionally, branimycin B displayed moderate antibacterial activity against other Gram-negative bacteria such as Bacteroides fragilis, Haemophilus influenzae, and Escherichia coli, and branimycin C against the Gram-positive Enterococcus faecalis and methicillin-sensitive and methicillin-resistant Staphylococcus aureus.
Cabrol, N.A.; Farmer, J.D.; Grin, E.A.; Ritcher, L.; Soderblom, L.; Li, R.; Herkenhoff, K.; Landis, G.A.; Arvidson, R. E.
2006-01-01
Gusev crater was selected as the landing site for Spirit on the basis of morphological evidence of long-lasting water activity, including possibly fluvial and lacustrine episodes. From the Columbia Memorial Station to the Columbia Hills, Spirit's traverse provides a journey back in time, from relatively recent volcanic plains showing little evidence for aqueous processes up to the older hills, where rock and soil composition are drastically different. For the first 156 sols, the only evidence of water action was weathering rinds, vein fillings, and soil crust cementation by salts. The trenches of Sols 112-145 marked the first significant findings of increased concentrations of sulfur and magnesium varying in parallel, suggesting that they be paired as magnesium-sulfate. Spirit's arrival at West Spur coincided with a shift in rock and soil composition with observations hinting at substantial amounts of water in Gusev's past. We used the Microscopic Imager data up to Sol 431 to analyze rock and soil properties and infer plausible types and magnitude of aqueous processes through time. We show the role played early by topography and structure. The morphology, texture, and deep alteration shown by the rocks in West Spur and the Columbia Hills Formation (CHF) suggest conditions that are not met in present-day Mars and required a wetter environment, which could have included transport of sulfur, chlorine, and bromine in water, vapor in volcanic gases, hydrothermal circulation, or saturation in a briny fluid containing the same elements. Changing conditions that might have affected flow circulation are suggested by different textural and morphological characteristics between the rocks in the CHF and those of the plains, with higher porosity proxy, higher void ratio, and higher water storage potential in the CHF. Soils were used to assess aqueous processes and water pathways in the top layers of modern soils. We conclude that infiltration might have become more difficult with time. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Pascal, K.; Palamartchouk, K.; Lahusen, R. G.; Young, K.; Voight, B.
2015-12-01
Twenty years ago, began the eruption of the explosive Soufrière Hills Volcano, dominating the southern part of the island of Montserrat, West Indies. Five phases of effusive activity have now occurred, characterized by dome building and collapse, causing numerous evacuations and the emigration of half of the population. Over the years, the volcano monitoring network has greatly expanded. The GPS network, started from few geodetic markers, now consists of 14 continuous dual frequency GPS stations, distributed on and around the edifice, where topography and vegetation allow. The continuous GPS time series have given invaluable insight into the volcano behavior, notably revealing deflation/inflation cycles corresponding to phases and pauses of effusive activity, respectively. In 2014, collaboration of the CALIPSO Project (Penn State; NSF) with the Montserrat Volcano Observatory enriched the GPS and seismic monitoring networks with six 'spider' stations. The 'spiders', developed by R. Lahusen at Cascades Volcano Observatory, are designed to be deployed easily in rough areas and combine a low cost seismic station and a L1-only GPS station. To date, three 'spiders' have been deployed on Soufrière Hills Volcano, the closest at ~1 km from the volcanic conduit, adjacent to a lava lobe on the dome. Here we present the details of GPS data processing in a network consisting of both dual and single frequency receivers ('spiders') using GAMIT/GLOBK software. Processing together single and dual frequency data allowed their representation in a common reference frame, and a meaningful geophysical interpretation of all the available data. We also present the 'spiders' time series along with the results from the rest of the network and examine if any significant deformation, correlating with other manifestations of volcanic activity, has been recorded by the 'spiders' since deployment. Our results demonstrate that low cost GNSS equipment can serve as valuable components in volcano deformation monitoring networks.
Environmental Controls on Above-Ground Biomass in the Taita Hills, Kenya
NASA Astrophysics Data System (ADS)
Adhikari, H.; Heiskanen, J.; Siljander, M.; Maeda, E. E.; Heikinheimo, V.; Pellikka, P.
2016-12-01
Tropical forests are globally significant ecosystems which maintain high biodiversity and provide valuable ecosystem services, including carbon sink, climate change mitigation and adaptation. This ecosystem has been severely degraded for decades. However, the magnitude and spatial patterns of the above ground biomass (AGB) in the tropical forest-agriculture landscapes is highly variable, even under the same climatic condition and land use. This work aims 1) to generate wall-to-wall map of AGB density for the Taita Hills in Kenya based on field measurements and airborne laser scanning (ALS) and 2) to examine environmental controls on AGB using geospatial data sets on topography, soils, climate and land use, and statistical modelling. The study area (67000 ha) is located in the northernmost part of the Eastern Arc Mountains of Kenya and Tanzania, and the highest hilltops reach over 2200 m in elevation. Most of the forest area has been cleared for croplands and agroforestry, and hills are surrounded by the semi-arid scrublands and dry savannah at an elevation of 600-900 m a.s.l. As a result, the current land cover is a mosaic of various types of land cover and land use. The field measurements were carried out in total of 216 plots in 2013-2015 for AGB computations and ALS flights were conducted in 2014-2015. AGB map at 30 m x 30 m resolution was implemented using multiple linear regression based on ALS variables derived from the point cloud, namely canopy cover and 25 percentile height of ALS returns (R2 = 0.88). Boosted regression trees (BRT) was used for examining the relationship between AGB and explanatory variables, which were derived from ALS-based high resolution DEM (2 m resolution), soil database, downscaled climate data and land cover/use maps based on satellite image analysis. The results of these analyses will be presented in the conference.
NASA Astrophysics Data System (ADS)
Lacey, Nichola C.; Rowden, Ashley A.; Clark, Malcolm R.; Kilgallen, Niamh M.; Linley, Thomas; Mayor, Dan J.; Jamieson, Alan J.
2016-05-01
There are few biological datasets that span large bathymetric ranges with sufficient resolution to identify trends across the abyssal and hadal transition zone, particularly over multiple trenches. Here, scavenging Amphipoda were collected from three trenches in the South Pacific Ocean at bathyal to hadal depths. Diversity and community structure were examined from stations within the Kermadec Trench (1490-9908 m) and New Hebrides Trench (2000-6948 m) and additional data were included from the South Fiji Basin (4000 m) and Peru-Chile Trench (4602-8074 m). The hadal community structure of the Kermadec and New Hebrides trenches were distinct from the surrounding abyssal and bathyal depths and correlated to hydrostatic pressure and POC flux. Low POC flux in the New Hebrides Trench and South Fiji Basin best explained the dissimilarity in abyssal community structure from those of the disparate Kermadec and Peru-Chile trenches. POC flux also best explained patterns in hadal community structure with the Kermadec and New Hebrides Trench communities showing greater similarity to each other than to the eutrophic Peru-Chile Trench. Hydrostatic pressure was the strongest driver of intra-trench assemblage composition in all trench environments. A unimodal pattern of species diversity, peaking between 4000 and 5000 m, was best explained by hydrostatic pressure and temperature.
Drazen, Jeffrey C; Phleger, Charles F; Guest, Michaela A; Nichols, Peter D
2008-09-01
The lipid, fatty acid (FA), and sterol composition of two ophiuroids and four holothurians from the abyssal eastern North Pacific were analysed to assess their feeding habits and to ascertain their composition for use in a larger study to examine food web dynamics and trophic ecology. Holothurians were rich in phytosterols and algal derived FA such as docosahexaenoic acid and eicosapentaenoic suggesting tight trophic coupling to phytodetritus. Large proportions of stanols were found, probably a result of enteric bacteria but they may come from sterol metabolism in the holothurians themselves. Oneirophanta mutabilis was distinct with much higher levels of stanols and bacterially derived FA suggesting specific selection of bacteria rich detrital particles or the activity of enteric and integumental bacteria. The ophiuroids sterol and FA compositions differed greatly from the holothurians and reflected consumption of animal material in addition to phytodetritus. Large proportions of energy storage lipids suggested a sporadic food supply. Several unusual fatty acids were found in these abyssal echinoderms. Tetracosahexaenoic acid, 24:6omega3, in ophiuroids and 23:1 in holothurians may be good biomarkers for food web studies. We report the first occurrence of alphaOH 24:1 in holothurians with none detected in ophiuroids. Its function is presently unknown.
The absence of sharks from abyssal regions of the world's oceans
Priede, Imants G; Froese, Rainer; Bailey, David M; Bergstad, Odd Aksel; Collins, Martin A; Dyb, Jan Erik; Henriques, Camila; Jones, Emma G; King, Nicola
2006-01-01
The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales. We propose that they are excluded from the abyss by high-energy demand, including an oil-rich liver for buoyancy, which cannot be sustained in extreme oligotrophic conditions. Sharks are apparently confined to ca 30% of the total ocean and distribution of many species is fragmented around sea mounts, ocean ridges and ocean margins. All populations are therefore within reach of human fisheries, and there is no hidden reserve of chondrichthyan biomass or biodiversity in the deep sea. Sharks may be more vulnerable to over-exploitation than previously thought. PMID:16777734
NASA Astrophysics Data System (ADS)
Chernyshev, Alexei V.; Polyakova, Neonila E.
2018-02-01
Approximately 30 nemertean specimens were obtained from the samples collected with an epibenthic sledge during the Vema-TRANSIT expedition (2014-2015) to the Vema Fracture Zone. A preliminary molecular phylogenetic analysis of eight samples revealed four eumonostiliferan and three tubulanid species. Abyssonemertes kajiharai gen. et sp. nov. and Nemertovema hadalis gen. et sp. nov. are described based on morphological and DNA (16S, 18S, 28S, COI, and H3) data; the latter species is the deepest known nemertean to date. It was collected in the Puerto Rico Trench from a depth of 8336-8339 m. A preliminary molecular phylogenetic analysis based on the five genes indicates that three tubulanid species form a monophyletic group with the only previously known abyssal tubulanid (Tubulanidae gen. sp. IZ 45557) from the abyssal plain adjacent to the Kuril-Kamchatka Trench, but the four eumonostiliferan species belong to three different clades. Additionally, a roadmap on the most pressing questions and issues on abyssal and hadal nemerteans is provided. This is based on the processing of the nemertean material collected during the four deep-sea expeditions SoJaBio, KuramBio I, SokhoBio, and KuramBio II and shall provide a direction for future studies.
NASA Astrophysics Data System (ADS)
Bober, Simon; Brix, Saskia; Riehl, Torben; Schwentner, Martin; Brandt, Angelika
2018-02-01
A trans-Atlantic transect along the Vema Fracture Zone was sampled during the Vema-TRANSIT expedition in 2014/15. The aim of the cruise was to investigate whether the Mid-Atlantic Ridge (MAR) isolates the abyssal fauna of the western and eastern abyssal basins. Based on two genetic datasets of Macrostylidae and Desmosomatidae/Nannoniscidae studied by Riehl et al. and Brix et al. in this issue we found that most of the therein-delimitated species were found at only one side of the MAR. We analysed those species of Macrostylidae and Desmosomatidae that were sampled across the MAR and complemented these with one species of a third family: Munnopsidae. With these datasets we were further able to consider the effect of different niche adaptations: Macrostylidae are infaunal (burrowing), Munnopsidae are considered epifaunal with pronounced swimming capabilities and Desmosomatidae and Nannoniscidae are partly able to swim, but are not as well adapted to swimming as Munnopsidae. We concluded that the MAR seems to be a dispersal barrier for the non-swimming Macrostylidae as well as weakly-swimming Desmosomatidae and Nannoniscidae. However, four species of Macrostylidae and Desmosomatidae did cross the MAR, but evidence for regular unrestricted gene flow is still lacking. For the swimming Munnopsidae we were able to detect persistent gene flow across the MAR.
The absence of sharks from abyssal regions of the world's oceans.
Priede, Imants G; Froese, Rainer; Bailey, David M; Bergstad, Odd Aksel; Collins, Martin A; Dyb, Jan Erik; Henriques, Camila; Jones, Emma G; King, Nicola
2006-06-07
The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales. We propose that they are excluded from the abyss by high-energy demand, including an oil-rich liver for buoyancy, which cannot be sustained in extreme oligotrophic conditions. Sharks are apparently confined to ca 30% of the total ocean and distribution of many species is fragmented around sea mounts, ocean ridges and ocean margins. All populations are therefore within reach of human fisheries, and there is no hidden reserve of chondrichthyan biomass or biodiversity in the deep sea. Sharks may be more vulnerable to over-exploitation than previously thought.
Numerical Modelling of Seismic Slope Stability
NASA Astrophysics Data System (ADS)
Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles
Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Accettella, Daniela; Costa, Sergio; Lastras, Galderic; Acosta, Juan; Canals, Miquel; Wardell, Nigel
2009-06-01
We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW-NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW-ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in the Holocene, perhaps in historical times.
Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean
Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.
1992-01-01
Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.
LROC Observations of Geologic Features in the Marius Hills
NASA Astrophysics Data System (ADS)
Lawrence, S.; Stopar, J. D.; Hawke, R. B.; Denevi, B. W.; Robinson, M. S.; Giguere, T.; Jolliff, B. L.
2009-12-01
Lunar volcanic cones, domes, and their associated geologic features are important objects of study for the LROC science team because they represent possible volcanic endmembers that may yield important insights into the history of lunar volcanism and are potential sources of lunar resources. Several hundred domes, cones, and associated volcanic features are currently targeted for high-resolution LROC Narrow Angle Camera [NAC] imagery[1]. The Marius Hills, located in Oceanus Procellarum (centered at ~13.4°N, -55.4°W), represent the largest concentration of these volcanic features on the Moon including sinuous rilles, volcanic cones, domes, and depressions [e.g., 2-7]. The Marius region is thus a high priority for future human lunar exploration, as signified by its inclusion in the Project Constellation list of notional future human lunar exploration sites [8], and will be an intense focus of interest for LROC science investigations. Previous studies of the Marius Hills have utilized telescopic, Lunar Orbiter, Apollo, and Clementine imagery to study the morphology and composition of the volcanic features in the region. Complementary LROC studies of the Marius region will focus on high-resolution NAC images of specific features for studies of morphology (including flow fronts, dome/cone structure, and possible layering) and topography (using stereo imagery). Preliminary studies of the new high-resolution images of the Marius Hills region reveal small-scale features in the sinuous rilles including possible outcrops of bedrock and lobate lava flows from the domes. The observed Marius Hills are characterized by rough surface textures, including the presence of large boulders at the summits (~3-5m diameter), which is consistent with the radar-derived conclusions of [9]. Future investigations will involve analysis of LROC stereo photoclinometric products and coordinating NAC images with the multispectral images collected by the LROC WAC, especially the ultraviolet data, to enable measurements of color variations within and amongst deposits and provide possible compositional insights, including the location of possibly related pyroclastic deposits. References: [1] J. D. Stopar et al. (2009), LRO Science Targeting Meeting, Abs. 6039 [2] Greeley R (1971) Moon, 3, 289-314 [3] Guest J. E. (1971) Geol. and Phys. of the Moon, p. 41-53. [4] McCauley J. F. (1967) USGS Geologic Atlas of the Moon, Sheet I-491 [5] Weitz C. M. and Head J. W. (1999) JGR, 104, 18933-18956 [6] Heather D. J. et al. (2003) JGR, doi:10.1029/2002JE001938 [7] Whitford-Stark, J. L., and J. W. Head (1977) Proc. LSC 8th, 2705-2724 [8] Gruener J. and Joosten B. K. (2009) LRO Science Targeting Meeting, Abs. 6036 [9] Campbell B. A. et al. (2009) JGR, doi:10.1029/2008JE003253.
Katome: de novo DNA assembler implemented in rust
NASA Astrophysics Data System (ADS)
Neumann, Łukasz; Nowak, Robert M.; Kuśmirek, Wiktor
2017-08-01
Katome is a new de novo sequence assembler written in the Rust programming language, designed with respect to future parallelization of the algorithms, run time and memory usage optimization. The application uses new algorithms for the correct assembly of repetitive sequences. Performance and quality tests were performed on various data, comparing the new application to `dnaasm', `ABySS' and `Velvet' genome assemblers. Quality tests indicate that the new assembler creates more contigs than well-established solutions, but the contigs have better quality with regard to mismatches per 100kbp and indels per 100kbp. Additionally, benchmarks indicate that the Rust-based implementation outperforms `dnaasm', `ABySS' and `Velvet' assemblers, written in C++, in terms of assembly time. Lower memory usage in comparison to `dnaasm' is observed.
Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.
2016-01-01
Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nibbelink, K.A.; Sorgenfrei, M.C.; Rice, D.E.
Yombo field in the Congo is sourced from the lacustrine shales of the presalt rift stage and produces from the Albian and Cenomanian, postsalt, Sendji carbonate and Tchala Sandstone. The Yombo prospect exploration model included an upper Sendji stratigraphic trap with two components and a structural nose. The buried hill component of the trap is formed by topographic relief on the reservoir below the top Sendji unconformity. The lower Sendji slump blocks provide a high on which the upper Sendji grainstone shoal facies develop. Both depositional relief and erosion during the top Sendji unconformity contribute to the topography. An isochronmore » thick in the overlying Tchala valley-fill sediments defined a drainage pattern on the unconformity around the buried hill of the underlying upper Sendji. The facies change component is formed by the pinch-out of the grainstone shoal reservoir facies into porous, but impermeable lagoonal dolomite interbedded with anhydrite and shale. Capillary pressure measurements on the 16% porosity, 0.1 md permeability lagoonal dolomite, along with pore throat radius and buoyancy calculations, demonstrated this facies could trap a significant column of low-gravity oil at shallow depth. The Tchala Sandstone contains several separate hydrocarbon accumulations. A stratigraphic trap in the lower Tchala is formed by marine and tidal channel sandstones pinching out into lagoonal shales. The nearshore marine sandstones of the upper Tchala contain additional hydrocarbons in structural and stratigraphic traps. The stratigraphic pinch-out that cross the Yombo nose trap a significant hydrocarbon accumulation, even though the four-way structural closure is relatively small.« less
Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
NASA Astrophysics Data System (ADS)
Liang, Xinfeng; Spall, Michael; Wunsch, Carl
2017-10-01
Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
Lambshead, P John D; Brown, Caroline J; Ferrero, Timothy J; Hawkins, Lawrence E; Smith, Craig R; Mitchell, Nicola J
2003-01-09
The possibility for commercial mining of deep-sea manganese nodules is currently under exploration in the abyssal Clarion-Clipperton Fracture Zone. Nematodes have potential for biomonitoring of the impact of commercial activity but the natural biodiversity is unknown. We investigate the feasibility of nematodes as biomonitoring organisms and give information about their natural biodiversity. The taxonomic composition (at family to genus level) of the nematode fauna in the abyssal Pacific is similar, but not identical to, the North Atlantic. Given the immature state of marine nematode taxonomy, it is not possible to comment on the commonality or otherwise of species between oceans. The between basin differences do not appear to be directly linked to current ecological factors. The abyssal Pacific region (including the Fracture Zone) could be divided into two biodiversity subregions that conform to variations in the linked factors of flux to the benthos and of sedimentary characteristics. Richer biodiversity is associated with areas of known phytodetritus input and higher organic-carbon flux. Despite high reported sample diversity, estimated regional diversity is less than 400 species. The estimated regional diversity of the CCFZ is a tractable figure for biomonitoring of commercial activities in this region using marine nematodes, despite the immature taxonomy (i.e. most marine species have not been described) of the group. However, nematode ecology is in dire need of further study.
NASA Astrophysics Data System (ADS)
Goineau, Aurélie; Gooday, Andrew J.
2017-04-01
The benthic biota of the Clarion-Clipperton Zone (CCZ, abyssal eastern equatorial Pacific) is the focus of a major research effort linked to possible future mining of polymetallic nodules. Within the framework of ABYSSLINE, a biological baseline study conducted on behalf of Seabed Resources Development Ltd. in the UK-1 exploration contract area (eastern CCZ, ~4,080 m water depth), we analysed foraminifera (testate protists), including ‘live’ (Rose Bengal stained) and dead tests, in 5 cores (0-1 cm layer, >150-μm fraction) recovered during separate megacorer deployments inside a 30 by 30 km seafloor area. In both categories (live and dead) we distinguished between complete and fragmented specimens. The outstanding feature of these assemblages is the overwhelming predominance of monothalamids, a group often ignored in foraminiferal studies. These single-chambered foraminifera, which include agglutinated tubes, spheres and komokiaceans, represented 79% of 3,607 complete tests, 98% of 1,798 fragments and 76% of the 416 morphospecies (live and dead combined) in our samples. Only 3.1% of monothalamid species and 9.8% of all species in the UK-1 assemblages are scientifically described and many are rare (29% singletons). Our results emphasise how little is known about foraminifera in abyssal areas that may experience major impacts from future mining activities.
Submarine landslides in Arctic sedimentation: Canada Basin
Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.
2016-01-01
Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.
Calcareous sponges from abyssal and bathyal depths in the Weddell Sea, Antarctica
NASA Astrophysics Data System (ADS)
Rapp, Hans Tore; Janussen, Dorte; Tendal, Ole S.
2011-03-01
Calcareous sponges have traditionally been regarded as shallow-water organisms, a persistent myth created by Hentschel (1925), partly supported by the problematic question of calcareous skeletal secretion under high partial CO 2-pressure below the CCD in the abyss. Up to now, only few species world-wide of the sponge class Calcarea have been described from depths below 2000 m. By far, the largest number of records of Antarctic Calcarea is known from shelf areas between 50 and 400 m depth. They have only been sporadically recorded on the lower shelf and the upper slope from depths between 570 and 850 m. From abyssal depths in the Antarctic there are no previous records of calcareous sponges. It was therefore a big surprise when the first true deep-sea Calcarea from the Antarctic were collected at depths between 1120 and 4400 m during the ANDEEP I, II and III expeditions ( Janussen et al., 2006). To date, five calcareous sponge species have been found, including three species new to science. The three new species belong to the genera Ascaltis, Clathrina and Leucetta. Although calcareous sponges are rare in the Antarctic deep sea, they seem to constitute a constant component of the fauna. Antarctic Calcarea shows all the characteristics of need for revision and further collection and investigation. Still, many new species are likely to be discovered in the Antarctic deep-sea.
Amon, Diva J.; Ziegler, Amanda F.; Dahlgren, Thomas G.; Glover, Adrian G.; Goineau, Aurélie; Gooday, Andrew J.; Wiklund, Helena; Smith, Craig R.
2016-01-01
There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km2 stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m−2. Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity. PMID:27470484
Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
van Oevelen, Dick
2018-01-01
Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403
Afrane, Yaw A; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun
2014-10-15
In African highland areas where endemicity of malaria varies greatly according to altitude and topography, parasitaemia accompanied by fever may not be sufficient to define an episode of clinical malaria in endemic areas. To evaluate the effectiveness of malaria interventions, age-specific case definitions of clinical malaria needs to be determined. Cases of clinical malaria through active case surveillance were quantified in a highland area in Kenya and defined clinical malaria for different age groups. A cohort of over 1,800 participants from all age groups was selected randomly from over 350 houses in 10 villages stratified by topography and followed for two-and-a-half years. Participants were visited every two weeks and screened for clinical malaria, defined as an individual with malaria-related symptoms (fever [axillary temperature≥37.5°C], chills, severe malaise, headache or vomiting) at the time of examination or 1-2 days prior to the examination in the presence of a Plasmodium falciparum positive blood smear. Individuals in the same cohort were screened for asymptomatic malaria infection during the low and high malaria transmission seasons. Parasite densities and temperature were used to define clinical malaria by age in the population. The proportion of fevers attributable to malaria was calculated using logistic regression models. Incidence of clinical malaria was highest in valley bottom population (5.0% cases per 1,000 population per year) compared to mid-hill (2.2% cases per 1,000 population per year) and up-hill (1.1% cases per 1,000 population per year) populations. The optimum cut-off parasite densities through the determination of the sensitivity and specificity showed that in children less than five years of age, 500 parasites per μl of blood could be used to define the malaria attributable fever cases for this age group. In children between the ages of 5-14, a parasite density of 1,000 parasites per μl of blood could be used to define the malaria attributable fever cases. For individuals older than 14 years, the cut-off parasite density was 3,000 parasites per μl of blood. Clinical malaria case definitions are affected by age and endemicity, which needs to be taken into consideration during evaluation of interventions.
Breakup of last glacial deep stratification in the South Pacific
NASA Astrophysics Data System (ADS)
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-01
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.
NASA Technical Reports Server (NTRS)
Dipippo, S.; Prendin, W.; Gasparoni, F.
1994-01-01
In spite of the apparent great differences between deep ocean and space environment, significant similarities can be recognized when considering the possible solutions and technologies enabling the development of remote automatic stations supporting the execution of scientific activities. In this sense it is believed that mutual benefits shall be derived from the exchange of experiences and results between people and organizations involved in research and engineering activities for hostile environments, such as space, deep sea, and polar areas. A significant example of possible technology transfer and common systematic approach is given, which describes in some detail how the solutions and the enabling technologies identified for an Abyssal Benthic Laboratory can be applied for the case of a lunar or planetary station.
The Nova-Canton Trough and the Late Cretaceous evolution of the central Pacific
NASA Astrophysics Data System (ADS)
Joseph, Devorah; Taylor, Brain; Shor, Alexander N.; Yamazaki, Toshitsugu
Free-air gravity anomalies derived from satellite altimetry data show that the major Pacific fracture zones, from the Pau to Marquesas, are co-polar about an Euler pole located at 150.5°W, 34.6°S for the period preceding chron 33 and including a large portion of the Cretaceous Normal Superchron. They also show continuity of the Clipperton Fracture Zone through the Line Islands to the Nova-Canton ridge and trough; this Canton-Clipperton trend is co-polar to the same pole. Sidescan-sonar and bathymetry data in the Nova-Canton Trough region reveal N140°E-striking abyssal hill topography south of the N70°E-striking structures of the Nova-Canton Trough and crustal fabric striking normal to the trough (N160°E) to the north. We conclude that the Nova-Canton Trough is the Middle Cretaceous extension of the Clipperton Fracture Zone. We propose that the anomalous depths (7000-8400 m) of the trough between 167°30'-168°30'W are the result of a complex plate reorganization. Conjugate magnetic anomaly lineations M1-M3 in the Phoenix lineations between the Central Pacific Fracture Zone and the Phoenix Fracture Zone and the absence of lineations younger than anomaly M3 west of the Phoenix Fracture Zone suggest that spreading may have gradually ceased along the Pacific-Phoenix system from west to east. We infer that the remaining active segment of the Pacific-Phoenix spreading system after anomaly M1 time was the easternmost section of the Phoenix lineations. At ˜M0 time, the Pacific-Phoenix spreading axis stretched from lineated bathymetric depressions lying between 180°W and the Phoenix Islands to ˜168°W and included the western deep of the Nova-Canton Trough. We hypothesize that accretion terminated on the Pacific-Phoenix spreading axis shortly after M0 time and that the absence of an M0 isochron in the region between the eastern Phoenix lineations and the Nova-Canton Trough, or along the Nova-Canton Trough itself, may be due to a decrease in spreading rate prior to termination. We concur with previous hypotheses that portions of the Phoenix plate were trapped on the Pacific plate by a ridge jump south to the nascent Manihiki Plateau; some portions were overprinted by the Aptian volcanism that formed the Manihiki Plateau and Robbie Ridge. Pacific-Farallon spreading south of the Nova-Canton Trough jumped westwards, initiating transcurrent motion along the easternmost section of the failed ˜M0 spreading axis (the western deep of the Nova-Canton Trough) which subsequently became the western end of the Clipperton (Pacific-Farallon) transform. In our reconstruction, the northeast and southeast margins of the Manihiki Plateau are rifted margins that form the western limit of Pacific-Farallon spreading between the Clipperton, Galapagos, and Marquesas fracture zones.
Shi, Yuning; Eissenstat, David M.; He, Yuting; ...
2018-05-12
Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less
NASA Astrophysics Data System (ADS)
Palma, J. L.; Rodrigues, C. V.; Lopes, A. S.; Carneiro, A. M. C.; Coelho, R. P. C.; Gomes, V. C.
2017-12-01
With the ever increasing accuracy required from numerical weather forecasts, there is pressure to increase the resolution and fidelity employed in computational micro-scale flow models. However, numerical studies of complex terrain flows are fundamentally bound by the digital representation of the terrain and land cover. This work assess the impact of the surface description on micro-scale simulation results at a highly complex site in Perdigão, Portugal, characterized by a twin parallel ridge topography, densely forested areas and an operating wind turbine. Although Coriolis and stratification effects cannot be ignored, the study is done under neutrally stratified atmosphere and static inflow conditions. The understanding gained here will later carry over to WRF-coupled simulations, where those conditions do not apply and the flow physics is more accurately modelled. With access to very fine digital mappings (<1m horizontal resolution) of both topography and land cover (roughness and canopy cover, both obtained through aerial LIDAR scanning of the surface) the impact of each element of the surface description on simulation results can be individualized, in order to estimate the resolution required to satisfactorily resolve them. Starting from the bare topographic description, in its coursest form, these include: a) the surface roughness mapping, b) the operating wind turbine, c) the canopy cover, as either body forces or added surface roughness (akin to meso-scale modelling), d) high resolution topography and surface cover mapping. Each of these individually will have an impact near the surface, including the rotor swept area of modern wind turbines. Combined they will considerably change flow up to boundary layer heights. Sensitivity to these elements cannot be generalized and should be assessed case-by-case. This type of in-depth study, unfeasible using WRF-coupled simulations, should provide considerable insight when spatially allocating mesh resolution for accurate resolution of complex flows.
Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface
NASA Astrophysics Data System (ADS)
Cutler, B. B.; Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.
How to Make a Virtual Landscape with Outcrops for Use in Geoscience Teaching
NASA Astrophysics Data System (ADS)
Houghton, J.; Gordon, C.; Craven, B.; Robinson, A.; Lloyd, G. E. E.; Morgan, D. J.
2016-12-01
We are using screen-based virtual reality landscapes to augment the teaching of basic geological field skills and to enhance 3D visualisation skills. Here we focus on the processes of creating these landscapes, both imagined and real, in the Unity 3D game engine. The virtual landscapes are terrains with embedded data for mapping exercises, or draped geological maps for understanding the 3D interaction of the geology with the topography. The nature of the landscapes built depends on the learning outcomes of the intended teaching exercise. For example, a simple model of two hills and a valley over which to drape a series of different geological maps can be used to enhance the understanding of the 3D interaction of the geology with the topography. A more complex topography reflecting the underlying geology can be used for geological mapping exercises. The process starts with a contour image or DEM, which needs to be converted into RAW files to be imported into Unity. Within Unity itself, there are a series of steps needed to create a world around the terrain (the setting of cameras, lighting, skyboxes etc) before the terrain can be painted with vegetation and populated with assets or before a splatmap of the geology can be added. We discuss how additional features such as a GPS unit or compass can be included. We are also working to create landscapes based on real localities, both in response to the demand for greater realism and to support students unable to access the field due to health or mobility issues. This includes adding 3D photogrammetric images of outcrops into the worlds. This process uses the open source/freeware tools VisualSFM and MeshLab to create files suitable to be imported into Unity. This project is a collaboration between the University of Leeds and Leeds College of Art, UK, and all our virtual landscapes are freely available online at www.see.leeds.ac.uk/virtual-landscapes/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuning; Eissenstat, David M.; He, Yuting
Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less
Soil organic carbon dynamics as affected by topography in southern California hillslopes systems
NASA Astrophysics Data System (ADS)
Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.
2015-12-01
Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion - in the context of a changing climate. For these reasons, our findings are relevant to make better predictions on future SOC dynamics in areas with evolving and complex three-dimensional landscapes.
Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.
1996-01-01
Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be extrapolated regionally. The location of an elliptical zone of active seismicity over the inferred provenance of the turbidites suggests that they were triggered by large earthquakes. Distal turbidite sediment accumulation rates were more than two orders of magnitude greater than pelagic sediment accumulation rates on the Canada Abyssal Plain during the last 8000 years. This disparity reconciles the discrepancy between the high accumulation rates assumed by some for the Arctic Ocean because of the numerous major rivers and large ice sheets that discharge into this small mediterranean basin and the low pelagic sedimentation rates that have been reported from the Arctic Ocean.
An exact solution for effects of topography on free Rayleigh waves
Savage, W.Z.
2004-01-01
An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.
Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range
Binnie, S.A.; Phillips, W.M.; Summerfield, M.A.; Fifield, L.K.
2007-01-01
Studies across a broad range of drainage basins have established a positive correlation between mean slope gradient and denudation rates. It has been suggested, however, that this relationship breaks down for catchments where slopes are at their threshold angle of stability because, in such cases, denudation is controlled by the rate of tectonic uplift through the rate of channel incision and frequency of slope failure. This mechanism is evaluated for the San Bernardino Mountains, California, a nascent range that incorporates both threshold hill-slopes and remnants of pre-uplift topography. Concentrations of in situ-produced cosmogenic 10Be in alluvial sediments are used to quantify catchment-wide denudation rates and show a broadly linear relationship with mean slope gradient up to ???30??: above this value denudation rates vary substantially for similar mean slope gradients. We propose that this decoupling in the slope gradient-denudation rate relationship marks the emergence of threshold topography and coincides with the transition from transport-limited to detachment-limited denudation. The survival in the San Bernardino Mountains of surfaces formed prior to uplift provides information on the topographic evolution of the range, in particular the transition from slope-gradient-dependent rates of denudation to a regime where denudation rates are controlled by rates of tectonic uplift. This type of transition may represent a general model for the denudational response to orogenic uplift and topographic evolution during the early stages of mountain building. ?? 2007 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.
2017-07-01
Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional condition for individuals deeper in the hadal zone, likely related to food availability. These new data inform the discussion of factors controlling metabolism in the deep sea, including the visual interactions hypothesis and extend published trends to the planet's deepest-living fishes.
Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotopic compositions
NASA Astrophysics Data System (ADS)
Gerringer, M. E.; Andrews, A. H.; Huss, G. R.; Nagashima, K.; Popp, B. N.; Linley, T. D.; Gallo, N. D.; Clark, M. R.; Jamieson, A. J.; Drazen, J. C.
2018-02-01
Hadal trenches are isolated habitats that cover the greatest ocean depths (6,500-11,000 m) and are believed to host high levels of endemism across multiple taxa. A group of apparent hadal endemics is within the snailfishes (Liparidae), found in at least five geographically separated trenches. Little is known about their biology, let alone the reasons for their success at hadal depths around the world. This study investigated the life history of hadal liparids using sagittal otoliths of two species from the Kermadec (Notoliparis kermadecensis) and Mariana (Pseudoliparis swirei) trenches in comparison to successful abyssal macrourids found at the abyssal-hadal transition zone. Otoliths for each species revealed alternating opaque and translucent growth zones that could be quantified in medial sections. Assuming these annuli represent annual growth, ages were estimated for the two hadal liparid species to be from five to 16 years old. These estimates were compared to the shallower-living snailfish Careproctus melanurus, which were older than described in previous studies, expanding the potential maximum age for the liparid family to near 25 years. Age estimates for abyssal macrourids ranged from eight to 29 years for Coryphaenoides armatus and six to 16 years for C. yaquinae. In addition, 18O/16O ratios (δ18O) were measured across the otolith using secondary ion mass spectrometry (SIMS) to investigate the thermal history of the three liparids, and two macrourids. Changes in δ18O values were observed across the otoliths of C. melanurus, C. armatus, and both hadal liparids, the latter of which may represent a change of >5 °C in habitat temperature through ontogeny. The results would indicate there is a pelagic larval stage for the hadal liparids that rises to a depth above 1000 m, followed by a return to the hadal environment as these liparids grow. This result was unexpected for the hadal liparids given their isolated environment and large eggs, and the biological implications and plausibility of interpretations of these data are discussed. This study presents a first look at the life history of some of the deepest-living fishes through otolith analyses.
Engineering concepts for the placement of wastes on the abyssal seafloor
NASA Astrophysics Data System (ADS)
Valent, Philip J.; Palowitch, Andrew W.; Young, David K.
1998-05-01
The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management techniques in higher-priced areas, such as the New York-New Jersey area. In conclusion, the abyssal seafloor waste isolation concept is technically feasible and cost-effective for many waste sources.
NASA Astrophysics Data System (ADS)
Anka, Zahie; Séranne, Michel; Lopez, Michel; Scheck-Wenderoth, Magdalena; Savoye, Bruno
2009-05-01
We have integrated the relatively unknown distal domains of the Lower Congo basin, where the main depocenters of the Congo submarine fan are located, with the better-constrained successions on the shelf and upper slope, through the analysis of thousands of km of 2D seismic reflection profiles off-shore the Congo-Angola passive margin. The basin architecture is depicted by two ca. 800-km-long regional cross sections through the northern (Congo) and southern (Angola) margin. A large unit deposited basinward of the Aptian salt limit is likely to be the abyssal-plain equivalent of the upper-Cretaceous carbonate shelf that characterized the first post-rift deposits in West-equatorial African margins. A latest-Turonian shelf-deepening event is recorded in the abyssal plain as a long period (Coniacian-Eocene) of condensed sedimentation and basin starvation. The onset of the giant Tertiary Congo deep-sea fan in early Oligocene following this event reactivates the abyssal plain as the main depocenter of the basin. The time-space partitioning of sedimentation within the deep-sea fan results from the interplay among increasing sediment supply, margin uplift, rise of the Angola salt ridge, and canyon incision throughout the Neogene. Oligocene-early Miocene turbidite sedimentation occurs mainly in NW-SE grabens and ponded inter-diapir basins on the southern margin (Angola). Seaward tilting of the margin and downslope salt withdrawal activates the up-building of the Angola escarpment, which leads to a northward (Congo) shift of the transfer zones during late Miocene. Around the Miocene-Pliocene boundary, the incision of the Congo submarine canyon confines the turbidite flows and drives a general basinward progradation of the submarine fan into the abyssal plain The slope deposition is dominated by fine-grained hemipelagic deposits ever since. Results from this work contribute to better understand the signature in the ultra-deep deposits of processes acting on the continental margin as well as the basin-wide sediment redistribution in areas of high river input.
NASA Astrophysics Data System (ADS)
Plancherel, Yves
2015-01-01
Comparison of the volumetric θ/S distribution of models participating in the Climate Model Intercomparison Project 3 (CMIP3) indicates that these models differ widely in their ability to represent the thermohaline properties of water masses. Relationships between features of the quasi-equilibrium hydrographic mean state of these models and aspects of their overturning circulations are investigated. This is achieved quantitatively with the help of seven diagnostic hydrographic stations. These few stations were specifically selected to provide a minimalist schematic of the global water mass system. Relationships between hydrographic conditions in the North Atlantic measured with a subset of these stations suggest that hydrographic properties in the subpolar North Atlantic are set by the circulation field of each model, pointing towards deficiencies in the models ability to resolve the Gulf Stream-North Atlantic Current system as a major limitation. Since diapycnal mixing and viscosity parameterizations differ across CMIP3 models and exert a strong control on the overturning, it is likely that these architectural differences ultimately explain the main across-model differences in overturning circulation, temperature and salinity in the North Atlantic. The analysis of properties across the quasi-equilibrium states of the CMIP3 models agrees with previously reported relationships between meridional steric height gradients or horizontal density contrasts at depth and the strength of the deep water cell. Robust relationships are also found in the Southern Ocean linking measures of vertical stratification with the strength of the abyssal circulations across the CMIP3 models. Consistent correlations between aspects of the quasi-equilibrium hydrography in the Southern Ocean and the sensitivity of the abyssal cell to increasing radiative forcing by 2100 were found. Using these relations in conjunction with modern hydrographic observations to interpolate the fate of the abyssal cell suggests that the Southern abyssal cell may decrease by roughly 20 % by the end of the century. Similar systematic relationships between the quasi-equilibrium hydrographic states of the models and the sensitivity of their Atlantic deep water cell could not be found.
NASA Astrophysics Data System (ADS)
Chen, T.; Jin, Z.; Wang, Y.; Tao, C.
2012-12-01
Abyssal peridotites generate at mid-ocean ridges. Lherzolite and harzburgite are the main rock types of peridotites in the uppermost mantle. The lherzolite subtype, less depleted and less common in ophiolites, characterizes mantle diapirs and slow-spreading ridges. Along the Earth's mid-ocean ridges, abyssal peridotites undergo hydration reactions to become serpentinite minerals, especially in slow to ultraslow spreading mid-ocean ridges. Spinel is common in small quantities in peridotites, and its compositions have often been used as petrogenetic indicators [1]. The Southwest Indian Ridge (SWIR) is one of the two ultraslow spreading ridges in the world. The studied serpentinized peridotite sample was collected by the 21st Voyage of the Chinese oceanic research ship Dayang Yihao (aka Ocean No. 1) from a hydrothermal field (63.5°E, 28.0°S, and 3660 m deep) in SWIR. The studied spinels in serpentinized lherzolite have four zones with different compositions: relic, unaltered core is magmatic Al-spinels; micro- to nano- sized ferrichromite zoned particles; narrow and discontinuous magnetite rim; and chlorite aureoles. The values Cr# of the primary Al-spinels indicate the range of melting for abyssal peridotites from SWIR extends from ~4% to ~7% [2]. The alteration rims of ferrichromite have a chemical composition characterized by Fe enrichment and Cr# increase indicating chromite altered under greenschist-amphibolite facies. Magnetites formed in syn- and post- serpentinization. Chlorite (clinochlore) formed at the boundary and crack of spinel indicating it had undergone with low-temperature MgO- and SiO2-rich hydrothermal fluids [3]. It suggests that serpentinized lherzolite from SWIR had undergone poly-stage hydration reactions with a wide range of temperature. Acknowledgments: EMPA experiment was carried out by Xihao Zhu and Shu Zheng in The Second Institute of Oceanography and China University of Geosciences, respectively. The work was supported by NSFC. References [1] Dick, H.J.B., et al., Contrib Mineral Petr., 86:54, 1984. [2] Hellebrand et al., Nature, 410: 677, 2001. [3] Hamdy, M.M. , et al., JGMR, 3(9): 232, 2011.
NASA Astrophysics Data System (ADS)
Scheltema, Rudolf S.; Williams, Isabelle P.
2009-09-01
Protobranch bivalve species of the family Nuculidae pass through either a planktonic lecithotrophic larval stage or a direct non-planktonic development. Oogenesis of the three sublittoral species examined is synchronous. Deposition of egg masses by Nucula delphinodonta and spawning by Nucula annulata and Nucula proxima occur only during summer months. Among the four bathyal and abyssal species, Ennucula similis, Ennucula granulosa, Deminucula atacellana, and Brevinucula verrilli, oogenesis is asynchronous and there is no discernable pattern of periodicity of spawning. Absence of periodicity in reproduction in these deep-sea species is confirmed by examination of individuals from dredge samples taken at different times of the year. The median apparent fecundity among both sublittoral and deep-sea species is directly related to size (i.e. shell length) and age. Among the Nuculidae the median apparent fecundity is greater among sublittoral than bathyal and abyssal species. The geographic distribution of a species depends on its capacity to disperse. The dispersal of the planktonic lecithotrophic larvae of the sublittoral species N. annulata and N. proxima is limited to the continental shelf of the northwestern Atlantic by inshore bottom circulation and because these very small planktonic larvae (<2.5 mm) lack the capacity to move vertically upward through the water column into the offshore currents. On the other hand, the bathyal and abyssal species having lecithotrophic larvae have a very wide amphi-Atlantic distribution extending from 60°N to 40°S latitude along the North and South American coasts and from 55°N to ca. 19°S from off Europe southwards to the coast of West Africa as a consequence of dispersal by planktonic lecithotrophic larvae along the seafloor. The amphi-Atlantic dispersal must occur stepwise between deep-sea populations (e.g., off Greenland). Such a geographic distribution indicates a widespread dispersal and is supported by the genetic similarity that has been described between North American and western European populations of D. atacellana.
Role of naturally occurring gas hydrates in sediment transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
McIver, R.D.
1982-06-01
Naturally occurring gas hydrates have the potential to store enormous volumes of both gas and water in semi-solid form in ocean-bottom sediments and then to release that gas and water when the hydrate's equilibrium condition are disturbed. Therefore, hydrates provide a potential mechanism for transporting large volumes of sediments. Under the combined low bottom-water temperatures and moderate hydrostatic pressures that exist over most of the continental slopes and all of the continental rises and abyssal plains, hydrocarbon gases at or near saturation in the interstitial waters of the near-bottom sediments will form hydrates. The gas can either be autochthonous, microbiallymore » produced gas, or allochthonous, catagenic gas from deeper sediments. Equilibrium conditions that stabilize hydrated sediments may be disturbed, for example, by continued sedimentation or by lowering of sea level. In either case, some of the solid gas-water matrix decomposes. Released gas and water volume exceeds the volume occupied by the hydrate, so the internal pressure rises - drastically if large volumes of hydrate are decomposed. Part of the once rigid sediment is converted to a gas- and water-rich, relatively low density mud. When the internal pressure, due to the presence of the compressed gas or to buoyancy, is sufficiently high, the overlying sediment may be lifted and/or breached, and the less dense, gas-cut mud may break through. Such hydrate-related phenomena can cause mud diapirs, mud volcanos, mud slides, or turbidite flows, depending on sediment configuration and bottom topography. 4 figures.« less
NASA Astrophysics Data System (ADS)
Nikurashin, Maxim; Gunn, Andrew
2017-04-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.
Perspective View, Kamchatka Peninsula, Russia
NASA Technical Reports Server (NTRS)
2000-01-01
This perspective view shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). In the foreground is the broad, flat floodplain of the Amanina River, shown in blue. In background of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills in the upper right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. To emphasize subtle differences in topography, the relief is exaggerated by a factor of 5.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 80 km (50 miles) x 100 km (62 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: View toward the East Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000NASA Astrophysics Data System (ADS)
Kersten, Oliver; Smith, Craig R.; Vetter, Eric W.
2017-09-01
Growing interest in polymetallic nodule mining has intensified the need to characterize the abundance, community structure and vertical flux of meroplankton in the Clarion-Clipperton Zone (CCZ) to facilitate the estimation of larval supply and potential connectivity of benthic populations. These ecological parameters are essential to predict recolonization processes following the expected large-scale, high intensity disturbances associated with nodule extraction. Here, we present the first description of the composition, abundance, temporal variability, and mesoscale distribution of dispersing stages of the benthos in two study areas in the eastern CCZ. Samples from free-vehicle plankton pumps showed little variation in meroplankton diversity and abundance over scales of 30-100 km for time scales of days to weeks. However, sediment-trap samples revealed high temporal variability in vertical flux over weeks to months. Larval abundances and fluxes measured in the abyssal CCZ are 1-2 orders of magnitude lower than observed at deep-sea ridge and hydrothermal-vent habitats. We found significantly higher downward larval fluxes at 11 m above the bottom (mab) than at 146 mab, indicating accumulation or retention of meroplankton within the Benthic Boundary Layer (BBL). The high abundance of meroplankton in the BBL emphasizes its importance to dispersing stages and suggests that the creation of large sediment plumes in the BBL during nodule mining could compromise the dispersal and recruitment abilities of the abyssal benthos, potentially slowing rates and altering patterns of benthic community recovery following mining disturbance.
NASA Astrophysics Data System (ADS)
Critelli, Salvatore; De Rosa, Rosanna; Platt, John Paul
1990-10-01
Detrital modes of Early Miocene to Early Pliocene sandstones from the Makran accretionary wedge in southwest Pakistan show a mainly quartzolithic composition with an evolution from the transitional recycled to quartzose recycled. The lithic types, however, indicate two distinct petrofacies. Accreted abyssal plain turbidites have Qp 11Lvm 27Lsm 62 and Lm 39Lv 27Ls 34, showing a predominant supply from sedimentary and metasedimentary source terranes whereas slope and shelf facies sediments deposited on the accretionary wedge have Qp 7Lvm 47Lsm 47 and Lm 22Lv 48Ls 30 due to an increase of volcanic detritus. The detrital modes of the abyssal plain sediments suggest a recycled orogenic source, probably the Himalayan collision zone. The facies and longitudinal dispersal pattern suggest deposition in an Oligo-Miocene analogue of the present Indus fan. The sediment must have been transported across strike, parallel to the transform structure linking the Makran wedge to the Himalayas (Chaman-Ornach Nal fault system), and fed into the fan at the western end of the subduction zone. The detrital modes also show an increase in volcanic detritus with time (Lv/L = 0.27 for the Early Miocene abyssal plain sediments to 0.47 for the slope sequences). This may have been derived from Late Mesozoic volcanic terrains in northern Baluchistan or the Ladakh Himalayas, or more probably from the Early to middle Miocene andesitic volcanic centre in the northern Makran.
Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata)
NASA Astrophysics Data System (ADS)
Gubili, Chrysoula; Ross, Elizabeth; Billett, David S. M.; Yool, Andrew; Tsairidis, Charalampos; Ruhl, Henry A.; Rogacheva, Antonina; Masson, Doug; Tyler, Paul A.; Hauton, Chris
2017-03-01
Despite the plethora of studies on swallow-water invertebrates, almost nothing is known about the evolution and population structure of deep-sea species at the global scale. The aim of this study was to assess phylogeographic patterns of a common and cosmopolitan, predominantly abyssal sea cucumber, Psychropotes longicauda, based on samples from the Atlantic, Southern, Indian and Pacific oceans. Sequences of the mitochondrial COI and 16S genes were analysed for 128 specimens of P. longicauda. In addition, temporal genetic variation was investigated at one site, the Porcupine Abyssal Plain, NE Atlantic Ocean over a period of 34 years. Two distinct lineages within the global distribution were identified. The sister clades probably could be classified as separate species based on the observed genetic divergence (>5.0%) and phylogenetic reconstruction with indications of a Southern Hemisphere origin. Moreover, significant population differentiation was detected between the North Atlantic and localities in both the Pacific and Indian oceans. No bathymetric structuring was detected among lineages. Temporal genetic shifts were detected in a time series of samples from 1977 to 2011. Our data confirm the previously suspected cryptic species diversity throughout the wide distributional range previously attributed to the single species P. longicauda. The presence of sympatric species in the North Pacific and Indian Oceans has been underestimated by previous morphological analyses. The differentiation at the population level detected in the main lineages among the four oceans could suggest restricted gene flow despite wide-scale dispersal potential of the species.
NASA Astrophysics Data System (ADS)
West, N.; Kirby, E.; Ma, L.; Bierman, P. R.
2013-12-01
Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here, we exploit two isotopic systems to quantify regolith production and transport within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. We present an analysis of 131 meteoric 10Be measurements from regolith and bedrock to quantify rates of regolith transport, and compare these data with previously determined regolith production rates, measured using uranium-series isotopes. Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution LiDAR-based topography) along the upper portions of hillslopes in and adjacent to SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories along 4 ridgetops within and adjacent to the SSHO indicate regolith residence times ranging from ~ 9 - 15 ky, similar to residence times inferred from U-series isotopes (6.7 × 3 ky - 15 × 8 ky). Similarly, the downslope flux of regolith (~ 500 - 1,000 m2/My) nearly balances production (850 × 22 m2/My - 960 × 530 m2/My). The combination of our results with U-series derived regolith production rates implies that regolith production and erosion rates along ridgecrests in the SSHO may be approaching steady state conditions over the Holocene.
Analysis of Correlation Tendency between Wind and Solar from Various Spatio-temporal Perspectives
NASA Astrophysics Data System (ADS)
Wang, X.; Weihua, X.; Mei, Y.
2017-12-01
Analysis of correlation between wind resources and solar resources could explore their complementary features, enhance the utilization efficiency of renewable energy and further alleviate the carbon emission issues caused by the fossil energy. In this paper, we discuss the correlation between wind and solar from various spatio-temporal perspectives (from east to west, in terms of plain, plateau, hill, and mountain, from hourly to daily, ten days and monthly) with observed data and modeled data from NOAA (National Oceanic and Atmospheric Administration) and NERL (National Renewable Energy Laboratory). With investigation of wind speed time series and solar radiation time series (period: 10 years, resolution: 1h) of 72 stations located in various landform and distributed dispersedly in USA, the results show that the correlation coefficient, Kendall's rank correlation coefficient, changes negative to positive value from east coast to west coast of USA, and this phenomena become more obvious when the time scale of resolution increases from daily to ten days and monthly. Furthermore, considering the differences of landforms which influence the local meteorology the Kendall coefficients of diverse topographies are compared and it is found that the coefficients descend from mountain to hill, plateau and plain. However, no such evident tendencies could be found in daily scale. According to this research, it is proposed that the complementary feature of wind resources and solar resources in the east or in the mountain area of USA is conspicuous. Subsequent study would try to further verify this analysis by investigating the operation status of wind power station and solar power station.
NASA Technical Reports Server (NTRS)
Arvidson, R. E.; Squyres, S. W,; Anderson, R. C.; Bell, J. F., III; Blaney, D.; Brueckner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.;
2005-01-01
Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.
Physiographic divisions and differential uplift in the Piedmont and Blue Ridge
Hack, John Tilton
1982-01-01
The Piedmont and Blue Ridge are dynamic landscapes that have undergone substantial change since the orogenies that ended in late Paleozoic or, as some believe, early Mesozoic time. The southern Blue Ridge region south of Roanoke, Va., lies on the crest of a topographic uplift that corresponds to the eastern continental drainage divide. To the north, this uplift and divide cross the Appalachian Valley and form the crest of the Appalachian Plateaus as far north as central Pennsylvania. The northern Blue Ridge Mountains as well as parts of the Piedmont are on the eastern part of the uplift area. The southeastern margin of the uplift corresponds to a line within the Piedmont physiographic province that extends northeastward from the Tallapoosa River at the Fall Zone and crosses the Rappahannock River at the Fall Zone. The differential elevation on either side of this line is sharp in some places, as, for example, northeast of Atlanta, Ga. In other places, the difference in elevation is difficult to detect, and, in effect, the line becomes a broad monoclinal slope. The region as a whole can be divided into at least six broad subregions that have somewhat different histories in late geologic time. The Piedmont Lowlands subprovince, southeast of the uplifted area, is dominated by a monotonous topography of low rounded ridges and ravines largely underlain by saprolite on crystalline rocks. Isolated ranges of hills of greater relief are scattered across the region; those investigated are directly related to the presence of erosionally resistant rocks. Stream patterns as well as broad topographic forms indicate that although the southern part of the Piedmont Lowlands was probably once covered by younger sediments, this area has been exposed to erosion for a long time. In North Carolina, the inner part of the Piedmont Lowlands has strongly trellised stream patterns, which suggest that subaerial erosion was active for an even longer time period, perhaps since the latest orogeny. North of the Cape Fear River, the outer part of the Piedmont Lowlands was covered by either fluvial or marine sediments or both, probably during Miocene time. Tectonic activity has affected the Piedmont Lowlands in late geologic time. The Fall Zone that forms the southeast border is, at least in places, controlled by faults active in Tertiary time. Late faults have also been found in the Pine Mountain area of Georgia. Minor differences in relief affecting large regions within the Piedmont Lowlands may be related to different rates of uplift in addition to rock resistance, either past or present. The Piedmont northeast of the Potomac River (Northeastern Highlands) rises to more than 300 m in altitude. The major streams have convex profiles that steepen as they near the Coastal Plain. Unusually narrow valleys and broad upland surfaces indicate an increased rate of erosion and show that the relief is now or recently has been increasing because of uplift or tilting. West of the southern end of the Piedmont Lowlands is an area herein called the Southwestern Highlands that in some respects is similar. The area is crossed by two large streams that have convex profiles. The highest mountain ranges in the area rise to altitudes greater than 600 m. Northwest of the Piedmont Lowlands, the topography and relief are higher, and in some places, the rise is gradual, forming a Foothill zone between the Piedmont Lowlands and the high Blue Ridge. This zone is morphologically more complex than the Piedmont Lowlands. North of the Roanoke River, the foothills are commonly chains of isolated hills and ridges generally underlain by resistant rocks. The hills increase in height near the Blue Ridge, an indication that they owe their height to tectonism of late geologic age. South of the Yadkin River, the hills are believed to be residual, the remnants of a larger highland that has been only partially reduced to the lower relief of the general Piedmont surface. The
Erosion by catastrophic floods on Mars and Earth
Baker, V.R.; Milton, D.J.
1974-01-01
The large Martian channels, especially Kasei, Ares, Tiu, Simud, and Mangala Valles, show morphologic features strikingly similar to those of the Channeled Scabland of eastern Washington, produced by the catastrophic breakout floods of Pleistocene Lake Missoula. Features in the overall pattern include the great size, regional anastomosis, and low sinuosity of the channels. Erosional features are streamlined hills, longitudinal grooves, inner channel cataracts, scour upstream of flow obstacles, and perhaps marginal cataracts and butte and basin topography. Depositional features are bar complexes in expanding reaches and perhaps pendant bars and alcove bars. Scabland erosion takes place in exceedingly deep, swift floodwater acting on closely jointed bedrock as a hydrodynamic consequence of secondary flow phenomena, including various forms of macroturbulent votices and flow separations. If the analogy to the Channeled Scabland is correct, floods involving water discharges of millions of cubic meters per second and peak flow velocities of tens of meters per second, but perhaps lasting no more than a few days, have occurred on Mars. ?? 1974.
Into the Abyss: The Case of the Collapsing Sinkhole.
ERIC Educational Resources Information Center
Ozsvath, David L.
2000-01-01
Presents a case study to teach about the relationship between sinkhole development and groundwater levels in Orlando, Florida. Discusses the relationship between groundwater levels and sinkhole formation in a karst terrane. Includes discussion questions. (YDS)
Resilience of benthic deep-sea fauna to mining activities.
Gollner, Sabine; Kaiser, Stefanie; Menzel, Lena; Jones, Daniel O B; Brown, Alastair; Mestre, Nelia C; van Oevelen, Dick; Menot, Lenaick; Colaço, Ana; Canals, Miquel; Cuvelier, Daphne; Durden, Jennifer M; Gebruk, Andrey; Egho, Great A; Haeckel, Matthias; Marcon, Yann; Mevenkamp, Lisa; Morato, Telmo; Pham, Christopher K; Purser, Autun; Sanchez-Vidal, Anna; Vanreusel, Ann; Vink, Annemiek; Martinez Arbizu, Pedro
2017-08-01
With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D
2013-12-03
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.
Breakup of last glacial deep stratification in the South Pacific.
Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina
2018-02-23
Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Change in Dense Shelf Water and Adélie Land Bottom Water Precipitated by Iceberg Calving
NASA Astrophysics Data System (ADS)
Snow, K.; Rintoul, S. R.; Sloyan, B. M.; Hogg, A. McC.
2018-03-01
Antarctic Bottom Water supplies the deep limb of the global overturning circulation and ventilates the abyssal ocean. Antarctic Bottom Water has warmed, freshened, and contracted in recent decades, but the causes remain poorly understood. We use unique multiyear observations from the continental shelf and deep ocean near the Mertz Polynya to examine the sensitivity of this bottom water formation region to changes on the continental shelf, including the calving of a large iceberg. Postcalving, the seasonal cycle of Dense Shelf Water (DSW) density almost halved in amplitude and the volume of DSW available for export reduced. In the deep ocean, the density and volume of Adélie Land Bottom Water decreased sharply after calving, while oxygen concentrations remained high, indicating continued ventilation by DSW. This natural experiment illustrates how local changes in forcing over the Antarctic continental shelf can drive large and rapid changes in the abyssal ocean.
Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean
Smith, Kenneth L.; Ruhl, Henry A.; Kahru, Mati; Huffard, Christine L.; Sherman, Alana D.
2013-01-01
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (∼4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections. PMID:24218565
Variations in mid-ocean ridge magmatism and carbon emissions driven by glacial cycles
NASA Astrophysics Data System (ADS)
Katz, R. F.; Burley, J. M.; Huybers, P. J.; Langmuir, C. H.; Crowley, J. W.; Park, S. H.; Carbotte, S. M.; Ferguson, D.; Proistosescu, C.; Boulahanis, B.
2015-12-01
Glacial cycles transfer ˜5×10^19 kg of water between the oceans and ice sheets, causing pressure changes in the upper mantle with consequences for the melting of Earth's interior. Forced with Plio-Pleistocene sea-level variations, theoretical models of mid-ocean ridge magma/mantle dynamics predict temporal variations up to 10% in melt supply to the base of the crust. Moreover, a transport model for a perfectly incompatible element suggests that CO2 emissions from mid-ocean ridges could vary by a similar proportion, though with a longer time-lag.Bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills record the magmatic response to changes in sea level. The mechanism by which variations in the rate of melt supply are expressed in the bathymetry is not understood.The same pressure variations that modulate the melting rate could also modulate the depth of the onset of silicate melting. As ice sheets grow and sea level drops, this onset deepens, causing melting at the base of the silicate melting regime. Excess highly incompatible elements like CO2 enter the melt and begin their journey to the ridge axis. Tens of thousands of years later, this additional CO2 flux is emitted into the climate system. Because of its delay with respect to sea-level change, the predicted variation in CO2 emissions could represent a restoring force on climate (and sea-level) excursions. This mechanism has a response time determined by the time scale of melt transport; it potentially introduces a resonant frequency into the climate system.
Sedimentary depositional environments in the Gulf of Alaska from GLORIA Imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.R.; Bruns, T.R.; Stevenson, A.J.
1990-05-01
GLORIA side-scan images provide new insight to the morphology and sedimentology of the Gulf of Alaska and show that tectonism strongly influences downslope and abyssal plain sediment transport. Along the Fairweather-Queen Charlotte transform margin south of Cross Sound short, chute-like canyons cross the slope to submarine-fan channels. At least one canyon is offset by strike-slip motion along the fault Fan channels coalesce to form two deep-sea turbidite channels (Mukluk and Horizon) that extend 1,000 km southward to the Tufts Abyssal Plain. From Cross Sound to Pamplona Spur, dendritic gulley systems and short chutes cross the slope into tributary channels thatmore » merge into major channels. Tributary channels from Cross Sound to Alsek Valley form the Chirikov channel system which bends westward and ends in turbidite fans south of the Kodiak-Bowie Seamount chain. A probable ancestral Chirikov channel carried sediment westward to the Aleutian Trench, Channels from Alsek Valley to Pamplona Spur coalesce 280 km seaward of the slope to form the Surveyor Channel which meanders across the abyssal plain 500 km to the Aleutian trench. Between Pamplona Spur and Middleton Island, dendritic slope canyons reach the eastern end of the Aleutian Trench sediment moves southwestward along the trench. Southwest of Middleton Island, discontinuous trench-parallel subduction ridges change slope drainage from a dendritic to trellised pattern as sediment is forced to flow around the ridges to the Aleutian Trench. At least two small fans have been constructed on the trench floor. Southwest of Kodiak Island, subduction ridges create mid-slope basins that trap modern sediment.« less
NASA Astrophysics Data System (ADS)
Sallarès, Valentí; Martínez-Loriente, Sara; Prada, Manel; Gràcia, Eulàlia; Ranero, César; Gutscher, Marc-André; Bartolome, Rafael; Gailler, Audrey; Dañobeitia, Juan José; Zitellini, Nevio
2013-03-01
The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5-3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust-mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70-80% under the top of Gorringe Bank to less than 5% at a depth of ˜20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean-continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW-SE trending Eurasia-Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate convergence and uplift could have promoted pervasive rock fracturing of the overriding plate, leading eventually to rock disaggregation in the northern flank of the GB, which could be now a potential source of rock avalanches and tsunamis.
Hutchinson, Todd F.; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P.
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities. PMID:27536964
Dickinson, Matthew B; Hutchinson, Todd F; Dietenberger, Mark; Matt, Frederick; Peters, Matthew P
2016-01-01
Mesophytic species (esp. Acer rubrum) are increasingly replacing oaks (Quercus spp.) in fire-suppressed, deciduous oak-hickory forests of the eastern US. A pivotal hypothesis is that fuel beds derived from mesophytic litter are less likely than beds derived from oak litter to carry a fire and, if they do, are more likely to burn at lower intensities. Species effects, however, are confounded by topographic gradients that affect overstory composition and fuel bed decomposition. To examine the separate and combined effects of litter species composition and topography on surface fuel beds, we conducted a common garden experiment in oak-hickory forests of the Ohio Hills. Each common garden included beds composed of mostly oak and mostly maple litter, representative of oak- and maple-dominated stands, respectively, and a mixture of the two. Beds were replenished each fall for four years. Common gardens (N = 16) were established at four topographic positions (ridges, benches on south- and northeast-facing slopes, and stream terraces) at each of four sites. Litter source and topographic position had largely independent effects on fuel beds and modeled fire dynamics after four years of development. Loading (kg m-2) of the upper litter layer (L), the layer that primarily supports flaming spread, was least in more mesic landscape positions and for maple beds, implying greater decomposition rates for those situations. Bulk density in the L layer (kg m-3) was least for oak beds which, along with higher loading, would promote fire spread and fireline intensity. Loading and bulk density of the combined fermentation and humic (FH) layers were least on stream terrace positions but were not related to species. Litter- and FH-layer moistures during a 5-day dry-down period after a rain event were affected by time and topographic effects while litter source effects were not evident. Characteristics of flaming combustion determined with a cone calorimeter pointed to greater fireline intensity for oak fuel beds and unexpected interactions between litter source and topography. A spread index, which synthesizes a suite of fuel bed, particle, and combustion characteristics to indicate spread (vs extinction) potential, was primarily affected by litter source and, secondarily, by the low spread potentials on mesic landscape positions early in the 5-day dry-down period. A similar result was obtained for modeled fireline intensity. Our results suggest that the continuing transition from oaks to mesophytic species in the Ohio Hills will reduce fire spread potentials and fire intensities.
Foon, Junn Kitt; Clements, Gopalasamy Reuben; Liew, Thor-Seng
2017-01-01
Abstract Limestone hills are now gaining global conservation attention as hotspots for short-range endemic species. Levels of land snail endemism can be high at limestone hills, especially at hill clusters that are geographically isolated. In the State of Perak, Peninsular Malaysia, limestone hills have been opportunistically surveyed for land snails in the past, but the majority have yet to be surveyed. To address this knowledge gap, we systematically surveyed the terrestrial malacofauna of 12 limestone hills that, based on our opinion, are a representation of the limestone land snail assemblages within the State. Our inventory yielded high sampling completeness (>85%). We found 122 species of land snails, of which 34 species were unique to one of the surveyed hills. We identified 30 species that are potentially new to science. The number of land snail species recorded at each hill ranged between 39 and 63 species. Four of the sampled limestone hills namely, Prk 01 G. Tempurung, Prk 55 G. Pondok, Prk 47 Kanthan, and Prk 64 Bt Kepala Gajah, have high levels of species richness and unique species, representing 91% of the total species recorded in this study. We identified two clusters of limestone hills in central Perak with distinct differences in land snail species composition – a northern hill cluster on elevated granite bedrock and southern hill cluster in a low-lying valley surrounded by alluvial soils. As limestone hills continue to be quarried to meet the cement demand, the four identified limestone hills, along with other hills from the two clusters, warrant urgent conservation attention in order to maintain high species diversity within Perak’s terrestrial malacofauna. PMID:28769723
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2015-12-01
Forest carbon processes are affected by soil moisture, soil temperature and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore they can neither resolve topographically driven hill-slope soil moisture patterns, nor simulate the nonlinear effects of soil moisture on carbon processes. A spatially-distributed biogeochemistry model, Flux-PIHM-BGC, has been developed by coupling the Biome-BGC (BBGC) model with a coupled physically-based land surface hydrologic model, Flux-PIHM. Flux-PIHM incorporates a land-surface scheme (adapted from the Noah land surface model) into the Penn State Integrated Hydrologic Model (PIHM). Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. Flux-PIHM-BGC model was tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations at the SSHCZO, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, aboveground carbon stock, and soil carbon efflux, provided an ideal test bed for the coupled model. Model results show that when uniform solar radiation is used, vegetation carbon and soil carbon are positively correlated with soil moisture in space, which agrees with the observations within the watershed. When topographically-driven solar radiation is used, however, the wetter valley floor becomes radiation limited, and produces less vegetation and soil carbon than the drier hillslope due to the assumption that canopy height is uniform in the watershed. This contradicts with the observations, and suggests that a tree height model with dynamic allocation model are needed to reproduce the spatial variation of carbon processes within a watershed.
Do mobile family planning clinics facilitate vasectomy use in Nepal?
Padmadas, Sabu S; Amoako Johnson, Fiifi; Leone, Tiziana; Dahal, Govinda P
2014-06-01
Nepal has a distinct topography that makes reproductive health and family planning services difficult to access, particularly in remote mountain and hill regions where over a quarter of modern contraceptive users rely exclusively on vasectomy. A three-level random intercept logistic regression analysis was applied on data from the 2011 Nepal Demographic and Health Survey to investigate the extent of influence of mobile family planning clinics on the odds of a male or a female sterilization, adjusting for relevant characteristics including ecological differences and random effects. The analyses included a sample of 2014 sterilization users, considering responses from currently married women of reproductive ages. The odds of a male sterilization were significantly higher in a mobile clinic than those in a government hospital (odds ratio, 1.65; 95% confidence interval, 1.21-2.25). The effects remained unaltered and statistically significant after adjusting for sociodemographic and clustering effects. Random effects were highly significant, which suggest the extent of heterogeneity in vasectomy use at the community and district levels. The odds of vasectomy use in mobile clinics were significantly higher among couples residing in hill and mountain regions and among those with three or more sons or those with only daughters. Mobile clinics significantly increase the uptake of vasectomy in hard-to-reach areas of Nepal. Reproductive health interventions should consider mobile clinics as an effective strategy to improve access to male-based modern methods and enhance gender equity in family planning. Family planning interventions in hard-to-reach communities could consider mobile clinic as an effective strategy to promote male-based modern methods. Improving access to vasectomy could substantially reduce unmet need for family planning in countries experiencing rapid fertility transition. Copyright © 2014 Elsevier Inc. All rights reserved.
Measurements of a Lee Wave in the Southern Ocean: Energy and Momentum Fluxes and Mixing
NASA Astrophysics Data System (ADS)
Cusack, J. M.; Naveira Garabato, A.; Smeed, D.; Girton, J. B.
2016-02-01
Lee waves, internal waves generated by stratified flow over topographic features are thought to break and generate a significant proportion of the turbulent mixing required to close the abyssal overturning circulation. A lack of observations means that there is large uncertainty in the magnitude of contribution that lee waves make to turbulent transformations, as well as their importance in local and global momentum and energy budgets. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a large lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is presented and used to calculate absolute vertical water velocity in addition to horizontal velocity measurements made by the floats. The wave is observed to have velocity fluctuations in all three directions of over 15 cm s-1 and a frequency close to the local buoyancy frequency. Furthermore, the wave has a measured peak vertical flux of horizontal momentum of 6 N m-2, a value that is two orders of magnitude larger than the time mean wind forcing on the Southern Ocean. Linear internal wave theory was used to estimate wave energy density and fluxes, while a mixing parameterisation was used to estimate the magnitude of turbulent kinetic energy dissipation, which was found to be elevated above typical background levels by two orders of magnitude. This work provides the first direct measurement of a lee wave generated by ACC flow over topography with simultaneous estimates of energy fluxes and mixing.
NASA Astrophysics Data System (ADS)
De Cristofaro, J. L.; Polet, J.
2017-12-01
The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques derived from imagery acquired by an unmanned aerial vehicle and ground control points measured with realtime kinematic GPS receivers. This terrain model will be combined with subsurface geophysical data to form a comprehensive model of the subsurface.
Landscape Evolution, A Comparison of Form and Process
NASA Technical Reports Server (NTRS)
Bursik, Marcus I.
2000-01-01
This project's goals were to collect, analyze and interpret 3-dimensional physiographic data for understanding the processes responsible for landscape modification. The primary landforms to be studied were Neogene cinder cones in Arizona (San Francisco Volcanic Field (SFVF), Coconino and Kaibab National Forests, Arizona). We also obtained and are still analyzing digital topographic data for the Long Valley-White Mountains area of California, which display Quaternary normal fault scarps, as well as extensive evidence of degradation. The work resulted in a large database of measured rates of downslope transport of slope debris. It was hypothesized that the work would increase our understanding of process-response models of hillslope degradation, and of the effects of climate change and other parameters on degradation rates. In greater detail, our primary goal was to compare evolutionary sequences of hillslopes, as exemplified by the topography of landforms of the same type but of different ages, with measurements of the surficial processes active on the landforms. Assuming that other parameters, such as hillslope materials and vegetation are held constant, and that the effects of changing climate are negligible, then the sediment transport rates measured today on the landforms should be the same as those calculated from the inversion of landform topography by use of a diffusion-type model. However, if the effects of changing climate or other factors are not negligible, then the observed transport rates would differ from those which must be invoked to explain the current topography. We hypothesized in fact that because degradation on the event scale is highly transient and localized, we would find a wide divergence between modern, measured transport rates, and rates calculated by global landform inversion or modeling. Because of the length of time involved in collection of sufficient data on current degradation rates, we are still continuing to analyse and interpret the data. Completion of the work will increase our understanding of the potential effects of anthropogenic climate and surficial change on the Earth's solid surface, and possibly allow us to constrain paths of hill-slope evolution following anthropogenic modifications, as well as compare the short-term with the long-term rates of hillslope degradation.
NASA Astrophysics Data System (ADS)
Zurbrick, Cheryl M.
This dissertation work determined the changing scope of lead (Pb) contamination in the North Pacific Ocean since the phase-out of leaded gasoline in most of the world. Chapters 1 and 2 consisted of validating our method for determining Pb concentrations and isotopic compositions in seawater. Chapter 3 established a baseline of Pb isotopic compositions (PbICs) in the western and central North Pacific in 2002. This was an ideal time to establish such a baseline because China had recently (mid-2000) ceased their use of leaded gasoline and simultaneously began consuming increasingly large amounts of coal, known to have relatively high Pb concentrations. We found subsurface waters were contaminated with Asian industrial Pb, predominantly Chinese coal emissions. In contrast, the abyssal waters were a mix of Asian industrial Pb and background (i.e., natural) Pb. Chapter 4 revisited the western and central North Pacific in 2009 -- 2011 to determine what, if any, changes had occurred in this short time period. We found that Pb in subsurface and abyssal waters of the western North Pacific were similar to Chinese aerosols. Such a large change in the PbICs of abyssal water in 9 years was unanticipated and attributed to the relatively large flux of particle-bound Pb from the euphotic zone to the deep ocean, which was in isotopic equilibrium with the reservoir of dissolved Pb. In contrast, the central North Pacific abyssal water PbICs were similar to values previously reported because of the relatively lower particulate export. Based on comparisons to baseline PbIC data, we determined that abyssal waters in the western and central North Pacific would be isotopically indistinguishable from surface waters in the next three decades. Sources of Pb to coastal California waters were reevaluated in Chapter 5. Prior studies had found that surface waters of the California Current System (CCS) were isotopically consistent with both Asian industrial Pb and US leaded gasoline, still in use at that point in time. In 2010 and 2011, we found that surface and subsurface waters of the CCS were isotopically similar to Asian industrial emissions. However, remobilized US gasoline Pb from sediments in the San Francisco Bay, California, were accumulating in the "mud belt" on the continental shelf and changing the isotopic composition of overlying waters. During periods of intense upwelling, this historic Pb was brought to the surface of the water. However, the much larger quantity of Pb from Asian industrial emissions made the isotopic composition of Pb from historic US gasoline unidentifiable in off-shore waters. A secondary research focus of this dissertation was to improve my own teaching abilities. Chapter 6 explored the intersection of system thinking and aquatic toxicology in undergraduate education. Among a wealth of information, I found that group concept mapping was no more useful to student learning than the same activity done individually. This was due to poor implementation of team learning strategies by me and inadequate time for students to adjust to non-traditional instruction methodologies.
On the origin of Hill's causal criteria.
Morabia, A
1991-09-01
The rules to assess causation formulated by the eighteenth century Scottish philosopher David Hume are compared to Sir Austin Bradford Hill's causal criteria. The strength of the analogy between Hume's rules and Hill's causal criteria suggests that, irrespective of whether Hume's work was known to Hill or Hill's predecessors, Hume's thinking expresses a point of view still widely shared by contemporary epidemiologists. The lack of systematic experimental proof to causal inferences in epidemiology may explain the analogy of Hume's and Hill's, as opposed to Popper's, logic.
Volcanic geomorphology using TanDEM-X
NASA Astrophysics Data System (ADS)
Poland, Michael; Kubanek, Julia
2016-04-01
Topography is perhaps the most fundamental dataset for any volcano, yet is surprisingly difficult to collect, especially during the course of an eruption. For example, photogrammetry and lidar are time-intensive and often expensive, and they cannot be employed when the surface is obscured by clouds. Ground-based surveys can operate in poor weather but have poor spatial resolution and may expose personnel to hazardous conditions. Repeat passes of synthetic aperture radar (SAR) data provide excellent spatial resolution, but topography in areas of surface change (from vegetation swaying in the wind to physical changes in the landscape) between radar passes cannot be imaged. The German Space Agency's TanDEM-X satellite system, however, solves this issue by simultaneously acquiring SAR data of the surface using a pair of orbiting satellites, thereby removing temporal change as a complicating factor in SAR-based topographic mapping. TanDEM-X measurements have demonstrated exceptional value in mapping the topography of volcanic environments in as-yet limited applications. The data provide excellent resolution (down to ~3-m pixel size) and are useful for updating topographic data at volcanoes where surface change has occurred since the most recent topographic dataset was collected. Such data can be used for applications ranging from correcting radar interferograms for topography, to modeling flow pathways in support of hazards mitigation. The most valuable contributions, however, relate to calculating volume changes related to eruptive activity. For example, limited datasets have provided critical measurements of lava dome growth and collapse at volcanoes including Merapi (Indonesia), Colima (Mexico), and Soufriere Hills (Montserrat), and of basaltic lava flow emplacement at Tolbachik (Kamchatka), Etna (Italy), and Kīlauea (Hawai`i). With topographic data spanning an eruption, it is possible to calculate eruption rates - information that might not otherwise be available, as was the case at Tolbachik and Kīlauea. With a dense time series of TanDEM-X imagery over an erupting volcano, lava discharge over time can be determined. At Kīlauea, such results revealed relatively low rates of lava discharge during 2011-2014, which suggests a decrease in magma supply to the entire volcano, and which has important implications for lava flow hazards assessment. Some problems remain in using TanDEM-X data for volcano monitoring, like variations in satellite imaging geometry over time and distinguishing vegetation from the ground surface. Nonetheless, we are convinced of the high value of TanDEM-X data that, if utilized to its full potential, offer a unique opportunity for elucidating a range of volcanic processes around the world.
... 5885 Cumming Highway Suite 108-255 Sugar Hill GA Sugar Hill, GA 30518 http://www.hypersomniafoundation.org Tel: 844-342- ... 5885 Cumming Highway Suite 108-255 Sugar Hill GA Sugar Hill, GA 30518 http://www.hypersomniafoundation.org ...
77 FR 50095 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... Combine Hills I LLC, Avenal Park LLC, Sand Drag LLC, Sun City Project LLC, Eurus Combine Hills II LLC... Power Partners, LLC, Crescent Ridge LLC, Eurus Combine Hills I LLC, Avenal Park LLC, Sand Drag LLC, Sun..., Eurus Combine Hills I LLC, Avenal Park LLC, Sand Drag LLC, Sun City Project LLC, Eurus Combine Hills II...
Hume, Mill, Hill, and the Sui Generis Epidemiologic Approach to Causal Inference
Morabia, Alfredo
2013-01-01
The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified. PMID:24071010
Hume, Mill, Hill, and the sui generis epidemiologic approach to causal inference.
Morabia, Alfredo
2013-11-15
The epidemiologic approach to causal inference (i.e., Hill's viewpoints) consists of evaluating potential causes from the following 2, noncumulative angles: 1) established results from comparative, observational, or experimental epidemiologic studies; and 2) reviews of nonepidemiologic evidence. It does not involve statements of statistical significance. The philosophical roots of Hill's viewpoints are unknown. Superficially, they seem to descend from the ideas of Hume and Mill. Hill's viewpoints, however, use a different kind of evidence and have different purposes than do Hume's rules or Mill's system of logic. In a nutshell, Hume ignores comparative evidence central to Hill's viewpoints. Mill's logic disqualifies as invalid nonexperimental evidence, which forms the bulk of epidemiologic findings reviewed from Hill's viewpoints. The approaches by Hume and Mill cannot corroborate successful implementations of Hill's viewpoints. Besides Hume and Mill, the epidemiologic literature is clueless about a plausible, pre-1965 philosophical origin of Hill's viewpoints. Thus, Hill's viewpoints may be philosophically novel, sui generis, still waiting to be validated and justified.
NASA Astrophysics Data System (ADS)
Brandt, Angelika; Linse, Katrin; Schüller, Myriam
2009-11-01
The aim of this study is to compare the depth distributions of four major Southern Ocean macrobenthic epi- and infaunal taxa, the Bivalvia, Gastropoda, Isopoda, and Polychaeta, from subtidal to abyssal depth. All literature data up to summer 2008, as well as the unpublished data from the most recent ANDEEP I-III (Antarctic benthic deep-sea biodiversity: colonisation history and recent community patterns) expeditions to the Southern Ocean deep sea are included in the analysis. Benthic invertebrates in the Southern Ocean are known for their wide bathymetric ranges. We analysed the distributions of four of the most abundant and species-rich taxa from intertidal to abyssal (5200 m) depths in depth zones of 100 m. The depth distributions of three macrofaunal classes (Bivalvia, Gastropoda, Polychaeta) and one order (Isopoda) showed distinct differences. In the case of bivalves, gastropods and polychaetes, the number of species per depth zone decreased from the shelf to the slope at around 1000 m depth and then showed stable low numbers. The isopods showed the opposite trend; they were less species rich in the upper 1000 m but increased in species numbers from the slope to bathyal and abyssal depths. Depth ranges of families of the studied taxa (Bivalvia: 31 families, Gastropoda: 60, Isopoda: 32, and Polychaeta: 46 families) were compiled and illustrated. At present vast areas of the deep sea in the Southern Ocean remain unexplored and species accumulation curves showed that only a fraction of the species have been discovered to date. We anticipate that further investigations will greatly increase the number of species known in the Southern Ocean deep sea.
Wiklund, Helena; Taylor, John D.; Dahlgren, Thomas G.; Todt, Christiane; Ikebe, Chiho; Rabone, Muriel; Glover, Adrian G.
2017-01-01
Abstract We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ), central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature ‘cf’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. PMID:29118626
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paull, C.K.; Spiess, F.N.; Curray, J.R.
1988-02-01
The Florida Escarpment near 26/degree/N was surveyed with Deep-Tow, Seabeam, and GLORIA in the area where chemosynthetic communities were discovered via ALVIN in the abyssal Gulf of Mexico. Seabeam bathymetry and GLORIA images indicate that the escarpment is a generally straight cliff with average slopes of about 45/degree/ from 2200 to more than 3250 m. The escarpment's face is cut by 2-km wide box canyons whose head walls are as steep as the intervening escarpment's face. The shapes of these canyons are difficult to explain with the traditional models of canyon formation. Sidescan sonar images and bottom photographs reveal thatmore » the escarpment's face is composed of a series of long, straight bedding-plain terraces which are truncated along nearly vertical orthogonal joints. Exposure of these truncated strata indicate the face of the escarpment is eroded. The contact between the basal escarpment and the flat-lying abyssal hemipelagic sediments is abrupt. Basal talus is uncommon because the abyssal floor is part of the distal Mississippi fan which is rapidly burying the escarpment. However, where talus occurs, it is in tongues of angular megabreccia of meter- and larger-sized blocks which indicate periodic catastrophic collapse. Sidescan images reveal bands of contrast in the reflective texture of the sea floor that extends 10-20 m from the base along more than 10% of the surveyed area. Photographic surveys show that these areas are associated with communities of abundant organisms. Apparently chemosynthetic communities line extensive sections of the escarpment base where reduced brines seep out into the sea floor. The morphology suggests joints and deep seeps are controlling factors in scarp retreat.« less
Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean
Fitzsimmons, Jessica N.; Boyle, Edward A.; Jenkins, William J.
2014-01-01
Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209–212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (<0.4 µm) measurements from the abyssal southeast and southwest Pacific Ocean, where dFe of 1.0–1.5 nmol/kg near 2,000 m depth (0.4–0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial 3He and dissolved Mn (dFe:3He of 0.9–2.7 × 106). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (<0.02 µm) and colloidal (0.02–0.4 µm) phases with increasing distance from the vents indicate that dFe transformations continue to occur far from the vent source. This study confirms that although the southern East Pacific Rise only leaks 0.02–1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input). PMID:25349389
Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions
NASA Astrophysics Data System (ADS)
Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.
2015-01-01
Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.
NASA Astrophysics Data System (ADS)
Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.
2018-06-01
The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.
NASA Astrophysics Data System (ADS)
Guggolz, Theresa; Lins, Lidia; Meißner, Karin; Brandt, Angelika
2018-02-01
During the Vema-TRANSIT (Bathymetry of the Vema-Fracture Zone and Puerto Rico TRench and Abyssal AtlaNtic BiodiverSITy Study) expedition from December, 2014 to January, 2015, a transect along the Vema Fracture Zone in the equatorial Atlantic was surveyed and sampled at about 10°N. The Vema Fracture Zone is one of the largest fracture zones of the Mid-Atlantic Ridge and it is characterized by a large left-lateral offset. Benthic communities of the transect and the abyssal basins on both sides were investigated to examine whether the Mid-Atlantic Ridge serves as a physical barrier for these organisms, or if there is a potential connection from east to west via the Vema Fracture Zone. Samples comprised 4149 polychaetes, belonging to 42 families. Exemplary, Polynoidae and Spionidae, both typical deep-sea families with high abundances in all investigated regions, were identified up to species level. The present results show significant differences in polychaete faunistic composition between both sides of the Mid-Atlantic Ridge. Moreover, the eastern and western Vema Fracture Zone characterizes divergent habitats, since the two basins differ in sedimentology and environmental variables (e.g. temperature, salinity), hence characterizing divergent habitats. Most species found were restricted to either eastern or western VFZ, but there was a trans-Mid-Atlantic Ridge distribution of certain abundant species observed, indicating that the Mid-Atlantic Ridge might rather act limiting to dispersal between ocean basins than as an absolute barrier. Given the abyssal valley formed by the Vema Fracture Zone and its role in oceanic currents, this seafloor feature may well represent exchange routes between eastern and western faunas.
Continuing and New Measurements at the Abyssal ALOHA Cabled Observatory
NASA Astrophysics Data System (ADS)
Howe, B. M.; Potemra, J. T.; Butler, R.; Santiago-Mandujano, F.; Lukas, R.; Duennebier, F. K.; Karl, D. M.; Aucan, J.
2016-02-01
The ALOHA Cabled Observatory (ACO) is a general purpose "node" providing power, communications and timing connectivity for science use at Station ALOHA 100 km north of Oahu. Included are a suite of basic sensors making core measurements, some local and some sensing the water column. At 4728 m deep, it is the deepest scientific outpost on the planet with power and Internet. Importantly, Station ALOHA is the field site of the NSF-funded Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988, at a site that is representative of roughly 70% of the world ocean, sampling the ocean from top to bottom to monitor and study changes on scales of months to decades. The co-located Woods Hole mooring (WHOTS) provides meteorological and upper ocean physical data. The CMORE (Center for Microbial Oceanography Research and Education) and SCOPE (Simons Collaboration on Ocean Processes and Ecology) programs address their respective science topics at ALOHA. Together these programs provide a truly unique means for observing the ocean across all disciplines and regimes (deep sea, near surface, etc.). ACO has been operating in the abyss since June 2011, collecting temperature, salinity, velocity, acoustic, and video data (see for instance the abstract by Lukas et al., Spatial Analysis of Abyssal Temperature Variations Observed from the ALOHA Cabled Observatory and WHOTS Moorings). Using the University of Hawaii remotely operated vehicle ROV Lu`ukai, a basic sensor package was recently installed equipped with a Paroscientific nano-resolution pressure sensor, a WetLabs fluorometer/turbidity sensor, and a Seabird CTDO2 instrument. These data will be presented and described.
Cantero, Álvaro L Peña; Horton, Tammy
2017-11-10
The deep-sea benthic hydroid fauna remains poorly known, in part because of less frequent sampling than the shelf fauna, in part owing to the immense study area, and partly also because available samples have been little studied by experts. In order to correct this, deep-sea benthic hydroid material from the modern Discovery Collections has been studied. Samples come from localities in the North-East Atlantic including the Porcupine Seabight, Porcupine Abyssal Plain, Rockall Trough, Rockall Bank, and the Mid-Atlantic Ridge. Sixteen species belonging to 12 families and 16 genera were found. Leptothecata are clearly dominant, being represented by 14 species; the remaining species belong to Anthoathecata. Lafoeidae and Tiarannidae are the most diverse families with three species each; the remaining families being represented by a single species. The low species diversity is remarkable at the generic level, with each genus being represented by a single species. Hydroid occurrence is low: twelve species were found in ≤ 9% of stations; Amphinema biscayana has the highest occurrence (27% of stations). Fifteen species were recorded in the Porcupine Seabight, two in the Rockall Trough, one at Rockall Bank, one on the Porcupine Abyssal Plain, and two at the Mid-Atlantic Ridge. The known bathymetric range for a third of the species is extended; the increase is particularly noteworthy in Amphinema biscayana, Acryptolaria crassicaulis, Clytia gigantea and Schizotricha profunda. Two distinct bathymetric groups are recognized: strictly deep-sea inhabitants and eurybathic species. Most species are globally distributed, some are widely distributed in the Atlantic, and others are limited to the North Atlantic or the Northeast Atlantic.
NASA Astrophysics Data System (ADS)
Kuhnz, Linda A.; Ruhl, Henry A.; Huffard, Christine L.; Smith, Kenneth L.
2014-05-01
The abyssal seafloor community in the NE Pacific (Station M, ∼4000 m depth) was studied between 2006 and 2012 using remotely operated vehicles (ROVs) as part of a continuing 24-year time-series study. New patterns continue to emerge showing that the deep-sea can be dynamic on short time scales, rather than static over long periods. In just over 2 years the community shifted from a sessile, suspension-feeding, sponge-dominated community to a mobile, detritus-feeding, sea cucumber-dominated assemblage. In 2006 megafaunal diversity (Simpson’s Diversity Index, SDI) was high, yet the community was depauperate in terms of density compared to later periods. Over an 18-month period beginning in spring 2011, the densities of mobile organisms increased by nearly an order of magnitude while diversity decreased below 2006 levels. In late 2012 four sea cucumbers (two Peniagone spp., Elpidia sp. A, and Scotoplanes globosa) were at the highest densities recorded since investigations began at Station M in 1989. For a group of 10 echinoderms investigated over the entire study period, we saw evidence of a long-term cycle spanning 2 decades. These changes can be tied to a variable food supply originating in shallow water. Large variations over decadal-scales indicate that remote abyssal communities are dynamic and likely subject to impacts from anthropogenic changes like ocean warming, acidification, and pollution manifested in the upper ocean. The degree of dynamism indicates that one-time or short-term investigations are not sufficient for assessing biological community structure in conservation or exploitation studies in the deep sea.
SRTM Perspective View with Landsat Overlay: Bhuj and Anjar, India
NASA Technical Reports Server (NTRS)
2001-01-01
This perspective view shows the city of Bhuj, India, in the foreground near the right side (dark gray area). Bhuj and many other towns and cities nearby were almost completely destroyed by the January 26, 2001, earthquake in western India. This magnitude 7.6 earthquake was the deadliest in the history of India with some 20,000 fatalities and over a million homes damaged or destroyed. The epicenter of the earthquake was in the area in the upper left corner of this view.The city of Anjar is in the dark gray area near the top center of the image. Anjar was previously damaged by a magnitude 6.1 earthquake in 1956 that killed 152 people and suffered again in the larger 2001 earthquake. The red hills to the left of the center of the image are the Has and Karo Hills, which reach up to 300 meter (900 feet) elevation. These hills are formed by folded red sandstone layers. Geologists are studying these folded layers to determine if they are related to the fault that broke in the 2001 earthquake. The city of Bhuj was the historical capital of the Kachchh region. Highways and rivers appear as dark lines. Vegetation appears bright green in this false-color Landsat image. The Gulf of Kachchh (or Kutch) is the blue area in the upper right corner of the image, and the gray area on the left side of the image is called the Banni plains.This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated 5X.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. The Landsat 7 Thematic Mapper image used here was provided to the SRTM by the United States Geological Survey, Earth Resources Observation Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise,Washington, DC.Size: scale varies in this perspective image Location: 23.4 deg. North lat., 69.8 deg. East lon. Orientation: looking East Image Data: Landsat Bands 5, 4, 3 as red, green, blue respectively Original Data Resolution: SRTM 30 meters (99 feet) Date Acquired: four days in February, 2000 (SRTM), February 9, 2001 (Landsat)NISHIDA, Kiwamu
2017-01-01
The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015
Evaluation of abyssal meiobenthos in the eastern central Pacific (Clarion-Clipperton fracture zone)
NASA Astrophysics Data System (ADS)
Renaud-Mornant, Jeanne; Gourbault, Nicole
Meiobenthos were sampled from 17 stations in the abyssal deep-sea system of the central Pacific centered around 14°N, 130°W at depths 4960-5154m, during the Nixo 47 R/V Jean Charcot cruise. Meiofaunal density range from 45-89 ind. 10cm 2. Predominant taxa are nematodes (84-100%) and copepods (0-10%). Rotifera, Polychaeta, and Acarina also occur. Nematodes are uniformly distributed spatially with 45 species or so; Monhysteridae is the dominant taxon, and Syringolaimus sp. (Ironidae) co-occurs faithfully. Low biomass (0.4-70.6μg 10cm 2) are attributed to supposed dwarfism of metazoan meiofauna and very high proportion (60-80%) of juveniles and pre-adult forms. The majority of protozoans and metazoans are detritus- or deposit-feeders; in addition symbiotic associations, coprophagy and gardening activities are frequent. In such an oligotrophic environment, low food supply may limit meiofaunal abundance, biomass and maturation, and to a lesser extent species richness.
Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces
NASA Astrophysics Data System (ADS)
Pfannkuche, Olaf; Lochte, Karin
1993-04-01
Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.
Geothermal heating in the Panama Basin and its impact on water mass transformation
NASA Astrophysics Data System (ADS)
Banyte, D.; Morales Maqueda, M. A.; Hobbs, R. W.; Megann, A.; Smeed, D.
2017-12-01
Geothermal heating is a driving force of abyssal water transformation. To quantify its impact at the basin scale, a hydrographic survey of the Panama Basin was carried out in 2014-2015 as part of the international project OSCAR (Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge). The study shows that about half of the water entering the basin, which is connected to the Pacific Ocean only through the a narrow passage part of the Ecuador Trench, is converted to lighter water within just 200 km downstream of the passage. Of the resulting water, a staggering 90% is transformed by geothermal heating inside the basin, welling up into the ocean interior from a bottom boundary layer (BBL) that can be up to 1000 m thick. The geothermal forcing leaves an imprint in temperature-salinity properties hundreds of meters above the thick BBL. We present a conceptual model of the abyssal water transformation in the basin that incorporates these processes.
NASA Astrophysics Data System (ADS)
Zlotnik, V. A.; Ong, J. T.; Swinehart, J. B.; Fritz, S. C.; Lenters, J. D.; Schmieder, J. U.; Lane, J. W.; Halihan, T.
2010-12-01
Shallow endorheic saline lakes are common in semi-arid environments in North America, Africa, Asia, and Australia. These lakes receive minimal surface runoff and are supported by groundwater seepage. A combination of hydrologic and geologic factors (regional groundwater flow, evaporation, precipitation, lake size, groundwater recharge, and geologic setting) may preclude seepage out of these lakes, even in the presence of ambient regional flow. Solutes from groundwater are captured by these lakes and become enriched over time by evaporation. The importance of understanding lake dynamics in these arid and semi-arid systems is increasing with societal concerns, including water availability and quality, the use of aquatic ecosystems by waterfowl and other biota, and dangers of dust emissions associated with lake desiccation. We consider the salinity of shallow lakes as a useful indicator of hydroclimatic factors operating at centennial and millennial scales. The Nebraska Sand Hills cover 58 000 km2 of the central Great Plains and are the largest dunefield in the Western Hemisphere. The grass-stabilized dunes attain heights up to 130 m and have been modified by soil development and erosion. In an area <7000 km2, there are ~400 lakes with surface areas >4 ha and depths <1 m. Annual lake evaporation exceeds precipitation by 600 mm, according to some estimates. The salinity of natural lakes in the Nebraska Sand Hills ranges from fresh (~0.3 g L-1) to hypersaline (>100 g L-1), with pH values as high as ~10. We assess the mechanisms that control lake salinity in a group of lakes with different subsurface flow regimes. Our methods combine aquifer coring, electromagnetic and electrical resistivity tomography geophysics, hydraulic testing, lakebed dating using 14C and optically stimulated luminescence, energy and water balance analysis, and salt crust and dust collection. Our theory and results show that terrain and water-table topography, lithology, and climate control the lake-aquifer solute exchanges. This study also brings attention to an underappreciated mechanism in the area, namely eolian deflation, which has not been quantified previously. An interaction of hydraulic and eolian mechanisms controls lake salinity, which may strongly depend on the sequence of arid and pluvial episodes.
Topography of the Central Alps in the light of Tertiary collisional tectonics
NASA Astrophysics Data System (ADS)
Rosenberg, Claudio; Garcia, Sebastian
2013-04-01
Collisional shortening in the Central Alps is partitioned very differently between the upper and lower plates along the strike of the orogen. North of the Insubric Line, the amount of post-nappe shortening accommodated in the wedge of accreted lower crustal material, increases westwards, whereas south of the Insubric Line, post-nappe shortening accommodated in the upper plate increases eastward (Rosenberg and Kissling, 2013). Taking the Bergell pluton as a time marker, the age of these deformations is inferred to be post 30 Ma. We investigate the present-day topography of the Central Alps, in order to test whether the systematic, along-strike changes, in the amounts of post-nappe shortening are associated to a systematic change in the topographic signature. In order to do so, the maximum and minimum elevations, and the local relief along a series of N-S sections are analysed and compared. The analysis of these topographic sections shows that the local relief varies following two along-strike trends: 1. North of the Insubric Line, i.e. in the wedge of accreted lower crust, the relief decreases from west to east, showing the transition from a highly incised topography in the west to a plateau-like topography in the East. 2. South of the Insubric Line, i.e. in the lower plate, the relief increases from East to West. These trends point to a positive correlation between the amount of shortening and the intensity of local relief. Linear correlations between local relief and uplift rate (e.g. Hurtez et al., 1999), and between local relief and shortening rates (Champagnac et al., 2012) have been inferred for different, tectonically active areas. Areas of larger finite shortening in the Central Alps, characterized by higher local relief, probably correspond to areas of higher shortening (and uplift) rates during Alpine collision. Considering the very slow, present-day, convergent movements across the Central Alps (Noquet and Calais, 2004) it is not clear whether the observed correlation between shortening and relief is the result of past, but still active tectonics or a well preserved relict of Miocene teconic activity. References: Champagnac, J.-D., P. Molnar, C. Sue, and F. Herman (2012), Tectonics, climate, and mountain topography, J. Geophys. Res., 117, B02403, doi:10.1029/2011JB008348. Hurtez, J._E., Lucazeau, F., Lavé, J., and Avouac, J.-P. (1999), Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal. J. Geophys. Res., 104, NO. B6, PAGES 12,779-12,796 Nocquet, J.-M. and Calais, E. (2004), Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and Applied Geophysics, 161, 661-681, doi:10.1007/s00024-003-2468-z Rosenberg, C.L. and Kissling, E. (2013), 3D Structure of collision in the Central Alps: lower-plate or upper-plate indentation? EGU Abstract volume, EGU2013-ASC-2013-7946.
Audio-magnetotelluric (AMT) study to investigate the genesis of Mujil hill
NASA Astrophysics Data System (ADS)
Rahmania, Suryanto, Wiwit
2017-07-01
Gunung Mujil is an isolated hill located near Pondoworejo village, Kalibawang sub-district, Kulon Progo district, and Special Province of Yogyakarta. The hill is part of the eastern Kulon Progo mountain range extended relatively in the North-South direction. The lithology of the hill consists of andesite breccia and it's similar with the Old Andesite Formation that built the Kulon Progo Mountains. There are at least two hypothesis about the genesis and the formation mechanism of this hill, (1) it was formed by debris mass from Kulon Progo Mountains, and (2) ) it was formed by an intrusion. Our study intended to determine the subsurface resistivity below the hill and to relating those results to with the scenario of the genesis of the Mujil hill. We conducted Audio-magnetotellurics (AMT) measurements along two lines survey crossing the Mujil hill consisting of 20 measurements. Since the measurements are located near the villages, most of the data has a fair to bad quality and only one station yielded an excellent data. A 1D Forward modeling was then applied to find best-fit model of the AMT data. The results shows that the Mujil hill was built by debris mass of the Old Andesite Formation from Kulon Progo mountain which is represented by a lower resistivity value under the Mujil hill.
Titan2D simulations of dome-collapse pyroclastic flows for crisis assessments on Montserrat
NASA Astrophysics Data System (ADS)
Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.
2010-12-01
The Soufriere Hills Volcano (SHV), Montserrat, has experienced numerous episodes of lava dome collapses since 1995. Collapse volumes range from small rockfalls to major dome collapses (as much as ~200 M m3). Problems arise in hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flowage deposits in various scenarios is important for hazards zonation, provision of advice by scientists, and decision making by public officials. Towards resolution of this issue we have tested the TITAN2D code, calibrated parameters for an SHV database, and using updated topography have provided flowage maps for various scenarios and volume classes from SHV, for use in hazards assessments. TITAN2D is a map plane (depth averaged) simulator of granular flow and yields mass distributions over a DEM. Two Coulomb frictional parameters (basal and internal frictions) and initial source conditions (volume, source location, and source geometry) of single or multiple pulses in a dome-collapse type event control behavior of the flow. Flow kinematics are captured, so that the dynamics of flow can be examined spatially from frame to frame, or as a movie. Our hazard maps include not only the final deposit, but also areas inundated by moving debris prior to deposition. Simulations from TITAN2D were important for analysis of crises in the period 2007-2010. They showed that any very large mass released on the north slope would be strongly partitioned by local topography, and thus it was doubtful that flows of very large size (>20 M m3) could be generated in the Belham River drainage. This partitioning effect limited runout toward populated areas. These effects were interpreted to greatly reduce the down-valley risk of ash-cloud surges.
NASA Astrophysics Data System (ADS)
Roberts, D. L.; Neumann, F. H.; Cawthra, H. C.; Carr, A. S.; Scott, L.; Durugbo, E. U.; Humphries, M. S.; Cowling, R. M.; Bamford, M. K.; Musekiwa, C.; MacHutchon, M.
2017-03-01
A multi-proxy study of an offshore core in Saldanha Bay (South Africa) provides new insights into fluvial deposition, ecosystems, phytogeography and sea-level history during the late Paleogene-early Neogene. Offshore seismic data reveal bedrock topography, and provide evidence of relative sea levels as low as - 100 m during the Oligocene. 3D landscape reconstruction reveals hills, plains and an anastomosing river system. A Chattian or early Miocene age for the sediments is inferred from dinoflagellate taxa Distatodinium craterum, Chiropteridium lobospinosum, Homotryblium plectilum and Impagidinium paradoxum. The subtropical forest revealed by palynology includes lianas and vines, evergreen trees, palms and ferns, implying higher water availability than today, probably reduced seasonal drought and stronger summer rainfall. From topography, sedimentology and palynology we reconstruct Podocarpaceae-dominated forests, Proto-Fynbos, and swamp/riparian forests with palms and other angiosperms. Rhizophoraceae present the first South African evidence of Palaeogene/Neogene mangroves. Subtropical woodland-thicket with Combretaceae and Brachystegia (Peregrinipollis nigericus) probably developed on coastal plains. Some of the last remaining Gondwana elements on the sub-continent, e.g., Araucariaceae, are recorded. Charred particles signal fires prior to the onset of summer dry climate at the Cape. Marine and terrestrial palynomorphs, together with organic and inorganic geochemical proxy data, suggest a gradual glacio-eustatic transgression. The data shed light on Southern Hemisphere biogeography and regional climatic conditions at the Palaeogene-Neogene transition. The proliferation of the vegetation is partly ascribed to changes in South Atlantic oceanographic circulation, linked to the closure of the Central American Seaway and the onset of the Benguela Current 14 Ma.
Asteroid (2867) Steins: Shape, topography and global physical properties from OSIRIS observations
NASA Astrophysics Data System (ADS)
Jorda, L.; Lamy, P. L.; Gaskell, R. W.; Kaasalainen, M.; Groussin, O.; Besse, S.; Faury, G.
2012-11-01
The Rosetta spacecraft flew by Asteroid (2867) Steins on 5 September 2008, allowing the onboard OSIRIS cameras to collect the first images of an E-type asteroid. We implemented several three-dimensional reconstruction techniques to retrieve its shape. Limb profiles, combined with stereo control points, were used to reconstruct an approximate shape model. This model was refined using a stereophotoclinometry technique to accurately retrieve the topography of the hemisphere observed by OSIRIS. The unseen part of the surface was constrained by the technique of light curves inversion. The global shape resembles a top with dimensions along the principal axes of inertia of 6.83 × 5.70 × 4.42 km. It is conspicuously more regular than other small asteroids like (233) Eros and (25143) Itokawa. Its mean radius is Rm = 2.70 km and its equivalent radius (radius of a sphere of equivalent volume) is Rv = 2.63 km. The north pole is oriented at RA = 99 ± 5° and Dec = -59 ± 5°, which implies a very large obliquity of 172° and a retrograde rotation. Maps of the gravitational field and slopes were calculated for the well-imaged part of the asteroid. Together with the shape, they helped characterizing the most prominent topographic features identified at the surface of (2867) Steins: an equatorial ridge restricted to the extremities of the long axis, a large crater having dimensions of 2100 × 1800 m in the southern hemisphere, and an elongated hill in the northern hemisphere. We conjecture that the equatorial ridge was formed by centrifugal acceleration as the asteroid was spun up by the Yarkovsky-O’Keefe-Radzievskii-Paddack effect.
The line integral approach to radarclinometry
Wildey, R.L.
1987-01-01
Radarclinometry, the invention of which has been previously reported, is a technique for deriving a topographic map from a single radar image by using the dependence upon terrain-surface orientation of the integrated signal of an individual image pixel. The radiometric calibration required for precise operation and testing does not yet exist, but the imminence of important applications justifies parallel, rather than serial, development of radarclinometry and radiometrically calibrated radar. The present investigation reports three developmental advances: (1) The solid angle of integration of back-scattered specific intensity constituting a pixel signal is more accurately accounted for in its dependence on surface orientation than in previous work. (2) The local curvature hypothesis, which removes the requirement of a ground-truth profile as a boundary condition and enables the formulation of the theory in terms of a line integral, has been expanded to include the three possibilities of Local Cylindricity, Local Biaxial Ellipsoidal Hyperbolicity, and Least-Squares Local Sphericity. (3) The theory is integrated in the cross-ground-range direction, which is ill-conditioned compared to the ground-range direction, whereas the original formulation was based on enforced isotropy in the two-dimensional power spectrum of the topography. It was found necessary to prohibit the hypothesis of Local Biaxial Ellipsoidal Hyperbolicity in the cross-range stepping, for reasons not completely clear. Variation in the proportioning between curvature assumptions had produced topographic maps that are in good mutual agreement but not realistic in appearance. They are severely banded parallel to the ground-range direction, most especially at small radar zenith angles. Numerical experimentation with the falsification of topography through incorrect decalibration as performed on a Gaussian hill suggests that the banding and its exaggeration at high radar incidence angles could easily be due to our lack of radiometric calibration. ?? 1987 D. Reidel Publishing Company.
Terrestrial ice streams-a view from the lobe
Jennings, C.E.
2006-01-01
The glacial landforms of Minnesota are interpreted as the products of the lobate extensions of ice streams that issued from various ice sheds within the Laurentide Ice Sheet. Low-relief till plains, trough-shaped lowlands, boulder pavements, and streamlined forms make up the subglacial landsystem in Minnesota that is interpreted as having been formed by streaming ice. Extremely uniform tills are created subglacially in a way that remains somewhat mysterious. At the ice margins, thrust moraines and hummocky stagnation topography are more common than single-crested, simple moraines if the ice lobes had repeated advances. Subglacial drainage features are obscure up-ice but are present down-ice in the form of tunnel valleys, eskers, Spooner hills, and associated ice-marginal fans. Ice streaming may occur when basal shear stress is lowered as a result of high subglacial water pressure. Subglacial conditions that allow the retention of water will allow an ice lobe to extend far beyond the ice sheet as long as the ice shed also supports the advance by supplying adequate ice. Even with adequate ice flux, however, the advance of an ice lobe may be terminated, at least temporarily, if the subglacial water is drained, through tunnel valleys or perhaps a permeable substrate. Thrust moraines, and ice stagnation topography will result from sudden drainage. Although climate change is ultimately responsible for the accumulation of ice in the Laurentide Ice Sheet, the asynchronous advances and retreats of the ice lobes in the mid-continent are strongly overprinted by the internal dynamics of individual ice streams as well as the interaction of ice sheds, which obscure the climate signal. ?? 2005 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Olcott, Marianina
2007-01-01
This paper seeks to explain the epistemological bases for the two cultures and to show why this disciplinary divide continues to plague American academic culture. Next, we discuss strategies for bridging the two cultures through general education curricula which promote mutual understanding of the two cultures while educating students in basic…
Effects of the Sea-Bed on Acoustic Propagation.
1983-11-15
from the plane-wave reflection curves presented in Fig. 7, which have been computed from a numerical model developed by Hastrup [8]. Since good...La Spezia, Italy, SACLANT ASW Research Centre, 1983. 8. HASTRUP , O.F. Digital analysis of acoustic reflectivity in the Tyrrhenian abyssal plain. J
NASA Astrophysics Data System (ADS)
Nagihara, S.; Sclater, J. G.; Phillips, J. D.; Behrens, E. W.; Lewis, T.; Lawver, L. A.; Nakamura, Y.; Garcia-Abdeslem, J.; Maxwell, A. E.
1996-02-01
The seafloor depth of an oceanic basin reflects the average temperature of the lithosphere. Thus the western abyssal plain of the Gulf of Mexico, which has tectonically subsided much (>1 km) deeper than other basins of comparable ages (late Jurassic), should be underlain by an anomalously cold lithosphere. In order to examine this hypothesis, we made suites of high-accuracy heat flow measurements at 10 sites along a line connecting Deep Sea Drilling Project (DSDP) sites 90 and 91 in the Sigsbee abyssal plain. The new heat flow sites were initially surveyed by 3.5-kHz echo sounding, 4-channel seismic reflection, seismic refraction with eight ocean bottom seismometers, and nine piston cores. We occupied a total of 48 heat flow stations along the seismic survey line (3 to 6 at each site), including 28 where we measured in situ thermal conductivities over the practical depth interval (4 m) of the new multioutrigger bow heat flow probe. We determined the heat flow associated with the lithosphere by correcting the values measured at the seafloor (41 to 45 mW/m2) for (1) the thermal effect of the sedimentation and (2) the additional heat from the radioactive elements within the sediments. The sedimentation history, required for the first, was reconstructed at each heat flow site based on ages and thicknesses of the major seismic stratigraphical sequences, age data from the DSDP cores, 3.5-kHz subbottom reflectors, and correlation of turbidite units found in the piston cores. Radiogenic heat production was measured for 55 sediment samples from four DSDP holes in the gulf, whose age ranged from present to Early Cretaceous (0.83 μW/m3 on the average). This provided the correction for the second. The effects of these two secondary factors approximately cancel one another. The lithospheric heat flow under the abyssal plain thus estimated ranges from 40 to 47 mW/m2. These heat flow values are among the lowest in the Mesozoic ocean basins where highly reliable data (45 to 55 mW/m2) have been reported. Therefore the lithosphere under the gulf seems indeed colder than that under other old ocean basins. However, it is not as cold as expected from the large tectonic subsidence. The inconsistency between the depth and heat flow may imply an anomaly in the regional thermal isostasy.
NASA Astrophysics Data System (ADS)
Wardell, Nigel; Camerlenghi, Angelo; Urgeles, Roger; Geletti, Riccardo; Tinivella, Umberta; Giustiniani, Michela; Accettella, Daniela
2014-05-01
The south Balearic margin is characterized by an abrupt tectonically-controlled transition between a steep continental slope (Emile Baudot escarpment) and the Algero-Balearic abyssal plain, in which Messinain salt-induced deformation affects the seafloor morphology. Multichannel seismic profiles, multibeam bathymetry, and shallow seismic data demonstrate that the extent of salt deformation does not coincide with the bathymetric plain-slope transition. Instead, deformation occurs south of linear structure in the abyssal plain located some tens of kilometres from the base of the slope. The quality of the multi-channel seismic record in the deep water deformed area is severely decreased by the three dimensional character of the salt structures. However, the abyssal plain near the base of the slope reveals details on the Messinian sequence, its structure, post-Messinan deformation, and relation with subsurface fluids. The analysis of part of the EUROFLEETS SALTFLU multichannel seismic data set has included detailed RMS velocity analysis, post-stack and pre-stack time migration. An anomalously thick (up to 800 ms twt) acoustically laminated unit comprising the Messinian Upper Unit (UU) is present near the base of the slope and is characterized by syn-sedimentary gentle symmetric folding. The crests of such folds are affected by small-offset, layer-bound fractures and faults propagating from the upper part to the UU to the Plio-Quaternary sequence. Amplitude anomalies, polarity inversion and at times acoustic blanking reveal the presence of fluids (presumably gas) within the Messinian sequence. A clear seismic evidence for the Mobile Unit (MU, or salt layer) is missing in this area. Seismic evidence for the MU exists south of the linear structural boundary, where salt induced deformation has created vertical displacements of several hundreds of metres, diapiric growth, and at least two salt/mud piercement structures at the seafloor. In the highly deformed area, the UU and the Lower Unit (LU) appear to amalgamate as a consequence of complete salt withdrawal around diapirs. The seismic analysis is focussed on determining whether the boundary between low and high degree of deformation in the abyssal plain is determined by the limit of the salt distribution. In this case the northern limit of the Messinian pure salt basin would not coincide with the present day continental slope, thus requiring either a strong control of Messinian tectonic structures an salt deposition and/or a contamination of salt with clastics.
NASA Technical Reports Server (NTRS)
2005-01-01
The topography of the island nation of Sri Lanka is well shown in this color-coded shaded relief map generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM). Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. For this special view heights below 10 meters (33 feet) above sea level have been colored red. These low coastal elevations extend 5 to 10 km (3.1 to 6.2 mi) inland on Sri Lanka and are especially vulnerable to flooding associated with storm surges, rising sea level, or, as in the aftermath of the earthquake of December 26, 2004, tsunami. These so-called tidal waves have occurred numerous times in history and can be especially destructive, but with the advent of the near-global SRTM elevation data planners can better predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events. Sri Lanka is shaped like a giant teardrop falling from the southern tip of the vast Indian subcontinent. It is separated from India by the 50km (31mi) wide Palk Strait, although there is a series of stepping-stone coral islets known as Adam's Bridge that almost form a land bridge between the two countries. The island is just 350km (217mi) long and only 180km (112mi) wide at its broadest, and is about the same size as Ireland, West Virginia or Tasmania. The southern half of the island is dominated by beautiful and rugged hill country, and includes Mt Pidurutalagala, the islandaE(TM)s highest point at 2524 meters (8281 ft). The entire northern half comprises a large plain extending from the edge of the hill country to the Jaffna peninsula. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C. Location: 8.0 degrees North latitude, 80.7 degrees East longitude Orientation: North toward the top, Mercator projection Size: 275.6 by 482.4 kilometers (165.4 by 299.0 miles) Image Data: shaded and colored SRTM elevation model Date Acquired: February 2000NASA Astrophysics Data System (ADS)
Safaei Pirooz, Amir A.; Flay, Richard G. J.
2018-03-01
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.
Uniform and Multi-Grid Modeling of Acoustic Wave Propagation With Cellular Automaton Techniques
2013-03-01
39 Figure 26. CurrvedHillIndices fuction used to created a curved hill in the bottom...to safe passage of a submarine. Driving factors influencing SONAR improvements have alluded to the fact that primary naval missions have shifted from...CurvedHillIndices function after reaching line 12 42 Figure 26. CurrvedHillIndices fuction used to created a curved hill in the bottom of any 2D or
Climate change and apple farming in Indian Himalayas: a study of local perceptions and responses.
Basannagari, Basavaraj; Kala, Chandra Prakash
2013-01-01
Apple farming is an important activity and profession of farmer communities in the Himalayan states of India. At present, the traditional apple farming is under stress due to changes in climate. The present study was undertaken in an Indian Himalayan state, Himachal Pradesh, with the major aim of studying perceptions of farmers on the effects of climate change on apple farming along the altitudinal gradient. Through questionnaire survey, the perceptions of farmers were recorded at low hills (<2500 m), mid-hills (2500-3000 m), and upper hills (>3000 m). At all elevation range the majority of farmers reported that there was increase in atmospheric temperature, and hence at low hills 72% farmers believed that this increase in temperature was responsible for decline in fruit size and so that the quality. Thirty five percent farmers at high hills and 30% at mid hills perceived frost as a major cause for damaging apple farming whereas at low hills 24% farmers perceived hailstorm as the major deterrent for apple farming. The majority of farmers, along the altitude (92% at high hills, 79% at mid hills and 83% at low hills), reported decrease in snowfall. The majority of farmers at low altitude and mid altitude reported decline in apple farming whereas 71% farmers at high hill areas refused decline in apple farming. About 73-83% farmers admitted delay in apple's harvesting period. At mid hills apple scab and at low hills pest attack on apple crops are considered as the indicators of climate change. The change in land use practices was attributed to climate change and in many areas the land under apple farming was replaced for production of coarse grains, seasonal vegetables and other horticulture species. Scientific investigation claiming changes in Indian Himalayan climate corroborates perceptions of farmers, as examined during the present study.
Combining Mechanistic Approaches for Studying Eco-Hydro-Geomorphic Coupling
NASA Astrophysics Data System (ADS)
Francipane, A.; Ivanov, V.; Akutina, Y.; Noto, V.; Istanbullouglu, E.
2008-12-01
Vegetation interacts with hydrology and geomorphic form and processes of a river basin in profound ways. Despite recent advances in hydrological modeling, the dynamic coupling between these processes is yet to be adequately captured at the basin scale to elucidate key features of process interaction and their role in the organization of vegetation and landscape morphology. In this study, we present a blueprint for integrating a geomorphic component into the physically-based, spatially distributed ecohydrological model, tRIBS- VEGGIE, which reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. We present a preliminary design of the integrated modeling framework in which hillslope and channel erosion processes at the catchment scale, will be coupled with vegetation-hydrology dynamics. We evaluate the developed framework by applying the integrated model to Lucky Hills basin, a sub-catchment of the Walnut Gulch Experimental Watershed (Arizona). The evaluation is carried out by comparing sediment yields at the basin outlet, that follows a detailed verification of simulated land-surface energy partition, biomass dynamics, and soil moisture states.
Inclusive city: Vallcarca – Space extension idea for social and urban housing
NASA Astrophysics Data System (ADS)
Maharani, A.; Gaxioala, A.
2018-03-01
The neighborhood of Vallcarca, Barcelona - Spain, is located near the valley formed by the three hills called El Putxet, Creueta del Coll and Muntanya Pelada adjacent to the back area of Park Guell. Vallcarca first urbanized at the XIX century as a place to spend summer for the nearby inhabitants of the city of Barcelona. Since the end of XX century, the area has been under the pressure of different urban plannings and economic speculations that have just erase a big portion of its original physiognomy, without being able to organize a new area of town. The empty land that located at the former center and across Vallcarca becoming part of research to produce an outcome for compatible housing within the area. The data gives a focus on the social and urban rehabilitation of the neighborhood that introducing a program of social housing with communal facilities using an approach of connection and topography that existed on the site as a catalyst to change this fragmented part of the city into inclusive neighborhood.
77 FR 75120 - Black Hills National Forest Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Black Hills National Forest Advisory Board will... copying. The public may inspect comments received at the Supervisor's Office, Black Hills National Forest...
78 FR 65962 - Black Hills National Forest Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of cancellation of meeting of the Black Hills National Forest Advisory Board. SUMMARY: The U. S. Department of Agriculture, Forest Service, Black Hills National Forest cancelled the...
Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri
Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.
1997-01-01
Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.
78 FR 73187 - Black Hills National Forest Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Black Hills National Forest Advisory Board (Board... the Black Hills National Forest in South Dakota; and (4) update and report on Mountain Pine Beetle...
77 FR 8214 - Black Hills National Forest Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest Advisory Board AGENCY: USDA Forest Service. ACTION: Notice of intent to re-establish the Black Hills National Forest Advisory Board...-establish the Black Hills National Forest Advisory Board (Board). The purpose is to obtain advice and...
75 FR 65315 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
.... Applicants: Black Hills Power, Inc., Black Hills/Colorado Electric Utility Co, Black Hills Wyoming, LLC, Cheyenne Light, Fuel and Power Company. Description: Updated Market Power Analysis of the Black Hills... LLC submits tariff filing per 35.17(b): Amendment to Market-Based Rate Application Reflecting Change...
Roy, Somnath; Marndi, B C; Mawkhlieng, B; Banerjee, A; Yadav, R M; Misra, A K; Bansal, K C
2016-07-13
Hill rices (Oryza sativa L.) are direct seeded rices grown on hill slopes of different gradients. These landraces have evolved under rainfed and harsh environmental conditions and may possess genes governing adaptation traits such as tolerance to cold and moisture stress. In this study, 64 hill rice landraces were collected from the state of Arunachal Pradesh of North-Eastern region of India, and assessed by agro-morphological variability and microsatellite markers polymorphism. Our aim was to use phenotypic and genetic diversity data to understand the basis of farmers' classification of hill rice landraces into two groups: umte and tening. Another goal was to understand the genetic differentiation of hill rices into Indica or japonica subspecies. According to farmers' classification, hill rices were categorized into two groups: umte (large-grained, late maturing) and tening (small-grained, early maturing). We did not find significant difference in days to 50 % flowering between the groups. Principal component analysis revealed that two groups can be distinguished on the basis of kernel length-to-width ration (KLW), kernel length (KL), grain length (GrL), grain length-to-width ration (GrLW) and plant height (Ht). Stepwise canonical discriminant analysis identified KL and Ht as the main discriminatory characters between the cultivar groups. Genetic diversity analysis with 35 SSR markers revealed considerable genetic diversity in the hill rice germplasm (gene diversity: 0.66; polymorphism information content: 0.62). Pair-wise allelic difference between umte and tening groups was not statistically significant. The model-based population structure analysis showed that the hill rices were clustered into two broad groups corresponding to Indica and Japonica. The geographic distribution and cultivars grouping of hill rices were not congruent in genetic clusters. Both distance- and model-based approaches indicated that the hill rices were predominantly japonica or admixture among the groups within the subspecies. These findings were further supported by combined analysis hill rices with 150 reference rice accessions representing major genetic groups of rice. This study collected a valuable set of hill rice germplasm for rice breeding and for evolutionary studies. It also generated a new set of information on genetic and phenotypic diversity of hill rice landraces in North-Eastern region of India. The collected hill rices were mostly japonica or admixture among the subpopulations of Indica or Japonica. The findings are useful for utilization and conservation of hill rice germplasm.
Mazama ash in the Northeastern Pacific
Nelson, C.H.; Kulm, L.D.; Carlson, P.R.; Duncan, J.R.
1968-01-01
Volcanic glass in marine sediments off Oregon and Washington correlates with continental deposits of Mount Mazama ash by stratigraphic position, refractive index, and radiocarbon dating. Ash deposited in the abyssal regions by turbidity currents is used for tracing of the dispersal routes of postglacial sediments and for evaluation of marine sedimentary processes.
Tipping into the Abyss: With More than a Virtual Parachute?
ERIC Educational Resources Information Center
Tompsett, Chris
2007-01-01
Any application of information and communication technology in education (ICTE) sits, at times uncomfortably, at the intersection of three key disciplines: technology, education and sociology (including reflexivity). To confuse matters, any specific study may need to take account of specific knowledge within subdisciplines, such as organisational…
NASA Astrophysics Data System (ADS)
Coussens, Maya; Cassidy, Michael; Watt, Sebastian F. L.; Jutzeler, Martin; Talling, Peter J.; Barfod, Dan; Gernon, Thomas M.; Taylor, Rex; Hatter, Stuart J.; Palmer, Martin R.; Montserrat Volcano Observatory
2017-03-01
Volcanism on Montserrat (Lesser Antilles arc) has migrated southwards since the formation of the Silver Hills 2.5 Ma, and has formed three successively active volcanic centres. The Centre Hills volcano was the focus of volcanism from 1-0.4 Ma, before activity commenced at the currently active Soufrière Hills volcano. The history of activity at these two volcanoes provides an opportunity to investigate the pattern of volcano behaviour on an andesitic arc island over the lifetime of individual volcanoes. Here, we describe the pyroclastic stratigraphy of subaerial exposures around central Montserrat; identifying 11 thick (> 1 m) pumiceous units derived from sustained explosive eruptions of Centre Hills from 0.8-0.4 Ma. Over 10 other, less well- exposed pumiceous units have also been identified. The pumice-rich units are interbedded with andesite lava breccias derived from effusive, dome-forming eruptions of Centre Hills. The stratigraphy indicates that large (up to magnitude 5) explosive eruptions occurred throughout the history of Centre Hills, alongside effusive activity. This behaviour at Centre Hills contrasts with Soufrière Hills, where deposits from sustained explosive eruptions are much less common and restricted to early stages of activity at the volcano, from 175-130 ka. Subsequent eruptions at Soufriere Hills have been dominated by andesitic effusive eruptions. The bulk composition, petrography and mineral chemistry of volcanic rocks from Centre Hills and Soufrière Hills are similar throughout the history of both volcanoes, except for occasional, transient departures to different magma compositions, which mark shifts in vent location or dominant eruption style. For example, the final recorded eruption of Centre Hills, before the initiation of activity at Soufrière Hills, was more silicic than any other identified eruption on Montserrat; and the basaltic South Soufrière Hills episode marked the transition to the current stage of predominantly effusive Soufrière Hills activity. The compositional stability observed throughout the history of Centre Hills and Soufrière Hills suggests that a predominance towards effusive or explosive eruption styles is not driven by major compositional shifts of magma, but may reflect local changes in long-term magma storage conditions that characterise individual episodes (on 105 year timescales) of volcanism on Montserrat. Supplementary Table 2: Complete XRF analyses for all analysed samples Supplementary Table 3: Complete ICP-MS analyses for all analysed samples. Supplementary Table 4: Plagioclase composition and precision data from SEM analysis Supplementary Table 5: Clinopyroxene composition and precision data from SEM analysis Supplementary Table 6: Orthopyroxene composition and precision data from SEM analysis Supplementary Table 7: Amphibole composition and precision data from SEM analysis Supplementary Table 8: Glass compositions from EMP analysis Supplementary Table 9: Standard Deviation of glass compositions from EMP analysis. Supplementary Table 10: Isotopic composition of argon from plagioclase crystals from select units. Data obtained using an ARGUS V multi-collector mass spectrometer.
MARIUS HILLS REGION, MOON: Stratigraphy of low shields and mare basalts
NASA Astrophysics Data System (ADS)
Gebhart, Jennifer; Hiesinger, Harry; van der Bogert, Carolyn; Hendrik Pasckert, Jan; Weinauer, Julia; Lawrence, Samuel; Stopar, Julie; Robinson, Mark
2016-04-01
The Marius Hills region consists of more than 250 individual basaltic low shields (usually referred to as "domes") and cones, located on a broad topographic rise. The bases of numerous low shields have slope angles of ~2-3° whereas the upper portions have slopes of ~6-7° [1], interpreted to reflect changes in composition over time [1]. However, the absence of spectral differences between the two dome morphologies and the surrounding mare basalts suggests that the observed morphologies are more plausibly explained by changes in effusion rates, temperature (viscosity), and/or crystallization over time [e.g., 2]. Previous studies indicate that volcanism in this region occurred in the Upper Imbrian (3.2-3.8 Ga) [3], although several other authors reported ages ranging from the Imbrian (~3.3 Ga) to the Eratosthenian (~2.5 Ga) [e.g., 1,2,4]. [2,5] reported that all low shields are embayed by younger mare units, indicating that they formed during an older stage of volcanic activity. Mare basalts surrounding the Marius Hills exhibit absolute model ages of 1.2-3.7 Ga [6]. We used 36 LRO NAC images to perform crater size-frequency distribution (CSFD) measurements. The images were calibrated and map-projected with ISIS 3 and imported into ArcGIS. Within ArcGIS, we used CraterTools [7] to perform our CSFD measurements. The crater size-frequency distributions were then plotted with CraterStats [8], using the production and chronology functions of [9]. We conducted CSFD measurements for 50 Marius Hills low shields. Our count area sizes ranged from 1.06 x 101 to 8.75 x 101 km2; those for adjacent basalts varied between 6.17 x 100 and 8.01 x 101 km2. We determined absolute model ages (AMAs) of 1.03 to 3.65 Ga for the low shields and did not find a spatial correlation of ages versus their locations. CSFD measurements for 27 adjacent basalts show AMAs of 1.20-3.69 Ga. Of those basalts, 24 exhibit AMAs of 3-3.5 Ga; there is no correlation of AMAs and the geographic position of the dated basalts. We find that in several cases the low shields are younger than their adjacent mare basalts. However, the stratigraphic relationships might be more complicated because [2,5] observed that basalts embay the low shields. Thus, further studies are required to unambiguously constrain the stratigraphic relationships and to characterize possible effects of small count areas and topography on the determination of AMAs with CSFD measurements. Provided the AMAs were not affected by the relatively small size of the count areas and topographic slopes, these results imply that the volcanic activity in the Marius Hills region lasted > 1 Ga longer than previously thought [e.g., 4]. [1] McCauley (1967b) Mantles of the Earth an terrestrial planets, 431-460; [2] Lawrence et al. (2013) JGR 118; [3] Wilhelms (1987) USGS Spec. Pub. 1348; [4] Heather et al. (2003) JGR 108; [5] Weitz and Head (1999) JGR 104; [6] Hiesinger et al. (2003) JGR 108; [7] Kneissl et al. (2012) PSS 59; [8] Michael and Neukum, (2010) EPSL 294; [9] Neukum et al. (2001) SSR 96.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... Division Customer Care, Morgan Hill, California; Notice of Negative Determination on Reconsideration On... Reconsideration for the workers and former workers of Comcast Cable, West Division Customer Care, Morgan Hill... the petition for group eligibility of Comcast Cable, West Division Customer Care, Morgan Hill...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-20
... Spring Hill, TN; Notice of Negative Determination Regarding Application for Reconsideration By... negative determination applicable to workers and former workers at American Food and Vending, Spring Hill... eligible for TAA because they are service workers who provided services to General Motors, Spring Hill...
NASA Astrophysics Data System (ADS)
Lipan, Ovidiu; Ferwerda, Cameron
2018-02-01
The deterministic Hill function depends only on the average values of molecule numbers. To account for the fluctuations in the molecule numbers, the argument of the Hill function needs to contain the means, the standard deviations, and the correlations. Here we present a method that allows for stochastic Hill functions to be constructed from the dynamical evolution of stochastic biocircuits with specific topologies. These stochastic Hill functions are presented in a closed analytical form so that they can be easily incorporated in models for large genetic regulatory networks. Using a repressive biocircuit as an example, we show by Monte Carlo simulations that the traditional deterministic Hill function inaccurately predicts time of repression by an order of two magnitudes. However, the stochastic Hill function was able to capture the fluctuations and thus accurately predicted the time of repression.
2018-04-25
The rounded hills in this VIS image are located in Arcadia Planitia. Broad linear ridges and groups of hills in this region are part of Phlegra Dorsa (ridges) and Phlegra Montes (hills). Orbit Number: 71248 Latitude: 30.6712 Longitude: 171.018 Instrument: VIS Captured: 2018-01-05 17:05 https://photojournal.jpl.nasa.gov/catalog/PIA22377
75 FR 63465 - Hill-Lake Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-137-000] Hill-Lake Gas Storage, LLC; Notice of Filing October 7, 2010. Take notice that on September 30, 2010, Hill-Lake Gas Storage, LLC (Hill-Lake) filed a revised Statement of Operating Conditions (SOC) for its Storage Services...
75. Southeast elevation of Forest Hills station looking Northwest ...
75. Southeast elevation of Forest Hills station - looking Northwest from junction of Washington and Walk Hill Streets. At left is the beginning of Section F-7 the exposed steel portion of elevated structure leading to the Forest Hills storage yard (demolished in 1985). - Boston Elevated Railway, Elevated Mainline, Washington Street, Boston, Suffolk County, MA
NASA Astrophysics Data System (ADS)
Leszczynska, Karolina; Boreham, Julie; Boreham, Steve
2013-04-01
In the 'Hidden Ice Worlds' research project a novel systematic approach for thin-section description (Leszczynska et al., 2011) is applied to analyse the internal structure of 8 m thick periglacially disturbed sequence from the Royal Oak Pit - a small disused quarry in East Anglia, Essex, east of Chelmsford, near Danbury. Danbury Hill is situated on the south-eastern margin of the Elsterian (Anglian) till sheet. This area was glaciated only once, during the Pleistocene, Elsterian (Anglian) glaciation (480-420 ka BP), however two local ice-sheet margin fluctuations are envisaged (inter alia Turner, 1970 and others). The stratigraphical sequence of the Royal Oak Pit comprises: massive gravel, arranged in sheets, overlain by fine silty-clay and silty-sand with ripple marks and planar cross beds, overlain by a 50 cm thick unit of massive gravel gradually changing into periglacially disturbed silty-clayey-gravel with the bottom 50 cm of fine laminated silty clay. This sequence is situated on the lee side of Danbury Hill, at over 50 m OD. This is an atypical location for the periglacially disturbed deposits of such a substantial thickness (up to 8 m), which usually occur in the lower areas. The deposits at this site were investigated at a macro-scale using field-section logging, ground penetrating radar survey, clast lithology, clay mineralogy analysis and loss-on-ignition and at a micro-scale using thin-section analysis. There are two main aims of the project presented: • To describe the genesis and to discern the main processes associated with the formation of the unusually thick periglacially disturbed unit at the Danbury Hill slope and • To test the novel, tree-based, systematic approach as a guiding tool for thin for thin-section description of Quaternary deposits (Leszczynska et al., 2011). The results of the micromorphological analyses of the deposits from the Royal Oak Pit allow a new hypothesis for the origin of the sequence to be put forward. The main process responsible for the evolution of the deposits consist of multiple phases of freezing and thawing of the deposit and associated physical reworking, subsequent to Elsterian (Anglian). Inversion of the topography is proposed as a necessary condition for the formation and preservation of the periglacially disturbed sequence on hill slope at such elevated location. The novel systematic approach proved to be a useful tool in guiding the thin-section description, regardless of the type of the deposit and the aim of the research. Reference: Leszczynska, K., Boreham, J. and Boreham, S., 2011. A novel methodological approach for thin-section description and its application to periglacially disturbed Pleistocene deposits from Danbury, Essex, UK. Netherlands Journal of Geosciences 90: 271-291. Turner, C., 1970. Middle Pleistocene deposits at Marks Tey, Essex. Philosophical Transactions of the Royal Society of London, series B 257: 373-440.
NASA Astrophysics Data System (ADS)
Torne, Montserrat; Zeyen, Hermann; Jimenez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume
2017-04-01
We investigate the lithospheric density structure of the Iberian Peninsula and the surrounding Atlantic and Mediterranean margins from a 3D joint inversion of free-air, geoid and elevation data, based on a Bayesian approach. In addition, the crustal structure has been further constrained by incorporating about 750 Moho values from DSS investigations and RF analysis covering the entire region. Our preliminary results shows a significant lithospheric deformation along the plate boundaries, the Bay of Biscay-Pyrenees to the North and the Azores-Gibraltar to the south, where the CMB and LAB are located at depths more than 45 and 150 km, respectively. Noteworthy is the arcuate lithospheric thickening located at the westernmost end of the Gibraltar Arc system showing the presence of the NW-to-Westward retreated Gibraltar Arc slab that has given rise to the formation of the Betics-Rif Alpine belt system and the back arc Alboran basin. To the west, the stable-slightly deformed Iberian massif shows a quasi-flat CMB and LAB topography (30 to 32 km and about 110 km, respectively). The crust and mantle lithosphere thin towards the Mediterranean and Atlantic margins, with the exception of its northern margin where lithospheric thickening extends offshore to the Gulf of Biscay. In the western Mediterranean the SE-Neogene slab retreat has resulted in a significant thinning of the crust and mantle lithosphere. Thin lithosphere is also observed in the Tagus-Horseshoe abyssal plain region where the LAB shallows to less than 90 km. This work has been funded by the Spanish projects MITE (CGL2014-59516-P) and WEME-CSIC project 201330E11.
Near-surface energy transfers from internal tide beams to smaller vertical scale motions
NASA Astrophysics Data System (ADS)
Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.
2016-02-01
Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.
27 CFR 9.190 - Red Hill Douglas County, Oregon.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...
27 CFR 9.190 - Red Hill Douglas County, Oregon.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...
27 CFR 9.190 - Red Hill Douglas County, Oregon.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., Oregon. 9.190 Section 9.190 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.190 Red Hill Douglas County, Oregon. (a) Name. The name of the viticultural area described in this section is “Red Hill Douglas County, Oregon”. For purposes of part 4 of this chapter, “Red Hill...
40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Black Hills-Rapid City Intrastate Air... Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region. The Rapid City Intrastate Air Quality Control Region (South Dakota) has been renamed the Black Hills-Rapid...
40 CFR 81.214 - Black Hills-Rapid City Intrastate Air Quality Control Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Black Hills-Rapid City Intrastate Air... Air Quality Control Regions § 81.214 Black Hills-Rapid City Intrastate Air Quality Control Region. The Rapid City Intrastate Air Quality Control Region (South Dakota) has been renamed the Black Hills-Rapid...
The timber resources of the Ohio Hill Country
Paul S. DeBald; Roger E. McCay
1969-01-01
This report presents 1967 forest resource statistics for the Hill Country-Ohio's portion of Appalachia. The Hill Country comprises 28 counties, which were divided into three geographic sampling units for this survey. The Hill Country of the 1952 Ohio forest survey contained 26 of these counties. The additional Appalachia counties are Brown and Clermont in the...
The Skill Gap: Will the Future Workplace Become an Abyss
ERIC Educational Resources Information Center
McNamara, Billie R.
2009-01-01
The interwoven relationship between workforce readiness, business and industrial development, and schools has existed since the institution of public education in the United States. During the last third of the 20th century, however, this relationship became a focus of the U.S. Departments of Labor and Education, business and industrial councils,…
2012-08-01
Properties. Abyss Books, Washington, D.C., 2002. 2. G. Montel, A. Lebugle and H. Pastor. "Manufacture of Materials Containing Refractory Borides ...and ZrO2," International Journal of Refractory Metals and Hard Materials, 17, 235-43 (1999). 10. A.W. Weimer, Carbide, nitride and boride
Species diversity: Benthonic Foraminifera in Western North Atlantic
Buzas, M.A.; Gibson, T.G.
1969-01-01
Maximum species diversity occurs at abyssal depths of greater than 2500 meters. Other diversity peaks occur at depths of 35 to 45 meters and 100 to 200 meters. The peak at 35 to 45 meters is due to species equitability, whereas the other two peaks correspond to an increase in the number of species.
Privatization: A Drain on Public Schools
ERIC Educational Resources Information Center
Harvey, James
2012-01-01
According to James Harvey, the scale of the 2011 effort to privatize public education through vouchers and charters is "staggering," representing the culmination of a 30-year assault on public service in general and public education in particular. At a time when states are staring into the abyss of bankruptcy, he notes, public funds intended for…
Commeau, R.F.; Paull, C.K.; Commeau, J.A.; Poppe, L.J.
1987-01-01
Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible "Alvin" in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite (??? 30 wt.%), BaSr sulfates (??? 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed. ?? 1987.
NASA Astrophysics Data System (ADS)
Grischenko, Andrei V.; Chernyshev, Alexei V.
2015-01-01
A new species of ctenostome bryozoan, Triticella minini sp. nov., is described from the abyssal plain adjacent to the Kuril-Kamchatka Trench, based on material collected by the Russian-German deep-sea expedition KuramBio 2012. Colonies of T. minini sp. nov. were found attached to the oral spines of irregular sea urchin Echinosigra (Echinogutta) amphoraMironov, 1974 by means of rhizoid fibers that penetrated the substratum through circular borings. The specimens were examined by light microscopy, scanning electron microscopy, and confocal laser scanning microscopy with phalloidin and nuclear labeling. The description of T. minini sp. nov. combines a general taxonomic description with a description of the anatomy of the muscular system. The new species differs from congeners in lacking a stolon. It has an intertentacular organ. T. minini sp. nov. is the eleventh species described in the genus TriticellaDalyell, 1848, and the first record for this genus from the northwestern Pacific. The new species is the fifth ctenostome bryozoan known to occur in 5001-5500 m depth interval worldwide, and the deepest record reported for Triticella.
The abyssal and deep circulation of the Northeast Pacific Basin
NASA Astrophysics Data System (ADS)
Hautala, Susan L.
2018-01-01
Three-dimensional abyssal and deep circulation of the region to the east and north of the Emperor Seamount Chain/Hawaiian Ridge is determined from a compilation of CTD and Argo float data, using a new overdetermined inverse technique for the geostrophic reference velocity and diapycnal/lateral mixing coefficients. The Northeast Pacific Basin is primarily sourced from its northern boundary, at a rate of 3.5 Sv across 47°N below 3000 m. Bottom water in the western subarctic gyre recirculates cyclonically between the Emperor Seamount Chain and 155°W. Bottom water east of 155°W takes a more direct path southward along the flank of a broad topographic slope. In the deep water, a ridge of potential vorticity lying along the Mendocino Fracture Zone separates circulation systems north and south of ∼40°N. The region has very weak diapycnal and lateral mixing, and an aspect ratio for the overturning circulation that is correspondingly flat, with bottom water parcels rising less than 1 km during their long transit from the Aleutian Trench to the latitude of Hawaii.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... Mobridge, SD, Mobridge Muni, Takeoff Minimums and Obstacle DP, Amdt 1 Spearfish, SD, Black Hills-Clyde Ice Field, GPS RWY 12, Orig-D, CANCELLED Spearfish, SD, Black Hills-Clyde Ice Field, NDB-A, Amdt 1 Spearfish, SD, Black Hills-Clyde Ice Field, RNAV (GPS) RWY 13, Orig Spearfish, SD, Black Hills-Clyde Ice Field...
The origin of Mauna Loa's Nīnole Hills: Evidence of rift zone reorganization
Zurek, Jeffrey; Williams-Jones, Glyn; Trusdell, Frank A.; Martin, Simon
2015-01-01
In order to identify the origin of Mauna Loa volcano's Nīnole Hills, Bouguer gravity was used to delineate density contrasts within the edifice. Our survey identified two residual anomalies beneath the Southwest Rift Zone (SWRZ) and the Nīnole Hills. The Nīnole Hills anomaly is elongated, striking northeast, and in inversions both anomalies merge at approximately −7 km above sea level. The positive anomaly, modeled as a rock volume of ~1200 km3 beneath the Nīnole Hills, is associated with old eruptive vents. Based on the geologic and geophysical data, we propose that the gravity anomaly under the Nīnole Hills records an early SWRZ orientation, now abandoned due to geologically rapid rift-zone reorganization. Catastrophic submarine landslides from Mauna Loa's western flank are the most likely cause for the concurrent abandonment of the Nīnole Hills section of the SWRZ. Rift zone reorganization induced by mass wasting is likely more common than currently recognized.
Seeing mountains in mole hills: geographical-slant perception
NASA Technical Reports Server (NTRS)
Proffitt, D. R.; Creem, S. H.; Zosh, W. D.; Kaiser, M. K. (Principal Investigator)
2001-01-01
When observers face directly toward the incline of a hill, their awareness of the slant of the hill is greatly overestimated, but motoric estimates are much more accurate. The present study examined whether similar results would be found when observers were allowed to view the side of a hill. Observers viewed the cross-sections of hills in real (Experiment 1) and virtual (Experiment 2) environments and estimated the inclines with verbal estimates, by adjusting the cross-section of a disk, and by adjusting a board with their unseen hand to match the inclines. We found that the results for cross-section viewing replicated those found when observers directly face the incline. Even though the angles of hills are directly evident when viewed from the side, slant perceptions are still grossly overestimated.
NASA Astrophysics Data System (ADS)
Luguet, Ambre; Lorand, Jean-Pierre; Seyler, Monique
2003-04-01
Nineteen samples from the Kane Fracture Zone have been studied for sulfide mineralogy and analyzed for S, Se, platinum-group elements (PGE), and Au to assess the effect of refertilization processes on the PGE systematics of abyssal peridotites. The lherzolites show broadly chondritic PGE ratios and sulfide modal abundances (0.01 to 0.03 wt%) consistent with partial melting models, although the few pyroxene-hosted sulfide inclusions and in situ LAM-ICPMS analyses provide evidence for in situ mobilization of a Cu-Ni-rich sulfide partial melt. The most refractory harzburgites (spinel Cr# > 29) are almost devoid of magmatic sulfides and show uniformly low Pd N/Ir N (<0.5) for variable Pt N/Ir N (0.8 to 1.2). The compatible behavior of Os, Ir, Ru, Rh, and Pt reflects the presence of primary Os-Ru alloys. Some harzburgites displaying petrographic evidence for refertilization by incremental melts en route to the surface are enriched in sulfides (up to 0.1 wt%). Some of these sulfides are concentrated in small veinlets of clinopyroxene and spinel crystallized from these melts. These S-rich harzburgites display superchondritic Pd N/Ir N (up to 2.04) positively correlated with sulfide modal contents. It is concluded that refertilization processes resulting in precipitation of metasomatic sulfides may significantly enhance Pd concentrations of abyssal peridotites while marginally affecting Pt (Pt N/Ir N ≤ 1.24) and Rh (Rh N/Ir N ≤ 1.23) as well. When the effects of such processes are screened out, our database suggests PGE relative abundances in the DMM (Depleted MORB Mantle; MORB: Mid-Ocean Ridge) within the uncertainty range of chondritic meteorites, without evidence of superchondritic Pt/Ir and/or Rh/Ir ratios.
Henri, Pauline A.; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte
2016-01-01
To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity. PMID:26834704
Into the deep: A coarse-grained carbonate turbidite thalweg generated by gigantic submarine chutes
NASA Astrophysics Data System (ADS)
Mulder, Thierry; Gillet, Hervé; Reijmer, John; Droxler, André; cavailhes, Thibault; Hanquiez, Vincent; Fauquembergue, Kelly; Bujan, Stéphane; Blanck, David; bashah, Sara; Guiastrennec, Léa; Fabregas, Natacha; Recouvreur, Audrey; Seibert, Chloé
2017-04-01
New high-resolution multibeam mapping, in the Southeastern Bahamas, images in exquisite details the southern part of Exuma Sound, and its unchartered transition area to the deep abyssal plain of the Western North Atlantic bounded by the Bahama Escarpment (BE) between San Salvador Island and Samana Cay, referred here to the San Salvador abyssal plain. The transition area is locally referred to as Crooked Island Passage, loosely delineated by Crooked, Long, and Conception Islands, Rum and Samana Cays. Surprisingly in such a pure carbonate landscape, the newly established map reveals the detailed and complex morphology of a giant valley formed by numerous gravity flows originated in Exuma Sound itself, in addition to many secondary slope gullies and smaller tributaries draining the surrounding upper slopes. The valley referred here as the Exuma canyon system starts with a perched valley with low sinuosity, characterized by several flow restrictions and knickpoints initiated by the presence of drowned isolated platforms and merging tributaries. The valley abruptly transforms itself into a deep incised canyon, rivaling the depth of the Colorado Grand Canyon, through two major knickpoints with outsized chutes exceeding several hundred of meters in height, a total of 1600-1800 m. The sudden transformation of the wide valley into a deep narrow canyon, occurring when the flows incised deep into an underlying lower Cretaceous drowned carbonate platform, generates a huge hydraulic jump and creates an enormous plunge pool and related deposits with mechanisms comparable to the ones operating along giant subaerial waterfalls. The high kinetic flow energy, constrained by this narrow and deeply incised canyon, formed, when it is released at its mouth in the abyssal plain, a wide deep-sea channel with well-developed levees and fan, made of coarse-grained carbonate defined layers separated by fine carbonate sediments mixed with fine siliciclastics transported along the BE by the energetic Western Boundary Undercurrent.
Source-To-Sink Perspectives On The Mississippi River System, Miocene To Present, Mountain To Abyss
NASA Astrophysics Data System (ADS)
Bentley, S. J.; Blum, M. D.
2013-12-01
. The objective of this study is to present a synthesis of the Mississippi River source-to-sink system, from montane source to abyssal sink, to elucidate specific geomorphic components and boundaries in the system, controls on mass transfer, and resultant geomorphic and statigraphic development. The Mississippi River source-to-sink system constitutes one of the largest sources, conduits, and depocenters of sediment on Earth, extending from elevations of 3.7 km in the Rocky Mountains to the Gulf of Mexico abyssal plain. Despite being one of the most intensely studied fluvial-marine systems in the world, comprehensive understanding and management of the system's resources remain a challenge. The system is valuable in many ways: it provides navigation and water to the heart of North America, and sustains extensive marine fisheries. The river has built a delta that is home to millions of people and yet is subsiding rapidly. Ancestral Mississippi fluvial-marine deposits continue to yield high-value petroleum resources to exploration. To address the range of temporal and spatial scales over which the system has developed and continues to evolve, we will focus on three geological time spans that display contrasting geologic forcing and response: Miocene, Pleistocene, and late Holocene. The present configuration of source, conduit, and sink were established during the Miocene epoch, when tectonics (via the uplifting southern Rockies, and later the rejuvenated Appalachians) and climate (wet in the east and dry in the west) provided abundant water and sediment to prograde the shelf margin and initiate deep-sea fan growth. Pleistocene continental glaciation, eustasy, and catastrophic drainage events further sculpted the alluvial valley, and extended the shelf margin, and fan. Studies of Modern processes and Holocene delta development have provided keys to both the delta's past and future evolution, in terms of cyclic autogenic lobe-switching, mass-transport events, storm-driven sediment delivery to canyon heads, and allogenic/anthropogenic controls on sediment supply and subsidence.
Code of Federal Regulations, 2010 CFR
2010-07-01
... County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part) excluding... Golden Valley County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part... Unclassifiable/Attainment Granite County. Unclassifiable/Attainment Hill County Unclassifiable/Attainment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part) excluding... Golden Valley County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part... Unclassifiable/Attainment Granite County. Unclassifiable/Attainment Hill County Unclassifiable/Attainment...
Multi-scale habitat use of male ruffed grouse in the Black Hills National Forest
Cassandra L. Mehls; Kent C. Jensen; Mark A. Rumble; Michael C. Wimberly
2014-01-01
Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007...
NASA Astrophysics Data System (ADS)
Deville, E.
2011-12-01
Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region. Piston-core surveys have demonstrated that turbidite sediments above the accretionary prism and in the abyssal plain are mostly coarse sandy deposits covered by recent pelagic planktonic-rich sediments, which indicate that sand deposition has slow down during the post-glacial sea level rise. Numerical stratigraphic modeling suggests that during the last glacial event, the main depocenters were located above the tectonic prism and in the abyssal plain, at the front of the prism and that, during the Holocene eustatic rise, a large accommodation space formed on the shelf confining sedimentation mostly on the Orinoco deltaic platform and producing a starvation downstream in the turbidite system. This is in good agreement with the piston coring results which show low deep turbidite sedimentation rates during recent times.
Code of Federal Regulations, 2013 CFR
2013-07-01
... County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part) excluding... Golden Valley County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part.... Golden Valley County Unclassifiable/Attainment. Granite County Unclassifiable/Attainment. Hill County...
Code of Federal Regulations, 2012 CFR
2012-07-01
... County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part) excluding... Golden Valley County Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part.... Golden Valley County Unclassifiable/Attainment. Granite County Unclassifiable/Attainment. Hill County...
Dunn, Matthew R.; Forman, Jeffrey S.
2011-01-01
We evaluate hypotheses for meso-scale spatial structure in an orange roughy (Hoplostethus atlanticus) stock using samples collected during research trawl surveys off the east coast of New Zealand. Distance-based linear models and generalised additive models were used to identify the most significant biological, environmental, and temporal predictors of variability in diet, proportion of stomachs containing prey, standardised weight of prey, fish somatic weight, fish total weight, and reproductive activity. The diet was similar to that observed elsewhere, and varied with ontogeny, depth, and surface water temperature. Smaller sized and female orange roughy in warmer bottom water were most likely to contain food. Fish condition and reproductive activity were highest at distances more than 20 km from the summit of the hills. Trawl survey catches indicated greater orange roughy densities in hill strata, suggesting hill habitat was favoured. However, analyses of feeding, condition, and reproductive activity indicated hill fish were not superior, despite fish densities on hills being reduced by fishing which, in principle, should have reduced intra-specific competition for food and other resources. Hypotheses for this result include: (1) fish in relatively poor condition visit hills to feed and regain condition and then leave, or (2) commercial fishing has disturbed feeding aggregations and/or caused habitat damage, making fished hills less productive. Mature orange roughy were observed on both flat and hill habitat during periods outside of spawning, and if this spatial structure was persistent then a proportion of the total spawning stock biomass would remain unavailable to fisheries targeting hills. Orange roughy stock assessments informed only by data from hills may well be misleading. PMID:22069464
Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, D.J.
The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30more » to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).« less
Sidescan Sonar Imagery of the Escanaba Trough, Southern Gorda Ridge, Offshore Northern California
Ross, Stephanie L.; Zierenberg, Robert A.
2009-01-01
This map features sidescan imagery of the northern Escanaba (NESCA) site at the Escanaba Trough, southern Gorda Ridge, offshore northern California. The Escanaba Trough, a largely sediment-covered seafloor spreading center, contains at least six large massive sulfide deposits. It is a slow spreading center (2.5 cm/yr) with axial depths locally exceeding 3,300 m. Discrete igneous centers occur at 5- to 10-km intervals along this slow-spreading ridge. Basaltic magma intrudes the sediment fill of the axial valley, creating uplifted sediment hills, and, in some areas, erupts onto the sea floor. Large massive sulfide deposits occur along the margins of the uplifted sediment hills. The only active hydrothermal system is located on Central Hill where 220 deg C fluids construct anhydrite chimneys on pyrrhotite-rich massive sulfide mounds (Campbell and others, 1994). Central Hill is bounded by both ridge-parallel basement faults and a concentric set of faults that rim the top of the hill and may be associated with sill intrusion. Central Hill was one of the primary drill sites for Ocean Drilling Program (ODP) Leg 169. The sidescan sonar data (mosaics A, B, C, D) were collected aboard the National Oceanic and Atmospheric Administration (NOAA) research vessel Discoverer in the summer of 1996 with a 60-kHz system towed 100 to 200 m above the sea floor. Major faults and contacts are interpreted from the sidescan mosaics and 4.5-kHz seismic profiles collected simultaneously, as well as from previously conducted camera transects and submersible dives. The seismic profiles (lines 9, 11, 13) provide high-resolution subbottom structure and stratigraphy to a depth of about 50 m. In the sidescan images (mosaics A, B, C, D), bright areas denote high-energy returns from hard reflectors such as volcanic flows, sulfide deposits, or seafloor scarps. Dark areas denote low-energy returns and generally signify relatively undisturbed surface sediment. The grid lines mark one-minute intervals of latitude and longitude. The large sidescan sonar image (mosaic A) is centered on the NESCA igneous center. The spreading axis is flanked on either side by uplifted, sediment-covered terraces that show relatively continuous and undisturbed turbiditic sediment. These terraces bound the 4- to 5-km-wide neotectonic zone that is characterized by more closely spaced, small offset (<20 m) faults, volcanic flows (brightest area of backscatter), and areas where the seismic layering of the turbidites has been partially to completely disrupted by the intrusion of basaltic sills. The most prominent bathymetric features are the three uplifted sediment hills: Central Hill, Southwest Hill, and an unnamed uplifted hill to the north. These features are interpreted to be uplifted above large-volume basaltic intrusions emplaced near the basalt/sediment interface. Southwest Hill is adjacent to the zone of most recent faulting. This hill no longer retains the circular shape of the other hills due to slumps (lines 9, 11), which may have failed along faults related to the most recent spreading. Central Hill is interpreted to be the most recently uplifted sediment hill based on the morphology of the hill and the presence of an active hydrothermal system. The generally continuous area of volcanic basalt flow east of Central Hill appears as a distinct, bright sonar reflector stretching for approximately 6 km along axis (red contact on mosaic A). This flow may be related to the intrusion that is presumed to have uplifted Central Hill. Submersible observations indicate that lava flowed around the sediment hills and ponded against the eastern up-faulted turbidite-covered sediment terrace. Previously collected, deep-penetration seismic data indicate that the lavas overlie about 450 m of sediment (Morton and Fox, 1994). Late-stage emplacement of magma in the shallow subsurface beneath the exposed lava flow is interpreted to have domed the lava flow, forming the east-west-
78 FR 21817 - Amendment of Restricted Area R-6601; Fort A.P. Hill, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
...; Airspace Docket No. 12-AEA-7] RIN 2120-AA66 Amendment of Restricted Area R-6601; Fort A.P. Hill, VA AGENCY... limits and time of designation of restricted area R-6601, Fort A.P. Hill, VA. The U.S. Army requested... limits and increase the time of designation of restricted area R-6601, Fort A.P. Hill, VA, (77 FR 35308...
Lorenzetti, Silvio; Ammann, Fabian; Windmüller, Sabrina; Häberle, Ramona; Müller, Sören; Gross, Micah; Plüss, Michael; Plüss, Stefan; Schödler, Berni; Hübner, Klaus
2017-11-22
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force-time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.
NASA Astrophysics Data System (ADS)
Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.
2010-12-01
To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Unclassifiable/Attainment Granite County Unclassifiable/Attainment Hill County (part)excluding Rocky Boy Indian.../Attainment Granite County Unclassifiable/Attainment Hill County (part) excluding Rocky Boy Indian Reservation.../Attainment. Granite County Unclassifiable/Attainment. Hill County Unclassifiable/Attainment. Jefferson County...
Oceanic microplate formation records the onset of India-Eurasia collision
NASA Astrophysics Data System (ADS)
Matthews, Kara J.; Dietmar Müller, R.; Sandwell, David T.
2016-01-01
Mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate ('Mammerickx Microplate') west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also seen in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (∼47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that Mammerickx Microplate formation is linked with the India-Eurasia collision (initial 'soft' collision). The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity, may have facilitated ridge propagation via the production of thin and weak lithosphere; however both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, the combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a precise means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.
India-Eurasia collision triggers formation of an oceanic microplate
NASA Astrophysics Data System (ADS)
Matthews, Kara; Müller, Dietmar; Sandwell, David
2016-04-01
Detailed mapping of seafloor tectonic fabric in the Indian Ocean, using high-resolution satellite-derived vertical gravity gradient data, reveals an extinct Pacific-style oceanic microplate - the Mammerickx Microplate - west of the Ninetyeast Ridge. It is one of the first Pacific-style microplates to be mapped outside the Pacific basin, suggesting that geophysical conditions during formation probably resembled those that have dominated at eastern Pacific ridges. The microplate formed at the Indian-Antarctic ridge and is bordered by an extinct ridge in the north and pseudofault in the south, whose conjugate is located north of the Kerguelen Plateau. Independent microplate rotation is indicated by asymmetric pseudofaults and rotated abyssal hill fabric, also identified in multibeam data. Magnetic anomaly picks and age estimates calculated from published spreading rates suggest formation during chron 21o (~47.3 Ma). Plate reorganizations can trigger ridge propagation and microplate development, and we propose that formation of the Mammerickx Microplate is linked with the initial 'soft' stage of the India-Eurasia collision. The collision altered the stress regime at the Indian-Antarctic ridge, leading to a change in segmentation and ridge propagation from an establishing transform fault. Fast Indian-Antarctic spreading that preceded microplate formation, and Kerguelen Plume activity may have facilitated ridge propagation via the production of thin and weak lithosphere. However, both factors had been present for tens of millions of years and are therefore unlikely to have triggered the event. Prior to the collision, this combination of fast spreading and plume activity was responsible for the production of a wide region of undulate seafloor to the north of the extinct ridge and 'W' shaped lineations that record back and forth ridge propagation. Microplate formation provides a means of dating the onset of the India-Eurasia collision, and is completely independent of and complementary to timing constraints derived from continental geology or convergence histories.
Skating down a steeper slope: Fear influences the perception of geographical slant
Stefanucci, Jeanine K.; Proffitt, Dennis R.; Clore, Gerald L.; Parekh, Nazish
2008-01-01
Conscious awareness of hill slant is overestimated, but visually guided actions directed at hills are relatively accurate. Also, steep hills are consciously estimated to be steeper from the top as opposed to the bottom, possibly because they are dangerous to walk down. In the present study, participants stood at the top of a hill on either a skateboard or a wooden box of the same height. They gave three estimates of the slant of the hill: a verbal report, a visually matched estimate, and a visually guided action. Fear of descending the hill was also assessed. Those participants that were scared (by standing on the skateboard) consciously judged the hill to be steeper relative to participants who were unafraid. However, the visually guided action measure was accurate across conditions. These results suggest that our explicit awareness of slant is influenced by the fear associated with a potentially dangerous action. “[The phobic] reported that as he drove towards bridges, they appeared to be sloping at a dangerous angle.” (Rachman and Cuk 1992 p. 583). PMID:18414594
Near-Equatorial Deep Circulation in the Indian and Pacific Oceans
1990-09-01
Pacific Rise. 3.1 The Data Set A transpacific hydrographic cruise from the Philippines to Costa Rica was made on the R.V. Moana Wave from January to...Western Indian Ocean. Marine Geology , 33, 1-44. Joyce, T. M., B. A. Warren and L. D. Talley (1986) The geothermal heating of the abyssal subarctic Pacific
Nietzche at Northern: An Existential Narrative of Confronting the Abyss
ERIC Educational Resources Information Center
Thomas, Jim
2008-01-01
When good people do violently bad things, one seeks answers, drawing from one's repertoire of theories and concepts that have served him/her well. Underlying one's attempts to understand violent behavior is the belief that one can impose sense on seemingly insensible actions. Sometimes, in the face of inexplicable events, one is left to try to…
1983-12-01
near the turbidity channels. Furthermore, Hastrup concludes, after an analysis of time series data taken from the Tyrrhenian abyssal plain, that the top...Bottom-Interacting Ocean Acoustics edited by W. A. Kuperman and F. B. Jensen (Plenum Press, N York, 1980). 84 24. 0. F. Hastrup , "Digital Analysis of
Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean
NASA Astrophysics Data System (ADS)
Leduc, Daniel; Rowden, Ashley A.
2018-04-01
Hadal trenches are characterized by environmental conditions not found in any other deep-sea environment, such as steep topography and periodic disturbance by turbidity flows, which are likely responsible for the distinct nature of benthic communities of hadal trenches relative to those of the abyssal plain. Nematodes are the most abundant metazoans in the deep-sea benthos, but it is not yet clear if different trenches host distinct nematode communities, and no data are yet available on the communities of most trenches, including the Kermadec Trench in the Southwest Pacific. Quantitative core samples from the seafloor of the Kermadec Trench were recently obtained from four sites at 6000-9000 m depth which allowed for analyses of meiofauna, and nematodes in particular, for the first time. Nematode community and trophic structure was also compared with other trenches using published data. There was a bathymetric gradient in meiofauna abundance, biomass, and community structure within the Kermadec Trench, but patterns for species richness were ambiguous depending on which metric was used. There was a change in community structure from shallow to deep sites, as well as a consistent change in community structure from the upper sediment layers to the deeper sediment layers across the four sites. These patterns are most likely explained by variation in food availability within the trench, and related to trench topography. Together, deposit and microbial feeders represented 48-92% of total nematode abundance in the samples, which suggests that fine organic detritus and bacteria are major food sources. The relatively high abundance of epigrowth feeders at the 6000 and 9000 m sites (38% and 31%, respectively) indicates that relatively freshly settled microalgal cells represent another important food source at these sites. We found a significant difference in species community structure between the Kermadec and Tonga trenches, which was due to both the presence/absence of species as well as differences in relative abundances of shared species. The cluster and SIMPROF analyses of nematode genus community data across Pacific and Atlantic trenches identified two statistically significant natural groupings: the first group comprised all three Puerto Rico Trench samples, and the second comprised all remaining trenches (South Sandwich, Atacama, Tonga, and Kermadec). Our analyses show that differences in nematode between the adjacent Kermadec and Tonga trenches are observable when analyses are conducted with species-level identifications, but genera-based and trophic structure analyses revealed only limited heterogeneity among trenches. The present study contributes to the growing amount of information on hadal trench environments, which ultimately will build a greater understanding of these rarely sampled deep-sea habitats.
1. HISTORIC PHOTOGRAPH, VIEW OF ROUND HILL ROAD BRIDGE, LOOKING ...
1. HISTORIC PHOTOGRAPH, VIEW OF ROUND HILL ROAD BRIDGE, LOOKING WEST, CA. 1940. CONNECTICUT DEPARTMENT OF TRANSPORTATION. - Merritt Parkway, Round Hill Road Bridge, Spanning Merritt Parkway at 3.5 mile mark, Greenwich, Fairfield County, CT
1994-09-01
Business Managers. Ed. Betty Seldner. San Francisco : McGraw Hill, Inc., 1994 11. Gunderson, John. "Federal Facilities Compliance Act," in Environmental...Decision Making for Engineering and Business Managers. Ed. Betty Seldner. San Francisco : McGraw Hill, Inc., 1994 105 12. Heyman, Glenn. "The Role and...San Francisco . McGraw Hill, Inc., 1994 13- Hill, Chuck. Environmental Oversight Branch, Headquarters Air Combat Command. Personal Correspondence
Meyers, Tilden [NOAA/ARL
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Blk Black Hills. Site Description - The Black Hills tower was established by the Institute for Atmospheric Studies of the South Dakota School of Mines and Technology.
Spudich, P.; Hellweg, M.; Lee, W.H.K.
1996-01-01
The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph were amplified by a factor of about 2 or less compared with sites at the base of the hill. Probable variations in surficial shear-wave velocity do not account for the observed differences among mainshock acceleration observed at Tarzana and at two different sites within 2 km of Tarzana.
After runaway: The trans-Hill stage of planetesimal growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lithwick, Yoram
2014-01-01
When planetesimals begin to grow by coagulation, they first enter an epoch of runaway, during which the biggest bodies grow faster than all the others. The questions of how runaway ends and what comes next have not been answered satisfactorily. We show that runaway is followed by a new stage—the 'trans-Hill stage'—that commences when the bodies that dominate viscous stirring ('big bodies') become trans-Hill, i.e., when their Hill velocity matches the random speed of the small bodies they accrete. Subsequently, the small bodies' random speed grows in lockstep with the big bodies' sizes, such that the system remains in themore » trans-Hill state. Trans-Hill growth is crucial for determining the efficiency of growing big bodies, as well as their growth timescale and size spectrum. Trans-Hill growth has two sub-stages. In the earlier one, which occurs while the stirring bodies remain sufficiently small, the evolution is collisionless, i.e., collisional cooling among all bodies is irrelevant. The efficiency of forming big bodies in this collisionless sub-stage is very low, ∼10α << 1, where α ∼ 0.005(a/AU){sup –1} is the ratio between the physical size of a body and its Hill radius. Furthermore, the size spectrum is flat (equal mass per size decade, i.e., q = 4). This collisionless trans-Hill solution explains results from previous coagulation simulations for both the Kuiper Belt and the asteroid belt. The second trans-Hill sub-stage commences once the stirring bodies grow big enough (>α{sup –1} × the size of the accreted small bodies). After that time, collisional cooling among small bodies controls the evolution. The efficiency of forming big bodies rises and the size spectrum becomes more top heavy. Trans-Hill growth can terminate in one of two ways, depending on the sizes of the small bodies. First, mutual accretion of big bodies can become significant and conglomeration proceeds until half of the total mass is converted into big bodies. This mode of growth may explain the observed size distributions of small bodies in the solar system and is explored in our subsequent work. Second, if the big bodies' orbits become separated by their Hill radius, oligarchy commences. This mode likely precedes the formation of fully fledged planets.« less
Mass, charge, and energy separation by selective acceleration with a traveling potential hill
NASA Astrophysics Data System (ADS)
Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.
1996-10-01
A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to have broad applications. The primary application is for the enrichment of stable isotopes for medical and industrial tracers. Other applications include mass analysis of unknown gases (atomic and molecular) and metals, extracting single charge states from a multiply charged beam, accelerating the high energy tail in a beam or plasma with a velocity distribution, and beam bunching.
Antigravity hills are visual illusions.
Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica
2003-09-01
Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon were systematically varied in four experiments. We conclude that antigravity-hill effects follow from a misperception of the eye level relative to gravity, caused by the presence of either contextual inclines or a false horizon line.
Investigation of Hill's optical turbulence model by means of direct numerical simulation.
Muschinski, Andreas; de Bruyn Kops, Stephen M
2015-12-01
For almost four decades, Hill's "Model 4" [J. Fluid Mech. 88, 541 (1978) has played a central role in research and technology of optical turbulence. Based on Batchelor's generalized Obukhov-Corrsin theory of scalar turbulence, Hill's model predicts the dimensionless function h(κl(0), Pr) that appears in Tatarskii's well-known equation for the 3D refractive-index spectrum in the case of homogeneous and isotropic turbulence, Φn(κ)=0.033C2(n)κ(-11/3) h(κl(0), Pr). Here we investigate Hill's model by comparing numerical solutions of Hill's differential equation with scalar spectra estimated from direct numerical simulation (DNS) output data. Our DNS solves the Navier-Stokes equation for the 3D velocity field and the transport equation for the scalar field on a numerical grid containing 4096(3) grid points. Two independent DNS runs are analyzed: one with the Prandtl number Pr=0.7 and a second run with Pr=1.0 . We find very good agreement between h(κl(0), Pr) estimated from the DNS output data and h(κl(0), Pr) predicted by the Hill model. We find that the height of the Hill bump is 1.79 Pr(1/3), implying that there is no bump if Pr<0.17 . Both the DNS and the Hill model predict that the viscous-diffusive "tail" of h(κl(0), Pr) is exponential, not Gaussian.
OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...
OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA
This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.
Rieder, Ronald F.
1971-01-01
Hemoglobin Gun Hill is an unstable mutant hemoglobin associated with mild compensated hemolysis. This abnormal protein has a deletion of five amino acids in the β-chains. The deletion includes the heme-binding proximal histidine at position 92. The β-chains of hemoglobin Gun Hill lack heme groups. Approximately 32% of the circulating hemoglobin in heterozygous subjects consists of the mutant hemoglobin. When reticulocytes were incubated with radioactive amino acid the specific activity of hemoglobin Gun Hill was three to six times that of hemoglobin A. Total incorporation of radioactivity into hemoglobin Gun Hill was two to three times that into hemoglobin A. There were 20-50% more total counts in β-Gun Hill (βGH) than in βA. These results indicate that in reticulocytes there was greater synthesis of the abnormal β-chains than βA-chains. The ratio of the specific activities of the α-chains of hemoglobin Gun Hill to the α-chains of hemoglobin A was 20: 1. There was evidence of a free pool of α-chains in the reticulocytes containing hemoglobin Gun Hill. After 10 min of incubation approximately 40% of the total α-chain radioactivity was in the free pool. When protein synthesis was blocked by incubation of reticulocytes with puromycin, the specific activity of the α-chains of hemoglobin Gun Hill continued to increase due to direct exchange of α-subunits between the free pool and preformed hemoglobin Gun Hill. Studies of the assembly of βA and βGH revealed that the rates of translation of the two polypeptide chains were equal and uniform. No evidence was obtained for the existence of “slow points” in the process of globin chain assembly. The studies also suggest that lack of strong heme-globin binding does not hinder the synthesis of globin chains. PMID:5540175
A coevolutionary arms race causes ecological speciation in crossbills.
Smith, Julie W; Benkman, Craig W
2007-04-01
We examined three ecological factors potentially causing premating reproductive isolation to determine whether divergent selection as a result of coevolution between South Hills crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta latifolia) promotes ecological speciation. One factor was habitat isolation arising because of enhanced seed defenses of lodgepole pine in the South Hills. This caused the crossbill call types (morphologically and vocally differentiated forms) adapted to alternative resources to be rare. Another occurred when crossbills of other call types moved into the South Hills late in the breeding season and feeding conditions were deteriorating so that relatively few non-South Hills crossbills bred ("immigrant infecundity"). Finally, among those crossbills that bred, pairing was strongly assortative by call type (behavioral isolation). Total reproductive isolation between South Hills crossbills and the two other crossbills most common in the South Hills (call types 2 and 5) summed to .9975 and .9998, respectively, on a scale of 0 (no reproductive isolation) to 1 (complete reproductive isolation). These extremely high levels of reproductive isolation indicate that the divergent selection resulting from the coevolutionary arms race between crossbills and lodgepole pine is causing the South Hills crossbill to speciate.
Experimental investigation of flow over two-dimensional multiple hill models.
Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Yamada, Keisuke
2017-12-31
The aim of this study is to investigate the flow field characteristics in ABL (Atmospheric Boundary Layer) flow over multiple hills and valleys in two-dimensional models under neutral conditions. Active turbulence grids and boundary layer generation frame were used to simulate the natural winds in wind tunnel experiments. As a result, the mean wind velocity, the velocity vector diagram and turbulence intensity around the hills were investigated by using a PIV (Particle Image Velocimetry) system. From the measurement results, it was known that the average velocity was increased along the upstream slope of upside hill, and then separated at the top of the hills, the acceleration region of U/U ref >1 was generated at the downstream of the hill. Meanwhile, a large clockwise circulation flow was generated between the two hill models. Moreover, the turbulence intensity showed small value in the circulation flow regions. Compared to 1H model, the turbulence intensity in the mainstream direction showed larger value than that in the vertical direction. This paper provided a better understanding of the wind energy distribution on the terrain for proper selection of suitable sites for installing wind farms in the ABL. Copyright © 2017 Elsevier B.V. All rights reserved.
VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, ...
VIEW TO SOUTHEAST TOWARD QUARTERMASTER BUILDINGS GROUP AND RESERVOIR HILL, FROM AMMUNITION (IGLOO) HILL. (Part 2 of a 3 view panorama; see also CA-2398-J-1 and CA-2398-16.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA
1973-06-22
SL2-81-157 (22 June 1973) --- This view of the Black Hills Region, SD (44.0N, 104.0W) shows the scenic Black Hills where Mt. Rushmore and other monuments are located. Cities and towns in this view include: Rapid City, Deadwood, and Belle Fourche with the nearby Belle Fourche Reservoir. Notable in this scene are the recovering burn scars (seen as irregular shaped light toned patches) from a 1959 forest fire in the Black Hills National Forest near the edge of the photo. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Greek epic poet who described his cosmology in Theogeny, the birth of the gods, which he derived from Babylonian mythology. In his family tree of the gods, Chaos (the yawning gap between Earth and Heaven) produced Erebus (the Abyss) and Night, who produced Ether and Day. At the same time, Earth produced the Heavens, Mountains, and Sea. The Heavens and Earth then produced Cronos. This family tree...
3 CFR 8392 - Proclamation 8392 of June 12, 2009. National Oceans Month, 2009
Code of Federal Regulations, 2010 CFR
2010-01-01
... and affect our lives in a variety of ways. This month we celebrate the wonder of the oceans, and we... supporting life. From the abyssal plains of the Pacific to the shallow coral reefs and seagrass beds of the Florida Keys, oceans support an incredible diversity of marine life and ecosystems. The base of the...
Would You Step through My Door?
ERIC Educational Resources Information Center
Smith, Stephanie
2013-01-01
Stephanie Smith understands why parents in the urban area where she teaches balk when she calls to ask if she can visit them at home to talk about their child and meet the family. Her family would've balked too when Smith was in elementary school. "The abyss between the school's bright lights and the government housing I grew up in…
Horizontal convection with mechanical stirring
NASA Astrophysics Data System (ADS)
Griffiths, Ross; Stewart, Kial; Hughes, Graham
2012-11-01
The effects of turbulent mixing on convective circulation forced by a horizontal gradient of buoyancy at the surface is examined using laboratory experiments in which a salt flux is introduced at the surface, at one end of a box, and a freshwater buoyancy condition is applied over the rest of the surface. Horizontal rods are oscillated and yo-yoed continuously through the water column, providing a diffusivity that can be calibrated. The convection reaches a stationary state having zero net salt flux. We find that for small stirring rates the small but finite volume flux from the dense source is significant and a virtual source correction is required to take this into account. The density stratification and overturning volume transport are consistent with a theoretical model for high Rayleigh numbers: the transport ψ increases with diffusivity κ (ψg ~ gκ 1 / 4) . The results show that vertical mixing in the boundary layer is important, particularly in setting the density of the interior and the overturning rate. However, interior mixing is unimportant, which raises an interesting question over whether abyssal mixing rates in the ocean play any significant role in setting the abyssal ocean density or the transport in the Meridional Overturning Circulation.
Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.
2008-01-01
We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.
Quantifying assemblage turnover and species contributions at ecologic boundaries.
Hayek, Lee-Ann C; Wilson, Brent
2013-01-01
Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA.
KM3NeT-ORCA: Oscillation Research with Cosmics in the Abyss
NASA Astrophysics Data System (ADS)
Coyle, Paschal; KM3NeT Collaboration
2017-09-01
KM3NeT, currently under construction in the abysses of the Mediterranean Sea, is a distributed research infrastructure that will host a km3-scale neutrino telescope (ARCA) for high-energy neutrino astronomy, and a megaton scale detector (ORCA) for neutrino oscillation studies of atmospheric neutrinos. ORCA is optimised for a measurement of the mass hierarchy, providing a sensitivity of 3σ after 3-4 years. It will also measure the atmospheric mixing parameters Δm2 atm and θ23 with a precision comparable to the NOvA and T2K experiments using both the muon neutrino disappearance and tau neutrino appearance channels. It will provide a measurement of the tau neutrino appearance rate with better than 10% precision, a crucial ingredient for tests of unitarity. It will probe the octant of the mixing angle θ23 via matter resonance effects on neutrinos and antineutrinos crossing the core and mantle, which are largely independent on the CP phase. The observation of neutrino oscillations over a wide range of baselines and energies will provide broad sensitivity to new physics such as non-standard neutrino interactions (NSI) and sterile neutrinos.
Lima, Jakelyne; Cerdeira, Louise Teixeira; Bol, Erick; Schneider, Maria Paula Cruz; Silva, Artur; Azevedo, Vasco; Abelém, Antônio Jorge Gomes
2012-01-01
Improvements in genome sequencing techniques have resulted in generation of huge volumes of data. As a consequence of this progress, the genome assembly stage demands even more computational power, since the incoming sequence files contain large amounts of data. To speed up the process, it is often necessary to distribute the workload among a group of machines. However, this requires hardware and software solutions specially configured for this purpose. Grid computing try to simplify this process of aggregate resources, but do not always offer the best performance possible due to heterogeneity and decentralized management of its resources. Thus, it is necessary to develop software that takes into account these peculiarities. In order to achieve this purpose, we developed an algorithm aimed to optimize the functionality of de novo assembly software ABySS in order to optimize its operation in grids. We run ABySS with and without the algorithm we developed in the grid simulator SimGrid. Tests showed that our algorithm is viable, flexible, and scalable even on a heterogeneous environment, which improved the genome assembly time in computational grids without changing its quality. PMID:22461785
Morphology of Florida Escarpment chemosynthetic brine seep community sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paull, C.K.; Spiess, F.N.; Curray, J.R.
1988-01-01
The Florida Escarpment near 26/sup 0/N was surveyed with Deep-Two, Seabeam, and GLORIA in the area where chemosynthetic communities were discovered via ALVIN in the abyssal Gulf of Mexico. Seabeam bathymetry and GLORIA images indicate that the escarpment is a generally straight cliff with average slopes of about 45/sup 0/ from 2,200 to more than 3,250 m. The escarpment's face is cut by 2-km wide box canyons whose head walls are as steep as the intervening escarpment's face. The shapes of these canyons are difficult to explain with the traditional models of canyon formation. Sidescan sonar images and bottom photographsmore » reveal that the escarpment's face is composed of a series of long, straight bedding-plane terraces which are truncated along nearly vertical orthogonal joints. Exposure of these truncated strata indicate the face of the escarpment is eroded. The contact between the basal escarpment and the flat-lying abyssal hemipelagic sediments is abrupt. Apparently, chemosynthetic communities line extensive sections of the escarpment base where reduced brines seep out into the sea floor. The morphology suggests joints and deep seeps are controlling factors in scarp retreat.« less
Quantifying Assemblage Turnover and Species Contributions at Ecologic Boundaries
Hayek, Lee-Ann C.; Wilson, Brent
2013-01-01
Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA. PMID:24130679
Community change in the variable resource habitat of the abyssal northeast Pacific.
Ruhl, Henry A
2008-04-01
Research capable of differentiating resource-related community-level change from random ecological drift in natural systems has been limited. Evidence for nonrandom, resource-driven change is presented here for an epibenthic megafauna community in the abyssal northeast Pacific Ocean from 1989 to 2004. The sinking particulate organic carbon food supply is linked not only to species-specific abundances, but also to species composition and equitability. Shifts in rank abundance distributions (RADs) and evenness, from more to less equitable, correlated to increased food supply during La Niña phases of the El Niño Southern Oscillation. The results suggest that each taxon exhibited a differential response to a sufficiently low dimension resource, which led to changes in community composition and equitability. Thus the shifts were not likely due to random ecological drift. Although the community can undergo population-level variations of one or more orders of magnitude, and the shape of the RADs was variable, the organization retained a significant consistency, providing evidence of limits for such changes. The growing evidence for limited resource-driven changes in RADs and evenness further emphasizes the potential importance of temporally variable disequilibria in understanding why communities have certain basic attributes.
Orogenic, Ophiolitic, and Abyssal Peridotites
NASA Astrophysics Data System (ADS)
Bodinier, J.-L.; Godard, M.
2003-12-01
"Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting of ophiolites (mid-ocean ridges versus supra-subduction settings - e.g., Nicolas, 1989). In addition, the mantle structures and mineralogical compositions of tectonically emplaced mantle rocks may be obscured by deformation and metamorphic recrystallization during shallow upwelling, exhumation, and tectonic emplacement. Metamorphic processes range from high-temperature recrystallization in the stability field of plagioclase peridotites ( Rampone et al., 1993) to complete serpentinization (e.g., Burkhard and O'Neill, 1988). Some garnet peridotites record even more complex evolutions. They were first buried to, at least, the stability field of garnet peridotites, and, in some cases to greater than 150 km depths ( Dobrzhinetskaya et al., 1996; Green et al., 1997; Liou, 1999). Then, they were exhumed to the surface, dragged by buoyant crustal rocks ( Brueckner and Medaris, 2000).Alternatively, several peridotite massifs are sufficiently well preserved to allow the observation of structural relationships between mantle lithologies that are larger than the sampling scale of mantle xenoliths. It is possible in these massifs to evaluate the scale of mantle heterogeneities and the relative timing of mantle processes such as vein injection, melt-rock reaction, deformation, etc… Detailed studies of orogenic and ophiolitic peridotites on centimeter- to kilometer-scale provide invaluable insights into melt transfer mechanisms, such as melt flow in lithospheric vein conduits and wall-rock reactions (Bodinier et al., 1990), melt extraction from mantle sources via channeled porous flow ( Kelemen et al., 1995) or propagation of kilometer-scale melting fronts associated with thermalerosion of lithospheric mantle ( Lenoir et al., 2001). In contrast, mantle xenoliths may be used to infer either much smaller- or much larger-scale mantle heterogeneities, such as micro-inclusions in minerals ( Schiano and Clocchiatti, 1994) or lateral variations between lithospheric provinces ( O'Reilly et al., 2001).The abyssal peridotites are generally strongly affected by oceanic hydrothermal alteration. Most often, their whole-rock compositions are strongly modified and cannot be used straightforwardly to assess mantle compositions (e.g., Baker and Beckett, 1999). However, even in the worst cases the samples generally contain fresh, relic minerals (mainly clinopyroxene) that represent the only available direct information on the oceanic upper mantle in large ocean basins, away from hot-spot volcanic centers. In situ trace-element data on clinopyroxenes from abyssal peridotites provide constraints on melting processes at mid-ocean ridges (Johnson et al., 1990).In this chapter, we review the main inferences on upper mantle composition and heterogeneity that may be drawn from geochemical analyses of the major elements, lithophile trace elements, and Nd-Sr isotopes in tectonically emplaced and abyssal mantle rocks. In addition we emphasize important insights into the mechanisms of melt/fluid transfer that can be deduced from detailed studies of these mantle materials.
77 FR 67640 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice.... Applicants: Canadian Hills Wind, LLC, Canadian Hills Holdings Company, LLC. Description: Application for... Expedited Consideration and Confidential Treatment of Canadian Hills Wind, LLC, et al. Filed Date: 11/2/12...
This report presents a description and evaluation of the ground water and surface water monitoring program associated with the Bunker Hill Mining and Metallurgical Complex Superfund Site (Bunker Hill) Operable Unit (OU) 2.
Sharp, R.V.
1989-01-01
The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors
Library of Congress Model, Perspective View
NASA Technical Reports Server (NTRS)
2004-01-01
The Shuttle Radar Topography Mission (SRTM) has produced the first high-resolution, near-global elevation dataset of Earth. In recognition of this achievement, and as an illustration of the data, the United States Library of Congress now displays a 'solid terrain model' of Los Angeles and adjacent mountainous terrain. The model was created by carving a high-density foam block using computer-guided drills that referenced the SRTM dataset. The block was then covered with a Landsat satellite image using computer-guided paint guns that referenced both the Landsat image and the SRTM dataset. The view shown here mimics the actual model on display at the Library of Congress and was generated from the same satellite image and elevation data sets. The model shows the Pacific Ocean and Santa Monica Mountains along the Malibu Coast (lower left), San Fernando Valley (left center), downtown Los Angeles (bottom center), San Gabriel and Pomona Valleys (lower right), San Gabriel Mountains (right center to far right), and part of the Mojave Desert (upper right). Colors are enhanced true color with added topographic shading, and elevation differences are exaggerated 1.5 times. The view is toward the north-northwest. The Los Angeles region was chosen for the Library of Congress model because it illustrates so many ways that topography affects the daily lives of people. The region consists of a coastal plain, inland valleys, mountains up to 3068 meters (10,064 feet), and a desert interior. Topography blocks the landward influence of marine airmasses here such that summer temperatures often differ by 40 degrees Fahrenheit (22 C) across this region at a given moment even at similar elevations. Temperatures also typically cool with rising elevation, and winter storms drop most of their moisture in the mountains, leaving little rainfall for areas further inland, thus creating the deserts. Topography also controls the land use pattern. The mountains are mostly very rugged, which greatly limits urban expansion. Similarly, major transportation routes are limited to a few mountain passes. Water supply to the city and drainage away from it both follow paths largely dictated by topography. Radio, television, and cell phone transmission towers are all sited with topography in mind to maximize coverage. Its climate and scenic mountain surroundings have been a major part of the appeal of the Los Angeles region as it has grown into one of the world's largest cities over the past 150 years. But the topography that has created this environment also results from and leads to significant natural hazards. The tall mountains result from tectonic compression and uplift of Earth's crust along a kink in the San Andreas fault. (The fault is seen here as a straight boundary between the Mojave Desert and the San Gabriel Mountains.) Major earthquakes occur on the San Andreas fault every few centuries. Damaging earthquakes also occur on other faults across the region several times in a typical human lifespan. Most of these faults were first recognized by their impact upon the topographic pattern. Meanwhile, wildfires are common in the chaparral covered hills and mountains, and topography affects the fire's path (burning more readily upslope) as well as our ability to fight it. After a fire, rainfall from winter storms often strips exposed soil, accumulates it as mudflows in rugged canyons, and dumps it into the adjacent valleys which are now heavily urbanized. Topography is indeed important in the lives of the people of Los Angeles. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data substantially help in analyzing Landsat images by revealing the third dimension of Earth's surface, topographic height. The Landsat archive is managed by the U.S. Geological Survey's Eros Data Center (USGS EDC). Elevation data used in this image were acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency (NGA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, DC. Size: Block length 120 kilometers (74 miles), block width 60 kilometers (37 miles) Location: 34.2 degrees North latitude, 118.3 degrees West longitude Orientation: View North-Northwest, 1.5 times vertical exaggeration Image Data: Landsat bands 3, 2, 1 as red, green, blue, respectively, plus elevation shading. Date Acquired: February 2000 (SRTM), May 4, 2001 (Landsat)Patty Smith Hill, Gifted Early Childhood Educator of the Progressive Era.
ERIC Educational Resources Information Center
Rudnitski, Rose A.
1995-01-01
This article chronicles the development of Patty Smith Hill, eminent educator of the Progressive Era. Hill was largely responsible for adding kindergarten to the elementary school curriculum, was the author of the "Happy Birthday" song, and a member of the Woman's Suffrage Movement. (DB)
Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department ...
Drawing entitled "Planting Plan Pine Hills, Gd. Sta. U.S. Department of Agriculture, Forest Service, Region 5. L. Glenn Hall, landscape engineer. 11-5-35. - Pine Hills Station, Barracks, West Side of Boulder Creek Road at Engineers Road, Julian, San Diego County, CA
78 FR 34366 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... Solar, LLC. Description: Application and Initial Baseline Tariff Filing to be effective 8/1/2013. Filed... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice.... Applicants: Beech Ridge Energy LLC, Bishop Hill Energy LLC, Bishop Hill Energy III LLC, Bishop Hill...
77 FR 6553 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-08
.... Applicants: American Electric Power Service Corporation, AEP Energy Partners, Inc., CSW Energy Services, Inc., Central and South West Services, Inc. Description: Notice of change in status of American Electric Power.... Applicants: Black Hills/Colorado Electric Utility Co, LP, Black Hills Colorado IPP, LLC, Black Hills Power...
78 FR 65634 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... Updated Market Power Analysis of the Black Hills Corporation Public Utilities for the Northwest Region..., LLC submits the Triennial Market Power Update Analysis for Markets in the Northwest Region pursuant to...: Black Hills Power, Inc., Cheyenne Light Fuel & Power Company, Black Hills/Colorado Electric Utility Co...
3. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO ...
3. BUNKER HILL LEAD SMELTER. VIEW IS FROM CIA TO THE SOUTHWEST. BUILDINGS NOTED IN ID-29-2 APPEAR, IN ADDITION TO DRY ORE PLANT AND BONNOT COAL PULVERIZING EQUIPMENT BUILDING ON THE RIGHT. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID
NASA Astrophysics Data System (ADS)
Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.
2008-12-01
A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.
The geologic story of Isle Royale National Park
Huber, N. King
1975-01-01
Isle Royale is an outstanding example of relatively undisturbed northwoods lake wilderness. But more than simple preservation of such an environment is involved in its inclusion in our National Park System. Its isolation from the mainland provides an almost untouched laboratory for research in the natural sciences, especially those studies whose very nature depends upon such isolation. One excellent example of such research is the intensive study of the predator-prey relationship of the timber wolf and moose, long sponsored by the National Park Service and Purdue University. In probably no other place in North America are the necessary ecological conditions for such a study so admirably fulfilled as on Isle Royale. The development of a natural laboratory with such conditions is ultimately dependent upon geologic processes and events that although not unique in themselves, produced in their interplay a unique result, the island archipelago as we know it today, with its hills and valleys, swamps and bogs the ecological framework of the plant and animal world. Even the most casual visitor can hardly fail to be struck by the fiordlike nature of many of the bays, the chains of fringing islands, the ridge-and-valley topography, and the linear nature of all these features. The distinctive topography of the archipelago is, of course, only the latest manifestation of geologic processes in operation since time immemorial. Fragments of geologic history going back over a billion years can be read from the rocks of the island, and with additional data from other parts of the Lake Superior region, we can fill in some of the story of Isle Royale. After more than a hundred years of study by man, the story is still incomplete. But then, geologic stories are seldom complete, and what we do know allows a deeper appreciation of one of our most naturally preserved parks and whets our curiosity about the missing fragments.
Fire history at the eastern Great Plains margin, Missouri River Loess Hills
Michael C. Stambaugh; Richard P. Guyette; Erin R. McMurry; Daniel C. Dey
2006-01-01
The purpose of this paper is to provide quantitative fire history information for a geographically unique region, the Loess Hills of northwest Missouri. We sampled 33 bur oak (Quercus macrocarpa Michx.), chinkapin oak (Q. muehlenbergii Engelm.), and black oak (Q. velutina Lam.) trees from the Brickyard Hill...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... County Rock Hill Printing and Finishing Company, 400 W. White St., Rock Hill, 12001264 VIRGINIA Augusta... Ellen Henderson, House, 307 S. Maple Ave., Falls Church (Independent City), 12001267 Franklin..., 1739 Jefferson Davis Hwy., Stafford, 12001272 Virginia Beach Independent City Green Hill, 1721 Lovetts...
83. GENERAL VIEW FROM NORTH END OF GUN HILL PLATFORM ...
83. GENERAL VIEW FROM NORTH END OF GUN HILL PLATFORM OF 3RD AVENUE EL SHOWING THE SOUTHBOUND TRACK APPROACH INTO GUN HILL STATION. 7TH AVENUE EXPRESS EL ABOVE. - Interborough Rapid Transit Company, Third Avenue Elevated Line, Borough of the Bronx, New York County, NY
78 FR 72914 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
.... Forest Hill, Hill, TX 76119. 3219 California Parkway, Forest Hill, TX 76119. Travis City of Austin (13..., Austin, TX Road, 12th 78767. Floor, Austin, TX 78704. Travis Unincorporated The Honorable Travis County..., 700 Austin, TX 78767. Lavaca Street, 5th Floor, Suite 540, Austin, TX 78701. Williamson City of...
The Camp Hill Project: Objectives and Design
ERIC Educational Resources Information Center
Mattingly, John B.
1976-01-01
Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)
"This Delightfull Garden": "Rabbit Hill" and the Pastoral Tradition.
ERIC Educational Resources Information Center
Jordan, Anne Devereaux
1997-01-01
Contends that Robert Lawson's children's book "Rabbit Hill" (1944) falls within the genre of pastoral literature, in the tradition of Edmund Spenser's "Faerie Queen." Examines the history of the genre and finds reasons for classifying Lawson's book as pastoral. Cites classic elements in "Rabbit Hill." Gives five…
76 FR 62461 - Post Office Closing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... POSTAL REGULATORY COMMISSION [Docket No. A2011-97; Order No. 890] Post Office Closing AGENCY... the closing of the Oak Hill, Alabama post office has been filed. It identifies preliminary steps and... determination to close the Oak Hill post office in Oak Hill, Alabama. The petition for review was filed by the...
7. Photographic copy of construction drawing 6912132 (from record group ...
7. Photographic copy of construction drawing 6912132 (from record group of Civil Engineering, Hill Air Force Base, Utah). 1940. 8'x10' negative and print. HILL FIELD, UTAH, QM GAS & OIL HOUSE PLAN, ELEVATIONS, DETAIL & STRUCTURAL. - Hill Field, Quatermaster Gas & Oil House, 7326 Wardleigh Road, Layton, Davis County, UT
Evidence for Acid-Sulfate Alteration in the Pahrump Hills Region, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Bish, D. L.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Vaniman. D. T.; Chipera, S. J.;
2015-01-01
The Pahrump Hills region of Gale crater is a approximately 12 millimeter thick section of sedimentary rock in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September 2014 and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three mudstone samples (targets Confidence Hills, Mojave 2, and Telegraph Peak) to its internal instruments, including the CheMin XRD/XRF.
Voluntary EMG-to-force estimation with a multi-scale physiological muscle model
2013-01-01
Background EMG-to-force estimation based on muscle models, for voluntary contraction has many applications in human motion analysis. The so-called Hill model is recognized as a standard model for this practical use. However, it is a phenomenological model whereby muscle activation, force-length and force-velocity properties are considered independently. Perreault reported Hill modeling errors were large for different firing frequencies, level of activation and speed of contraction. It may be due to the lack of coupling between activation and force-velocity properties. In this paper, we discuss EMG-force estimation with a multi-scale physiology based model, which has a link to underlying crossbridge dynamics. Differently from the Hill model, the proposed method provides dual dynamics of recruitment and calcium activation. Methods The ankle torque was measured for the plantar flexion along with EMG measurements of the medial gastrocnemius (GAS) and soleus (SOL). In addition to Hill representation of the passive elements, three models of the contractile parts have been compared. Using common EMG signals during isometric contraction in four able-bodied subjects, torque was estimated by the linear Hill model, the nonlinear Hill model and the multi-scale physiological model that refers to Huxley theory. The comparison was made in normalized scale versus the case in maximum voluntary contraction. Results The estimation results obtained with the multi-scale model showed the best performances both in fast-short and slow-long term contraction in randomized tests for all the four subjects. The RMS errors were improved with the nonlinear Hill model compared to linear Hill, however it showed limitations to account for the different speed of contractions. Average error was 16.9% with the linear Hill model, 9.3% with the modified Hill model. In contrast, the error in the multi-scale model was 6.1% while maintaining a uniform estimation performance in both fast and slow contractions schemes. Conclusions We introduced a novel approach that allows EMG-force estimation based on a multi-scale physiology model integrating Hill approach for the passive elements and microscopic cross-bridge representations for the contractile element. The experimental evaluation highlights estimation improvements especially a larger range of contraction conditions with integration of the neural activation frequency property and force-velocity relationship through cross-bridge dynamics consideration. PMID:24007560
Computational tools for fitting the Hill equation to dose-response curves.
Gadagkar, Sudhindra R; Call, Gerald B
2015-01-01
Many biological response curves commonly assume a sigmoidal shape that can be approximated well by means of the 4-parameter nonlinear logistic equation, also called the Hill equation. However, estimation of the Hill equation parameters requires access to commercial software or the ability to write computer code. Here we present two user-friendly and freely available computer programs to fit the Hill equation - a Solver-based Microsoft Excel template and a stand-alone GUI-based "point and click" program, called HEPB. Both computer programs use the iterative method to estimate two of the Hill equation parameters (EC50 and the Hill slope), while constraining the values of the other two parameters (the minimum and maximum asymptotes of the response variable) to fit the Hill equation to the data. In addition, HEPB draws the prediction band at a user-defined confidence level, and determines the EC50 value for each of the limits of this band to give boundary values that help objectively delineate sensitive, normal and resistant responses to the drug being tested. Both programs were tested by analyzing twelve datasets that varied widely in data values, sample size and slope, and were found to yield estimates of the Hill equation parameters that were essentially identical to those provided by commercial software such as GraphPad Prism and nls, the statistical package in the programming language R. The Excel template provides a means to estimate the parameters of the Hill equation and plot the regression line in a familiar Microsoft Office environment. HEPB, in addition to providing the above results, also computes the prediction band for the data at a user-defined level of confidence, and determines objective cut-off values to distinguish among response types (sensitive, normal and resistant). Both programs are found to yield estimated values that are essentially the same as those from standard software such as GraphPad Prism and the R-based nls. Furthermore, HEPB also has the option to simulate 500 response values based on the range of values of the dose variable in the original data and the fit of the Hill equation to that data. Copyright © 2014. Published by Elsevier Inc.
Classification of Broken Hill-Type Pb-Zn-Ag Deposits: A Refinement
NASA Astrophysics Data System (ADS)
Spry, P. G.; Teale, G. S.; Steadman, J. A.
2009-05-01
Broken Hill Hill-type Pb-Zn-Ag (BHT) deposits constitute some of the largest ore deposits in the world. The Broken Hill deposit is the largest accumulation of Pb, Zn, and Ag on Earth and the Cannington deposit is currently the largest silver deposit. Characteristic features of BHT deposits include: 1. high Pb+Zn+Ag values with Pb > Zn; 2. Metamorphism to amphibolite-granulite facies; 3. Paleo-to Mesoprotoerozoic clastic metasedimentary host rocks; 4. Sulfides that are spatially associated with bimodal (felsic and mafic) volcanic rocks, and stratabound gahnite- and garnet-bearing rocks and iron formations, 5. Stacked orebodies with characteristic Pb:Zn:Ag ratios and skarn-like Fe-Mn-Ca-F gangue assemblages, and the presence of Cu, Au, Bi, As, and Sb; and 6. Sulfur-poor assemblages. Broken Hill (Australia) has a prominent footwall feeder zone whereas other BHT deposits have less obvious alteration zones (footwall garnet spotting and stratabound alteration haloes). Deposits previously regarded in the literature as BHT deposits are Broken Hill, Cannington, Oonagalabie, Menninie Dam, and Pegmont (Australia), Broken Hill, Swartberg, Big Syncline, and Gamsberg (South Africa), Zinkgruvan (Sweden), Sullivan, Cottonbelt, and Foster River (Canada), and Boquira (Brazil). Of these deposits, only the Broken Hill (Australia, South Africa), Pinnacles, Cannington, Pegmont, and Swartberg deposits are BHT deposits. Another BHT deposit includes the Green Parrot deposit, Jervois Ranges (Northern Territory). The Foster River, Gamsberg, and Sullivan deposits are considered to be "SEDEX deposits with BHT affinities", and the Oonagalabie, Green Mountain (Colorado), and Zinkgruvan are "VMS deposits with BHT affinities". In the Broken Hill area (Australia), Corruga-type Pb-Zn-Ag deposits occur in calc-silicate rocks and possess some BHT characteristics; the Big Syncline, Cottonbelt, Menninie Dam, and Saxberget deposits are Corruga-type deposits. SEDEX deposits with BHT affinities, VMS deposits with BHT affinities, and Corruga-type deposits represent transitional deposits between BHT and SEDEX, VMS, and metamorphosed base metal calc-silicate deposits, respectively. Although the non-sulfide zinc deposits at Franklin Furnace and Sterling Hill, NJ, do not contain Pb, they resemble sulfur-poor BHT deposits.
Ecology, silviculture, and management of Black Hills ponderosa pine
Wayne D. Shepperd; Michael A. Battaglia
2002-01-01
This paper presents a broad-based synthesis of the general ecology of the ponderosa pine ecosystem in the Black Hills. This synthesis contains information and results of research on ponderosa pine from numerous sources within the Black Hills ecosystem. We discuss the silvical characteristics of ponderosa pine, natural disturbances that govern ecosystem processes,...
76 FR 58257 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Hills Wind Farm, LLC. Description: Smoky Hills Wind Farm, LLC submits tariff filing per 35.1: Smoky Hills Wind Farm, LLC MBR Tariff to be effective 10/31/2007. Filed Date: 09/12/2011. Accession Number... Associates, L.P., Golden Spread Panhandle Wind Ranch, LLC. Description: Notice of Change in Status of Golden...
76 FR 76393 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
...; ER11-4499-002; ER11-4500-002; ER11- 4507-002; ER11-4501-002. Applicants: Smoky Hills Wind Farm, LLC, Smoky Hills Wind Project II, LLC, Enel Stillwater, LLC, Caney River Wind Project, LLC, Canastota Windpower, LLC. Description: Notice of Non-Material Change in Status re Smoky Hills Wind Farm, LLC, et al...
24 CFR 100.303 - 62 or over housing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Mary, it might qualify for the “55 or over” exemption in § 100.304. Example (2): The Blueberry Hill... persons who were all 62 years of age or older. Blueberry Hill can qualify for the “62 or over” exemption... leave for Blueberry Hill to qualify for the “62 or over” exemption. ...
24 CFR 100.303 - 62 or over housing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Mary, it might qualify for the “55 or over” exemption in § 100.304. Example (2): The Blueberry Hill... persons who were all 62 years of age or older. Blueberry Hill can qualify for the “62 or over” exemption... leave for Blueberry Hill to qualify for the “62 or over” exemption. ...
24 CFR 100.303 - 62 or over housing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Mary, it might qualify for the “55 or over” exemption in § 100.304. Example (2): The Blueberry Hill... persons who were all 62 years of age or older. Blueberry Hill can qualify for the “62 or over” exemption... leave for Blueberry Hill to qualify for the “62 or over” exemption. ...
24 CFR 100.303 - 62 or over housing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Mary, it might qualify for the “55 or over” exemption in § 100.304. Example (2): The Blueberry Hill... persons who were all 62 years of age or older. Blueberry Hill can qualify for the “62 or over” exemption... leave for Blueberry Hill to qualify for the “62 or over” exemption. ...
24 CFR 100.303 - 62 or over housing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Mary, it might qualify for the “55 or over” exemption in § 100.304. Example (2): The Blueberry Hill... persons who were all 62 years of age or older. Blueberry Hill can qualify for the “62 or over” exemption... leave for Blueberry Hill to qualify for the “62 or over” exemption. ...
33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...
33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...
33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...
33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...
33 CFR 80.145 - Race Point, MA, to Watch Hill, RI.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Race Point, MA, to Watch Hill, RI. 80.145 Section 80.145 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.145 Race Point, MA, to Watch Hill...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2313-000] Laurel Hill Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request For... Laurel Hill Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...
Hospital/Health Facilities and the Hill-Burton Obligations: A Secret from the Black Community.
ERIC Educational Resources Information Center
Rice, Mitchell F.
1986-01-01
Uncompensated/free care and community service obligations under the Hill-Burton Act can assist substantially in providing needed health care services to the Black community. Blacks, however, must become knowledgeable about these obligations, develop monitoring projects, and be prepared to take legal steps to bring Hill-Burton facilities into…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. DI13-3-000] Roberto Sella... 7, 2012. d. Applicant: Roberto Sella. e. Name of Project: Hydro-electric and Geothermal Alternative Energy System at Paper Hill Farm (Paper Hill Farm). f. Location: The proposed Paper Hill Farm project...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... DEPARTMENT OF AGRICULTURE Forest Service Black Hills National Forest, Mystic Ranger District... INFORMATION CONTACT: Dave Slepnikoff, Project Coordinator, Black Hills National Forest, Mystic Ranger District... regulations at 36 CFR 228 Subpart A. The Project is located between Rapid City and Black Hawk, South Dakota...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-01
... proceeding Black Hills Colorado IPP, LLC's application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2724-000] Black Hills Colorado IPP, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
ERIC Educational Resources Information Center
Fujioka, Rika
This research analyzes the impact of the Thai government's activities to promote educational opportunities for people of the northern hill tribes. In addition to interviews with government and nongovernmental organization staff, field surveys were conducted in hill tribe villages. The introductory chapter provides background information on the…
76 FR 6457 - Hill-Lake Gas Storage, LLC; Notice of Baseline Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-134-001] Hill-Lake Gas Storage, LLC; Notice of Baseline Filings January 31, 2011. Take notice that on January 28, 2011, Hill-Lake submitted a revised baseline filing of their Statement of Operating Conditions for services provided under...
76 FR 30338 - Hill-Lake Gas Storage, LLC; Notice of Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR11-110-000] Hill-Lake Gas Storage, LLC; Notice of Filing Take notice that on May 13, 2011, Hill-Lake Gas Storage, LLC filed to update its address and to clarify definitions for Maximum Daily Withdrawal Quantity and Maximum Daily...
76 FR 7186 - Hill-Lake Gas Storage, LLC; Notice of Baseline Filings
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-134-002] Hill-Lake Gas Storage, LLC; Notice of Baseline Filings February 2, 2011. Take notice that on February 1, 2011, Hill-Lake submitted a revised baseline filing of their Statement of Operating Conditions for services provided under...
OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC ...
OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC MINE LOOKING EAST. THE OPENING TO THE TALC MINE IS IN THE DARK AREA AT CENTER LEFT EDGE. WARM SPRINGS CAMP IS OUT OF FRAME TO THE RIGHT. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA
Report on the Black Hills Alliance.
ERIC Educational Resources Information Center
Ryan, Joe
1979-01-01
A rally to save the Black Hills from coal- and uranium-greedy energy companies was held on July 6 and over 2,000 joined in a 15-mile walk on July 7 in Rapid City, South Dakota. The Black Hills Alliance, an Indian coalition concerned about energy development proposals in the Great Plains, sponsored the gathering. (NQ)
1. BUNKER HILL LEAD SMELTER. VIEW IS FROM CENTRAL IMPOUNDMENT ...
1. BUNKER HILL LEAD SMELTER. VIEW IS FROM CENTRAL IMPOUNDMENT AREA LOOKING SOUTH. PLANT DRY IS IN CENTER FOREGROUND, SLAG FUMING PLANT IS IN RIGHT FOREGROUND, AND BAG HOUSE IS IN RIGHT BACKGROUND. VARIOUS PLANT STACKS ARE ALSO VISIBLE. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2011-0328; FRL-9792-8] Approval and Promulgation of Air Quality Implementation Plans; Minnesota; Flint Hills Resources Pine Bend AGENCY... rule approving a revision to the the Minnesota sulfur dioxide SIP for Flint Hills Resources Pine Bend...
The Bradford Hill criteria and zinc-induced anosmia: a causality analysis.
Davidson, Terence M; Smith, Wendy M
2010-07-01
To apply the Bradford Hill criteria, which are widely used to establish causality between an environmental agent and disease, to evaluate the relationship between over-the-counter intranasal zinc gluconate therapy and anosmia. Patient and literature review applying the Bradford Hill criteria on causation. University of California, San Diego, Nasal Dysfunction Clinic. The study included 25 patients who presented to the University of California, San Diego, Nasal Dysfunction Clinic complaining of acute-onset anosmia after intranasal application of homeopathic zinc gluconate gel. Each of the 9 Bradford Hill criteria--strength of association, consistency, specificity, temporality, biological gradient (dose-response), biological plausibility, biological coherence, experimental evidence, and analogy--was applied to intranasal zinc gluconate therapy and olfactory dysfunction using published, peer-reviewed medical literature and reported clinical experiences. Clinical, biological, and experimental data support the Bradford Hill criteria to demonstrate that intranasal zinc gluconate therapy causes hyposmia and anosmia. The Bradford Hill criteria represent an important tool for scientifically determining cause between environmental exposure and disease. Increased Food and Drug Administration oversight of homeopathic medications is needed to monitor the safety of these popular remedies.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2016-07-01
The study of socioeconomic inequality is of substantial importance, scientific and general alike. The graphic visualization of inequality is commonly conveyed by Lorenz curves. While Lorenz curves are a highly effective statistical tool for quantifying the distribution of wealth in human societies, they are less effective a tool for the visual depiction of socioeconomic inequality. This paper introduces an alternative to Lorenz curves-the hill curves. On the one hand, the hill curves are a potent scientific tool: they provide detailed scans of the rich-poor gaps in human societies under consideration, and are capable of accommodating infinitely many degrees of freedom. On the other hand, the hill curves are a powerful infographic tool: they visualize inequality in a most vivid and tangible way, with no quantitative skills that are required in order to grasp the visualization. The application of hill curves extends far beyond socioeconomic inequality. Indeed, the hill curves are highly effective 'hyperspectral' measures of statistical variability that are applicable in the context of size distributions at large. This paper establishes the notion of hill curves, analyzes them, and describes their application in the context of general size distributions.
ERIC Educational Resources Information Center
Mullen, Rebecca; Wedwick, Linda
2008-01-01
In this article, the authors discuss a rural middle school teacher's use of YouTube, digital stories, and blogs in a language arts curriculum. The authors also share the voices of middle school students as they learn through this technology in the classroom. Although a wide variety of technology integration exists in this middle school language…
Structure and Variability of Internal Tides in Luzon Strait
2016-09-14
suggestions of outside individuals or concerns which have been communicated to the Laboratory in confidence. This paper (does ) (does not X ) contain...generated where the barotropic tides force stratified water over underwater bathymetry, are thought to provide a significant fraction of the 2 TW of energy...required to maintain abyssal stratification and the meridional overturning circulation (Munk and Wunsch 1998). They contribute to oceanmixing through a
1983-09-01
sp. ( Protista , Rhizopoda) with comments on the taxonomy of A. ramulifonmis Jour. Mar. Biol. Assoc. U.K. 62 pp. 595-605. *! Hbglund, H., 1947...southeastern Pacific Ocean. Micropaleo. 26, (2), pp. 113- 150. Loeblich, A.R., and Tappan, H., 1964 Protista 2, Sarcodina chiefly "Thec- amoebians" and
NASA Astrophysics Data System (ADS)
Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.
2016-12-01
Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap the lowermost drift creating a significant gradient change at this juncture. Understanding the geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping, for example, in which gradient change is a critical metric.
Sedimentary Catalysis of Radiolytic Hydrogen Production - A Global Perspective
NASA Astrophysics Data System (ADS)
Sauvage, J.; Spivack, A. J.; Smith, D. C.; Anderson, C. H.; Murray, R. W.; D'Hondt, S.
2016-12-01
Constraining rates of various energy- producing metabolic reactions is central to our understanding of subsurface microbial ecosystems. Radiolytic hydrogen (H2), produced by the radioactive splitting of water due to the natural decay of elements in the sediment, has been proposed to be a significant electron donor in sediment of oligothrophic oceanic regions. However accurate constraints of in situ production rates are required to test this hypothesis. We experimentally quantified radiolytic H2 yields (H2 produced per unit of absorbed energy in solution) due to γ radiation (Cs-137) and α radiation (Po-210) in marine sediment by exposing seawater slurries of sediment to radiation and measuring the production of H2. We selected 28 samples from different ocean basins and depositional environments aiming to capture the range of representative lithologies found across the global ocean. These experiments demonstrate that marine sediment greatly amplifies the production of radiolytic H2 production compared to pure water, with seawater-saturated abyssal clay exhibiting the highest yield. South Pacific Gyre [SPG], North Atlantic [NA] and North Pacific Gyre [NPG] abyssal clays amplify H2 production by factors of 13, 16 and 33, respectively. Calcareous ooze amplifies radiolytic H2 production by an average factor of 5. Despite continual production, dissolved H2 concentrations are generally below detection in oxic subseafloor sediment of the SPG, NPG and NA. This suggests that the aerobic H2 oxidation rate (Knallgas reaction) is essentially equal to its production rate in these environments. We assess the relative importance of buried organic matter and radiolytic H2 in terms of electron donor availability by comparing rates of radiolytic H2 production to rates of net O2 respiration (inferred to equal rates of organic oxidation). For NA, SPG and NPG abyssal clay older than a few million years, radiolytic H2 production rates are respectively factors of 20, 30 and 49 higher than rates of organic-fueled respiration rates. Extrapolating these results, we infer that radiolytic H2 is likely to be the predominant electron donor for subseafloor sedimentary communities throughout 37% of the global ocean.
NASA Astrophysics Data System (ADS)
Ballarotta, M.; Falahat, S.; Brodeau, L.; Döös, K.
2014-11-01
The thermohaline circulation (THC) and the oceanic heat and freshwater transports are essential for understanding the global climate system. Streamfunctions are widely used in oceanography to represent the THC and estimate the transport of heat and freshwater. In the present study, the regional and global changes of the THC, the transports of heat and freshwater and the timescale of the circulation between the Last Glacial Maximum (LGM, ≈ 21 kyr ago) and the present-day climate are explored using an Ocean General Circulation Model and streamfunctions projected in various coordinate systems. We found that the LGM tropical circulation is about 10% stronger than under modern conditions due to stronger wind stress. Consequently, the maximum tropical transport of heat is about 20% larger during the LGM. In the North Atlantic basin, the large sea-ice extent during the LGM constrains the Gulf Stream to propagate in a more zonal direction, reducing the transport of heat towards high latitudes by almost 50% and reorganising the freshwater transport. The strength of the Atlantic Meridional Overturning Circulation depends strongly on the coordinate system. It varies between 9 and 16 Sv during the LGM, and between 12 to 19 Sv for the present day. Similar to paleo-proxy reconstructions, a large intrusion of saline Antarctic Bottom Water takes place into the Northern Hemisphere basins and squeezes most of the Conveyor Belt circulation into a shallower part of the ocean. These different haline regimes between the glacial and interglacial period are illustrated by the streamfunctions in latitude-salinity coordinates and thermohaline coordinates. From these diagnostics, we found that the LGM Conveyor Belt circulation is driven by an enhanced salinity contrast between the Atlantic and the Pacific basin. The LGM abyssal circulation lifts and makes the Conveyor Belt cell deviate from the abyssal region, resulting in a ventilated upper layer above a deep stagnant layer, and an Atlantic circulation more isolated from the Pacific. An estimate of the timescale of the circulation reveals a sluggish abyssal circulation during the LGM, and a Conveyor Belt circulation that is more vigorous due to the combination of a stronger wind stress and a shortened circulation route.
ESONET LIDO Demonstration Mission: the Iberian Margin node.
NASA Astrophysics Data System (ADS)
Embriaco, Davide; André, Michel; Zitellini, Nevio; Esonet Lido Demonstration Mission Team
2010-05-01
The Gulf of Cadiz is one of two the test sites chosen for the demonstration of the ESONET - LIDO Demonstration Mission (DM) [1], which will establish a first nucleus of regional network of multidisciplinary sea floor observatories. The Gulf of Cadiz is a highly populated area, characterized by tsunamigenic sources, which caused the devastating earthquake and tsunamis that struck Lisbon in 1755. The seismic activity is concentrated along a belt going from this region to the Azores and the main tsunamigenic tectonic sources are located near the coastline. In the framework of the EU - NEAREST project [2] the GEOSTAR deep ocean bottom multi-parametric observatory was deployed for a one year mission off cape Saint Vincent at about 3200 m depth. GEOSTAR was equipped with a set of oceanographic, seismic and geophysical sensors and with a new tsunami detector prototype. In November 2009 the GEOSTAR abyssal station equipped with the tsunami prototype was redeployed at the same site on behalf of NEAREST and ESONET - LIDO DM. The system is able to communicate from the ocean bottom to the land station via an acoustic and satellite link. The abyssal station is designed both for long term geophysical and oceanographic observation and for tsunami early warning purpose. The tsunami detection is performed by two different algorithms: a new real time dedicated tsunami detection algorithm which analyses the water pressure data, and a seismic algorithm which triggers on strong events. Examples of geophysical and oceanographic data acquired by the abyssal station during the one year mission will be shown. The development of a new acoustic antenna equipped with a stand alone and autonomous acquisition system will allow the recording of marine mammals and the evaluation of environmental noise. References [1] M. André and The ESONET LIDO Demonstration Mission Team, "Listening to the deep-ocean environment: an ESONET initiative for the real-time monitoring of geohazards and marine ambient noise", EGU General Assembly, Vienna 2-7 May 2010 [2] EU - NEAREST Project web site: http://nearest.bo.ismar.cnr.it/
Geologic and paleoecologic studies of the Nebraska Sand Hills
Ahlbrandt, Thomas S.; Fryberger, S.G.; Hanley, John H.; Bradbury, J. Platt
1980-01-01
PART A: The Nebraska Sand Hills are an inactive, late Quaternary, most probably Holocene, dune field (covering 57,000 km 2 ) that have been eroded along streams and in blowouts, resulting in excellent lateral and vertical exposures of the stratification of dune and interdune sediments. This paper presents new data on the geometry, primary sedimentary structures, modification of sedimentary structures, direction of sand movement, and petrography of these eolian deposits. Eolian deposits of the Sand Hills occur as relatively thin (9-24 m) 'blanket' sands, composed of a complex of dune and discontinuous, diachronous interdune deposits unconformably overlying fluviolacustrine sediments. The internal stratification of large dunes in the Sand Hills (as high as 100 m), is similar to the internal stratification of smaller dunes of the same type in the Sand Hills, differing only in scale. Studies of laminae orientation in the Sand Hills indicate that transverse, barchan, and blowout dunes can be differentiated in rocks of eolian origin using both the mean dip angle of laminae and the mean angular deviation of dip direction. A variety of secondary structures modify or replace primary eolian stratification in the Sand Hills, the more common of which are dissipation structures and bioturbation. Dissipation structures in the Sand Hills may develop when infiltrating water deposits clay adjacent to less permeable layers in the sand, or along the upper margins of frozen layers that form in the sands during winter. Cross-bed measurements from dunes of the Nebraska Sand Hills necessitate a new interpretation of the past sand transport directions. The data from these measurements indicate a general northwest-to-southeast drift of sand, with a more southerly drift in the southeast part of the Sand Hills. A large area of small dunes < 100 m high) described by Smith (1965) as linear or seif in the central part of the Sand Hills was interpreted by him on the basis of morphology only. We interpret these as transverse-ridge dunes that were generally moving to the south. Further, our measurements indicate that dunes in the western part of the Sand Hills did not develop in response to present-day effective wind regimes. The presence of 'transverse' and en echelon barchan dunes in the Sand Hills corresponds to a developmental sequence of barchan to linear dunes proposed by Tsoar (1978). Dune and interdune deposits of the Sand Hills are subfeldsarenites to feldsarenites. Sand grains are commonly coated with montmorillonitic clay, which may be the local source of the clay concentrated in the dissipation structures. Textures of sand samples taken from adjacent layers within a dune were as dissimilar as textures of samples taken from widely separated dunes. This common occurrence indicates that textural data must be used carefully and in combination with other data to recognize ancient rocks of eolian origin. Organic material derived from a variety of flora and fauna that inhabit the interdunes (chapters B and C) generated both oil and gas upon heating. Thus, interdune sediments may be an indigenous hydrocarbon source if buried in eolianites. The twofold stratigraphy of loess and correlative dune deposits in the Sand Hills proposed by Reed and Dreeszen (1965) could not be confirmed by the present study. Rather, available data indicate that the dunes represent a single formation as suggested by Lugn (1935). PART B: Three assemblages of nonmarine Mollusca from paleointerdune deposits in the Nebraska Sand Hills inhabited shallow, quiet, vegetated, subpermanent or temporary, freshwater interdune ponds and adjacent terrestrial habitats. Analysis of factors affecting the taxonomic composition, diversity, and abundance of species in living assemblages of mollusks support this interpretation. The mollusks have long biostratigraphic ranges and broad biogeographic distributions. They fail to establish precise age relations of the faunas othe
Chiu, Chun-Huo; Chao, Anne
2014-01-01
Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration. PMID:25000299
Chiu, Chun-Huo; Chao, Anne
2014-01-01
Hill numbers (or the "effective number of species") are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally) equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration.
Driscoll, Daniel G.; Bunkers, Matthew J.; Carter, Janet M.; Stamm, John F.; Williamson, Joyce E.
2010-01-01
The Black Hills area of western South Dakota has a history of damaging flash floods that have resulted primarily from exceptionally strong rain-producing thunderstorms. The best known example is the catastrophic storm system of June 9-10, 1972, which caused severe flooding in several major drainages near Rapid City and resulted in 238 deaths. More recently, severe thunderstorms caused flash flooding near Piedmont and Hermosa on August 17, 2007. Obtaining a thorough understanding of peak-flow characteristics for low-probability floods will require a comprehensive long-term approach involving (1) documentation of scientific information for extreme events such as these; (2) long-term collection of systematic peak-flow records; and (3) regional assessments of a wide variety of peak-flow information. To that end, the U.S. Geological Survey cooperated with the South Dakota Department of Transportation and National Weather Service to produce this report, which provides documentation regarding the August 17, 2007, storm and associated flooding and provides a context through examination of other large storm and flood events in the Black Hills area. The area affected by the August 17, 2007, storms and associated flooding generally was within the area affected by the larger storm of June 9-10, 1972. The maximum observed 2007 precipitation totals of between 10.00 and 10.50 inches occurred within about 2-3 hours in a small area about 5 miles west of Hermosa. The maximum documented precipitation amount in 1972 was 15.0 inches, and precipitation totals of 10.0 inches or more were documented for 34 locations within an area of about 76 square miles. A peak flow of less than 1 cubic foot per second occurred upstream from the 2007 storm extent for streamflow-gaging station 06404000 (Battle Creek near Keystone); whereas, the 1972 peak flow of 26,200 cubic feet per second was large, relative to the drainage area of only 58.6 square miles. Farther downstream along Battle Creek, a 2007 flow of 26,000 cubic feet per second was generated entirely within an intervening drainage area of only 44.4 square miles. An especially large flow of 44,100 cubic feet per second was documented for this location in 1972. The 2007 peak flow of 18,600 cubic feet per second for Battle Creek at Hermosa (station 06406000) was only slightly smaller than the 1972 peak flow of 21,400 cubic feet per second. Peak-flow values from 2007 for three sites with small drainage areas (less than 1.0 square mile) plot close to a regional envelope curve, indicating exceptionally large flow values, relative to drainage area. Physiographic factors that affect flooding in the area were examined. The limestone headwater hydrogeologic setting (within and near the Limestone Plateau area on the western flank of the Black Hills) has distinctively suppressed peak-flow characteristics for small recurrence intervals. Uncertainty is large, however, regarding characteristics for large recurrence intervals (low-probability floods) because of a dearth of information regarding the potential for generation of exceptionally strong rain-producing thunderstorms. In contrast, the greatest potential for exceptionally damaging floods is around the flanks of the rest of the Black Hills area because of steep topography and limited potential for attenuation of flood peaks in narrow canyons. Climatological factors that affect area flooding also were examined. Area thunderstorms are largely terrain-driven, especially with respect to their requisite upward motion, which can be initiated by orographic lifting effects, thermally enhanced circulations, and obstacle effects. Several other meteorological processes are influential in the development of especially heavy precipitation for the area, including storm cell training, storm anchoring or regeneration, storm mergers, supercell development, and weak upper-level air flow. A composite of storm total precipitation amounts for 13 recent individual storm events indicates
NASA Astrophysics Data System (ADS)
Key, K. W.; Constable, S.; Evans, R. L.; Naif, S.; Matsuno, T.; Lizarralde, D.
2010-12-01
Water plays an important role in the volcanic processes occurring at convergent margins, as the release of water from the downgoing slab affects the rheology of the mantle, increases melting by lowering the solidus temperature, and alters the chemistry of arc-lavas. Yet, one of the major uncertainties in terms of fluid inputs into the subduction factory concerns the extent of serpentinization of the oceanic upper mantle and the volumes of water that are being carried into the subduction system through this route. In April 2010 we conducted a large-scale marine electromagnetic experiment along a 300 km profile offshore Nicaragua in a region that shows evidence for substantial fault related fluid circulation in the crust and possibly upper mantle, and high Ba/La ratios and water contents in adjacent onshore volcanics that suggest a strong slab fluid input into the arc-melting. Our project is the largest combined controlled-source electromagnetic (CSEM) and magnetotelluric (MT) data set ever collected on an active subduction zone. During the single 28 day research cruise aboard the R/V Melville we collected 54 stations of broadband marine magnetotelluric (MT) data and deep-towed nearly 800 km of controlled-source electromagnetic (CSEM) data. Robust multiple-station array processing of the MT data yields high quality MT responses from 10 to 20,000 s period. The MT responses are fairly 1D over the abyssal plain, showing the effects of a thin veneer of conductive sediments overlying a resistive lithosphere and a deeper conductive mantle. The responses become strongly 2D on the trench outer rise and exhibit large 3D distortions at the bottom of the trench, likely due to a combination of effects from severe topography and seafloor conductivity variations. Two circular CSEM tows of 30 km radius were measured by special long-wire EM (LEM) sensors on the abyssal plain and the outer rise. The LEM data reveals a distinct pattern of electromagnetic polarization that is characteristic of mantle transverse anisotropy. Since the conductive axis is aligned with the fossil ridge-parallel direction and reactivated normal faults in the trench, we interpret this to be caused by conductive serpentinized mantle penetrating faults. Conventional CSEM data recorded at a broad suite of transmission frequencies along the 300 km long profile and a 50 km along strike profile provide constraints on crustal conductivity variations. The analysis of these data is ongoing and will provide a comprehensive picture of the electrical conductivity structure from the seafloor to the upper mantle, representing the entire input into this part of the Central American subduction system. Since conductivity is highly dependent on thermal structure, crack porosity and the presence of serpentinite, our experiment will provide constraints on the depth of active fluid circulation within the oceanic crust and mantle, the variation of fluid circulation with distance from the trench and hence with the degree of plate bending, and the extent of dewatering of the subducting slab in the shallow portion of the mantle wedge.
Rare Plants and Animals of the Texas Hill Country: Educator's Guide.
ERIC Educational Resources Information Center
Texas State Dept. of Parks and Wildlife, Austin.
Texas Hill Country is a land of fresh water springs, stony hills, and steep canyons and home to many rare plants and animals. Six activities for grades 3-5 and six activities for grades 6-12 are contained in this guide. Elementary activity highlights include using "The Lorax" by Dr. Seuss to stimulate critical thinking about…
ERIC Educational Resources Information Center
Poort, Stephen M.; Williamson, Tom
Structured interviews were conducted by selected vocational education instructors at Indian Hills Community College (IHCC) to determine current and projected employment and training needs of private-sector businesses with 200 employees or less and to assess opinions of IHCC programs. Employers were asked to provide information on the number of…
The "House" in Half Hollow Hills
ERIC Educational Resources Information Center
Karnilow, Sheldon
2006-01-01
In this article, the author relates how he initiated a systemic improvement to Half Hollow Hills school district when he became its superintendent. He relates that although he came to Half Hollow Hills with a deep understanding of the models of systemic change, he did not bring with him a specific prescriptive plan for improvement. His plan for…
ERIC Educational Resources Information Center
Callow, Elizabeth K.
The Department of Nursing at Oak Hill Hospital, Spring Hill (Florida) did not have a measurement instrument for patient evaluation of hospital nursing services. An instrument to measure patient satisfaction with nursing was developed and validated. Criteria identified through a literature search were reviewed, modified, and validated by a…
27 CFR 9.49 - Central Delaware Valley.
Code of Federal Regulations, 2014 CFR
2014-04-01
... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...
27 CFR 9.49 - Central Delaware Valley.
Code of Federal Regulations, 2013 CFR
2013-04-01
... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...
27 CFR 9.49 - Central Delaware Valley.
Code of Federal Regulations, 2012 CFR
2012-04-01
... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...
27 CFR 9.49 - Central Delaware Valley.
Code of Federal Regulations, 2011 CFR
2011-04-01
... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...
Colleges as Shining Cities on a Hill
ERIC Educational Resources Information Center
Townsend, Kathleen Kennedy
2012-01-01
In this article, the author proposes that the notion of America be reintroduced as the "shining city on a hill," that abiding image from American history. The image of the shining city on a hill captures the imagination because it reflects the abiding truth that people become fully human in society, not outside of it. People need one…
AmeriFlux US-SdH Nebraska SandHills Dry Valley
Arkebauer, Tim J. [University of Nebraska; Billesbach, Dave [University of Nebraska
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-SdH Nebraska SandHills Dry Valley. Site Description - The Nebraska SandHills Dry Valley tower is located on public land owned by the University of Nebraska-Lincoln. The site is on a research cattle ranch where grazing primarily takes place.
Species-area relations of song birds in the Black Hills, South Dakota
Mark A. Rumble; Brian L. Dykstra; Lester D. Flake
2000-01-01
We investigated the effects of stand size resulting from current logging practices on occurrence and species richness of song birds in the Black Hills. Richness of forest interior and forest interior/edge songbirds was not related to stand area (P > 0.40) in stands of ponderosa pine (Pinus ponderosa) in the Black Hills. Brown creepers (...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... Change Relating to the Accuvest Global Long Short ETF (Formerly the Mars Hill Global Relative Value ETF...) applicable to, the Accuvest Global Long Short ETF (``Fund'') (formerly known as the Mars Hill Global Relative... the Exchange of shares (``Shares'') of the Mars Hill Global Relative Value ETF, a series of Advisor...
Conservation assessment for bloodroot in the Black Hills National Forest, South Dakota and Wyoming
J. Hope Hornbeck; Carolyn Hull Sieg; Deanna J. Reyher
2003-01-01
Bloodroot, Sanguinaria canadensis L. (Papaveraceae), is a common spring flowering herb in the deciduous forests of eastern North America. It is disjunctly distributed in the northeastern Black Hills of South Dakota. There are 22 known occurrences of bloodroot on Black Hills National Forest in hardwood forests, shrub thickets, and floodplain habitats of limited...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Harvard University, Ms. Kathryn Edin, President and Fellows of Harvard University, 1350 Massachusetts...: $25,000 to Tanja Kubas- Meyer. 9. University of North Carolina at Chapel Hill, Mr. William Rohe, University of North Carolina at Chapel Hill, 104 Airport Drive, Ste. 2200 CB 1350, Chapel Hill, NC 27599...
77 FR 9912 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
....m. ET 3/2/12. Docket Numbers: ER12-743-001. Applicants: Black Hills Power, Inc. Description: GDEMA.... Comments Due: 5 p.m. ET 3/2/12. Docket Numbers: ER12-748-001. Applicants: Black Hills Power, Inc...: 20120210-5178. Comments Due: 5 p.m. ET 3/2/12. Docket Numbers: ER12-750-001. Applicants: Black Hills Power...
Accounting for imperfect detection in Hill numbers for biodiversity studies
Broms, Kristin M.; Hooten, Mevin B.; Fitzpatrick, Ryan M.
2015-01-01
The occupancy-based Hill number estimators are always at their asymptotic values (i.e. as if an infinite number of samples have been taken for the study region), therefore making it easy to compare biodiversity between different assemblages. In addition, the Hill numbers are computed as derived quantities within a Bayesian hierarchical model, allowing for straightforward inference.
Microhabitats of Merriam's turkeys in the Black Hills, South Dakota
Mark A. Rumble; Stanley H. Anderson
1996-01-01
Merriamâs Turkeys (Meleagris gallopavo merriami) are associated with ponderosa pine (Pinus ponderosa) forests in the western United States, but are not native to the ponderosa pine forest of the Black Hills, South Dakota. The Black Hills population was established by transplanting birds from New Mexico and Colorado between 1948 and...
75 FR 20774 - Establishment of Class E Airspace; Fort A.P. Hill, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
...-0739; Airspace Docket No. 09-AEA-14] Establishment of Class E Airspace; Fort A.P. Hill, VA AGENCY... December 7, 2009 that establishes Class E airspace at Fort A.P. Hill, VA. DATES: Effective Date: 0901 UTC... Service Center, Federal Aviation Administration, P.O. Box 20636, Atlanta, Georgia 30320; telephone (404...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... (1988) and Sweet Grass Hills Amendment (1996) and Judith-Valley-Phillips Resource Management Plans (1994..., Kevin Rim, Mountain Plover, Prairie Dog Towns within the 7km Complex, and Sweet Grass Hills; these ACEC... Restrictions: Avoidance area for rights-of-way. Sweet Grass Hills ACEC (7,419 Acres) Relevant and Important...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
... Hills Uranium Project, Fremont and Natrona Counties, WY AGENCY: Bureau of Land Management, Interior... Notice of Intent to Prepare an Environmental Impact Statement for the Gas Hills Uranium Project, Fremont... land description. The correct legal land description for the Gas Hills Uranium Project location is as...
27 CFR 9.49 - Central Delaware Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... starting point of the following boundary description is the summit of Strawberry Hill, which is located in.... (2) Boundary Description: (i) From the summit of Strawberry Hill (475 feet) in a straight line to the... summit of Strawberry Hill (475 feet). [T.D. ATF-168, 49 FR 10117, Mar. 19, 1984, as amended by T.D. ATF...
Management Decisions and the "Dred" Hills
Steven W. Anderson
1992-01-01
An area of public land called the Red Hills was being so abused by the public that it was often called the "Dred" Hills. Some staff work had been accomplished to protect sensitive areas within the 7,200-acre site, but depreciative behavior continued. Primary destructive activities included off-road vehicle use and indiscriminate shooting and dumping. This...
Daniel J. Thompson; Mark A. Rumble; Lester D. Flake; Chad P. Lehman
2009-01-01
Because quantity and quality of roosting habitat can affect Merriam's Wild Turkey (Meleagris gallopavo merriami) distribution, we described habitat characteristics of Merriam's turkey roost sites in the southern Black Hills of South Dakota. Varying proportions of Merriam's turkeys in the southern Black Hills depended on supplemental feed from livestock...
Silviculture of ponderosa pine in the Black Hills: The status of our knowledge
Charles E. Boldt; James L. Van Deusen
1974-01-01
This Paper, intended as a guide for professional foresters, describes major silvicultural conditions likely to be encountered in the Black Hills, reasonable treatment options, and probable results and implications of these treatments. It also describes silvical characteristics and behavior of Black Hills ponderosa pine, and a variety of proven silvicultural tools....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, B J
2012-08-02
Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility canmore » access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not being at all close to requirements. We would welcome these discussions with our SNL colleagues. Question 8 - The committee had the opinion that present laser facilities could better be modified to meet this mission need. HILL satisfies a mission need for rapid isochoric heating of materials into conditions relevant to boost with quantitative control of the variables. This is accomplished through particle generation and acceleration mechanisms that require ultra-short (sub-100 femtosecond, we estimate actually sub-30 femtosecond) laser pulses. To generate such very short pulses, high bandwidth is required in the laser system. However, such bandwidth is not possible with current high-energy glass laser systems, so new lasers must be built to meet this requirement.« less
George William Hill, the Great but Unknown 19th Century Celestial Mechanician
NASA Astrophysics Data System (ADS)
Corbin, Brenda G.
2012-01-01
George William Hill (1838-1914) has long been considered one of the most famous and talented celestial mechanicians of the past century and a half. However, many people have never heard of him and his work. Simon Newcomb said he "will easily rank as the greatest master of mathematical astronomy during the last quarter of the nineteenth century.” After receiving a B.A. at Rutgers in 1859, Hill began work in 1861 at the office of the American Ephemeris and Nautical Almanac in Cambridge, MA. He moved to Washington with the group in 1882 which then became part of the U. S. Naval Observatory. Newcomb, beginning his work on planetary motion, assigned the theory of Jupiter and Saturn to him, calling it about the most difficult topic. Hill's work was published by the USNO in 1890 as A New Theory of Jupiter and Saturn. From 1898 to 1901, Hill lectured on the subject of celestial mechanics at Columbia University in a position created just for him. After 1892 and until his death, he lived at the family homestead in West Nyack, NY. He never married, was something of a recluse, and spent most of his time with his books and research. Hill was an amateur botanist and enjoyed exploring on long walks in the countryside. Many honors and awards came to him during his lifetime, both from the U.S. and abroad, including serving as president of the American Mathematical Society. All of Hill's mathematical and astronomical research was incorporated in The Collected Mathematical Works of George William Hill. This work, containing a preface in French by Poincare, was published in 4 large volumes by the Carnegie Institution of Washington in 1905.
Wright, Heather M.; Vazquez, Jorge A.; Champion, Duane E.; Calvert, Andrew T.; Mangan, Margaret T.; Stelten, Mark E.; Cooper, Kari M.; Herzig, Charles; Schriener Jr., Alexander
2015-01-01
In the Salton Trough, CA, five rhyolite domes form the Salton Buttes: Mullet Island, Obsidian Butte, Rock Hill, North and South Red Hill, from oldest to youngest. Results presented here include 40Ar/39Ar anorthoclase ages, 238U-230Th zircon crystallization ages, and comparison of remanent paleomagnetic directions with the secular variation curve, which indicate that all domes are Holocene. 238U-230Th zircon crystallization ages are more precise than but within uncertainty of 40Ar/39Ar anorthoclase ages, suggesting that zircon crystallization proceeded until shortly before eruption in all cases except one. Remanent paleomagnetic directions require three eruption periods: (1) Mullet Island, (2) Obsidian Butte, and (3) Rock Hill, North Red Hill, and South Red Hill. Borehole cuttings logs document up to two shallow tephra layers. North and South Red Hills likely erupted within 100 years of each other, with a combined 238U-230Th zircon isochron age of: 2.83 ± 0.60 ka (2 sigma); paleomagnetic evidence suggests this age predates eruption by hundreds of years (1800 cal BP). Rock Hill erupted closely in time to these eruptions. The Obsidian Butte 238U-230Th isochron age (2.86 ± 0.96 ka) is nearly identical to the combined Red Hill age, but its Virtual Geomagnetic Pole position suggests a slightly older age. The age of aphyric Mullet Island dome is the least well constrained: zircon crystals are resorbed and the paleomagnetic direction is most distinct; possible Mullet Island ages include ca. 2300, 5900, 6900, and 7700 cal BP. Our results constrain the duration of Salton Buttes volcanism to between ca. 5900 and 500 years.
Neogene Fault and Feeder Dike Patterns in the Western Ross Sea
NASA Astrophysics Data System (ADS)
Magee, W. R.; Wilson, T. J.
2010-12-01
In Antarctica, where much of the continent is covered by water and ice, geophysical data from the Antarctic submarine continental shelf is a fundamental part of reconstructing geological history. Multibeam sonar from the western Ross Sea has revealed elongate volcanic edifices and fields of elongate submarine hills on the seafloor. Origin of the submarine hills as carbonate mounds and drumlins have been proposed. The hills are up to ~8000m long and ~3500m wide, and rise 50-100m above the seafloor. Morphometric analysis of the hills shows they are elongate, with axial ratios ranging from 1.2:1 to 2:1, and some hills are linked to form elongate ridges. Seismic profiles show significant pull-ups directly below the hills, consistent with narrow, higher-density magmatic bodies; thus we favor an origin as volcanic seamounts above subsurface feeder dikes. If this volcanic hypothesis is correct, feeder dikes below the hills and elongate volcanic ridges may document magmatically-forced extension within the Terror Rift. The seamount field forms part of a regional en echelon array of volcanic ridges extending NNW from Beaufort Island toward Drygalski Ice Tongue. The ridges and elongate seamount cluster trend NNE, subparallel to mapped fault trends in this sector of the Terror Rift. This geometry is compatible with right-lateral transtension along this zone, as previously proposed for the Terror Rift as a whole. Volcanic islands and dredged volcanic ridges within the en echelon array are dated at ~7-4 Ma, implying Neogene deformation. We are completing a detailed analysis of orientation patterns and cross-cutting relations between faults and volcanic hills and their feeder systems to test this model for Neogene rift kinematics.
Shaded Relief, Kamchatka Peninsula, Russia
NASA Technical Reports Server (NTRS)
2000-01-01
This topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are four rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, and Zhilovaya. The broad, flat floodplains of the rivers are shown in blue. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 158 km (98 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North approximately at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000Shaded Relief Color Wrapped, Kamchatka Peninsula, Russia
NASA Technical Reports Server (NTRS)
2000-01-01
This shaded relief topographic image shows the western side of the volcanically active Kamchatka Peninsula, Russia. The data are from the first C-band mapping swath of the Shuttle Radar Topography Mission (SRTM). On the left side are five rivers, which flow northwest to the Sea of Okhotsk. These rivers are, from the south to north, Tigil, Amanina, Voyampolka, Zhilovaya, and Kakhtana. The broad, flat floodplains of the rivers are shown in yellow. These rivers are important spawning grounds for salmon. In the right side of the image is the Sredinnyy Khrebet, the volcanic mountain range that makes up the 3spine2 of the peninsula. The cluster of hills to the lower right is a field of small dormant volcanoes. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and understand the hazards posed by future eruptions.This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from red through green back to red) represents an equal amount of elevation difference (400 meters, or 1300 feet)similar to contour lines on a standard topographic map. This image contains about 2300 meters (7500 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and Italian (ASI) space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.Size: 240 km (150 miles) x 122 km (77 miles) Location: 57.5 deg. North lat., 158.8 deg. East lon. Orientation: North at top Original Data Resolution: 30 meters (99 feet) Date Acquired: February 12, 2000NASA Astrophysics Data System (ADS)
Olson, L.; Pogue, K. R.; Bader, N.
2012-12-01
The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.