Science.gov

Sample records for abyssal plain sediments

  1. Sediment dispersal patterns within the Nares Abyssal Plain: observations from GLORIA Sonographs

    SciTech Connect

    Shephard, L.E.; Tucholke, B.E.; Fry, V.A.; Flood, R.E.; Searle, R.C.

    1985-01-01

    Features evident on GLORIA sonographs from the Nares Abyssal Plain suggest a sediment dispersal pattern for turbidity currents that varies temporally and spatially, resulting in randomly distributed turbidite deposits in the distal abyssal plain east of 64/sup 0/W. Regional variations in backscatter intensities across the abyssal plain are related to the frequency and thickness of near-surface silt beds, basement highs disrupting the seafloor, and subtle changes in surface and sub-surface bedforms related to low-relief turbidite flow paths, biologic activity, and possibly erosion. High backscatter intensities, prevalent west of 64/sup 0/W, are generally associated with those areas containing thicker silt beds and very regular subbottom reflectors on 3.5 kHz profiles. Low backscatter intensities, prevalent east of 64/sup 0/W, are associated with those areas containing thin silt beds or stringers with a much higher percentage of pelagic clay. Seafloor lineaments occur throughout the survey area but decrease in abundance east of 64/sup 0/W. These features have no apparent relief when crossed by surface-towed seismic reflection profiles. In some instances the lineaments may correspond to low-relief turbidite flow paths that contain varying textural compositions resulting in increased backscatter. These features would be indicative of sediment transport directions. Other possible origins for the lineaments, that often appear trackline parallel, include near-surface morphology that is preferentially detected and aligned by GLORIA, or possibly the lineaments result from complex subbottom interference patterns that would not be readily apparent in areas with a more irregular seafloor.

  2. Acoustic structure and echo character of surficial sediments of the northern Hatteras Abyssal Plain. [LLW Ocean Disposal Program

    SciTech Connect

    McCreery, C.J.; Laine, E.P.

    1986-05-01

    A study has been made of the high frequency acoustic response of abyssal plain depositional facies. Piston cores have been obtained at six stations and deep hydrophone recordings at three stations on the northern Hatteras Abyssal Plain. 3.5 kHz seismic profiles indicate acoustically transparent lobes of surficial sediment which thicken towards the Hatteral Transverse Canyon and Sohm Gap/Wilmington Fan. Physical property data from piston cores indicate a higher percentage of coarse sediment in the areas of transparent acoustic response. Many of the characteristics normally used in mapping of conventional 3.5 kHz profiler acoustic response varied only slightly in the study area. Regions of diffuse 3.5 kHz surface echoes, similar to prolonged echoes attributed to high percent sand beds, have been identified in the study area. High trace to trace variation in deep hydrophone/pinger recordings in these areas suggests that the diffuse echo returns are due to unresolved microtopography and are not necessarily associated with a sandy seafloor.

  3. Bioturbation, geochemistry and geotechnics of sediments affected by the oxygen minimum zone on the Oman continental slope and abyssal plain, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Meadows, Azra; Meadows, Peter S.; West, Fraser J. C.; Murray, John M. H.

    2000-01-01

    We investigate the way the oxygen minimum zone (OMZ) alters interactions between bioturbation and sediment geochemistry, and geotechnical properties. Sediments are compared within and below the OMZ on the Oman continental slope and adjacent abyssal plain during the post monsoonal autumn season. Quantitative measurements were made of Eh and pH, of total organic matter (TOM) and carbonate, of water content and shear strength, and of bioturbation structures in vertical profiles of subcores taken from spade-box core samples. The OMZ stations had distinctively low redox conditions and high carbonate content, and different geotechnical properties and different bioturbation structures than stations below the OMZ on the abyssal plain. These differences are related to the degree of anoxia and to water depth. Within the OMZ, Eh, pH and carbonate increased with water depth, and TOM and water content decreased. We also noted the presence of subsurface sediment heterogeneity on the continental slope within the OMZ. In the OMZ, Eh, water content and bioturbation decreased with increasing sediment depth. There was a slight decrease in pH in the top 5 cm at all stations. Shear strength nearly always increased with increasing sediment depth. At each water depth correlations show down-core trends in these parameters, while across all water depths correlations were significant at deeper sediment depths (20-30 cm). An Eh-pH diagram identified two water-depth groupings: 391-1008 and 1265-3396 m. Cluster analysis showed the upper and lower sediment depths form separate clusters, the break occurring at 4-7.5 cm; while there are also distinct clusters related to water depth. We relate our results to bottom-water oxygen concentrations reported by other investigators, and to regional-scale geochemical processes.

  4. Abyssal plains heat exchange could explain global deficit

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    When researchers measure the amount of heat flowing conductively from the seafloor to the ocean waters and then compare that value against a theoretical prediction of that heat loss, they observe that the global average measured heat flow is lower than expected. Researchers think that advection, a heat transfer mechanism that is difficult to measure, makes up this difference between predicted and observed heat exchange. They suggest that as seawater circulates through the permeable upper layers of the seafloor crust, driven by a thermal gradient, the water accumulates heat, drawing it into the ocean. Scientists have recently proposed that seafloor sediment plays an important role in controlling the geometry of such intraocean crust circulation. In the abyssal plains, the accumulation of millions of years' worth of low permeability sediment limits direct contact between the ocean and the crust. Where the sediment is thin or absent—for example, at outcrops—water is thought to be able to move between the ocean and the crust. Scientists propose that seawater can travel through the crust for tens of kilometers beneath the sediment, moving laterally from outcrop to outcrop.

  5. GLORIA side-scan imagery of Aleutian basin, Bering Sea slope and Abyssal plain

    SciTech Connect

    Carlson, P.R.; Cooper, A.K.; Gardner, J.V.; Karl, H.A.; Marlow, M.S.; Stevenson, A.J.; Huggett, Q.; Kenyon, N.; Parson, L.

    1987-05-01

    During July-September 1986, about 700,000 km/sup 2/ of continental slope and abyssal plain of the Aleutian basin, Bering Sea, were insonified with GLORIA (Geological Long Range Inclined Asdic) side-scane sonar. A sonar mosaic displays prominent geomorphic features including the massive submarine canyons of the Beringian and the northern Aleutian Ridge slopes and shows well-defined sediment patterns including large deep-sea channels and fan systems on the Aleutian basin abyssal plain. Dominant erosional and sediment transport processes on both the Beringian and the Aleutian Ridge slopes include varieties of mass movement that range from small debris flows and slides to massive slides and slumps of blocks measuring kilometers in dimension. Sediment-flow patterns that appear to be formed by sheet flow rather than channelized flow extend basinward from the numerous canyons and gullies that incise the slopes of the Beringian margin and of Bowers Ridge and some places along the Aleutian Ridge. These Beringian and Bowers canyon sediment sources, however, appear to have contributed less modern sediment to the Aleutian basin than the large, well-defined channel systems that emanate from Bering, Umnak, and Amchitka submarine canyons and extend for several hundred kilometers across the abyssal plain. This GLORIA imagery emphasizes the important contribution of the Aleutian Ridge to modern sedimentation in the deep Bering Sea.

  6. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains

    NASA Astrophysics Data System (ADS)

    Schmidt, Christina; Martínez Arbizu, Pedro

    2015-01-01

    We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ

  7. Comparative geoscience studies of the Madeira and Southern Nares Abyssal Plains: NEA/SWG preference location document

    SciTech Connect

    Auffret, G.A.; Buckley, D.E.; Schuttenhelm, R.T.E.; Searle, R.C.; Shephard, L.E.; Cranston, R.E.

    1986-01-01

    This document summarizes the status of geoscience investigations in the two primary North Atlantic study locations Great Meteor East (GME) in the Madeira Abyssal Plain, and the Southern Nares Abyssal Plain (SNAP), and assesses the characteristics of these locations relative to the guidelines considered desirable and necessary for a potential subseabed high-level waste repository. These characteristics will be continually reevaluated as additional data become available and as our understanding of deep-sea sediment processes within abyssal plain environments improves. Initially, a number of areas of minimum size were identified in the ocean basins that appeared to comply with most of the stability and barrier guidelines. However, detailed studies in both GME and SNAP demonstrate that as our level of knowledge improves, and the degree of resolution increases, the number of 100 km/sup 2/ areas complying with these guidelines becomes much more limited. This observation may be characteristic of abyssal plain and abyssal hill environments in both the North Atlantic and North Pacific basins. Marked differences in geoscience characteristics exist between the Great Meteor East and the Southern Nares Abyssal Plain study locations. The significance of these differences, as they impact the selection of a single preferred site for a potential subseabed repository, can only be determined by using an integrated systems risk assessment modeling approach. The known geoscience characteristics can, however, be used in conjunction with the site assessment guidelines to draw conclusions concerning the geoscience suitability of these two locations. These conclusions will be modified as specific types of data from future expeditions become available.

  8. Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.

    1996-01-01

    Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be

  9. Seafloor Mapping of the Southeast Iberian Continental Slope and Western Algero-Balearic Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Canals, M.; León, C.; Elvira, E.; Pascual, L.; Muñoz, A.; de Cárdenas, E.; Acosta, J.

    2014-12-01

    We present the multibeam bathymetry and derived maps of the southeast Iberian margin from Cabo de Palos to Cabo de Gata, 37º35'N to 35º45'N and 2º10'W to 0º20'E, from the coastline down to the Algero-Balearic abyssal plain at depths exceeding 2,600 m. Data were obtained during different surveys in 2004, 2006 and 2007 on board R/V Vizconde de Eza with a Simrad EM300 multibeam echo-sounder, as part of the CAPESME Project, a collaboration between the Spanish Institute of Oceanography (IEO) and General Secretariat of Fisheries (SGP), aiming at creating maps of the fishing grounds of the Mediterranean continental margins of Spain. The edition of the maps has been carried out within the Complementary Action VALORPLAT (Scientific valorisation of multibeam bathymetry data from the Spanish continental shelf and slope), funded by the Spanish Ministry of Economy and Competitivity. Multibeam bathymetry data from the continental shelf obtained within the ESPACE project, also in a cooperative frame between IEO and SGP, completes the whole picture from the coastline to the deep abyssal plain. The map series is constituted by a general map at 1:400,000 scale and 14 detailed maps at 1:75,000 scale, which include inset maps on slope gradients and seafloor nature (rock or sediment type), the later obtained with rock dredges and Shipeck sediment dredges. Both the detailed maps and the general map are available in paper print, and the whole collection is also distributed in an edited USB. The geological features displayed in the different maps include the continental shelf, with abundant geomorphic features indicative of past sea-level changes, the continental slope carved by a large number of submarine canyons and gullies, including Palos, Tiñoso, Cartagena Este, Cartagena Oeste, Águilas, Almanzora, Alias, Garrucha and Gata submarine canyons, the Mazarrón, Palomares and Al-Mansour escarpments of probable tectonic origin, the Abubácer, Maimonides and Yusuf ridges, the

  10. Variability in ultraplankton at the Porcupine Abyssal Plain study site

    NASA Astrophysics Data System (ADS)

    Martin, Adrian P.; Zubkov, Mikhail V.; Holland, Ross J.; Tarran, Glen; Burkill, Peter

    2010-08-01

    Observations of the ultraplankton (<5 μm) are presented from a 4 day mesoscale survey centred on the Porcupine Abyssal Plain (PAP) study site (49°00'N 16°30'W), in July 2006. The organisms enumerated include two groups of phytoplankton, Synechococcus cyanobacteria, heterotrophic bacteria, large viruses, and two size classes of heterotrophic protist. The dataset comprises over 400 samples from the mixed layer taken over a 100 × 100 km 2 area at a spatial resolution of typically 2-3 km. For phytoplankton and heterotrophic bacteria there is a clear bimodal structure to the histograms of abundance indicative of two distinct communities in the region. Using the strong bimodality of one of the phytoplankton groups' histogram as a basis, the dataset is split into two subsets, with roughly 200 points in each, corresponding to the two histogram peaks. Doing so provides evidence that Synechococcus and viruses may also have a bimodal structure. Correlations between all pairings of these five organisms (both phytoplankton groups, Synechococcus, heterotrophic bacteria and viruses) are positive and quite high (r>0.7). The two communities can therefore be characterised as high and low abundance. Although there is a coincidence of low abundances with high temperatures in the southwest corner of the region, where there was known to be an eddy present, the spatial distributions of these organisms over the whole region is poorly predicted by temperature (or salinity or density). Furthermore, the spatial distributions of heterotrophic protists are found to differ strongly from those of the other organisms, having a unimodal structure and no obvious large scale structure. The more random structure of the heterotrophs' spatial distribution compared to their prey is consistent with previous results from the continental shelf, but is demonstrated for the open ocean here for the first time. Spatial variability is a large potential source of error in point samples, such as those

  11. Distribution and diversity of holothuroids (Echinodermata) on Cascadia Basin and Tufts Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Carney, Robert S.; Carey, Andrew G.

    1982-05-01

    The pattern of diversity, species composition, and inter-sample similarity of the holothuroid fauna was examined for 95 beam trawl samples from below 2000 m on the Cascadia Basin and Tufts Abyssal Plain off Oregon, U.S.A. Abundance as inferred from catch size, diversity, species composition, and zonation all showed major change over the sampled area where there was a depth change. Where depth remained relatively constant across the floor of Cascadia Basin, faunal changes were minor in spite of progressive isolation from land. Overall bathymetric patterns of zonation and diversity were basically like those found for other faunal groups in the deep-sea depth. The distribution of minor species indicated that the holothuroid fauna at the base of the continental slope, the apron of Astoria Fan, and near Cascadia Channel might be slightly different from that at similar depths elsewhere in the sampled area. The marked uniformity of the holothuroid fauna across the basin floor appeared to be restricted to epifaunal sediment-feeding species. Infaunal forms were more abundant at the slope base, similar to previous findings for the macro-infauna.

  12. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Billett, D. S. M.; Bett, B. J.; Rice, A. L.; Thurston, M. H.; Galéron, J.; Sibuet, M.; Wolff, G. A.

    A radical change in the abundance of invertebrate megafauna on the Porcupine Abyssal Plain is reported over a period of 10 years (1989-1999). Actiniarians, annelids, pycnogonids, tunicates, ophiuroids and holothurians increased significantly in abundance. However, there was no significant change in wet weight biomass. Two holothurian species, Amperima rosea and Ellipinion molle, increased in abundance by more than two orders of magnitude. Samples from the Porcupine Abyssal Plain over a longer period (1977-1999) show that prior to 1996 these holothurian species were always a minor component of the megafauna. From 1996 to 1999 A. rosea was abundant over a wide area of the Porcupine Abyssal Plain indicating that the phenomenon was not a localised event. Several dominant holothurian species show a distinct trend in decreasing body size over the study period. The changes in megafauna abundance may be related to environmental forcing (food supply) rather than to localised stochastic population variations. Inter-annual variability and long-term trends in organic matter supply to the seabed may be responsible for the observed changes in abundance, species dominance and size distributions.

  13. Evidences of intraplate deformation in the West Madeira Abyssal Plain (eastern North Atlantic) from seismic reflection and multibeam swath bathymetry data

    NASA Astrophysics Data System (ADS)

    Roque, C.; Simões, M.; Lourenço, N.; Pinto de Abreu, M.

    2009-04-01

    The West Madeira Abyssal Plain is located in the eastern North Atlantic off Madeira Islands, forming part of the Canary Basin and reaching a mean water depth of 5300 m. This region is also located within Africa plate at about 500 km southwards from the Açores-Gibraltar plate boundary, and for that reason lacks seismic activity. Although this region being located in an intraplate setting, the presence of faulted sediments was reported in several works published during the eighties of last century following a study conducted in late 1970s to evaluate the feasibility of disposal of high-level radioactive wastes in the ocean. According these works, the Madeira Abyssal Plain sediments are cut by many normal growth faults and this deformation is a result of compaction and dewatering of the sediments. Evidences of tectonic deformation of oceanic sediments in intraplate settings are uncommon, but folded sediments and reverse faults extending into the basement, were recognized in the equatorial Indian Ocean and in the West African continental margin. Recently, during 2006 multi-channel seismic reflection and multibeam swath bathymetry surveys were carried out in the West Madeira Abyssal Plain by EMEPC in order to prepare the Portuguese proposal for the extension of the continental shelf. The seismic lines were acquired onboard R/V Akademik Shatskiy using a source of 5720 cu in bolt gun array, cable length of 7950 m and shot interval of 50.00 m. The multibeam swath bathymetry was acquired onboard NRP Gago Coutinho, and allowed a high resolution mapping of the main geomorphological features. The multichannel seismic lines, oriented WNW-ESE, image the Madeira island lower slope located at about 4000 m water depth and the almost flat abyssal plain at about 5300 m water depth. These seismic lines show a thick sedimentary succession that reaches a maximum thickness of about 1.5 sec twt in the deepest parts of the West Madeira Abyssal Plain, overlying an irregular diffractive

  14. Tectonic evolution of the Perth Abyssal Plain's Quiet Zone, Southeast Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ehrlich, Zohar Louis; Granot, Roi; Williams, Simon E.

    2013-04-01

    During the Late Jurassic period, the Greater-Indian plate was torn away from Australia, dissociating East Gondwanaland. The Perth Abyssal Plain (PAP) is the southernmost rift segment along the western Australian margin, and has an onset age of ~136 Ma. New marine magnetic and swath bathymetry data, crossing the entire PAP, were acquired recently on geophysical cruise ss2011v06 aboard the R/V Southern Surveyor. These have lead to the outline of conjugate Indian and Australian M-series isochrons in the east and west PAP, respectively [1]. Yet, most of the PAP was created during the Cretaceous Normal Superchron (CNS, 121-83 Ma), a period of no geomagnetic field reversals, hence no comprehensive tectonic model for the PAP exists . Here we present preliminary findings of an analytic bathymetric and magnetic investigation aimed at elucidating the PAP's quiet zone. Recent discoveries regarding the evolution of the geomagnetic field during the CNS [2] provide new time markers that can be utilized to date the oceanic crust. The magnetic anomaly data exhibit the Q2 anomaly marker (~108 Ma), further constraining the spreading history of the PAP. Together with the ridgelet transform method [3] for automated abyssal hill delineation, we present new constraints on the development of crustal construction processes (spreading location, direction and rates) that took place along the PAP spreading center. References: [1] S.E. Williams, J.M. Whittaker, R. Granot, R.D. Muller (in preparation), New constraints on the seafloor spreading history in the Perth Abyssal Plain. [2] Granot, R., J. Dyment, and Y. Gallet (2012), Geomagnetic field variability during the Cretaceous Normal Superchron, Nature Geoscience, 5(3), 220-223. [3] Downey, N. J. and R. W. Clayton (2007), A ridgelet transform method for constraining tectonic models via abyssal-hill morphology, Geochemistry Geophysics Geosystems, 8, Q03004, doi: 10.1029/2006GC001440.

  15. MODOO: A modular and mobile deep ocean observatory and its application to the Porcupine Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Karstensen, Johannes; Greinert, Jens; Lampitt, Richard; Grant, Fiona; Priede, Monty; Pagnani, Maureen

    2010-05-01

    Many of todays scientific questions require to observe the various processes in the ocean in parallel and from the air/sea interface to the sea-floor interior. Moreover, socioeconomic as well as scientific requirements may even demand to excess data in real time - for example for marine safety or to adapt the instrumentation to episodic environmental conditions. Here we describe a muti-disciplinary deep ocean observatory that has been designed within the European FP6 ESONET Network of Excellence to meet todays scientific and socioeconomic requirements for ocean observatories. MODOO, the Modular and mObile Deep Ocean Observatory, combines underwater acoustic modules with a surface telecommunication module to access and combine a variety of instrumentation from the sea surface to below the sea floor. MODOO's first application will be at the Porcupine Abyssal Plain: here a BOBO deep sea lander will be connected to a full water depth (4800m) deep sea mooring with meteorological package that belongs to the European FP7 EuroSITES network. The main scientific mission of this MODOO configuration is to investigate physical and biogeochemical processes that control the propagation and impact of near surface events (e.g. chlorophyll bloom) to the deep sea. For this mission we make use of physical (T/S recorder, current meters/profilers) and biogeochemical sensors (nitrate, fluorescence, oxygen, turbidity, particle flux/composition) combined with deep sea photography. Scientific guest missions will be seismic records and passive acoustics to detect deep sea marine life. The first MODOO installation is planned to be installed by the end of May 2010 for a three month test. The MODOO instrumentation is not simply mounted together but part of the MODOO concept is to add a common time stamp to the individual instrumentations data set. All instrumentation that is directly connected to the acoustic modems - for the PAP application this will be T/S/turbidity, ADCP, seismometer, oxygen

  16. New insights into the abyssal sponge fauna of the Kurile-Kamchatka plain and Trench region (Northwest Pacific)

    NASA Astrophysics Data System (ADS)

    Downey, Rachel V.; Janussen, Dorte

    2015-01-01

    -enclosed seas of Japan and Okhotsk. The importance of the dominant sub-Polar Gyre currents, the vast area of abyssal plain and similar levels of productivity, are likely to be driving the strong faunal connectivity in the North Pacific. The importance of utilising several forms of sampling equipment has been illustrated in this study, with half of all specimens caught with non-AGT (Agassiz trawl) equipment.

  17. Study of abyssal seafloor isolation of contaminated sediments concluded

    SciTech Connect

    Valent, P.

    1998-12-31

    Recognizing the rapidly decreasing availability of disposal sites on land, in 1993 Congress directed the Department of Defense to assess the technical and scientific feasibility of isolating contaminated dredged material on the abyssal seafloor. The Naval Research Laboratory (NRL) conducted and managed the assessment, which was funded during its first year by the Strategic Environmental Research and Development Program and in the following two years by the Defense Advanced Research Projects Agency. NRL carried out the projects in collaboration with participants from academic institutions and industrial organizations. The seafloor isolation concept is an attractive management option for contaminated dredged material because, if abyssal isolation is feasible and environmentally sound, air, land, or water supplies would not be contaminated. The participants concluded that it is technically and environmentally feasible. In ports where shipping costs are high, abyssal seafloor isolation is a cost-competitive strategy. They also outlined the architecture of a system to monitor conditions at the site and to detect and measure possible leaks of contaminated material.

  18. Characteristics of sinking particles in the upper ocean at the Porcupine Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Riley, Jennifer; Sanders, Richard; Achterberg, Eric

    2010-05-01

    Sinking particles play an important role in the biological carbon pump, transferring carbon from the surface to the deep ocean. Data from deep ocean sediment traps suggest biominerals influence particle settling velocity, by increasing their density. However it is unclear whether this biomineral facilitated sinking applies to the upper ocean and if shape also plays a critical role on the rate at which particles sink. Measurements of particle settling velocity, density and drag were made in order to determine their influences on the particle sinking rate in the upper water column. Samples were taken during a cruise in summer 2009 from the Porcupine Abyssal Plain (PAP site) in the northwest Atlantic. Particles were collected from the base of the mixed layer (approximately 50m) using the Marine Snow Catcher. This instrument samples 100L of water and collects any settling particles in a 5L base chamber over 2 - 3 hours. After settling, the top 95L of water was drained off and any particles collected in the base chamber were transferred to the lab. Particles were individually picked using a Pasteur pipette and subdivided, into categories on the basis of appearance. Settling experiments were conducted in a 2L glass measuring cylinder filled with surface sea water, kept at a constant temperature of 15° C. After each experiment particles were preserved individually in buffered formalin for high quality image analysis back on land. Calculations of both excess density and drag were undertaken using data from microscopic measurements. Five main particle categories were identified; (1) diffuse fluff aggregates, (2) dense fluff aggregates, (3) centred particles (fluff aggregated around a central biomineral test), (4) organisms (biomineralising protists including foraminifera) and (5) calcareous tests. Statistical analysis suggested a significant difference in the rate at which the centred and calcareous particles sank (approximately 248 m day-1 and 1070 m day-1respectively) in

  19. Hydrocarbon potential, organic matter diagenesis, sedimentology, and paleoenvironment of upper Mesozoic dark shales, northern Himalayas and Argo abyssal plain

    SciTech Connect

    Thurow, J.; Gibling, M.

    1989-03-01

    The Late Jurassic was a time favorable for the deposition of black shale-type sediments in shallow environments as known from circum-North Atlantic basins, North Sea, and Himalayan Tethys regions. Locally these shales have excellent hydrocarbon source potential. The site of the Spiti shales in the Thakkola region of north-central Nepal provides the opportunity to study a long-term (Oxfordian-Tithonian) stable, shallow, and oxygen-depleted environment. Strata with calcareous benthic communities show that the environment was not anoxic. Organic geochemical and sedimentological analyses on the Spiti shales (Oxfordian-Valanginian) were done to understand the hydrocarbon potential, organic matter diagenesis, sedimentology, and paleoenvironment of this sequence. The depositional environment changed, driven by tectono-eustatic and climatic events, from an open shelf (approximately 250 m) with low amounts of detrital input and rich macrofossil communities to an extremely shallow, partly continental environment with intercalations of quartzose channel fill, silty shales, rare lumachelle layers, and coal seams. Paleocurrents suggest a north-facing continental margin bordering the Tethys Sea. The organic matter changed from marine (Jurassic) to terrestrial in the Cretaceous. Analysis of coeval strata, deposited in the deep-marine environment off the northern Indian shelf (contiguous with the present-day Argo abyssal plain), demonstrates the changing shallow to deep-water hydrocarbon potential. It reflects the more advanced organic matter maturation of the onshore material due to Himalayan tectonics and allows tracing the transport of the organic matter.

  20. Organic matter accumulation, sulfate reduction, and methane generation in a turbidite sequence on the Iberia Abyssal Plain

    SciTech Connect

    Meyers, P.A.; Silliman, J.E.; Shaw, T.J.

    1996-12-31

    Organic matter can be transferred and redeposited from continental margins to the deep-sea by turbidity currents and slumps. An opportunity to investigate the consequences of turbidite deposition on sediment organic matter was provided by a transect of four closely spaced drill sites sampled during ODP Leg 149 in a Pliocene-Pleistocene distal turbidite sequence on the landward edge of the Iberia Abyssal Plain. Organic carbon concentrations average ca 0.7% in sediments from Sites 897 and 898 and ca 0.4% at Sites 899 and 900. Headspace concentrations of interstitial methane exceed 100,000 ppm in sediments from Sites 897 and 898 but are essentially zero in those from Sites 899 and 900. Methane concentrations do not rise until interstitial sulfate concentrations are virtually depleted, suggesting the presence of deep in situ methanogenic bacterial activity at Sites 897 and 898 and its absence at Sites 899 and 900. Two factors associated with the turbidity flows that created the sedimentary sequence evidently influenced post-depositional diagenesis at these sites. The principal factor is that the rapidly deposited turbidite sequences at Sites 897 and 898 protected organic matter from oxic, early degradation and thereby permitted anoxic, later degradation to proceed. In contrast, organic matter in the more slowly deposited turbidites at Sites 899 and 900 was oxidized soon after deposition and was therefore not available for later microbial utilization. A lesser factor is that the turbidity flows may have obtained their entrained organic matter from different environments and consequently delivered organic matter with different characteristics.

  1. Endolithic Microbial Communities in Fractures: Insights Gleaned from Mineralized Filaments in Cretaceous-age Calcite Veins in Serpentinized Peridotites, Iberia Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Milliken, K. L.

    2001-03-01

    The occurrence of diverse mineralized microbial features in calcitized fractures in serpentinized peridotite, Iberia Abyssal Plain, suggests that mineralized fractures are of particular interest in the search for fossil or extant life on Mars.

  2. Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site

    NASA Astrophysics Data System (ADS)

    Galéron, J.; Sibuet, M.; Vanreusel, A.; Mackenzie, K.; Gooday, A. J.; Dinet, A.; Wolff, G. A.

    Two major size classes of the sediment community, meiofauna and macrofauna, and four classes of lipid compounds, fatty acids, alkanes, alcohols and sterols, were investigated using multicorer and USNEL boxcorer samples, collected during six cruises over a two year period (September 1996 to September-October 1998), at the Porcupine Abyssal Plain (∼ 48° 50‧N 16° 30‧W, 4850 m depth) within the framework of the MAST 3 BENGAL project. This site was known to be subject to seasonality in the input of organic matter to the seafloor. Results are given for each faunal size class in terms of taxonomic structure at the level of phylum, class or order, depending on the taxon, and for the dominant faunal components in terms of density and vertical distribution. For each lipid compound class, results are given in concentration and vertical distribution. The taxonomic structure of each size class did not change within the study period. Total meiofaunal and macrofaunal densities were particularly high, probably reflecting the high quantity and quality of organic matter inputs to the site. The dominant components of the two size classes presented different temporal patterns in their responses to changes in their environment. Populations of meiofaunal species, a foraminiferan and an opheliid polychaete, which inhabit the surface or sub-surface of sediment and feed on phytodetritus, responded with a rapid increase in abundance to a pulse of organic input in summer 1996. The macrofaunal polychaetes showed a lagged response to the same event by slowly increasing in density. Other components of the sediment community, that can live deeper in the sediment, moved down the sediment column, in response to 1) the impoverishment and bioturbation of the surface layer, and 2) the downward mixing of organic matter in the sediment by larger organisms. In this study, different temporal patterns were demonstrated for the first time in different size classes of the sediment community, and in

  3. Temporal changes (1989-1999) in deep-sea metazoan meiofaunal assemblages on the Porcupine Abyssal Plain, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Kalogeropoulou, V.; Bett, B. J.; Gooday, A. J.; Lampadariou, N.; Martinez Arbizu, P.; Vanreusel, A.

    2010-08-01

    Trends among major metazoan meiofaunal taxa were investigated based on 56 deployments of a multicorer at 10 time points over a period of 11 years (1989-1999) at the Porcupine Abyssal Plain Sustained Observatory site (PAP-SO: 48°50'N 16°30'W, 4850 m depth). This area is characterised by a strong seasonality in the deposition of organic matter to the seafloor and by the massive increase in the density of holothurian species since 1996, the so-called ' Amperima event'. Total meiofaunal densities ranged from 346 to 1074 ind.×10 cm -2 and showed a significant increase with time when time was represented by cruises, years and the ' Amperima period' (1996-1999) vs. the pre- Amperima period (1989-1994). This pattern was driven mainly by the nematodes, which were the dominant taxon (˜90% of total abundance). The third most abundant group, the polychaetes, also increased significantly in abundance over the time series, while the ostracods showed a significant decrease. Most other taxa, including the second-ranked group, the copepods (harpacticoids and nauplii), did not exhibit significant temporal changes in abundance. Ordination of taxon composition showed a shift from the pre- Amperima to the Amperima periods, a trend supported by the significant correlation between the x-ordinate and time. The majority (52-75%) of meiofaunal animals inhabited the top 2 cm of the 5 cm sediment cores analysed. There were significant increases in the proportion of total meiofauna, nematodes and copepods (but not polychaetes) inhabiting the 0-1 cm layer over time (represented by cruises) and between the pre- Amperima and Amperima periods in the case of copepods and polychaetes. During the intensively sampled period (1996-1997), there were indications of seasonal changes in the vertical distribution patterns of total meiofauna and nematodes within the sediment. We discuss the potential link between temporal variations in organic matter flux to the seafloor and meiofaunal populations

  4. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.

    PubMed

    Henri, Pauline A; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2015-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity

  5. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge

    PubMed Central

    Henri, Pauline A.; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2016-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity

  6. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  7. A Geo-traverse at a Passive Continental Margin: the Tagus Abyssal Plain, West Iberia

    NASA Astrophysics Data System (ADS)

    Afilhado, A.; Matias, L.; Mendes-Victor, L.

    2006-12-01

    transitional domain suggests a layered structure for the lithospheric mantle. The location of the main features and trend changes seen on the magnetic anomaly and the Bouguer anomaly maps are compatible to the seismically defined transition to the oceanic domain. Both magnetic and free air profiles modeling are also consistent to a major rock property contrast at this location. Minor features within the oceanic domain indicate some variability of the mass and magnetic dipoles distribution that might be related to different cross cutting of the segment axis and/or non stationary thermo-mechanical conditions of the sea floor spreading process. From 9.4W to the foot of the continental slope, at 10.2W, in a 65km distance, the Bouguer anomaly strongly increases due both to continental crust thinning and Moho shallowing. Magnetic anomalies having peak to peak values of 30 to 90nT and wave length of at least 30km plus the high density blocks modeled at shallow levels, indicate that dense and magnetic rocks should be present at the continental margin. A large body of exhumed continental mantle at the OCT is hardly supported by the data. Even so, the eastern 35km segment of the abyssal plain adjacent to the continental margin is a mass excess segment, bordered by significant magnetic anomalies, in good agreement to an intruded and partly ultramafic lower transitional crust, as suggested by the seismic data.

  8. Epibenthic megacrustaceans from the continental margin, slope and abyssal plain of the Southwestern Gulf of Mexico: Factors responsible for variability in species composition and diversity

    NASA Astrophysics Data System (ADS)

    Escobar-Briones, Elva G.; Gaytán-Caballero, Adriana; Legendre, Pierre

    2008-12-01

    The community structure of megacrustaceans (orders Lophogastrida, Isopoda, and Decapoda) collected in trawls on the continental margin, upper slope and abyssal plain of the southern Gulf of Mexico was studied to determine to what extent broad-scale variation in community composition and diversity was influenced by geographic regions environmental variability and depth. Trawls were collected in the Mexican Ridges, the Campeche Bank, and the Sigsbee abyssal plain. There was variability in species composition, density and diversity among geographic regions and along the depth gradient. A total of 106 species were identified and grouped in three orders; five infraorders, 40 families, and 70 genera. This study extends the known geographic ranges of the species Homolodromia monstrosa and Ephyrina benedicti. The largest number of species was recorded in the Mexican Ridges and on the upper continental shelf; lower values were found on the continental margin and in the abyssal plain. The largest densities were recorded on the continental margin in the Mexican Ridges. Megacrustaceans show in general low frequencies and low abundances in trawls, characterizing them as rare components of benthic assemblages. Contrary to an accepted paradigm about deep-sea biodiversity, the highest H' diversity values were recorded in the Sigsbee abyssal plain, followed by values from the upper continental slope; diversity values were correlated with evenness. Canonical Redundancy analysis results showed a significant affinity to regions for 18 crustacean species; 33 species showed a significant affinity to both regions and depth zones within regions.

  9. The response of Oneirophanta mutabilis (Holothuroidea) to the seasonal deposition of phytopigments at the Porcupine Abyssal Plain in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Witbaard, R.; Duineveld, G. C. A.; Kok, A.; van der Weele, J.; Berghuis, E. M.

    The impact of seasonal pulses of phytodetritus on the grazing behaviour of Oneirophanta mutabilis was assessed on the Porcupine Abyssal Plain (PAP) in the NE Atlantic. Sediment and sediment trap samples were analysed by HPLC to estimate the quantity and quality of the organic material in terms of phytopigments and nucleic acids. Food selection by Oneirophanta was estimated by analysing these constituents in the gut contents. The study area is characterised by large interannual variations in the deposition of fresh organic material. The mass fluxes at 10 m above bottom (mab) varied from 0.25 g DW m -2 d -1 in September 1996 to <0.1 g DW m -2 d -1 in March 1997. The material caught in the sediment trap in September 1996 had a relative fresh signature with a chlorophyll -a:phaeophorbide ratio of 1.33. During the other seasons (March 1997, July 1997 and October 1997) the chlorophyll -a:phaeophorbide ratio remained low. In sediment cores this ratio showed a similar seasonal and inter-annual pattern, and again September 1996 was the period of maximum abundance of fresh organic material in the surficial sediment. The analyses of the gut contents of Oneirophanta mirrored exactly the seasonal variation of the phytopigments in both the sediment and the sediment trap material. Concentrations of pigments in the fore-gut were 5 to 15 times higher than in the sediment and the nucleic acid concentrations were up to 80 times higher. This discrepancy between pigments and nucleic acids concentrations suggests that the latter are “indigenous” to the gut of Oneirophanta, either because the gut contains high numbers of actively-dividing bacteria or as a result of cell lysis of the gut epithelium. The seasonal differences in the pigment concentration factor suggest that Oneirophanta does not actively search for hotspots where pigment concentrations are enriched. By using the degradation rate of chlorophyll- a in the PAP sediments, the minimum residence time of chlorophyll in the

  10. Triticella minini - a new ctenostome bryozoan from the abyssal plain adjacent to the Kuril-Kamchatka Trench

    NASA Astrophysics Data System (ADS)

    Grischenko, Andrei V.; Chernyshev, Alexei V.

    2015-01-01

    A new species of ctenostome bryozoan, Triticella minini sp. nov., is described from the abyssal plain adjacent to the Kuril-Kamchatka Trench, based on material collected by the Russian-German deep-sea expedition KuramBio 2012. Colonies of T. minini sp. nov. were found attached to the oral spines of irregular sea urchin Echinosigra (Echinogutta) amphoraMironov, 1974 by means of rhizoid fibers that penetrated the substratum through circular borings. The specimens were examined by light microscopy, scanning electron microscopy, and confocal laser scanning microscopy with phalloidin and nuclear labeling. The description of T. minini sp. nov. combines a general taxonomic description with a description of the anatomy of the muscular system. The new species differs from congeners in lacking a stolon. It has an intertentacular organ. T. minini sp. nov. is the eleventh species described in the genus TriticellaDalyell, 1848, and the first record for this genus from the northwestern Pacific. The new species is the fifth ctenostome bryozoan known to occur in 5001-5500 m depth interval worldwide, and the deepest record reported for Triticella.

  11. Biogeochemical variations at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) in the northeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hartman, Susan; Lampitt, Richard; Schuster, Ute; Jiang, Zongpei; Frigstad, Helene; Ostle, Clare

    2016-04-01

    We examine high-resolution autonomous measurements of carbon dioxide partial pressure p(CO2) taken in situ at the FixO3 Porcupine Abyssal Plain sustained observatory (PAP-SO) site in the northeast Atlantic (49° N, 16.5° W; water depth of 4850 m) for the period 2010 to 2012. Measurements of p(CO2) made at 30 m depth on a sensor frame are compared with other autonomous biogeochemical measurements at that depth (including chlorophyll a-fluorescence and nitrate concentration data) to analyze weekly to seasonal controls on p(CO2) flux in the inter-gyre region of the North Atlantic. Comparisons are also made with in situ regional time-series data from a ship of opportunity and mixed layer depth (MLD) measurements from profiling Argo floats. There is a persistent under saturation of CO2 in surface waters throughout the year which gives rise to a perennial CO2 sink. Comparison with an earlier dataset collected at the site (2003 to 2005) confirms seasonal and inter-annual changes in surface seawater chemistry. There is year-to-year variability in the timing of deep winter mixing and the intensity of the spring bloom.

  12. Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean.

    PubMed

    Huang, Xiao-Fang; Wang, Fa-Zuo; Zhang, Wei; Li, Jie; Ling, Juan; Yang, Jian; Dong, Jun-De; Tian, Xin-Peng

    2014-12-01

    A Gram-positive, rod-shaped bacterium, designated strain SCSIO N0306(T), was isolated from an abyssal sediment sample collected from the Indian Ocean. The isolate was found to grow optimally at 0-2 % (w/v) NaCl, pH 7.0 and 30 °C. Comparative analysis of the 16S rRNA gene sequence showed that the isolate SCSIO N0306(T) belongs phylogenetically to the genus Paenibacillus, and to be most closely related to P. algorifonticola XJ259(T) (with 95.47 % sequence similarity), sharing less than 95.0 % sequence similarity with all other taxa of this genus. Chemotaxonomic analysis revealed MK-7 as the major isoprenoid quinone, the DNA G+C content was determined to be 45.5 mol%, and anteiso-C15:0, C16:0, and iso-C15:0 were identified as the major fatty acids. On the basis of this polyphasic taxonomic data, isolate SCSIO N0306(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus abyssi sp. nov. is proposed. The type strain is SCSIO N0306(T) (= DSM 26238(T) = CGMCC 1.12987(T)).

  13. Fatty acid compositions and trophic relationships of shelled molluscs from the Kuril-Kamchatka Trench and the adjacent abyssal plain

    NASA Astrophysics Data System (ADS)

    Kharlamenko, Vladimir I.; Würzberg, Laura; Peters, Janna; Borisovets, Evgeny E.

    2015-01-01

    Fatty acid (FA) compositions of 12 species of shelled molluscs (gastropods, bivalves, and scaphopods) from the Kuril-Kamchatka Trench and the adjacent abyssal plain were studied. According to the results of multivariate statistical analysis, molluscs were divided into three groups. Group I consisted of three scaphopod species, the bivalve Nucula profundorum and the gastropod Solariella delicata. FA compositions of this group were characterized by high levels of 20:4(n-6). We suggest that the FA pattern found in scaphopods with high values of 20:4(n-6) is most likely typical for that of benthic organisms feeding preferentially on foraminiferans. Group II included the bivalves Neilonella politissima, Bentharca asperula, and Rhinoclama filatovae. Bivalves from the second group had elevated concentrations of 22:6(n-3), and the ratio of 20:4(n-6) to 20:5(n-3) was lower than 1. Bivalves from the second group had elevated concentrations of 22:6(n-3). We propose that high concentrations of this FA can be used as a specific marker for a carnivorous feeding mode of deep-sea benthic invertebrates. The bivalve Bathyspinula calcarella as well as the scaphopod Polyschides sakuraii could not unambiguously be assigned to one group. Within the similarity analysis they rather clustered together with the foraminiferans feeders (group I), but forming an own subgroup. In the PCA on the other hand, P. sakuraii showed a position close to the other bivalves, while B. calcarella had an intermediate position between all three groups. Group III consisted of the gastropods Tacita holoserica and Paracteocina sp., which contained high concentrations of 20:5(n-3) and 22:5(n-3). Both are known to exhibit a carnivorous/scavenging feeding strategy. The very low content of DHA in both species is on first sight not consistent with the suggested carnivorous feeding behavior. A characteristic feature of Paracteocina sp. and T. holoserica was a high level of 22:5(n-3), and HUFA ratios indicate that DHA

  14. Deep-sea epibiotic hydroids from the abyssal plain adjacent to the Kuril-Kamchatka Trench with description of Garveia belyaevi sp. nov. (Hydrozoa, Bougainvilliidae)

    NASA Astrophysics Data System (ADS)

    Stepanjants, Sofia D.; Chernyshev, Alexey V.

    2015-01-01

    Examination of material collected by the German-Russian KuramBio Deep-Sea Expedition to the abyssal plain adjacent to the Kuril-Kamchatka Trench revealed about 17 hydroid species, including two species presumably new to science. Before the KuramBio Expedition only fragments of the unidentified hydroids and Cryptolaria sp. were collected in the Kuril-Kamchatka Trench from depths exceeding 3000 m. Descriptions of three species of epibiotic hydroids (including one new species, Garveia belyaevi sp. nov.) are presented herein. A colony of G. belyaevi sp. nov. (the third deep-sea and deepest species of the wide distributed genus Garveia) was attached to the spines of unidentified irregular sea urchins from depths 5217 to 5229 m. Нalitholus (?) sp. (Hydrozoa, Anthoathecata) colonized the skin of spoon worms (Echiura) but could not be identified to species level because the mature medusa stage was absent in the material. An unidentified juvenile polyp (Pandeidae) was found on the bryozoan Tricitella minini attached to spines of irregular sea urchins Echinosigra amphora. Colonial sedentary organisms inhabiting abyssal plains with soft bottoms may colonize invertebrates which are seldom used as substrates for epibiota in shallow waters. Epibiosis among abyssal colonial invertebrates, though extremely poorly studied, appears to be rather frequent.

  15. Temporal and depth-related differences in prokaryotic communities in abyssal sediments associated with particulate organic carbon flux

    NASA Astrophysics Data System (ADS)

    Moeseneder, M. M.; Smith, K. L.; Ruhl, H. A.; Jones, D. O. B.; Witte, U.; Prosser, J. I.

    2012-12-01

    Particulate organic carbon (POC) flux is hypothesized to be the most important parameter influencing activity and biomass of prokaryotic and faunal communities in the abyssal seafloor, but there is little evidence of POC-related changes in community composition of prokaryotes. This hypothesis was tested by 16S rRNA-gene-based analysis of prokaryotic DNA and RNA extracted from abyssal seafloor sediments during periods of low and high POC flux. Fingerprint analysis of prokaryotic communities indicated that approximately 50% of the phylotypes were identical at each sediment horizon, regardless of the temporal variations in POC flux. However, phylotypes were also detected that represented a relatively dynamic component of these communities and were probably strongly influenced by the prevalent POC flux regime. These patterns were also detected in deeper sediment horizons. DNA- and RNA-based community profiles differed, although both approaches had similar community dynamics. Crenarchaeota showed the strongest shift in community composition in response to availability of labile POC, indicating that POC flux may have a more pronounced impact on crenarchaeal communities than on bacterial communities. The high number of phylotypes common to each sample time suggests that both standing stock and active prokaryotic communities are stable.

  16. Chemistry and mineralogy of pyrite-enriched sediments at a passive margin sulfide brine seep: abyssal Gulf of Mexico

    USGS Publications Warehouse

    Commeau, R.F.; Paull, C.K.; Commeau, J.A.; Poppe, L.J.

    1987-01-01

    Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible "Alvin" in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite (??? 30 wt.%), BaSr sulfates (??? 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed. ?? 1987.

  17. Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic

    NASA Astrophysics Data System (ADS)

    Howell, Kerry L.; Billett, David S. M.; Tyler, Paul A.

    2002-10-01

    The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ˜14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ˜700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ˜1800 m, decreasing with depth to ˜2600 m before increasing again to high levels at ˜4700 m.

  18. Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: Evidence for glacial oxygen depletion and carbon trapping

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-05-01

    The carbonate-free abyss of the North Pacific defies most paleoceanographic proxy methods and hence remains a "blank spot" in ocean and climate history. Paleomagnetic and rock magnetic, geochemical, and sedimentological methods were combined to date and analyze seven middle to late Pleistocene northwest Pacific sediment cores from water depths of 5100 to 5700 m. Besides largely coherent tephra layers, the most striking features of these records are nearly magnetite-free zones corresponding to glacial marine isotope stages (MISs) 22, 12, 10, 8, 6, and 2. Magnetite depletion is correlated with organic carbon and quartz content and anticorrelated with biogenic barite and opal content. Within interglacial sections and mid-Pleistocene transition glacial stages MIS 20, 18, 16, and 14, magnetite fractions of detrital, volcanic, and bacterial origin are all well preserved. Such alternating successions of magnetic iron mineral preservation and depletion are known from sapropel-marl cycles, which accumulated under periodically changing bottom water oxygen and redox conditions. In the open central northwest Pacific Ocean, the only conceivable mechanism to cause such abrupt change is a modified glacial bottom water circulation. During all major glaciations since MIS 12, oxygen-depleted Antarctic Bottom Water (AABW)-sourced bottom water seems to have crept into the abyssal northwest Pacific below ~5000 m depth, thereby changing redox conditions in the sediment, trapping and preserving dissolved and particulate organic matter and, in consequence, reducing and dissolving both, biogenic and detrital magnetite. At deglaciation, a downward progressing oxidation front apparently remineralized and released these sedimentary carbon reservoirs without replenishing the magnetite losses.

  19. Current-controlled, abyssal microtopography and sedimentation in Mozambique Basin, southwest Indian Ocean

    USGS Publications Warehouse

    Kolla, V.; Eittreim, S.; Sullivan, L.; Kostecki, J.A.; Burckle, L.H.

    1980-01-01

    The Antarctic Bottom Water (AABW) activity and the variations in the abundance and grain size of the terrigenous sediments, derived from Africa and Madagascar land masses, are reflected in different types of microtopography in the Mozambique Basin. In southerly areas, where the sediment supply is much less, the bottom-current activity has resulted in the presence of manganese nodules, a thin veneer of sediments, and the absence of sediment waves. Farther north, along the marginal areas of the basin where the fine-grained sediments from the Africa-Madagascar source have been supplied in abundance, wavy bedforms have been generated by AABW. Wavy bedforms do not exist even in the northerly areas if coarse-grained, turbidite sediments are present on the sea floor. The continuation of acoustic reflectors from the zone of turbidites in the central areas of the basin into the zone of sediment waves along the margins, and the lithology and structures in sediment cores from these zones suggest that the turbidity-current-fed, fine-grained sediments were deposited as wavy bedforms by AABW flow. Thus, sediment waves formed readily during Pleistocene times. The enrichment of quartz and displaced Antarctic diatoms, and the relatively low kaolinite/chlorite ratios in the sediments, the north-pointing current lineations on the sea floor, the lack of any perceptible sedimentary fill in the troughs of waves, and the dense nepheloid layer in the westerly areas of the Mozambique Basin, attest to the current-controlled sedimentation and generation of wavy bedforms during Holocene time also. The formation of sediment waves in the Mozambique Basin can be modeled after a fluvial antidune mechanism. This model envisages that internal waves, focussed on a benthic boundary layer cap, have been locked in phase with sediment waves in the presence of an 8-10 cm/sec current in the Mozambique Basin. A density contrast of 2??10-6 g/cm3 appears to exist at the tops of benthic boundary layers in the

  20. Tanaidacean fauna of the Kuril-Kamchatka Trench and adjacent abyssal plain - abundance, diversity and rare species

    NASA Astrophysics Data System (ADS)

    Błażewicz-Paszkowycz, Magdalena; Pabis, Krzysztof; Jóźwiak, Piotr

    2015-01-01

    Here we examine the distribution patterns, abundance, and species richness of tanaidacean peracarids in the abyssal-hadal transition zone. Material was collected in the region of Kuril-Kamchatka Trench during the German-Russian KuramBio Expedition with use of a giant boxcorer (GKG) of sampling area 0.25 m2. In the 23 samples collected from depths 4900 to 5800 m 48 species of Tanaidacea belonging to 11 families have been identified; most of the species (80%) are new to science. There was no evidence of a distribution pattern associated with depth or geographic location of stations in the nMDS analysis. Frequency of occurrence of twelve species was high (at 34-78% of stations) although the stations were distributed along a distance of about 1000 km. This observation is rationalized by the uniform environmental conditions of temperature, hydrostatic pressure, salinity, conductivity, and character of bottom deposits in the investigated area. Mean tanaidacean densities were 25.0±18.0 ind./0.25 m2, with mean values of species richness (number of species per sample) and diversity (Shannon Index) as high as 9.7±4.6 and 1.9±0.3 respectively. Singletons constituted about 20% of all species and more than one third of the species occurred as low counts per sample. The species accumulation curve did not reach the asymptotic level suggesting under-sampling of the studied area.

  1. Sediment Retention Within Coastal Plain Bottomland Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Ross, K. M.; Hupp, C. R.

    2002-12-01

    Coastal Plain forested wetlands are unique ecosystems where fluvial geomorphic processes control sediment retention and vegetation patterns, which are intimately connected to each other. Yet, these inter-disciplinary associations are typically lacking in traditional ecologic or geomorphic research within these ecosystems. Floodplain sedimentation rates and patterns, suspended sediment concentrations, substrate characteristics, vegetation and fluvial geomorphology were measured in field studies in eight 1-ha sites along three tributaries of the Chesapeake Bay to determine the dominant physical processes controlling deposition, substrate, and vegetation patterns in forested wetlands. Annual deposition was measured at 104 locations with feldspar clay pads. Sedimentation rates across the floodplain sites are highly variable, ranging from 0.5 mm/yr to 26.6 mm/yr. Multiple regression analyses suggest that the spatial patterns in net-annual and long-term deposition and substrate properties (grain sizes, sand:clay, and sorting) are controlled by the frequency and duration of inundation events and the total number of inundated days per year, the manner that sediment is distributed through the floodplain (dominant flow paths and/or the presence of slough networks, for example), and the potential for deposition of suspended sediments. Similarly, floodplain community diversity is significantly related to fluvial geomorphic processes (annual net deposition rates, percent inundation per year, and inundation duration per event). The results of this study provide valuable information on the development and evolution of Coastal Plain floodplains in the context of vegetation diversity patterns that have significant implications for the restoration and conservation of these systems.

  2. Sonnenemertes cantelli gen. et sp. nov. (Heteronemertea)-A new Oxypolella-like nemertean from the abyssal plain adjacent to the Kuril-Kamchatka Trench

    NASA Astrophysics Data System (ADS)

    Chernyshev, Alexei V.; Abukawa, Shushi; Kajihara, Hiroshi

    2015-01-01

    Approximately 129 nemertean specimens were obtained in the material collected by the Russian-German KuramBio expedition 2012 to the abyssal plain adjacent to the Kuril-Kamchatka Trench (KKT). Due to deformed, fragmentary condition of most of the collected nemerteans they were identified to the order level only. Both archi- and heteronemerteans were very rare, and tubulanid palaeonemerteans and hoplonemerteans were predominant in the KuramBio epibenthic sledge (EBS) samples. Before the KuramBio expedition, only three species of the World fauna of benthic nemerteans had been known from depths exceeding 3000 m; according to data of Vityaz expedition in the KKT, published in 1955, unidentified nemerteans were found in all trawl samples from depths 1000 to 4640 m, but only one specimen of unidentified nemertean was collected from depths exceeding 5000 m. A reliable estimation of the actual species diversity of the present KuramBio samples could have been made primarily based on molecular genetic analyses; almost all the collected specimens are likely to represent undescribed species. In this study, a new species of the heteronemertean, Sonnenemertes cantelli gen. et sp. nov., from a depth of approximately 4870 m is described. This is the deepest record for an identified benthic nemertean, as well as the first species of the subfamily Oxypolellinae from the North Pacific. A single specimen was examined by light microscopy, scanning electron microscopy, and confocal laser scanning microscopy with phalloidin and antibody labeling. Morphologically, this species is similar to those in the genus Oxypolella. A preliminary molecular phylogenetic analysis based on partial 16S rDNA among the selected heteronemertean species indicated that S. cantelli formed a monophyletic group with Oxypolella alba Bergendal, 1903 together as a sister to the genus Baseodiscus. Systematic positioning of Oxypolella, Sonnenemertes, and related genera is discussed.

  3. Characterizing the Galicia Bank-Southern Iberia Abyssal Plain rifted margin segment boundary using multichannel seismic and ocean bottom seismometer data

    NASA Astrophysics Data System (ADS)

    Clark, Stephen A.; Sawyer, Dale S.; Austin, James A.; Christeson, Gail L.; Nakamura, Yosio

    2007-03-01

    We present multichannel seismic reflection and ocean bottom seismometer reflection/refraction data from ISE-9, a margin-parallel, north-south oriented profile ˜200 km west of the Portuguese coast. ISE-9 images the boundary between two distinct segments of the Iberia nonvolcanic rifted margin: Galicia Bank (GB) and the Southern Iberia Abyssal Plain (SIAP). The bathymetric contrast between GB (2 km depth) and SIAP (4-5 km depth) spans only 25 km. The crustal thickness transition, however, spans 137 km, from 13-18 km thick beneath GB to <2 km thick beneath SIAP. We define this crustal thickness transition as the segment boundary. Crustal structure along the segment boundary, tilted blocks bounded by normal faults, is surprisingly similar to crustal structure observed along orthogonal, east-west profiles of the Iberia margin. The apparent north-south extension is similar in magnitude to previously calculated east-west extension, implying an overall northeast-southwest extension. However, paleoreconstructions and rift basin orientations constrain lithospheric extension to a nearly east-west direction. We speculate that north-south extension is limited to the crust and is caused by large-scale mass wasting sometime between the Tithonian and Valanginian. This rotational slump spans the 137-km-wide modern segment boundary, emplacing GB continental crust directly onto exhumed, serpentinized mantle of SIAP. Palinspastic reconstruction restores the southern edge of the blocks to coincide within <10 km of a steep Moho transition and a near-vertical fault which extends through the slump and offsets Moho. We interpret this location as the preslump segment boundary that accommodated transform motion between the two rifted margin segments.

  4. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin

    USGS Publications Warehouse

    Wolf, Stephen C.; Hamer, Michael R.

    1999-01-01

    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area

  5. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil

    USGS Publications Warehouse

    Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.

    1998-01-01

    Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.

  6. The Role of Lateral Fluid Flow in Off-Axis, Oceanic Hydrothermal Systems Under Abyssal Sedimentation Conditions

    NASA Astrophysics Data System (ADS)

    Anderson, B. W.; Coogan, L. A.; Gillis, K. M.

    2010-12-01

    Off-axis hydrothermal circulation is significant to the thermal and chemical evolution of the oceanic crust, to the chemical evolution of the oceans, and potentially to a deep biosphere within the upper crust. These off-axis hydrothermal systems are impacted by the type and distribution of sediment because sufficiently thick and contiguous sediment cover will limit the exchange of fluid between the ocean and the crust. It has been suggested that in off-axis settings lateral transport between sediment-poor regions, through the high permeability lavas, is the dominant geometry of fluid convection in igneous crust underlying thick sediment. To aid in understanding the role of sediment cover on seafloor hydrothermal systems, a numerical model of pelagic supply, post-depositional down-slope sediment redistribution (following [1]), and crustal hydrogeology has been developed. Synthetic seafloor bathymetry representative of crust formed at different spreading rates [2] is used as the initial bathymetry and seamounts are added randomly with a size and frequency distribution representative of the global ocean [3]. Other sedimentation variables are the diffusivity of sediment, the pelagic sediment supply rate and the sediment hydrological properties. From this, the model predicts the changing distribution of potential hydrothermal fluid recharge and discharge sites in response to sedimentation. These results are coupled with a two-dimensional model of fluid and heat transport to evaluate the conditions under which lateral fluid flow in the igneous oceanic crust are consistent with the global data set of seafloor heat flow measurements. Preliminary results suggest that, of the parameters investigated, the spatial density of model-predicted outcrops is most sensitive to the rate of pelagic sediment supply. In areas with lower than average seamount abundances crustal spreading rate is also important to the distribution of outcrops, with more outcrops predicted on crust formed

  7. Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India

    NASA Astrophysics Data System (ADS)

    Mondal, M. E. A.; Wani, H.; Mondal, Bulbul

    2012-09-01

    The Ganga basin in the Himalayan foreland is a part of the world's largest area of modern alluvial sedimentation. Flood plain sediments of the Hindon River of the Gangetic plain have been analyzed for sediment texture, major and trace elements including rare earth elements (REEs). The results have been used to characterize the source rock composition and to understand the intensity of chemical weathering, tectonics and their interplay in the Hindon flood plain. The sediments of the Hindon flood plain dominantly consist of sand sized particles with little silt and clay. The geochemistry of the Hindon sediments has been compared to the Siwalik mudstone of the Siwalik Group (Siwaliks). The Siwalik sedimentary rocks like sandstones, mudstones and conglomerates are the known source rocks for the Hindon flood plain sediments. Mudstone geochemistry has been considered best to represent the source rock characteristics. The UCC (Upper Continental Crust) normalized major and trace elements of the Hindon flood plain sediments are very similar to the Siwalik mudstone except for Th and Cr. Furthermore, the average chondrite normalized REE pattern of the Hindon flood plain sediments is similar to the Siwalik mudstone. Textural immaturity, K/Rb ratios and the average CIA (Chemical Index of Alteration) and PIA (Plagioclase Index of Alteration) values of the Hindon flood plain sediments indicate that the sediments have not been affected by chemical weathering. Our study suggests that the active tectonics of the Himalayas and monsoon climate enhances only physical erosion of the source rocks (Siwaliks) rather than the chemical alteration. These factors help the Hindon sediments to retain their parental and tectonic signature even after recycling.

  8. Lineaments in coastal plain sediments as seen in ERTS imagery

    NASA Technical Reports Server (NTRS)

    Withington, C. F.

    1973-01-01

    Examination of satellite imagery over the Atlantic Coastal Plain near Washington, D. C. shows numerous lineaments, which cannot be accounted for by any known cultural or natural features. At least some of these lineaments represent the surface expression of faults, for one of them has been correlated with the outcrop of a fault that had been traced for several miles in southern Prince Georges County, Maryland. If a substantial number of these lineaments do indeed represent fault traces, the fact that they show on the surface suggests that the geologic history of the Coastal Plain is much more complex than has previously been recognized, and that faulting may have occurred in the Holocene, much later than has generally been recognized. The importance that such recent movements could have on future development of the Coastal Plain should be emphasized.

  9. Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments

    NASA Astrophysics Data System (ADS)

    Kalogeropoulou, V.; Keklikoglou, K.; Lampadariou, N.

    2015-04-01

    Spatial patterns in deep sea nematode biological trait composition and functional diversity were investigated between chemosynthetic and typical deep sea ecosystems as well as between different microhabitats within the chemosynthetic ecosystems, in the Eastern Mediterranean. The chemosynthetic ecosystems chosen were two mud volcanoes, Napoli at 1950 m depth and Amsterdam at 2040 m depth which are cold seeps characterized by high chemosynthetic activity and spatial heterogeneity. Typical deep sea ecosystems consisted of fine-grained silt-clay sediments which were collected from three areas located in the south Ionian Sea at 2765 to 2840 m depth, the southern Cretan margin at 1089 to 1998 m depth and the Levantine Sea at 3055 to 3870 m depth. A range of biological traits (9 traits; 31 categories) related to buccal morphology, tail shape, body size, body shape, life history strategy, sediment position, cuticle morphology, amphid shape and presence of somatic setae were combined to identify patterns in the functional composition of nematode assemblages between the two habitats, the two mud volcanoes (macroscale) and between the microhabitats within the mud volcanoes (microscale). Data on trait correspondence was provided by biological information on species and genera. A total of 170 nematode species were allocated in 67 different trait combinations, i.e. functional groups, based on taxonomic, morphological and behavioral characteristics. The Biological Trait Analysis (BTA) revealed significant differences between the mud volcanoes and the typical deep sea sediments indicating the presence of different biological functions in ecologically very different environments. Moreover, chemosynthetic activity and habitat heterogeneity within mud volcanoes enhance the presence of different biological and ecological functions in nematode assemblages of different microhabitats. Functional diversity and species richness patterns varied significantly across the different

  10. Sediment loss and runoff from cropland in a Southeast Atlantic Coastal Plain landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread implementation of conservation-tillage (CsT) systems during cotton and peanut production in the Atlantic Coastal Plain region (USA) has substantially reduced erosion and sediment loss. However, benefits of CsT in these cropping systems are being threatened by weather shifts that include i...

  11. Geostatistical Modeling of the Spatial Distribution of Sediment Oxygen Demand Within a Coastal Plain Blackwater Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...

  12. Amazonis Planitia: The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars

    NASA Astrophysics Data System (ADS)

    Fuller, Elizabeth R.; Head, James W.

    2002-10-01

    Amazonis Planitia, located between the two main volcanic provinces on Mars (Tharsis and Elysium), is characterized by extremely smooth topography at several scale lengths, as smooth as oceanic abyssal plains topography on Earth. We use Mars Global Surveyor (MGS) data (primarily very high resolution Mars Orbiter Laser Altimeter (MOLA) topography and derivative slope maps, gradient maps, and detrended maps) to examine the surface morphology of Amazonis Planitia and the stratigraphic relationships among previously mapped and newly defined units. These new data reveal the presence of a 1300 km diameter Noachian impact basin in northwest Amazonis Planitia and an extensive Late Hesperian lava flow unit that appears to have originated from the Olympus Mons source area prior to aureole formation. The presence of this previously unrecognized flow unit strongly suggests that Olympus Mons activity dates back to at least the Hesperian, as did activity on the Tharsis Montes. Emplacement of this ~100 meter thick flow unit formed a barrier along the northern margin of Amazonis Planitia which had a profound influence on the subsequent geologic history of the region. Formation of Olympus Mons aureole deposits created an eastern topographic barrier, and subsequent Tharsis Montes lava flows entered the basin from the south, flowing around the aureole. These three barriers (degraded Noachian crater rim, proto-Olympus Mons flow unit, and Olympus Mons aureole) caused subsequent lava flows and outflow channel effluents, primarily from the Elysium region to the west, to pond on the floor of Amazonis Planitia, preferentially smoothing the terrain there. Mars Orbiter Camera (MOC) images substantiate that at least two very fluid lava flows alternated with fluvial episodes from Elysium Planitia, flowing through Marte Valles onto the floor of the Amazonis Planitia basin. Within Amazonis Planitia, MOC images show flow-like textures heavily mantled by sediments, and radar data reveal the

  13. Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation

    NASA Astrophysics Data System (ADS)

    Morris, Kirsty J.; Bett, Brian J.; Durden, Jennifer M.; Benoist, Noelie M. A.; Huvenne, Veerle A. I.; Jones, Daniel O. B.; Robert, Katleen; Ichino, Matteo C.; Wolff, George A.; Ruhl, Henry A.

    2016-09-01

    Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology.

  14. Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation

    PubMed Central

    Morris, Kirsty J.; Bett, Brian J.; Durden, Jennifer M.; Benoist, Noelie M. A.; Huvenne, Veerle A. I.; Jones, Daniel O. B.; Robert, Katleen; Ichino, Matteo C.; Wolff, George A.; Ruhl, Henry A.

    2016-01-01

    Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology. PMID:27681937

  15. Abyssal undular vortices in the Eastern Mediterranean basin.

    PubMed

    Rubino, A; Falcini, F; Zanchettin, D; Bouche, V; Salusti, E; Bensi, M; Riccobene, G; De Bonis, G; Masullo, R; Simeone, F; Piattelli, P; Sapienza, P; Russo, S; Platania, G; Sedita, M; Reina, P; Avolio, R; Randazzo, N; Hainbucher, D; Capone, A

    2012-05-15

    Abyssal temperature and velocity observations performed within the framework of the Neutrino Mediterranean Observatory, a project devoted to constructing a km(3)-scale underwater telescope for the detection of high-energy cosmic neutrinos, demonstrate cross-fertilization between subnuclear physics and experimental oceanography. Here we use data collected south of Sicily in the Ionian abyssal plain of the Eastern Mediterranean (EM) basin to show for the first time that abyssal vortices exist in the EM, at depths exceeding 2,500 m. The eddies consist of chains of near-inertially pulsating mesoscale cyclones/anticyclones. They are embedded in an abyssal current flowing towards North-Northwest. The paucity of existing data does not allow for an unambiguous determination of the vortex origin. A local generation mechanism seems probable, but a remote genesis cannot be excluded a priori. The presence of such eddies adds further complexity to the discussion of structure and evolution of water masses in the EM.

  16. Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.

    1996-01-01

    Field and laboratory evidence shows that deeply buried (90-888 m) fine-grained sediments of the Atlantic Coastal Plain contain viable acetogenic microorganisms, and that these microorganisms actively produce organic acids. Concentrations of formate, acetate, and propionate in pore waters extracted from fine-grained sediments ranged from 50 ??M to 5 mM and were much higher than in adjacent pore waters associated with sandy sediments (<2 ??M). Laboratory studies showed that asceptically cored fine-grained sediments incubated under a H2 atmosphere produced formate and acetate, and that H14CO-3 was converted to 14C-acetate and 14C-formate over time. An enrichment culture of these acetogenic microorganisms was recovered from one long-term incubation that showed the presence of several morphologically distinct gram-positive, rod-shaped bacteria. These microorganisms were capable of growth under autotrophic (H2 + CO2), heterotrophic (syringate), and mixotrophic (H2 + CO2 + syringate) conditions. These results suggest that microbial acetogenesis, rather than abiotic processes, is the most important organic acid-producing mechanism during low-temperature (???30 ??C) diagenesis of Atlantic Coastal Plain sediments.

  17. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Zelibor, Joseph L., Jr.; Grimes, D. Jay; Knobel, Leroy L.

    1987-08-01

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 108 to 104 bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 106 to 103 bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria in these sediments suggest that heterotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO2 to groundwater. However, the possibility that abiotic processes also produce CO2 cannot be ruled out. Estimated rates of CO2 production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, groundwater flow rates, and flow path segment lengths are in the range 10-3 to 10-5 mmol L-1 yr-1. Isotope balance calculations suggest that aquifer-generated CO2 is much heavier isotopically (˜—10 to + 5 per mil) than lignite (˜-24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.

  18. Linking suspended sediment transport metrics with fish functional traits in the Northwestern Great Plains (Invited)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. S.; Simon, A.; Klimetz, L.

    2009-12-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the United States. Although 32 states have developed numeric criteria for turbidity or suspended solids, or both according to the USEPA (2006), criteria is typically written as a percent exceedance above background and what constitutes background is not well defined. Defining a background level is problematic considering suspended sediments and related turbidity levels change with flow stage and season, and limited scientific data exists on relationships between sediment exposure and biotic response. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally-variable sediment transport rates with specific losses of ecological functions as loads increase. This study, within the in Northwestern Great Plains Ecoregion, co-located 58 USGS gauging stations with existing flow and suspended sediment data, and fish data from federal and state agencies. Suspended sediment concentration (SSC) transport metrics were quantified into exceedance frequencies of a given magnitude, duration as the number of consecutive days a given concentration was equaled or exceeded, dosage as concentration x duration, and mean annual suspended sediment yields. A functional traits-based approach was used to correlate SSC transport metrics with site occurrences of 20 fish traits organized into four main groups: preferred rearing mesohabitat, trophic structure, feeding habits, and spawning behavior. Negative correlations between SSC metrics and trait occurrences were assumed to represent potential conditions for impairment, specifically identifying an ecological loss by functional trait. Potential impairment conditions were linked with presence of the following traits: habitat preferences for stream pool and river shallow waters; feeding generalists, omnivores, piscivores; and several spawning

  19. Occurrence of arsenic in sediment pore waters in the central Kanto Plain, Japan

    NASA Astrophysics Data System (ADS)

    Hachinohe, Shoichi; Hamamoto, Hideki; Ishiyama, Takashi; Hossain, Sushmita; Oguchi, Chiaki T.

    2014-05-01

    The Kanto Plain is known as the largest plain in Japan, where marine sediments are widely developed because of cyclic iteration of global sea-level changes even 50 km or more inland from the present shoreline. In this area, dependence on groundwater for water requirements is relatively high; in particular, around 40 % of the municipal water supply is dependent on groundwater. Arsenic levels greater than that permitted by the environmental standards of Japan have been detected in groundwater in this area. Therefore, to evaluate occurrences of arsenic and other related elements in pore waters contained in natural sediment layers, we measured the levels of various inorganic chemical substances such as arsenic (As), iron (Fe), and sulfur (S) and major dissolved ions such as sulfate (SO42-), calcium (Ca2+), and sodium (Na+). Pore waters were collected from sediment samples that were obtained by a drilling from the river bottom down to 44 m depth; pore water samples were obtained immediately after extraction of sediments. The sedimentary facies in the vertical profile are continental, transitional, and marine, including two aquifers. The upper aquifer (15-20 m) contains fine to medium sand, whereas the lower aquifer (37-44 m) contains medium to coarse and gravelly sand. Arsenic and other inorganic elements were measured by an inductively coupled plasma mass spectrometer (ICP/MS) and an inductively coupled plasma atomic emission spectrometer (ICP/AES), and major dissolved ions were measured by an ion chromatograph analyzer. The total content of chemical elements was measured by X-ray fluorescence analysis using solid sediment samples. We obtained the following results. The arsenic concentrations in pore waters in marine silt and clay sediments (approximately 0.04 mg/L) were about five times higher than that in continental sediments (approximately 0.008 mg/L). The highest concentration of arsenic (0.074 mg/L) was detected at a depth of 13 m, which is immediately above the

  20. Paleochannels and Sediment Characteristics of the Chenier Plain Inner Shelf, Louisiana

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, A.; Fagherazzi, S.; Orange, D.

    2011-12-01

    In the last 3000 yrs, sediments from the Mississippi Delta have been transported to the western part of the Louisiana shelf, triggering beach progradation through a series of shell and sandy ridges (cheniers) separated by muddy hollows. Distinct events of chenier plain development have been explained as being the result of delta lobe switching in the Mississippi delta combined to local processes responsible for formation of beach ridges, recurved spits, eolian deposits, storm berms, and natural levees. In the present work we investigate the recent infill of the inner shelf off the Chenier Plain coast, just west of the recent deltaic deposits of the Mississippi River. We use shallow seismic analysis and the identification of paleochannels to understand their relationship with current rivers off the present coastline. We have been able to identify four seismic units U1 to U4 and their associated surfaces and discontinuities. A tentative reconstruction for the last 20 ky sedimentary infill is provided, correlating well with the datations available for the area. The identification and tracking of several buried channels across the shelf in units U1 and U3 let us track the position of the Mermentau-Calcasieu hydrological system in previous lowstands. It is interpreted that the Mermentau river was flowing more eastward during the Wisconsinan, occupying the location of our study and was then diverted to the west as a result of coastal processes and the development of the Chenier plains. Also, the Mermentau was re-occupying almost the same location at different lowstands, and only when the Chenier formed (due to reactivation of the west Mississippi lobe), the Mermentau was deviated westward due to sediment accumulation at the shoreline.

  1. The Surface of Venus is Saturated With Ancient Impact Structures, and its Plains are Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2009-05-01

    Conventional interpretations of Venus are forced to fit dubious pre-Magellan conjectures that the planet is as active internally as Earth and preserves no ancient surface features. Plate tectonics obviously does not operate, so it is commonly assumed that the surface must record other endogenic processes, mostly unique to Venus. Imaginative systems of hundreds of tiny to huge rising and sinking plumes and diapirs are invoked. That much of the surface in fact is saturated with overlapping large circular depressions with the morphology of impact structures is obscured by postulating plume origins for selected structures and disregarding the rest. Typical structures are rimmed circular depressions, often multiring, with lobate debris aprons; central peaks are common. Marine-sedimentation features are overlooked because dogma deems the plains to be basalt flows despite their lack of source volcanoes and fissures. The unearthly close correlation between geoid and topography at long to moderate wavelengths requires, in conventional terms, dynamic maintenance of topography by up and down plumes of long-sustained precise shapes and buoyancy. A venusian upper mantle much stronger than that of Earth, because it is cooler or poorer in volatiles, is not considered. (The unearthly large so-called volcanoes and tessera plateaus often are related to rimmed circular depressions and likely are products of impact fluidization and melting.) Plains-saturating impact structures (mostly more obvious in altimetry than backscatter) with diameters of hundreds of km are superimposed as cookie-cutter bites, are variably smoothed and smeared by apparent submarine impact and erosion, and are differentially buried by sediments compacted into them. Marine- sedimentation evidence includes this compaction; long sinuous channels and distributaries with turbidite- channel characteristics and turbidite-like lobate flows (Jones and Pickering, JGSL 2003); radar-smooth surfaces and laminated aspect in

  2. Sediment distribution, hydrolytic enzyme profiles and bacterial activities in the guts of Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus: what do they tell us about digestive strategies of abyssal holothurians?

    NASA Astrophysics Data System (ADS)

    Roberts, D.; Moore, H. M.; Berges, J.; Patching, J. W.; Carton, M. W.; Eardly, D. F.

    This paper describes inter-specific differences in the distribution of sediment in the gut compartments and in the enzyme and bacterial profiles along the gut of abyssal holothurian species - Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus sampled from a eutrophic site in the NE Atlantic at different times of the year. Proportions of sediments, relative to total gut contents, in the pharynx, oesophagus, anterior and posterior intestine differed significantly in all the inter-species comparisons, but not between inter-seasonal comparisons. Significant differences were also found between the relative proportions of sediments in both the rectum and cloaca of Psychropotes longicauda and Oneirophanta mutabilis. Nineteen enzymes were identified in either gut-tissue or gut-content samples of the holothurians studied. Concentrations of the enzymes in gut tissues and their contents were highly correlated. Greater concentrations of the enzymes were found in the gut tissues suggesting that they are the main source of the enzymes. The suites of enzymes recorded were broadly similar in each of the species sampled collected regardless of the time of the year, and they were similar to those described previously for shallow-water holothurians. Significant inter-specific differences in the gut tissue concentrations of some of the glycosidases suggest dietary differences. For example, Psychropotes longicauda and Pseudostichopus villosus contain higher levels of chitobiase than Oneirophanta mutabilis. There were no seasonal changes in bacterial activity profiles along the guts of O. mutabilis and Pseudostichopus villosus. In both these species bacterial activity and abundance declined between the pharynx/oesophagus and anterior intestine, but then increased along the gut and became greatest in the rectum/cloaca. Although the data sets were more limited for Psychropotes longicauda, bacterial activity increased from the anterior to the posterior intestine

  3. Geochemical Fractionations and Mobility of Arsenic, Lead and Cadmium in Sediments of the Kanto Plain, Japan.

    NASA Astrophysics Data System (ADS)

    Hossain, Sushmita; Oguchi, Chiaki T.; Hachinohe, Shoichi; Ishiyama, Takashi; Hamamoto, Hideki

    2014-05-01

    Lowland alluvial and floodplain sediment play a major role in transferring heavy metals and other elements to groundwater through sediment water interaction in changing environmental conditions. However identification of geochemical forms of toxic elements such as arsenic (As), lead (Pb) and cadmium (Cd) requires risk assessment of sediment and subsequent groundwater pollution. A four steps sequential extraction procedure was applied to characterize the geochemical fractionations of As, Pb and Cd for 44 sediment samples including one peat sample from middle basin area of the Nakagawa river in the central Kanto plain. The studied sediment profile extended from the bottom of the river to 44 m depth; sediment samples were collected at 1m intervals from a bored core. The existing sedimentary facies in vertical profile are continental, transitional and marine. There are two aquifers in vertical profile; the upper aquifer (15-20m) contains fine to medium sand whereas medium to coarse sand and gravelly sand contain in lower aquifer (37-44m). The total As and Pb contents were measured by the X-Ray Fluorescence analysis which ranged from 4 to 23 mg/kg of As and 10 to 27 mg/kg of Pb in sediment profile. The three trace elements and major heavy metals were determined by ICP/MS and ICP/AES, and major ions were measured by an ion chromatograph. The marine sediment is mainly Ca-SO4 type. The Geochemical analysis showed the order of mobility trends to be As > Pb > Cd for all the steps. The geochemical fractionations order was determined to be Fe-Mn oxide bound > carbonate bound > ion exchangeable > water soluble for As and Pb whereas the order for Cd is carbonate bound > Fe-Mn oxide bound > ion exchangeable > water soluble. The mobility tendency of Pb and Cd showed high in fine silty sediment of marine environment than for those from continental and transitional environments. In the case of As, the potential mobility is very high (>60%) in the riverbed sediments and clayey silt

  4. Source-To-Sink Perspectives On The Mississippi River System, Miocene To Present, Mountain To Abyss

    NASA Astrophysics Data System (ADS)

    Bentley, S. J.; Blum, M. D.

    2013-12-01

    . The objective of this study is to present a synthesis of the Mississippi River source-to-sink system, from montane source to abyssal sink, to elucidate specific geomorphic components and boundaries in the system, controls on mass transfer, and resultant geomorphic and statigraphic development. The Mississippi River source-to-sink system constitutes one of the largest sources, conduits, and depocenters of sediment on Earth, extending from elevations of 3.7 km in the Rocky Mountains to the Gulf of Mexico abyssal plain. Despite being one of the most intensely studied fluvial-marine systems in the world, comprehensive understanding and management of the system's resources remain a challenge. The system is valuable in many ways: it provides navigation and water to the heart of North America, and sustains extensive marine fisheries. The river has built a delta that is home to millions of people and yet is subsiding rapidly. Ancestral Mississippi fluvial-marine deposits continue to yield high-value petroleum resources to exploration. To address the range of temporal and spatial scales over which the system has developed and continues to evolve, we will focus on three geological time spans that display contrasting geologic forcing and response: Miocene, Pleistocene, and late Holocene. The present configuration of source, conduit, and sink were established during the Miocene epoch, when tectonics (via the uplifting southern Rockies, and later the rejuvenated Appalachians) and climate (wet in the east and dry in the west) provided abundant water and sediment to prograde the shelf margin and initiate deep-sea fan growth. Pleistocene continental glaciation, eustasy, and catastrophic drainage events further sculpted the alluvial valley, and extended the shelf margin, and fan. Studies of Modern processes and Holocene delta development have provided keys to both the delta's past and future evolution, in terms of cyclic autogenic lobe-switching, mass-transport events, storm

  5. Sediment Transport and Channel Morphology of the Kosi River, North Bihar Plain (India)

    NASA Astrophysics Data System (ADS)

    Gaurav, Kumar; Chauvet, Hugo; Metivier, Francois; Devauchelle, Olivier; Sinha, Rajiv

    2013-04-01

    The Kosi River of the northern Bihar plain, India and Nepal, is well-known for the frequent lateral shift of its course. In the last two centuries, it migrated more than 150 km westward (Gole and Chitale, 1966; Wells and Dorr, 1987; Sinha.R, 2008). This westward shift produced a megafan of an area about 16,000 Km2. Today the river shows a braided networks of streams of various magnitude. The large dimension of the Kosi river, its sandy bed, and its avulsive nature makes it an ideal field site to understand sediment transport in large braided rivers. We report measurements of discharge, velocity, width and depth across channels of the Kosi river within its embankment. ADCP measurements were performed during the high flow period in late July to early August 2012. First-hand analysis of the ADCP data shows order-of-magnitude variations of channel aspect ratio, discharge and velocity. We use these measurements to evaluate wether individual threads are close to the threshold for the sediment movement, and to evaluate the relationship between channel shape and discharge. This represents a first step towards the establishment of sediment budgets in a large sandy braided river.

  6. Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA.

    PubMed

    Jacob, Donna L; Yellick, Alex H; Kissoon, La Toya T; Asgary, Aida; Wijeyaratne, Dimuthu N; Saini-Eidukat, Bernhardt; Otte, Marinus L

    2013-07-01

    Cadmium, present locally in naturally high concentrations in the Northern Plains of the United States, is of concern because of its toxicity, carcinogenic properties, and potential for trophic transfer. Reports of natural concentrations in soils are dominated by dryland soils with agricultural land uses, but much less is known about cadmium in wetlands. Four wetland categories - prairie potholes, shallow lakes, riparian wetlands, and river sediments - were sampled comprising more than 300 wetlands across four states, the majority in North Dakota. Cd, Zn, P, and other elements were analyzed by ICP-MS, in addition to pH and organic matter (as loss-on-ignition). The overall cadmium content was similar to the general concentrations in the area's soils, but distinct patterns occurred within categories. Cd in wetland soils is associated with underlying geology and hydrology, but also strongly with concentrations of P and Zn, suggesting a link with agricultural land use surrounding the wetlands. PMID:23583941

  7. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the atlantic coastal plain.

    PubMed

    Fredrickson, J K; Balkwill, D L; Zachara, J M; Li, S M; Brockman, F J; Simmons, M A

    1991-02-01

    A series of 23 intact core segments was obtained from two distinct deep subsurface geological formations, the Middendorf and the Cape Fear formations, underlying the southeastern coastal plain of South Carolina. The Middendorf formation in this region consists of permeable, saturated, sandy sediments; the Cape Fear formation consists mainly of less permeable sediments. The core segments were separated by vertical distances ranging from several centimeters to 48 m. Aerobic chemoheterotrophic bacteria were enumerated on a dilute medium, and populations ranged from 3.1 to 6.4 log CFU g of sediment in the Middendorf cores and from below detection to 4.3 log CFU g in the Cape Fear cores. A total of 198 morphologically distinct colony types were isolated, purified, and subjected to 108 different physiological measurements. The isolates from the two formations were distinct (i.e., they produced substantially different response patterns to the various physiological measurements), as were those in different core samples from the same formation. Cluster analysis revealed 21 different biotypes based on similarities of 75% or higher in response patterns to 21 physiological assays. One biotype contained 57 (29%) of the subsurface isolates, 10 biotypes contained 5 or more isolates, and the remainder had 4 or fewer. The organic compounds that were most commonly metabolized by the subsurface bacteria included Tween 40 (85%) and beta-hydroxybutyric acid (60%). Organic acids, in general, were also commonly metabolized by the subsurface bacteria. Isolates from the Cape Fear core segments were capable of metabolizing a higher percentage of the substrates than were bacteria isolated from the Middendorf formation. Although the heterogeneous distributions of bacteria in deep subsurface sediments may make it difficult to use aquifer microcosms to predict in situ biotransformation rates, the diversity of the physiological properties of these organisms offers promise for in situ remediation

  8. Age and correlation of tertiary sediments in the western South Carolina Coastal Plain

    SciTech Connect

    Laws, R.A.; Harris, W.B.; Zullo, V.A.; Fallaw, W.C.; Price, V.

    1987-01-01

    Integration of coastal onlap stratigraphy, calcareous nannofossil, dinoflagellate, and megafossil biostratigraphy provide new data for interpretation of age and interregional correlation of Paleocene to Oligocene deposits of the western South Carolina Coastal Plain. Clastic and calcareous sediments examined in cores and outcrops in the vicinity of the Savannah River Plant record at least seven coastal onlap cycles. Basal Tertiary sediments of the Ellenton Formation represent cycles TA1.1 - 1.3 and contain dinoflagellates of Midwayan to Sabinian age. The overlying Williamsburg Formation probably represents deposits of cycle TA2.1. The superjacent siliciclastics of the Congaree Formation contain few fossils, but may preserve transgressive and highstand deposits of cycles TA2.4 - 3.3. The overlying unit is commonly calcareous, contains nannofossils indicative of zones NP16-17 (Upper Claibornian), and marks a significant change in depositional style subsequent to the 49.5 Ma eustatic fall. ''Marls'' of the overlying Griffins Landing Member of the Dry Branch Formation contain micro- and megafossils of Late Eocene (Jacksonian) age and represent transgressive deposits of cycle TA4.1. The discontinuous lateral distribution of these calcareous units and overlying clastics of the Dry Branch and Tobacco Road Formations results largely from erosion and deep incision during the mid-Oligocene eustatic fall (30 Ma). The ''Upland'' unit is interpreted as being deposited on this erosional surface.

  9. Holocene Sedimentation Pattern in the Backarc-Opening Ilan Plain, Taiwan: Implications for Regional Tectonic Subsidence and Basin Shape

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Hsieh, Y. C.

    2015-12-01

    The triangular Ilan Plain in northern Taiwan has well-preserved sedimentary records which provide opportunities for understanding the subsidence and sedimentary processes at the southernmost tip of the backarc-opening Okinawa Trough. To better examine the deposition and tectonic history of the Ilan Plain, we analyzed data from 13 boreholes and used 14C dates to reconstruct basin sedimentary layers during the Holocene time. The borehole depths and their correspondent 14C ages are used to reconstruct the overall age models in the Ilan Plain. The sedimentation rates from the borehole locations vary significantly from 0.5 to 2.0 cm/yr. Age models were fitted using quadratic equations instead of linear equations. The linear age models, although commonly used by previous studies, may not be desirable because most age distributions show decreasing sedimentation rates, particularly after 6 ka BP. Six boreholes show very good fit using quadratic equations in the age models and five boreholes, mostly located along the coastal areas, show relatively linear relations. Two other boreholes do not have enough 14C dates and the reconstructed age models are less reliable in the two locations. Contour maps of the apparent sedimentation rates every thousand years are derived from the interpolated apparent sedimentation rates through the quadratic age models. Based on our 3D reconstruction of age models, the pattern of sedimentary layers in the Ilan Plain can be explained by the seaward-dipping basin shape and the propagation of sediment fronts during the Holocene time. The analyzed sedimentation pattern does not prefer noticeably localized faults or large estimates of tectonic subsidence rates in the backarc-opening environment.

  10. The feeding behaviour of an abyssal echiuran revealed by in situ time-lapse photography

    NASA Astrophysics Data System (ADS)

    Bett, B. J.; Rice, A. L.

    1993-09-01

    A time-lapse camera (IOSDL "Bathysnap") deployed on the Porcupine Abyssal Plain (48°50.1'N, 16°29.9'W, 4839 m), from 16 to 27 May 1991, recorded the sediment surface activity of what appeared to be an echiuran proboscis. The proboscis emerged from a hole formed during the period of observation to make seven sweeping, feeding excursions. These excursions, which occured over three consecutive days, averaged 73 min duration, with an average interval between excursions of 9 h, 22 min. The proboscis was not observed in the remaining eight days of the deployment. No change in the size or shape of near-by sediment mounds was observed at any time; there was no evidence of the return of material collected by the proboscis to the sediment surface. Proboscis activity appeared to occur preferentially at higher near-bottom current speeds, a possible advantage where phytodetritus is subject to redistribution by water currents (as was observed throughout the deployment). These observations are discussed in relation to the known behaviour of echiurans, particularly the mode of feeding, periodicity, quiescence, and sediment surface trace formation.

  11. Sediment accumulation determined with 210Pb geochronology and geochemical tracers for Strickland River flood plains, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Aalto, R.; Swanson, K. M.; Dietrich, W. E.; Apte, S.

    2005-05-01

    The Strickland River is the primary sediment source for the Fly River system, a large tropical river that ranks in the global top 20 for both water and sediment discharge. As part of a "Source to Sink" NSF Margins program, the patterns and rates of floodplain sedimentation are being investigated. Previous research on the Middle Fly has documented an exponential decrease in sedimentation rates with distance from channel bank and a large influence of distributary floodplain channels in directing sediment to the floodplain environment. In the Strickland, a mine has discharged waste into the river since 1992, and though the total load increase is small for the lowland Strickland, elevated Ag and Pb levels occur in the river sediment, providing a clear environmental tracer across the floodplain. Work on other flood plain environments has demonstrated that 210Pb can be used to map the spatial and temporal patterns of sedimentation. Here we present geochronological results from an intensive floodplain coring campaign conducted in 2003 on the lower Strickland, which employed both 210Pb geochronology and Ag and Pb penetration depths to quantify sedimentation rates. We will first outline our procedure for dating Strickland sediment with 210Pb geochronology and summarize some early results from 36 cores. Flood plain accumulation rates appear to be highest upstream near the gravel-sand transition, low in the middle portion of the river, and higher again in the lower reaches of the Strickland near to its confluence with the Fly River. Overall patterns of sedimentation from 210Pb geochronology seem to be spatially consistent, for series of cores collected along single flood plain transects. We will next compare these results to accumulation rates determined from duplicate cores that were measured for the concentration of heavy metals from the upstream mine. These two techniques are independent and cover different temporal and spatial (in the vertical dimension) scales, so we

  12. Submarine Landslides in Arctic Sedimentation: Canada Basin

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  13. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle

    NASA Astrophysics Data System (ADS)

    Milligan, R. J.; Morris, K. J.; Bett, B. J.; Durden, J. M.; Jones, D. O. B.; Robert, K.; Ruhl, H. A.; Bailey, D. M.

    2016-05-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1–10 km2) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km‑2 (95% CI: 601–844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km‑2 respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed.

  14. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle.

    PubMed

    Milligan, R J; Morris, K J; Bett, B J; Durden, J M; Jones, D O B; Robert, K; Ruhl, H A; Bailey, D M

    2016-05-16

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1-10 km(2)) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km(-2) (95% CI: 601-844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km(-2) respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed.

  15. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle.

    PubMed

    Milligan, R J; Morris, K J; Bett, B J; Durden, J M; Jones, D O B; Robert, K; Ruhl, H A; Bailey, D M

    2016-01-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1-10 km(2)) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km(-2) (95% CI: 601-844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km(-2) respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed. PMID:27180728

  16. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle

    PubMed Central

    Milligan, R. J.; Morris, K. J.; Bett, B. J.; Durden, J. M.; Jones, D. O. B.; Robert, K.; Ruhl, H. A.; Bailey, D. M.

    2016-01-01

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1–10 km2) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km−2 (95% CI: 601–844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km−2 respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed. PMID:27180728

  17. Trends in nutrient and sediment retention in Great Plains reservoirs (USA).

    PubMed

    Cunha, Davi Gasparini Fernandes; do Carmo Calijuri, Maria; Dodds, Walter Kennedy

    2014-02-01

    Reservoirs are artificial ecosystems with physical, chemical, and biological transitional characteristics between rivers and lakes. Greater water retention time in reservoirs provides conditions for cycling materials inputs from upstream waters through sedimentation, biological assimilation and other biogeochemical processes. We investigated the effects of reservoirs on the water quantity and quality in the Great Plains (Kansas, USA), an area where little is known about these dominant hydrologic features. We analyzed a 30-year time-series of discharge, total phosphorus (TP), nitrate (NO3(-)), and total suspended solids (TSS) from six reservoirs and estimated overall removal efficiencies from upstream to downstream, testing correlations among retention, discharge, and time. In general, mean removal of TP (42-74%), TSS (0-93%), and NO3(-) (11-56%) from upstream to downstream did not change over 30 years. TP retention was associated with TSS removal, suggesting that nutrient substantial portion of P was adsorbed to solids. Our results indicated that reservoirs had the effect of lowering variance in the water quality parameters and that these reservoirs are not getting more or less nutrient-rich over time. We found no evidence of temporal changes in the yearly mean upstream and downstream discharges. The ratio upstream/downstream discharge was analyzed because it allowed us to assess how much contribution of additional unsampled tributaries may have biased our ability to calculate retention. Nutrient and sediment removal was less affected by hydraulic residence time than expected. Our study demonstrates that reservoirs can play a role in the removal and processing of nutrient and sediments, which has repercussions when valuing their ecological services and designing watershed management plans. PMID:24061791

  18. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal plain

    SciTech Connect

    Fredrickson, J.K.; Zachara, J.M.; Li, S.W.; Brockman, F.J.; Simmons, M.A. ); Balkwill, D.L. )

    1991-02-01

    A series of 23 intact core segments was obtained from two distinct deep subsurface geological formations, the Middendorf and the Cape Fear formations, underlying the southeastern coastal plain of South Carolina. Aerobic chemoheterotrophic bacteria were enumerated on a dilute medium, and populations ranged from 3.1 to 6.4 log CFU g of sediment[sup [minus]1] in the Middendorf cores and from below detection to 4.3 log CFU g[sup [minus]1] in the Cape Fear cores. A total of 198 morphologically distinct colony types were isolated, purified, and subjected to 108 different physiological measurements. The isolates from the two formations were distinct as were those in different core samples from the same formation. Cluster analysis revealed 21 different biotypes based on similarities of 75% or higher in response patterns to 21 physiological assays. One biotype contained 57 of the subsurface isolates, 10 biotypes contained 5 or more isolates, and the remainder had 4 or fewer. The organic compounds that were most commonly metabolized by the subsurface bacteria included Tween 40 and [beta]-hydroxybutyric acid. Organic acids, in general, were also commonly metabolized by the subsurface bacteria. Isolates from the Cape Fear core segments were capable of metabolizing a higher percentage of the substrates than were bacteria isolated from the Middendorf formation. Although the heterogeneous distributions of bacteria in deep subsurface sediments may make it difficult to use aquifer microcosms to predict in situ biotransformation rates, the diversity of the physiological properties of these organisms offers promise for in situ remediation of contaminants.

  19. Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2005-01-01

    Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As

  20. Ocean floor sediment as a repository barrier: comparative diffusion data for selected radionuclides in sediments from the Atlantic and Pacific Oceans

    SciTech Connect

    Schreiner, F.; Sabau, C.; Friedman, A.; Fried, S.

    1985-01-01

    Effective diffusion coefficients for selected radionuclides have been measured in ocean floor sediments to provide data for the assessment of barrier effectiveness in subseabed repositories for nuclear waste. The sediments tested include illite-rich and smectite-rich red clays from the mid-plate gyre region of the Pacific Ocean, reducing sediment from the continental shelf of the northwest coast of North America, and Atlantic Ocean sediments from the Southern Nares Abyssal Plain and the Great Meteor East region. Results show extremely small effective diffusion coefficients with values less than 10/sup -14/ m/sup 2/s/sup -1/ for plutonium, americium, curium, thorium, and tin. Radionuclides with high diffusion coefficients of approximately 10/sup -10/ m/sup 2/s/sup -1/ include the anionic species pertechnetate, TcO/sub 4//sup -/, iodide, I/sup -/, and selenite, SeO/sub 3//sup -2/. Uranyl(VI) and neptunyl(V) ions, which are stable in solution, have diffusion coefficients around 10/sup -12/ m/sup 2/s/sup -1/. The diffusion behavior of most radionuclides is similar in the oxygenated Pacific sediments and in the anoxic sediments from the Atlantic. An exception is neptunium, which is immobilized by Great Meteor East sediment, but has high mobility in Southern Nares Abyssal Plain sediment. Under stagnant conditions a 30 m thick sediment layer forms an effective geologic barrier isolating radionuclides in a subseabed repository from the biosphere. 13 refs., 5 figs., 1 tab.

  1. Ocean floor sediment as a repository barrier: comparative diffusion data for selected radionuclides in sediments from the Atlantic and Pacific Oceans

    SciTech Connect

    Schreiner, F.; Sabau, C.; Friedman, A.; Fried, S.

    1986-01-01

    Effective diffusion coefficients for selected radionuclides have been measured in ocean floor sediments to provide data for the assessment of barrier effectiveness in subseabed repositories for nuclear waste. The sediments tested include illite-rich and smectite-rich red clays from the mid plate gyre region of the Pacific Ocean, reducing sediment from the continental shelf of the northwest coast of North America, and Atlantic Ocean sediments from the Southern Nares Abyssal Plain and the Great Meteor East region. Results show extremely small effective diffusion coefficients with values less than 10/sup -14/ m/sup 2/s/sup -1/ for plutonium, americium, curium, thorium, and tin. Radionuclides with high diffusion coefficients of approximately 10/sup -10/ m/sup 2/s/sup -/ include the anionic species pertechnetate, TcO/sub 4//sup -/, iodide, I/sup -/, and selenite, SO/sub 3//sup -2/. Uranyl(VI) and neptunyl(V) ions, which are stable in solution, have diffusion coefficients around 10/sup -12/m/sup 2/s/sup -1/. The diffusion behavior of most radionuclides is similar in the oxygenated Pacific sediments and in the anoxic sediments from the Atlantic. An exception is neptunium, which is immobilized by Great Meteor East sediment, but has high mobility in Southern Nares Abyssal Plain sediment. Under stagnant conditions a 30 m thick sediment layer forms an effective geologic barrier isolating radionuclides in a subseabed repository from the biosphere.

  2. Sedimentation patterns across a Coastal Plain floodplain: The importance of hydrogeomorphic influences and cross-floodplain connectivity

    NASA Astrophysics Data System (ADS)

    Kaase, Christopher T.; Kupfer, John A.

    2016-09-01

    The floodplains of large Coastal Plain rivers in the southeastern U.S. are important long-term storage sites for alluvial sediment and nutrients. Yet considerable uncertainty surrounds sediment dynamics on many large river floodplains and, in particular, the local scale factors that affect the flux of sediment and nutrients from rivers onto their floodplains and their subsequent deposition. This research quantifies short-term rates of sediment deposition from 2012 to 2014 on floodplain sites at Congaree National Park using feldspar pads. Sediment deposition rates ranged from 0.1 to 15.6 cm (median = 1.46 cm) and were closely associated with inundation frequency and geomorphic position. Cross-floodplain distributary channels served as particularly important conduits for moving sediment onto the floodplain. Physical and chemical analyses of soil samples demonstrated that the most flood-exposed sites had higher major nutrient and micronutrient levels (especially of phosphorus) and more diverse nutrient compositions. This research advances current understandings of lateral floodplain connectivity by demonstrating the complex effects of regional hydrology and local floodplain environmental characteristics on the supply of sediment and nutrients.

  3. Runoff and sediment responses to grazing native and introduced species on highly erodible Southern Great Plains soil

    NASA Astrophysics Data System (ADS)

    Wine, Michael L.; Zou, Chris B.; Bradford, James A.; Gunter, Stacey A.

    2012-07-01

    SummaryOld World Bluestems, such as yellow bluestem (Bothriochloa ischaemum), have been seeded extensively in the Southern Great Plains because they are responsive to nitrogen fertilization and allow for higher stocking rates. From 1991 to 2005, we measured the effects of moderately grazing prairie species and heavily grazing fertilized yellow bluestem on runoff, sediment yield, leaf litter cover, and aboveground plant biomass for four adjacent watersheds located at the USDA-ARS Southern Plains Range Research Station in the sub-humid Rolling Red Plains of western Oklahoma. Here we show that factors other than leaf litter cover and biomass determine variation in runoff when leaf litter exceeds 70%. Runoff was related to grazing rate and storm size and inversely related to storm duration. Rainfall thresholds were similar between the moderately grazed prairie watersheds (15 mm) and the heavily grazed yellow bluestem watersheds (18 mm); however, the slope of the rainfall-runoff curve from heavily grazed yellow bluestem (0.242) was steeper than that of moderately grazed prairie (0.087). Slightly higher runoff from heavily grazed yellow bluestem relative to moderately grazed prairie may occur due to compaction of both the leaf litter and topsoil. Sediment yield was low from moderately grazed native prairie and heavily grazed yellow bluestem. Our findings indicate that both treatments assessed appear hydrologically sustainable.

  4. Bacteria in deep coastal plain sediments of Maryland: a possible source of CO/sub 2/ to ground water

    SciTech Connect

    Chapelle, F.H.; Zelibor, J.L. Jr.; Grimes, D.J.; Knobel, L.L.

    1987-01-01

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 10/sup 8/ to 10/sup 4/ bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 10/sup 6/ to 10/sup 3/ bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria in these sediments suggest that hetrotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO/sub 2/ to ground water. However, the possibility that abiotic processes also produce CO/sub 2/ cannot be rules out. Estimated rates of CO/sub 2/ production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, ground water flow rates, and flow path segment lengths are in the range 10/sup -3/ to 10/sup -5/ mmol L/sup -1/ yr/sup -1/. Isotope balance calculations suggest that aquifer-generated CO/sub 2/ is much heavier isotopically ( approx. - 10 to + 5 per mil) than lignite ( approx. - 24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.

  5. Vertical variation of potential mobility of heavy metal in sediment to groundwater of the Kanto plain, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, S.; Hachinohe, S.; Ishiyama, T.; Hamamoto, H.; Oguchi, C. T.

    2014-12-01

    Heavy metals release from sediment may occur due to sediment water interaction under different changing environmental conditions. This has substantial influence on groundwater quality. However, identification of potentially mobile fractions of metals like Cu, Cr, Ni, Pb, Zn, Fe, Mn and Ti requires for the sustainable land and groundwater development and pollution management. 44 sediment and pore water samples at 1 m interval were analyzed from a vertical profile beneath the Naka river at the bottom of Central Kanto plain, Japan. Sequential extraction method was applied to determine potentially mobile forms of metals such as water soluble, ion exchangeable, acid soluble and Fe-Mn oxide bound. Metals were determined using X-Ray Fluorescence, Inductively coupled plasma atomic emission and mass spectrometer. Analyses show that potential mobility is high in river bed, volcanic ash mix, marine and transitional clayey silt. Metal mobility was higher in lower gravelly aquifer than upper sandy aquifer. Potential mobility and bioavailability of Zn, Cu, Ni, Pb and Mn are very high in river bed sediment which may pose threat to river bottom aquatic system. Zn, Cu and Ni concentration in pore water is high in river bed and peat bearing sediment. In pore water of marine and transitional sediment ion concentration such as Ca2+ and SO42- is very high indicating high mobility of Calcium and Sulfur from sediment as no significant variation observed in total content. In vertical profile, potential mobility tendency of metal in sediment trends to be Zn > Cu > Ni > Cr > Pb > Mn > Fe > Ti. Current study indicates low potential mobility and pollution risk to groundwater due to overall low metal concentration in pore water and high portion of metals attached with sediment as Fe-Mn oxide bound. More over under strong reducing condition considerable amount of metals will release and pollute groundwater.

  6. Invertebrate colonization of leaves and roots within sediments of intermittent coastal plain streams across hydrologic phases

    EPA Science Inventory

    We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots and plastic roots) among three intermittent Coastal Plain streams over a one year period. Invertebrate density was significantly lower in root litterbags than in plastic root l...

  7. Late Hesperian plains formation and degradation in a low sedimentation zone of the northern lowlands of Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Berman, D.C.; Kargel, J.S.

    2010-01-01

    The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically

  8. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA

    USGS Publications Warehouse

    Barringer, Julia L.; Mumford, Adam; Young, Lily Y.; Reilly, Pamela A.; Bonin, Jennifer L.; Rosman, Robert

    2010-01-01

    The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15–25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.

  9. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan — Insights from diatoms, nannoliths and grain size distribution

    NASA Astrophysics Data System (ADS)

    Szczuciński, Witold; Kokociński, Mikołaj; Rzeszewski, Michał; Chagué-Goff, Catherine; Cachão, Mario; Goto, Kazuhisa; Sugawara, Daisuke

    2012-12-01

    The 11th March 2011 Tohoku-oki tsunami inundated the low-lying Sendai Plain (Japan) more than 5 km inland leaving sand and mud deposits over most of the area. In order to establish the sources of the tsunami deposits and interpret processes of their sedimentation, samples were collected from the deposits, underlying soils and the beach along a shore-perpendicular transect and analysed for grain size, diatom assemblages and nannoliths. The fining-inland tsunami deposits consisted of poorly to moderately sorted medium to coarse sand within 2 km of the coastline and very poorly to poorly sorted mud farther inland. More specifically, there was a slight fining of the coarse to medium sand mode within the sandy deposits and an increased contribution of the coarse and very coarse silt fraction in the mud deposits. The tsunami deposits also exhibited vertical changes including fining upward and coupled coarsening-fining upward trends. Few diatoms were present in beach sediments, soils and tsunami deposits within 1 km of the coastline, while diatoms were more abundant farther inland. Diatom assemblages in the soil and tsunami deposits were similar and dominated by species typical of freshwater-brackish habitats, while no typically marine species were encountered. Nannoliths were generally absent in the studied sediments, except for few specimens. Our data indicate that there was probably no or only a very minor component of marine sediments transported onland by the tsunami. The sandy tsunami deposits within ~ 1 km of the coastline were mostly derived from beach and dune erosion. From 1 to 2 km landward the contribution of these sources decreased, while sources comprising local soil erosion and the entrainment of sediments from the Teizan-bori canal increased. Farther inland, local soil erosion was the major sediment source for the mud deposits. The tsunami deposits were most likely deposited during at least two inundations, mostly out from suspension resulting in an upward

  10. Effects of sediment depositional environment and ground-water flow on the quality and geochemistry of water in aquifers in sediments of Cretaceous age in the coastal plain of South Carolina

    USGS Publications Warehouse

    Speiran, Gary K.; Aucott, Walter R.

    1994-01-01

    The quality and geochemistry of ground water are significantly affected by the depositional environment of aquifer sediments. Cretaceous sediments in the Coastal Plain of South Carolina have been deposited in fluvial, delta-plain, marginal-marine, and marine environments. Depositional environments of sediments within a single aquifer may grade from nonmarine, fluvial, or upper delta plain near the updip limit of the aquifer to transitional, lower delta plain and to marine toward the coast. In nonmarine sediments the major source of inorganic carbon in the water is the decomposition of organic material. The major aqueous geochemical processes are the dissolution and alteration of silicate minerals. Silica makes up a major part of the dissolved constituents in water from these sediments. In transitional and marine sediments the major aqueous geochemical processes are (1) the dissolution of calcium carbonate by hydrolysis and by carbonic acid derived from the decomposition of organic material and (2) the exchange of calcium in solution for sodium on the marine-clay minerals. The clay minerals may also serve as buffers by neutralizing the hydroxyl ion produced by hydrolysis. The effects of incompletely flushed dilute saltwater on water quality increase toward the coast and toward the northeast.

  11. Productivity of ephemeral headwater riparian forests impacted by sedimentation in the southeastern United States coastal plain.

    PubMed

    Jolley, Rachel L; Lockaby, B Graeme; Cavalcanti, Guadalupe G

    2009-01-01

    Riparian forests serve an essential function in improving water quality through the filtering of sediments and nutrients from surface runoff. However, little is known about the impact of sediment deposition on productivity of riparian forests. Sediment inputs may act as a subsidy to forest productivity by providing additional nutrients for plant uptake or may act as a stress by creating anoxic soil conditions. This study determined how sediment deposition affected riparian forests along ephemeral headwater streams at Ft. Benning, Georgia, USA. Above- and belowground productivity, leaf-area index (LAI), and standing crop biomass for fine roots, shrubs, and trees were compared along a gradient of present sedimentation rates in 17 riparian forests. Annual litterfall production was determined from monthly collections using 0.25- m(2) traps; woody biomass was determined from annual diameter at breast height (DBH) measurements using species-specific allometric equations; fine root productivity was determined using sequential coring; LAI was measured by expanding specific leaf area by annual litterfall production; and shrub biomass was determined using species-specific biomass equations based on height and root collar diameter. Significant declines in litterfall, woody biomass production, fine root production, LAI, and shrub biomass were found with as little as 0.1 to 0.4 cm yr(-2) sedimentation. We conclude that the levels of sedimentation in this study do not subsidize growth in ephemeral headwater riparian forests but instead create a stress similar to that found under flooded conditions.

  12. Long-term change in the abyssal NE Atlantic: The ‘Amperima Event’ revisited

    NASA Astrophysics Data System (ADS)

    Billett, D. S. M.; Bett, B. J.; Reid, W. D. K.; Boorman, B.; Priede, I. G.

    2010-08-01

    The results from a time series study (1989-2005) at a depth of 4850 m on the Porcupine Abyssal Plain, NE Atlantic, are presented, showing radical changes in the density of large invertebrates (megafauna) over time. Major changes occurred in a number of different taxa between 1996 and 1999 and then again in 2002. One species of holothurian, Amperima rosea, was particularly important, increasing in density by over three orders of magnitude. There were no significant changes in total megafaunal biomass during the same period. Peaks in density were correlated to reductions in mean body size, indicating that the increases were related to large-scale recruitment events. The changes occurred over a wide area of the Porcupine Abyssal Plain. Comparisons made with changes in the density of protozoan and metazoan meiofauna, and with macrofauna, showed that major changes in community structure occurred in all size fractions of the benthic community at the same time. This suggests that the faunal changes were driven by environmental factors rather than being stochastic population imbalances of one or two species. Large-scale changes in the flux of organic matter to the abyssal seafloor have been noted in the time series, particularly in 2001, and may be related to the sudden mass occurrence of A. rosea the following year. Time-varying environmental factors are important in influencing the occurrence of megafauna on the abyssal seafloor.

  13. Sediment Sources, Sedimentation Processes and Post-Depositional Changes of the 2011 Tohoku-Oki Tsunami Deposits on the Sendai Plain, Japan

    NASA Astrophysics Data System (ADS)

    Szczucinski, W.; Chague-Goff, C.; Goto, K.; Sugawara, D.; Jagodzinski, R.; Kokocinski, M.; Cachao, M.; Sternal, B.; Rzeszewski, M.; Goff, J. R.; Jaffe, B. E.

    2012-12-01

    The 11th March 2011 Tohoku-oki tsunami inundated the low-lying Sendai Plain (Japan) more than 5 km inland leaving sand and mud deposits over most of the area. In order to establish the sources of the tsunami deposits and interpret processes of their sedimentation, samples were collected from the deposits, underlying soils and the beach along a shore-perpendicular transect and analysed for grain size, heavy minerals, diatom assemblages and nannoliths. Surveys were undertaken 2, 5 and 7 months after the tsunami to assess the importance of post-depositional changes in tsunami deposits. The last survey took place shortly after a major typhoon. The fining-inland tsunami deposits consisted of poorly to moderately sorted medium to coarse sand within 2 km of the coastline and very poorly to poorly sorted mud farther inland. The tsunami deposits also exhibited vertical changes including fining upward and coupled coarsening-fining upward trends. Heavy minerals comprised on average 35% of the tsunami deposit in the 0.125 - 0.25 mm grain size fraction. Heavy mineral concentrations and assemblages were similar in the tsunami deposits, beach and underlying soils. Diatoms were rare in beach sediments, soils and tsunami deposits within 1 km of the coastline, while they were more abundant farther inland. Diatom assemblages in the soil and tsunami deposits were similar and dominated by species typical of freshwater-brackish habitats, while no typically marine species were encountered. Nannoliths were generally absent in the studied sediments, except for few specimens. Our data indicate that there was probably no or only a very minor component of marine sediments transported onland by the tsunami. The sandy tsunami deposits within ~1 km of the coastline were mostly derived from beach and dune erosion. From 1 to 2 km landward the contribution of these sources decreased, while sources comprising local soil and inland canal sediments increased. Farther inland, mud deposits were mostly

  14. Late Pleistocene to Holocene environmental changes as recorded in the sulfur geochemistry of coastal plain sediments, southwestern Taiwan

    USGS Publications Warehouse

    Chen, Y.-G.; Liu, J.C.-L.; Shieh, Y.-N.; Liu, T.-K.

    2004-01-01

    A core, drilled at San-liao-wan in the southwestern coastal plain of Taiwan, has been analyzed for total sulfur contents, isotopic values, as well as ratios of pyritic sulfur to organic carbon. Our results demonstrate a close relationship between late Pleistocene sea-level change and the proxies generated in this study. The inorganic sulfur contents indicate that at our study site, the Holocene transgression started at ???11 ka and remained under seawater for thousands of years until the late Holocene, corresponding to a depth of 20 m in the study core. The uppermost 20 m of core shows relatively high total organic carbon (TOC) and ??34S of inorganic sulfur, suggesting a transitional environment such as muddy lagoon or marsh, before the site turned into a modern coastal plain. In the lower part of the core, at depths of 110-145 m (corresponding ages of ???12-30 ka), low sulfur contents are recorded, probably indicating fluvial sediments deposited during the oceanic isotope stage (OIS) 2, a sea-level lowstand. The lower part of the core, roughly within OIS 3, records at least two transgressions, although the transgressional signals may be somewhat obscured by subsequent weathering. The reworked origin of organic matter reported in previous studies is confirmed by our organic sulfur data; however, the marine organic source was periodically dominant. The modern high sulfate concentrations in pore water have no correlation to the other sulfur species in the sediments, probably indicating that the sulfate migrated into the site subsequent to early diagenesis. ?? 2003 Elsevier Ltd. All rights reserved.

  15. Arsenic in sediments, groundwater, and streamwater of a glauconitic Coastal Plain terrain, New Jersey, USA-Chemical " fingerprints" for geogenic and anthropogenic sources

    USGS Publications Warehouse

    Barringer, J.L.; Reilly, P.A.; Eberl, D.D.; Blum, A.E.; Bonin, J.L.; Rosman, R.; Hirst, B.; Alebus, M.; Cenno, K.; Gorska, M.

    2011-01-01

    Glauconite-bearing deposits are found worldwide, but As levels have been determined for relatively few. The As content of glauconites in sediments of the Inner Coastal Plain of New Jersey can exceed 100mg/kg, and total As concentrations (up to 5.95??g/L) found historically and recently in streamwaters exceed the State standard. In a major watershed of the Inner Coastal Plain, chemical " fingerprints" were developed for streambed sediments and groundwater to identify contributions of As to the watershed from geologic and anthropogenic sources. The fingerprint for streambed sediments, which included Be, Cr, Fe and V, indicated that As was predominantly of geologic origin. High concentrations of dissolved organic C, nutrients (and Cl-) in shallow groundwater indicated anthropogenic inputs that provided an environment where microbial activity released As from minerals to groundwater discharging to the stream. Particulates in streamwater during high flow constituted most of the As load; the chemical patterns for these particulates resembled the geologic fingerprint of the streambed sediments. The As/Cr ratio of these suspended particles likely indicates they derived not only from runoff, but from groundwater inputs, because As contributed by groundwater is sequestered on streambed sediments. Agricultural inputs of As were not clearly identified, although chemical characteristics of some sediments indicated vehicle-related inputs of metals. Sediment sampling during dry and wet years showed that, under differing hydrologic conditions, local anthropogenic fingerprints could be obscured but the geologic fingerprint, indicating glauconitic sediments as an As source, was robust. ?? 2011.

  16. Sediment-Chlorophyll Relationship in Oxbow Lakes in the Mississippi River Alluvial Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During of the past century, aquatic habitats have declined worldwide, primarily due to draining and clearing for agriculture and urban development. These activities often result in increased erosion and sedimentation with detrimental impacts on stream and lake water quality. Oxbow lakes are importa...

  17. Chromium and nickel as indicators of source-to-sink sediment transfer in a Holocene alluvial and coastal system (Po Plain, Italy)

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro

    2012-12-01

    A reliable quantitative estimate of changes in source-to-sink sediment transfer requires that high-resolution stratigraphic studies be coupled with accurate reconstructions of spatial and temporal variability of the sediment-routing system through time. Source-to-sink patterns from the contributing upland river catchments to the deltaic and coastal system are reconstructed from the Holocene succession of the Po Plain on the basis of selected geochemical indicators. Sediment supplied to the delta area by the major trunk river (the Po) exhibits naturally high Cr and Ni values, which invariably exceed the maximum permissible concentrations for unpolluted sites. This 'anomaly' reflects remarkable sediment contribution from ultramafic (ophiolitic) parent rocks cropping out in the Po drainage basin (Western Alps and NW Apennines). In contrast, alluvial and coastal plain deposits supplied by ophiolite-free, Apenninic catchments invariably display lower Cr and Ni contents. For constant sediment provenance domain, Cr and Ni distribution is observed to be controlled primarily by hydraulic sorting. Clay-silt deposits (floodplain, swamp and lagoon/bay facies associations) invariably show higher metal concentrations than their sandy counterparts (fluvial-channel, distributary-channel and beach-ridge facies associations). From a stratigraphic perspective, in sedimentary basins characterized by strong differences in sediment composition geochemical fingerprinting of individual facies associations framed by surfaces of chronostratigraphic significance is proposed as an invaluable approach towards an accurate quantitative assessment of sediment storage in alluvial and coastal depositional systems as opposed to volumetric reconstructions based on lithologic or geometric criteria alone.

  18. Authigenic uranium in Atlantic sediments of the last glacial stage — a diagenetic phenomenon

    NASA Astrophysics Data System (ADS)

    Thomson, J.; Wallace, H. E.; Colley, S.; Toole, J.

    1990-05-01

    Cores from three different Atlantic localities (equatorial, Cape Verde Rise and Porcupine Abyssal Plain) are shown to have anomalous high U contents (5-8 ppm total) in sediments laid down during the last glacial stage (12-24 ky BP). Radiocarbon data demonstrate that the sediments hosting the peak U levels were accumulated at rates similar to those immediately above and below. All the cores exhibit maximum Mn levels, characteristic colour changes, and maximum U levels in the same sequence with increasing depth in core. On the evidence of the similarities between the cores, and pore water U data from a Porcupine Abyssal Plain site, it is proposed that the authigenic U enrichments are syndiagenetic and possibly active. No correlation is observed between sediment authigenic U and C org contents. The source of enrichment is bottom water U which has diffused downwards into the sediments to be sorbed at a particular redox level, located 10-30 cm below the oxic/post-oxic boundary marked by the colour change. The magnitude of the enrichments is caused by the persistence of this boundary at a particular level as a result of the decrease in mean sediment accumulation rate between the last glacial stage (5.2 up to at least 19.1 cm ky -1) and the Holocene (2.2-4.1 cm ky -1). Similar accumulation rate contrasts are expected to be widespread in the Atlantic, and the implications for previous reported work, particularly from the Mid-Atlantic Ridge, are discussed.

  19. Suspended sediment yield of New Jersey coastal plain streams draining into the Delaware estuary

    USGS Publications Warehouse

    Mansue, Lawrence J.

    1972-01-01

    The purpose of this report is to summarize sediment data collected at selected stream-sampling sites in southern New Jersey. Computations of excepted average annual yields at each sampling site were made and utilized to estimate the annual yield at ungaged sites. Similar data currently are being compiled for streams draining Pennsylvania and Delaware. It is planned to report on the combined information at a later date in the Geological Survey's Water-Supply Paper series.

  20. [Distribution of sediment iron of the ditch system in Sanjiang Plain, northeast China].

    PubMed

    Zou, Yuan-Chun; Lü, Xian-Guo; Jiang, Ming; Xi, Min

    2009-03-15

    The iron distribution of the multi-level ditch system (hair canal-field canal-lateral canal-branch canal-main canal) was studied through total iron determination of the sediments (0-60 cm). The results showed that the mean concentration was (3.02 +/- 0.10) x 10(4) mg x kg(-1). Extremely significant difference was obseved between different ditch level (F = 6.261, p < 0.001), and the highest and the lowest concentration were present in the farmland lateral canal (3.71 x 10(4) mg x kg(-1)) and wetland canal (2.43 x 10(4) mg x kg(-1)), respectively. The difference of different sediment layers was not significant (F = 0.093, p = 0.693), while the iron concentrations of 0-10 cm and 10-20 cm sediments were 51.96% and 62.22% higher than that of the natural wetland soil nearby, respectively. Iron can transfer with the runoff in a certain extent, but it was not cumulated along the ditch system with the largest cumulation location at the third level. The runoff containing iron decreased gradully because of the wetland protection and climate change nowadays. The horizontal transfer of iron along the ditch system indicated the timing and intensity of iron loss in the past since the canals were dredged. PMID:19432346

  1. Effects of agricultural tillage and sediment accumulation on emergent plant communities in playa wetlands of the U.S. High Plains.

    PubMed

    O'Connell, Jessica L; Johnson, Lacrecia A; Daniel, Dale W; McMurry, Scott T; Smith, Loren M; Haukos, David A

    2013-05-15

    Identifying community assembly filters is a primary ecological aim. The High Plains, a 30 million ha short-grass eco-region, is intensely cultivated. Cultivation disturbance, including plowing and eroded soil deposition down-slope of plowing, influences plant composition in depressional wetlands, such as playas, within croplands. We evaluated influences of wetland cultivation and sediment deposition on plant composition in playas embedded within croplands (46 plowed and 32 unplowed) and native grasslands (79) across 6 High Plains' states. Sediment accumulation ranged from 7 to 78 cm in cropland and 1 to 35 cm in grassland playas. Deeper sediments and plowing each decreased wetland plant richness, 28% and 70% respectively in cropland wetlands. Sediment depth reduced richness 37% in small grasslands playas while it increased richness 22% in larger ones, suggesting moderate disturbance increased richness when there were nearby propagule sources. Sediment depth was unrelated to species richness in plowed wetlands, probably because plowing was a strong disturbance. Plowing removed perennial plants from vegetation communities. Sediment accumulation also influenced species composition in cropland playas, e.g., probability of Eleocharis atropurpurea increased with sediment depth, while probability of Panicum capillare decreased. In grassland playas, observed lighter sediment depths did not influence species composition after accounting for wetland area. Sediment accumulation and plowing shift wetland plant communities toward annual species and decrease habitat connectivity for wetland-dependent organisms in cropland playas over 39,000 and 23,400 ha respectively. Conservation practices lessening sediment accumulation include short-grass buffer strips surrounding wetlands. Further, wetland tillage, allowed under federal agricultural conservation programs, should be eliminated.

  2. Effects of agricultural tillage and sediment accumulation on emergent plant communities in playa wetlands of the U.S. High Plains.

    PubMed

    O'Connell, Jessica L; Johnson, Lacrecia A; Daniel, Dale W; McMurry, Scott T; Smith, Loren M; Haukos, David A

    2013-05-15

    Identifying community assembly filters is a primary ecological aim. The High Plains, a 30 million ha short-grass eco-region, is intensely cultivated. Cultivation disturbance, including plowing and eroded soil deposition down-slope of plowing, influences plant composition in depressional wetlands, such as playas, within croplands. We evaluated influences of wetland cultivation and sediment deposition on plant composition in playas embedded within croplands (46 plowed and 32 unplowed) and native grasslands (79) across 6 High Plains' states. Sediment accumulation ranged from 7 to 78 cm in cropland and 1 to 35 cm in grassland playas. Deeper sediments and plowing each decreased wetland plant richness, 28% and 70% respectively in cropland wetlands. Sediment depth reduced richness 37% in small grasslands playas while it increased richness 22% in larger ones, suggesting moderate disturbance increased richness when there were nearby propagule sources. Sediment depth was unrelated to species richness in plowed wetlands, probably because plowing was a strong disturbance. Plowing removed perennial plants from vegetation communities. Sediment accumulation also influenced species composition in cropland playas, e.g., probability of Eleocharis atropurpurea increased with sediment depth, while probability of Panicum capillare decreased. In grassland playas, observed lighter sediment depths did not influence species composition after accounting for wetland area. Sediment accumulation and plowing shift wetland plant communities toward annual species and decrease habitat connectivity for wetland-dependent organisms in cropland playas over 39,000 and 23,400 ha respectively. Conservation practices lessening sediment accumulation include short-grass buffer strips surrounding wetlands. Further, wetland tillage, allowed under federal agricultural conservation programs, should be eliminated. PMID:23500104

  3. Arsenic concentrations in soils and sediments of the southern Pampean Plain, within Claromecó River Basin (Argentina)

    NASA Astrophysics Data System (ADS)

    Sosa, N. N.; Datta, S.; Zarate, M.

    2015-12-01

    The Pampean plain is an extensive flatland covering ~1000000 km2 of central and northern Argentina. The region, dominated by Neogene and quaternary volcanoclastic loess and loess-like deposits, shows one of the highest groundwater As concentrations of the world which cause serious problems to human health. The oxidising and high pH conditions of the Pampean groundwater leads to the dissolution of volcanic glass and Fe oxy-hydroxides and the release of As to water. Variation of As content related to lithogenic factors is evident from our study in Claromecó River Basin (Southern Pampean plain): the Mio-Pliocene fluvial facies (MPFF) show low As content (2.6mg/kg) compared to the Late Pleistocene fluvial facies (11.6mg/kg; LPFF). Furthermore, the pedogenic calcrete and the paleosols developed in fluvial facies present significantly different As content: 3.9 mg/Kg in MPFF pedogenic calcrete and 16.5 mg/Kg in LPFF paleosols. Modern soils show the highest As content, especially in the illuvial horizons (23.3 mg/Kg) controlled by grain size and clay mineralogy constituents. Preliminary results demonstrate a sedimentological control embarking differences in As concentrations. These differences are probably attributed to a major hydraulic gradient during the MPFF, which is reflected in grain size and in fluvial structures, which probably was followed by washed out sediments. A geomorphological control was observed through an increase of As concentrations from the interfluves (MPFF) to the valleys (LPFF) as well as from the upper to the lower basin zone within the LPFF. Pedogenic calcrete and paleosols developed in MPFF and LPFF respectively reflect the different geomorphological conditions showing high As content in LPFF paleosols (attributed to Fe oxy-hydroxides). This study relates mineralogy and sedimentological environment to groundwater, surface water from wetlands to understand the hydrochemical processes in controlling As within the Claromecó basin.

  4. Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA

    USGS Publications Warehouse

    Wehmiller, J. F.; Thieler, E.R.; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.

    2010-01-01

    The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ???90. m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided

  5. Statistical Stationarity of Sediment Interbed Thicknesses in a Basalt Aquifer, Idaho National Laboratory, Eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Stroup, Caleb N.; Welhan, John A.; Davis, Linda C.

    2008-01-01

    The statistical stationarity of distributions of sedimentary interbed thicknesses within the southwestern part of the Idaho National Laboratory (INL) was evaluated within the stratigraphic framework of Quaternary sediments and basalts at the INL site, eastern Snake River Plain, Idaho. The thicknesses of 122 sedimentary interbeds observed in 11 coreholes were documented from lithologic logs and independently inferred from natural-gamma logs. Lithologic information was grouped into composite time-stratigraphic units based on correlations with existing composite-unit stratigraphy near these holes. The assignment of lithologic units to an existing chronostratigraphy on the basis of nearby composite stratigraphic units may introduce error where correlations with nearby holes are ambiguous or the distance between holes is great, but we consider this the best technique for grouping stratigraphic information in this geologic environment at this time. Nonparametric tests of similarity were used to evaluate temporal and spatial stationarity in the distributions of sediment thickness. The following statistical tests were applied to the data: (1) the Kolmogorov-Smirnov (K-S) two-sample test to compare distribution shape, (2) the Mann-Whitney (M-W) test for similarity of two medians, (3) the Kruskal-Wallis (K-W) test for similarity of multiple medians, and (4) Levene's (L) test for the similarity of two variances. Results of these analyses corroborate previous work that concluded the thickness distributions of Quaternary sedimentary interbeds are locally stationary in space and time. The data set used in this study was relatively small, so the results presented should be considered preliminary, pending incorporation of data from more coreholes. Statistical tests also demonstrated that natural-gamma logs consistently fail to detect interbeds less than about 2-3 ft thick, although these interbeds are observable in lithologic logs. This should be taken into consideration when

  6. Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria.

    PubMed

    Agbalagba, E O; Onoja, R A

    2011-07-01

    This paper presents the findings of a baseline study undertaken to evaluate the natural radioactivity levels in soil, sediment and water samples in four flood plain lakes of the Niger Delta using a hyper pure germanium (HPGe) detector. The activity profile of radionuclides shows low activity across the study area. The mean activity level of the natural radionuclides (226)Ra, (232)Th and (40)K is 20 ± 3, 20 ± 3 and 180 ± 50 Bq kg(-1), respectively. These values are well within values reported elsewhere in the country and in other countries with similar environments. The study also examined some radiation hazard indices. The mean values obtained are, 76 ± 14 Bq kg(-1), 30 ± 5.5 ηGy h(-1), 37 ± 6.8 μSv y(-1), 0.17 and 0.23 for Radium Equivalent Activity (Ra(eq)), Absorbed Dose Rates (D), Annual Effective Dose Rates (E(ff) Dose), External Hazard Index (H(ex)) and Internal Hazard Index (H(in)) respectively. All the health hazard indices are well below their recommended limits. The soil and sediments from the study area provide no excessive exposures for inhabitants and can be used as construction materials without posing any significant radiological threat to the population. The water is radiologically safe for domestic and industrial use. The paper recommends further studies to estimate internal and external doses from other suspected radiological sources to the population of the Biseni kingdom.

  7. Pleistocene paleosols in the loess and loess-like sediments of the central part of the russian plain

    NASA Astrophysics Data System (ADS)

    Yakimenko, E. Y.

    The Central part of the Russian Plain is a key region because of the complex interrelation of the Pleistocene glacials and interglacials. Fossil soils are not continuous in this region due to cryoturbation, erosion and other later processes. Morphological, chemical and micromorphological features of the Upper (Eemian) and Middle (Treenian) Pleistocene paleosols were investigated in the sections of loess and loess-like sediments on the plateau on the right bank of the River Oka. The Eemian soils studied have a humic (A1) horizon with typical biogenic multiordered microstructure and illuvial (B) horizon. The soil morphology is similar to that of the modern Grey-forest soils, which are widespread in this region. The Middle and Upper Pleistocene paleosols are separated by the Moscow (Warta) loess, but sometimes the Eemian fossil soil lies directly on the podzolic layer of the Treenian soil. The investigated Treenian paleosol exposed in the loess has no humic horizon and is very similar to the modern spodosol, indicating colder forest conditions in the region during this interglacial.

  8. Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata.

    PubMed

    Glover, Adrian G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Smith, Craig R; O'Hara, Tim; Mah, Christopher L; Dahlgren, Thomas G

    2016-01-01

    We present data from a DNA taxonomy register of the abyssal benthic Echinodermata collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration claim 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. Morphological and genetic data are presented for 17 species (4 Asteroidea, 4 Crinoidea, 2 Holothuroidea and 7 Ophiuroidea) identified by a combination of morphological and genetic data. No taxa matched previously published genetic sequences, but 8 taxa could be assigned to previously-described species based on morphology, although here we have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.

  9. Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms.

    PubMed

    Yang, Huai-Jen; Lee, Chi-Yu; Chiang, Yu-Ju; Jean, Jiin-Shuh; Shau, Yen-Hong; Takazawa, Eiichi; Jiang, Wei-Teh

    2016-11-01

    High arsenic abundance of 50-700μg/L in the groundwater from the Chianan Plain in southwestern Taiwan is a well-known environmental hazard. The groundwater-associated sediments, however, have not been geochemically characterized, thus hindering a comprehensive understanding of arsenic cycling in this region. In this study, samples collected from a 250m sediment core at the centre of the Chianan Plain were analyzed for arsenic and TOC concentrations (N=158), constituent minerals (N=25), major element abundances (N=105), and sequential arsenic extraction (N=23). The arsenic data show a prevalence of >10mg/kg with higher concentrations of 20-50mg/kg concentrated at 60-80 and 195-210m. Arsenic was extracted mainly as an adsorbate on clay minerals, as a co-precipitate in amorphous iron oxyhydroxide, and as a structural component in clay minerals. Since the sediments consist mainly of quartz, chlorite, and illite, the correlations between arsenic concentration and abundances of K2O and MgO pinpoint illite and chlorite as the major arsenic hosts. The arsenic-total iron correlation reflects the role of chlorite along with the contribution from amorphous iron oxyhydroxide as indicated by arsenic extraction data. Organic matter is not the dominant arsenic host for low TOC content, low arsenic abundance extracted from it, and a relatively low R(2) of the arsenic-TOC correlation. The major constituent minerals in the sediments are the same as those of the upriver metapelites, establishing a sink-source relationship. Composition data from two deep groundwater samples near the sediment core show Eh values and As(V)/As(III) ratios of reducing environments and high arsenic, K, Mg, and Fe contents necessary for deriving arsenic from sediments by desorption from clay and dissolution of iron oxyhydroxide. Therefore, groundwater arsenic was mainly derived from groundwater-associated sediments with limited contributions from other sources, such as mud volcanoes. PMID:27343940

  10. Algal pigments in Southern Ocean abyssal foraminiferans indicate pelagobenthic coupling

    NASA Astrophysics Data System (ADS)

    Cedhagen, Tomas; Cheah, Wee; Bracher, Astrid; Lejzerowicz, Franck

    2014-10-01

    The cytoplasm of four species of abyssal benthic foraminiferans from the Southern Ocean (around 51°S; 12°W and 50°S; 39°W) was analysed by High Performance Liquid Chromatography (HPLC) and found to contain large concentrations of algal pigments and their degradation products. The composition of the algal pigments in the foraminiferan cytoplasm reflected the plankton community at the surface. Some foraminiferans contained high ratios of chlorophyll a/degraded pigments because they were feeding on fresher phytodetritus. Other foraminiferans contained only degraded pigments which shows that they utilized degraded phytodetritus. The concentration of algal pigment and corresponding degradation products in the foraminiferan cytoplasm is much higher than in the surrounding sediment. It shows that the foraminiferans collect a diluted and sparse food resource and concentrate it as they build up their cytoplasm. This ability contributes to the understanding of the great quantitative success of foraminiferans in the deep sea. Benthic foraminiferans are a food source for many abyssal metazoans. They form a link between the degraded food resources, phytodetritus, back to the active metazoan food chains.

  11. Chemistry of bottom sediments from the Cal-Sag channel and the Des Plaines and Illinois Rivers between Joliet and Havana, Illinois

    SciTech Connect

    Harrison, W.; Kucera, E.T.; Tome, C.; Van Loon, L.S.; Van Luik, A.

    1981-02-01

    Cores were taken in 28 actual or proposed maintenance-dredging areas. Sixty-one core samples were analyzed to provide a data base for subsequent studies of the suitability of the potential dredged material for reclamation of abandoned surface-mined land bordering the Illinois Waterway. Samples were composited over 2-ft depth increments, up to a maximum 8-ft depth where possible. Parameters determined for each sample were: volatile solids, flash point, polyaromatic hydrocarbons (PAHs), base/neutral organic compounds, pH, total phosphorus, total phenols, oil and grease, polychlorinated biphenyls (PCBs), cyanide, arsenic, barium, cadmium, chromium, copper, lead, mercury, zinc, silver, nickel, selenium, and sulfide. Results showed PCBs to be higher in the Cal-Sag Channel sediments (..mu..=7.0 mg/kg) than in the Des Plaines River (..mu..=1.6 mg/kg), or Illinois River (..mu..=0.5 mg/kg) sediments. Concentrations of metals including arsenic, barium, cadmium, copper, lead, nickel, and silver were higher in the Des Plaines River samples than in the Cal-Sag Channel or Illinois River samples. Illinois River sediments were, generally, the least contaminated in terms of the measured parameters. Leach tests for arsenic, chromium, copper, lead, nickel, and zinc indicated low leachate-metal concentrations relative to total metal concentrations; thus, these metals exist in relatively insoluble solid states in the sediments.

  12. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria.

    PubMed

    Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban

    2016-01-01

    The deep ocean floor covers more than 60% of the Earth's surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000-5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838

  13. Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria

    PubMed Central

    Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban

    2016-01-01

    The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838

  14. Submarine ridges do not prevent large-scale dispersal of abyssal fauna: A case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida)

    NASA Astrophysics Data System (ADS)

    Menzel, Lena; George, Kai Horst; Arbizu, Pedro Martínez

    2011-08-01

    We examined the large-scale distribution of deep-sea harpacticoid copepods at the species level, in order to clarify the underlying processes of copepod dispersal. The study was based on samples collected from 12 regions and a total of 113 stations: 57 stations at depths between 1107 and 5655 m on abyssal plains in the South and North Atlantic, Southern Ocean, southern Indian Ocean, and the Pacific Ocean, and 56 stations above 900 m in the North Atlantic and eastern Mediterranean Sea. We chose the genus Mesocletodes Sars, 1909 as an ideal group to study the large-scale distribution of harpacticoid copepods in the deep oceans. Clear apomorphies and a comparatively large body size of about 1 mm allow rapid recognition of allied species in meiofauna samples. In addition, Mesocletodes represents more than 50% of the family Argestidae Por, 1986, one of the most abundant harpacticoid families in the deep sea. The geographical distributions of 793 adult females of Mesocletodes belonging to 61 species throughout the South and North Atlantic, Southern Ocean, southern Indian Ocean, Pacific Ocean, and eastern Mediterranean Sea indicated that most species are cosmopolitan. Neither the topography of the sea bottom nor long distances seem to prevent species from dispersing. Passive transport by bottom currents after resuspension is likely the propulsive factor for the dispersal of Harpacticoida, while plate tectonics and movement of individuals in the sediment may play relatively minor roles.

  15. Holocene environmental and climatic change in the Northern Great Plains as recorded in the geochemistry of sediments in Pickerel Lake, South Dakota

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2000-01-01

    m cycles (ca. 400-500 yr periodicity) in susceptibility. These cycles are interpreted as being due to variations in the influx of eolian detrital-clastic material. Century-scale cyclic variations in different proxy variables for aridity and eolian activity from sediments deposited over the past 2000 yr in other lakes in the northern Great Plains, as well as in sand dune activity, suggest that aridity cycles were the dominant feature of late Holocene climate of the northern Great Plains. (C) 2000 Elsevier Science Ltd and INQUA. All rights reserved.

  16. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region

  17. Response of Late Cretaceous migrating deltaic facies systems to sea level, tectonics, and sediment supply changes, New Jersey Coastal Plain, U.S.A.

    USGS Publications Warehouse

    Kulpecz, A.A.; Miller, K.G.; Sugarman, P.J.; Browning, J.V.

    2008-01-01

    Paleogeographic, isopach, and deltaic lithofacies mapping of thirteen depositional sequences establish a 35 myr high resolution (> 1 Myr) record of Late Cretaceous wave- and tide-influenced deltaic sedimentation. We integrate sequences defined on the basis of lithologic, biostratigraphic, and Sr-isotope stratigraphy from cores with geophysical log data from 28 wells to further develop and extend methods and calibrations of well-log recognition of sequences and facies variations. This study reveals the northeastward migration of depocenters from the Cenomanian (ca. 98 Ma) through the earliest Danian (ca. 64 Ma) and documents five primary phases of paleodeltaic evolution in response to long-term eustatic changes, variations in sediment supply, the location of two long-lived fluvial axes, and thermoflexural basement subsidence: (1) Cenomanian-early Turonian deltaic facies exhibit marine and nonmarine facies and are concentrated in the central coastal plain; (2) high sediment rates, low sea level, and high accommodation rates in the northern coastal plain resulted in thick, marginal to nonmarine mixed-influenced deltaic facies during the Turonign-Coniacian; (3) comparatively low sediment rates and high long-term sea level in the Santonian resulted in a sediment-starved margin with low deltaic influence; (4) well-developed Campanian deltaic sequences expand to the north and exhibit wave reworking and longshore transport of sands, and (5) low sedimentation rates and high long-term sea level during the Maastrichtian resulted in the deposition of a sediment-starved glauconitic shelf. Our study illustrates the widely known variability of mixed-influence deltaic systems, but also documents the relative stability of deltaic facies systems on the 106-107 yr scale, with long periods of cyclically repeating systems tracts controlled by eustasy. Results from the Late Cretaceous further show that although eustasy provides the template for sequences globally, regional tectonics

  18. Relation of sediment load and flood-plain formation to climatic variability, Paria River drainage basin, Utah and Arizona

    USGS Publications Warehouse

    Graf, J.B.; Webb, R.H.; Hereford, R.

    1991-01-01

    Flood-plain alluviation began about 1940 at a time of decreasing magnitude and frequency of floods in winter, summer, and fall. No floods with stages high enough to inundate the flood plain have occurred since 1980, and thus no flood-plain alluviation has occurred since then. The decrease in magnitude and frequency of floods appears to have resulted from a decrease in frequency of large storms, particularly dissipating tropical cyclones, and not from a decrease in annual or seasonal precipitation. -from Authors

  19. Environmental factors affecting distribution and abundance of bacteria, fungi and protozoa in subsurface sediments of the Upper Atlantic Coastal Plain, USA

    SciTech Connect

    Levine, S.N.; Ghiorse, W.C.

    1990-01-01

    Exploratory statistical analyses of microbiological, hydrological and geochemical data for samples from four boreholes drilled into Upper Atlantic Coastal Plain sediments near the Savannah River Site, SC, showed highly significant correlations between bacterial abundance (AODC and CFU) and hydraulic conductivity (K). Sediment texture variables (% sand (S), % silt, % clay (C), and S/C) were strongly interrelated with K and, therefore, also correlated with bacterial abundance. AODC did not correlate with the concentrations of dissolved inorganic nitrogen (DIN) or dissolved organic carbon (DOC) in pore water. CFU also did not correlate with DIN, but a negative relationship was found between the CFU and DOC for sandy sediments, suggesting that microbial activity may control pore water DOC concentration. In some, but not all boreholes, AODC and CFU correlated negatively with pore water concentrations of metals and positively with pH. Protozoan abundance correlated strongly with AODC and CFU in the two boreholes closest to the recharge areas for their major aquifers. It also correlated with sediment texture variables, but not with K. Fungal abundance did not correlate with the abundance of other microbial types when data from individual boreholes were considered; however it did correlate with both bacterial and protozoan abundance when data from all four boreholes were combined. There was no relationship between fungal abundance and either K or sediment texture.

  20. Environmental factors affecting distribution and abundance of bacteria, fungi and protozoa in subsurface sediments of the Upper Atlantic Coastal Plain, USA

    SciTech Connect

    Levine, S.N.; Ghiorse, W.C.

    1990-12-31

    Exploratory statistical analyses of microbiological, hydrological and geochemical data for samples from four boreholes drilled into Upper Atlantic Coastal Plain sediments near the Savannah River Site, SC, showed highly significant correlations between bacterial abundance (AODC and CFU) and hydraulic conductivity (K). Sediment texture variables (% sand (S), % silt, % clay (C), and S/C) were strongly interrelated with K and, therefore, also correlated with bacterial abundance. AODC did not correlate with the concentrations of dissolved inorganic nitrogen (DIN) or dissolved organic carbon (DOC) in pore water. CFU also did not correlate with DIN, but a negative relationship was found between the CFU and DOC for sandy sediments, suggesting that microbial activity may control pore water DOC concentration. In some, but not all boreholes, AODC and CFU correlated negatively with pore water concentrations of metals and positively with pH. Protozoan abundance correlated strongly with AODC and CFU in the two boreholes closest to the recharge areas for their major aquifers. It also correlated with sediment texture variables, but not with K. Fungal abundance did not correlate with the abundance of other microbial types when data from individual boreholes were considered; however it did correlate with both bacterial and protozoan abundance when data from all four boreholes were combined. There was no relationship between fungal abundance and either K or sediment texture.

  1. Global variations in abyssal peridotite compositions

    NASA Astrophysics Data System (ADS)

    Warren, Jessica M.

    2016-04-01

    Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, ~ 10% of abyssal peridotites are refractory (0

  2. Isotope and trace element geochemistry of sediments from the Barbados Ridge-Demerara Plain region, Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    White, William M.; Dupré, Bernard; Vidal, Philippe

    1985-09-01

    Twenty-four piston core sediment samples and 13 sediments and 3 basalts from DSDP Leg 78 Site 543 were analyzed for Sr, Nd and Pb isotopic compositions. The results show sediment with highly radiogenic Pb 206Pb /204Pb up to 19.8) and rather radiogenic Sr and unradiogenic Nd has been deposited in the region since the Cretaceous. The source of this sediment is probably the Archean Guiana Highland, which is drained by the Orinoco River. Pb and Sr isotopic compositions and sediment thickness decrease and 143Nd /144Nd increases northward due to a decrease in turbiditic component. This decrease is partly due to the damming action of basement ridges. Rare earth concentrations in the sediments are somewhat low, due to the abundance of detrital and biogenic components in the sediment and rapid sedimentation rates. Both positive and negative Ce anomalies occur in the surface sediments, but only positive Ce anomalies occur in the Site 543 sediments. It is unlikely that sediment subducted to the source region of Lesser Antilles arc magmas could be the cause of negative Ce anomalies in those magmas. Isotopic compositions of Site 543 basalts show some effect of contamination by seawater-basalt reaction products and sediments. Beyond this, however, they are typical of "normal" depleted MORB.

  3. A 200,000-year record of late Quaternary Aeolian sedimentation on the Southern High Plains and nearby Pecos River Valley, USA

    NASA Astrophysics Data System (ADS)

    Rich, J.; Stokes, S.

    2011-03-01

    Presently stabilized Southern High Plains (SHP) dune systems have been repeatedly re-activated during the past 200,000 years, providing an archive of environmental and related climatic change for the late Quaternary. Our data set of 38 optically dated samples from four different localities identifies eolian activity from late-middle Pleistocene to the historic period. Oldest eolian sediments are from the Blackwater Draw Formation and indicate accretion during late-middle to late Pleistocene. Younger sediments dating from the later Pleistocene through the Holocene are found in the Muleshoe, Lea-Yoakum, Mescalero, and Monahans dunes that overlie the Blackwater Draw Formation. Muleshoe dunes accreted during the Late Pleistocene between 31 ± 3 and 27 ± 2 ka, while Holocene deposition transpired 7.5 ± 0.4, 4.0 ± 0.7 ka through 3.6 ± 0.4 ka, and between 1.3 ± 0.2 and 1.1 ± 0.1 ka. A period of dune building for Lea-Yoakum dune sediments occurred during the late Pleistocene (48 ± 5 ka), and the later Holocene (3.6 ± 0.4 ka). Mescalero and Monahans dunes were accreting during the later Pleistocene between 29 ± 3 and 22 ± 2 ka followed by a sequence of eolian sand deposited ca. 15 ka. Holocene eolian sedimentation for the Mescalero and Monahans dunes occurred 7.5 ± 0.8, 5.1 ± 0.5, 4.3 ± 0.4, and 2.0 ± 0.3 ka. Historic eolian deposition is identifiable in the dune chronology with multiple optical age estimates overlapping established drought events recorded ca. 1890, 1910, 1920, and during the 1930's when the North American "Dust Bowl" transpired. These Quaternary eolian deposits mantling the Southern High Plains are an important component of the surficial material of the region and provide a rich archive of past climatic change.

  4. 200,000 years of climate change recorded in eolian sediments of the High Plains of eastern Colorado and western Nebraska

    USGS Publications Warehouse

    Muhs, Daniel R.; Swinehart, James B.; Loope, David B.; Aleinikoff, John N.; Been, Josh; Lageson, David R.; Lester, Alan; Trudgill, Bruce

    1999-01-01

    Loess and eolian sand cover vast areas of the western Great Plains of Nebraska, Kansas and Colorado (Fig. 1). In recent studies of Quaternary climate change, there has been a renewed interest in loess and eolian sand. Much of the attention now given to loess stems from new studies of long loess sequences that contain detailed records of Quaternary glacial-interglacial cycles, thought to be a terrestrial equivalent to the foraminiferal oxygen isotope record in deep-sea sediments (Fig. 2). Loess is also a direct record of atmospheric circulation, and identification of loess paleowinds in the geologic record can test atmospheric general circulation models. Until recently, eolian sand on the Great Plains had received little attention from Quaternary geologists. The past decade has seen a proliferation of studies of Great Plains dune sands, and many studies, summarized below, indicate that landscapes characterized by eolian sand have had dynamic histories. On this field trip, we will visit some key eolian sand and loess localities in eastern Colorado and southwestern Nebraska (Fig. 1). Stratigraphic studies at some of these localities have been conducted for more than 50 years, but others have been systematically studied only in the past few years. Many of the data which appear in this guidebook have been derived from previous studies (Swinehart and Diffendal, 1990; Madole, 1994; Loope and others, 1995; Maat and Johnson, 1996; Muhs and others, 1996, 1997a, 1999; Mason and others, 1997; Aleinikoff and others, 1999), but some are presented here for the first time.

  5. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  6. Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents†

    PubMed Central

    Teske, A.; Brinkhoff, T.; Muyzer, G.; Moser, D. P.; Rethmeier, J.; Jannasch, H. W.

    2000-01-01

    Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria. PMID:10919760

  7. Sediment capture in flood plains of the Mississippi River: A case study in Cat Island National Wildlife Refuge, Louisiana

    NASA Astrophysics Data System (ADS)

    Smith, M.; Bentley, S. J., Sr.

    2015-03-01

    To plan restoration of the Mississippi River Delta, it is imperative to know how much sediment the Mississippi River currently provides. Recent research has demonstrated that between Tarbert Landing and St Francisville on the Mississippi, as much as 67 million metric tons (Mt) per year is lost from river transport, of which ~16 Mt is muddy suspended sediment. So where does this sediment go? Two pathways for loss have been proposed: riverbed storage, and overbank deposition in regions that lack manmade levées. Cat Island National Wildlife Refuge, on the unleveed Mississippi River east bank near St Francisville, Louisiana, consists of undisturbed bottomland forest that is inundated most years by river flooding. To determine fluvial sediment accumulation rates (SAR) from flooding, pushcores 40-50 cm long were collected then dated by Pb-210 and Cs-137 geochronology. Preliminary data suggests that muddy sediment accumulation is 10-13% of muddy suspended sediment lost from river transport along this river reach.

  8. Abyssal food limitation, ecosystem structure and climate change.

    PubMed

    Smith, Craig R; De Leo, Fabio C; Bernardino, Angelo F; Sweetman, Andrew K; Arbizu, Pedro Martinez

    2008-09-01

    The abyssal seafloor covers more than 50% of the Earth and is postulated to be both a reservoir of biodiversity and a source of important ecosystem services. We show that ecosystem structure and function in the abyss are strongly modulated by the quantity and quality of detrital food material sinking from the surface ocean. Climate change and human activities (e.g. successful ocean fertilization) will alter patterns of sinking food flux to the deep ocean, substantially impacting the structure, function and biodiversity of abyssal ecosystems. Abyssal ecosystem response thus must be considered in assessments of the environmental impacts of global warming and ocean fertilization.

  9. Results of analyses performed on soil adjacent to penetrators emplaced into sediments at McCook, Nebraska, January 1976. [simulated penetration into wind-deposited sediments on Martian plains

    NASA Technical Reports Server (NTRS)

    Blanchard, M.; Bunch, T.; Davis, A.; Kyte, F.; Shade, H.; Erlichman, J.; Polkowski, G.

    1977-01-01

    During 1976 several penetrators (full and 0.58 scale) were dropped into a test site McCook, Nebraska. The McCook site was selected because it simulated penetration into wind-deposited sediments (silts and sands) on Martian plains. The physical and chemical modifications found in the sediment after the penetrators' impact are described. Laboratory analyses have shown mineralogical and elemental changes are produced in the sediment next to the penetrator. Optical microscopy studies of material next to the skin of the penetrator revealed a layer of glassy material about 75 microns thick. Elemental analysis of a 0-1-mm layer of sediment next to the penetrator revealed increased concentrations for Cr, Fe, Ni, Mo, and reduced concentrations for Mg, Al Si, P, K, and Ca. The Cr, Fe, Ni, and Mo were in fragments abraded from the penetrator. Mineralogical changes occurring in the sediment next to the penetrator included the introduction of micron-size grains of alpha iron and several hydrated iron oxide minerals. The newly formed silicate minerals include metastable phases of silica (cristobalite, lechatelierite, and opal). The glassy material was mostly opal which formed when the host minerals (mica, calcite, and clay) decomposed. In summary, contaminants introduced by the penetrator occur up to 2 mm away from the penetrator's skin. Although volatile elements do migrate and new minerals are formed during the destruction of host minerals in the sediment, no changes were observed beyond the 2-mm distance. The analyses indicate 0.58-scale penetrators do effectively simulate full-scale testing for soil modification effects.

  10. A study on the baroclinic structure of the abyssal circulation

    NASA Astrophysics Data System (ADS)

    Luo, De-Hai; Huang, Fei

    2001-03-01

    In this paper, the linear continuously tratified model of the abyssal circulation proposed by Pedlosky (1992) was extended to include the second order term -(γθ zzz ) in the vertical turbulent mixing parameterization of - overline {(w' θ ' )} _z = k_u θ _{zz} - γ θ _{zzz} , in which k v is a vertical diffusion coefficient, and γ is the second order coefficient of turbulent mixing (or simply called γ-term and γ<0 is only allowed). The influence of the γ-term on the baroclinic structure of the abyssal circulation driven by upwelling out of the abyss was investigated. It was found that the γ-term has a noticeable influence on the baroclinic structure of the upwelling driven abyssal circulation. For uniform upwelling, it favors the baroclinic layering of the abyssal circulation in the eastern part of the basin, but prevents the layering in the west. In addition, this parameter was found to decrease the vertically averaging meridional velocity of the abyssal circulation from the west to the east on the southern boundary. For upwelling localized near the eastern boundary, the γ-term favors baroclinic layering of the abyssal circulation in the whole basin. Especially, on the southern boundary the γ-term could strengthen the vertically averaging meridional velocity in the west, but greatly weaken it in the east. The model presented here might be considered as an extension of the Pedlosky baroclinic model of the abyssal circulation.

  11. Surface Sediments in the Marsh-Sandy Land Transitional Area: Sandification in the Western Songnen Plain, China

    PubMed Central

    Yu, Xiaofei; Grace, Michael; Zou, Yuanchun; Yu, Xuefeng; Lu, Xianguo; Wang, Guoping

    2014-01-01

    The development of sandification process was studied, by monitoring the changes of sediment characteristics, at marsh-sandy land intersections in China's Songnen region. A series of sediment collection plates were deployed in the region; after one year, sediments in these plates were analyzed for changes of mass and chemical characteristics. The sediment flux and the sand content of the sediments decreased with the increasing longitudinal distance between the sampling site and the centre line of a sand dune. The mean sediment flux was 29±14 kg m−2 yr−1 and 0.6±0.3 kg m−2 yr−1 in the sandy land and marsh, respectively. Strong, positive correlations were found between the concentrations of organic matter, total nitrogen, P, Fe, Ti, V and Zr, all of which were also negatively correlated with the sand content. The concentrations of organic matter, total nitrogen, P, Fe, Ti, V and Zr in the marsh sediment samples were all significantly greater than the corresponding concentrations of the sandy land (p<0.001). Sand content and Ti, V and Zr concentrations all proved to be valid indicators of sandification intensity, and they showed that the marsh could be divided into three distinct zones. Sand expansion extended about 88 m into the marsh. The mean sand content in the sediments of the sandy land was 91% and then 64% in the marsh, which in turn was higher than that of marshes outside the influence of sandification, suggesting that the marsh in the marsh-sandy land transitional area has already undergone extensive sandification in the past. The study results provide information on the wetland's function of indicating and buffering the sandification process. PMID:24932717

  12. Sorption kinetics of Hg and HgCl[sub 2] on Kirkwood-Cohansey aquifer sediments from the New Jersey Coastal Plain

    SciTech Connect

    MacLeod, C.; Peterson, J. . Dept. of Geological and Geophysical Sciences)

    1992-01-01

    Anomalously high Hg concentrations have been detected from domestic wells in the Kirkwood-Cohansey Aquifer System, New Jersey Coastal Plain. Mercury concentrations ranging from 0.2--83.0 [mu]g/l in relatively shallow wells ([lt] 100 feet) have been detected. Concentrations in excess of 2.0 [mu]g/l, (the USEPA Drinking Water Standard) have been detected in wells where the Cohansey Sand is overlain by the Bridgeton Formation; a fluvial iron-rich sand with some gravelly channel deposits containing goethite and gibbsite nodules. In this study, Bridgeton Fm. sediments were used to determine the sorption kinetics for solutions containing HgCl[sub 2] and for solutions containing dissolved elemental Hg in order to assess the potential for the Bridgeton sediments to act as a conduit for Hg mobilized from the surface. Results of batch equilibrium experiments suggest that dissolved elemental Hg sorbs to Bridgeton sediments by a risk-order kinetic process. Sorption of the Hg proceeded exponentially and equilibrium was reached within 14 hours. The sorption kinetics for the HgCl[sub 2] solutions, however, appear to be of a second or higher order. For this compound sorption to the sediments begins exponentially, but after 6 hours desorption into the water begins to predominate followed by a slower exponential sorption step that requires nearly 36 hours to reach equilibrium. These experiments illustrate the necessity of determining the distribution coefficients of possible source compounds when attempting to evaluate mobilization potential of a contaminant in the unsaturated zone. Moreover, these data also suggest that HgCl[sub 2], a seed dressing for corn, medial bacteriacide, and embalming fluid ingredient, is more mobile in the environment than dissolved elemental Hg. Consequently, the ground water contamination potential appears to be greater for HgCl[sub 2] than for elemental Hg.

  13. The Gulf Stream pathway and the impacts of the eddy-driven abyssal circulation and the Deep Western Boundary Current

    NASA Astrophysics Data System (ADS)

    Hurlburt, Harley E.; Hogan, Patrick J.

    2008-08-01

    layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and ˜70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5-69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5-69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.

  14. Eukaryotic Richness in the Abyss: Insights from Pyrotag Sequencing

    PubMed Central

    Pawlowski, Jan; Christen, Richard; Lecroq, Béatrice; Bachar, Dipankar; Shahbazkia, Hamid Reza; Amaral-Zettler, Linda; Guillou, Laure

    2011-01-01

    Background The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes. Methodology/Principal Findings Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA) V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs) per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species. Conclusions/Significance In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes. PMID:21483744

  15. Manifestations of hydrothermal discharge from young abyssal hills on the fast-spreading East Pacific Rise flank

    NASA Astrophysics Data System (ADS)

    Haymon, Rachel M.; MacDonald, Ken C.; Benjamin, Sara B.; Ehrhardt, Christopher J.

    2005-02-01

    Spectacular black smokers along the mid-ocean-ridge crest represent a small fraction of total hydrothermal heat loss from ocean lithosphere. Previous models of measured heat flow suggest that 40% 50% of oceanic hydrothermal heat and fluid flux is from young seafloor (0.1 5 Ma) on mid-ocean-ridge flanks. Despite evidence that ridge-flank hydrothermal flux affects crustal properties, ocean chemistry, and the deep-sea biosphere, few ridge-flank vent sites have been discovered. We describe the first known seafloor expressions of hydrothermal discharge from tectonically formed abyssal hills flanking a fast-spreading ridge. Seafloor manifestations of fluid venting from two young East Pacific Rise abyssal hills (0.1 Ma at 10°20‧N, 103°33.2‧W; 0.5 Ma at 9°27‧N, 104°32.3‧W) include fault-scarp hydrothermal mineralization and macrofauna; fault-scarp flocculations containing hyperthermophilic microbes; and hilltop sediment mounds and craters possibly created by fluid expulsion. These visible features can be exploited for hydrothermal exploration of the vast abyssal hill terrain flanking the mid-ocean ridge and for access to the subseafloor biosphere. Petrologic evidence suggests that abyssal hills undergo repeated episodes of transitory fluid discharge, possibly linked to seismic events, and that fluid exit temperatures can be briefly high enough to transport copper (≥250 °C).

  16. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation.

    PubMed

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements.

  17. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation

    PubMed Central

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  18. Eurasian Arctic abyssal waters are warming

    NASA Astrophysics Data System (ADS)

    Schauer, Ursula; von Appen, Wilken-Jon; Somavilla Cabrillo, Raquel; Behrendt, Axel; Rabe, Benjamin

    2016-04-01

    In the past decades, not only the upper water layers, but also the deepest layers of the Arctic Ocean have been warming. Observations show that the rate of warming varies markedly in the different basins with the fastest warming in the deep Greenland Sea (ca. 0.11°C per decade) and the Eurasian Basin featuring an average rate of ca. 0.01°C per decade. While the warming in the Greenland Sea is attributed to ongoing export of relatively warmer deep waters from the Arctic Ocean in combination with the halt of deep convection, the reason of Eurasian Basin deep warming is less clear. We discuss possible causes such as changes in the abyssal ventilation through slope convection, advection from other basins and/or geothermal heating through various sources.

  19. Pb isotopes in surficial pelagic sediments from the North Atlantic

    SciTech Connect

    Hamelin, B.; Grousset, F. ); Sholkovitz, E.R. )

    1990-01-01

    The authors measured Pb isotopic composition and concentration in sediment samples close to the sea water interface in 6 box-cores from the NE Atlantic, 2 box-cores from the Sargasso Sea, and one from the US continental shelf. The anthropogenic Pb input to marine sediments due to the increase of Pb contamination over the ocean during the last century can be identified in all these cores. In the eastern part of the Atlantic, i.e., in regions under aeolian influence from Europe, Pb pollution can be recognized using its distinctive unradiogenic composition, clearly different from the upper-crustal values commonly found in pre-Holocene sediments. In contrast, Pb pollution in regions influenced by North American sources can be identified only in detailed concentration profiles because the American Pb pollution has an isotopic composition much closer to that of the natural detrital Pb input coming from weathering of the continental crust. Pb excess inventories are in good agreement with fluxes estimated from sediment-trap data and with the time record of Pb-contamination increase given by analyses in coral growth bands. Inventories of Pb contamination to the sediments of the Mud Patch (American shelf) are tenfold higher (84 {mu}g/cm{sup 2}) than those to Hatteras and Bermuda abyssal plains (4.3 and 2.8 {mu}g/cm{sup 2}).

  20. Long-term change in benthopelagic fish abundance in the abyssal northeast Pacific Ocean.

    PubMed

    Bailey, D M; Ruhl, H A; Smith, K L

    2006-03-01

    Food web structure, particularly the relative importance of bottom-up and top-down control of animal abundances, is poorly known for the Earth's largest habitats: the abyssal plains. A unique 15-yr time series of climate, productivity, particulate flux, and abundance of primary consumers (primarily echinoderms) and secondary consumers (fish) was examined to elucidate the response of trophic levels to temporal variation in one another. Towed camera sled deployments in the abyssal northeast Pacific (4100 m water depth) showed that annual mean numbers of the dominant fish genus (Coryphaenoides spp.) more than doubled over the period 1989-2004. Coryphaenoides spp. abundance was significantly correlated with total abundance of mobile epibenthic megafauna (echinoderms), with changes in fish abundance lagging behind changes in the echinoderms. Direct correlations between surface climate and fish abundances, and particulate organic carbon (POC) flux and fish abundances, were insignificant, which may be related to the varied response of the potential prey taxa to climate and POC flux. This study provides a rare opportunity to study the long-term dynamics of an unexploited marine fish population and suggests a dominant role for bottom-up control in this system. PMID:16602284

  1. Analysis of the community structure of abyssal kinetoplastids revealed similar communities at larger spatial scales

    PubMed Central

    Salani, Faezeh Shah; Arndt, Hartmut; Hausmann, Klaus; Nitsche, Frank; Scheckenbach, Frank

    2012-01-01

    Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales. PMID:22071346

  2. Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata

    PubMed Central

    Glover, Adrian G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Smith, Craig R; O'Hara, Tim; Mah, Christopher L

    2016-01-01

    Abstract We present data from a DNA taxonomy register of the abyssal benthic Echinodermata collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration claim ‘UK-1’ in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. Morphological and genetic data are presented for 17 species (4 Asteroidea, 4 Crinoidea, 2 Holothuroidea and 7 Ophiuroidea) identified by a combination of morphological and genetic data. No taxa matched previously published genetic sequences, but 8 taxa could be assigned to previously-described species based on morphology, although here we have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. PMID:26929713

  3. Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata.

    PubMed

    Glover, Adrian G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Smith, Craig R; O'Hara, Tim; Mah, Christopher L; Dahlgren, Thomas G

    2016-01-01

    We present data from a DNA taxonomy register of the abyssal benthic Echinodermata collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration claim 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. Morphological and genetic data are presented for 17 species (4 Asteroidea, 4 Crinoidea, 2 Holothuroidea and 7 Ophiuroidea) identified by a combination of morphological and genetic data. No taxa matched previously published genetic sequences, but 8 taxa could be assigned to previously-described species based on morphology, although here we have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. PMID:26929713

  4. Role of naturally occurring gas hydrates in sediment transport

    SciTech Connect

    McIver, R.D.

    1982-06-01

    Naturally occurring gas hydrates have the potential to store enormous volumes of both gas and water in semi-solid form in ocean-bottom sediments and then to release that gas and water when the hydrate's equilibrium condition are disturbed. Therefore, hydrates provide a potential mechanism for transporting large volumes of sediments. Under the combined low bottom-water temperatures and moderate hydrostatic pressures that exist over most of the continental slopes and all of the continental rises and abyssal plains, hydrocarbon gases at or near saturation in the interstitial waters of the near-bottom sediments will form hydrates. The gas can either be autochthonous, microbially produced gas, or allochthonous, catagenic gas from deeper sediments. Equilibrium conditions that stabilize hydrated sediments may be disturbed, for example, by continued sedimentation or by lowering of sea level. In either case, some of the solid gas-water matrix decomposes. Released gas and water volume exceeds the volume occupied by the hydrate, so the internal pressure rises - drastically if large volumes of hydrate are decomposed. Part of the once rigid sediment is converted to a gas- and water-rich, relatively low density mud. When the internal pressure, due to the presence of the compressed gas or to buoyancy, is sufficiently high, the overlying sediment may be lifted and/or breached, and the less dense, gas-cut mud may break through. Such hydrate-related phenomena can cause mud diapirs, mud volcanos, mud slides, or turbidite flows, depending on sediment configuration and bottom topography. 4 figures.

  5. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria

    PubMed Central

    Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G

    2016-01-01

    Abstract Background We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). New information Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys. PMID:27660533

  6. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria

    PubMed Central

    Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G

    2016-01-01

    Abstract Background We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area ‘UK-1’ in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). New information Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys.

  7. Geochemistry of sediments from the Huaibei Plain (east China): Implications for provenance, weathering, and invasion of the Yellow River into the Huaihe River

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Qin, Xiaoguang; Liu, Jiaqi; Sun, Chunqing; Mu, Yan; Gao, Jinliang; Guo, Wenfeng; An, Shikai; Lu, Chunhui

    2016-05-01

    The sediments of the Huaibei Plain in semi-humid mid-eastern China represent valuable geological records with respect to eolian-fluvial interactions, depositional environments, and climate change in this region. Provenance and weathering conditions are often reconstructed using sedimentary geochemistry methods. In this study, an 8-m core from Huainan and a set of loess samples from northern and southern China were analyzed for major, trace, and rare earth elements (REEs). Results were compared to determine the samples' provenance. The major, trace, rare earth elements contents, and grain size distribution were found to fluctuate widely in the 2-8 m section of the Huainan core and more narrowly closer to the surface (0-2 m). This suggests a provenance shift at a depth of 2 m. The TiO2/Al2O3, SiO2/Al2O3, Th/Nb, La/Nb values and REE patterns in the upper core (0-2 m) are similar to those found in samples from the Chinese Loess Plateau (CLP). These results suggest that the CLP in northern China is likely to be the primary origin of the upper part (0-2 m) of the Huainan core. Compared with CLP samples, the upper part of the Huainan core exhibits lower K2O/Al2O3 values and higher chemical alteration indices. This is indicative of the material's substantial weathering during transportation and re-deposition and implies that these sediments could reasonably be classified as typical recycled loess. The sediments may have been transported from the CLP to Huainan as Yellow River flood events, probably during the last deglaciation (∼13.2 ka) as a result of increased precipitation, along with glacier and snow melt in the upper reaches of the Yellow River catchment during this period. This suggests that the Yellow River may have migrated into the Huaihe River catchment much earlier than the earliest historical records (361 BCE) suggest. The implications of this would be profound with respect to Chinese history.

  8. Adult antarctic krill feeding at abyssal depths.

    PubMed

    Clarke, Andrew; Tyler, Paul A

    2008-02-26

    Antarctic krill (Euphausia superba) is a large euphausiid, widely distributed within the Southern Ocean [1], and a key species in the Antarctic food web [2]. The Discovery Investigations in the early 20(th) century, coupled with subsequent work with both nets and echosounders, indicated that the bulk of the population of postlarval krill is typically confined to the top 150 m of the water column [1, 3, 4]. Here, we report for the first time the existence of significant numbers of Antarctic krill feeding actively at abyssal depths in the Southern Ocean. Biological observations from the deep-water remotely operated vehicle Isis in the austral summer of 2006/07 have revealed the presence of adult krill (Euphausia superba Dana), including gravid females, at unprecedented depths in Marguerite Bay, western Antarctic Peninsula. Adult krill were found close to the seabed at all depths but were absent from fjords close inshore. At all locations where krill were detected they were seen to be actively feeding, and at many locations there were exuviae (cast molts). These observations revise significantly our understanding of the depth distribution and ecology of Antarctic krill, a central organism in the Southern Ocean ecosystem.

  9. Growth, reproduction and possible recruitment variability in the abyssal brittle star Ophiocten hastatum (Ophiuroidea: Echinodermata) in the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Gage, John D.; Anderson, Roslyn M.; Tyler, Paul A.; Chapman, Rachel; Dolan, Emily

    2004-06-01

    Growth was studied from skeletal growth markers in the cosmopolitan abyssal brittle star Ophiocten hastatm. Samples for analysis were taken at five sites located in the southern (2900 m) and central (2000 m) Rockall Trough, at ca. 3000 and 4000 m in the Porcupine Seabight, and at 4850 m on the Porcupine Abyssal Plain. Growth bands were assumed to reflect an annual cycle in skeletal growth. Band measurements on arm vertebrae, standardised to disc diameter, were used to provide size-at-age data and size-increment data that took into account overgrowth of early bands in older individuals. The Richards growth function marginally provides best fit to pooled size-at-age data, although the asymptote-less Tanaka function and the Gompertz growth function also provided good fit to size-at-age data which showed a rather linear growth pattern with little indication of a growth asymptote. Log e transformed size-increment data were linearised by applying the Ford-Walford method to approximate Gompertz growth so that growth could be compared at the five sites. Grouped linear regression and analysis of covariance showed no significant differences between growth at the sites and a common fitted regression. However, pairwise comparisons suggest growth differences with increasing bathymetric separation. Oocyte size frequencies measured from histological preparations of the gonad of specimens from the Porcupine Abyssal Plain indicate marked reproductive periodicity, with spawn-out in late winter that is likely followed by planktotrophic early development in spring with benthic settlement in summer. Although usually rare in the trawl and epibenthic sled samples, several years of successful recruitment followed by a period when recruitment was low or absent might explain size structure observed in a single unusually large sample from the Rockall Trough. This is consistent with previous observations during the late 1990s of a large population increase on the Porcupine Abyssal Plain

  10. Internal wave structures in abyssal cataract flows

    NASA Astrophysics Data System (ADS)

    Makarenko, Nikolay; Liapidevskii, Valery; Morozov, Eugene; Tarakanov, Roman

    2014-05-01

    We discuss some theoretical approaches, experimental results and field data concerning wave phenomena in ocean near-bottom stratified flows. Such strong flows of cold water form everywhere in the Atlantic abyssal channels, and these currents play significant role in the global water exchange. Most interesting wave structures arise in a powerful cataract flows near orographic obstacles which disturb gravity currents by forced lee waves, attached hydraulic jumps, mixing layers etc. All these effects were observed by the authors in the Romanche and Chain fracture zones of Atlantic Ocean during recent cruises of the R/V Akademik Ioffe and R/V Akademik Sergei Vavilov (Morozov et al., Dokl. Earth Sci., 2012, 446(2)). In a general way, deep-water cataract flows down the slope are similar to the stratified flows examined in laboratory experiments. Strong mixing in the sill region leads to the splitting of the gravity current into the layers having the fluids with different densities. Another peculiarity is the presence of critical layers in shear flows sustained over the sill. In the case under consideration, this critical level separates the flow of near-bottom cold water from opposite overflow. In accordance with known theoretical models and laboratory measurements, the critical layer can absorb and reflect internal waves generated by the topography, so the upward propagation of these perturbations is blocked from above. High velocity gradients were registered downstream in the vicinity of cataract and it indicates the existence of developed wave structures beyond the sill formed by intense internal waves. This work was supported by RFBR (grants No 12-01-00671-a, 12-08-10001-k and 13-08-10001-k).

  11. Abyssal benthos of the central Indian Ocean

    NASA Astrophysics Data System (ADS)

    Parulekar, A. H.; Harkantra, S. N.; Ansari, Z. A.; Matondkar, S. G. P.

    1982-12-01

    Quantitative studies of the abyssal benthos (3600 to 5300 m) of the central Indian Ocean show a rich fauna and high standing crops. Density of 3 meiofaunal and 12 macrofaunal taxa are large (2175 to 15233; x = 6441 m -2) Polychaetes (41.6%), peracarid crustaceans (31.7%), ophiuroids (12.2%), echiuroid-bryozoa (9.7%), molluscs (4.8%), and agglutinating rhizopod protozoans form the macrofauna. Meiofaunal taxa are nematodes (69.4%), harpacticoid copepods (26.6%), and ostracods (4%). Meiofauna abundances are positively correlated with distance from shore, whereas the distribution and abundance of macrofauna are independent of variations in depth and distance from the shore. Ratio of macro to meiofauna in the total population is 1 to 31. The benthic standing crop is uniformly high (0.54 to 13.73 g m -2; x = 2.70 g m -2) and many times larger than previously reported for comparable depths in other oceans and from the same region. Biomass values are significantly related to distance from shore and the type of substratum. Contribution of macro and meiofauna to the total standing crop was in the ratio of 31 to 1. High benthic biomass and rich fauna are consequences of high organic production in the euphotic zone. The correlation between biomass of the total oxidizable organic matter in the water column and the benthic standing crop is statistically significant ( r = -0.64) at the P < 0.05 level. Rich fauna and high standing crop were associated with the occurrence of polymetallic nodules.

  12. Brain areas in abyssal demersal fishes.

    PubMed

    Wagner, H J

    2001-06-01

    Four areas of the brain which receive primary projections from chemical senses ([1] olfactory bulb, [2] gustatory area including facial and vagal lobes), the eye ([3] optic tectum), and mechanosensory, and-hair-cell based systems i.e. the lateral line, vestibular and auditory systems ([4] trigeminal and octavolateral regions) have been studied and relative size differences used to make deductions on the sensory preferences of 35 fish species living on or near the bottom of the deep sea. Furthermore the relative volumes of the telencephalon and the corpus cerebelli were determined. Two evaluation modes were applied: (1) the relative mean of each system was calculated and species with above-average areas identified; (2) a cluster analysis established multivariate correlations among the sensory systems. The diversity of sensory brain areas in this population of fish suggests that the benthic and epibenthic environment of the abyss presents a rich sensory environment. Vision seems to be the single most important sense suggesting the presence of relevant bioluminescent stimuli. However, in combination the chemical senses, smell and taste, surpass the visual system; most prominent among them is olfaction. The trigeminal/octavolateral area indicating the role of lateral line input and possibly audition is also well represented, but only in association with other sensory modalities. A large volume telencephalon was often observed in combination with a prominent olfactory system, whereas cerebella of unusually large sizes occurred in species with above-average visual, hair-cell based, but also olfactory systems, confirming their role as multimodal sensorimotor coordination centers. In several species the predictions derived from the volumetric brain analyses were confirmed by earlier observations of stomach content and data obtained by baited cameras. PMID:11713385

  13. Vesicomyinae (Bivalvia: Vesicomyidae) of the Kuril-Kamchatka Trench and adjacent abyssal regions

    NASA Astrophysics Data System (ADS)

    Krylova, Elena M.; Kamenev, Gennady M.; Vladychenskaya, Irina P.; Petrov, Nikolai B.

    2015-01-01

    Representatives of the subfamily Vesicomyinae (Bivalvia, Vesicomyidae) are tiny deep-sea molluscs distributed worldwide and reaching huge abundances of hundreds and thousands of specimens in trawl catches. During the German-Russian deep-sea expedition KuramBio (R/V Sonne, 2012) for the first time two vesicomyin species were collected from the abyssal plain adjacent to the Kuril-Kamchatka Trench from the depths of 4861-5787 m, Vesicomya pacifica (Smith, 1885) and "Vesicomya" filatovae sp.n. Two species of vesicomyins, V. sergeeviFilatova, 1971 and V. profundiFilatova, 1971, which were previously reported from the hadal of the Kuril-Kamchatka Trench, were not collected at the abyssal depth despite of the close geographical proximity of the sampling area to their distribution ranges. Altogether nine species of vesicomyins are recorded now from the West and Indo-West Pacific; data on distribution and morpho-anatomical characters of these species are provided. Taxonomic description of V. pacifica is revised including information on its soft part anatomy, new localities and COI sequences. For the first time for a vesicomyin bivalve molecular data is given for a species with an explicit morphological description and unambiguous taxonomic affiliation. Molecular analysis of 160 published COI sequences of vesicomyids and newly obtained molecular data on V. pacifica showed that V. pacifica and two undescribed vesicomyin species forming a monophyletic clade which exhibits sister relationships with the Pliocardiinae, the group of chemosymbiotic vesicomyids. "Vesicomya" filatovae sp.n. is provisionally assigned to the genus Vesicomya (s.l.) until additional morphological and molecular data are obtained. It differs from Vesicomya s.s. by a broader hinge margin with more radiating teeth and the presence of only one pair of demibranchs.

  14. Oligocene to Miocene carbon isotope cycles and abyssal circulation changes

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth G.; Fairbanks, Richard G.

    Three cycles of δ13C occurred in Oligocene to Miocene benthic and planktonic foraminifera at western North Atlantic Sites 558 and 563. Intervals of high δ13C occurred at about 35-33 Ma (early Oligocene), 25-22 Ma (across the Oligocene/Miocene boundary), and 18-14 Ma (across the early/middle Miocene boundary). Similar carbon isotopic fluctuations have been measured in benthic and planktonic foraminifera from the Atlantic, Pacific, and Indian oceans, suggesting that these cycles represent global changes in the δ13C of mean ocean water. The average duration of the carbon cycles is 50 times greater than the residence time of carbon in the oceans. Therefore, the mechanism controlling these cycles must be tied to changes in the input ratio of organic carbon to carbonate from weathering rocks or to changes in the output ratio of organic carbon to carbonate in marine sediments. Following a strategy used to study modern and Pleistocene oceans, benthic foraminiferal δ13C differences between the Atlantic and Pacific are used to infer Oligocene through Miocene abyssal circulation changes. The Atlantic was most enriched in l3C relative to the Pacific from about 36-33 Ma (early Oligocene) and 26-10 Ma (late Oligocene to late Miocene). We interpret this as indicating supply of nutrient-depleted bottom water in the North Atlantic, perhaps analogous to modern North Atlantic Deep Water. High benthic foraminiferal δ13O values at about 36-35 Ma, 31-28 Ma, 25-24 Ma, and younger than 15 Ma indicate the presence of ice sheets at these times. Covariance between benthic and planktonic foraminiferal δ18O records of 0.3-0.5°/ºº at 36 Ma, 31 Ma, and 25 Ma suggests that three periods of continental glaciation caused eustatic (global sea-level) lowerings of 30-50 m during the Oligocene epoch. The δ13C cycles do not correlate with sea-level changes deduced from oxygen isotopic data, nor do they correlate with other proxy indicators for sea level.

  15. Abyssal ostracods from the South and Equatorial Atlantic Ocean: Biological and paleoceanographic implications

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.

    2008-01-01

    We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.

  16. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean.

    PubMed

    da Silva, Marcus Adonai Castro; Cavalett, Angélica; Spinner, Ananda; Rosa, Daniele Cristina; Jasper, Regina Beltrame; Quecine, Maria Carolina; Bonatelli, Maria Letícia; Pizzirani-Kleiner, Aline; Corção, Gertrudes; Lima, André Oliveira de Souza

    2013-12-01

    The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.

  17. Sediment transport and fan deposition in the Gulf of Alaska: Effects of transform motion on deep sea sedimentation

    SciTech Connect

    Stevenson, A.J.; Bruns, T.R.; Carlson, P.R. ); Dobson, M.R. )

    1990-06-01

    GLORIA side-scan sonar images and two channel seismic profiles recently collected in the Gulf of Alaska reveal a major site of late Miocene to Recent terrigenous sediment accumulation on the oceanic plate adjacent to the Fairweather-Queen Charlotte transform and the Yakutat Terrane. Sediment moving across this margin has formed several large channel dominated fan systems that blanket the entire gulf and spill westward onto the Tufts Abyssal Plain. The Surveyor Fan, fed by the glaciers of the Yakutat Terrane and insulated from transform sediment source offset by the Terrane, has maintained a single channel course over the entire life of the fan. The Chirikov and Baranof fans receive their sediment supply from glaciofluvial point sources along the SE Alaska margin, separated from the fans by an active transform. The fans show a southward younging of channel ages consistent with the sense of plate motion. Early (late Miocene) deposition within the gulf was limited to the structural basin between the continental margin and the Kodiak-Bowie seamount chain. The geometry of these early depositional systems is poorly known, but available data suggest their channels were oriented NW-SE. Subsequent establishment of a depositional slope between the margin and the seamount chain, coupled with the filling of the basin, led to a reorganization into SW-NE channel systems. The fan bodies of the Gulf of Alaska are members of a distinct class of fans that are characterized by long distributary channels which persist to near the fan limits. This type of fan morphology is most often attributed to a predominantly fine-grained sediment supply. This is difficult to reconcile with the obvious proximal glacial source for much of the sediment supplied to these fans.

  18. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    USGS Publications Warehouse

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any geogenic As in runoff. Such inputs contribute to an increased total As load to a stream at high stages of flow. As a result of yet another anthropogenic influence, microbes that reduce and mobilize As beneath the streambeds are stimulated by inputs of dissolved organic carbon (DOC). Although DOC is naturally occurring, anthropogenic contributions from wastewater inputs may deliver increased levels of DOC to subsurface soils and ultimately groundwater. Arsenic concentrations may increase with the increases in pH of groundwater and stream water in developed areas receiving wastewater inputs, as As mobilization caused by pH-controlled sorption and desorption reactions are likely to occur in waters of neutral or alkaline pH (for example, Nimick and others, 1998; Barringer and others, 2007b). Because of the difference in As content of the geologic materials in the two sub-provinces of the Coastal Plain, the amount of As that is mobile in groundwater and stream water is, potentially, substantially greater in the Inner Coastal Plain than in the Outer Coastal Plain. In turn, streams within the Inner and Outer Coastal Plain can receive substantially more As in groundwater discharge from developed areas than from environments where DOC appears to be of natural origin.

  19. Ontogeny of a flood plain

    USGS Publications Warehouse

    Moody, J.A.; Pizzuto, J.E.; Meade, R.H.

    1999-01-01

    The ontogeny of five flood-plain segments is described for a period of 18 yr following a major flood in 1978 on the Powder River in southeastern Montana. The flood plains developed on relatively elevated sand and gravel deposits left within the channel by the 1978 flood. In cross section, the flood plains resemble benches with well-developed natural levees. Flood-plain growth occurred as sediment was draped onto preexisting surfaces in layers of sand and mud a few centimeters to decimeters thick, resulting in some lateral, but mostly vertical accretion. Annual and biannual measurements indicated that, as the flood-plain segments grew upward, the annual rate of vertical accretion decreased as the partial duration recurrence interval for the threshold or bankfull discharge increased from 0.16 to 1.3 yr. It is clear that a constant recurrence interval for overbank flow cannot be meaningfully assigned to this type of flood-plain ontogeny. These flood plains did not grow on migrating point bars, and vertical accretion at least initially occurred within the channel, rather than across the valley flat during extensive overbank flows. Sediments of these flood plains define narrow, elongated stratigraphic units that border the active channel and onlap older flood-plain deposits. These characteristics are considerably different from those of many facies models for meandering river deposits. Facies similar to those described in this paper are likely to be preserved, thereby providing important evidence in the geologic record for episodes of periodic channel expansion by ancient rivers.

  20. Mercury in waters, soils, and sediments of the New Jersey Coastal Plain: A comparison of regional distribution and mobility with the mercury contamination at the William J. Hughes Technical Center, Atlantic County, New Jersey

    USGS Publications Warehouse

    Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.

    2012-01-01

    Mercury in soils, surface water, and groundwater at the William J. Hughes Technical Center , Atlantic County, New Jersey, has been found at levels that exceed established background concentrations in Coastal Plain waters, and, in some cases, New Jersey State standards for mercury in various media. As of 2012, it is not known whether this mercury is part of regional mercury contamination or whether it is related to former military activities. Regionally, groundwater supplying about 700 domestic wells in the New Jersey Coastal Plain is contaminated with mercury that appears to be derived from anthropogenic inputs, such as agricultural pesticide use and atmospheric deposition. High levels of mercury occasionally are found in Coastal Plain soils, but disturbance during residential development on former agricultural land is thought to have mobilized any mercury applied during farming, a hypothesis borne out by experiments leaching mercury from soils. In the unsewered residential areas with mercury-contaminated groundwater, septic-system effluent is believed to create reducing conditions in which mercury sorbed to subsoils is mobilized to groundwater. In comparing the levels of mercury found in soils, sediments, streamwater, and groundwater at the William J. Hughes Technical Center site with those found regionally, mercury concentrations in groundwater in the region are, in some cases, substantially higher than those found in groundwater at the William J. Hughes Technical Center site. Nevertheless, concentrations of mercury in streamwater at the site are, in some instances, higher than most found regionally. The mercury contents in soils and sediment at the William J. Hughes Technical Center site are substantially higher than those found to date (2012) in the region, indicating that a source other than regional sources may be present at the site.

  1. Orphan strontium-87 in abyssal peridotites: daddy was a granite.

    PubMed

    Snow, J E; Hart, S R; Dick, H J

    1993-12-17

    The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust. PMID:17829634

  2. The Abysmal State of Abyssal Time Series: An Acoustic Challenge

    NASA Astrophysics Data System (ADS)

    Munk, W. H.; Worcester, P. F.; Dushaw, B. D.; Howe, B. M.; Spindel, R. C.

    2001-12-01

    The 20th century rise in global sea level by 18 cm has not been explained. The rise has been continuous and linear since the previous century. It cannot be predominantly the result of thermal expansion. Global ocean warming (as recently compiled by Levitus and his collaborators) started too late, is too non-linear and too weak to account for the recorded rise. It is not impossible that the global warming has been underestimated for lack of adequate observations in the southern hemisphere, and at abyssal depths. Time series of abyssal temperatures are badly lacking. Tomographic methods have the required precision, vertical resolution and horizontal integration to accomplish this task. A more likely explanation is to attribute most of the sea level rise to melting of polar ice sheets. There are two difficulties: the required melting is considerably larger than has generally been estimated, and there are serious restrictions imposed by astronomic measurements of the Earth?s rotation.

  3. Orphan strontium-87 in abyssal peridotites: daddy was a granite.

    PubMed

    Snow, J E; Hart, S R; Dick, H J

    1993-12-17

    The (87)Sr/(86)Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," (87)Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan (87)Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan (87)Sr is most likely introduced by infiltration of low-temperature (<200 degrees C) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan (87)Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  4. Quaternary Sediment Accumulation in the Aleutian Trench: Implications for Dehydration Reaction Progress and Pore Pressure Development Offshore Alaska

    NASA Astrophysics Data System (ADS)

    Meridth, L. N.; Screaton, E.; Jaeger, J. M.; James, S. R.; Villaseñor, T. G.

    2015-12-01

    Sediment inputs to subduction zones impart a significant control on diagenetic reaction progress, fluid production and pore pressure development and thus affect hydrologic and tectonic behavior during subduction. Intensified glaciation following the mid-Pleistocene transition increased sediment flux to the Gulf of Alaska. Rapid sediment accumulation (>1 km/my) in the Aleutian Trench increases overburden and should accelerate dehydration of hydrous sedimentary components by elevating temperatures in the incoming sediment column. These processes have the potential to generate fluid overpressures in the mud-dominated, low permeability sediments deposited on the incoming plate, offshore SE Alaska. Mineralogical analyses on incoming sediments from Deep Sea Drilling Project Leg 18 and Integrated Ocean Drilling Program Expedition 341 show that both smectite and Opal-A are present as hydrous mineral phases. A 1-D numerical model was developed to track dehydration reaction progress and pore pressures in the incoming sediment column from the abyssal plain to the Aleutian Trench. Simulated temperatures in the incoming column increase due to the insulating effect of trench sediments. As a result, trench sedimentation causes smectite dehydration to begin and Opal-A dehydration to nearly reach completion at the deformation front. Simulated excess pore pressures in the proto-decollement zone increase from nearly hydrostatic to almost half of lithostatic due to the rapid deposition of trench sediments. The 1-D modeling results were incorporated into a 2-D model that follows the underthrust column at the deformation front into the subduction zone. Simulated results of the 2-D flow model illustrate the effects of lateral flow on pore pressure distribution following subduction.

  5. Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test

    PubMed Central

    Hardy, Sarah M.; Smith, Craig R.; Thurnherr, Andreas M.

    2015-01-01

    Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope–abyss source–sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval ‘refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686

  6. Can the source-sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test.

    PubMed

    Hardy, Sarah M; Smith, Craig R; Thurnherr, Andreas M

    2015-06-01

    Low food availability is a major structuring force in deep-sea benthic communities, sustaining only very low densities of organisms in parts of the abyss. These low population densities may result in an Allee effect, whereby local reproductive success is inhibited, and populations are maintained by larval dispersal from bathyal slopes. This slope-abyss source-sink (SASS) hypothesis suggests that the abyssal seafloor constitutes a vast sink habitat with macrofaunal populations sustained only by an influx of larval 'refugees' from source areas on continental slopes, where higher productivity sustains greater population densities. Abyssal macrofaunal population densities would thus be directly related to larval inputs from bathyal source populations. We evaluate three predictions derived from the SASS hypothesis: (i) slope-derived larvae can be passively transported to central abyssal regions within a single larval period, (ii) projected larval export from slopes to the abyss reproduces global patterns of macrofaunal abundance and (iii) macrofaunal abundance decreases with distance from the continental slope. We find that abyssal macrofaunal populations are unlikely to be sustained solely through influx of larvae from slope sources. Rather, local reproduction probably sustains macrofaunal populations in relatively high-productivity abyssal areas, which must also be considered as potential larval source areas for more food-poor abyssal regions. PMID:25948686

  7. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the

  8. Meiofauna communities along an abyssal depth gradient in the Drake Passage

    NASA Astrophysics Data System (ADS)

    Gutzmann, E.; Martínez Arbizu, P.; Rose, A.; Veit-Köhler, G.

    2004-07-01

    Meiofauna standing stocks and community structure are reported for the first time for abyssal soft-sediment samples in Antarctic waters. At seven stations within a depth range of 2274-5194 m a total of 128 sediment cores were retrieved with a multiple corer (MUC) on board of the R.V. Polarstern during the ANDEEP-1 cruise (ANT XIX/3). The metazoan meiofauna (defined by a lower size limit of 40 μm) was identified and counted, and one core per station was preserved for CPE, C/N, TOM and grain size analyses. Meiofauna densities are in the range of 2731 Ind./10 cm 2 at 2290 m depth and 75 Ind./10 cm 2 at 3597 m depth, with nematodes being the dominant group at all stations. Nematodes account for 84-94% followed by copepods with 2-8% of the total meiofauna. Other frequent taxa found at each station are kinorhynchs, loriciferans, tantulocarids, ostracods and tardigrades. There is a general tendency of decreasing abundances of metazoan meiofauna with increasing depth, but not all higher level taxa displayed this pattern. In addition, a tendency of decreasing higher taxon density with increasing depth was observed. Standing stocks are higher than the average found at similar depths in other oceans.

  9. The fish fauna of Ampère Seamount (NE Atlantic) and the adjacent abyssal plain

    NASA Astrophysics Data System (ADS)

    Christiansen, Bernd; Vieira, Rui P.; Christiansen, Sabine; Denda, Anneke; Oliveira, Frederico; Gonçalves, Jorge M. S.

    2015-03-01

    An inventory of benthic and benthopelagic fishes is presented as a result of two exploratory surveys around Ampère Seamount, between Madeira and the Portuguese mainland, covering water depths from 60 to 4,400 m. A total of 239 fishes were collected using different types of sampling gear. Three chondrichthyan species and 31 teleosts in 21 families were identified. The collections showed a vertical zonation with little overlap, but indications for an affinity of species to certain water masses were only vague. Although most of the species present new records for Ampère Seamount, all of them have been known for the NE Atlantic; endemic species were not found. The comparison with fish communities at other NE Atlantic seamounts indicates that despite a high ichthyofaunal similarity, which supports the "stepping stone" hypothesis of species dispersal, some differences can be attributed to the local features of the seamounts.

  10. The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013

    NASA Astrophysics Data System (ADS)

    Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan

    2016-05-01

    This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.

  11. Enzyme activities of demersal fishes from the shelf to the abyssal plain

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; Friedman, Jason R.; Condon, Nicole E.; Aus, Erica J.; Gerringer, Mackenzie E.; Keller, Aimee A.; Elizabeth Clarke, M.

    2015-06-01

    The present study examined metabolic enzyme activities of 61 species of demersal fishes (331 individuals) trawled from a 3000 m depth range. Citrate synthase, lactate dehydrogenase, malate dehydrogenase, and pyruvate kinase activities were measured as proxies for aerobic and anaerobic activity and metabolic rate. Fishes were classified according to locomotory mode, either benthic or benthopelagic. Fishes with these two locomotory modes were found to exhibit differences in metabolic enzyme activity. This was particularly clear in the overall activity of citrate synthase, which had higher activity in benthopelagic fishes. Confirming earlier, less comprehensive studies, enzyme activities declined with depth in benthopelagic fishes. For the first time, patterns in benthic species could be explored and these fishes also exhibited depth-related declines in enzyme activity, contrary to expectations of the visual interactions hypothesis. Trends were significant when using depth parameters taken from the literature as well as from the present trawl information, suggesting a robust pattern regardless of the depth metric used. Potential explanations for the depth trends are discussed, but clearly metabolic rate does not vary simply as a function of mass and habitat temperature in fishes as shown by the substantial depth-related changes in enzymatic activities.

  12. Evaluation of Cross-Hole Seismic Tomography for Imaging Low Resistance Intervals and Associated Carbonate Sediments in Coastal Plain Sequences on the Savannah River Site, South Carolina

    SciTech Connect

    Cumbest, R. J.

    1999-01-05

    The objectives of the pilot study were to investigate the limitations of the technique for imaging the presence, extent, and boundaries of the low-resistance intervals and associated carbonate sediments.

  13. Feasibility of disposal of high-level radioactive wastes into the seabed: Review of laboratory investigations of radionuclide migration through deep-sea sediments

    SciTech Connect

    Brush, L.H.

    1988-08-01

    The Sediment Barrier Task Group (SBTG) coordinated laboratory studies of radionuclide migration through deep-sea sediments by investigators in six countries over a period of 12 years. The objectives of these studies were to evaluate the barrier properties of a variety of deep- sea sediments from study locations characterized by the Site Assessment Task Group (SATG), and to obtain site-specific data for use by the Radiological Assessment Task Group (RATG) in models of radionuclide transport through the sediments at the Great Meteor East (GME) and Southern Nares Abyssal Plain (SNAP) study locations in the North Atlantic Ocean. This volume presents a review of these laboratory investigations and the results obtained from them. Although the SBTG also participated in numerous geochemical investigations at the study locations characterized by the SATG, these field studies are not discussed here. For the convenience of the reader, however, this volume contains a brief description of the sediments from GME and SNAP, and the Mid-Plate Mid-Gyre I (MPG I) study location in the North Pacific Ocean. 130 refs., 48 figs., 11 tabs.

  14. Hydrothermal Mineral Deposits From a Young (0.1Ma) Abyssal Hill on the Flank of the Fast-Spreading East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Benjamin, S. B.; Haymon, R. M.

    2004-12-01

    It has been estimated from heat flow measurements that at least 40% of the total hydrothermal heat lost from oceanic lithosphere is removed from 0.1-5 Ma abyssal hill terrain on mid-ocean ridge flanks. Despite the large magnitude of estimated hydrothermal heat loss from young abyssal hills, little is known about characteristics of hydrothermal vents and mineral deposits in this setting. This study describes the first abyssal hill hydrothermal samples to be collected on the flank of a fast-spreading ridge. The mineral deposits were discovered at "Tevnia Site" on the axis-facing fault scarp of an abyssal hill, located on ˜0.1 Ma lithosphere ˜5 km east of the East Pacific Rise (EPR) axis at 10\\deg 20'N. Observations of Galatheid crabs, "dandelion" siphonophores, and colonies of dead, yet still intact, Tevnia worm tubes at this site during Alvin dives in 1994 suggests relatively recent hydrothermal activity. The deposits are friable hydrothermal precipitates incorporating volcanic clasts brecciated at both the micro and macro scales. The petrographic sequence of brecciation, alteration, and cementation exhibited by the samples suggests that they formed from many pulses of hydrothermal venting interspersed with, and perhaps triggered by, repeated tectonic events as the abyssal hill was uplifted and moved off-axis (see also Haymon et al., this session). Observed minerals include x-ray amorphous opaline silica and Fe-oxide phases, crystalline Mn-oxides (birnessite and todorokite), an irregularly stratified mixed layer nontronite-celadonite, and residual calcite in sediment-derived microfossils incorporated into the breccia matrix. This mineral assemblage suggests that the deposits precipitated from moderately low-temperature (<140\\deg C) fluids, enriched in K, Fe, Si, and Mn, with a near-neutral pH. The presence of tubeworm casings at the site is evidence that the hydrothermal fluids carried H2S, however no metal sulfide phases were identified in the samples. Although

  15. Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes.

    PubMed

    Moermond, Caroline T A; Zwolsman, John J G; Koelmans, Albert A

    2005-05-01

    Ecological factors may play an important role in the bioaccumulation of polychlorobiphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Geochemical and bioaccumulation behavior of these chemicals also appears to be related to the presence of black carbon (BC) in sediment. In situ PCB and PAH biota to sediment accumulation factors (BSAF) for benthic invertebrates, as well as 6h Tenax-extractable (fast-desorbing) concentrations and lake characteristics (including BC in sediment), were determined for different seasons in chemically similar but ecologically different lakes (fish-dominated turbid, algae-dominated turbid, and macrophyte-dominated). BSAFs could be explained with a model including a term for Freundlich sorption to BC and a term for uptake from fast-desorbing concentrations in ingested sediments. Freundlich coefficients for in situ sorption to BC (KF) were calculated from slow desorbing fractions and BC contents and agreed well with literature values for KF. Furthermore, in contrast to BSAFs based on total extracted concentrations, Tenax-based BSAF showed a strong positive correlation with log Kow. We therefore argue that BC caused slow desorption and limited BSAFs in these lakes. Seasonal and lake effects on BSAFs were detected, while the differences between oligochaetes and other invertebrates were small for PCBs and within a factor of 10 for PAHs. BSAFs for pyrogenic PAHs were much lower than for PCBs, which was explained by stronger sorption to BC and lesser uptake from ingested sediment. PMID:15926558

  16. Abyssal recipes II: energetics of tidal and wind mixing

    NASA Astrophysics Data System (ADS)

    Munk, Walter; Wunsch, Carl

    1998-12-01

    Without deep mixing, the ocean would turn, within a few thousand years, into a stagnant pool of cold salty water with equilibrium maintained locally by near-surface mixing and with very weak convectively driven surface-intensified circulation. (This result follows from Sandström's theorem for a fluid heated and cooled at the surface.) In this context we revisit the 1966 "Abyssal Recipes", which called for a diapycnal diffusivity of 10 -4m 2/s (1 cgs) to maintain the abyssal stratification against global upwelling associated with 25 Sverdrups of deep water formation. Subsequent microstructure measurements gave a pelagic diffusivity (away from topography) of 10 -5 m 2/s — a low value confirmed by dye release experiments. A new solution (without restriction to constant coefficients) leads to approximately the same values of global upwelling and diffusivity, but we reinterpret the computed diffusivity as a surrogate for a small number of concentrated sources of buoyancy flux (regions of intense mixing) from which the water masses (but not the turbulence) are exported into the ocean interior. Using the Levitus climatology we find that 2.1 TW (terawatts) are required to maintain the global abyssal density distribution against 30 Sverdrups of deep water formation. The winds and tides are the only possible source of mechanical energy to drive the interior mixing. Tidal dissipation is known from astronomy to equal 3.7 TW (2.50±0.05 TW from M2 alone), but nearly all of this has traditionally been allocated to dissipation in the turbulent bottom boundary layers of marginal seas. However, two recent TOPEX/POSEIDON altimetric estimates combined with dynamical models suggest that 0.6-0.9 TW may be available for abyssal mixing. A recent estimate of wind-driving suggests 1 TW of additional mixing power. All values are very uncertain. A surprising conclusion is that the equator-to-pole heat flux of 2000 TW associated with the meridional overturning circulation would not exist

  17. Estimating crustal thickness using SsPmp in regions covered by low-velocity sediments: Imaging the Moho beneath the Southeastern Suture of the Appalachian Margin Experiment (SESAME) array, SE Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Parker, E. Horry, Jr.; Hawman, Robert B.; Fischer, Karen M.; Wagner, Lara S.

    2016-09-01

    Deconvolved waveforms for two earthquakes (Mw: 6.0 and 5.8) show clear postcritical SsPmp arrivals for broadband stations deployed across the coastal plain of Georgia, allowing mapping of crustal thickness in spite of strong reverberations generated by low-velocity sediments. Precritical SsPmp arrivals are also identified. For a basement in which velocity increases linearly with depth, a bootstrapped grid search suggests an average basement velocity of 6.5 ± 0.1 km/s and basement thickness of 29.8 ± 2.0 km. Corresponding normal-incidence Moho two-way times (including sediments) are 10.6 ± 0.6 s, consistent with times for events interpreted as Moho reflections on coincident active-source reflection profiles. Modeling of an underplated mafic layer (Vp = 7.2-7.4 km/s) using travel time constraints from SsPmp data and vertical-incidence Moho reflection times yields a total basement thickness of 30-35 km and average basement velocity of 6.35-6.65 km/s for an underplate thickness of 0-15 km.

  18. Chenier plain development: feedbacks between waves, mud and sand

    NASA Astrophysics Data System (ADS)

    Nardin, W.; Fagherazzi, S.

    2015-12-01

    Cheniers are sandy ridges parallel to the coast established by high energy waves. Here we discuss Chenier plains ontogeny through dimensional analysis and numerical results from the morphodynamic model Delft3D-SWAN. Our results show that wave energy and shelf slope play an important role in the formation of Chenier plains. In our numerical experiments waves affect Chenier plain development in three ways: by winnowing sediment from the mudflat, by eroding mud and accumulating sand over the beach during extreme wave events. We further show that different sediment characteristics and wave climates can lead to three alternative coastal landscapes: strand plains, mudflats, or the more complex Chenier plains. Low inner-shelf slopes are the most favorable for strand plain and Chenier plain formation, while high slopes decrease the likelihood of mudflat development and preservation.

  19. Utopia Plain

    NASA Technical Reports Server (NTRS)

    2006-01-01

    5 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark-toned, cratered plain in southwest Utopia Planitia. Large, light-toned, windblown ripples reside on the floors of many of the depressions in the scene, including a long, linear, trough.

    Location near: 30.3oN, 255.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  20. Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments

    USGS Publications Warehouse

    Crusius, John; Thomson, John

    2003-01-01

    Sedimentary records of redox-sensitive trace elements hold significant potential as indicators of paleoceanographic environmental conditions. Records of Re can reveal the intensity of past reducing conditions in sediments at the time of deposition, whereas records of Ag may record the magnitude of past diatom fluxes to the seafloor. Confidence in paleoenvironmental reconstruction from records of either metal, however, requires it to have experienced negligible redistribution since deposition. This study examines diagenetic rearrangements of Re and Ag that occur in response to exposure to bottom-water O2 in environments of low sedimentation rate, including Madeira Abyssal Plain turbidites and eastern Mediterranean basin sapropels. Authigenic Re was remobilized quantitatively by oxidation but poorly retained by the underlying sediments. All records are consistent with previous work demonstrating that only a limited reimmobilization of Re occurs preferentially in Corg-rich, reducing sediments. Silver was also mobilized quantitatively by oxidation, but it was subsequently immobilized more efficiently in all cases as sharp peaks immediately into anoxic conditions below active oxidation fronts, and these peaks remain immobile in anoxic conditions during long-term burial. Comparison of Ag, S, and Se records from various cores suggests that Ag is likely to have been immobilized as a selenide, a mechanism previously proposed for Hg in similar situations (Mercone et al., 1999). Coexisting narrow peaks of Ag and Hg with Se offer a means of assessing whether oxidative burndown has ever occurred at the top of Corg- and sulfide-rich sedimentary units. Although these results suggest that caution must be used when inferring paleoenvironmental information from records of Ag and Re in cores with low sediment accumulation rates (−1), they should not affect the promise that authigenic Ag and Re records hold for paleoenvironmental reconstruction in sediments with higher accumulation

  1. Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils.

    PubMed

    Guimarães, J R; Meili, M; Hylander, L D; de Castro e Silva, E; Roulet, M; Mauro, J B; de Lemos, R

    2000-10-16

    In aquatic systems, bottom sediments have often been considered as the main methylmercury (MeHg) production site. In tropical floodplain areas, however, floating meadows and flooded forests extend over large areas and can be important Hg methylating sites. We present here a cross-system comparison of the Hg net methylation capacity in surface sediments, flooded soils and roots of floating aquatic macrophytes, assayed by in situ incubation with 203Hg and extraction of formed Me203 Hg by acid leaching and toluene. The presence of mono-MeHg was confirmed by thin layer chromatography and other techniques. Study areas included floodplain lakes in the Amazon basin (Tapajós, Negro and Amazon rivers), the Pantanal floodplain (Paraguay river basin), freshwater coastal lagoons in Rio de Janeiro and oxbow lakes in the Mogi-Guaçú river, São Paulo state. Different Hg levels were added in assays performed in 1994-1998, but great care was taken to standardise all other test parameters, to allow data comparisons. Net MeHg production was one order of magnitude higher (mean 13.8%, range 0.28-35) in the living or decomposing roots of floating or rooted macrophyte mats (Eichhornia azurea, E. crassipes, Paspalum sp., Eleocharis sellowiana, Salvinia sp., S. rotundifolia and Scirpus cubensis) than in the surface layer of underlying lake sediments (mean 0.6%, range 0.022-2.5). Methylation in flooded soils presented a wide range and was in some cases similar to the one found in macrophyte roots but usually much lower. In a Tapajós floodplain lake, natural concentrations of MeHg in soil and sediment cores taken along a lake-forest transect agreed well with data on net methylation potentials in the same samples. E. azurea, E. crassipes and Salvinia presented the highest methylation potentials, up to 113 times higher than in sediments. Methylation in E. azurea from six lakes of the Paraguay and Cuiabá rivers, high Pantanal, was determined in the 1998 dry and wet seasons and ranged from

  2. Revisiting Plain Language.

    ERIC Educational Resources Information Center

    Mazur, Beth

    2000-01-01

    Discusses the plain language movement and its origins. Reviews past and current resources related to plain language writing. Examines criticism of the movement while examining past and current plain language literature, with particular attention to the information design field. (SR)

  3. Effect of abyssal circulation changes on Oligocene to Miocene benthic foraminifera in the North Atlantic

    SciTech Connect

    Katz, M.E.; Miller, K.G.

    1985-01-01

    Benthic foraminiferal ranges at western North Atlantic Sites 563 and 558 show: 1) gradual Oligocene last occurrences in response to subsidence from the upper to lower abyssal zones; 2) a preponderance of extinctions in the early middle Miocene (about 15.5-13.5 Ma). Comparison of relative and absolute abundance changes at Site 563 sows that percentages of some taxa (e.g. Nuttallides umbonifera) reliably reflect their accumulations while percentages of others vary independently. Regional abundance changes include: 1) maxima N. umbonifera in the middle Oligocene of the deepest sites (10 and 119); 2) increased Planulina wuellerstorfi in the early middle Miocene; 3) increased N. umbonifera in the late middle Miocene. Seismic stratigraphic and delta/sup 13/C evidence indicates a northern bottom-water source for the North Atlantic throughout much of the Oligocene and Miocene. Benthic foraminifera apparently responded to bottom-water changes inferred from carbon isotopic comparisons. The extinction of relict Paleogene taxa and the ascendancy of P. wuellerstorfi in the middle Miocene apparently correlate with increased advection into the eastern Atlantic, subsidence of the Iceland-Faeroe Ridge and increased North Atlantic carbonate sedimentation. The authors speculate that this faunal reorganization was in response to global ocean chemistry changes resulting from increased ventilation of the North Atlantic.

  4. The Late Pliocene Eltanin Impact: Documentation From Sediment Core Analyses

    NASA Technical Reports Server (NTRS)

    Gersonde, R.; Kyte, F.; Flores, J. A.; Becquey, S.

    2002-01-01

    The expeditions ANT-XII/4 (1995) and ANT-XVIII/5a (2001) of the RV POLARSTERN collected extensive bathymetric and seismic data sets as well as sediment cores from an area in the Bellingshausen Sea (eastern Pacific Southern Ocean) that allow the first comprehensive geoscientific documentation of an asteroid impact into a deep ocean (approx. 5 km) basin, named the Eltanin impact. Impact deposits have now been recovered from a total of more than 20 sediment cores collected in an area covering about 80,000 km2. Combined biomagnetostratigraphic dating places the impact event into the earliest Matuyama Chron, a period of enhanced climate variability. Sediment texture analyses and studies of sediment composition including grain size and microfossil distribution reveal the pattern of impact- related sediment disturbance and the sedimentary processes immediately following the impact event. The pattern is complicated by the San Martin Seamounts (approx. 57.5 S, 91 W), a large topographic elevation that rises up to 3000 m above the surrounding abyssal plain in the area affected by the Eltanin impact. The impact ripped up sediments as old as Eocene and probably Paleocene that have been redeposited in a chaotic assemblage. This is followed by a sequence sedimented from a turbulent flow at the sea floor, overprinted by fall-out of airborne meteoritic ejecta that settled trough the water column. Grain size distribution reveals the timing and interaction of the different sedimentary processes. The gathered estimate of ejecta mass deposited over the studied area, composed of shock-melted asteroidal material and unmelted meteorites including fragments up to 2.5 cm in diameter, point to an Eltanin asteroid larger than the 1 km in diameter size originally suggested as a minimum based on the ANT-XII/4 results. This places the energy released by the impact at the threshold of those considered to cause environmental disturbance at a global scale and it makes the impact a likely transport

  5. Relation of Mercury to Other Chemical Constituents in Ground Water in the Kirkwood-Cohansey Aquifer System, New Jersey Coastal Plain, and Mechanisms for Mobilization of Mercury from Sediments to Ground Water

    USGS Publications Warehouse

    Barringer, Julia L.; MacLeod, Cecilia L.

    2001-01-01

    Water from 265 domestic wells that tap the unconfined Kirkwood-Cohansey aquifer system in the Coastal Plain of New Jersey contained concentrations of mercury that are equal to or exceed the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 2 ug/L (micrograms per liter). The wells range in depth from 50 to 200 feet, and are located in 32 discrete, mostly residential, areas that were developed primarily on former agricultural land during the 1950?s through the 1970?s. Concentrations in two other areas exceeded 1 ug/L. Naturally occurring mercury concentrations in ground water from the Kirkwood-Cohansey aquifer system typically are less than 0.01 ug/L, but concentrations in water from some wells were as much as 42 ug/L. No evidence currently exists that conclusively links known point sources such as landfills, industrial operations, or commercial enterprises to most of the elevated concentrations of mercury in ground water in the residential areas. Possible sources of the mercury include pesticides and atmospheric deposition. Analysis of water from wells in 6 of the 34 areas for other constituents indicates that nitrate concentrations also commonly are elevated above background levels (which typically are undetectable at 0.01 milligrams per liter), and exceed the MCL of 10 milligrams per liter in some samples. Several volatile organic compounds (VOCs), including chloroform, also have been measured in water from wells at many of the 34 sites. Analytical results for water samples collected at several depths from boreholes at 2 of the 34 sites indicate elevated concentrations of calcium, magnesium, barium, strontium, nitrate, and chloride, which may be related to both agricultural chemical applications and septic-system effluent. Determinations of tritium and helium concentrations indicate that water containing elevated concentrations of mercury recharged the aquifer between 9.4 and 79 years ago, which includes the period during which many of the 34

  6. Glacial-interglacial sedimentation rates and turbidite frequency in the Bahamas: a clear case of carbonate shedding during high sea level stands

    SciTech Connect

    Droxler, A.W.; Schlager, W.

    1985-01-01

    Vail's sea level curve is built on a basic principle that siliciclastic continental shelves and implicitly carbonate platforms mainly export sediment toward the surrounding basins during sea level low stands. The authors late Quaternary Bahamian data demonstrate however, that sediment export from carbonate banks is just the opposite. Five, 8-13 m long, piston cores were studied from the southern Tongue of the Ocean, a 1300 m deep flat-floored basin in the Bahamas, surrounded on its three sides by wide shallow carbonate banks. Turbidite layers were visually distinguished from intervening periplatform ooze. Glacial cyclic variations of aragonite content in the periplatform ooze, along with nannoplankton stratigraphy were used to identified the last two glacial and interglacial intervals, low and high stand situations respectively. On average, turbidite frequency and accumulation rates were much higher, 14 times and 45 to 22 times respectively, during interglacial than glacial stages. The Bahamian carbonate banks export therefore more material during sea level high stands when the platform tops are flooded and produce sediment. This is in direct opposition with siliciclastic ocean margins, where sediment is stored on the inner shelf during high stands and passed on to continental rises and abyssal plains during low stands. In addition, aragonite dissolution as postulated by Droxler et al. (Geology April 1983) is working in phase with the input signal by removing material during glacial intervals.

  7. Abyssal θ-S Observations at Hawaii Ocean Time-series Station ALOHA

    NASA Astrophysics Data System (ADS)

    Lukas, R.; Santiago-Mandujano, F.; Fumar, C.; McCoy, D.; Deppe, R. W.; Gum, J.; Snyder, J.; Chee, B.; Howe, B. M.; Potemra, J. T.; Duennebier, F. K.

    2014-12-01

    Abyssal θ-S variations observed since June 2011 by the ALOHA Cabled Observatory (ACO) reveal a potential temperature range of 0.025°C, and a salinity range of more than 0.0025 g kg-1. The very large temperature range is associated with episodic cold events (Lukas et al.2001; Alford et al. 2011). The salinity range, while not large in absolute terms, is an order of magnitude larger than the precision of the Sea-Bird Microcat. The absolute salinity is calibrated against simultaneous Hawaii Ocean Time-series (HOT) full-depth CTD profiles that have an accuracy of ~10-3 g kg-1. A slow drift of the SBE-37 conductivity sensor is seen, along with a sudden offset that may have been caused by a nearby glass ball implosion. θ-S variations are dominated by changes in density that are associated with dynamic processes. Large cooling events are associated with increases of salinity ultimately deriving from the neighboring Maui Deep. The slopes of these excursions in θ-S space are consistent with the slopes of HOT CTD depth profiles, suggesting that these are vertical changes due either to gravity currents associated with cold, salty overflow events from the Maui Deep, or to internal seiches within the Kauai Deep. θ-S variations that are nearly isopycnal are also seen during the slow recovery from a major cooling event in 2011. This may be due to diapycnal mixing with fresher waters above the controlling sill depth. It cannot be ruled out that some apparent salinity changes may be associated with sediment resuspension events, with subsequent deviations from the PSS-78 empirical relationship between conductivity, salinity, temperature and pressure. ADCP records show large vacillations of along- and cross-isobath flow. Large vertical current variations are measured that are correlated with horizontal flows, likely due to the bottom slope, even after minimizing correlations to account for the unknown orientation of the ADCP. The primary conclusion is that abyssal dynamics

  8. First steps of integrated spatial modeling of titanium, zirconium, and rare earth element resources within the Coastal Plain sediments of the southeastern United States

    USGS Publications Warehouse

    Ellefsen, Karl J.; Van Gosen, Bradley S.; Fey, David L.; Budahn, James R.; Smith, Steven M.; Shah, Anjana K.

    2015-01-01

    The Coastal Plain of the southeastern United States has extensive, unconsolidated sedimentary deposits that are enriched in heavy minerals containing titanium, zirconium, and rare earth element resources. Areas favorable for exploration and development of these resources are being identified by geochemical data, which are supplemented with geological, geophysical, hydrological, and geographical data. The first steps of this analysis have been completed. The concentrations of lanthanum, yttrium, and titanium tend to decrease as distance from the Piedmont (which is the likely source of these resources) increases and are moderately correlated with airborne measurements of equivalent thorium concentration. The concentrations of lanthanum, yttrium, and titanium are relatively high in those watersheds that adjoin the Piedmont, south of the Cape Fear Arch. Although this relation suggests that the concentrations are related to the watersheds, it may be simply an independent regional trend. The concentration of zirconium is unrelated to the distance from the Piedmont, the equivalent thorium concentration, and the watershed. These findings establish a foundation for more sophisticated analyses using integrated spatial modeling.

  9. Last Glacial Maximum and deglacial abyssal seawater oxygen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Wunsch, Carl

    2016-06-01

    An earlier analysis of pore-water salinity (chlorinity) in two deep-sea cores, using terminal constraint methods of control theory, concluded that although a salinity amplification in the abyss was possible during the LGM, it was not required by the data. Here the same methodology is applied to δ18Ow in the upper 100 m of four deep-sea cores. An ice volume amplification to the isotopic ratio is, again, consistent with the data but not required by it. In particular, results are very sensitive, with conventional diffusion values, to the assumed initial conditions at -100 ky and a long list of noise (uncertainty) assumptions. If the calcite values of δ18O are fully reliable, then published enriched values of the ratio in seawater are necessary to preclude sub-freezing temperatures, but the seawater δ18O in pore fluids does not independently require the conclusion.

  10. Active diagenetic formation of metal-rich layers in N. E. Atlantic sediments

    NASA Astrophysics Data System (ADS)

    Wallace, H. E.; Thomson, J.; Wilson, T. R. S.; Weaver, P. P. E.; Higgs, N. C.; Hydes, D. J.

    1988-06-01

    Sediment cores from the Porcupine Abyssal Plain exhibit an indurated layer 0.5-3 cm thick at depths of approximately 50 cm. This is some 15-20 cm below the glacial/Holocene transition as interpreted by radiocarbon dating and the palaeontological criteria of RUDDIMAN and MCINTYRE (1981). The layer is forming currently at the oxic/post-oxic boundary in the sediments, as revealed by pore water data: O 2 and NO -3 are present in solution above the layer, while Fe 2+, Mn 2+, PO 3-4 and NH +4 are present in solution below, and all these species show concentration gradients indicating fluxes into the layer. These data are consistent with the hypothesis for the initiation and sustained formation of such layers proposed by WILSONet al. (1986a,b). The elements Mn, Ni, Co, Fe, P, V, Cu, Zn and U are all enriched to varying degrees in the vicinity of the layer. Some differential stratification of these elements in the vertical, consistent with a redox control, is observed at one site with a 0.5 cm layer, with Mn, Ni and Co above, Fe, P, V and Cu in the layer, and U below. At another site the metal-rich layer has higher Fe and P concentrations and is more indurated. Here all enrichments except Co are contained within a single layer sample, 3 cm thick.

  11. Spatial and Temporal Variations of Sediment Input to the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Underwood, M. B.

    2003-12-01

    The abundance of expandable clay (smectite) in subducting sediments is an important parameter to consider during studies of plate-boundary seismogenic zones because the mineral has an unusually low coefficient of internal friction. Furthermore, interlayer water is released during smectite-to-illite diagenesis, which increases the likelihood of excess pore pressure and low effective stress. In theory, the up-dip limit of a seismogenic zones might coincide with the down-dip dissipation of excess pore pressure. In the specific case of Cascadia Basin, the amount and types of clay on the abyssal floor change considerably in both time and space. Those variations probably influence the strength of the plate-boundary fault, the vergence of imbricate thrusts within the frontal accretionary prism, and the fluid budget in 3-D. New data from more than 200 gravity-piston cores show that distal parts of Cascadia Basin contain 4% to 70% smectite in the clay fraction (Biscaye weighting factors). Smectite is more abundant within a plume of discharge that emanates from the Columbia River, but spatial variations are not clear-cut, even within the upper meter of Holocene mud. This complexity is a product of interplay among autocyclic factors (e.g., channel switching, migration of surface currents), allocyclic variables (e.g., continental glaciation, volcanism, balance of chemical to mechanical weathering, earthquake trigger of turbidity currents), and eustatic forcing (e.g., attachment-detachment of river-canyon connections). In addition, new data from ODP Site 888 (Nitinat Fan) and DSDP Site 174 (Astoria Fan) show substantial changes in clay composition with depth. Smectite at Site 888 varies erratically from 13% to 55%. Smectite content is 11% to 64% at Site 174, with a marked increase from the younger submarine-fan facies (average 22%) to the underlying abyssal-plain facies (average 42%). Models of fault-zone mechanics and accretionary-prism hydrogeology should take this

  12. Inter-annual dynamics of abyssal polychaete communities in the North East Pacific and North East Atlantic—A family-level study

    NASA Astrophysics Data System (ADS)

    Laguionie-Marchais, C.; Billett, D. S. M.; Paterson, G. L. D.; Ruhl, H. A.; Soto, E. H.; Smith, K. L., Jr.; Thatje, S.

    2013-05-01

    Characterising how deep-sea communities change on contemporary time-scales and understanding underlying ecosystem processes has become important under changing climate and the rise in the exploitation of deep-sea resources. However, little is known about these dynamics and processes. Long-term observations from which inter-annual variations can be detected are scarce in the deep sea. This study examines inter-annual changes in density, family richness and evenness, family and functional group rank abundance distributions of infaunal polychaetes at two abyssal stations in the North East Pacific (Station M, 1991 to 2005) and in the North East Atlantic (Porcupine Abyssal Plain, 1991 to 1999). The two long-term data sets were used to investigate not only if polychaete community structure and composition varied at inter-annual scales in terms of diversity and rank abundance distributions but also if any changes were related to previous observations in megafauna and environmental factors at each locality. The polychaete community structure at each locality was analysed using univariate statistics as well as multivariate ordination techniques based on Bray-Curtis similarity of the yearly family density. Sub-surface deposit feeders, such as Paraonidae, dominated the North East Pacific, whereas surface deposit feeders, such as Cirratulidae, dominated the North East Atlantic. Both stations showed inter-annual variations in density, family evenness and rank abundance distributions. The greatest changes occurred in 1998 in both time series when polychaete densities peaked, and switches in the rank abundance of the most abundant families and functional groups took place. Inter-annual variations in the polychaete community were correlated with a limited number of holothurian species changes, but no correlation was found with particulate organic matter flux or climate indices. Ecological and environmental factors behind the family-level changes remain elusive. Overall, changes in

  13. Peculiarities of Environment Pollution as a Special Type of Radioactive Waste: Field Means for Comprehensive Characterization of Soil and Bottom Sediments and their Application in the Survey at the Flood plain of Techa River - 13172

    SciTech Connect

    Ivanov, Oleg; Danilovich, Alexey; Potapov, Victor; Stepanov, Vyacheslav; Smirnov, Sergey; Volkovich, Anatoly

    2013-07-01

    Contamination of natural objects - zone alarm fallout, zones and flood plains near production sites (the result of technological accidents and resource extraction) occupy large areas. Large area and volume of contaminated matter, moderate specific activity (as low - medium-level wastes) make such objects specific types of radioactive waste. These objects exist for a long time, now they are characterized by a bound state of nuclides with the matrix. There is no cost-effective ways to remove these waste, the only solution for the rehabilitation of such areas is their isolation and regular monitoring through direct and indirect measurements. The complex of instruments was developed to field mapping of contamination. It consists of a portable spectrometric collimated detector, collimated spectrometric borehole detector, underwater spectrometer detector, spectrometer for field measurements of the specific activity of Sr-90, connected to a portable MCA 'Colibry (Hummingbird)'. The complex was used in settlements of Bryansk region, rivers Techa and Yenisei. The effectiveness of the developed complex considered by the example of characterization of the reservoir 10 (artificial lake) in Techinsky cascade containing a huge amount of radioactive waste. The developed field means for comprehensive characterization of soil and bottom sediments contamination are very effective for mapping and monitoring of environment contamination after accidents. Especially in case of high non-uniformity of fallout and may be very actual in Fukushima area. (authors)

  14. Taphonomy and paleoecology of nonmarine mollusca: indicators of alluvial plain lacustrine sedimentation, upper part of the Tongue River Member, Fort Union Formation ( Paleocene), Northern Powder River Basin, Wyoming and Montana ( USA).

    USGS Publications Warehouse

    Hanley, J.H.; Flores, R.M.

    1987-01-01

    The composition, species abundances, and spatial and temporal distributions of mollusc assemblages were controlled by the environments in which they lived and the depositional processes that affected the molluscs after death and before final burial. Post-mortem transport, reworking and concentration of shells, and mixing of faunal elements from discrete habitats produced a taphonomic 'overprint' on assemblage characteristics that directly reflects the processes of alluvial plain and floodbasin lacustrine sedimentation. The 'overprint' can be interpreted from outcrop analysis of molluscan biofabric, which consists of: 1) orientation, fragmentation, size-sorting, abrasion, density, and dispersion of shells, 2) the nature and extent of shell-infilling, and 3) ratio of articulated to disarticulated bivalves. Taphonomic characteristics were used with sedimentological properties to differentiate in-place, reworked, transported, and ecologically mixed mollusc assemblages. This study also defines the paleoecology of habitat preferences of mollusc species as a basis for recognition of the environments in which these assemblages were deposited: 1) large floodbasin lakes, 2) small floodbasin lakes, and 3) crevasse deltas and splays. Integration of sedimentology and paleoecology provides an interdisciplinary approach to the interpretation of alluvial environments through time in the Tongue River Member. -Authors

  15. [The role of antarctica in formation of the cenozoic climate and contemporary open sea abyssal fauna].

    PubMed

    Kuznetsov, A P

    2001-01-01

    The key role of the Antarctic continent in the formation of the contemporary (Cenozoic) zonal-contrast climate and related geologically "young" (Postmesozoic) contemporary abyssal fauna of the World Ocean is discussed on the basis of the current concepts of pleitectonics, history of planetary climates, paleobiooceanology, and bioevolution. It has been shown that the flows of cold aerated near-Antarctic waters that started to descend in the open sea abyssal in the middle of Cenozoic were capable of substituting for previously (in Mesozoic) heated (up to 15-20 degrees C) abyssal waters within only 1500-2000 years. Following the descending near-Antarctic waters, the shallow and cold water oxyphilic fauna assimilated the abyssal zone that had been warm water and weakly populated.

  16. Carbonate to siliciclastic periplatform sediments: southwest Florida

    USGS Publications Warehouse

    Holmes, Charles W.

    1988-01-01

    Geophysical, geochemical, and sedimentological data suggest that the spatial relationships of these deposits are related to sea-level variations. During extreme lowstands, with much of the shelf exposed, the dominant sedimentation was in the form of siliciclastic deposition on the abyssal floor, and slope talus development at the edge of the shelf. During a subsequent rise in sea level, after carbonate production on the shelf was initiated, sediment was transported southward to the head of the canyons and funneled to the abyssal floor. Subsequent rising sea level shifted the axis of transport farther to the shelf, bypassing the canyons and funneling the sediment through breaks in the carbonate reef banks at the southern edge of the platform. At the sites of both the hemipelagic and the turbidite deposition, high-resolution seismic data indicate that at least three cycles of deposition have occurred. In the abyss, this cyclic nature has produced alternating layers of carbonate and noncarbonate sediments, recognizable in the sedimentary record as limestone units interlayered with fine shales. In the geologic record the hemipelagic deposits would be almost indistinguishable from deep-sea foraminiferal oozes.  

  17. Description and phylogenetic position of the first abyssal solitary kamptozoan species from the Kuril-Kamchatka Trench area: Loxosomella profundorum sp. nov. (Kamptozoa: Loxosomatidae)

    NASA Astrophysics Data System (ADS)

    Borisanova, Anastasia O.; Chernyshev, Alexei V.; Neretina, Tatyana V.; Stupnikova, Alexandra N.

    2015-01-01

    One of two orders of a small phylum Kamptozoa, Solitaria, consisting of one family Loxosomatidae of about 140 species, has never been recorded deeper than 700 m. All known for the north-western Pacific loxosomatids (about 17 species) occur in shallow waters. The first abyssal solitary kamptozoan, Loxosomella profundorum sp. nov. is described herein. It was collected during the German-Russian deep-sea expedition KuramBio aboard RV Sonne in the summer of 2012 in the abyssal plain adjacent to the Kuril-Kamchatka Trench. It is the deepest finding of Kamptozoa to date. The new species was found living on the anthozoan polyp Corallimorpharia. L. profundorum sp. nov. is a largest solitary kamptozoan species, up to 4 mm in length, with a stalk of up to 3.5 mm, with 10-12 tentacles, with two conspicuous lateral papillae, and a row of glandular cells in its stalk. A preliminary molecular phylogenetic analysis based on partial 18S rDNA indicated that L. profundorum sp. nov. is a sister clade to the clade, which includes other Loxosomella and two species of Loxomitra.

  18. Variable scale channel avulsion history using fan architecture and stratigraphy, and sediment provenance of Sutlej-Yamuna fans in northwest Gangetic plains during Late Quaternary

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Gupta, Sanjeev; Sinha, Rajiv; Densmore, Alexander; Buylaert, Jan-Pieter; Carter, Andrew; Van-Dijk, Wout M.; Joshi, Suneel; Nayak, Nibedita; Mason, Philippa J.; Kumar, Dewashish; Mondal, Setbandhu; Murray, Andrew; Rai, Shiv P.; Shekhar, Shashank

    2016-04-01

    Channel avulsion during fan development controls distribution and deposition of channel sandbodies and hence alluvial architecture of a fan system. Variable scale spatio-temporal information of fluvial responses to past climate changes is stored in these channel sandbodies. Further these channel sandbodies form fluvial aquifers in alluvial fans and therefore understanding of alluvial architecture and stratigraphy of a fan is crucial for development of groundwater management strategies. In this study we used multiple approaches to map subsurface fluvial aquifer architecture and alluvial stratigraphy, and to estimate sediment provenance using U-Pb dating of detrital zircon grains of Sutlej-Yamuna fan system in northwest India. Satellite imagery based geomorphic mapping shows two large fan system with interfan area. The fan surfaces show presence of major and minor paleochannels. 2D resistivity tomography along several transects across fan surfaces shows distinct layers with contrasting resistivity values. These geo-electric facies corresponds to presence of channel sandbodies beneath surface signature of paleochannels and finer floodplain deposits useful to demarcate lateral extent of subsurface channel sandbodies. A more detailed subsurface stratigraphy using ~50m deep sediment cores and their luminescence ages from across fan surface shows presence of multi-storey sandbodies (MSB) separated by floodplain fines. Within the MSB, individual channel deposits are identified by presence of channel scour surfaces located at coarse sand overlying fine sand layer. Depositional ages of MSB's ranges from ~81 ka (late MIS5) to ~15 ka (MIS2) with major depositional break during MIS3 in parts of the fans. Sediment aggradation rate varies laterally across fan surface as well as vertically down the depth with an average rate of 0.54 mm/year. Fluvial channel persistence for studied time interval (about last 81 ka BP) shows major depositional breaks (and possible incision) at ~41 ka

  19. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    USGS Publications Warehouse

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  20. Evidence for Pulsed Hydrothermal Venting from Young Abyssal Hills on the EPR Flank Suggests Frequent Seismic Pumping of Ridge Flank Fluid Flow

    NASA Astrophysics Data System (ADS)

    Haymon, R. M.; MacDonald, K. C.; Benjamin, S. B.; Ehrhardt, C. J.

    2004-12-01

    Although measured heat flow suggests that 40-50% of oceanic hydrothermal heat and fluid flux is from young (0.1-5 Ma) abyssal hill terrain on MOR flanks, hydrothermal vents in this setting rarely have been found. On the EPR flanks, seafloor evidence of venting from abyssal hills has been discovered recently at two sites: on ˜0.1 Ma seafloor at 10° 20'N, 103° 33.2'W ("Tevnia Site") and on ˜0.5 Ma seafloor at 9° 27'N, 104° 32.3'W ("Macrobes Site"). Manifestations of venting at these sites include: fault scarp hydrothermal mineralization and macrofauna; fault scarp flocculations containing hyperthermophilic microbes; and hilltop sediment mounds and craters possibly created by fluid "blow-outs." Hydrothermal deposits recovered at the ˜0.1 Ma "Tevnia Site" are fault breccias that record many episodes of brecciation followed by hydrothermal cementation (Benjamin et al., this session). Tubeworm casings, live crabs, and "dandelions" observed at this site indicate that the most recent episode of venting was active during, or shortly before, this site was visited with Alvin in 1994. To create the 200 m-high axis-facing fault scarp at Tevnia Site in 100,000 years, an average uplift rate of at least 2 cm/y is required. Since off-axis earthquakes located on abyssal hill fault scarps typically are

  1. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading

  2. Serpentinization Changes Nd, but not Hf Isotopes of Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Frisby, C. P.; Mallick, S.

    2015-12-01

    Serpentinization of the oceanic lithosphere is a known sink for fluid mobile elements (B, Cl, Li, Sr, etc.), while high field strength elements (HFSE: e.g., Hf, Zr, Ti, Nb) are thought to be unaffected by it. In contrast, the fate of REE during serpentinization is equivocal. Correlations between REE and HFSE concentrations in abyssal peridotites suggest control by magmatic processes (Niu, 2004, J. Pet), while some LREE enrichments in serpentinized peridotites compared to their clinopyroxene (cpx) and Nd, Sr isotope data (Delacour et al., 2008, Chem. Geol.) imply seawater-derived REE addition to the mantle protolith (Paulick et al., 2006, Chem. Geol). To further constrain peridotite-seawater interaction during serpentinization we compare bulk rock and cpx Hf and Nd isotope data in partially (up to ~70%) serpentinized abyssal peridotites (9-16°E South West Indian Ridge). We also present a new method that improves yields in Hf, Nd and Pb separations from depleted (<0.03 ppm Hf) ultramafic rocks, which includes coprecipitation of metals with Al-Fe hydroxides and ether-HCl liquid-liquid exchange for Fe removal. Nd isotopes in the bulk peridotite are up to 7ɛNd units less radiogenic than their cpx (i.e., the magmatic value) while Hf isotopes remain equal to cpx within 1 ɛHf. Melt-rock reaction by the local lavas cannot generate this decoupling. The largest Nd isotopic difference between cpx and bulk is seen in the most LREE-depleted samples, while refertilized samples show little change. Leaching experiments show that 30-60% of REE are mobilized from the rock, but >90% of Hf, Zr, Ti are retained in the residue. LA-ICPMS data shows that serpentine after olivine typically has higher LREE/HREE ratios than cpx, pronounced negative Ce anomalies, high U, Sr concentrations and low HFSE, unlike the coexisting cpx. These data are consistent with some seawater-derived LREE addition to peridotite during serpentinization, localized in the serpentine and other secondary phases

  3. An evaluation of along- and down-slope sediment transport processes between Goban Spur and Brenot Spur on the Celtic Margin of the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Cunningham, M. J.; Hodgson, S.; Masson, D. G.; Parson, L. M.

    2005-08-01

    Multi-beam bathymetry and backscatter, 3.5 kHz pinger profiles, side-scan sonar and seabed samples have been examined to evaluate along- and down-slope sedimentary processes along the Celtic Margin shelf and upper slope in water depths of 200 to 1500 m. The continental shelf and slope are indented and dissected by major canyon systems. The shelf is characterised by major northeast-southwest trending sand banks that are orthogonal to the shelf edge. Along the shelf edge, several fields of asymmetric sandwaves oriented orthogonal to the canyon axes indicate sediment transport into the canyon heads. Less commonly, sandwaves with weak asymmetry suggest sediment transport onto the shelf. These may be reworked and are partly overprinted by more recent sandwaves. Down-slope sediment transport by turbidity currents is the dominant process through the major canyons. Recent faulting has also played a role in canyon development. Turbidity currents are most likely initiated by faulting, and/or slope failure of the walls that bound the canyon head drainage basins and sediment migration from the shelf. This leads to deep incision of sinuous thalwegs in the upper reaches of canyon floors and downcutting and sediment transport on the mid to lower continental slope. The canyons are V-shaped in the upper reaches and become U-shaped progressively down-slope, suggesting they represent either a transition from erosive to depositional processes or sediment bypass conduits carrying sediment between the shelf and abyssal plain. Over-bank spill from canyons leads to deposition of unconfined turbidite deposits (muds) on the intervening canyon spurs.

  4. Use of OSL dating to establish the stratigraphic framework of Quaternary eolian sediments, Anton scarp upper trench, Northeastern Colorado High Plains, USA

    USGS Publications Warehouse

    Mahan, S.A.; Noe, D.C.; McCalpin, J.P.

    2009-01-01

    This paper contains the results of the optically stimulated luminescence (OSL) dating used to establish stratigraphic ages and relationships of eolian sediments in a trench in northeastern Colorado, USA. This trench was located in the upper face of the Anton scarp, a major topographic lineament trending NW-SE for a distance of 135 km, in anticipation of intersecting near-surface faulting. The trench was 180 m long, 4.5-6.0 m deep, and exposed 22 m of stratigraphic section, most of which dipped gently west and was truncated by gulley channeling at the face of the scarp. No direct evidence of faulting was found in the upper trench. The stratigraphy from the trench was described, mapped and dated using OSL on quartz and potassium feldspar, and 14C obtained from woody material. OSL dating identified two upper loess units as Peoria Loess and Gilman Canyon Loess, deposited between 16 and 30 ka ago. The bottom layers of the trench were substantially older, giving OSL ages in excess of 100 ka. These older ages are interpreted as underestimates, owing to saturation of the fast component of OSL. Using OSL and 14C dating, we can constrain the erosion and down cutting of the scarp face as occurring between 16 and 5.7 ka. As the trenching investigation continues in other parts of the scarp face, the results of this preliminary study will be of importance in relating the ages of the strata that underlie different parts of the scarp, and in determining whether Quaternary faulting was a mechanism that contributed to the formation of this regional geomorphic feature.

  5. Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: new contributions from Hyblean peridotite xenoliths (southeastern Sicily)

    NASA Astrophysics Data System (ADS)

    Manuella, Fabio Carmelo; Ottolini, Luisa; Carbone, Serafina; Scavo, Lidia

    2016-11-01

    We studied a partially serpentinized peridotite xenolith, found in the diatreme tuff-breccia deposit at Valle Guffari (Hyblean Plateau, southeastern Sicily, Italy), which is representative of the Hyblean peridotite xenolith suite. We also considered all published (21) whole-rock analyses of Hyblean peridotites, to investigate the metasomatizing effects of seawater-related hydrothermal fluids in the Hyblean basement, an in-situ remnant of the ultraslow-spreading Permian Tethys. In detail, we analyzed the serpentine veins by different techniques (scanning electron microscopy-SEM, electron-probe microanalysis-EPMA, micro-Raman spectroscopy, X-ray powder diffraction-XRPD) to determine the crystal-chemical composition and the structure of the veins. In addition, secondary ion mass spectrometry (SIMS) was applied to measure the abundance of trace elements. Serpentine veins are made up of two Fe-rich polytypes, chrysotile 2Mc1 and lizardite 1T. The chondrite-normalized rare earth element compositions of both serpentine polytypes are lower than 1, except for a modest light rare earth element (LREE) enrichment, and also in some fluid-mobile elements (FME: B, Rb, Sr, U). Conversely, the whole-rock composition of the studied peridotite xenolith is enriched with LREE and other trace elements (B, Sr, P, Th, U, Pb), like most Hyblean peridotites. The REE and multi-element patterns of Hyblean peridotites are akin to those of hydrothermal sediments from the Mid-Atlantic Ridge and St. Demetrio hill (northern Hyblean Plateau), and abyssal peridotites (serpentinites) whose trace element abundance is generally ascribed to melt-rock interaction. The integrated interpretation of the data and the documentation of hydrothermal minerals [(Na,S)-rich apatite, carbonates] in serpentine veins indicate that serpentinization-related hydrothermal fluids do have a primary role in metasomatism (mainly for the abundance of LREE and high field strength elements-HFSE) of ancient (Permian Tethys) and

  6. Morphology and Late Quaternary sedimentation in the Gulf of Oman Basin

    NASA Astrophysics Data System (ADS)

    Uchupi, Elazar; Swift, S. A.; Ross, D. A.

    The morphology of the Gulf of Oman Basin, a 3,400 m deep oceanic basin between Oman and southern Pakistan and southern Iran, ranges from a convergent margin (Makran margin) along the north side, a passive type (Oman margin) along the south side, translation types along the basin's west (Zendan Fault-Oman Line) and east (Murray Ridge) sides and a narrow continental rise and a wide abyssal plain in the centre of the basin. Sediment input into the basin during the Late Quaternary has been mainly from the north as a result of the uplift of the Coast Makran Mountains in the Late Miocene-Pliocene. Today most of this detritrus is deposited on the shelf and upper continental slope and perched basins behind the fold/fault ridges on the lower slope. The presence of fans and channels on the continental rise on the north side of the basin indicate, however, that continental derived debris was, and possibly is, being transported to the deep-sea by turbidity currents via gaps in the ridges on the lower slope. In addition to land derived terrigenous sediments, the basin deposits also contain biogenic (organic matter and calcium carbonate), eolian detritus and hydrates and authigenic carbonates from the tectonic dewatering of the Makran accretionary wedge. The eolian sediment is carried into the Gulf of Oman Basin from Arabia and the Mesopotamia Valley by the northwesterly Shamal winds. This type of detritus was particularly abundant during the glacial arid periods 21,000-20,000 and 11,000 (Younger Dryas) years ago when exposure of the Persian (Arabian) Gulf increased the area of dust entrainment and shifted the position of the source of the eolian sediments closer to the basin.

  7. Abyssal echinoid and asteroid fauna of the North Pacific

    NASA Astrophysics Data System (ADS)

    Mironov, A. N.; Minin, K. V.; Dilman, A. B.

    2015-01-01

    Echinoidea and Asteroidea collected in the Kuril-Kamchatka Trench area by the KuramBio Expedition were examined. Altogether 20 species belonging to 16 genera were found, among them six species and two genera were recorded in the North Pacific for the first time. Morphological variability of Abyssaster tara suggests that this species is congeneric with Styracaster transitivus and Styracaster paucispinus. Complete age series of the echinoid Echinosigra amphora and the asteroid Eremicaster crassus are described. The juveniles of E. amphora (>0.5 mm in length) are characterized by unique ophicephalous pedicellaria in the centre of aboral side of the test. The abyssal echinoid and asteroid fauna of the North Pacific (north of 30°N and deeper than 3000 m) comprises 62 species of 36 genera; 22 species (35%) and 3 genera are endemic to this region. Global distribution patterns of genera support the hypothesis that there were two stages of dispersal from the Antarctic to the North Pacific: at earlier stage the dispersal occurred via the East Pacific and at the later stage - via the West Pacific. The genera that had dispersed at earlier stage are represented only in the North and East Pacific and Antarctic. Distribution ranges of these genera in the East Pacific are limited to the narrow zone extending meridionally along the base of the American continental slope. Genera with such distribution pattern are likely adapted to highly eutrophic conditions.

  8. Organic-Carbon Sequestration in Soil/Sediment of the Mississippi River Deltaic Plain - Data; Landscape Distribution, Storage, and Inventory; Accumulation Rates; and Recent Loss, Including a Post-Katrina Preliminary Analysis (Chapter B)

    USGS Publications Warehouse

    Markewich, Helaine W.; Buell, Gary R.; Britsch, Louis D.; McGeehin, John P.; Robbins, John A.; Wrenn, John H.; Dillon, Douglas L.; Fries, Terry L.; Morehead, Nancy R.

    2007-01-01

    Soil/sediment of the Mississippi River deltaic plain (MRDP) in southeastern Louisiana is rich in organic carbon (OC). The MRDP contains about 2 percent of all OC in the surface meter of soil/sediment in the Mississippi River Basin (MRB). Environments within the MRDP differ in soil/sediment organic carbon (SOC) accumulation rate, storage, and inventory. The focus of this study was twofold: (1) develop a database for OC and bulk density for MRDP soil/sediment; and (2) estimate SOC storage, inventory, and accumulation rates for the dominant environments (brackish, intermediate, and fresh marsh; natural levee; distributary; backswamp; and swamp) in the MRDP. Comparative studies were conducted to determine which field and laboratory methods result in the most accurate and reproducible bulk-density values for each marsh environment. Sampling methods included push-core, vibracore, peat borer, and Hargis1 sampler. Bulk-density data for cores taken by the 'short push-core method' proved to be more internally consistent than data for samples collected by other methods. Laboratory methods to estimate OC concentration and inorganic-constituent concentration included mass spectrometry, coulometry, and loss-on-ignition. For the sampled MRDP environments, these methods were comparable. SOC storage was calculated for each core with adequate OC and bulk-density data. SOC inventory was calculated using core-specific data from this study and available published and unpublished pedon data linked to SSURGO2 map units. Sample age was estimated using isotopic cesium (137Cs), lead (210Pb), and carbon (14C), elemental Pb, palynomorphs, other stratigraphic markers, and written history. SOC accumulation rates were estimated for each core with adequate age data. Cesium-137 profiles for marsh soil/sediment are the least ambiguous. Levee and distributary 137Cs profiles show the effects of intermittent allochthonous input and/or sediment resuspension. Cesium-137 and 210Pb data gave the most

  9. An abyssal carbonate compensation depth overshoot in the aftermath of the Palaeocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Penman, Donald E.; Turner, Sandra Kirtland; Sexton, Philip F.; Norris, Richard D.; Dickson, Alexander J.; Boulila, Slah; Ridgwell, Andy; Zeebe, Richard E.; Zachos, James C.; Cameron, Adele; Westerhold, Thomas; Röhl, Ursula

    2016-08-01

    During the Palaeocene-Eocene Thermal Maximum (PETM) about 56 million years ago, thousands of petagrams of carbon were released into the atmosphere and ocean in just a few thousand years, followed by gradual sequestration over approximately 200,000 years. If silicate weathering is one of the key negative feedbacks that removed this carbon, a period of seawater calcium carbonate saturation greater than pre-event levels would be expected during the event's recovery phase. In marine sediments, this should be recorded as a temporary deepening of the depth below which no calcite is preserved -- the calcite compensation depth (CCD). Previous and new sedimentary records from sites that were above the pre-PETM CCD show enhanced carbonate accumulation following the PETM. A new record from an abyssal site in the North Atlantic that lay below the pre-PETM CCD shows a period of carbonate preservation beginning about 70,000 years after the onset of the PETM, providing the first direct evidence for an over-deepening of the CCD. This record confirms an overshoot in ocean carbonate saturation during the PETM recovery. Simulations with two earth system models support scenarios for the PETM that involve a large initial carbon release followed by prolonged low-level emissions, consistent with the timing of CCD deepening in our record. Our findings indicate that sequestration of these carbon emissions was most likely the result of both globally enhanced calcite burial above the CCD and, at least in the North Atlantic, an over-deepening of the CCD.

  10. Three new species and one new genus of abyssal Cumacea (Crustacea, Malacostraca, Peracarida) from the Kuril-Kamchatka Trench area

    NASA Astrophysics Data System (ADS)

    Lavrenteva, Anna V.; Mühlenhardt-Siegel, Ute

    2015-01-01

    Only two species of crustacean Cumacea have been reported in publications for the Kuril-Kamchatka Trench area after nine expeditions on board of the RV "Vityaz". During the KuramBio expedition 2012 to the Kuril-Kamchatka Trench and the adjacent abyssal plain at depths 4830-5780 m no less than 72 species of cumaceans from 23 genera and 6 families were sampled. Five genera were recorded for the first time in the studied region: the genera Pseudoleptostyloides and Platycuma were detected for the first time for the Pacific Ocean; Cyclaspoides, Bathylamprops and Styloptocuma were firstly sampled in North Pacific. About 90% of the sampled species appear to be new to science. Three new deep-sea cumacean species and one new genus from the Kurile Kamchatka area are described in the present paper: Abyssoleucon tzarevae gen. n., sp. n. belonging to the family Leuconidae, Cyclaspoides borisovetsi sp. n. and Bathycuma sonne sp. n. of the family Bodotriidae. A distribution map for the species of the genus Cyclaspoides is provided.

  11. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.

    2013-08-01

    The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.

  12. Edwardsia sojabio sp. n. (Cnidaria: Anthozoa: Actiniaria: Edwardsiidae), a new abyssal sea anemone from the Sea ofJapan

    NASA Astrophysics Data System (ADS)

    Sanamyan, Nadya; Sanamyan, Karen

    2013-02-01

    The paper describes new deep-water edwardsiid sea anemone Edwardsia sojabio sp. n. which is very common on soft muddy bottoms at lower bathyal and upper abyssal depths in the Sea of Japan. It was recorded in high quantity in depths between 2545 and 3550 m and is the second abyssal species of the genus Edwardsia.

  13. Methane in water columns and sediments of the north western Sea of Japan

    NASA Astrophysics Data System (ADS)

    Vereshchagina, Olga F.; Korovitskaya, Elena V.; Mishukova, Galina I.

    2013-02-01

    This paper presents the results of methane measurements in water and sediments, first performed along the north western continental slope and abyssal plain of the Sea of Japan. Methane concentrations in the study area were very low. However, some features of its distribution are revealed. The highest dissolved methane concentrations (10-14 nmol kg-1) are characteristic of the pycnocline layer at a depth of 30-50 m in the northern shallow stations. With increasing depth, the methane is reduced to minimum values (0.5-1.0 nmol kg-1). The greatest variability in methane concentrations was observed in the layers at 0-500 m, which can be explained by the hydrodynamic conditions of the environment on the slope. Methane plumes (1.7 and 1.3 nmol kg-1) on the northern section were recorded at the depth of 1250 and 1495 m, respectively. Plumes (1.2 nmol kg-1) are also observed on near bottom layers at the deepest (more than 3000 m) stations. CH4 concentration in bottom sediments is also low (from 1 nmol kg-1 at 7 cm level to 752 nmol kg-1 at the 53 cm level of the core sediment in the northern part). Reduced sediments in the southern part of the study region have maximal methane concentration for sediment (2549 nmol kg-1) at the horizon 44 cm bsf (below sea floor) with a smell of H2S. These results assume a close relation of CH4 with sediment properties. A few stations with maximum methane (86-101 nmol kg-1) in the surface sediment layer are at the foot of a steep slope. Herewith, the highest abundance of some pericarid species was observed at the points with the highest values of methane concentrations in the surface sediment layer. Weak methane seepage can cause anoxic marine waters. Methane emission from water to the atmosphere is low because its concentration is close to equilibrium in surface water. An improved formula for calculating the methane flux of water into the atmosphere, taking into account high wind speeds, is presented in the paper.

  14. Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites

    NASA Astrophysics Data System (ADS)

    Dygert, Nick; Liang, Yan

    2015-06-01

    Mantle peridotites from ophiolites are commonly interpreted as having mid-ocean ridge (MOR) or supra-subduction zone (SSZ) affinity. Recently, an REE-in-two-pyroxene thermometer was developed (Liang et al., 2013) that has higher closure temperatures (designated as TREE) than major element based two-pyroxene thermometers for mafic and ultramafic rocks that experienced cooling. The REE-in-two-pyroxene thermometer has the potential to extract meaningful cooling rates from ophiolitic peridotites and thus shed new light on the thermal history of the different tectonic regimes. We calculated TREE for available literature data from abyssal peridotites, subcontinental (SC) peridotites, and ophiolites around the world (Alps, Coast Range, Corsica, New Caledonia, Oman, Othris, Puerto Rico, Russia, and Turkey), and augmented the data with new measurements for peridotites from the Trinity and Josephine ophiolites and the Mariana trench. TREE are compared to major element based thermometers, including the two-pyroxene thermometer of Brey and Köhler (1990) (TBKN). Samples with SC affinity have TREE and TBKN in good agreement. Samples with MOR and SSZ affinity have near-solidus TREE but TBKN hundreds of degrees lower. Closure temperatures for REE and Fe-Mg in pyroxenes were calculated to compare cooling rates among abyssal peridotites, MOR ophiolites, and SSZ ophiolites. Abyssal peridotites appear to cool more rapidly than peridotites from most ophiolites. On average, SSZ ophiolites have lower closure temperatures than abyssal peridotites and many ophiolites with MOR affinity. We propose that these lower temperatures can be attributed to the residence time in the cooling oceanic lithosphere prior to obduction. MOR ophiolites define a continuum spanning cooling rates from SSZ ophiolites to abyssal peridotites. Consistent high closure temperatures for abyssal peridotites and the Oman and Corsica ophiolites suggests hydrothermal circulation and/or rapid cooling events (e.g., normal

  15. Epithermal neutron activation analysis investigation of Clarion-Clipperton abyssal plane clay and polymetallic micronodules.

    PubMed

    Duliu, O G; Cristache, C I; Culicovc, O A; Frontasyeva, M V; Szobotca, S A; Toma, M

    2009-05-01

    The content of seven major (Na, Al, Cl, Mn, K, Ca, Ti, Fe) and 30 trace (Sc, V, Cr, Ni, Co, Zn, Cu, As, Sr, Rb, Zr, Mo, Sn, In, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Dy, Yb, Hf, Ta, W, Th, U) elements determined by INAA in 13 samples of abyssal clay and two samples of micronodules collected from the North pacific Ocean Clarion-Clipperton abyssal plane is presented and discussed with respect to some rocks models. PMID:19230682

  16. Chenier Plain Sediment Burial Pipe Measurements

    NASA Technical Reports Server (NTRS)

    Moeller, Chris; Gunshor, Mat; Huh, Oscar; Winch, Dale

    2000-01-01

    These field notes describe the logistical circumstances and field conditions experienced by the researchers, who measured the waterlines on a series of vertical pipes previously buried in shallow coastal water. The purpose of the measurements was to monitor a portion of the Gulf coast in Louisiana for erosion.

  17. Oxygen Fugacity of Abyssal Peridotites Along the Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Said, M.; Birner, S.; Cottrell, E.

    2015-12-01

    The oxygen budget of the Earth's mantle is important in understanding how our planet evolves chemically over time. The Gakkel Ridge is the world's slowest spreading ridge [1], and exposes peridotites along its axis that record the activity of oxygen in the upper mantle. Our samples comprise relatively fertile lherzolites and harzburgites (Cr#=0.13-0.17, 3.1-8.3% modal cpx [2]) as well as refractory harzburgites (Cr#=0.43-0.55, 0.2-1.0% modal cpx [2]). Using spinel peridotite oxygen barometry [3], we calculated the oxygen fugacity (fO2) of a suite of 10 peridotites from the Gakkel Ridge in order to investigate how melt processes affect the oxygen budget of the Earth's interior. We show that the low-Cr# lherzolites and harzburgites range from -0.1 to +0.6 log units relative to the QFM buffer, consistent with the global abyssal peridotite array, whereas high-Cr# refractory harzburgites have low fO2 values, ranging from -0.7 to -2.7 log units below QFM, with the most refractory samples falling significantly lower than the global array. Because D'Errico et al. (submitted) interprets the refractory samples as recording ancient melt extraction, the low fO2 recorded by these samples may originate in the geologic past, perhaps even in a different tectonic setting. While LREE enrichment in the refractory harzburgites [2] provides evidence for refertilization by an infiltrating melt that could have recently imprinted reducing conditions, we see no corresponding increase in TiO2 content in the spinels, which weakens this hypothesis. Further research on additional refractory harzburgites is needed to constrain whether the reduced nature of these samples is telling us something about the effect of extreme melt extraction on fO2 at ridges, or whether these samples record a unique history that obscures processes operating at ridges today. [1] Coakley and Cochran, EPSL (1998), [2] D'Errico et al., submitted, [3] Bryndzia and Wood, American Journal of Science (1990)

  18. Monologue or Dialogue? Stepping Away from the Abyss in Higher Education

    ERIC Educational Resources Information Center

    Stern, Julian

    2009-01-01

    This paper investigates the possibilities of the use of dialogue, and the dangers of the use of monologue, in higher education in the early twenty-first century, in a period facing a number of smaller- and larger-scale crises--each interpreted as an "abyss" of some kind. How does higher education contribute, positively or negatively, to personal…

  19. Abundance, diversity, and latitudinal gradients of southeastern Atlantic and Antarctic abyssal gastropods

    NASA Astrophysics Data System (ADS)

    Schrödl, M.; Bohn, J. M.; Brenke, N.; Rolán, E.; Schwabe, E.

    2011-03-01

    Mollusca are widely used for deriving concepts on deep-sea biology and biodiversity, yet abyssal collections are limited to only a few regions of the world ocean and biased toward the northern Atlantic. The present study compares gastropod molluscs sampled along a transect through the southern Atlantic from the equator to Antarctica. The DIVA I and II expeditions concentrated on the hardly explored Guinea, Angola, and Cape Basins. Of the 145 deep-sea deployments (5025-5656 m depth) analyzed to date, 20 have yielded 68 specimens of benthic gastropods, representing 27 species. Only five abyssal species were previously known, four of them from the northern Atlantic deep sea; the remainder appear to be undescribed. Interestingly, there is no faunal overlap with the nearby Antarctic deep-sea. Most of these DIVA species (63%) are represented by single individuals, or limited to one or two stations. The rarity (i.e. 0.55 specimens m -2 calculated from quantitative corers) and still undetectable patchiness of southeastern Atlantic abyssal gastropods may indicate "source-sink" dynamics, but comparison is needed with thus far hardly explored regional bathyal faunas. The BRENKE-epibenthic sledge (EBS) may be efficient at surveying the abyssal gastropod species richness, but is shown to drastically underestimate true abundances. Low diversity values throughout the three southern Atlantic ocean basins do further challenge earlier estimates of a hyperdiverse global abyssal macrofauna. Comparative EBS data available from the southern hemisphere indicate a gradient from the equatorial Guinea Basin towards higher gastropod abundances and diversity in Antarctica. This is in clear contrast to the paradigm of a globally strongly decreasing marine diversity from lower to higher latitudes, highlighting the importance of further exploring the southern fauna from the tropics to Antarctica.

  20. The Plains City Story

    ERIC Educational Resources Information Center

    van Olphen, Marcela; Rios, Francisco; Berube, William; Dexter, Robin; McCarthy, Robert

    2006-01-01

    This case study portrays a contemporary phenomenon that affects many U.S. school districts. Specifically, the authors address the challenges that the superintendent of the Plains City school district faced as a result of a change in the demographic distribution of his district. The gradual development of the pig farming industry in Plains City…

  1. Agriculture on the Chaco Plain, Paraguay, South America

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This view of extensive agriculture on the Chaco Plain, Paraguay, (22.5S, 60.5W) depicts the fertility of the soils between the Andes Mountains and the Paraguay - Parana Rivers in the northwestern Paraguay. The Gran Chaco Plain is flat landscape built up by sediments. Frontier settlements like Marsical Estigarribia, seen in the image, are dominated by agriculture along the stream courses that abound in the area.

  2. Marine geology of the hess rise, 1, bathymetry, surface sediment distribution, and environment of deposition

    SciTech Connect

    Nemoto, K.; Kroenke, L.W.

    1981-11-10

    New charts of bathymetry, acoustic character, and sediment distribution describe the Hess Rise, a large oceanic plateau in the central north Pacific. Discrete physiographic provinces on the Hess Rise are the High Plateau, shallower than 3900 m, trending N30/sup 0/W; the Northeastern Flank, a smooth, gentle slope gradually increasing in depth to the northeast; the Woollard Abyssal Plain, extending farther to the northeast; the Volcanic Province with its high peaks and ridges along the southern margin of the Hess Rise; the Mendocino Fracture Zone to the south, expressed by broad, planar seafloor regions bordered by ridges and scarps; the Western Steps, formed by structural benches on the western side of the Rise; and the Emperor Deep, between the rise and the Emperor Seamounts. Five types of acoustic units have been mapped and interpreted: a transparent layer, predominantly of biosiliceous pelagic clay; a stratified layer, predominantly of nannofossil ooze; a diffuse layer of debris flows that seem to have originated mostly in the Volcanic Province; an opaque horizon commonly formed of volcaniclastic sediments that are usually found on the seafloor of the Mendocino Fracture Zone; and a hyperbolic horizon, indicating outcrops of igneous rock. The pronounced effect of bottom currents on the present-day environment of deposition in the Hess Rise is evidenced by the presence of the opaque horizon, which is interpreted as an erosion surface, and by current moating, abrupt thinning of surface layers and truncation of subbottom reflectors. The widespread erosion on the seafloor of the Mendocino Fracture Zone is attributed to the flow of Antarctic bottom water.

  3. Geology, geochemistry, and tectonostratigraphic relations of the crystalline basement beneath the coastal plain of New Jersey and contiguous areas

    USGS Publications Warehouse

    Volkert, Richard A.; Drake, Avery Ala; Sugarman, Peter J.

    1996-01-01

    Coastal plain sediments are underlain by pre-Mesozoic crystalline rocks. The inner coastal plain is underlain by schist that is correlated with the Potomac Terrane, as well as by mafic rocks probably equivalent to the Wilmington or Bel Air-Rising Sun terranes. The northern and central outer coastal plain is underlain by metasedimentary rocks similar to the Brompton-Cameron Terrane. Rocks beneath the southern coastal plain probably correlate with those of the Chopawamsic and Roanoke Rapids terranes.

  4. A global and regional stochastic analysis of near-ridge Abyssal Hill morphology

    NASA Astrophysics Data System (ADS)

    Goff, John A.

    1991-12-01

    This paper presents the results of a global and regional stochastic analysis of near-ridge abyssal hill morphology. The analysis includes the use of Sea Beam data for the estimation of stochastic parameters up to order 4. These parameters provide important quantitative physical information regarding abyssal hills, including their rms height, azimuthal orientation, characteristic width, aspect ratio, Hausdorff dimension, skewness, tilt, and peakiness. The global data set consists of 64 Sea Beam swaths near the Rivera, Cocos, and Nazca spreading sections of the East Pacific Rise, the Mid-Atlantic Ridge, and the Central Indian Ridge. In one form of analysis, the parameters are averaged among spreading rate bins. Each of the spreading rate subsets can be identified as unique from the others in at least one aspect The slowest spreading rate subset (Mid-Atlantic data) exhibit the largest scales (rms height and characteristic width and length) of abyssal hills. These parameters generally decrease as spreading rate increases up to the fast spreading rate data (Pacific-Cocos) but increase going from fast to very fast (Pacific-Nazca) spreading rate data. This indicates some complexity in the relationship between spreading rate and abyssal hill morphology. The plan view aspect ratio is nearly twice as large for the fast spreading rate data than for any of the other subsets and is smallest for the very fast spreading rate data. The fractal dimension is nearly identical for all spreading rate subsets. The vertical skewness is positive for the slow and medium spreading rate data, indicating larger peaks than troughs, and negative for the fast spreading rate data, indicating larger troughs than peaks. The kurtosis, or peakiness is everywhere larger than the Gaussian value of 3 and tends to be larger in the Atlantic than the Pacific. The tilting parameter provides substantial evidence indicating steeper inward facing slopes in the medium and fast spreading rate data, but only

  5. Depositional environments of late glacial to Holocene sediments on the deep water levees of Setúbal and Nazaré Canyons, offshore Portugal: preliminary results

    NASA Astrophysics Data System (ADS)

    Pascoletti, F. C.; Masson, D.; Innocenti, C.

    2010-12-01

    The west Iberian margin is indented by a network of submarine canyons that create rugged seafloor morphology and act as major pathways for the transport of sediment from land to the abyssal plains. The Setúbal and Nazaré Canyons are part of this complex environment and strongly influence sediment distribution, capturing sediments from the Tagus River and the littoral cell transport respectively. Deep submarine sedimentary sequences thus reflect changes in sediment input and depositional environments. The high-resolution sedimentological study here presented was applied in four cores of the deep water levees of Nazaré and Setúbal Canyons in order to explore how sediment input to the canyons changed during the last glacial - interglacial transition, and how this reflects changing environmental conditions on land. By means of non-destructive corelogger measurements and analyses of spectral signatures, geochemical compositions and colour variations, it was possible to identify ice-rafted debris (IRD) deposits, to characterize hemipelagic and turbidite layers and to investigate terrestrial-derived sediments input variation during the last 26 ka. Preliminary results from the sedimentological and turbidite frequency analyses show that highest turbidite occurrence is recorded during the glacial stage, confirming that the generation of turbidity flows in submarine canyons is tightly related to low sea-level stands. We found that major peaks in frequency and thickness of turbidite deposits in the deep Portuguese margin are mainly coeval with abrupt climatic (H2 and 1) and sea-level changes (~ 19 and ~ 23 ka BP), as a consequence of which a major amount of continentally-derived material was transported into the deep sea. During the Holocene, the inception of sea-level rises, independent of their magnitude, has been found to be sufficient to generate turbidity currents, particularly in the Nazaré system. Moreover, a multiple regression analysis was attempted in order to

  6. Billing in Plain English.

    ERIC Educational Resources Information Center

    Hughes, Sarah Jane

    1987-01-01

    The author describes the efforts of the Federal Trade Commission to make credit communications more readable and informative. The group working on the project uses "plain English" as the writing model for forms and manuals. (CH)

  7. A glimpse into the deep of the Antarctic Polar Front - Diversity and abundance of abyssal molluscs

    NASA Astrophysics Data System (ADS)

    Jörger, K. M.; Schrödl, M.; Schwabe, E.; Würzberg, L.

    2014-10-01

    Our knowledge of the biodiversity and distribution patterns of benthic deep-sea faunas is still limited, with large parts of the world's abyss unexplored, lacking α-taxonomic data across oceans basins and especially of biogeographic transition zones between oceans. The Antarctic Polar Frontal Zone has been discussed as major biogeographic barrier hindering faunal exchange between Subantarctic and Antarctic provinces and conserving high rates of endemism in the Southern Ocean benthos. In the present study we report first, exploratory α-taxonomy on the malacofauna sampled by means of an epibenthic sledge from four bathyal respectively abyssal stations (2732-4327 m depth) in the vicinity of the Antarctic Polar Front during the SYSTCO II expedition (SYSTem COupling in the Southern Ocean, RV Polarstern cruise ANT XXVIII/3). We identified 58 distinct molluscan taxa based on external morphology ('morphospecies'); of the 33 taxa successfully assigned to described species 94% were previously reported from the Southern Ocean, but 24% exhibit distribution ranges crossing the Polar Front. One North Atlantic scaphopod is reported for the first time in Antarctic waters. Our study supports that the Antarctic Polar Front does not serve as effective barrier preventing gene flow in deep-sea molluscs. The present dataset shows the general characteristics of deep-sea sampling: patchiness in distribution and a high degree of singletons. Overall molluscan abundances were generally low ranging between 3.60 and 24.65 ind./1000 m², but in comparison with equatorial and subtropic abyssal basins, gastropod species richness and abundance were reaching high values similar to high Antarctic stations. Comparison between high productivity and low productivity zones along the Polar Front suggests increased abundances and species richness in high productivity zones. Intensified sampling is needed, however, to outweigh stochastic errors and to evaluate the influence of carbon flux as driving

  8. Spatially heterogeneous diapycnal mixing in the abyssal ocean: A comparison of two parameterizations to observations

    NASA Astrophysics Data System (ADS)

    Decloedt, Thomas; Luther, Douglas S.

    2012-11-01

    The spatial distributions of the diapycnal diffusivity predicted by two abyssal mixing schemes are compared to each other and to observational estimates based on microstructure surveys and large-scale hydrographic inversions. The parameterizations considered are the tidal mixing scheme by Jayne, St. Laurent and co-authors (JSL01) and the Roughness Diffusivity Model (RDM) by Decloedt and Luther. Comparison to microstructure surveys shows that both parameterizations are conservative in estimating the vertical extent to which bottom-intensified mixing penetrates into the stratified water column. In particular, the JSL01 exponential vertical structure function with fixed scale height decays to background values much nearer topography than observed. JSL01 and RDM yield dramatically different horizontal spatial distributions of diapycnal diffusivity, which would lead to quite different circulations in OGCMs, yet they produce similar basin-averaged diffusivity profiles. Both parameterizations are shown to yield smaller basin-mean diffusivity profiles than hydrographic inverse estimates for the major ocean basins, by factors ranging from 3 up to over an order of magnitude. The canonical 10-4 m2 s-1abyssal diffusivity is reached by the parameterizations only at depths below 3 km. Power consumption by diapycnal mixing below 1 km of depth, between roughly 32°S and 48°N, for the RDM and JSL01 parameterizations is 0.40 TW & 0.28 TW, respectively. The results presented here suggest that present-day mixing parameterizations significantly underestimate abyssal mixing. In conjunction with other recently published studies, a plausible interpretation is that parameterizing the dissipation of bottom-generated internal waves is not sufficient to approximate the global spatial distribution of diapycnal mixing in the abyssal ocean.

  9. Diving into the abyss of undiscovered kidney function-related factors.

    PubMed

    Limou, Sophie; Parsa, Afshin

    2016-10-01

    Meta-analyses and reintroduction of biological knowledge are 2 classic strategies to increase genomewide association study statistical power and overcome the burden of multiple testing. These strategies have empowered the nephrology community to discover new signals associated with kidney function and nephropathies. Here we discuss the current genomewide association study limitations and strategies to dive further into the abyss of yet-to-be discovered kidney function-related factors. PMID:27633863

  10. Abyssal Scavenging Communities attracted to Sargassum and fish in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Fleury, Aharon G.; Drazen, Jeffrey C.

    2013-02-01

    Deep-sea communities rely on epipelagic surface production as a primary source of energy and food. The flux of phytodetritus drives many abyssal ecological processes but the flux of large particles such as nekton carcasses, macroalgae, and wood may also be important. Recent baited camera experiments noted that some abyssal fish consumed spinach and phytoplankton placed on the seafloor. To evaluate if fish or other scavengers would consume natural plant or macroalgal material falling to the deep-sea floor we conducted camera experiments using Sargassum or mackerel bait in the Sargasso Sea. A benthic community of invertebrates was attracted to Sargassum, which naturally falls to the seafloor in this area. In five instances it was observed that an isopod Bathyopsurus sp. removed a piece of Sargassum from the main clump and left the field of view with it. An ophiuroid is also observed handling a piece of Sargassum. The group of scavengers attracted to mackerel bait was very different and was dominated by large ophidiid fish. In contrast to studies elsewhere in the abyssal North Atlantic, only a small number of rattails are observed, which could be related to water depth or an ichthyofaunal zonal change between oligotrophic and eutrophic regions.

  11. Morphological, histochemical and immunohistochemical study of the gill epithelium in the abyssal teleost fish Coelorhynchus coelorhynchus.

    PubMed

    Calabrò, Concetta; Albanese, Maria Pia; Lauriano, Eugenia Rita; Martella, Silvestro; Licata, Aurelio

    2005-01-01

    Histochemical and immunohistochemical study was carried out on nitrinergic innervation and neuroendocrine system in the gill epithelium of the abyssal fish Coelorhynchus coelorhynchus. The results showed that nNOS-positive nerve fibers, originating from the branchial arch were present in the subepithelial tissue of branchial primary filament. nNOS-positive neuroendocrine cells were also present in the primary filaments and secondary lamellae. Numerous mucous cells in the gill epithelium were AB/PAS-positive, while sialic acid was absent as confirmed by neuraminidase reaction and WGA lectin histochemistry. The mucus compounds in abyssal teleost fish are different from those found in pelagic species, being related to their living conditions. In abyssal species, greater numbers of chloride and neuroendocrine cells are involved in the movement of water and electrolytes. Neuroendocrine cells possess oxygen receptors which mediate the cardiovascular and ventilatory response to oxygen deficiency, as reported in teleost species. Besides, NO contributes through nervous stimulation to the regulation of vascular tone and blood circulation in the gill. PMID:15871563

  12. Demographic indicators of change in a deposit-feeding abyssal holothurian community (Station M, 4000 m)

    NASA Astrophysics Data System (ADS)

    Huffard, Christine L.; Kuhnz, Linda A.; Lemon, Larissa; Sherman, Alana D.; Smith, Kenneth L.

    2016-03-01

    Holothurians are among the most abundant benthic megafauna at abyssal depths, and important consumers and bioturbators of organic carbon on the sea floor. Significant fluctuations in abyssal holothurian density are often attributed to species-specific responses to variable particulate organic carbon flux (food supply) stemming from surface ocean events. We report changes in densities of 19 holothurian species at the abyssal monitoring site Station M in the northeast Pacific, recorded during 11 remotely operated vehicle surveys between Dec 2006 and Oct 2014. Body size demographics are presented for Abyssocucumis abyssorum, Synallactidae sp. 1, Paelopatides confundens, Elpidia sp. A, Peniagone gracilis, Peniagone papillata, Peniagone vitrea, Peniagone sp. A, Peniagone sp. 1, and Scotoplanes globosa. Densities were lower and species evenness was higher from 2006-2009 compared to 2011-2014. Food supply of freshly-settled phytodetritus was exceptionally high during this latter period. Based on relationships between median body length and density, numerous immigration and juvenile recruitment events of multiple species appeared to take place between 2011 and 2014. These patterns were dominated by elpidiids (Holothuroidea: Elasipodida: Elpidiidae), which consistently increased in density during a period of high food availability, while other groups showed inconsistent responses. We considered minimum body length to be a proxy for size at juvenile recruitment. Patterns in density clustered by this measure, which was a stronger predictor of maximum density than median and mean body length.

  13. The Plains of Venus

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  14. Titan's Plains: Global Distribution and Possible Origin

    NASA Astrophysics Data System (ADS)

    Lopes, R. M.; Le Gall, A.; Kirk, R. L.; Kargel, J. S.; Stofan, E. R.; Mitchell, K. L.; Lucas, A.; Janssen, M. A.; Wall, S. D.; Malaska, M. J.

    2012-12-01

    Titan's diverse and Earth-like geologic features have been mapped and interpreted based on their morphological characteristics (Lopes et al., 2010, Icarus 205; Aharonson et al., 2012, Titan: Surface, Atmosphere, Magnetosphere, Cambridge University Press). While the interpretation for the origin of some units, such as dunes and well-preserved impact craters, has been relatively straightforward, others have been more challenging. In particular, the undifferentiated plains first mapped by Lopes et al. (2010) remain mysterious. These vast expanses, mostly found at mid-latitudes are relatively featureless and appear to have low relief. Their gradational boundaries and paucity of features in SAR data make geologic interpretation particularly difficult using only this dataset. Plains may be sedimentary in origin, resulting from fluvial or lacustrine deposition or accumulation of photolysis products created in the upper atmosphere. Alternatively, the plains may be cryovolcanic, consisting of overlapping flows of low relief, obscured by accumulation of sediments. In this paper, we use SAR, radiometry, scatterometry, and SARTopo data to examine the characteristics of the plains and compare them with other geologic units. We also compare their global distribution with that of other units and examine the implications of a possible cryovolcanic origin.

  15. Controls on melting at spreading ridges from correlated abyssal peridotite - mid-ocean ridge basalt compositions

    NASA Astrophysics Data System (ADS)

    Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.

    2016-09-01

    Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal

  16. Geomorphic characterization and diversity of the fluvial systems of the Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Jain, Vikrant; Babu, G. Prasad; Ghosh, S.

    2005-09-01

    The extensive Gangetic alluvial plains are drained by rivers which differ strongly in terms of hydrological and sediment transport characteristics. These differences are manifested in the geomorphic diversity of the plains. The Western Gangetic Plains (WGP) are marked by a degradational topography with incised channels and extensive badland development in some parts, while the Eastern Gangetic Plains (EGP) are characterized by shallow, aggrading channels with frequent avulsions and extensive flooding. We interpret such geomorphic diversity in terms of differences in stream power and sediment supply from the catchment areas. The rivers draining the western plains are marked by higher stream power and lower sediment yield that result in degradation. In comparison, the rivers draining the eastern Gangetic Plains have lower stream power and higher sediment yield that result in aggradation. The variation of stream power, a function of channel slope and high sediment yield, is attributed to differences in rainfall and rate of uplift in the hinterland. It is suggested that such differences have resulted in a marked geomorphic diversity across the plains. It is also suggested that such diversity has existed for a fairly long time because of climatic and tectonic variance.

  17. Composition of the abyssal infauna of the Kuril-Kamchatka area (NW Pacific) collected with a box corer

    NASA Astrophysics Data System (ADS)

    Fischer, Viola; Brandt, Angelika

    2015-01-01

    During the German-Russian KuramBio (Kuril-Kamchatka Biodiversity Studies) expedition with the RV Sonne from July to September 2012, a 0.25 m2 box corer was used to sample the benthic fauna of the Kuril-Kamchatka area. 23 cores were deployed at 12 stations, and in total 36,648 individuals could be identified from a combined surface area of 5.75 m2. Total faunal densities ranged from 1024 to 16,592 ind. m-2, respectively, for the macrofauna from 436 to 3520 ind. m-2. The fauna was dominated by Nematoda (65%), even though this group and other meiofaunal taxa were only partially retained by the 300 μm screen that was used as the smallest screen for this study. The remaining part of the fauna was dominated by polychaetes (23%), followed by peracarid crustaceans (6%) and molluscs (3%). Most of the collected taxa occurred very patchily. Over 80% of the animals were extracted from the upper 2 centimeters of the sediment. Compared to other regions of the Pacific the density of the benthic fauna was unusually high. At the upper slope of the continental margin of the trench and at the southern part of the area the benthic fauna was most taxon rich. Station 3 from the continental slope of the trench was also most rich in terms of faunal density (total numbers of ind. m-2), followed by the station 11 and 12 from that the southernmost part of the abyss. Although the Kuril-Kamchatka area has been sampled on several expeditions during the last century, and some studies on the biomass of the benthic fauna have been published, this study offers the first quantitative community analysis of the benthic fauna in terms of abundance and taxon richness.

  18. Outwash plains and thermokarst on Mars

    USGS Publications Warehouse

    Costard, F.M.; Kargel, J.S.

    1995-01-01

    The spatial distribution of different types of rampart craters on Mars suggests a hemispheric asymmetry in the distribution of ground ice. The northern plains, especially major topographic depressions near the terminations of outflow channels, have high percentages of rampart craters. Two of these basins, Acidalia and Utopia Planitiae, received extraordinarily large amounts of water and sediment from the Chryse and Elysium outflow channels. In both regions, the analysis of high-resolution Viking pictures (12 m/pixel) indicates a concentration of kilometer-scale depressions that are similar in size and form to thermokarstic features in Yakutia (Siberia) and parts of the arctic coastal plain of North America. Accordingly, we infer that (1) Utopia Planitia and Acidalia Planitia may contain thick, laterally continuous, ice-rich sedimentary deposits related to outflow channel-forming floods, and (2) these areas of Mars may have experienced thermokarstic processes similar to modern thermokarstic processes in some periglacial regions of Earth.

  19. Northern Plains 'Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 December 2004 The lower left (southwest) corner of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the location of a somewhat filled and buried meteor impact crater on the northern plains of Mars. The dark dots are boulders. A portion of a similar feature is seen in the upper right (northeast) corner of the image. This picture, showing landforms (including the odd mound north/northeast of the crater) that are typical of the martian northern lowland plains, was obtained as part of the MGS MOC effort to support the search for a landing site for the Phoenix Mars Scout lander. Phoenix will launch in 2007 and land on the northern plains in 2008. This image is located near 68.0oN, 227.4oW, and covers an area approximately 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

  20. Long-term maintenance and public exhibition of deep-sea hydrothermal fauna: The AbyssBox project

    NASA Astrophysics Data System (ADS)

    Shillito, Bruce; Ravaux, Juliette; Sarrazin, Jozée; Zbinden, Magali; Sarradin, Pierre-Marie; Barthelemy, Dominique

    2015-11-01

    The AbyssBox project aims to provide the first permanent public exhibition of live deep-sea hydrothermal fauna maintained at in situ pressure. AbyssBox is a pressurized aquarium designed to function permanently. Here we present details of the project after the public exhibition functioned for more than three years at Océanopolis aquarium in Brest, France. We also describe the AbyssBox pressure aquarium, and provide data and observations on vent shrimp (Mirocaris fortunata) and crabs (Segonzacia mesatlantica) that were sampled from 1700 m depth at the Lucky Strike vent field (Mid-Atlantic Ridge) during different cruises. While mortalities exceeded 50% during the first days following sampling, the remaining animals appeared to acclimate fairly well. Some crabs have now been kept for more than 2 years, and some shrimp have spent more than 3 years in captivity. Primarily designed for a public exhibition, the AbyssBox is already used for scientific purposes, since it provides one of the most effective tools for long-term rearing of deep-sea fauna. AbyssBox is a first step towards maintaining a variety of deep-sea fauna year-round at in situ pressure, which will serve both scientific and public interests.

  1. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  2. The Productivity of Plain English.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC.

    Focusing on a meeting held in January 1983, this pamphlet describes the Forum on the Productivity of Plain English, from which grew the permanent Plain English Forum, which is committed to spreading the message that plain English is good business. The pamphlet includes quotations from leaders in business and industry explaining why they feel that…

  3. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    PubMed

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. PMID:25911507

  4. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    PubMed

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents.

  5. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  6. Flood hydrology and methylmercury availability in coastal plain rivers.

    PubMed

    Bradley, Paul M; Journey, Celeste A; Chapelle, Francis H; Lowery, Mark A; Conrads, Paul A

    2010-12-15

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  7. Flood hydrology and methylmercury availability in Coastal Plain rivers

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Chapelle, Francis H.; Lowery, Mark A.; Conrads, Paul A.

    2010-01-01

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  8. The Lower Engadine Window: sediment deposition and accretion in relation to the plate-tectonic evolution of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Waibel, A. F.; Frisch, W.

    1989-05-01

    The Lower Engadine Window comprises a weakly metamorphosed, heterogeneous mixture of continental fragments and oceanic ophiolites embedded in a disrupted mass of deep-sea sediments ranging from the mid-Jurassic to the Early Eocene, mostly turbidites. Its geological features are reviewed in the light of recent research and its relationships with other Penninic outcrops in the Eastern Alps discussed. In the Falknis, Sulzfluh and Tasna zones it is thought that the entire spectrum of post-Liassic sediments was deposited to the north of the Austro-Alpine continental margin. This is based on downcurrent variations of sedimentary structures to the north or northwest in the same direction as the trend of paleocurrent indicators, and on the close petrographic resemblance of coarse parent rock materials to Austro-Alpine units. Of particular significance are granitic rocks exposed by vertical movements along fault scarps associated with the first formation of oceanic crust. These granitic rocks, together with their Permo-Mesozoic sedimentary cover, were to be eroded and slumped down from the continental margin until the Senonian. Throughout the Jurassic, the clastic sediments were shed laterally onto the abyssal plain and base of the continental slope. Pelagic sedimentation during parts of the Late Jurassic and earliest Cretaceous, including Aptychus limestones deposited close to the calcite compensation depth, suggests that maximum subsidence of the initially passive continental margin had been attained by this time period. With the onset of continental convergence in the earliest Cretaceous, underthrusting of oceanic crust gave rise to an accretionary trench system. The Cretaceous sediments were deposited in a deep-sea fan environment affected by chaotic mass movements from the inner trench wall. It is believed that the close proximity to the source area of the vast majority of Jurassic and Cretaceous deposits reflects the relative motion between the plates, which must have

  9. The absence of sharks from abyssal regions of the world's oceans

    PubMed Central

    Priede, Imants G; Froese, Rainer; Bailey, David M; Bergstad, Odd Aksel; Collins, Martin A; Dyb, Jan Erik; Henriques, Camila; Jones, Emma G; King, Nicola

    2006-01-01

    The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales. We propose that they are excluded from the abyss by high-energy demand, including an oil-rich liver for buoyancy, which cannot be sustained in extreme oligotrophic conditions. Sharks are apparently confined to ca 30% of the total ocean and distribution of many species is fragmented around sea mounts, ocean ridges and ocean margins. All populations are therefore within reach of human fisheries, and there is no hidden reserve of chondrichthyan biomass or biodiversity in the deep sea. Sharks may be more vulnerable to over-exploitation than previously thought. PMID:16777734

  10. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Christeleit, Elizabeth C.; Brandon, Mark T.; Zhuang, Guangsheng

    2015-10-01

    Scientific drilling of the abyssal evaporites beneath the deepest parts of the Mediterranean basin gave rise to the idea that the Mediterranean sea completely evaporated at the end of the Messinian. Herein, we show, using new organic geochemical data, that those evaporites were deposited beneath a deep-water saline basin, not in a subaerial saltpan, as originally proposed. Abundant fossil organic lipids were extracted from evaporites in Mediterranean Deep Sea Drilling Project cores. The archaeal lipid distribution and new analyses, using the ACE salinity proxy and TEX86 temperature proxy, indicate that surface waters at the time of evaporite deposition had normal marine salinity, ranging from ∼26 to 34 practical salinity units, and temperatures of 25-28 °C. These conditions require a deep-water setting, with a mixed layer with normal marine salinity and an underlying brine layer at gypsum and halite saturation. After correction for isostatic rebound, our results indicate maximum drawdown of ∼2000 m and ∼2900 m relative to modern sea level in the western and eastern Mediterranean basins, respectively. Our results are consistent with previously proposed scenarios for sea level drawdown based on both subaerial and submarine incision and backfilling of the Rhone and Nile rivers, which require Messinian sea level drops of ∼1300 m and ∼200 m, respectively. This study provides new evidence for an old debate and also demonstrates the importance of further scientific drilling and sampling of deeper part of the abyssal Messinian units.

  11. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna.

    PubMed

    Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A; Menot, Lenaick; Arbizu, Pedro Martínez

    2016-01-01

    Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m(2)), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones. PMID:27245847

  12. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna.

    PubMed

    Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A; Menot, Lenaick; Arbizu, Pedro Martínez

    2016-01-01

    Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m(2)), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.

  13. The absence of sharks from abyssal regions of the world's oceans.

    PubMed

    Priede, Imants G; Froese, Rainer; Bailey, David M; Bergstad, Odd Aksel; Collins, Martin A; Dyb, Jan Erik; Henriques, Camila; Jones, Emma G; King, Nicola

    2006-06-01

    The oceanic abyss (depths greater than 3000 m), one of the largest environments on the planet, is characterized by absence of solar light, high pressures and remoteness from surface food supply necessitating special molecular, physiological, behavioural and ecological adaptations of organisms that live there. Sampling by trawl, baited hooks and cameras we show that the Chondrichthyes (sharks, rays and chimaeras) are absent from, or very rare in this region. Analysis of a global data set shows a trend of rapid disappearance of chondrichthyan species with depth when compared with bony fishes. Sharks, apparently well adapted to life at high pressures are conspicuous on slopes down to 2000 m including scavenging at food falls such as dead whales. We propose that they are excluded from the abyss by high-energy demand, including an oil-rich liver for buoyancy, which cannot be sustained in extreme oligotrophic conditions. Sharks are apparently confined to ca 30% of the total ocean and distribution of many species is fragmented around sea mounts, ocean ridges and ocean margins. All populations are therefore within reach of human fisheries, and there is no hidden reserve of chondrichthyan biomass or biodiversity in the deep sea. Sharks may be more vulnerable to over-exploitation than previously thought. PMID:16777734

  14. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna

    PubMed Central

    Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A.; Menot, Lenaick; Arbizu, Pedro Martínez

    2016-01-01

    Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m2), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones. PMID:27245847

  15. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna

    NASA Astrophysics Data System (ADS)

    Vanreusel, Ann; Hilario, Ana; Ribeiro, Pedro A.; Menot, Lenaick; Arbizu, Pedro Martínez

    2016-06-01

    Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m2), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.

  16. Properties of a 5500-year-old flood-plain in the Loup River Basin, Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.

    2003-12-01

    Flood-plain aggradation within the Loup River Basin of central Nebraska was episodic and alternated with incision throughout much of the Holocene. A widespread episode of flood-plain stability, however, occurred about 5700-5100 cal. year BP. The purpose of this paper is to describe the properties of this buried flood-plain at six sites in the basin, to consider why the properties of the buried flood-plain vary from site to site, and to evaluate possible reasons why the Loup River flood-plains stabilized 5500 years ago. Episodic valley-bottom aggradation was common during flood-plain formation at five of the six sites. The radiocarbon ages, particle-size data, and organic-carbon data for the buried flood-plain reveal that valley-bottom aggradation generally slowed between about 5700 and 5100 cal. year BP. Erratic down-profile changes in percentages of sand, clay, and organic matter indicate flood-plain sedimentation and soil formation were often episodic. Sand and clay rarely show a steady fining-upward trend. Organic matter fluctuates with depth; at some sites multiple, incipient A horizons were buried during waning valley-bottom aggradation. At two localities, the buried flood-plain is evident as a clay-rich stratum that must have been deposited in a paleochannel. Flood-plain stabilization between 5700 and 5100 cal. year BP probably occurred in response to the effects of external climate forcing on vegetation and hydrologic changes. Flood-plains of other rivers in the central Great Plains also stabilized at this time, further supporting a climatic explanation for slowing of valley aggradation and formation of a flood-plain at this time. Recognition of buried flood-plains is important to both soil mapping in valleys and to the discovery of cultural resources in valleys.

  17. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  18. The geomorphology of the Mississippi River chenier plain

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.

    1989-01-01

    , but the numerous different forms and ages of cheniers do not correspond well to the timing of major delta complex switching. Progradation of the chenier plain appears to be associated with building of the Recent delta plain and not the Teche complex of the late Holocene delta plain. The occurrence of individual ridges appears to be primarily tied to delta lobe switching within the Lafourche complex and variations in sediment supply from local rivers. The recent development of the Atchafalaya delta complex to the west is the closest position of an active distributary to the chenier plain since sealevel stabilization; a new episode of rapid mudflat progradation is thus taking place. ?? 1989.

  19. Geomorphological development of Eastern Mongolian plain, Mongolia

    NASA Astrophysics Data System (ADS)

    khukhuudei, Ulambadrakh; otgonbayar, Orolzodmaa

    2016-04-01

    Several summaries and investigations of the geomorphological description and feature for Eastern Mongolian plain (EMP), the one of the largest geomorphological district, fully covering east side of Mongolia (Murzayev, 1949; Vlodavets, 1950, 1955; Marinov, Khasin, 1954; Marinov, 1966; Nikolayeva, 1971; Selivanov, 1972; Chichagov, 1974, 1976; Grigorov, 1975; Korjuyev, 1982; Syirnev, 1982, 1984) had been publishing continuously. But literature for geomorphology of EMP have been not appeared during over the past 20 years. However, we re-combine the geomorphological development of EMP, according to the results of many publications for surrounding regions of Russia and China and unpublished maps. Main morphology of EMP has the plain, containing with aeolian, fluvial and lacustrine landforms. Plain morphology defined that denudation plains to North Kherlen, South Kherlen, Baruun Urt, Uulbayan, Delgerekh and other which developed on the Paleozoic rocks, layered plain to Choibalsan, Tamsag, Ongon, Gert, Sumiin nuur and Torey- on the Late Cretaceous and Neogene sediments and accumulation plain with alluvial and lacustrine origin such as Menen, Buir nuur, Tamsagbulag, Khalzan and other. These plains of EMP related with tectonics and structure of region and inherited the development of the Mesozoic, particularly Late Mesozoic structure. Large basins of EMP are Tamsag, Choibalsan and Torey and other small basins - from 7-10 km to 25-30 km width and rather a several 10 km extend, cutting a basement. The origin of plain morphology for EMP is interpreted as two main stages of the geomorphological development model, based on geology. In first stage or Late Jurassic (?) - Lower Cretaceous period, there was developed rift basin, then, in second stage or since Late Cretaceous period, plain morphology originated from the intermountain basin that dominated by exogenic process and kept in current EMP area. Data relevant to the development history of EMP are following. 1. Rift volcanism

  20. The Virginia Coastal Plain Hydrogeologic Framework

    USGS Publications Warehouse

    McFarland, E. Randolph; Bruce, T. Scott

    2006-01-01

    A refined descriptive hydrogeologic framework of the Coastal Plain of eastern Virginia provides a new perspective on the regional ground-water system by incorporating recent understanding gained by discovery of the Chesapeake Bay impact crater and determination of other geological relations. The seaward-thickening wedge of extensive, eastward-dipping strata of largely unconsolidated sediments is classified into a series of 19 hydrogeologic units, based on interpretations of geophysical logs and allied descriptions and analyses from a regional network of 403 boreholes. Potomac aquifer sediments of Early Cretaceous age form the primary ground-water supply resource. The Potomac aquifer is designated as a single aquifer because the fine-grained interbeds, which are spatially highly variable and inherently discontinuous, are not sufficiently dense across a continuous expanse to act as regional barriers to ground-water flow. Part of the Potomac aquifer in the outer part of the Chesapeake Bay impact crater consists of megablock beds, which are relatively undeformed internally but are bounded by widely separated faults. The Potomac aquifer is entirely truncated across the inner part of the crater. The Potomac confining zone approximates a transition from the Potomac aquifer to overlying hydrogeologic units. New or revised designations of sediments of Late Cretaceous age that are present only south of the James River include the upper Cenomanian confining unit, the Virginia Beach aquifer and confining zone, and the Peedee aquifer and confining zone. The Virginia Beach aquifer is a locally important ground-water supply resource. Sediments of late Paleocene to early Eocene age that compose the Aquia aquifer and overlying Nanjemoy-Marlboro confining unit are truncated along the margin of the Chesapeake Bay impact crater. Sediments of late Eocene age compose three newly designated confining units within the crater, which are from bottom to top, the impact-generated Exmore clast

  1. Engineering concepts for the placement of wastes on the abyssal seafloor

    NASA Astrophysics Data System (ADS)

    Valent, Philip J.; Palowitch, Andrew W.; Young, David K.

    1998-05-01

    The Naval Research Laboratory (NRL), with industry and academic participation, has completed a study of the concept of isolating industrial wastes (i.e., sewage sludge, fly ash from municipal incinerators, and dredged material) on the abyssal seafloor. This paper presents results of the technical and economic assessment of this waste management concept. The results of the environmental impacts portion of the study are presented in a companion paper. The technical assessment began with identification of 128 patents addressing waste disposal in the ocean. From these 128 patents, five methods for transporting wastes through the water column and emplacing wastes within an easily monitored area on the abyssal seafloor were synthesized for technical assessment. In one method waste is lowered to the seafloor in a bucket of 190 m 3. In a second method waste is pumped down to the seafloor in pipes, 1.37 m in diameter and 6100 m in length. In a third method waste is free-fallen from the ocean surface in 380-m 3 geosynthetic fabric containers (GFCs). In the fourth and fifth methods, waste is carried to near the seafloor in GFCs transported in (a) a 20,000 metric ton displacement (loaded), unpowered, unmanned submersible glider, or (b) a 2085 metric ton displacement (loaded) disk-shaped transporter traversing to and from the seafloor much like an untethered elevator. In the last two methods the transporter releases the GFCs to free-fall the last few hundred meters to the seafloor. Two reliability analyses, a Fault Tree Analysis (FTA), and a Failure Modes, Effects, and Criticality Analysis (FMECA), showed that the free-fall GFC method posed the least overall relative risk, provided that fabric container and transporter designs eliminate the potential for tearing of the containers on release from the surface transporter. Of the five methods, the three GFC methods were shown to offer cost-effective waste management options when compared with present-day waste management

  2. Implications of spinel compositions for the petrotectonic history of abyssal peridotite from Southwest Indian Ridge (SWIR)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Jin, Z.; Wang, Y.; Tao, C.

    2012-12-01

    Abyssal peridotites generate at mid-ocean ridges. Lherzolite and harzburgite are the main rock types of peridotites in the uppermost mantle. The lherzolite subtype, less depleted and less common in ophiolites, characterizes mantle diapirs and slow-spreading ridges. Along the Earth's mid-ocean ridges, abyssal peridotites undergo hydration reactions to become serpentinite minerals, especially in slow to ultraslow spreading mid-ocean ridges. Spinel is common in small quantities in peridotites, and its compositions have often been used as petrogenetic indicators [1]. The Southwest Indian Ridge (SWIR) is one of the two ultraslow spreading ridges in the world. The studied serpentinized peridotite sample was collected by the 21st Voyage of the Chinese oceanic research ship Dayang Yihao (aka Ocean No. 1) from a hydrothermal field (63.5°E, 28.0°S, and 3660 m deep) in SWIR. The studied spinels in serpentinized lherzolite have four zones with different compositions: relic, unaltered core is magmatic Al-spinels; micro- to nano- sized ferrichromite zoned particles; narrow and discontinuous magnetite rim; and chlorite aureoles. The values Cr# of the primary Al-spinels indicate the range of melting for abyssal peridotites from SWIR extends from ~4% to ~7% [2]. The alteration rims of ferrichromite have a chemical composition characterized by Fe enrichment and Cr# increase indicating chromite altered under greenschist-amphibolite facies. Magnetites formed in syn- and post- serpentinization. Chlorite (clinochlore) formed at the boundary and crack of spinel indicating it had undergone with low-temperature MgO- and SiO2-rich hydrothermal fluids [3]. It suggests that serpentinized lherzolite from SWIR had undergone poly-stage hydration reactions with a wide range of temperature. Acknowledgments: EMPA experiment was carried out by Xihao Zhu and Shu Zheng in The Second Institute of Oceanography and China University of Geosciences, respectively. The work was supported by NSFC

  3. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    The abyssal depths of the polar oceans are thought to be low in diversity compared with the shallower polar shelves and temperate and tropical deep-sea basins. Our recent study on the gastropod fauna of the deep Southern Ocean gives evidence of the existence of a rich gastropod assemblage at abyssal depths. During the ANDEEP I and II expeditions to the southern Drake Passage, Northwestern Weddell Sea, and South Sandwich Trench, gastropods were collected by bottom and Agassiz trawls, epibenthic sledge, and multicorer, at 40 stations in depths between 127 and 5194 m. On the whole, 473 specimens, corresponding to 93 species of 36 families, were obtained. Of those, 414 specimens were caught below 750 m depth and refer to 84 (90%) benthic species of 32 (89%) families. Most families were represented by a single species only. The numerically dominant families were Skeneidae and Buccinidae (with 10 and 11 species, respectively), Eulimidae and Trochidae (with 9 species each), and Turridae (6 species). Thirty-Seven benthic deep-sea species (44%) were represented by a single specimen, and another 20 species (24%) were found at a single station, suggesting that more than two thirds of Antarctic deep-sea gastropod species are very rare or have a very scattered distribution. Of the 27 species occurring at two or more deep-sea stations, 14 were collected with different gear. Approximately half of the deep-water species are new to science or have been recently described. The present investigation increases the total number of recorded benthic Antarctic deep-sea gastropods (below 750 m) from 115 to 177. The previously known depth ranges have been extended, often considerably, for 31 species. The collected deep-sea gastropods comprise both eurybathic shelf species (29%) and apparently true deep-sea species (58%); some of the latter may belong to a so far unknown Antarctic abyssal fauna. Geographical ranges of the collected Antarctic benthic deep-sea gastropod species appear limited

  4. Ice in the northern plains: Relic of a frozen ocean?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1993-01-01

    Viking images revealed many features in the northern plains and along their boundary that early investigators believed to be formed by ice-related processes. The features are possible pingos, pseudocraters, table mountains and moberg ridges, thermokarst depressions, moraines, patterned ground, and lobate aprons that suggest viscous flow such as that of ice or rock glaciers. More recently, many of these features were reinterpreted as related to sedimentation in hypothetical former polar lakes, oceans, or alluvial plains or as shoreline features of associated water bodies. Some evidence that points toward the existence of former bodies of standing water in the northern plains, but is also consistent with the idea that these bodies were ice covered or completely frozen is reviewed.

  5. Controls of sedimentary supply and gravity driven deformation on the eastern Niger delta (Plio-Pleistocene) from the shoreline to the deep sea plain

    NASA Astrophysics Data System (ADS)

    Robin, Cécile; Guillocheau, François; Rouby, Delphine; Nalpas, Thierry; Jermannaud, Paul; Raillard, Stéphane

    2013-04-01

    We studied the evolution of the gravity flow sedimentary within a large shelf-edge delta (Eastern Niger delta) over the last 2,5Myr taking into account the influence of the contemporaneous gravity driven deformation and sedimentary supply. To do this, we mapped (i) the shoreline geometry and (ii) the associated turbiditic systems for 9 intervals using a classification based on three morphological end-members: erosive, constructive and depositional modes. We characterized the depositional profile of the passive margin delta from the littoral domain to the abyssal plain and its spatial and temporal variability. We showed that, at the scale of the delta, the depositional profile varied from (i) a shelf edge delta profile with a slope break at the location of the shoreline during progradation to (ii) a ramp profile characteristic of a mid-shelf delta during retrogradation. Thus, during a stratigraphic cycle, the delta front evolved from a prograding slope break during the development of the HST, to steepening clinoforms during the development of the LST that progressively flattened out during the TST to reach a ramp profile at the MFS. The turbiditic systems (including MTC) initiate near the shoreline, at the toe of the delta front. Also, they form preferentially down slope synthetic faults or within antithetic fault relays. They are initially erosive, becoming constructive further down slope and eventually depositional. They may become erosive again as they cut through the compressional structures. We showed that the stratigraphic state (progradation/retrogradation) controls the amount of sediment reaching the platform and strongly impacts the density of gravity flow sedimentary systems (low density during progradation and high density during progradation). On the other hand, the gravity driven deformation controls the slope of the sea-floor and, in doing so, their morphology (erosive/constructive/depositional). Within this framework, lateral migrations of the delta

  6. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    PubMed

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-01

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  7. Dunes on Plains

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03047 Dunes on Plains

    These dunes are located on the plains around Doanus Vallis.

    Image information: VIS instrument. Latitude 62.3S, Longitude 335.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Northern Plains Patterns

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-513, 14 October 2003

    Patterns are common on the northern plains of Mars. Like their terrestrial counterparts in places like Siberia, Alaska, and northern Canada, patterned ground on Mars might be an indicator of the presence of ground ice. Whether it is true that the patterns on Mars are related to ground ice and whether the ice is still present beneath the martian surface are unknown. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an example of patterned ground on the martian northern plains near 72.4oN, 252.6oW. The dark dots and lines are low mounds and chains of mounds. The circular feature near the center of the image is the location of a buried meteor impact crater; its presence today is marked only by the dark boulders on its rim and ejecta blanket that have managed to remain uncovered at the martian surface. The area shown is 3 km (1.9 mi) wide and illuminated by sunlight from the lower left.

  9. Organic matter budget in the Southeast Atlantic continental margin close to the Congo Canyon: In situ measurements of sediment oxygen consumption

    NASA Astrophysics Data System (ADS)

    Rabouille, C.; Caprais, J.-C.; Lansard, B.; Crassous, P.; Dedieu, K.; Reyss, J. L.; Khripounoff, A.

    2009-12-01

    A study of organic carbon mineralization from the Congo continental shelf to the abyssal plain through the Congo submarine channel and Angola Margin was undertaken using in situ measurements of sediment oxygen demand as a tracer of benthic carbon recycling. Two measurement techniques were coupled on a single autonomous platform: in situ benthic chambers and microelectrodes, which provided total and diffusive oxygen uptake as well as oxygen microdistributions in porewaters. In addition, sediment trap fluxes, sediment composition (Org-C, Tot-N, CaCO 3, porosity) and radionuclide profiles provided measurements of, respectively input fluxes and burial rate of organic and inorganic compounds. The in situ results show that the oxygen consumption on this margin close to the Congo River is high with values of total oxygen uptake (TOU) of 4±0.6, 3.6±0.5 mmol m -2 d -1 at 1300 and 3100 m depth, respectively, and between 1.9±0.3 and 2.4±0.2 mmol m -2 d -1 at 4000 m depth. Diffusive oxygen uptakes (DOU) were 2.8±1.1, 2.3±0.8, 0.8±0.3 and 1.2±0.1 mmol m -2 d -1, respectively at the same depths. The magnitude of the oxygen demands on the slope is correlated with water depth but is not correlated with the proximity of the submarine channel-levee system, which indicates that cross-slope transport processes are active over the entire margin. Comparison of the vertical flux of organic carbon with its mineralization and burial reveal that this lateral input is very important since the sum of recycling and burial in the sediments is 5-8 times larger than the vertical flux recorded in traps. Transfer of material from the Congo River occurs through turbidity currents channelled in the Congo valley, which are subsequently deposited in the Lobe zone in the Congo fan below 4800 m. Ship board measurements of oxygen profiles indicate large mineralization rates of organic carbon in this zone, which agrees with the high organic carbon content (3%) and the large sedimentation rate (19

  10. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10

    USGS Publications Warehouse

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.

    2015-01-01

    Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.

  11. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  12. A Surficial Hydrogeologic Framework for the Mid-Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; Krantz, David E.; Newell, Wayne L.; Martucci, Sarah K.

    2005-01-01

    A surficial hydrogeologic framework was developed for the Mid-Atlantic Coastal Plain, from New Jersey through North Carolina. The framework includes seven distinct hydrogeologic subregions within which the primary natural physical factors affecting the flow and chemistry of shallow ground water and small streams are relatively consistent. Within most subregions, the transport of chemicals from the land surface to ground water and streams can be described by a fairly uniform set of natural processes; some subregions include mixed hydrogeologic settings that are indistinguishable at the regional scale. The hydrogeologic framework and accompanying physiographic and geologic delineations are presented in digital and printed format. The seven hydrogeologic subregions that constitute the framework were delineated primarily on the basis of physiography and the predominant texture (typical grain size) of surficial and (where surficial sediments are particularly thin) subcropping sediments. Physiography for the Mid-Atlantic Coastal Plain was constructed by standardizing and extrapolating previously published interpretations for the Coastal Plain of South Carolina and New Jersey, based on similar work in the other States. Surficial and subcropping geology were similarly compiled from previous publications by resolving inconsistencies in nomenclature, interpretation, and scale, and interpolating across unmapped areas. A bulk sediment texture was determined for each mapped geologic unit on the basis of published descriptions. Fundamental differences among the seven hydrogeologic subregions are described on the basis of hypotheses about surficial and shallow subsurface hydrology and water chemistry in each, as well as variable land use, soils, and topography. On the regional scale, the Coastal Lowlands (Subregion 1), the Middle Coastal Plain Fine Sediments (Subregion 3), the Middle Coastal Plain Sands with Overlying Gravels (Subregion 4), and the Inner Coastal Plain Upland

  13. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, Umberto

    2016-05-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays and sheet sands triggered by above-normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all 12 tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. The data suggest that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid-to-late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a yearly to decadal timescale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  14. Alluvial plain dynamics in the southern Amazonian foreland basin

    NASA Astrophysics Data System (ADS)

    Lombardo, U.

    2015-10-01

    Alluvial plains are formed with sediments that rivers deposit on the adjacent flood-basin, mainly through crevasse splays and avulsions. These result from a combination of processes, some of which push the river towards the crevasse threshold, while others act as triggers. Based on the floodplain sedimentation patterns of large rivers in the southern Amazonian foreland basin, it has been suggested that alluvial plain sediment accumulation is primarily the result of river crevasse splays triggered by above normal precipitation events due to La Niña. However, more than 90 % of the Amazonian river network is made of small rivers and it is unknown whether small river floodplain sedimentation is influenced by the ENSO cycle as well. Using Landsat images from 1984 to 2014, here I analyse the behaviour of all the twelve tributaries of the Río Mamoré with a catchment in the Andes. I show that these are very active rivers and that the frequency of crevasses is not linked to ENSO activity. I found that most of the sediments eroded from the Andes by the tributaries of the Mamoré are deposited in the alluvial plains, before reaching the parent river. The mid- to late Holocene paleo-channels of these rivers are located tens of kilometres further away from the Andes than the modern crevasses. I conclude that the frequency of crevasses is controlled by intrabasinal processes that act on a year to decade time scale, while the average location of the crevasses is controlled by climatic or neo-tectonic events that act on a millennial scale. Finally, I discuss the implications of river dynamics on rural livelihoods and biodiversity in the Llanos de Moxos, a seasonally flooded savannah covering most of the southern Amazonian foreland basin and the world's largest RAMSAR site.

  15. On A Simple Parameterization and Global Extrapolation of Topography-Catalyzed Diapycnal Mixing in the Abyssal Ocean

    NASA Astrophysics Data System (ADS)

    Decloedt, T.; Luther, D. S.

    2006-12-01

    The potential role of topography-catalyzed mixing in maintaining the observed abyssal stratification is re- examined in light of the growing body of fine- and micro-structure data revealing energetic mixing near rough topography. A large collection of these fine- and micro-structure data sets from various oceanic regions are employed to develop a simple parameterization of the mean vertical structure of diapycnal mixing. The parameterization depends only on seafloor roughness and a power law function of height above bottom. Resulting global diffusivity maps show considerable spatial variability and suggest the need for more exploration of regions where non-tidal energy sources may generate near-boundary mixing. Basin-average diffusivity profiles and total dissipation rate estimates are found to be sensitive to the strength of mixing very close to the boundary (within 200 m). The contention that topography-catalyzed mixing is an important factor in maintaining the abyssal stratification is supported. Near-boundary mixing is perhaps the dominant factor below 3 km of depth, and is a significant factor at depths as shallow as one kilometer where it may provide as much as 1/3 of the bulk diffusivity required to maintain the stratification (under the assumption that diapycnal mixing is the sole mechanism for maintaining the stratification). The power required by the model to sustain this basin-average diffusivity profile in the abyssal oceans (1-4 km depth, 40 S to 48 N) is 0.41 TW to 0.89 TW (depending on the maximum near-boundary diffusivity prescribed in the power law model), in contrast to about 0.65 TW to maintain a diffusivity of 1 Stoke in the abyssal oceans.

  16. Abyssal intimacies and temporalities of care: How (not) to care about deformed leaf bugs in the aftermath of Chernobyl.

    PubMed

    Schrader, Astrid

    2015-10-01

    Prompted by a classroom discussion on knowledge politics in the aftermath of the Chernobyl disaster, this article offers a reading of Hugh Raffles' Insectopedia entry on Chernobyl. In that entry, Raffles describes how Swiss science-artist and environmental activist Cornelia Hesse-Honegger collects, studies, and paints morphologically deformed leaf bugs that she finds in the proximity of nuclear power plants. In exploring how to begin to care about beings, such as leaf bugs, this article proposes a notion of care that combines an intimate knowledge practice with an ethical relationship to more-than-human others. Jacques Derrida's notion of 'abyssal intimacy' is central to such a combination. Hesse-Honegger's research practices enact and her paintings depict an 'abyssal intimacy' that deconstructs the oppositions between concerns about human suffering and compassion for seemingly irrelevant insects and between knowledge politics and ethics. At the heart of such a careful knowledge production is a fundamental passivity, based on a shared vulnerability. An abyssal intimacy is not something we ought to recognize; rather, it issues from particular practices of care that do not identify their subjects of care in advance. Caring or becoming affected thus entails the dissociation of affection not only from the humanist subject, but also from movements in time: from direct helping action and from the assumption that advocacy necessarily means speaking for an other, usually assumed to be inferior. PMID:26630816

  17. Abyssal intimacies and temporalities of care: How (not) to care about deformed leaf bugs in the aftermath of Chernobyl.

    PubMed

    Schrader, Astrid

    2015-10-01

    Prompted by a classroom discussion on knowledge politics in the aftermath of the Chernobyl disaster, this article offers a reading of Hugh Raffles' Insectopedia entry on Chernobyl. In that entry, Raffles describes how Swiss science-artist and environmental activist Cornelia Hesse-Honegger collects, studies, and paints morphologically deformed leaf bugs that she finds in the proximity of nuclear power plants. In exploring how to begin to care about beings, such as leaf bugs, this article proposes a notion of care that combines an intimate knowledge practice with an ethical relationship to more-than-human others. Jacques Derrida's notion of 'abyssal intimacy' is central to such a combination. Hesse-Honegger's research practices enact and her paintings depict an 'abyssal intimacy' that deconstructs the oppositions between concerns about human suffering and compassion for seemingly irrelevant insects and between knowledge politics and ethics. At the heart of such a careful knowledge production is a fundamental passivity, based on a shared vulnerability. An abyssal intimacy is not something we ought to recognize; rather, it issues from particular practices of care that do not identify their subjects of care in advance. Caring or becoming affected thus entails the dissociation of affection not only from the humanist subject, but also from movements in time: from direct helping action and from the assumption that advocacy necessarily means speaking for an other, usually assumed to be inferior.

  18. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    NASA Astrophysics Data System (ADS)

    O'Connor, Jim E.; Jones, Myrtle A.; Haluska, Tana L.

    2003-03-01

    Comparison of historic channel migration rates, modern planform conditions, and overall sediment, wood, and flow conditions and interactions for the Quinault River and Queets River in the western Olympic Peninsula, Washington, reveals decadal- to century-scale interactions between gravel-bed channels and forested flood plains in temperate maritime environments. The downstream alluvial portions of these two rivers can be divided into three reaches of different slope, flow, sediment, and wood regimes: (i) the upper Quinault River is aggrading behind Lake Quinault, a natural lake that traps most sediment and wood transported from the Olympic Mountain headwaters. (ii) The lower Quinault River, downstream of Lake Quinault, transports only sediment and wood derived from reworking of flood-plain deposits and contributed from valley margins. (iii) The Queets River has unimpeded movement of sediment and water from the mountainous headwaters to the Pacific Ocean. Measurements of channel planform characteristics and historic migration rates and patterns show that these three reaches have correspondingly distinct channel and flood-plain morphologies and dynamics. The aggrading and sediment-rich upper Quinault River has the widest flood plain, widest active channel, greatest number of low-flow channels and flanking gravel bars, and an average channel migration rate of 12.7±3.3 m/year between 1900 and 1994. The comparatively sediment-poor lower Quinault River has the narrowest flood plain, narrowest active channel, and lowest channel migration rate (4.0±1.2 m/year); and most flow is through a single channel with few adjacent gravel bars. The Queets River has attributes intermediate between the lower and upper Quinault Rivers, including an average channel migration rate of 7.5±2.9 m/year. Flood-plain turnover rates are similar for all three reaches, with channels eroding the flood plain at the rate of about 0.2% of the flood-plain area per year, and with corresponding flood-plain

  19. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the

  20. Sediment flux and the Anthropocene.

    PubMed

    Syvitski, James P M; Kettner, Albert

    2011-03-13

    Data and computer simulations are reviewed to help better define the timing and magnitude of human influence on sediment flux--the Anthropocene epoch. Impacts on the Earth surface processes are not spatially or temporally homogeneous. Human influences on this sediment flux have a secondary effect on floodplain and delta-plain functions and sediment dispersal into the coastal ocean. Human impact on sediment production began 3000 years ago but accelerated more widely 1000 years ago. By the sixteenth century, societies were already engineering their environment. Early twentieth century mechanization has led to global signals of increased sediment flux in most large rivers. By the 1950s, this sediment disturbance signal reversed for many rivers owing to the proliferation of dams, and sediment load reduction below pristine conditions is the dominant signal today. A delta subsidence signal began in the 1930s and is now a dominant signal in terms of sea level for many coastal environments, overwhelming even the global warming imprint on sea level. Humans have engineered how most water and sediment are discharged into the coastal ocean. Hyperpycnal flow events have become more common for some rivers, and less common for other rivers. Bottom trawling is now widespread, suggesting that even continental shelves have received a significant but as yet quantified Anthropocene impact. The Anthropocene attains the level of a geological climate event, such as that seen in the transition between the Pleistocene and the Holocene.

  1. Geologic map of the northern plains of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.

    2005-01-01

    The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all

  2. Process recognition in multi-element soil and stream-sediment geochemical data

    USGS Publications Warehouse

    Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.

    2009-01-01

    Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on

  3. Origin of lunar light plains

    NASA Technical Reports Server (NTRS)

    Chao, E. C. T.; Hodges, C. A.; Boyce, J. M.; Soderblom, L. A.

    1975-01-01

    In order to determine the origin of Cayley-type lunar light plains, their physical properties, distribution, and relative ages are examined from Apollo orbital and Lunar Orbiter photographs. The distribution and apparent age of the plains deposits and data on highly feldspathic breccias indicate that these superficial materials are neither locally derived nor part of the Imbrium ejecta. The existence of a planar facies of continuous ejecta at Orientale and in the ejecta blankets of small craters is demonstrated. The data and interpretation presented support the hypothesis that the surface and near-surface materials of some light plains, including those at the Apollo 16 site, are at least partly composed of ejecta from the Orientale basin and that the materials of many rugged areas, such as the Descartes highlands, are overlain by similar material. The possibility that some Cayley-type plains may have a different origin is not excluded.

  4. Fluid migration pathways, sediment subduction, and the source of fluids escaping along the forearc seafloor revealed offshore Nicaragua with marine electromagnetic data

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2014-12-01

    The subduction of sediments and hydrated oceanic plates transports the primary flux of water into the interior of the Earth. As an oceanic plate sinks, water is progressively released by compaction and chemical dehydration reactions, a significant fraction of which is released during the initial stages of subduction. In order to map the flux of fluids at the Middle America Trench, we collected marine magnetotelluric and controlled-source electromagnetic data along a 280-km profile that spans the offshore component of the Nicaraguan margin. Fluids and volatiles present in the crust and mantle can decrease the bulk electrical resistivity by up to several orders of magnitude, making electromagnetic methods an ideal exploration tool for quantifying fluids along convergent margins. Our joint two-dimensional electrical resistivity model provides new constraints on the cycling of fluids at crustal depths. We image a variety of conductive channels that are indicative of: (1) crustal hydration along bending-induced normal faults at the outer rise, (2) the complete subduction of water-rich sediments, and (3) the vertical migration of fluids from the plate interface to the forearc seafloor. We estimate porosity from electrical resistivity using Archie's law to show that the porosity of the lower crust is increased by 115% at the outer rise compared with the abyssal plain, suggesting that more pore water is being subducted than previously thought. At the margin toe, we observe the porosity of the underthrust sediment layer to decay exponentially with increasing depth of burial to 10-km inland of the trench, which agrees well with laboratory studies of compaction driven porosity loss. At 23-km into the forearc, our data reveal an anomalous conductor that extends from the plate interface into the overlying forearc crust, terminating 1-2-km below a high density region of active fluid seeps and mud mounds that have previously been mapped. The temperature and pressure regime in the

  5. Rocky Martian Plain

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The rocky Martian plain surrounding Viking 2 is seen in high resolution in this 85-degree panorama sweeping from north at the left to east at right during the Martian afternoon on September 5. Large blocks litter the surface. Some are porous, sponge-like rocks like the one at the left edge (size estimate: 1 1/2 to 2 feet); others are dense and fine-grained, such as the very bright rounded block (1 to 1 1/2 feet across) toward lower right. Pebbled surface between the rocks is covered in places by small drifts of very fine material similar to drifts seen at the Viking 1 landing site some 4600 miles to the southwest. The fine-grained material is banked up behind some rocks, but wind tails seen by Viking 1 are not well-developed here. On the right horizon, flat-topped ridges or hills are illuminated by the afternoon sun. Slope of the horizon is due to the 8-degree tilt of the spacecraft.

  6. Characterization of Lunar Farside Plains

    NASA Technical Reports Server (NTRS)

    Mest, S.C.; Garry, W. B.; Ostrach, L. R.; Han, S.-C.; Staid, M. I.

    2016-01-01

    The Moon contains broad and isolated areas of plains that have been recognized as mare, cryptomare, impact ejecta, or impact melt. These deposits have been extensively studied on the lunar nearside by remote sensing via telescopes and numerous spacecraft, and in some cases, in situ robotically and by astronauts. Only recently have the deposits on the entire farside been able to be observed and evaluated to the same degree. There are spatially extensive plains deposits located throughout the lunar farside highlands whose formation has remained ambiguous. Many of the plains deposits in the lunar farside highlands display higher albedos than mare materials. Some deposits are located in close proximity to relatively younger impact craters suggesting that plains could be composed of cryptomare or ejecta materials. Some deposits are within the range in which ejecta from large basin-forming events (e.g., SPA and Orientale) likely distributed large amounts of ejecta across the surface. Here we are conducting a series of observations and models in order to resolve the nature and origin of lunar farside plains deposits. Understanding these plains is important for understanding the volcanic and impact histories of the lunar farside, and is important for future mapping and thermal modeling studies.

  7. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites.

    PubMed

    Salters, Vincent J M; Dick, Henry J B

    2002-07-01

    Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the (143)Nd/(144)Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges. PMID:12097907

  8. Histological, histochemical and immunohistochemical study on the growing oocytes of the abyssal teleost Hoplostethus mediterraneus (V).

    PubMed

    Calabro, Concetta; Albanese, Maria Pia; Bertuccio, Clara; Licata, Aurelio; Gentile, Nunzia

    2008-01-01

    The oocytes of the abyssal Teleost, Hoplostethus mediterraneus were studied. Four stages of growth were observed and the oocytes of all the stages were surrounded by follicular cells and had several nucleoli in the nucleus. In the oocytes of the II degrees stage, vacuoles without contents, in oocytes of the III degrees stage several vacuoles with a basophilic contents and small yolk globules were identified. General and basic proteins, ribonucleoproteins, acid proteoglycans with -COOH groups were recognized in the cytoplasm, in the nucleoli of oocytes in the II degrees stage and in the vacuolar contents of oocytes in the III degrees stage. In the follicular cells, in the pellucid zone, in the yolk globules, from their beginning, glycoproteins were present. Positivity, for all lectins used, was revealed in the follicular cells and in the four stages of oocytes growth. alpha-D-glucose and alpha-D-mannose binding sites were in the pellucid zone and in the initial yolk globules. In the lather galactose and beta-N-acetyl glucosamine were present too. nNOS and VIP immunopositivity revealed at the periphery of the cytoplasm and at network of nerve fibres between oocytes, suggests NO is involved in a mechanism of regulation of the gametogenesis and of the spawning. PMID:18296271

  9. Community change in the variable resource habitat of the abyssal northeast Pacific.

    PubMed

    Ruhl, Henry A

    2008-04-01

    Research capable of differentiating resource-related community-level change from random ecological drift in natural systems has been limited. Evidence for nonrandom, resource-driven change is presented here for an epibenthic megafauna community in the abyssal northeast Pacific Ocean from 1989 to 2004. The sinking particulate organic carbon food supply is linked not only to species-specific abundances, but also to species composition and equitability. Shifts in rank abundance distributions (RADs) and evenness, from more to less equitable, correlated to increased food supply during La Niña phases of the El Niño Southern Oscillation. The results suggest that each taxon exhibited a differential response to a sufficiently low dimension resource, which led to changes in community composition and equitability. Thus the shifts were not likely due to random ecological drift. Although the community can undergo population-level variations of one or more orders of magnitude, and the shape of the RADs was variable, the organization retained a significant consistency, providing evidence of limits for such changes. The growing evidence for limited resource-driven changes in RADs and evenness further emphasizes the potential importance of temporally variable disequilibria in understanding why communities have certain basic attributes. PMID:18481524

  10. Photo-real rendering of bioluminescence and iridescence in creatures from the abyss

    NASA Astrophysics Data System (ADS)

    Prusten, Mark

    2008-08-01

    The generation of photo-real renderings of bioluminescence is developed for creatures from the abyss. Bioluminescence results from a chemical reaction with examples found in deep-sea marine environments including: algae, copepods, jellyfish, squid, and fish. In bioluminescence, the excitation energy is supplied by a chemical reaction, not by a source of light. The greatest transparency window in seawater is in the blue region of the visible spectrum. From small creatures like single-cell algae, to large species of siphonophore Praya dubia (40m), luminescent phenomena can be produced by mechanical excitement from disturbances of objects passing by. Deep sea fish, like the Pacific Black Dragonfish are covered with photophores along the upper and lower surfaces which emits light when disturbed. Other animals like small squids have several different types of light organs oscillating at different rates. Custom shaders and material phenomena incorporate indirect lighting like: global illumination, final gathering, ambient occlusion and subsurface scattering to provide photo real images. Species like the Hydomedusae jellyfish, produce colors that are also generated by iridescence of thin tissues. The modeling and rendering of these tissues requires thin film multilayer stacks. These phenomena are simulated by semi-rigid body dynamics in a procedural animation environment. These techniques have been applied to develop spectral rendering of scenes outside the normal visible window in typical computer animation render engines.

  11. Diversity and distribution of Porifera in the bathyal and abyssal Weddell Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Janussen, Dorte; Tendal, Ole Secher

    2007-08-01

    During the ANDEEP I-III expeditions, we obtained a rich and highly diverse sponge collection from the deep Weddell Sea. All the three Poriferan classes, Calcarea, Demospongiae and Hexactinellida, were well represented. Among this material, we have identified a total of 76 species from 47 genera and 30 families. Of these, 17 species (22%) are new to science and 37 (49%) new for the Southern Ocean. Particularly remarkable is the considerable depth of the boundary between bathyal and abyssal sponge faunas. Both Demospongiae and Hexactinellida show a strong shift in their taxonomic composition from a typical shelf assemblage to a more cosmopolitan deep-sea fauna at around 2500 m. Within the Demospongiae, the families Polymastiidae and Cladorhizidae (carnivorous sponges) are particularly abundant and very diverse. The Calcarea are recorded for the first time from the Antarctic deep sea. The type of sampling gear used, especially the epibenthic sledge, was an important factor for the successful collection of deep-sea sponges during the ANDEEP campaigns.

  12. Evaluation of abyssal meiobenthos in the eastern central Pacific (Clarion-Clipperton fracture zone)

    NASA Astrophysics Data System (ADS)

    Renaud-Mornant, Jeanne; Gourbault, Nicole

    Meiobenthos were sampled from 17 stations in the abyssal deep-sea system of the central Pacific centered around 14°N, 130°W at depths 4960-5154m, during the Nixo 47 R/V Jean Charcot cruise. Meiofaunal density range from 45-89 ind. 10cm 2. Predominant taxa are nematodes (84-100%) and copepods (0-10%). Rotifera, Polychaeta, and Acarina also occur. Nematodes are uniformly distributed spatially with 45 species or so; Monhysteridae is the dominant taxon, and Syringolaimus sp. (Ironidae) co-occurs faithfully. Low biomass (0.4-70.6μg 10cm 2) are attributed to supposed dwarfism of metazoan meiofauna and very high proportion (60-80%) of juveniles and pre-adult forms. The majority of protozoans and metazoans are detritus- or deposit-feeders; in addition symbiotic associations, coprophagy and gardening activities are frequent. In such an oligotrophic environment, low food supply may limit meiofaunal abundance, biomass and maturation, and to a lesser extent species richness.

  13. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites.

    PubMed

    Salters, Vincent J M; Dick, Henry J B

    2002-07-01

    Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the (143)Nd/(144)Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges.

  14. Genetic and Morphological Divergences in the Cosmopolitan Deep-Sea Amphipod Eurythenes gryllus Reveal a Diverse Abyss and a Bipolar Species

    PubMed Central

    Havermans, Charlotte; Sonet, Gontran; d’Udekem d’Acoz, Cédric; Nagy, Zoltán T.; Martin, Patrick; Brix, Saskia; Riehl, Torben; Agrawal, Shobhit; Held, Christoph

    2013-01-01

    Eurythenes gryllus is one of the most widespread amphipod species, occurring in every ocean with a depth range covering the bathyal, abyssal and hadal zones. Previous studies, however, indicated the existence of several genetically and morphologically divergent lineages, questioning the assumption of its cosmopolitan and eurybathic distribution. For the first time, its genetic diversity was explored at the global scale (Arctic, Atlantic, Pacific and Southern oceans) by analyzing nuclear (28S rDNA) and mitochondrial (COI, 16S rDNA) sequence data using various species delimitation methods in a phylogeographic context. Nine putative species-level clades were identified within E. gryllus. A clear distinction was observed between samples collected at bathyal versus abyssal depths, with a genetic break occurring around 3,000 m. Two bathyal and two abyssal lineages showed a widespread distribution, while five other abyssal lineages each seemed to be restricted to a single ocean basin. The observed higher diversity in the abyss compared to the bathyal zone stands in contrast to the depth-differentiation hypothesis. Our results indicate that, despite the more uniform environment of the abyss and its presumed lack of obvious isolating barriers, abyssal populations might be more likely to show population differentiation and undergo speciation events than previously assumed. Potential factors influencing species’ origins and distributions, such as hydrostatic pressure, are discussed. In addition, morphological findings coincided with the molecular clades. Of all specimens available for examination, those of the bipolar bathyal clade seemed the most similar to the ‘true’ E. gryllus. We present the first molecular evidence for a bipolar distribution in a macro-benthic deep-sea organism. PMID:24086322

  15. Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain

    USGS Publications Warehouse

    Davis, M.E.

    1988-01-01

    Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining

  16. Exploring geothermal structures in the Ilan Plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Tung; Wang, Chien-Ying; Shih, Ruey-Chan

    2016-04-01

    The Ilan Plain in northeast Taiwan is located at the southwestern tip of the Okinawa Trough, which extends westward into the Taiwan orogeny. The Ilan Plain covered by thick sediments is clipped by the Hsuehshan Range in the northwest side and the Central Range in the south side. High geothermal gradients with plenteous hot springs of this area may result from magmatism associated with the back-arc spreading of the Okinawa Trough. In this study, we use geophysical methods to explore underground structures in the whole Ilan Plain, especially around the LangYang river and the SanShin area. We aim to find high geothermal potential spots in the plain area. The research is divided into three parts. First, we use the explosion source refraction with 119 Texan instruments, covering most of the Ilan Plain. Second, we use two mini-vibrators to investigate the area along the LangYang river by reflection seismics. Third, we explore a significant fault by refraction seismics and semi-reflection seismics with the impactor source. Combining large-scale and local scale seismic data, we find that in the Ilan Plain the shallow part is filled with Quaternary alluvial deposits. The basement is gradual thicker from the east to the center and then thin out to the west. In the deep part, there is a significant difference between the northern and southern sides of LangYang river. The northern is deposited with the Szeleng sandstone, dipping obliquely to the south. But, the southern side is separated into the Szeleng sandstone and the Kanko formation, dipping smooth to the north. This suggests that the fault which known as Zailian fault has an offset about 1 km just along the LangYang river and extends to the east along the river. The heat sources from magmatism under the offshore volcanic island (Kueishantao) migrate into the Ilan Plain which may provide heat to the Szeleng sandstone. The hydrothermal solutions migrate in the Szeleng sandstone and move up to the shallow along the Zailian

  17. Identification of thick sedimentary plains north of Hellas

    NASA Astrophysics Data System (ADS)

    Salese, Francesco; Mangold, Nicolas; Ansan, Veronique; Carter, John; Ody, Anouck; Poulet, François; Ori, Gian Gabriele

    2016-04-01

    Understanding the origin and timing of intercrater plains is crucial to understand the Martian history in relation with endogenic and/or exogenic cycles. Intercrater plains north of Hellas basin on Mars are thought to have hosted different sedimentary environments during the Late Noachian/Early Hesperian, and they offer a well-preserved insight into the regional geological history of Mars. Our new geologic mapping of the intercrater plains north of Hellas Basin is based on the rich data set from MRO and Mars Express and provides new insights into the region's geological history. These findings appear to constrain the interpretation of the nature and age of intercrater plains in this region, although we acknowledge that for example the source of the sedimentary deposits must be subject to further analysis. The northern part of Hellas basin displays topographically flat area, which was characterized during the Late Noachian by sedimentary deposition and later, in the Late Hesperian, by fissural volcanism. The map and crater retention ages enable us to interpret the geologic history of the region. The stratigraphically lower unit is represented by crustal outcrops. Across most of the region, the sedimentary unit covers the basement and is eroded into mesas, erosional windows and perched by fresh craters. Intercrater plains' sedimentary deposits north of Hellas display horizontal light-toned layered rich in Fe/Mg-phyllosilicates and local crossbedding stratification. The Noachian sedimentary deposits of the intercrater plains north of Hellas are locally covered by Hesperian lava flows, showing that intercrater plains are sedimentary and volcanic in origin. We found different erosional (regional and local) surfaces, at HiRISE scale inside sediments due to local erosional windows and at CTX scale we found two important regional erosional surfaces. The oldest between crustal outcrops and sediments, which is likely Middle Noachian in age and the youngest between sediments

  18. Abyssal and deep circulation in the Eastern Mediterranean Sea (Ionian Sea)

    NASA Astrophysics Data System (ADS)

    Artale, Vincenzo; Bensi, Manuel; Falcini, Federico; Marullo, Salvatore; Rubino, Angelo

    2016-04-01

    In the mid-1990s, experimental evidences on the Eastern Mediterranean Transient (EMT) were presented and it was shown that the Mediterranean abyssal circulation is not in a steady state but can be subjected to episodic sudden changes (Roether et al., 1996). In the last 10 years the Ionian Sea, the central and deepest part of the Mediterranean Sea, was subjected to relevant scientific interests from a theoretical and experimental point of view. Among these, there is the discovery of the BiOS (Bimodal Oscillating System), one new mechanism that drives a periodic (almost decadal) redistribution of surface and subsurface waters in the Eastern Mediterranean, with considerable feedbacks in the variability of the deep-water formation both in the southern Adriatic and in the Levantine and Aegean sub-basins (Gačić et al., 2010). In the Ionian Sea, numerous recent observational campaigns have been conducted to investigate the behaviour of deep and abyssal waters, at depths between 2000-4000m that are comparable to the mean global ocean depth (Rubino and Hainbucher, 2007; Bensi et al., 2013). There, advection, diffusion and vertical stability of the water masses can assume an important role on the internal quasi-periodical variability, creating the preconditions for catastrophic events such as the EMT or reversals of the Ionian circulation (Pisacane et al., 2006). Since there are no significant deep heat sources in the world ocean, waters that fill the deep ocean can only return to the sea surface as a result of downward mixing of heat from the sea surface to the bottom and vice versa and this occurs through eddy diffusion. Along our presentation, mainly through the analysis of the deepest CTD casts taken from 2009 to 2011 in the eastern basins and in particular in the Ionian Sea, we will show a significant change in the deep thermohaline structure (including its biogeochemical and hydrological characteristics), giving an indication on the time scale of the renewal of deep

  19. Nutrient yield of the Apalachicola River flood plain, Florida; water-quality assessment plan

    USGS Publications Warehouse

    Mattraw, H.C.; Elder, John F.

    1980-01-01

    The Apalachicola River in northwestern Florida is the location of one of four current U.S. Geological Survey National River Quality Assessments. The investigation of the Apalachicola River and flood plain is designed to quantify the organic detritus and nutrient yield to the productive, estuarine Apalachicola Bay. The extensive riverine flood plain is subject to seasonal flooding which transports large quantities of accumulated, decaying leaf litter from the flood plain into the river and ultimately into Apalachicola Bay. The Apalachicola River Quality Assessment has four major objectives; (1) Determine the accumulation of organic substances and trace elements in benthic organisms and fine-grained sediments; (2) Define the distribution of the major tree communities on the flood plain; (3) Assess the role of leaf fall and decomposition on nutrient yield; and (4) Identify and quantify major sources and pathways of nutrients to the river. Extensive emphasis is given to investigation approaches and techniques to facilitate technology transfer to similar wetland ecosystems. (USGS)

  20. Relationship of structural development and Cenozoic sedimentation, northern Gulf of Mexico

    SciTech Connect

    Humphris, C.C. Jr.

    1985-02-01

    Development of structure in the northern Gulf of Mexico, mainly listric faulting and salt features, is directly related to Cenozoic sedimentation. Essentially all oil and gas production in this region occurs in structural features resulting from faulting and/or salt movement. A thick section of continental shallow-water sediments rimming the entire Gulf of Mexico was deposited during overall Gulf subsidence in Mesozoic time. Very little sedimentation took place in the central Gulf, so that, at the close of the Mesozoic the central Gulf probably was of abyssal depths. Cenozoic sedimentation surpassed the rate of subsidence causing sediments to prograde across the Mesozoic shelf margin, with greatest deposition occurring gulfward of this margin. These depocenters or areas of thickest sedimentation prograded gulfward throughout time (in response to sediment supply) and migrated northeastward from south Texas to south Louisiana. Listric or growth faults that formed contemporaneously with deposition are a common structural feature developed during Cenozoic sedimentation. These features are apparently caused by differential loading of higher density sandstones on prodelta shales near the shelf margin. In those areas underlain by thicker salt, such as the Miocene and younger depocenters, there is greater involvement of salt in growth-fault development. Salt features, the other major type of producing structure, are developed by salt movement as a direct response to Cenozoic sediment loading. Initiation of salt movement is believed to be due to differential loading of prograding sediments. Further salt movement and structural development are completely dependent on continued sedimentation.

  1. A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields.

    PubMed

    Janssen, Annika; Kaiser, Stefanie; Meißner, Karin; Brenke, Nils; Menot, Lenaick; Martínez Arbizu, Pedro

    2015-01-01

    Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal

  2. A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields.

    PubMed

    Janssen, Annika; Kaiser, Stefanie; Meißner, Karin; Brenke, Nils; Menot, Lenaick; Martínez Arbizu, Pedro

    2015-01-01

    Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal

  3. Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Liao, Guanghong; Zhou, Beifeng; Liang, Chujin; Zhou, Huaiyang; Ding, Tao; Wang, Yuan; Dong, Changming

    2016-01-01

    Four moorings were deployed near "Dragon Flag," an active hydrothermal vent in the valley of the Southwest Indian Ridge. The goal was to examine the variability of currents and temperature, which will guide the trajectory of spreading plumes. The mean current was cross-isobath, and the circulation was characterized by a submesoscale circulation. Observed currents also showed fluctuations with periods of 1-15 days. The inferred phase speed and wavelength for the wave with a period of 4.4 day are 10.4 km d-1 and 45.8km, respectively, which are consistent with the topographic Rossby wave theory. The persistent warming tendency with corresponding variation of salinity based on background θ-S properties may be caused by background circulation and divergence of the water column. The warming or cooling episodes were most likely as signatures of isopycnal surface depression or uplifting induced by the moving of mesoscale eddies. Well-resolved rotary spectra exhibited important nonlinear interactions between inertial and semidiurnal tide in the velocity and temperature records. Amplification of near-inertial currents in the near bottom is also exposed. These discoveries provided new evidence for the nonlinear interaction and trapped near-inertial waves by the ridge, which occurred in the deep ocean of the Southern Hemisphere. Such nonlinear interaction may represent a significant energy loss pathway for the internal waves, and part of the decay of such motion would likely result in increased mixing to maintain the abyssal stratification. Enhanced near-inertial motions can play a major role for the local advection of hydrothermal plumes.

  4. Population genetic structure of the abyssal grenadier (Coryphaenoides armatus) around the mid-Atlantic ridge

    NASA Astrophysics Data System (ADS)

    Ritchie, H.; Cousins, N. J.; Cregeen, S. J.; Piertney, S. B.

    2013-12-01

    Understanding the factors that affect the levels and distribution of genetic diversity in oceanic and deep sea environments is a central focus in marine population genetics. Whilst it has been considered that the oceans represent a homogenous environment that would facilitate dispersal and minimise population structure, it is now clear that topographical features and current patterns can influence the extent of spatial gene flow and promote significant population genetic divergence even at local scales. Here we examine patterns of population genetic structure among N. Atlantic populations of the cosmopolitan abyssal grenadier Coryphaenoides armatus in relation to two hypothesised barriers to gene flow-the mid-Atlantic Ridge and the Charlie-Gibbs Fracture Zone/Sub-Polar Front. A suite of microsatellite markers were developed to examine the spatial pattern of allelic variation among 210 individuals from ten sampling locations encompassing sites east and west of the MAR and north and south of the CGFZ, plus a geographically distinct sample of individuals from the Crozet Islands in the Indian Ocean. Considerable genetic diversity was detected among individuals (na=5-13 and HO=0.46-0.69 across populations) but with an overall lack of genetic divergence between populations. Pairwise estimates of divergence among NE Atlantic samples were small and non-significant (max FST=0.04) and Structure-based Bayesian analysis of genetic clusters returned no distinct population structure. The only indication of genetic structure was between the Atlantic and Indian Oceans, with FST estimates of ca. 0.05. Patterns of genetic diversity and divergence are discussed in relation to what has been resolved in Coryphaenoides congeners, and what is known about the life history and ecology of C. armatus.

  5. A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields

    PubMed Central

    Janssen, Annika; Kaiser, Stefanie; Meißner, Karin; Brenke, Nils; Menot, Lenaick; Martínez Arbizu, Pedro

    2015-01-01

    Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal

  6. Interpretation of microarray data: trudging out of the abyss towards elucidation of biological significance.

    PubMed

    Smith, G W; Rosa, G J M

    2007-03-01

    The recent development of tools for expression profiling in livestock has availed reproductive biologists of new opportunities to examine global changes in gene expression during key developmental events, in response to hormonal or other treatments, and as a tool for phenotyping or predicting developmental potential. Such experiments often yield lists of tens to thousands of modulated genes, transcripts of interest, or both. Some argue that such technological advances signal a move from hypothesis-driven research to descriptive discovery research, resulting in information overload at the expense of biological significance. One can easily spend hours staring into the abyss, wondering if the results are real and what they mean. However, microarrays can be more than a high throughput and expensive screening tool. Many factors contribute to the success of expression profiling experiments and the yield of interpretable data, including the nature of the hypothesis or objective of the study, the microarray platform, the complexity of the tissue of interest, the experimental design, and the incorporation of the best available strategies for data analysis and interpretation of the biological themes. Although challenging due to the lack of extensive annotation or ontology classification for genes in livestock species, functional categories of coregulated genes and gene pathways can be determined, and hypotheses about common regulatory elements or the functional significance can be formulated. We have applied cDNA microarray technology to studies of follicular growth, oocyte quality, and the periovulatory period in cattle. Lessons learned from such experiments and a review of the available literature form the basis for the strategies described to facilitate successful application of microarray technology to studies of reproductive biology of livestock species.

  7. Hydrogeologic conditions in the coastal plain of New Jersey

    USGS Publications Warehouse

    Vowinkel, Eric F.; Foster, W. Kendall

    1981-01-01

    A wedge-shaped mass of unconsolidated sediments composed of alternating layers of clay, silt, sand, and gravel underlies the Coastal Plain of New Jersey. The hydrologic units of this mass vary in thickness, lateral extent, lithology, and water-bearing characteristics. Some of the units act as aquifers, whereas other units act as confining layers. The entire sediment wedge is almost an independent and isolated hydrologic system. Components of the long-term hydrologic budget for the Coastal Plain are precipitation, streamflow, and water loss. Under natural conditions, average precipitation is about 44 inches per year; while streamflow and water loss are about 20 and 24 inches per year, respectively. More than 75 percent of the streamflow in the Coastal Plain is derived from ground-water runoff. Some activities of man have modified the natural hydrologic cycle in the Coastal Plain. The primary activity affecting the system has been the withdrawal of ground water. Major changes in the flow patterns of water in several aquifers have been recognized during the past few decades partially as a result of increasing ground-water withdrawal. Where head gradients are large enough, water can be induced to flow from adjacent surface-water bodies or through confining beds. Induced recharge from the Delaware River to the Potomac-Raritan-Magothy aquifer system is occurring as a result of pumping stresses in the outcrop area of the aquifer. Recharge from the river to the aquifer from Salem to Burlington County was estimated to be about 113 cubic feet per second in 1978. (USGS)

  8. Aquatic Sediments.

    ERIC Educational Resources Information Center

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  9. Inter-annual species-level variations in an abyssal polychaete assemblage (Sta. M, NE Pacific, 4000 m)

    NASA Astrophysics Data System (ADS)

    Laguionie-Marchais, Claire; Paterson, Gordon L. J.; Bett, Brian J.; Smith, Kenneth L.; Ruhl, Henry A.

    2016-01-01

    Understanding the dynamics of abyssal community structure and function has become increasingly important as deep-sea resource exploitation and climate change pressures are expected to ramp up. This time-series study investigates macrofaunal polychaete dynamics at a station in the North East Pacific (Sta. M; 35° N 123° W, 4000 m, 1991-2011). Infaunal polychaete species were identified and their proxy biomass and proxy energy use rate estimated. The assemblage comprised 167 species, having a composition consistent with other abyssal areas globally. Significant changes in univariate and multivariate parameters (rank abundance distribution, Simpson's diversity index, and species and functional group composition) were detected across 1991-2011. However, no change in biomass or energy use rate was apparent through the time-series. The largest changes in the polychaete assemblage coincided with both an increase in sinking particulate organic carbon flux to the seafloor in 2007, and a 40 km relocation of the sampling location to a site 100 m shallower, preventing a conclusive assessment of which might drive the observed variation. Analyses prior to the change of sampling location showed that the polychaete assemblage composition dynamics were primary driven by food supply variation. Changes in several species were also lagged to changes in POC flux by 4-10 months. The polychaete fauna exhibited a significant positive relationship between total density and total energy use rate, suggesting population-level tracking of a common resource (e.g. POC flux food supply). Neither compensatory nor energetic zero-sum dynamics were detected among the polychaete assemblage, but the results suggest that the latter occur in the macrofaunal community as a whole. The results do indicate (a) potential control of species composition, and the density of individual key species, by food supply, when the time-series prior to the sampling location was analysed separately, and (b) generally

  10. Controls on river morphology in the Ganga Plain

    NASA Astrophysics Data System (ADS)

    Dingle, Elizabeth; Sinclair, Hugh; Attal, Mikael; Milodowski, David; Singh, Vimal

    2016-04-01

    The Ganga Plain represents a large proportion of the current foreland basin to the Himalaya. The Himalayan-sourced waters irrigate the Plain via major river networks that support ~7% of the global population. However, some of these rivers are also the source of devastating floods. The tendency for some of these rivers to flood is directly linked to their large scale morphology. Systematic variations in the large scale morphology of the river systems are recognised across the extent of the Ganga foreland basin. In general, the rivers that drain the east Ganga Plain have channels that are perched at a higher elevation relative to their floodplain, leading to more frequent channel avulsion and flooding. In contrast, those further west have channels that are incised into the floodplain and are historically less prone to flooding. Understanding the controls on these contrasting river forms is fundamental to determining the sensitivity of these systems to projected climate change and the growing water resource demands across the Plain. Here, we present a new basin scale approach to quantifying floodplain and channel topography that identifies the degree to which channels are super-elevated or entrenched relative to their adjacent floodplain. We explore the probable controls on these observations through an analysis of basin subsidence rates, sediment grain size data and sediment supply from the main river systems that traverse the Plain (Yamuna, Ganga, Karnali, Gandak and Kosi rivers). Subsidence rates are approximated by combining basement profiles derived from seismic data with known convergence velocities; results suggest a more slowly subsiding basin in the west than the east. Grain size fining rates are also used as a proxy of relative subsidence rates along the strike of the basin; the results also indicate higher fining rates (and hence subsidence rates for given sediment supply) in the east. By integrating these observations, we propose that higher subsidence

  11. Plain English Laws: Symbolic or Real?

    ERIC Educational Resources Information Center

    Timm, Paul R.; Oswald, Daniel

    1985-01-01

    Surveyed business communication educators and found widespread confusion about the existence and nature of Plain English laws. Concludes that legally compelling business to use plain language in consumer documents may be futile. (PD)

  12. Geochemistry of the northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Knobel, L.L.; Chapelle, F.H.; Meisler, Harold

    1998-01-01

    Sediments of the northern Atlantic Coastal Plain comprise a complex multiaquifer flow system. On a large scale (greater than 500 square miles) ground water in this system evolves from predominantly calcium magnesium bicarbonate water with a low dissolved-solids content and low pH, near outcrop-recharge areas, to predominantly sodium bicarbonate water with a high-dissolved solids content and high pH, downgradient. This sodium bicarbonate water then grades into a sodium chloride water. This large-scale predictable progression of hydrochemical facies results from the summation of many smaller scale geochemical processes that chiefly depend on the sedimentary depositional environments of the aquifers.

  13. Plain Language Clear and Simple.

    ERIC Educational Resources Information Center

    National Literacy Secretariat, Ottawa (Ontario).

    Written for Canadian public servants and written with their help, this handbook presents principles and tips to make official writing clear, concise, and well organized. The handbook defines "plain language" writing as a technique of organizing information in ways that make sense to the reader--using familiar, straightforward words. The handbook…

  14. 'Endurance' Goal Across the Plains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the Mars Exploration Rover Opportunity's panoramic camera provides an overview of the rover's drive direction toward 'Endurance Crater,' which is in the upper right corner of image.

    The plains appear to be uniform in character from the rovers current position all the way to Endurance Crater. Granules of various sizes blanket the plains. Spherical granules fancifully called blueberries are present some intact and some broken. Larger granules pave the surface, while smaller grains, including broken blueberries, form small dunes. Randomly distributed 1-centimeter (0.4 inch) sized pebbles (as seen just left of center in the foreground of the image) make up a third type of feature on the plains. The pebbles' composition remains to be determined. Scientists plan to examine these in the coming sols.

    Examination of this part of Mars by NASA's Mars Global Surveyor orbiter revealed the presence of hematite, which led NASA to choose Meridiani Planum as Opportunity's landing site. The rover science conducted on the plains of Meridiani Planum serves to integrate what the rovers are seeing on the ground with what orbital data have shown.

    Opportunity will make stop at a small crater called 'Fram' (seen in the upper left, with relatively large rocks nearby) before heading to the rim of Endurance Crater.

  15. Ages of Lunar Light Plains

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Howes van der Bogert, Carolyn; Thiessen, Fiona; Robinson, Mark

    2013-04-01

    Light plains are characterized by their relative smoothness and lower crater densities (compared to the highlands), and their occurrence as crater fills. They also exhibit highland-like characteristics, such as high albedos (in comparison to mare basalts) and their geological and stratigraphic setting. Despite the long history of investigating light plains, there are still numerous open questions concerning their mode of emplacement, their mineralogical composition, their ages, and their origin. We dated 16 light plains with crater size-frequency distribution (CSFD) measurements. All dated regions were previously identified as light plains in the geologic maps [1-5] and either mapped as smooth light plains (Ip) or light plains with undulatory surfaces (INp). The studied light plains occur both inside and outside the South Pole-Aitken (SPA) basin within a latitudinal band between ~-36° and ~-75°. In particular, we investigated the following smooth light plains: Janssen (40.82°E, -44.96°; Ip [1]), Nishina (-170.8°E, -44.57°; Ip [2]), South of Nishina (Ip [2]), Obruchev (162.43°E, -38.67°; Ip [2]), Oresme (169.22°E, -42.61°, Ip [2]), Schrödinger (132.93°E, -74.73°; Ip [3]), Nearch (39.01°E, -58.58°; Ip [3]), Nasmyth (-56.39°E, -50.49°; Ip [3]), Manzinus (26.37°E, -67.51°; Ip [3]), Klaproth (-26.26°E, -69.85°; Ip [3]), Phocylides (-57.31°E, -52.79°, Ip [3]), Buffon (-133.53°E, -40.64°; Ip [4]), Roche (136.54°E, -42.37°; Ip [5]). We also dated the following light plains with undulatory surfaces: Koch (150.33°E, -42.13°; INp [2]), Garavito (156.78°E, -47.21°; INp [2]), Eötvös (134.43°E, -35.61°; INp [5]). Our CSFD measurements resulted in absolute model ages of 3.71 to 4.02 Ga for all investigated light plains, thus confirming the Imbrian and/or Nectarian ages of the geologic maps [1-5]. We only dated three INp light plains, but they appear to have ages that are close to the upper limit, i.e., 3.96-4.02 Ga. However, further CSFDs of INp

  16. River diversions, avulsions and captures in the Tortuguero coastal plain

    NASA Astrophysics Data System (ADS)

    Galve, Jorge Pedro; Alvarado, Guillermo; Pérez Peña, José Vicente; Azañón, José Miguel; Mora, Mauricio; Booth-Rea, Guillermo

    2016-04-01

    The Tortuguero area is a coastal plain that forms part of the North Limón sedimentary basin, the back-arc region of the Caribbean side of Costa Rica. This coastal plain is characterised by an abnormal drainage pattern with river captures, diversions and shifts in channel directions. We are analyzing this anomalous drainage network adopting a classical geomorphological approach combined with geomorphometric techniques. The SRTM DEM at 1 arc-second of resolution (~30 m) from NASA, topographic maps 1:50,000, satellital images and the digital cartography of the drainage network have been used for inventorying the channel pattern anomalies. River segments were categorized according to sinuosity, orientation, slope changes and incision using GIS tools. Initially, anomalies in the analyzed river courses suggested that buried thrust fronts could disrupt their natural pattern. However, we have not identified any evidence to link the activity of buried structures with the disruption of natural drainage. Blind thrusts detected through seismic subsurface exploration in the SE sector of the Tortuguero plain do not seem to produce changes in the sinuosity, orientation, slope and incision of rivers as those observed in the deeply studied tectonically active area of the Po Plain (Italy). The identified river pattern anomalies have been explained due to other alternative causes: (1) the migration of the mouths of Reventazón, Pacuare and Matina rivers is produced by sand sedimentation in the coast because of a successive ridge beach formation. This migration to the SE has the same direction than the main ocean currents those deposited the sand. (2) The anomalous course of Parismina river is most probably conditioned by the fracturation of the dissected volcanic apron of Turrialba volcano. (3) Channel migration and capture of Barbilla river by Matina river can be triggered by the tectonic tilting of the coastal plain towards the SE. The subsidence of the SE sector of the plain was

  17. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  18. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  19. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  20. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  1. 49 CFR 229.64 - Plain bearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Plain bearings. 229.64 Section 229.64 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION....64 Plain bearings. A plain bearing box shall contain visible free oil and may not be cracked to...

  2. Sediment transported by Georgia streams

    USGS Publications Warehouse

    Kennedy, Vance C.

    1964-01-01

    A reconnaissance investigation of the sediment transported by selected Georgia streams during the period December 1957 to June 1959 was made to provide a general understanding of the physical quality of stream water in Georgia and to supply facts needed in planning more detailed work. The investigation was made by studying the variation of sediment concentration and sediment load with stream discharge at 33 sites and by relating the available data to topographic, geologic, climatic, and soil conditions in the State. In the Blue Ridge Mountains area of northern Georgia the great relief, moderately heavy precipitation, fast runoff, and loamy soils cause sediment concentrations and sediment loads which are above average for the State. During periods of moderate to low streamflow, the concentration of suspended sediment ranges from 1 to 25 ppm (parts per million). After heavy rainfall, sediment concentration increases rapidly as water discharge rises, and occasionally exceeds 1,000 ppm before decreasing again. The concentration may reach a maximum and decrease before the discharge peak is reached. A major part of the annual sediment load can be carried during a short period of time because of the great increase in both water discharge and sediment concentration during floods. The lower Coastal Plain differs from the mountainous areas in several respects. The topography is gently rolling to almost level, precipitation and runoff are less than average for the State, and topsoils generally consist of hard and loamy sand. Concentration of suspended sediment in streamflow commonly ranges from 1 to 20 ppm during periods of low to moderate discharge and increases to 15 to 60 ppm at high discharge. Because of the small increase in concentration with increasing stream discharge, the sediment load varies approximately in proportion to the discharge. The sediment characteristics of streams in the Piedmont, the Valley and Ridge area. and the upper Coastal Plain are intermediate

  3. Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: Lysianassoidea) from the Peru-Chile Trench

    NASA Astrophysics Data System (ADS)

    Eustace, Ryan M.; Ritchie, Heather; Kilgallen, Niamh M.; Piertney, Stuart B.; Jamieson, Alan J.

    2016-03-01

    The globally ubiquitous lysianassoid amphipod, Eurythenes gryllus, has been shown to consist of multiple genetically distinct cryptic taxa, with depth considered a major driver of speciation and morphological divergence. Here we examine morphological variation of E. gryllus sensu lato through a continuous depth distribution that spans from abyssal (3000-6000 m) into hadal depths (>6000 m) in the Peru-Chile Trench (SE Pacific Ocean). Three distinct morphospecies were identified: one was confirmed as being E. magellanicus (4602-5329 m) based on DNA sequence and morphological similarity. The other two morphologically distinct species were named based upon depth of occurrence; Abyssal (4602-6173 m) and Hadal (6173-8074 m). The three Eurythenes morphospecies showed vertical ontogenetic stratification across their bathymetric range, where juveniles were found shallower in their depth range and mature females deeper. Potential ecological and evolutionary drivers that explain the observed patterns of intra and inter-specific structure, such as hydrostatic pressure and topographical isolation, are discussed.

  4. Intensity of pelagic-benthic coupling in different regions along the Antarctic Polar Front - Clues from abyssal megafauna

    NASA Astrophysics Data System (ADS)

    Würzberg, Laura; Zinkann, Ann-Christine; Brandt, Angelika; Janussen, Dorte; Bohn, Jens M.; Schwabe, Enrico

    2014-10-01

    The zone surrounding the Antarctic Polar Front is a region characterized by elevated seasonal primary production. Studies on the implications for the fauna inhabiting the underlying deep-sea floor, however, are rare. The present study focuses on the abundance of megafaunal organisms caught by means of an Agassiz Trawl during the SYSTem COupling in the Southern Ocean II (SYSTCO II) expedition (RV Polarstern cruise ANT XXVIII/3). Biomass estimates in terms of volume as well as species richness of echinoderms were additionally taken into account. Abyssal stations (ca. 4000 m depth) located in three different regions along the Antarctic Polar Front characterized by different primary production regimes and oceanographic features were sampled. One shallower station (337 m depth) was used as reference station. Highest megafaunal abundances were found at the shallow station (147 individuals per 1000 m2). Megafaunal abundances were low to moderate at the abyssal stations (7.2-23.5 individuals per 1000 m2) with the exception of the region northwest of South Georgia, where distinctly higher abundances were found (up to 119.7 individuals per 1000 m2). The same pattern was observed for biomass estimates. At the other regions, magnitude of megafaunal abundances and echinoderm biomasses were found not to be linked to the surface levels of primary production. This indicates that strong pelagic-benthic coupling likely occurs only downstream of South Georgia. Echinoderm species richness does not appear to be directly related to the environmental conditions as it does not differ statistically between the considered areas.

  5. Exploring the temporal change in provenance encoded in the late Quaternary deposits of the Ganga Plain

    NASA Astrophysics Data System (ADS)

    Agrawal, Shailesh; Sanyal, Prasanta; Balakrishnan, Srinivasan; Dash, Jitendra K.

    2013-07-01

    Temporal analysis of Sr isotopes in soil carbonates and Sr and Nd isotopes in silicate fractions has been carried out in a sedimentary core (Kalpi core; 50 m long) raised from the southern bank of the Yamuna river, Ganga Plain, India. The aim of the study is to constrain sediment provenance through comparison with the modern Himalayan and peninsular river systems' water and bank sediments. Sr isotopic data in soil carbonates (0.71874 to 0.71410) and Srsbnd Nd isotopic data in silicate (0.72865 to 0.74544 and - 13.9 to - 17.2, respectively) vary significantly with depth and are indicative of both Himalayan and peninsular sources for sediments in the southern Ganga Plain. The positive correlation between 87Sr/86Sr ratio and 1/Sr in soil carbonate and the negative correlation between 87Sr/86Sr and ɛNd in silicate confirm mixing of sediments from these sources. Variations of 87Sr/86Sr ratios in soil carbonates show that at ~ 80 and 45 ka the Himalaya acted as the major source of sediments in the southern part of the Ganga Plain. The gradual decrease in 87Sr/86Sr ratios after 80 and 45 ka indicates change in source to peninsular India which is also supported by limited Sr and Nd isotope data in silicates. The change in sediment provenance corresponds well with the available climatic record and is suggestive of strong climatic control in sediment supply with high supply from the Himalaya during the interglacial period and peninsular sediments during glacial period.

  6. Hydrogeologic setting and potential for denitrification in ground water, coastal plain of southern Maryland

    USGS Publications Warehouse

    Krantz, David E.; Powars, David S.

    2000-01-01

    The types and distribution of Coastal Plain sediments in the Patuxent River Basin may contribute to relatively low concentrations of nitrate (typically less than 1 milligram per liter) in stream base flow because of the chemical reduction of dissolved nitrate (denitrification) in ground water. Water chemistry data from synoptic stream base-flow surveys in the Patuxent River Basin show higher dissolved nitrate concentrations in the Piedmont than in the Coastal Plain section of the watershed. Stream base flow reflects closely the chemistry of ground water discharging from the surficial (unconfined) aquifer to the stream. Because land use in the sampled subbasins is virtually the same in each section, differences in the physical and geochemical characteristics of the surficial aquifer may explain the observed differences in water chemistry. One possible cause of lower nitrate concentrations in the Coastal Plain is denitrification within marine sediments that contain chemically reduced compounds. During denitrification, the oxygen atoms on the nitrate (N03-) molecule are transferred to a reduced compound and N gas is produced. Organic carbon and ferrous iron (Fe2+), derived from the dissolution of minerals such as pyrite (FeS2) and glauconite (an iron aluminosilicate clay), can act as reducing substrates; these reduced chemical species are common in the marine and estuarine deposits in Southern Maryland. The spatial distribution of geologic units and their lithology (sediment type) has been used to create a map of the potential for denitrification of ground water in the surficial aquifer of the Coastal Plain in Southern Maryland.

  7. Origin of late Quaternary dune fields on the Southern High Plains of Texas and New Mexico

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    2001-01-01

    Mostly stabilized late Holocene eolian sands on the Southern High Plains of the United States were studied to determine their origins and to assess whether present dune stability depends more strongly on sediment supply, sediment availability, or transport limitations. Geomorphic, sedimentological, and geochemical trends indicate that late Holocene dunes formed under westerly paleowinds, broadly similar to those of today. Mineralogical and geochemical data indicate that the most likely source for the sands is not the Pecos River valley, but the Pleistocene Blackwater Draw Formation, an older, extensive eolian deposit in the region. These observations suggest that new sand is supplied whenever vegetation cover is diminished to the extent that the Blackwater Draw Formation can be eroded, in agreement with modern observations of wind erosion in the region. We conclude, therefore, that Southern High Plains dunes are stabilized primarily due to a vegetation cover. The dunes are thus sediment-availability limited. This conclusion is consistent with the observation that, in the warmest, driest part of the region (where vegetation cover is minimal), dunes are currently active over a large area. Geochemical data indicate that Southern High Plains dunes are the most mineralogically mature (quartz rich) sands yet studied in the Great Plains, which suggests a long history of eolian activity, either in the dune fields or during deposition of the Blackwater Draw Formation.

  8. Floods, floodplains, delta plains — A satellite imaging approach

    NASA Astrophysics Data System (ADS)

    Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark

    2012-08-01

    Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.

  9. Tuffaceous ephemeral lake deposits on an alluvial plain, Middle Tertiary of central California

    USGS Publications Warehouse

    Bartow, J.A.

    1994-01-01

    The Oligocene and Miocene Valley Springs Formation represents a large fluvial depositional system that extended westward from sediment-filled palaeovalleys in the high Sierra Nevada to a piedmont alluvial plain under the present Central Valley. The Valley Springs Formation consists largely of tuffaceous mudrocks, tuffaceous sandstone, polymict conglomerate and rhyodacitic tuff. The tuffaceous mudrock lithofacies probably represents a complex of ephemeral lake and marsh environments on a low gradient alluvial plain. The inferred abundance of shallow lakes, ponds and marshes implies a climate that was wetter than the semi-arid climate of the region today. -from Author

  10. “First” abyssal record of Stenosemus exaratus (G.O. Sars, 1878) (Mollusca, Polyplacophora) in the North-Atlantic Ocean

    PubMed Central

    Allcock, Louise; Schwabe, Enrico

    2013-01-01

    Abstract The first proven abyssal record of Stenosemus exaratus (G.O. Sars, 1878) is presented on the basis of an ROV study in the Irish Sea. For the first time in situ images of the species and data on the environmental parameters are provided. PMID:23794838

  11. "First" abyssal record of Stenosemus exaratus (G.O. Sars, 1878) (Mollusca, Polyplacophora) in the North-Atlantic Ocean.

    PubMed

    Allcock, Louise; Schwabe, Enrico

    2013-01-01

    The first proven abyssal record of Stenosemus exaratus (G.O. Sars, 1878) is presented on the basis of an ROV study in the Irish Sea. For the first time in situ images of the species and data on the environmental parameters are provided. PMID:23794838

  12. "First" abyssal record of Stenosemus exaratus (G.O. Sars, 1878) (Mollusca, Polyplacophora) in the North-Atlantic Ocean.

    PubMed

    Allcock, Louise; Schwabe, Enrico

    2013-01-01

    The first proven abyssal record of Stenosemus exaratus (G.O. Sars, 1878) is presented on the basis of an ROV study in the Irish Sea. For the first time in situ images of the species and data on the environmental parameters are provided.

  13. Young Craters on Smooth Plains

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Young craters (the largest of which is about 100 kilometers in diameter) superposed on smooth plains. Larger young craters have central peaks, flat floors, terraced walls, radial ejecta deposits, and surrounding fields of secondary craters. Smooth plains have well-developed ridges extending NW and NE. This image (FDS 167), acquired during the spacecraft's first encounter with Mercury, is located approximately 60 degrees N, 175 degrees W.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  14. Plain Polynomial Arithmetic on GPU

    NASA Astrophysics Data System (ADS)

    Anisul Haque, Sardar; Moreno Maza, Marc

    2012-10-01

    As for serial code on CPUs, parallel code on GPUs for dense polynomial arithmetic relies on a combination of asymptotically fast and plain algorithms. Those are employed for data of large and small size, respectively. Parallelizing both types of algorithms is required in order to achieve peak performances. In this paper, we show that the plain dense polynomial multiplication can be efficiently parallelized on GPUs. Remarkably, it outperforms (highly optimized) FFT-based multiplication up to degree 212 while on CPU the same threshold is usually at 26. We also report on a GPU implementation of the Euclidean Algorithm which is both work-efficient and runs in linear time for input polynomials up to degree 218 thus showing the performance of the GCD algorithm based on systolic arrays.

  15. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  16. Aquatic sediments

    SciTech Connect

    Bonner, J.S.; Autenrieth, R.L.; Schreiber, L. )

    1990-06-01

    The authors present a literature review concerning sediment properties, interactions, and conditions. Topics of discussion include the following: biological activity and toxicity; nutrients; metals; organic compounds; dredging; radionuclides; oxygen demand and organic carbon; mathematical modeling; sediment transport and suspension; and paleolimnology.

  17. Dating fluvial archives of the Riverine Plain, Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Daniela; Cohen, Tim; Reinfelds, Ivars; Jacobs, Zenobia; Shulmeister, James

    2016-04-01

    The Riverine Plain of Southeastern Australia is characterized by a multiplicity of relict river channels. Compared to the modern drainage system the most prominent of those distinct features are defined by large bankfull channel widths, large meander wavelengths and coarse sediment loads. Such morphological differences provide evidence for regimes of higher discharge, stemming from significant changes in runoff volumes, flood-frequency regimes and sediment supply. An existing geochronology for some of these channels is based on multi-grain thermoluminescence (Murrumbidgee River; Page et al., 1996) or radio-carbon dating (Goulburn River; Bowler, 1978) and indicates enhanced fluvial activity between 30 to 13 ka. The absence of exact Last Glacial Maximum (LGM, 21 ± 3 ka) ages of the Murrumbidgee palaeochannels was interpreted to indicate decreased fluvial activity during the peak of the LGM but was not inferred for the nearby Goulburn River. Recent developments in optical dating, especially measurements of individual grains of quartz, allow for an examination of these previous findings. Key sites along the Murrumbidgee and Goulburn Rivers have been revisited and new sites of the adjacent Murray River have been investigated. A revised, high-resolution geochronology based on single-grain optically stimulated luminescence dating is used to examine the precise occurrence of those massive channels and their implications for the Southern Hemisphere LGM. References: Page, K., Nanson, G., Price, D. (1996). Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science 11(4): 311-326. Bowler, J. (1978). Quaternary Climate and Tectonics in the Evolution of the Riverine Plain, Southeastern Australia. In: Davies, J. & Williams, M. (Editors). Landform Evolution in Australia, Australian National University Press: Canberra. p. 70-112.

  18. Boise geothermal system, western Snake River plain, Idaho

    SciTech Connect

    Wood, S.H.; Burnham, W.L.

    1984-07-01

    The Boise geothermal system lies in an area of high heat flow along the northern margin of the western Snake River plain. Exploratory drilling for petroleum and geothermal water, seismic reflection profiling, and regional gravity data permit construction of a detailed structure section across the western plain. A faulted acoustic basement of volcanic rocks lies at depths of 2400 to 6000 ft (730-1830 m) beneath late Cenozoic lacustrine and fluvial deposits in the center of the plain. Volcanic rocks of the acoustic basement are typically basalt out in the plain, but the acoustic basement along the north margin in the vicinity of Boise is largely silicic volcanic rock. Geologic mapping and geothermal well data have provided information on the late Cenozoic geologic units and structures important to the understanding of the Boise geothermal system. The main geothermal aquifer is a sequence of rhyolite layers and minor arkosic and tuffaceous sediment of the Miocene Idavada Volcanics. The aquifer is confined by a sequence of impermeable basaltic tuffs. The aquifer has sufficient fracture permeability to yield 150/sup 0/-170/sup 0/F (65/sup 0/-76.6/sup 0/C) hot water for space heating at a rate of 600 to 1200 gpm from wells drilled in the metropolitan area, north of the Boise River. In this area the rhyolite lies at a depth of 900-2000 ft (274-610 m). Artesian pressure typically lifts water to an elevation of about 2760 ft (840 m). A conceptual model of recharge assumes percolation driven by the topographic head to a depth of more than 7000 ft (2135 m) beneath the granitic highlands northeast of the city. Heated water convects upward through northwest-trending range-front faults.

  19. Sediment waves on the Monterey fan levee: a preliminary physical interpretation.

    USGS Publications Warehouse

    Normark, W.R.; Hess, G.R.; Stow, D.A.V.; Bowen, A.J.

    1980-01-01

    A detailed survey of a 30 km2 area of abyssal-depth sediment waves associated with the levee of the Monterey fan valley shows a pattern of sinuous crests and troughs with parallel, well-bedded internal structure. Material in the upper 1 m of sediment consists predominantly of bioturbated, muddy coccolith ooze. A single thin, silty horizon can be correlated between adjoining waves. The sediment waves are considered to be formed most likely by low-velocity (10 cm/s), low-concentration turbidity flows approximately 100-800 m thick. This interpretation emphasizes the role of low-speed, low-concentration turbidity currents in the downslope movement of fine-grained material.- from Authors

  20. History of plains resurfacing in the Scandia region of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Fortezzo, Corey M.; Hayward, Rosalyn K.; Rodriguez, J. Alexis P.; Skinner, James A.

    2011-01-01

    We present a preliminary photogeologic map of the Scandia region of Mars with the objective of reconstructing its resurfacing history. The Scandia region includes the lower section of the regional lowland slope of Vastitas Borealis extending about 500–1800 km away from Alba Mons into the Scandia sub-basin below −4800 m elevation. Twenty mapped geologic units express the diverse stratigraphy of the region. We particularly focus on the materials making up the Vastitas Borealis plains and its Scandia sub-region, where erosional processes have obscured stratigraphic relations and made the reconstruction of the resurfacing history particularly challenging. Geologic mapping implicates the deposition, erosion, and deformation/degradation of geologic units predominantly during Late Hesperian and Early Amazonian time (~3.6–3.3 Ga). During this time, Alba Mons was active, outflow channels were debouching sediments into the northern plains, and basal ice layers of the north polar plateau were accumulating. We identify zones of regional tectonic contraction and extension as well as gradation and mantling. Depressions and scarps within these zones indicate collapse and gradation of Scandia outcrops and surfaces at scales of meters to hundreds of meters. We find that Scandia Tholi display concentric ridges, rugged peaks, irregular depressions, and moats that suggest uplift and tilting of layered plains material by diapirs and extrusion, erosion, and deflation of viscous, sedimentary slurries as previously suggested. These appear to be long-lived features that both pre-date and post-date impact craters. Mesa-forming features may have similar origins and occur along the southern margin of the Scandia region, including near the Phoenix Mars Lander site. Distinctive lobate materials associated with local impact craters suggest impact-induced mobilization of surface materials. We suggest that the formation of the Scandia region features potentially resulted from crustal heating

  1. [Effects of Canalization on the Iron Deposition in Sanjiang Plain].

    PubMed

    Su, Wen-hui; Yu, Xiao-fei; Wang, Guo-ping; Luan, Jin-hua; Zou, Yuan-chun

    2015-04-01

    Canalization is the representative process and landscape of wetland reclamation. A typical ditch system of four levels near the Honghe National Nature Reserve in Sanjiang Plain was selected. Deposition plates were set on the sediments along the ditch level and the remained natural wetland nearby was quantitatively sampled for two years as the control. The deposition fluxes, total iron concentration, iron oxides and their components, as well as biogenic elements in the sediments collected by deposition plates were measured. The results showed that the litter, mud/sand and total deposition fluxes showed no significant differences between different ditch levels, with the means of (57.00 ± 16.90) g x (m2 x a)(-1), (3 997.57 ± 798.98) g x (m2 x a)(-1) and (4054.57 ± 792.91) g x (m2 x a)(-1), respectively. The litter flux decreased with the increase of ditch level, and the flux in the natural wetland [ (120.26 ± 19.42) g x (m2 x a)(-1) ] was significantly greater than that of the ditches. The mud/sand [ (35.41 ± 11.15 ) g x (m2 x a)(-1)] and total deposition fluxes [ (155.67 ± 20.75) g x ( m2 x a](-1) ] were significantly smaller than those of the ditches. There were no significant differences in the total iron between different ditches and natural wetland, while the free iron oxide content in the ditch sediments was significantly lower than that of natural wetland sediment. Except for the main ditch, the amorphous and complex iron oxides in the other ditch and natural wetland sediments showed no significant differences. The free degree of the iron oxide in ditch sediments was 60.2% of that in the natural wetland, while the differences in the complex degree and the activated degree were insignificant. The differences in the total organic carbon, total nitrogen and total phosphorus were insignificant, and all were smaller than those of the natural wetland, with the percentages of 14.6%, 31.6% and 41.0%, respectively. It could be concluded that the effects of

  2. Wetland paleoecological study of southwest coastal Louisiana: sediment cores and diatom calibration dataset

    USGS Publications Warehouse

    Smith, Kathryn E. L.; Flocks, James G.; Steyer, Gregory D.; Piazza, Sarai C.

    2015-01-01

    Wetland sediment data were collected in 2009 and 2010 throughout the southwest Louisiana Chenier Plain as part of a pilot study to develop a diatom-based proxy for past wetland water chemistry and the identification of sediment deposits from tropical storms. The complete dataset includes forty-six surface sediment samples and nine sediment cores. The surface sediment samples were collected in fresh, intermediate, and brackish marsh and are located coincident with Coastwide Reference Monitoring System (CRMS) sites. The nine sediment cores were collected at the Rockefeller Wildlife Refuge (RWR) located in Grand Chenier, La.

  3. Population sizes and growth pressure responses of intestinal microfloras of deep-sea fish retrieved from the abyssal zone.

    PubMed

    Yano, Y; Nakayama, A; Yoshida, K

    1995-12-01

    The intestinal floras of seven deep-sea fish retrieved at depths of from 3,200 to 5,900 m were examined for population sizes and growth responses to pressure. Large populations of culturable bacteria, ranging from 1.1 x 10(sup6) to 3.6 x 10(sup8) cells per ml of contents, were detected when samples were incubated at conditions characteristic of those of the deep sea. Culturable cell counts at in situ pressures were greater than those at atmospheric pressure in all samples. Most of the strains isolated by the spread-plating method at atmospheric pressure later proved barophilic. Barophilic bacteria were the predominant inhabitants of the abyssal fish intestines. PMID:16535199

  4. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    USGS Publications Warehouse

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  5. Planetary stations and Abyssal Benthic Laboratories: An overview of parallel approaches for long-term investigation in extreme environments

    NASA Technical Reports Server (NTRS)

    Dipippo, S.; Prendin, W.; Gasparoni, F.

    1994-01-01

    In spite of the apparent great differences between deep ocean and space environment, significant similarities can be recognized when considering the possible solutions and technologies enabling the development of remote automatic stations supporting the execution of scientific activities. In this sense it is believed that mutual benefits shall be derived from the exchange of experiences and results between people and organizations involved in research and engineering activities for hostile environments, such as space, deep sea, and polar areas. A significant example of possible technology transfer and common systematic approach is given, which describes in some detail how the solutions and the enabling technologies identified for an Abyssal Benthic Laboratory can be applied for the case of a lunar or planetary station.

  6. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  7. Structure and sediment distribution in the western Bering Sea

    USGS Publications Warehouse

    Rabinowitz, P. D.; Cooper, A.

    1977-01-01

    Eleven seismic reflection profiles across Shirshov Ridge and the adjacent deep-water sedimentary basins (Komandorsky and Aleutian Basins) are presented to illustrate the sediment distribution in the western Bering Sea. A prominent seismic reflecting horizon, Reflector P (Middle-Late Miocene in age), is observed throughout both the Aleutian and Komandorsky Basins at an approximate subbottom depth of 1 km. This reflector is also present, in places, on the flanks and along the crest of Shirshov Ridge. The thickness of sediments beneath Reflector P is significantly different within the two abyssal basins. In the Aleutian Basin, the total subbottom depth to acoustic basement (basalt?) is about 4 km, while in the Komandorsky Basin the depth is about 2 km. Shirshov Ridge, a Cenozoic volcanic feature that separates the Aleutian and Komandorsky Basins, is an asymmetric bathymetric ridge characterized by thick sediments along its eastern flank and steep scarps on its western side. The southern portion of the ridge has more structural relief that includes several deep, sediment-filled basins along its summit. Velocity data from sonobuoy measurements indicate that acoustic basement in the Komandorsky Basin has an average compressional wave velocity of 5.90 km/sec. This value is considerably larger than the velocities measured for acoustic basement in the northwestern Aleutian Basin (about 5.00 km/sec) and in the central Aleutian Basin (5.40-5.57 km/sec). In the northwestern Aleutian Basin, the low-velocity acoustic basement may be volcaniclastic sediments or other indurated sediments that are overlying true basaltic basement. A refracting horizon with similar velocities (4.6-5.0 km/sec) as acoustic basement dips steeply beneath the Siberian continental margin, reaching a maximum subbottom depth of about 8 km. The thick welt of sediment at the base of the Siberian margin may be the result of sediment loading or tectonic depression prior to Late Cenozoic time. ?? 1977.

  8. Braid-plain dynamics and bank erosion along the Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.

    2009-12-01

    Braid-plain activity and geomorphic features in the Matanuska River in southcentral Alaska between 1949 and 2006 were examined to support a bank erosion hazard assessment. The glacial Matanuska River drains 6,500 km2 and is braided for 85 percent of its 150 km course, which parallels a major highway and flows through the towns of Sutton and Palmer, Alaska. The historical braid plain was defined as the envelope of areas with active channels, unvegetated bars, or vegetated bars with evidence of channels since 1949 and delineated in a GIS from 1949, 1962, and 2006 aerial orthoimagery. We created a strip map of bank height and composition (primarily bedrock and unconsolidated sediment) at braid-plain margins and outlined valley bottom features (terraces and tributary fans) adjacent to the braid plain to assess erodibility. Braid-plain dynamism has created a mosaic of extensive lightly vegetated bars interspersed with forested bars in strips along the banks and in small mid-channel positions. Abandoned channels filled with groundwater or tributary streamflow have created clearwater side channels within these bars that serve as the primary spawning location for chum, sockeye, and coho salmon in the Matanuska River basin. Erosion magnitudes for the periods 1949-1962 and 1962-2006 were computed as braid-plain expansion at transects across the historical braid-plain boundaries. Episodic, spatially distributed erosion and the antiquity of some eroded surfaces suggests that average annual erosion rates at a location are not adequate for assessing future erosion at that location in a braid plain. Lateral expansion caused bank erosion of 100 -275 m at 20 locations over the full period, about half at tributary fans and most occurring in a single time period. Minor growth of tributary fans constricted the braid plain, and emerging terraces have the potential to shrink the braid plain. Eroded banks included undated but pre-historic fluvial terraces and tributary fans. Where

  9. A qualitative assessment of the influence of bioturbation in Lake Baikal sediments

    NASA Astrophysics Data System (ADS)

    Martin, Patrick; Boes, Xavier; Goddeeris, Boudewijn; Fagel, Nathalie

    2005-04-01

    The impact of bioturbation in Lake Baikal sediments, particularly on rhythmic layering and mixing, was assessed by studying the actual vertical distribution of benthic animals in continuous accumulation zones selected by seismic survey (Vydrino Shoulder, Posolskoe Bank, Continent Ridge). To assess the influence of the bioturbation, animals were extracted from short cores and identified at the relevant taxonomic level. The faunal distribution is examined in parallel with the bioturbation tracks observed in thin section. Oligochaeta, Nematoda, Ostracoda, Copepoda, Gammaridae, Chironomidae and Hydrachnidia were found inhabiting the sediment. Among them, only oligochaete worms were assumed to have a significant impact on sediment mixing because of their "conveyor belt" feeding. The other two most abundantly sampled groups, nematods and copepods, belong to the interstitial fauna that has no significant impact on the vertical displacement of sediment particles and do not ingest the sediment. The presence of a benthic fauna as deep as 15 cm in the sediment indicates that the possibility of sediment disturbance by invertebrate activity cannot be dismissed in Lake Baikal. The effect of biological mixing is more limited in the deepest stations because the number of potential bioturbators is reduced, qualitatively as well as quantitatively. Located in the abyssal zone, Continent and Vydrino (but outside turbidites) deep stations appear to be most promising sediment records for tracking climate signal at high resolution.

  10. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  11. Lacustrine carbonates of the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.

    2012-11-01

    The northern Great Plains of western Canada, a vast region stretching from the Precambrian Shield east of Winnipeg, Manitoba, westward for some 1600 km to the foothills of the Rocky Mountains, contains literally millions of lakes and wetlands. Although often characterized as a saline, Na-SO4 system, in fact the wide range of water chemistries exhibited by the lakes results in an unusually large diversity of sediment composition. Despite a long history of limnogeological study, it is only recently that the spectrum of carbonate minerals and sedimentological processes in these lakes has been realized. About 30 species of carbonate minerals have been reported from the modern and Holocene sediment of about 50 basins in the region. The ubiquity of detrital calcite and dolomite is a legacy of the carbonate bedrock and carbonate-rich glacial sediments. Elevated salinities of the lakes, together with high alkalinities, productivity, and pH values, act in concert to create thermodynamically saturated or supersaturated conditions with respect to many carbonate minerals. The most common non-detrital components are Mg-calcite, aragonite and non-stoichiometric dolomite. Many of the basins whose brines have very high Mg/Ca ratios also contain hydromagnesite, magnesite, and nesquehonite. Although not common, sodium carbonates, including trona, natron and nahcolite, also occur in some of the hypersaline lakes. Because of their great range of formative conditions, carbonates have been the workhorse for much of the physical and geochemical paleolimnology in the Canadian Great Plains. However, the often-difficult task of distinguishing endogenic lacustrine carbonates from allogenic and authigenic minerals has limited the use of carbonate stratigraphy in the region. Despite this problem, the carbonates have been useful in deciphering (i) past changes in hydrology and drainage basin characteristics, (ii) lake level and water column stratification fluctuations, and (iii) water chemistry

  12. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India.

    PubMed

    Saha, Dipankar; Sahu, Sudarsan

    2016-04-01

    Groundwater arsenic (As) load in excess of drinking limit (50 µg L(-1)) in the Gangetic Plains was first detected in 2002. Though the menace was known since about two decades from the downstream part of the plains in the Bengal Basin, comprising of Lower Ganga Plain and deltaic plains of Ganga-Brahmaputra-Meghna River system, little thought was given to its possible threat in the upstream parts in the Gangetic Plains beyond Garo-Rajmahal Hills. The contamination in Bengal Basin has become one of the extensively studied issues in the world and regarded as the severest case of health hazard in the history of mankind. The researches and investigations in the Gangetic Plains during the last decade (2003-2013) revealed that the eastern half of the plains, also referred as Middle Ganga Plain (MGP), is particularly affected by contamination, jeopardising the shallow aquifer-based drinking water supply. The present paper reviews researches and investigations carried out so far in MGP by various research institutes and government departments on wide array of issues of groundwater As such as its spatio-temporal variation, mobilisation paths, water level behaviour and flow regime, configuration of contaminated and safe aquifers and their recharge mechanism. Elevated conc. of groundwater As has been observed in grey and dark grey sediments of Holocene age (Newer Alluvium) deposited in a fluvio-lacustrine environment in the floodplain of the Ganga and most of its northern tributaries from Himalayas. Older Alluvium, comprising Pleistocene brownish yellow sediment, extending as deeper aquifers in Newer Alluvium areas, is low in groundwater As. Similarities and differences on issues between the MGP and the Bengal Basin have been discussed. The researches point towards the mobilisation process as reductive dissolution of iron hydroxide coating, rich in adsorbed As, mediated by microbial processes. The area is marked with shallow water level (<8.0 m below ground) with ample

  13. A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India.

    PubMed

    Saha, Dipankar; Sahu, Sudarsan

    2016-04-01

    Groundwater arsenic (As) load in excess of drinking limit (50 µg L(-1)) in the Gangetic Plains was first detected in 2002. Though the menace was known since about two decades from the downstream part of the plains in the Bengal Basin, comprising of Lower Ganga Plain and deltaic plains of Ganga-Brahmaputra-Meghna River system, little thought was given to its possible threat in the upstream parts in the Gangetic Plains beyond Garo-Rajmahal Hills. The contamination in Bengal Basin has become one of the extensively studied issues in the world and regarded as the severest case of health hazard in the history of mankind. The researches and investigations in the Gangetic Plains during the last decade (2003-2013) revealed that the eastern half of the plains, also referred as Middle Ganga Plain (MGP), is particularly affected by contamination, jeopardising the shallow aquifer-based drinking water supply. The present paper reviews researches and investigations carried out so far in MGP by various research institutes and government departments on wide array of issues of groundwater As such as its spatio-temporal variation, mobilisation paths, water level behaviour and flow regime, configuration of contaminated and safe aquifers and their recharge mechanism. Elevated conc. of groundwater As has been observed in grey and dark grey sediments of Holocene age (Newer Alluvium) deposited in a fluvio-lacustrine environment in the floodplain of the Ganga and most of its northern tributaries from Himalayas. Older Alluvium, comprising Pleistocene brownish yellow sediment, extending as deeper aquifers in Newer Alluvium areas, is low in groundwater As. Similarities and differences on issues between the MGP and the Bengal Basin have been discussed. The researches point towards the mobilisation process as reductive dissolution of iron hydroxide coating, rich in adsorbed As, mediated by microbial processes. The area is marked with shallow water level (<8.0 m below ground) with ample

  14. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Robinson, M. S.; Mahanti, P.; Lawrence, S. J.; Spudis, P.; Jolliff, B. L.

    2012-12-01

    Smooth plains are widespread on the Moon and have diverse origins. The maria comprise the majority of the smooth plains and are volcanic in origin. Highland smooth plains are patchy, and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that highland plains were volcanic, possibly more silicic than the maria. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted basin impact ejecta, most likely from the Imbrium and possibly Orientale basins. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation, contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100), sampled at 333 m/pixel. We classify the smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Terrain with slopes less than 2° (1 km baseline) and standard deviation of slope less than 0.75° (1 km x 1 km box, n=9) are defined as smooth plains. Highland smooth plains are distinguished from basaltic smooth plains using the following criteria: LROC WAC 643 nm normalized reflectance > 0.056, LROC WAC 321 nm / 415 nm ratio < 0.74, and Clementine FeO < 12 wt.% (excluding Clementine non-coverage areas). The remaining smooth plains are classified as maria and are subdivided into two classes: LROC WAC 321 nm / 415 nm ratio > 0.77 is termed blue maria and a ratio ≤ 0.77 is termed red maria. The automatic classification was limited to the 87% of the Moon covered by photometrically normalized WAC data (60°S to 60°N). The differences between the maria and highland smooth plains

  15. Coastal morphodynamics and Chenier-Plain evolution in southwestern Louisiana, USA: A geomorphic model

    NASA Astrophysics Data System (ADS)

    McBride, Randolph A.; Taylor, Matthew J.; Byrnes, Mark R.

    2007-08-01

    ridge, and spit. To understand the long-term evolution of a coastal depositional system, primary process-response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism ( Ω) and quantity of littoral transport ( Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed. Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299-306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits). A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level

  16. Milankovich Sea Level-Change Pumping of Fault Slip May Enhance Abyssal Hill Growth, with Spacing Control by Melt Pumping or Elastic Properties

    NASA Astrophysics Data System (ADS)

    Macdonald, K. C.

    2015-12-01

    Sea level-change pumping of mantle melt to create abyssal hills is a very innovative and elegant hypothesis. However, I see 2 issues: 1. Abyssal hill observations indicate that they are bounded by normal faults in most cases. 2. The resolution of the crustal accretion "tape recorder" and its ability to accurately record cycles as short as 20Kyr and 40Kyr is limited given the width of the zone of crustal accretion. Magnetic anomaly polarity transition widths give us one measure of estimating the resolution of this tape recorder. Based on these measurements, the half-width of the zone of crustal accretion ranges from 1-8 km, with 2-4 km being typical. At a half-spreading rate of 3 cm/yr, a width of 3km of crust is created during the 100Kyr Milankovich cycle, ~1.2 km during the 40Kyr cycle, and 600m during the 20Kyr cycle, so only the 100K signal is likely to be resolvable. In contrast, consider the effect of pressure changes on fault slip. In critically stressed lithosphere, a small change in pressure can produce nearly instantaneous slip. For example, pressure changes of only ~0.1 MPa near injection wells in OK, TX trigger earthquakes at depths of 3-5 km (Mark Zoback, personal comm.). This pressure change is equivalent to a 100 m sea level change. For the 20Kyr and 40Kyr cycles, sea level-change pumping of fault slip may dominate because fault uplift of abyssal hills is not smeared by the time-averaging effects of crustal accretion. The spacing of the abyssal hills in this scenario would be controlled by the elastic thickness and flexural rigidity of young lithosphere. Faulting also can accommodate variations in melt supply, with most of the melt freezing at depth; this would explain why we observe dominantly tectonic rather than constructional volcanic origins of abyssal hills. If abyssal hills are caused by variations in melt production, the crust should be measurably thicker beneath the axes of the hills. If faulting dominates, crustal thickness would be more

  17. Early chromite mining and agricultural clearance: Opportunities for the investigation of agricultural sediment dynamics in the Eastern Piedmont (USA)

    USGS Publications Warehouse

    Bain, D.J.; Brush, G.S.

    2005-01-01

    Many flood plains in the Eastern Piedmont (USA) are buried under deposits of sediment resulting from European agricultural clearance. Classic radioisotopic dating techniques cover temporal periods too short (137Cs, 210Pb) or too long (14C) to reliably date sediments deposited during periods of local European activity (1660-1900). Moreover, many potential biomarkers, such as pollen, degrade in oxic flood plain sediments. In the Baltimore, Maryland (USA) region, early chromite mining (1820 - 1880) occurred during periods of rapid agricultural clearance. Use of chromium (Cr) chemostratigraphic profiles in flood plain sediments tied to historical mining activity can provide improved precision in overbank accumulation rates and timing. Sediment cores were collected from the Red Run basin, which is part of the Baltimore Ecosystem Study, an urban Long-Term Ecological Research site. Trace metal chemostratigraphic profiles were measured and peaks in Cr concentration tied to historic mining activity. Dates from Cr chemostratigraphic profiles were combined with 137Cs dating to reconstruct flood plain sedimentation rates. Red Run early sedimentation rates (1820 - 1880) were higher (0.45 - 1.19 cm/yr) than more recent (1880 - 1963) rates (0.08 - 0.46 cm/yr). This indicates that Piedmont flood plain vertical sediment accumulation might have peaked before the peak in agricultural clearance, earlier than assumed by regional models. The Cr chemostratigraphy is applicable to a wider region including much of the Maryland and Pennsylvania (USA) Piedmont.

  18. A model of early diagenetic processes from the shelf to abyssal depths

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Herman, Peter M. J.; Middelburg, Jack J.

    1996-03-01

    We present a numerical model of sedimentary early diagenetic processes that includes oxic and anoxic mineralization. The model belongs to the new wave of early diagenesis models that account for depth-dependent bioturbation and porosity profiles; it can be used both for calculating steady-state conditions and transient simulation. It was developed to reproduce the cycling of carbon, oxygen, and nitrogen along the ocean margin; it resolves the sediment-depth profiles of carbon, oxygen, nitrate, ammonium, and other reduced substances. Organic carbon is modeled as two degradable fractions with different first-order degradation rates and nitrogen:carbon ratios, to account for the decreasing reactivity and N/C ratio of the organic matter with depth into the sediment. The consumption of oxygen and nitrate as terminal electron acceptors is explicitly modeled, and mineralization is limited both by carbon (first order kinetics) and by oxidant availability (Michaelis-Menten type kinetics). Nitrification and oxic mineralization are decoupled, which allows the description of ammonium profiles. Mineralization processes using other oxidants (manganese oxides, iron oxides, sulphate) are lumped into one process, where degradation is only carbon limited; the terminal electron acceptors are not explicitly modeled, only the production of reduced substances is described. These substances are in part permanently removed (e.g., pyrite formation below the bioturbation zone) and partly diffuse towards the oxic layer where they react with oxygen. The values of several parameters were constrained using literature-derived relationships. The model was calibrated on a dataset obtained from the literature, which relates the magnitude of the different pathways to total organic carbon mineralization. The influence of carbon flux, bioturbation, sedimentation rate, bottomwater concentrations of oxygen, and nitrate and carbon degradability on the different mineralization pathways is examined. The

  19. Rates of Microbial Metabolism in Deep Coastal Plain Aquifers

    PubMed Central

    Chapelle, Francis H.; Lovley, Derek R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism. PMID:16348227

  20. Rates of microbial metabolism in deep coastal plain aquifers

    USGS Publications Warehouse

    Chapelle, F.H.; Lovley, D.R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  1. Hydrogeologic Framework of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Zapecza, Otto S.

    1989-01-01

    unit ranging in thickness from approximately 20 to 80 feet. The Wenonah-Mount Laurel aquifer is identified in the subsurface throughout the New Jersey Coastal Plain southeast of its outcrop area. Sediments that overlie the Wenonah-Mount Lauren aquifer and that are subjacent to the major aquifers within the Kirkwood Formation and the Cohansey Sand are described hydrologically as a composite confining bed. These include the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, and Piney Point Formation and the basal clay of the Kirkwood Formation.. The Vincentown Formation functions as n aquifer within 3 to 10 miles downdip of its outcrop area. In areas farther downdip the Vincentown Formation functions as a confining bed. The Piney Point aquifer is laterally persistent from the southern New Jersey Coastal Plain northward into parts of Burlington and Ocean Counties. The Atlantic City 800-foot sand of the Kirkwood Formation can be recognized in the subsurface along coastal areas of Cape May, Atlantic, and southern Ocean Counties, but inland only as far west as the extent of the overlying confining bed. In areas west of the extent of the overlying confining bed, the Kirkwood Formation is in hydraulic connection with the overlying Cohansey Sand and younger surficial deposits and functions as an unconfined aquifer.

  2. Hydrologic Controls On Methylmercury Availability In Coastal Plain Rivers

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Brigham, M. E.; Burns, D. A.; Button, D. T.; Lutz, M. A.; Marvin-DiPasquale, M. C.; Riva-Murray, K.; Journey, C.

    2011-12-01

    Methylmercury (MeHg) in streams is often attributed to methylation in up-gradient wetland areas, with episodic flood events maximizing wetland-stream hydrologic connectivity and dominating MeHg supply to the stream habitat. A number of studies have demonstrated that Coastal Plain streams in the southeastern United States are particularly vulnerable to high MeHg bioaccumulation and have attributed this vulnerability to wetland abundance and strong hydrologic connectivity between wetland areas and adjacent stream aquatic habitat. Because characteristically coarse-grained Coastal Plain sediments favor vertical infiltration with little surface runoff, flood events attributable to Coastal Plain precipitation are driven by rising groundwater, promoting efficient transport of MeHg from wetland/floodplain source areas to the stream habitat and increasing in-stream availability. Several observations at McTier Creek, South Carolina, however, suggest that good hydrologic connectivity and efficient MeHg transport in Coastal Plain systems are not limited to flood conditions. Close correspondence between stream and shallow-groundwater water levels at McTier indicate good hydrologic connectivity exists prior to flood conditions. Dissolved MeHg concentrations do not increase under flood conditions. Thus, we assessed the flux of water and dissolved mercury (Hg) species (FMeHg and total Hg (FTHg)) from surface water and groundwater sources in a short reach at McTier Creek during separate events in April and July 2009, to determine the importance of shallow groundwater Hg transport from floodplain areas to the stream under non-flood conditions. Mass balance assessments indicated that, under non-flood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface-water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric deposition. The results indicate efficient transport of

  3. What can we learn about the history of oceanic shield volcanoes from deep marine sediments? Example from La Reunion volcanoes.

    NASA Astrophysics Data System (ADS)

    Bachelery, Patrick; Babonneau, Nathalie; Jorry, Stephan; Mazuel, Aude

    2014-05-01

    The discovery in 2006, during the oceanographic survey FOREVER, of large volcaniclastic sedimentary systems off La Réunion Island (western Indian ocean) revealed a new image of the evolution of oceanic shield volcanoes and their dismantling. Marine data obtained from 2006 to 2011 during the oceanographic surveys ERODER 1 to ERODER 4 included bathymetry, acoustic imagery, echosounding profiles, dredging and coring. Six major turbidite systems were mapped and described on the submarine flanks of La Reunion volcanic edifice and the surrounding oceanic plate. The interpretation of sediment cores enable us to characterise the processes of gravity-driven sediment transfer from land to deep sea and also to revisit the history of the volcanoes of La Réunion Island. Turbidite systems constitute a major component of the transfer of volcanic materials to the abyssal plain (Saint-Ange et al., 2011; 2013; Sisavath et al., 2011; 2012; Babonneau et al., 2013). These systems are superimposed on other dismantling processes (slow deformation such as gravity sliding or spreading, and huge landslides causing debris avalanches). Turbidite systems mainly develop in connection with the hydrographic network of the island, and especially at the mouths of large rivers. They show varying degrees of maturity, with canyons incising the submarine slope of the island and feeding depositional areas, channels and lobes extending over 150 km from the coast. The cores collected in turbidite systems show successions of thin and thick turbidites alternating with hemipelagic sedimentation. Sedimentological and stratigraphic analysis of sediment cores yielded a chronology of submarine gravity events. First-order information was obtained on the explosive activity of these volcanoes by identifying tephra layers in the cores (glass shards and pumice). In addition, major events of the volcanic and tectonic history of the island can be identified and dated. In this contribution, we focus most attention on

  4. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  5. Titan’s “blandlands”: nature, distribution, and possible origin of Titan’s plains

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M.; Malaska, M. J.; Le Gall, A.; Hayes, A.; Mitchell, K. L.; Kirk, R.; Radebaugh, J.; Neish, C.; Stofan, E.; Janssen, M.; Wall, S. D.; Lucas, A.; Lorenz, R. D.; Cassini RADAR Team

    2013-10-01

    Titan’s diverse and Earth-like geologic features have been mapped and interpreted based on their morphological characteristics (e.g. Lopes et al., 2010, Icarus 205; Aharonson et al., 2012, Titan: Surface, Atmosphere, Magnetosphere, Cambridge University Press). While the interpretation for the origin of some units, such as dunes and well-preserved impact craters, has been relatively straightforward, others have been more challenging. In particular, the undifferentiated plains first mapped by Lopes et al. (2010) remain mysterious. These vast expanses, often referred to as “blandlands” (also “undifferentiated plains unit”, Lopes et al., 2010) are mostly found at mid-latitudes and appear relatively featureless at radar wavelengths, with no significant topography. Their gradational boundaries and paucity of features in SAR data make geologic interpretation particularly challenging. We examine and evaluate different formation mechanisms. Plains may be sedimentary in origin, resulting from fluvial or lacustrine deposition or accumulation of photolysis products created in the upper atmosphere. Alternatively, the plains may be cryovolcanic, consisting of overlapping flows of low relief, obscured by accumulation of sediments. In this paper, we use SAR, radiometry, scatterometry, and SARTopo data to examine the characteristics of the plains and compare them with other geologic units. We also compare their global distribution with that of other units and examine the implications.

  6. Geohazards (floods and landslides) in the Ndop plain, Cameroon volcanic line

    NASA Astrophysics Data System (ADS)

    Wotchoko, Pierre; Bardintzeff, Jacques-Marie; Itiga, Zénon; Nkouathio, David Guimolaire; Guedjeo, Christian Suh; Ngnoupeck, Gerald; Dongmo, Armand Kagou; Wandji, Pierre

    2016-07-01

    The Ndop Plain, located along the Cameroon Volcanic Line (CVL), is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually) and landslides (occasionally) occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people) tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide) maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered. The hazard maps revealed that 25% of the area is exposed to flood hazard (13% exposed to high flood hazard, 12% to moderate) and 5% of the area is exposed to landslide hazard (2% exposed to high landslide hazard, 3% to moderate). Some mitigation measures for floods (building of artificial levees, raising foundations of buildings and the meticulous regulation of the flood guards at Bamendjing Dam) and landslides (slope terracing, planting of trees, and building retaining walls) are proposed.

  7. Life on the Great Plains. [Lesson Plan].

    ERIC Educational Resources Information Center

    2000

    In this four-part lesson, students examine the concept of geographic region by exploring the history of the United States Great Plains. In Part I, students gather information about the location and environment of the Great Plains in order to produce a map outlining the region in formal terms. In Part II, students examine how the region has been…

  8. Implementing Plain Language: A Manager's Guide.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    Drawn from the experience of various ministries and departments in governments across Canada, this guide is meant to be a practical guide in implementing plain language for managers in the Ontario (Canada) government. The guide describes how to use plain language in planning, writing, designing, and editing forms and documents, and how to set up…

  9. Lunar Smooth Plains Identification and Classification

    NASA Astrophysics Data System (ADS)

    Boyd, A. K.; Mahanti, P.; Robinson, M. S.; Lawrence, S. J.; Spudis, P. D.; Jolliff, B. L.

    2012-09-01

    Smooth plains are widespread on the Moon and appear to have diverse origins. The maria comprise the majority of the smooth plains on the Moon and are volcanic in origin. Highland smooth plains are patchy and tend to fill large craters and basins; their origins have eluded unambiguous classification. Prior to the Apollo 16 mission, many workers thought that smooth highland plains were volcanic, possibly more silicic than the basaltic maria [e.g., 1]. However, as the Apollo 16 samples are mostly impact breccias, the highland smooth plains were re-interpreted as being deposits generated by impact events, most likely ejecta from the youngest and largest multi-ring basins, e.g., Imbrium and Orientale [1]. Spectral interpretations by Pieters [2] showed that the highland light plains are not mare basalt, but are composed of significantly more feldspathic, nonmare material [2]. Conversely, some known non-mare volcanic units, such as the Apennine Bench Formation (a deposit of post-Imbrium KREEP basalt [3,4]), contain light plains. These interpretations do not rule out alternate origins for a subset of highland smooth plains, including impact melt or volcanic origins (effusive or pyroclastic). We have developed an algorithm to identify smooth plains using topographic parameters from the WAC Global Lunar Digital Terrain Model (DTM) (GLD100) [5], sampled at 333 m/pixel. We classify the identified smooth plains using the Clementine UVVIS FeO map and photometrically corrected Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images [6]. In this abstract, we do not address formation mechanisms for the nonmare deposits.

  10. Long-term cycling of mantle Pb: A trace element study of the major mantle mineral phases in abyssal peridotites

    NASA Astrophysics Data System (ADS)

    D'Errico, M. E.; Warren, J. M.; Godard, M.; Ildefonse, B.

    2012-12-01

    Peridotites from ultraslow-spreading ridges preserve signatures of the depleted mantle, while also reflecting the fine scale compositional variability present in the mantle. Traditional analyses of these depleted rocks have focused on clinopyroxene, the main trace element host in spinel peridotites. However, key isotopic systems, such as lead and osmium, are hosted in other phases at low but significant concentration levels. The amount of lead contained within mantle mineral phases is of critical importance to understanding the long-term evolution of the Earth, because the radiogenic isotopes of lead are sensitive to past material cycling and melt-rock interaction. Sulfides have long been suggested as the main host for lead (Pb) in the mantle, but recent studies have demonstrated that Pb is not exclusively hosted in this trace phase. Therefore, the Pb contents of the major peridotite mineral phases (olivine, orthopyroxene, and clinopyroxene) need to be reassessed. Lead concentration data is available for orogenic and xenolith peridotite samples, which are typically more enriched than abyssal peridotites, but these do not provide direct information on the oceanic upper mantle. Direct measurement of Pb in abyssal peridotites has so far been limited because of its extremely low concentration (often <1 ppm). We report Pb and other trace element concentration data for peridotite phases determined by in-situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS technique achieves high spatial resolution combined with detection of low elemental abundances. External precision varied from 6% to 17%, with a precision of 6% for Pb, based on 14 repeat analyses of BIR-1G standard basalt glass. Laser spot size varied from 102-163 microns, which produced a detection limit of 0.42-0.81 ppb for Pb. This study focused on abyssal peridotites from the ultra-slow spreading Gakkel and Southwest Indian Ridges (SWIR), with samples coming from segments with

  11. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman

    2004-07-01

    The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  12. Planetary plains: subsidence and warping

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    fabric of oceanic floors. Short, medium wave undulations of Pacific's floor (A. Cazenave et al., 1992; D. McAdoo & K. Marks, 1992) present lineations underlining its whole shape. NE lineations predominate on its northern sub-basin, NW lineations on its southern one. They cross at the equatorial zone and together with some other directions give a pattern resembling that observed on the venusian surface. The venusian regional plains typically deformed by wrinkle ridges show interesting similarities to volcanic plains on the Moon and Mars [3]. A subsidence along with warpings can squeeze out some "superfluous" material to surface through planetary scale fissures. This material builds mid-oceanic ridges and huge Hawaii volcano. The Cassini Regio on Iapetus is crossed in the equatorial plain by the dark ridge in some places high 20 km. References: [1] Kochemasov G. G. (2004) Mars and Earth: two dichotomies - one cause. In Workshop on "Hemispheres 1 apart: the origin and modification of the martian crustal dichotomy", LPI Contribution # 1203, Lunar and Planetary Institute, Houston, p. 37. [2] Kochemasov G.G.(1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr. v.1, #3, p.700 . [3] Basilevsky A.T., Head J.W. (2006) Impact craters on regional plains in Venus: Age relations with wrinkle ridges and implications for the geological evolution of Venus // JGR, v.111, EO3006, doi: 10.1029/2005JE002473, 2006. 2

  13. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-01-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  14. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2004-10-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  15. Bait-attending fauna of the Kermadec Trench, SW Pacific Ocean: Evidence for an ecotone across the abyssal-hadal transition zone

    NASA Astrophysics Data System (ADS)

    Jamieson, A. J.; Kilgallen, N. M.; Rowden, A. A.; Fujii, T.; Horton, T.; Lörz, A.-N.; Kitazawa, K.; Priede, I. G.

    2011-01-01

    The bait-attending fauna of the abyssal-hadal transition zone of the Kermadec Trench, SW Pacific Ocean (4329-7966 m), was investigated using a baited camera and a trap lander. The abyssal stations (4329-6007 m) revealed a typical scavenging fish community comprising macrourids and synaphobranchid eels, as well as natantian decapods. At the hadal depths of 7199 and 7561 m, the endemic liparid Notoliparis kermadecensis was observed aggregating at the bait reaching surprisingly high numbers of 5 and 13, respectively. A total of 3183 invertebrate samples were collected (mean deployment time=16 h) of which 97.8% were of the order Amphipoda (nine families, 16 species). Ten of the amphipod species represent new distributional records for the Kermadec Trench and the New Zealand Exclusive Economic Zone; this includes the shallowest known record of the endemic hadal amphipod Hirondellea dubia (6000, 6007 m). Using amphipods to statistically examine the compositional change across the abyssal-hadal boundary, an ecotone between depths <6007 and >6890 m was found, indicating that there is an ecologically distinct bait-attending fauna in this trench.

  16. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1989-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.

  17. Hydrogeologic framework of the North Carolina coastal plain

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1996-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of 10 aquifers separated by 9 confining units. From top to bottom, the aquifers are the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer, and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand, with lesser amounts of gravel and limestone. The confining units between the aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. Stratigraphic continuity was determined from correlations of 161 geophysical logs along with data from drillers? and geologists? logs. Aquifers were defined by means of these logs as well as water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the North Carolina Coastal Plain.

  18. Flood Plain Lakes Along the Elbe River - a Forgotten Risk

    NASA Astrophysics Data System (ADS)

    Heise, Susanne

    2014-05-01

    Flood Plain Lakes Along the Elbe River - a Forgotten Risk Introduction: Along the German part of the Elbe River, more than 1000 "side structures" form potential sinks of contaminated sediment. They are mostly remains of previous river courses which have been cut off by natural causes or anthropogenic alterations of the river (oxbow lakes), or are floodplain lakes that were formed during high water conditions. These water bodies sometimes have a small opening towards the Elbe, or are hydrodynamically connected only in situations of high discharges. High discharges in the Elbe River, however, are mainly responsible for transporting historic contaminants along with suspended matter from former historic sources in the middle Elbe downstream. As these may settle when the current dies down at the end of a high discharge period, side structures have been under suspicion to have accumulated contaminated material over the last decades. Until this study was conducted, nothing was known about erodibility and contamination of sediment in these lakes even though they could have a large impact on the Elbe River itself: A preliminary investigation showed that the total surface of side structures in the Elbe floodplain adds up to about 50 km2. In case that deposited sediment is contaminated and only the upper 20 cm are prone to resuspension and transport during flooding, 10 Mio m3 of contaminated sediment could potentially be added to the contaminant load during a high water event. This study was carried out to evaluate the risk from these side structures for the environmental quality of the Elbe River. Methods: 15 side structures were investigated. Sediment cores were taken on 1 to 3 locations per water body in order to obtain the following information: • Depth of sediment layer • Erodibility of surface sediment, measured immediately after sampling - using the "Gust Microcosm", • Eroded mass at over-critical shear stress, measured in the lab by eroding a sediment core for

  19. Different ages of lunar light plains

    NASA Technical Reports Server (NTRS)

    Neukum, G.

    1977-01-01

    The crater populations of 18 lunar light plains (Cayley plains) show a variation in relative ages by a factor of about 4 in crater frequency in regions in the surroundings of the Orientale and Imbrium basin, and by a factor of greater than 25 for more distant sites. Thus the idea of a moon-wide synchronism in the emplacement of the lunar light plains with the formation of the basins Imbrium or Orientale cannot be supported. Some light plains are younger than the youngest basin Orientale. Since these plains cannot have been emplaced by any other basin-forming event and local impact-derived origin can certainly be excluded, an endogenic (magmatic) origin is proposed for these plains. Age determination data (D sub L values) by Soderblom and Lebofsky (1972) and Soderblom and Boyce (1972) are shown to be correlated with own cumulative crater frequency data (N) for surfaces younger than about 3.8 b.y. It is found that D sub L is proportional to the 0.6 power of N. For ages greater than 3.8 b.y., the D sub L data by those authors, especially their light plains data, are incompatible with the present crater frequency data.

  20. Coastal Evolution of the Mississippi River Chenier Plain: A Geomorphic Process-Response Model

    NASA Astrophysics Data System (ADS)

    McBride, R. A.; Taylor, M. J.; Byrnes, M. R.

    2007-12-01

    Petroleum Geologists Bulletin) presented the first depositional model for chenier genesis and mudflat progradation. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by non-transgressive processes. Thus, the geologic evolution of the Chenier Plain is more complicated than Mississippi River channel avulsions, and it involved not only chenier ridges (transgressive), but also beach ridges (regressive) and spits (lateral accreted). A six-stage geomorphic process-response model is presented to describe Chenier-Plain evolution primarily as a function of: 1) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, 2) local sediment reworking and lateral transport, 3) tidal-entrance dynamics and sediment trapping, and 4) possibly higher-than-present stands of Holocene sea level. Hence, the development of transgressive, regressive, and laterally-accreted ridges typically occurred contemporaneously along the same shoreline at different locations.

  1. Rates of microbial metabolism in deep coastal plain aquifers

    SciTech Connect

    Chapelle, F.H. ); Lovley, D.R. )

    1990-06-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of (2-{sup 14}C)acetate and (U-{sup 14}C)glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confirming layers. In the many aquifer sediments, estimates of the rates of CO{sub 2} production (millimoles of CO{sub 2} per liter per year) based on the oxidation of (2-{sup 14}C) acetate were 9.4 {times} 10{sup {minus}3} to 2.4 {times} 10{sup {minus}1} for the Black Creek aquifer, 1.1 {times} 10{sup {minus}2} for the Middendorf aquifer, and < 7 {times} 10{sup {minus}5} for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO{sub 2} in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10{sup {minus}4} to 10{sup {minus}6} mmol of CO{sub 2} production could have been no more than 10{sup {minus}4} mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  2. Hyalinecia (sic) Edwardsi Roule, 1898-the enigmatic ghost from abyssal depths-redescribed as Nothria edwardsi (Annelida: Onuphidae).

    PubMed

    Arias, Andrés; Paxton, Hannelore

    2016-01-01

    The deep sea is one of the largest ecosystems on earth, extending from 200 m, where sunlight becomes inadequate for photosynthesis, to the deepest trenches. However, it is still one of the least explored. Polychaetes are among the dominant groups in these environments worldwide and play a critical role in the deep sea food chain. Within polychaetes, the onuphids are one the best represented families from 2000 m deep to the hadal zone, with 46 recorded species (Paterson et al. 2009). Hyalinoecia edwardsi Roule, 1898 is one of the early described abyssal onuphids. The species was described from the Talisman station 136, located between the Azores archipelago and the Iberian Peninsula (referred as "l'Espagne") at 4255 m depth (Roule 1898). The original description is rather brief without illustrations and the species was characterised as follows: thick antennae, lateral ones reaching chaetiger 3; first chaetiger twice as long as second one; parapodia of first chaetiger with thick falcate hooks; parapodia of second chaetiger with bidentate hooks; parapodia of third chaetiger with limbate chaetae; following chaetigers with limbate, pectinate chaetae and subacicular hooks; oval tube looking flattened and covered by small particles, mainly quartzites of different colours (Roule 1898).

  3. Hyalinecia (sic) Edwardsi Roule, 1898-the enigmatic ghost from abyssal depths-redescribed as Nothria edwardsi (Annelida: Onuphidae).

    PubMed

    Arias, Andrés; Paxton, Hannelore

    2016-01-01

    The deep sea is one of the largest ecosystems on earth, extending from 200 m, where sunlight becomes inadequate for photosynthesis, to the deepest trenches. However, it is still one of the least explored. Polychaetes are among the dominant groups in these environments worldwide and play a critical role in the deep sea food chain. Within polychaetes, the onuphids are one the best represented families from 2000 m deep to the hadal zone, with 46 recorded species (Paterson et al. 2009). Hyalinoecia edwardsi Roule, 1898 is one of the early described abyssal onuphids. The species was described from the Talisman station 136, located between the Azores archipelago and the Iberian Peninsula (referred as "l'Espagne") at 4255 m depth (Roule 1898). The original description is rather brief without illustrations and the species was characterised as follows: thick antennae, lateral ones reaching chaetiger 3; first chaetiger twice as long as second one; parapodia of first chaetiger with thick falcate hooks; parapodia of second chaetiger with bidentate hooks; parapodia of third chaetiger with limbate chaetae; following chaetigers with limbate, pectinate chaetae and subacicular hooks; oval tube looking flattened and covered by small particles, mainly quartzites of different colours (Roule 1898). PMID:27515609

  4. Observations of polarized seismoacoustic T waves at and beneath the seafloor in the abyssal Pacific ocean.

    PubMed

    Butler, Rhett

    2006-12-01

    Combined seismic and hydrophone observations show that the traditional T wave propagates as a seismoacoustic polarized interface wave (Ti) coupled to the seafloor. Seismoacoustic Ti waves propagating at the sound speed of water are routinely observed over megameter distances at the deep (4979 m) seafloor Hawaii-2 Observatory (H2O) between Hawaii and California, even though the seafloor site is within a shadow zone for acoustic wave propagation. Ti has also been observed on seismometers 225 km SSW of Oahu at the OSN1 site at the seafloor and within an ODP borehole into the basalt basement. Analyses of timing, apparent velocity, energy, and polarization of these interface waves are presented. At low frequency (< approximately 5 Hz) Ti propagates dominantly in the sediments and is consistent with higher-mode Rayleigh waves. At higher frequencies the observed Ti waves dominantly propagate acoustically with characteristics suggesting local scattering. The observation of Ti from an earthquake in Guatemala at OSN1, whose path is blocked by the Island of Hawaii, is consistent with scattering from the vicinity of the Cross Seamount.

  5. A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110 °C

    NASA Astrophysics Data System (ADS)

    Huber, R.; Kurr, M.; Jannasch, H. W.; Stetter, K. O.

    1989-12-01

    THE organisms with the highest growth temperature known so far are members of the archaebacterial genus Pyrodictium1'2. These anaerobic sulphur reducers thrive at temperatures of up to 110 °C within a shallow hydrothermal system off Vulcano, Italy. Only a few hyperthermophilic methanogens are known-members of the genus Methanothermus, which grow exclusively within terrestrial fields of fumaroles from which sulphurous gas is emitted and show an upper growth temperature of 97 °C (ref. 3), and some members of the genus Methanococcus, which grow within deep-sea hydro-thermal systems at temperatures up to about 90 °C (ref. 4). We have now isolated a novel group of methanogenic archaebacteria growing at least at 110°C from sediment samples taken by the research submersible Alvin at the Guaymas Basin hot vents (Gulf of California). This finding demonstrates the unexpected biogenic methanogenesis at temperatures above 100 °C, and, in view of biogeochemistry, could explain isotope discrimination at temperatures that were thought to be unfavourable for biological methanogenesis.

  6. Enhanced carbon export to the abyssal depths driven by atmosphere dynamics

    NASA Astrophysics Data System (ADS)

    Pedrosa-Påmies, R.; Sanchez-Vidal, A.; Canals, M.; Lampadariou, N.; Velaoras, D.; Gogou, A.; Parinos, C.; Calafat, A.

    2016-08-01

    Long-term biogeochemical observations are critical to understand the natural ability of the oceans to fix CO2 into organic carbon and export it to the deep as sinking particles. Here we present results from a 3 year (2010-2013) sediment trap deployment that allowed detecting interannual variations of carbon fluxes beyond 4000 m depth in the Eastern Mediterranean Sea. Anomalous atmospheric conditions triggering strong heat losses in winter-spring 2012 resulted in convective mixing, nutrient uplifting, and a diatom-dominated bloom southeast of Crete. Phytoplankton growth, reinforced by the arrival of nutrients from airborne Etna volcano ash, was the highest in the last decade (satellite-derived Chl a concentrations up to 1.9 mg m-3). This situation caused carbon export to increase by 2 orders of magnitude (12.2 mg m-2 d-1) with respect to typical values, which demonstrates how pulses of sinking fresh phytodetritus linked to rare atmospheric processes can episodically impact one of the most oligotrophic environments in the world ocean.

  7. Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor

    NASA Astrophysics Data System (ADS)

    Bluhm, Hartmut

    The suitability of deep-sea megafauna as indicators of environmental change has been demonstrated by a large-scale and long-term disturbance and recolonisation experiment (DISCOL) established in the deep Peru Basin in 1989. The experiment was designed to show what effects physical disturbances, such as those caused by future commercial deep-sea mining, might have on the seafloor and its inhabitants. A plough-harrow was used to create a large-scale disturbance on the seafloor. It destroyed megafauna within the plough tracks to a large extent and buried the manganese nodules in the area. As a result fauna that lived attached to the nodules disappeared. The soft-bottom community, however, did show signs of recovery in the seven years of the study. The repopulation of the disturbed areas by highly motile and scavenging animals started shortly after the area was ploughed. Seven years later hemisessile animals had returned to the disturbed areas, but the total abundance of soft-bottom taxa was still low compared to the pre-impact study. Nearby reference areas not impacted by the experiment showed natural changes in animal densities during the study. The ploughing activities created a sediment plume that resettled in the surrounding areas. In these not directly impacted areas animal densities declined immediately after the ploughing event, but later appeared to be greater than in the reference areas of the pre-impact study. Possible reasons for this are discussed.

  8. Whillans Ice Plain Stick Slip

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2015-12-01

    Concern about future sea level rise motivates the study of fast flowing ice. The Whillans Ice Plain (WIP) region of the West Antarctic Ice Sheet is notable for decelerating from previously fast motion during the instrumental record. Since most ice flux in Antarctica occurs through ice streams, understanding the conditions that cause ice stream stagnation is of basic importance in understanding the continent's contribution to future sea level rise. Although recent progress has been made in understanding the relationship between basal conditions and ice stream motion, direct observation of the temporal variation in subglacial conditions during ice stream stagnation has remained elusive. The Whillans Ice Plain flows to the sea mostly by way of stick-slip motion. We present numerical simulations of this stick-slip motion that capture the inertial dynamics, seismic waves, and the evolution of sliding with rate- and state-dependent basal friction. Large scale stick-slip behavior is tidally modulated and encompasses the entire WIP. Sliding initiates within one of several locked regions and then propagates outward with low average rupture velocity (~ 200 m/s). Sliding accelerates over a period of 200 s attain values as large as 65 m/d. From Newton's second law, this acceleration is ~ T / (rho H) for average shear stress drop T, ice thickness H, and ice density rho. This implies a 3 Pa stress drop that must be reconciled with the final stress drop of 300 Pa inferred from the total slip and fault dimensions. A possible explanation of this apparent discrepancy is that deceleration of the ice is associated with a substantial decrease in traction within rate-strengthening regions of the bed. During these large-scale sliding events, m-scale patches at the bed produce rapid (20 Hz) stick-slip motion. Each small event occurs over ~ 1/100 s, produces ~ 40 microns of slip, and gives rise to a spectacular form of seismic tremor. Variation between successive tremor episodes allows us

  9. Does Reactivation of Louisiana's Chenier Plain Lead to the Development of Interior Coastal Wetlands? Assessing the Relative Roles of Storm Impacts and Riverine Deposits

    NASA Astrophysics Data System (ADS)

    Ramatchandirane, C. G.; Kolker, A.; Ameen, A. D.; Williams, K.; Donnelly, J. P.; Giosan, L.

    2010-12-01

    At the beginning of the 20th century, increased flow into the Atchafalaya River from the Mississippi River reactivated sediment dynamics along the Chenier Plain. The Chenier Plain is a microtidal, storm-dominated coastal environment situated west and downdrift of the Mississippi River Delta. Composed of alternating mudflats, marsh, and elevated “chenier” (oak) ridges, this coastal system provides an ideal case study to both investigate the success of the Atchafalaya River diversion in building wetlands, and to construct a chronology of storm impacts on the Louisiana Gulf coast. To examine whether and how the reactivation of the Chenier Plain has impacted sediment dynamics in coastal wetlands, sediment cores from Miller Lake in the Chenier Plain were analyzed. Historic photos and maps of Miller Lake show open water in an area now dominated by marsh. The recent filling in of Miller Lake suggests new deposition by a possible combination of storm impacts and riverine deposits. In this study, carbonate deposition is used as a proxy for marine-dominated sedimentation, which reflects the shelly marine-dominated coastal environment of the Chenier Plain. Grain size analysis data was collected to distinguish sand layers from possible overwash deposits of storm impacts. Rates of sediment accretion and mineral deposition were determined using the naturally occurring radioisotope 210Pb. The collected sediment cores indicate new marsh developing over muddy sediments. In contrast to SE Louisiana’s high rates of wetland loss, this study points to evidence of wetland accretion in SW Louisiana as a result of the Atchafalaya River diversion.

  10. Ice-walled-lake plains: Implications for the origin of hummocky glacial topography in middle North America

    USGS Publications Warehouse

    Clayton, L.; Attig, J.W.; Ham, N.R.; Johnson, M.D.; Jennings, C.E.; Syverson, K.M.

    2008-01-01

    Ice-walled-lake plains are prominent in many areas of hummocky-till topography left behind as the Laurentide Ice Sheet melted from middle North America. The formation of the hummocky-till topography has been explained by: (1) erosion by subglacial floods; (2) squeezing of subglacial till up into holes in stagnant glacial ice; or (3) slumping of supraglacial till. The geomorphology and stratigraphy of ice-walled-lake plains provide evidence that neither the lake plains nor the adjacent hummocks are of subglacial origin. These flat lake plains, up to a few kilometers in diameter, are perched as much as a few tens of meters above surrounding depressions. They typically are underlain by laminated, fine-grained suspended-load lake sediment. Many ice-walled-lake plains are surrounded by a low rim ridge of coarser-grained shore sediment or by a steeper rim ridge of debris that slumped off the surrounding ice slopes. The ice-walled lakes persisted for hundreds to thousands of years following glacial stagnation. Shells of aquatic molluscs from several deposits of ice-walled-lake sediment in south-central North Dakota have been dated from about 13 500 to 10 500??B.P. (calibrated radiocarbon ages), indicating a climate only slightly cooler than present. This is confirmed by recent palaeoecological studies in nearby non-glacial sites. To survive so long, the stagnant glacial ice had to be well-insulated by a thick cover of supraglacial sediment, and the associated till hummocks must be composed primarily of collapsed supraglacial till. ?? 2007 Elsevier B.V. All rights reserved.

  11. Anomalous heat flow in the Northwest Atlantic: A case for continued hydrothermal circulation in 80-m. y. crust

    SciTech Connect

    Embley, R.W.; Hobart, M.A.; Anderson, R.N.; Abbott, D.

    1983-02-10

    A study of a 60 x 150 km area at 60 /sup 0/W.24/sup 0/N at the eastern end of the Nares Abyssal Plain indicates that hydrothermal circulation is still active in the 80 m.y. B.P. oceanic crust. The 58 heat flow measurements made at five stations in the area have revealed (1) constant heat flow over the abyssal plain (56 mW m/sup -2/), (2) a cycle heat flow over the abyssal hills (mean of 77 mW m/sup -2/), and (3) a large anomaly of 710 mW m/sup -2/ over one of several small domes which protrude from the abyssal plain. The domes are 0.5-1.0 km in diameter near the top and rise 50 m above the level of the abyssal plain. They are recognized from surface echo sounders by an abrupt disappearance in the abyssal plain subbottom reflectors, but on near-bottom pinger records they appear as steep-walled structures which are covered by approx.10 m of sediment (compared to approx.75 m on the surrounding abyssal hills). From analogy with active ridge crests, these features are probably small volcanoes. The heat flow anomaly over one of the domes is matched well by a finite element convection model with the following characteristics: (1) recharge at one basement outcrop and discharge at another, (2) 300 m of sediment fill between outcrops, and (3) permeabilities of 10/sup -10/ cm/sup 2/ for basalt and 10/sup -13/ cm/sup 2/ for sediment. We believe that there is very effective convective heat transfer within the crust and out of the relatively permeable, thinly sedimented basement dome, resulting in the local high heat flow. The results from the Nares survey vividly show the age independent muting effect of sediment on the surface manifestation of crustal convection. The mode of heat transfer varies from purely conductive in the more thickly sedimented abyssal plain areas to moderate amplitude convection pattern beneath the abyssal hills to a very large thermal anomaly over the small dome or 'chimneylike' structure.

  12. Sediment fingerprinting to determine the source of suspended sediment in a southern Piedmont stream.

    PubMed

    Mukundan, R; Radcliffe, D E; Ritchie, J C; Risse, L M; McKinley, R A

    2010-01-01

    Thousands of stream miles in the southern Piedmont region are impaired because of high levels of suspended sediment. It is unclear if the source is upland erosion from agricultural sources or bank erosion of historic sediment deposited in the flood plains between 1830 and 1930 when cotton farming was extensive. The objective of this study was to determine the source of high stream suspended sediment concentrations in a typical southern Piedmont watershed using sediment fingerprinting techniques. Twenty-one potential tracers were tested for their ability to discriminate between sources, conservative behavior, and lack of redundancy. Tracer concentrations were determined in potential sediment sources (forests, pastures, row crop fields, stream banks, and unpaved roads and construction sites), and suspended sediment samples collected from the stream and analyzed using mixing models. Results indicated that 137Cs and 15N were the best tracers to discriminate potential sediment sources in this watershed. The delta15N values showed distinct signatures in all the potential suspended sediment sources, and delta15N was a unique tracer to differentiate stream bank soil from upland subsurface soils, such as soil from construction sites, unpaved roads, ditches, and field gullies. Mixing models showed that about 60% of the stream suspended sediment originated from eroding stream banks, 23 to 30% from upland subsoil sources (e.g., construction sites and unpaved roads), and about 10 to 15% from pastures. The results may be applicable to other watersheds in the Piedmont depending on the extent of urbanization occurring in these watersheds. Better understanding of the sources of fine sediment has practical implications on the type of sediment control measures to be adopted. Investment of resources in improving water quality should consider the factors causing stream bank erosion and erosion from unpaved roads and construction sites to water quality impairment.

  13. CORN BELT PLAIN RIVER AND STREAMS PROJECT - 3 BIOCRITERIA PRODUCTS

    EPA Science Inventory

    This effort resulted in eight products, as follows: 1) Development of Index of Biotic Integrity Expectations for the Ecoregions of Indiana I. Central Corn Belt Plain; 2) Ibid. II. Huron-Erie Lake Plain; 3) Ibid III. Northern Indiana Till Plain; 4) Ibid .IV.Eastern Corn Belt Plain...

  14. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  15. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  16. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  17. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  18. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  19. The geologic story of the Great Plains

    USGS Publications Warehouse

    Trimble, Donald E.

    1980-01-01

    For more than half a century after Lewis and Clark crossed the country in 1805-6, the Great Plains was the testing ground of frontier America here America grew to maturity (fig. 1). In 1805-7, explorer Zebulon Pike crossed the southcentral Great Plains, following the Arkansas River from near Great Bend, Kans., to the Rocky Mountains. In later years, Santa Fe traders, lured by the wealth of New Mexican trade, followed Pike's path as far as Bents Fort, Colo., where they turned southwestward away from the river route. Those pioneers who later crossed the plains on the Oregon Trail reached the Platte River near the place that would become Kearney, Nebr., by a nearly direct route from Independence, Mo., and followed the Platte across the central part of the Great Plains.

  20. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  1. Great Plains Synfuels` hidden treasures

    SciTech Connect

    Kuhn, A.K.; Duncan, D.H.

    1996-12-31

    The Great Plains Synfuels Project was commissioned 12 years ago. While demonstrating success regarding SNG production, DGC quietly started development of chemical products derived from the liquid by-product streams of Lurgi moving bed gasifiers. Naphtha, crude phenol, and tar oil are the primary by-products, and these contain valuable compounds such as phenol, cresylic acid, catechols, naphthols, fluorene, and BTX. Process technologies have been developed for (1) separation of various impurities from cresylic acid distillate fractions or from whole cresylic acid; (2) extracting cresylic acid from tar oil; (3) conversion of tar pitch to a blend stock used in making anode binder pitch; and (4) separating high purity catechol and methyl catechols. As a result of this work, DGC built a phenol/cresylic acid facility. The cresylic acid side supplies over 10 percent of the world market. The achievement with the catechols is presently leading to bench scale routes for synthesis of chemical intermediates which ultimately may include compounds such as vanillin, pyrogallol, sesamol, homoveratrylamine, and many others, penetrating the fields of flavors and fragrances, pharmaceuticals, pesticides, photographic chemicals, dyes, etc. These efforts stimulate DGC`s growth and will provide an economic uplift. By-products already contribute more than 10% of revenues and are destined to rival natural gas in importance.

  2. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

    2005-04-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

  3. PLAINS CO2 REDUCTION PARTNERSHIP

    SciTech Connect

    Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

    2005-07-01

    The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

  4. Mapping Titan’s Undifferentiated Plains (“Blandlands”) to infer their origin

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M.; Malaska, Michael J.; Schoenfeld, Ashley M.; LeGall, Alice; Hayes, Alexander G.; Birch, Samuel P.; Solomonidou, Anezina

    2014-11-01

    The undifferentiated plains first mapped by Lopes et al. (2010, Icarus, 205) are vast expanses of terrains that appear bland in Cassini RADAR Synthetic Aperture Radar images, hence the designation “blandlands”. While the interpretation of several other geologic units on Titan, such as dunes and well-preserved impact craters, has been relatively straightforward, the origin of the “blandlands” has remained mysterious. SAR images show that the “blandlands” are mostly found at mid-latitudes and appear relatively featureless at radar wavelengths, with no significant topographic variations. Their gradational boundaries and paucity of features in SAR data make geologic interpretation particularly challenging. We have mapped the distribution of these terrains using SAR swaths up to T92 (July 2013), which cover > 50% of Titan’s surface. We compared SAR images with their de-noised counterparts, the topography using the SARTopo method (Stiles et al., 2009, Icarus 202) and, where possible, the response from radiometry. We examined and evaluated different formation mechanisms. Plains may be sedimentary in origin, resulting from fluvial or lacustrine deposition or accumulation of photolysis products created in the upper atmosphere. Alternatively, the plains may be cryovolcanic, consisting of overlapping flows of low relief, obscured by accumulation of sediments. In this paper, we use SAR, radiometry, and SARTopo data to examine the characteristics of the plains and compare them with other geologic units. The results from our analysis suggest that the sedimentary origin is the most likely, and that plain materials are similar or the same as dune materials. Plains occur mostly at mid-latitudes, while dunes occur mostly at low latitudes. This may be a result of wind patterns, decrease in sand supply, or changes in properties of sand, perhaps moisture content, all of which would inhibit the formation of large dunes.

  5. Soil and geomorphic evolution within the rolling red plains using pleistocene volcanic ash deposits

    NASA Astrophysics Data System (ADS)

    Carter, Brian J.; Ward, Phil A.; Shannon, Jean T.

    1990-09-01

    Pleistocene volcanic ash deposits are found within alluvium from the Arkansas river south to the Brazos river. This drainage area includes tributaries originating in the High Plains, the Raton volcanic field and the Rocky Mountain Front Range within the states of Colorado, New Mexico, Kansas, Texas, and Oklahoma. Thirteen ash deposits are dated from within the High Plains of Kansas and Texas eastward into central Oklahoma to understand the geomorphic history and improve soil and geologic mapping. Within the study area unsolidated Tertiary and Quaternary sediments deposited in a west to east direction overlie Triassic, Permian, and Pennsylvanian bedrock. Volcanic ash deposits are predominantly Early to Middle Pleistocene age. Volcanic ash deposits were dated by the fission track method on shards. The ash deposits are contained within four land resource regions, the Southern and Central High Plains, the High Plains Breaks, the Rolling Red Plains, and the Reddish Prairies. Extensive Middle Pleistocene constructional stream terrace surfaces occur within the Rolling Red Plains. Multiple stream terrace surfaces were recognized across the study area with the highest level being dated Early Pleistocene to Pliocene and the lowest bordering the Holocene floodplains. Topographic cross-sections (100 km long at 1:24,000 scale) transecting dated ash deposits and perpendicular to major river systems were used to distinguish terrace levels. Constructional terrace surfaces dated by ash deposits range from 21 to 100 m above and 1 to 16 km distance from present river channels. Soil orders formed in Quaternary alluvium are Entisols, Inceptisols, Mollisols, Alfisols and Vertisols. Ustic and udic soil moisture regimes and a thermic (15 to 22°C mean annual temperature) soil temperature regime dominate the study area. The same soil series is often mapped on terrace surfaces spanning Early to Middle Pleistocene age because current classification does not recognize differences in deeply

  6. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains (fig. 1A). Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers (fig. 2) knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone (fig. 3). However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer (figs. 1A and 1B). The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in

  7. Characterization of suspended-sediment transport conditions for stable, “Reference” streams in selected Ecoregions of EPA Region 8

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historic flow and sediment transport data from about 350 sites across the Mountains and Plains region of the United States were analyzed for the purpose of developing ‘background’ or ‘reference’ rates of suspended-sediment transport by Level III ecoregion. Rapid Geomorphic Assessments (RGAs) were c...

  8. Geogenic arsenic in groundwaters from Terai Alluvial Plain of Nepal

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Tandukar, N.; Nekul, A.; Valero, A. A.; Mukherjee, A. B.; Jacks, G.

    2003-05-01

    The origin and mobility of arsenic (As) in the groundwater environment has received serious attention in recent years. Recent studies have reported naturally occurring As in groundwaters of the Terai Alluvial Plains (TAP) in southern Nepal, where groundwater exploitation has increased since the 1960s. The source of As in TAP is geogenic and leached primarily due to weathering of As bearing rocks and sediments in the Himalayas. In our present study, we have investigated the groundwater chemistry in the central part of the TAP in Nawalparasi district. TAP groundwaters are near-neutral to alkaline, with predominantly reducing character and high HCO3^- low SO^{2-}_4 and NO3^- concentrations. Elevated HCO3 levels possibly result due to the oxidation of organic matter, low SO4^{2-} levels reflect sulfate reduction. Elevated NH4^+ concentrations in these groundwaters suggest dissimilatory nitrate reduction in the aquifers. Total arsenic (Astot) levels in groundwater varied from 1.7 μg/L to as high as 404 μg/L with dominance of As (III) species and elevated levels of dissolved Fe and Mn. Arsenic is mobilized in groundwaters as a result of desorption of As-oxyanions adsorbed onto Fe-and Mnoxides as well as reductive dissolution of these surface reactive phases from the sediments along with release ouf as in anoxie groundwaters.

  9. Global calcite cycling constrained by sediment preservation controls

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Hales, Burke; Toggweiler, J. R.

    2012-09-01

    We assess the global balance of calcite export through the water column and burial in sediments as it varies regionally. We first drive a comprehensive 1-D model for sediment calcite preservation with globally gridded field observations and satellite-based syntheses. We then reformulate this model into a simpler five-parameter box model, and combine it with algorithms for surface calcite export and water column dissolution for a single expression for the vertical calcite balance. The resulting metamodel is optimized to fit the observed distributions of calcite burial flux. We quantify the degree to which calcite export, saturation state, organic carbon respiration, and lithogenic sedimentation modulate the burial of calcite. We find that 46% of burial and 88% of dissolution occurs in sediments overlain by undersaturated bottom water with sediment calcite burial strongly modulated by surface export. Relative to organic carbon export, we find surface calcite export skewed geographically toward relatively warm, oligotrophic areas dominated by small, prokaryotic phytoplankton. We assess century-scale projected impacts of warming and acidification on calcite export, finding high sensitive to inferred saturation state controls. With respect to long-term glacial cycling, our analysis supports the hypothesis that strong glacial abyssal stratification drives the lysocline toward much closer correspondence with the saturation horizon. Our analysis suggests that, over the transition from interglacial to glacial ocean, a resulting ˜0.029 PgC a-1decrease in deep Atlantic, Indian and Southern Ocean calcite burial leads to slow increase in ocean alkalinity until Pacific mid-depth calcite burial increases to compensate.

  10. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    regime during the Pliocene-Pleistocene, when most sediment delivered to the margin is trapped in the outer shelf and slope-forming steep prograding wedges. During the warmer but still polar, Holocene, biogenic sediment accumulates quickly in deep inner-shelf basins during the high-stand intervals. These sediments contain an ultrahigh resolution (annual to millennial) record of climate variability. Validation of our inferences about the nature and timing of Wilkes Land glacial sequences can be achieved by deep sampling (i.e., using IODP-type techniques). The most complete record of the long-term history of glaciation in this margin can be obtained by sampling both (1) the shelf, which contains the direct (presence or no presence of ice) but low-resolution record of glaciation, and (2) the rise, which contains the distal (cold vs. warm) but more complete record of glaciation. The Wilkes Land margin is the only known Antarctic margin where the presumed "onset" of glaciation unconformity (WL-U3) can be traced from shelf to the abyssal plain, allowing links between the proximal and the distal records of glaciation to be established. Additionally, the eastern segment of the Wilkes Land margin may be more sensitive to climate change because the East Antarctic Ice Sheet (EAIS) is grounded below sea level. Therefore, the Wilkes Land margin is not only an ideal location to obtain the long-term EAIS history but also to obtain the shorter-term record of ice sheet fluctuations at times that the East Antarctic Ice Sheet is thought to have been more stable (after 15 Ma-recent). ?? 2004 Elsevier B.V. All rights reserved.

  11. Assessment of the effects of farming and conservation programs on pesticide deposition in high plains wetlands.

    PubMed

    Belden, Jason B; Hanson, Brittany Rae; McMurry, Scott T; Smith, Loren M; Haukos, David A

    2012-03-20

    We examined pesticide contamination in sediments from depressional playa wetlands embedded in the three dominant land-use types in the western High Plains and Rainwater Basin of the United States including cropland, perennial grassland enrolled in conservation programs (e.g., Conservation Reserve Program [CRP]), and native grassland or reference condition. Two hundred and sixty four playas, selected from the three land-use types, were sampled from Nebraska and Colorado in the north to Texas and New Mexico in the south. Sediments were examined for most of the commonly used agricultural pesticides. Atrazine, acetochlor, metolachlor, and trifluralin were the most commonly detected pesticides in the northern High Plains and Rainwater Basin. Atrazine, metolachlor, trifluralin, and pendimethalin were the most commonly detected pesticides in the southern High Plains. The top 5-10% of playas contained herbicide concentrations that are high enough to pose a hazard for plants. However, insecticides and fungicides were rarely detected. Pesticide occurrence and concentrations were higher in wetlands surrounded by cropland as compared to native grassland and CRP perennial grasses. The CRP, which is the largest conservation program in the U.S., was protective and had lower pesticide concentrations compared to cropland.

  12. Assessment of the effects of farming and conservation programs on pesticide deposition in high plains wetlands.

    PubMed

    Belden, Jason B; Hanson, Brittany Rae; McMurry, Scott T; Smith, Loren M; Haukos, David A

    2012-03-20

    We examined pesticide contamination in sediments from depressional playa wetlands embedded in the three dominant land-use types in the western High Plains and Rainwater Basin of the United States including cropland, perennial grassland enrolled in conservation programs (e.g., Conservation Reserve Program [CRP]), and native grassland or reference condition. Two hundred and sixty four playas, selected from the three land-use types, were sampled from Nebraska and Colorado in the north to Texas and New Mexico in the south. Sediments were examined for most of the commonly used agricultural pesticides. Atrazine, acetochlor, metolachlor, and trifluralin were the most commonly detected pesticides in the northern High Plains and Rainwater Basin. Atrazine, metolachlor, trifluralin, and pendimethalin were the most commonly detected pesticides in the southern High Plains. The top 5-10% of playas contained herbicide concentrations that are high enough to pose a hazard for plants. However, insecticides and fungicides were rarely detected. Pesticide occurrence and concentrations were higher in wetlands surrounded by cropland as compared to native grassland and CRP perennial grasses. The CRP, which is the largest conservation program in the U.S., was protective and had lower pesticide concentrations compared to cropland. PMID:22356096

  13. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    , Cow Creek, and Shawnee Creek—generally had flood-plain lead and zinc concentrations (surficial soil, 6- and 12-inch depth) that were substantially less than the general PECs. Tributaries with extensive lead- and zinc-mined areas in the basin—Shoal Creek, Short Creek, Spring Branch, Tar Creek, Turkey Creek, and Willow Creek—had flood-plain lead concentrations (surficial soil, 6- and 12-inch depth) that frequently or typically exceeded the general and TSMD-specific PECs. Likewise, the tributaries with extensive lead- and zinc-mined areas in the basin had flood-plain zinc concentrations (surficial soil, 6- and 12-inch depth) that frequently or typically exceeded the general PEC. With the exception of Shoal and Willow Creeks, zinc concentrations typically exceeded the TSMD-specific PEC. The largest flood-plain lead and zinc concentrations (surficial soil, 6- and 12-inch depth) were measured for Short and Tar Creeks. Lead and zinc concentrations in the surficial-soil samples collected from the tributary flood plains varied longitudinally in relation to sources of mining-contaminated sediment in the basins. Lead and zinc concentrations also varied with distance from the channel; however, no consistent spatial trend was evident. For the surficial-soil samples collected from the Spring River flood plain and tributary flood plains, both the coarse (larger than 63 micrometers) and fine particles (less than 63 micrometers) contained substantial lead and zinc concentrations.

  14. Light Plains in the South-Pole Aitken Basin: Surface Ages and Mineralogical Composition

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Hiesinger, H.; van der Bogert, C. H.; Pasckert, J. H.; Robinson, M. S.

    2012-04-01

    3 spectra from small impact craters on light plains show characteristic absorption bands for pyroxene. We conclude that light plains are unlikely to have formed by the Imbrium and Orientale impacts due to the range of surface ages and the compositional differences. Nevertheless, these impacts together with secondary cratering and sedimentation from regional and local impacts may have played an important role in forming these plains. An endogenic origin can still not be excluded due to the mare-like composition of some light plains. [1] Wilhelms D.E. (1970) Astrogeol. Stud. Ann. Prog. Report, 13-28. [2] Young J.W. (1972) NASA Apollo 16 Prelim. Sci. Rep., 5-1-5-6. [3] Neukum, G. (1977) The Moon 17, 383-393. [4] Neukum G. et al. (1975) The Moon 12, 201-229. [5] Lucey P.G. et al. (2000) J. Geophys. Res. 105, 20,297-20,305.

  15. Age determinations and Earth-based multispectral observations of lunar light plains

    NASA Technical Reports Server (NTRS)

    Koehler, U.; Jaumann, R.; Neukum, G.

    1993-01-01

    The history of light plains still remains doubtful, but there are good arguments - mainly obtained by age determinations and supported by multispectral observations - for an endogenic (magmatic) instead of an (exclusively) impact related origin. Light plains are characterized by smooth areas with an albedo lower than the surrounding highlands (12 - 13 percent), but significantly higher than maria (5 - 6 percent). Before Apollo 16 a volcanic source has been supposed, but analysis of returned samples (highly brecciated and metamorphosed rocks) favored an impact ejecta related origin. Among the currently discussed models are formation by ejecta sedimentation from multi-ringed basins, formation by secondary and tertiary cratering action of ballistically ejected material during the formation of multi-ringed basins, in situ formation by impact melt of large events, and premare (crypto-) volcanism basalts covered by a thin ejecta cover; younger impacts penetrated the ejecta surface to create the dark haloed craters. To find arguments in favor or against these ideas the chronology of light plains is of major importance. Obviously a genetic relationship between the evolution of light plains and the basin forming impacts can be possible only if the events of emplacement features happened simultaneously.

  16. Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep)

    NASA Astrophysics Data System (ADS)

    Hesse, Kirsten T.; Gose, Jürgen; Stalder, Roland; Schmädicke, Esther

    2015-09-01

    Abyssal spinel peridotites from Hess Deep, East Pacific Rise (ODP Leg 147) were investigated concerning their major, minor, and trace element mineral chemistry and the incorporation of structural water in orthopyroxene. The rocks are partially serpentinized harzburgites containing primary minerals of olivine, orthopyroxene, clinopyroxene, and spinel. Orthopyroxene is enstatitic with Mg# (Mg/(Mg + Fe)) between 0.90 and 0.92 and Al2O3 from 0.5 to 2.9 wt.%. The residual harzburgite experienced high degrees of melt removal in the spinel peridotite stability field. The average degree of partial melting was calculated to be 17.5% (range: 16.4-17.8%). Trace element data of ortho- and clinopyroxenes reflect this strong depletion, characteristic for the restitic nature of abyssal peridotites. Mantle re-equilibration temperatures around 1000 °C indicate that, after melt extraction and before exhumation to the ocean floor, the rocks experienced significant cooling in the spinel peridotite facies. Water contents of orthopyroxene range from 86 to 233 wt. ppm H2O with an average concentration of 142 wt. ppm H2O. These results represent the first data on water contents in the sub-pacific mantle obtained by direct measurements of sub-oceanic peridotite. The water contents are not related to mineral chemistry, stratigraphy, melting degree, mantle equilibrium conditions or oxidation state. Calculated post-melt peridotite water contents vary between 40 and 100 wt. ppm H2O. Compared to Mid-Atlantic Ridge peridotites, the East Pacific Rise samples of Leg 147 contain somewhat lower water concentrations than samples from Leg 153 and considerably higher contents than those of Leg 209 (Gose et al., 2009; Schmädicke et al., 2011). In Leg 147, the strongest OH absorbtion band occurs at 3420 cm- 1, wheras orthopyroxene from MAR peridotite (Legs 153 and 209) has its strongest absorbtion band at 3566 and 3522 cm- 1. The mantle equilibrium temperature of Leg 147 peridotites is lower than that

  17. Do abyssal scavengers use phytodetritus as a food resource? Video and biochemical evidence from the Atlantic and Mediterranean

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob

    2011-04-01

    Deep-sea benthic communities derive their energetic requirements from overlying surface water production, which is deposited at the seafloor as phytodetritus. Benthic invertebrates are the primary consumers of this food source, with deep-sea fish at the top of the trophic hierarchy. Recently, we demonstrated with the use of baited cameras that macrourid fish rapidly respond to and feed vigorously on large plant food falls mimicked by spinach ( Jeffreys et al., 2010). Since higher plant remains are scarce in the deep-sea, with the exception of canyons, where terrestrial material has been observed, these results led us to ask if a more commonly documented plant material i.e. phytodetritus might form a food source for deep-sea fish and mobile scavenging megafauna. We simulated a phytodetritus dump at the seafloor in two contrasting environments (1) the NE Atlantic where carpets of phytodetritus have been previously observed and (2) the oligotrophic western Mediterranean, where the deposition of phytodetritus at the seafloor is a rare occurrence. We recorded the response of the scavenging fauna using an in situ benthic lander equipped with baited time-lapse cameras. In the NE Atlantic at 3000 m, abyssal macrourids and cusk-eels were observed ingesting the phytodetritus. The phytodetrital patch was significantly diminished within 2 h. Abundance estimates calculated from first arrival times of macrourids at the phytodetrital patch in the Atlantic corresponded with abundance estimates from video-transect indicating that fish were attracted to the scent of phytodetrital bait. In contrast to this, in the western Mediterranean at 2800 m a single macrourid was observed investigating the phytodetrital patch but did not feed from it. The phytodetrital patch was significantly diminished within 6.5 h as a result of mainly invertebrate activity. At 1900 m, Lepidion lepidion was observed near the lander and the bait, but did not feed. The phytodetrital patch remained intact until

  18. Prior Tectonic Brecciation Favors Carbonation of Abyssal Serpentinites : a Petrographic and Stable Isotope Study of Southwest Indian Ridge Dredged Samples.

    NASA Astrophysics Data System (ADS)

    Cannat, M.; Payré, V.; Martinez, I.

    2014-12-01

    Partial carbonation of the uppermost oceanic lithosphere represents a significant natural reservoir for long term carbon storage. About 25% of the oceanic basement formed at slow spreading ridges is made of tectonically exhumed and variably serpentinized abyssal peridotites in which carbonates veins have been documented. Previous studies indicate formation of these veins at temperatures between ~180°C and <10°C, at the seafloor or in shallow levels of the exhumation faults, and from fluids ranging from pure seawater to seawater-hydrothermal fluids mixtures. In this presentation we show that partial carbonation of serpentinites dredged at and near the easternmost Southwest Indian Ridge (SWIR) similarly occurred in two settings: dolomite formed at temperatures ~50°C presumably in shallow fluid-rich domains of the exhumation fault(s), while aragonite formed at yet lower temperatures within a few meters of the seafloor. We also present a detailed petrographic study of carbonation textures showing that while carbonate veining is prevalent in the seafloor-type carbonation, it is superseeded by serpentine dissolution and replacement in our samples of the fault zone-type carbonation. In these samples, dolomite preferably replaces the matrix of a tectonic breccia, that comprises angular clasts of serpentinite. TEM observations and diffraction patterns identify this matrix as microcrystalline to amorphous serpentine and document the contacts between this material and the dolomite. A comparison with textures reported for carbonated serpentine breccia from the Alps, and the Galicia margin suggests that prior tectonic brecciation enhances the potential for pervasive carbonation of serpentinites in the oceanic lithosphere at both mid-ocean ridges and the ocean-continent transition of divergent continental margins.

  19. Foraging behavior of abyssal grenadier fish: inferences from acoustic tagging and tracking in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Priede, Imants G.; Smith, Kenneth L.; Armstrong, John D.

    1990-01-01

    Abyssal grenadier fish Coryphaenoides yaquinae were Coryphaenoides armatus and observed arriving at baits deployed within view of a free-fall video vehicle (FVV) camera on the sea floor at two stations in the North Pacific, Sta. F 32°50'N, 124°W, 4400 m deep in the vicinity of the California current and Sta. CNP 31°N, 159°W, a 5900 m deep oligotrophic station. Included within each bait deployment were one or two ingestible acoustic transmitters. A total of 23 fish at Sta. F and 13 fish at Sta. CNP ingested transmitters and were tracked using an acoustic tracking system (ATEX). The number of fish within view of the camera increased to a mean maximum of 4.7 at 60 min at Sta. F and 11.8 by 400 min at Sta. CNP, a paradox in view of presumed lower fish population density at Sta. CNP. Fish that ingested transmitters moved away at radial velocities between 1 and 15 cm s -1, reaching a mean radius of 233 m by 370 min at Sta. F and 622 min at Sta. CNP. Fish appear to be active foragers with no evidence for a "sit and wait" foraging strategy. Grenadiers generally remained near the sea floor as they dispersed. Only one vertical movement to an altitude of ca 25 m was recorded and this comprised less than 0.2% of tracking time. The number of fish present at the bait was found to correspond to the following relationship: N t = α 0/x(1 - c -xf) t ⩽ β α 0/x c -xt(c βx - 1) t > β where Nt is number of fish present at time t min after bait reaches the sea floor, α0 is initial arrival rate of fish, β is mean fish staying time and x is the bait decay constant. In accordance with optimal foraging theory staying time (β) is longer at Sta. CNP.

  20. Application of Markov Chain Monte Carlo Method to Mantle Melting: An Example from REE Abundances in Abyssal Peridotites

    NASA Astrophysics Data System (ADS)

    LIU, B.; Liang, Y.

    2015-12-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications, such as nuclear physics, computational biology, financial engineering, among others. In Earth sciences applications of MCMC are primarily in the field of geophysics [1]. The purpose of this study is to introduce MCMC to geochemical inverse problems related to trace element fractionation during concurrent melting, melt transport and melt-rock reaction in the mantle. MCMC method has several advantages over linearized least squares methods in inverting trace element patterns in basalts and mantle rocks. First, MCMC can handle equations that have no explicit analytical solutions which are required by linearized least squares methods for gradient calculation. Second, MCMC converges to global minimum while linearized least squares methods may be stuck at a local minimum or converge slowly due to nonlinearity. Furthermore, MCMC can provide insight into uncertainties of model parameters with non-normal trade-off. We use MCMC to invert for extent of melting, amount of trapped melt, and extent of chemical disequilibrium between the melt and residual solid from REE data in abyssal peridotites from Central Indian Ridge and Mid-Atlantic Ridge. In the first step, we conduct forward calculation of REE evolution with melting models in a reasonable model space. We then build up a chain of melting models according to Metropolis-Hastings algorithm to represent the probability of specific model. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites. In the future, MCMC will be applied to more realistic but also more complicated melting models in which partition coefficients, diffusion coefficients, as well as melting and melt suction rates vary as functions of temperature, pressure and mineral compositions. [1]. Sambridge & Mosegarrd [2002] Rev. Geophys.

  1. Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur geochemistry and reaction modeling

    USGS Publications Warehouse

    Alt, J.C.; Shanks, Wayne C.

    2003-01-01

    The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.

  2. Spatial and Temporal Variability of Temperature and Salinity in the Deep and Abyssal Layers of the Subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Yashayaev, I.; Bacon, S.; de Jong, F.; Dye, S.; Fischer, J.; Holliday, N. P.; Kieke, D.; Quadfasel, D. R.; Rhein, M.; Sarafanov, A.; Valdimarsson, H.; van Aken, H. M.

    2010-12-01

    The dense water overflows crossing the Denmark Strait and Faroe-Shetland Channel form the Denmark Strait Overflow Water (DSOW) and Northeast Atlantic Deep Water, respectively. Collectively with the convectively-formed Labrador Sea Water (LSW), these water masses form the deep limb of the Atlantic Meridional Overturning Circulation and hence are important components of the global climate system. Recent variability in the properties of the intermediate and deep water masses will be described by using hydrographic, moored, profiling float, altimeter and tracer data from several programs. We will show that the variability of intermediate-depth water is strongly influenced by the strength and duration of winter convection in the Labrador Sea on the western side, and the advection of warmer more saline intermediate waters from the lower latitudes on the eastern side. Four variations of LSW produced in different years were identified in the 2010 annual survey of the Labrador Sea. While gradually transforming in time, these waters have been preserved in different ranges of density and depth because of gradual weakening of winter convection since 2008, and are still distinguishable by their unique signatures in temperature, salinity and chemical tracers. The fate of each individual LSW class can now be followed by combining profiles from Argo floats and hydrographic data from several institutes. We will show how an international array of hydrographic and tracer sections supported by moored, profiling float and satellite measurements has resolved the downstream propagation of some interesting events formed in the subpolar or Arctic seas. In particular, we document strong fresh and cold anomalies in DSOW, first observed in the Irminger Sea in 1999, 2004 and 2009, and then with a year delay in the abyssal Labrador Sea.

  3. Numerical Simulation of Long-period Surface Wave in Sediments

    NASA Astrophysics Data System (ADS)

    Li, Yiqiong; Yu, Yanxiang

    2016-04-01

    Studies have shown that the western Taiwan coastal plain is influenced by long-period ground motion from the 1999 Chi-Chi, Taiwan, earthquake, and engineering structures with natural vibration long-period are damaged by strong surface wave in the western coastal plain. The thick sediments in the western coastal plain are the main cause of the propagation of strong long-period ground motion. The thick sediments similar to in the western coastal plain also exist in northern China. It is necessary to research the effects of thick sediments to long-period ground motion in northern China. The numerical simulation of ground motion based on theoretical seismology is one of important means to study the ground motion. We will carry out the numerical simulation of long-period ground motion in northern China by using the existing tomographic imaging results of northern China to build underground medium model, and adopting finite fault source model for wave input. In the process of simulation, our previous developed structure-preserving algorithm, symplectic discrete singular convolution differentiator (SDSCD), is used to deal with seismic wave field propagation. Our purpose is to reveal the formation and propagation of long-period surface wave in thick sediments and grasp the amplification effect of long-period ground motion due to the thick sediments. It will lay the foundation on providing the reference for the value of the long-period spectrum during determining the ground motion parameters in seismic design. This work has been supported by the National Natural Science Foundation of China (Grant No.41204046, 42574051).

  4. Mineral resources of Cactus Plain and East Cactus Plain Wilderness Study Areas, La Paz County, Arizona

    SciTech Connect

    Tosdal, R.M.; Eppinger, R.G.; Erdman, J.A.; Hanna, W.F.; Pitkin, J.A.; Blank, H.R. Jr.; O'Leary, R.M.; Watterson, J.R. ); Kreidler, T.J. )

    1990-01-01

    This paper reports on geologic, geochemical, and geophysical studies in the Cactus Plain and East Cactus Plain Wilderness Study Areas outlined in areas with moderate to high potential for gold, silver, copper, lead, zinc, barite, fluorite, manganese, and sand suitable for foundry, fracturing, and abrasive uses and low resource potential for beryllium, uranium and bentonitic clays.

  5. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  6. Effects of Late Cretaceous and Cenozoic faulting on the geology and hydrology of the coastal plain near the Savannah River, Georgia and South Carolina

    USGS Publications Warehouse

    Faye, R.E.; Prowell, D.C.

    1982-01-01

    Geologic and hydrologic investigations by the U.S. Geological Survey have defined stratigraphic and hydraulic anomalies suggestive of faulting within Coastal Plain sediments between the Ogeechee River in east-central Georgia and the Edisto River in west-central South Carolina. Examination of borehole cuttings, cores, and geophysical logs from test wells indicate that Triassic rocks and Upper Cretaceous and lower Tertiary Coastal Plain sediments near the Barnwell-Allendale County line near Millett, South Carolina, are offset by a northeast-trending fault downthrown to the northwest. The location of this suspected Coastal Plain fault generally coincides with the location of an inferred fault in basement rocks as interpreted from aeromagnetic surveys. Apparent vertical offsets range from about 700 feet at the base of Upper Cretaceous sediments to about 20 feet in strata of Late Eocene age. As a result, the Upper Cretaceous Middendorf Formation which directly overlies crystalline and Triassic rocks updip (northwest) of this fault, is absent immediately downdip of the fault. The thickness of Tipper Cretaceous sediments is also sharply reduced from about 700 feet to about 180 feet across the fault. Sediments of the basal Coastal Plain aquifer are largely truncated by uplifted Triassic rocks at the fault near Millett, South Carolina. Lateral ground-water flow near the Savannah River Is consequently disrupted updip of the fault and ground water is transferred vertically into overlying sediments and possibly into the Savannah River. At several locations, abrupt changes in potentiometric head occur across this fault. Computed transmissivity of the basal Coastal Plain aquifer is also radically reduced downdip of the fault, sharply reversing a downdip trend of rapidly increasing aquifer transmissivity. Other anomalous potentiometric data along a northeast-trending line between Statesboro, Georgia, and Fairfax, South Carolina, suggest the possibility of similar faulting in

  7. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  8. Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?

    NASA Astrophysics Data System (ADS)

    Weijer, Wilbert; Maltrud, Mathew E.; Homoky, William B.; Polzin, Kurt L.; Maas, Leo R. M.

    2015-03-01

    In this study, we address the question whether eddy-driven transports in the Argentine Basin can be held responsible for enhanced sediment accumulation over the Zapiola Rise, hence accounting for the existence and growth of this sediment drift. To address this question, we perform a 6 year simulation with a strongly eddying ocean model. We release two passive tracers, with settling velocities that are consistent with silt and clay size particles. Our experiments show contrasting behavior between the silt fraction and the lighter clay. Due to its larger settling velocity, the silt fraction reaches a quasisteady state within a few years, with abyssal sedimentation rates that match net input. In contrast, clay settles only slowly, and its distribution is heavily stratified, being transported mainly along isopycnals. Yet, both size classes display a significant and persistent concentration minimum over the Zapiola Rise. We show that the Zapiola Anticyclone, a strong eddy-driven vortex that circulates around the Zapiola Rise, is a barrier to sediment transport, and hence prevents significant accumulation of sediments on the Rise. We conclude that sediment transport by the turbulent circulation in the Argentine Basin alone cannot account for the preferred sediment accumulation over the Rise. We speculate that resuspension is a critical process in the formation and maintenance of the Zapiola Rise.

  9. Activity and growth of microbial populations in pressurized deep-sea sediment and animal gut samples.

    PubMed

    Tabor, P S; Deming, J W; Ohwada, K; Colwell, R R

    1982-08-01

    Benthic animals and sediment samples were collected at deep-sea stations in the northwest (3,600-m depth) and southeast (4,300- and 5200-m depths) Atlantic Ocean. Utilization rates of [14C]glutamate (0.67 to 0.74 nmol) in sediment suspensions incubated at in situ temperatures and pressures (3 to 5 degrees C and 360, 430, or 520 atmospheres) were relatively slow, ranging from 0.09 to 0.39 nmol g-1 day-1, whereas rates for pressurized samples of gut suspensions varied widely, ranging from no detectable activity to a rapid rate of 986 nmol g-1 day-1. Gut flora from a holothurian specimen and a fish demonstrated rapid, barophilic substrate utilization, based on relative rates calculated for pressurized samples and samples held at 1 atm (101.325 kPa). Substrate utilization by microbial populations in several sediment samples was not inhibited by in situ pressure. Deep-sea pressures did not restrict growth, measured as doubling time, of culturable bacteria present in a northwest Atlantic sediment sample and in a gut suspension prepared from an abyssal scavenging amphipod. From the results of this study, it was concluded that microbial populations in benthic environments can demonstrate significant metabolic activity under deep-ocean conditions of temperature and pressure. Furthermore, rates of microbial activity in the guts of benthic macrofauna are potentially more rapid than in surrounding deep-sea sediments. PMID:6127054

  10. Balanced Sediment Fluxes in Southern California's Mediterranean-climate Zone Salt Marshes

    NASA Astrophysics Data System (ADS)

    Rosencranz, J. A.; Dickhudt, P.; Ganju, N. K.; Thorne, K.; Takekawa, J.; Ambrose, R. F.; Guntenspergen, G. R.; Brosnahan, S.; MacDonald, G. M.

    2015-12-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many southern California, USA salt marshes import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are also potentially important for marsh stability. We calculated tidal creek sediment fluxes within a sediment starved 1.5 km2 salt marsh (Seal Beach) and a less modified 1 km2 marsh (Mugu) with a watershed sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12000 and 8800 kg in a western channel. This offset 8700 kg export during two months of dry weather, while landward net fluxes in the eastern channel accounted for 33% of the import. During the storm, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1-2 mm near creek levees. An exceptionally high tide sequence at Mugu yielded 4.4 g/s mean sediment flux, importing 1700 kg, accounting for 20% of dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are currently geomorphically stable. Our results suggest that storms and exceptionally high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea-level rise scenarios, results suggest that balanced sediment fluxes may lead to marsh elevational instability, based on estimated mineral sediment deficits.

  11. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  12. Contrasting soils and landscapes of the Piedmont and Coastal Plain, eastern United States

    USGS Publications Warehouse

    Markewich, H.W.; Pavich, M.J.; Buell, G.R.

    1990-01-01

    The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping "layer-cake" clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry. The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6-15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils. The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace

  13. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  14. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  15. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.

    PubMed

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  16. Glaciation of the Coastal Plain of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Shur, Y.

    2008-12-01

    Our 15 years of studies of permafrost soils on the coastal plain of northern Alaska show that it was affected by a continental ice sheet during the last glacial maximum. Evidence for this includes: occurrence of buried glacial basal ice at Barter Island; widespread sandy diamicton from Demarcation Bay to Barrow of late Pleistocene age; orientation of surficial deposits; poorly integrated drainage and gentle ridge and swale topography; the continuity of glacial-related deposits from the coast to the Brooks Foothills; and perennially frozen sediments unlike those of unglaciated Arctic regions. We documented a 10-m-high exposure ~1 km long at Barter Island that had abundant basal glacier ice with large-scale deformation structures, complex ice-contact deposits, and highly deformed bedded silt, sand, and gravel inclusions within the basal ice. Similar ice structures were observed at Prudhoe Bay and Cape Halkett. The glacial till is highly unusual in that it is comprised of massive, non-fossiliferous, brackish, slightly pebbly loamy sand with occasional gravel to cobble-sized clasts. In most areas the till is only 2-5 m thick, although at Barter Island the till was up to 10- m thick. Gravel particles, which comprise 1-5% of the deposits, usually are 0.5-2 cm long, mostly durable chert, highly polished, and frequently cracked off at one end, with the broken face faceted and polished. We believe the material mostly originated from marine deposits on the continental shelf, although rocks of Canadian provenance also occur. Prevalent, large (1-5 m) deformation features of discontinuous yellow oxidized and gray reduced sediment suggest deformation of sediment during collapse of the ice sheet. The sandy till is found along most of the Beaufort coast with the exception of deltas and lagoons and is found inland as much as 80 km. The sandy till is easily eroded, causing the morainal margin to be indistinct and the topography subdued. Previous thermoluminescence dating by

  17. Hydrogeochemical analysis for Tasuj plain aquifer, Iran

    NASA Astrophysics Data System (ADS)

    Nadiri, Ata Allah; Moghaddam, Asghar Asghari; Tsai, Frank T.-C.; Fijani, Elham

    2013-08-01

    This study investigated the hydrogeochemical processes of groundwater in the Tasuj plain, Iran. The Tasuj plain is one of the 12 marginal plains around Urmia Lake which is currently under a critical ecological condition. In the last decades, the Tasuj plain aquifer suffered from severe groundwater level declination and caused degradation of groundwater quality. To better understand hydrogeochemical processes in the Tasuj plain, this study adopted graphical methods and multivariate statistical techniques to analyze groundwater samples. A total of 504 groundwater samples was obtained from 34 different locations (qanats, wells, and springs) over 12 years (1997-2009) and analyzed for 15 water quality parameters. From the results, the Piper diagram indicated four groundwater types and the Stiff diagram showed eight different sources of groundwater samples. The Durov diagram identified five major hydrogeochemical processes in the aquifer. However, hierarchical cluster analysis (HCA) identified five water types in the groundwater samples because HCA was able to analyze more chemical and physical data than graphical methods. The HCA result was checked by discriminant analysis and found consistency in all samples that were classified into correct groups. Using factor analysis, we identified three factors that accounted for 81.6% of the total variance of the dataset. Based on the high factor loadings of the variables, factors 1 and 2 reflected the natural hydrogeochemical processes and factor 3 explained the effect of agricultural fertilizers and human activities in the Tasuj plain. Dendrograms from 2000 to 2009 were studied to understand the temporal variation of groundwater quality. Comparing the distributions of groundwater types in 2000 and 2009, we found that the mixing zone was expanded. This may be due to artificial groundwater recharge in the recharge area and the effect of inverse ion exchange in the discharge area.

  18. Coastal geomorphology of the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Gorsline, Donn S.; Saunders, Stephen R.; Pieri, David C.; Schneeberger, Dale M.

    1993-01-01

    The paper considers the question of the formation of the outflow channels and valley networks discovered on the Martian northern plains during the Mariner 9 mission. Parker and Saunders (1987) and Parker et al. (1987, 1989) data are used to describe key features common both in the lower reaches of the outflow channels and within and along the margins of the entire northern plains. It is suggested, that of the geological processes capable of producing similar morphologies on earth, lacustrine or marine deposition and subsequent periglacial modification offer the simplest and most consistent explanation for the suit of features found on Mars.

  19. Geologic history of the Cerberus Plains, Mars

    NASA Astrophysics Data System (ADS)

    Lanagan, Peter Denham

    This work examines the relative chronology of geologic units within the Cerberus Plains of Mars with an emphasis on lava flows emplaced after the last Marte Valles fluvial episode. High resolution images show the bulk of the Cerberus Plains is covered by platy-ridged and inflated lavas, which are interpreted as insulated sheet flows. Eastern Cerberus Plains lavas originate at Cerberus Fossae fissures and shields. Some flows extend for >2000 km through Marte Valles into Amazonis Planitia. Athabasca Valles are both incised into pristine lavas and embayed by pristine lavas, indicating that Athabascan fluvial events were contemporaneous with volcanic eruptions. Deposits of the Medusae Fossae Formation lie both over and under lavas, suggesting the deposition of the Medusae Fossae Formation was contemporaneous with volcanism. Statistics of small craters indicate lavas in the Western Cerberus Plains may be less than a million years old, but the model isochrons may be unreliable if the small crater population is dominated by secondary craters. Images showing no large craters with diameters >500 m superimposed on Western Cerberus Plains lavas indicate the same surface is younger than 49 Ma. High resolution Mars Orbiter Camera (MOC) images have revealed the existence of small cones in the Cerberus Plains, Marte Valles, and Amazonis Planitia. These cones are similar in both morphology and planar dimensions to the larger Icelandic rootless cones, which form due to explosive interactions between surficial lavas and near-surface groundwater. If martian cones form in the same manner as terrestrial rootless cones, then equatorial ground-ice or ground water must have been present near the surface in geologically recent times. Evidence for a shallow lake in the Western Cerberus Plains during the Late Amazonian is also presented. High-resolution images show features interpreted as flood-eroded scarps and fluvial spillways exiting the lake. Based on present-day topography, a lake

  20. Spatial and Temporal Complexities of Current Great Plains Dunefield Chronological Data

    NASA Astrophysics Data System (ADS)

    Halfen, A. F.; Johnson, W. C.

    2012-12-01

    The North American Great Plains span nearly 2.8 million km2, of which nearly half is mantled by aeolian sediments (loess deposits, sand sheets, and dunefields). Stratigraphies of these sediments contain a rich history of late-Quaternary climate change, in particular aeolian dunefields, which provide a record of drought. During arid conditions in the Great Plains, stabilizing vegetation is diminished, leaving dunefields susceptible to aeolian erosion; during periods of increased moisture, conversely, vegetation re-establishes and dunefields stabilize. Using radiometric dating techniques, researchers can extract from the stratigraphy of dunefields the timing of past activity, and, therefore, periods of past drought. To date, more than 50 chronologies, comprised of over 700 ages, have established a detailed record of past dunefield activity in the Great Plains. Despite this extensive dataset, correlating periods of past droughts across the region remains problematic, in large part due to the spatial and temporal limitations in the data. In this poster, we present a spatial and temporal synthesis of current Great Plains dunefield chronologies, followed by an analysis of the complexities of these data, in particular when used to determine periods of past drought. To illustrate these complexities, we present a bicentennial, 1 x 1 degree gridded model of dune activity (e.g., active, stable, no data) spanning the last 2000 years. Our model clearly illustrates gaps in spatial coverage and temporal biases of chronologies. To further highlight the complexities of using current Great Plains datasets as proxies for prehistoric drought, we compare a 2.5 x 2.5 degree gridded model of dune activity during the Medieval Climatic Anomaly (A.D. 1000-1400) and historic time (A.D. 1800-2000) to Palmer Drought Severity Index (PDSI)-reconstructed droughts for the same time intervals. In general, dunefield activity is in good agreement with PDSI-reconstructed drought, however, unlike tree

  1. Impact of sedimentary heterogenities and sinuosity on river -aquifer exchanges in a meandering alluvial plain.

    NASA Astrophysics Data System (ADS)

    Rivière, A.; Maillot, M.; Weill, P.; Goblet, P.; Ors, F.

    2015-12-01

    A coupled sedimentary and hydrogeological model is used to quantify the impact of sedimentary heterogeneities and sinuosity on groundwater fluxes in an alluvial plain deposited by a meandering fluvial system. A 3D heterogeneous alluvial plain model is built with the stochastic/process-based model FLUMY, that simulates the evolution and the sedimentary processes of a meandering channel and its associated deposits. The resulting sedimentary blocks are translated in terms of hydrodynamic parameters (hydrofacies) and used in the 3D transient water transport model METIS. The simulated domain is 10 m-thick and at a pluri-kilometric horizontal scale, allowing considering several meanders. A head gradient between the upstream and downstream limits is imposed. The river is considered as a constant-head boundary that decreases linearly along the channel centerline. A zero-flux condition is prescribed on the other boundaries. Several cases are studied, including different degrees of sinuosity and different configurations of sediment heterogeneity: (i) a homogeneous sandy aquifer (ii) single mud-filled oxbow lake in a sandy porous media, (iii) several mud-filled oxbow lakes in a sandy porous media, and (iv) "fully" heterogeneous alluvial plain including fine-grained overbank deposits, sandy point bars, mudplugs and sandy crevasse plays. We quantify the exchange rates and directions between the river and the aquifer along the channel centerline, the piezometric evolution and the water residence time in the heterogeneous alluvial plain. This original method can improve our understanding of the functioning of alluvial corridors and evaluate the relevance of taking into account the structural heterogeneity of alluvial plains in larger regional hydrogeological models.

  2. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    USGS Publications Warehouse

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Solute reactions indicate that calcite and silica are precipitated in the aquifer. Large amounts of sodium and chloride, relative to their concentration in the igneous rock, are being removed from the aquifer. Release of fluids from inclusions in the igneous rocks, and initial flushing of grain boundaries and pores of detrital marine sediments in interbeds are believed to be the source of the sodium chloride. Identification and quantification of reactions controlling solute concentrations in groundwater in the eastern plain indicate that the aquifer is not a large mixing vessel that simply stores and transmits water and solutes but is undergoing diagenesis and is both a source and sink for solutes. Reactions controlling solutes in the western Snake River basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake River Plain contains

  3. Aeolian Processes and Landforms in River Valleys of Central Russian Plain in MIS 2

    NASA Astrophysics Data System (ADS)

    Matlakhova, Ekaterina

    2015-04-01

    Late Pleistocene terraces in river valleys of Central Russian Plain were subject to aeolian reworking after the alluvial sedimentation had finished. Severe natural conditions of LGM (cold and dry climate, scarce vegetation) contributed activation of aeolian processes. Ground water lowering because of deep pre-LGM incision of rivers made deep aeolian reworking possible at low hypsometric levels of valley bottom. We studied lithological structure of terraces in river valleys of Central Russian Plain. The key sites were located in Seim (the middle Dnieper catchment) and Khoper (the middle Don catchment) river valleys. Field data was combined with quartz grains morphoscopy technique (study of texture of sediment particles using scanning electron microscope). Wide participation of aeolian sediments in terrace deposits was detected. During this study a new technique of the distinguishing of short-term aeolian reworking of alluvial deposits using quartz grains morphoscopy technique was developed. The main problem of interpretation the results of quartz grains morphoscopy is that aeolian signals are sometimes not clear due to short duration of wind action over alluvial sands. However, detailed studies of the quartz grains surfaces under scanning electron microscope helped to solve this problem. We used scanning electron microscope JEOL JSM-661 LV and worked with magnification from ×160 to ×400 for whole grains and up to ×1800 for some parts of grains. Deep aeolian reworking of Late Pleistocene terrace alluvium in river valleys of Central Russian Plain during LGM led to the formation of aeolian covers on the terrace surfaces. Also there are many relict dunes on Late Pleistocene river terrace surfaces. Sometimes the development of aeolian processes could led to more significant changes in the shape of the valley and formation of aeolian aprons. The thickness of aeolian covers can reach 3-5 m or more. Due to this reason morphology and topography of river terraces could

  4. Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

    2013-12-01

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is

  5. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone

    NASA Astrophysics Data System (ADS)

    Amon, Diva J.; Ziegler, Amanda F.; Dahlgren, Thomas G.; Glover, Adrian G.; Goineau, Aurélie; Gooday, Andrew J.; Wiklund, Helena; Smith, Craig R.

    2016-07-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km2 stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m‑2. Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity.

  6. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone

    PubMed Central

    Amon, Diva J.; Ziegler, Amanda F.; Dahlgren, Thomas G.; Glover, Adrian G.; Goineau, Aurélie; Gooday, Andrew J.; Wiklund, Helena; Smith, Craig R.

    2016-01-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km2 stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m−2. Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity. PMID:27470484

  7. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone.

    PubMed

    Amon, Diva J; Ziegler, Amanda F; Dahlgren, Thomas G; Glover, Adrian G; Goineau, Aurélie; Gooday, Andrew J; Wiklund, Helena; Smith, Craig R

    2016-01-01

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km(2) stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m(-2). Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity. PMID:27470484

  8. Evolution of radioactive dose rates in fresh sediment deposits along coastal rivers draining Fukushima contamination plume.

    PubMed

    Evrard, Olivier; Chartin, Caroline; Onda, Yuichi; Patin, Jeremy; Lepage, Hugo; Lefèvre, Irène; Ayrault, Sophie; Ottlé, Catherine; Bonté, Philippe

    2013-10-29

    Measurement of radioactive dose rates in fine sediment that has recently deposited on channel bed-sand provides a solution to address the lack of continuous river monitoring in Fukushima Prefecture after Fukushima Dai-ichi nuclear power plant (FDNPP) accident. We show that coastal rivers of Eastern Fukushima Prefecture were rapidly supplied with sediment contaminated by radionuclides originating from inland mountain ranges, and that this contaminated material was partly exported by typhoons to the coastal plains as soon as by November 2011. This export was amplified during snowmelt and typhoons in 2012. In 2013, contamination levels measured in sediment found in the upper parts of the catchments were almost systematically lower than the ones measured in nearby soils, whereas their contamination was higher in the coastal plains. We thereby suggest that storage of contaminated sediment in reservoirs and in coastal sections of the river channels now represents the most crucial issue.

  9. Satellite-Based Assessment of Sediment Transport, Distribution and Resuspension Associated with the Atchafalaya River Discharge Plume

    NASA Technical Reports Server (NTRS)

    Walker, Nan; Roberts, Harry; Stone, Gregory; Bentley, Samuel; Huh, Oscar; Sheremet, Alexandru; Rouse, Larry; Inoue, Masamichi; Welsh, Susan; Hsu, S. A.

    2002-01-01

    Tbe Atchafalaya River discharges over 80 x 10(exp 6) tons of sediment annually onto the broad shallow continental shelf of central and western Louisiana. Satellite imagery from the NOAA AVHRR and Terra MODIS are used in this paper to quantify suspended sediment concentrations and to assess sediment transport processes along the Louisiana shelf under varying conditions of river discharge and wind forcing. The image data reveal the maim sources of sediment, direction of transport amd regional extent of wind-wave resuspension. The prevailing easterly winds transport much of the suspended sediments westward toward the Chernier Plain in a well-defined mud stream. Westerly flow rates of 25-50 cm/s (21-43 km per day) have been measured, yielding a transit time of about 1.5-2.5 days from the mouth of Atchafalaya Bay to the Chernier Plain. Progradation rates along the Chernier Plain coast reach 50 m per year. The westward-flowing Atchafalaya "mud stream" is rapidly disrupted by westerly winds and northerly winds, which accompany frequent winter storms and less frequent tropical storms or hurricanes. During these events, the coastal current reverses and sediments are rapidly transported out of Atchafalaya Bay and offshore where substantial sedimentary deposits can also be found. Offshore sediment fluxes during storm events, in combination with wind-wave resuspension, can result in surface sediment "plumes" extending 70 km offshore and 150 km alongshore. Field measurements of suspended sediment concentrations, current and wind velocities, and directions are used to assess sediment transport processes on the shelf. These combined processes are extending the pro-delta deposits of the Atchafalaya-Wax Lake delta complex far onto the continental shelf and supplying sediments for a renewal era of progradation along tbe downdrift Chernier Plain coast.

  10. Geophysical Constraints on Sediment Dispersal Systems

    NASA Astrophysics Data System (ADS)

    Johnstone, Elizabeth Anne Carruthers

    Geophysical and geological approaches were employed to understand sediment dispersal systems and their response to various forcing functions (i.e., sea level fluctuations, tectonic deformation, sediment supply, and climate change). Two end member marine environments were studied; one with high precipitation and sediment discharge (Gulf of Papua, Papua New Guinea) and the other with low precipitation and sediment discharge (Oceanside Littoral Cell). The high-sedimentation rate in the Gulf of Papua (GoP) yields high-fidelity records of Earth history. As part of the NSF Margins Source-to-Sink (S2S) program, we acquired CHIRP and core data across the GoP continental shelf that complemented onshore and offshore research in the region. CHIRP seismic data imaged three Holocene sedimentary lobes. The older Central lobe is downlapped by two younger lobes to the north and south. Sediment analysis showed that the older Central lobe has an elemental signature similar to the younger Northern lobe with both sourced from the Purari River watershed and lobe migration appears to be climatically controlled. The Southern lobe has elemental signatures more consistent with the Fly River watershed. Our results suggest the northern rivers began depositing sediments on the shelf during the Holocene sea level rise in the central region of the GoP and migrated abruptly north at ~2 kybp. Conversely, during the early Holocene transgression, sediments in the Fly drainage system were sequestered onshore infilling accommodation created in the large low-relief coastal plain during the sea level rise. Upon infilling the onshore accommodation, the Fly River delivered sediment to the ocean and formed the Southern lobe. Such differences in onshore storage capacity may introduce a lag between low-gradient rivers (Type I) with a large coastal plain versus high-gradient river systems (Type II) with small coastal plains. The second study site is in the sediment-starved Oceanside Littoral Cell (OCL) of

  11. Late Quaternary climatic influences on river geomorphology on the Alberta Plains, Canada

    NASA Astrophysics Data System (ADS)

    Malowany, K.; Osborn, G.

    2013-12-01

    The most obvious geomorphic aberrations on the flat Alberta plains, incised river valleys partly refilled with alluvium, are indirect products of changing climate in latest Pleistocene and early Holocene time. The valley bottoms lie 15 to 120 m below the general plains surface and cut through till-bedrock contacts, indicating that rivers established their present courses following deglaciation. Previous hypotheses for incision invoked post-glacial isostatic rebound, but rebound models show that base levels rose downstream during and after deglaciation, a situation not conducive to incision. We hypothesize that large quantities of meltwater from the retreating Cordilleran Ice Sheet generated rapid incision for a period of about 2 000 years following the retreat of the ice sheets (14-12ka.) In this study, a combined ice sheet-climate model is used to estimate the amount of water derived from the melting Cordilleran Ice Sheet between 14 and 12ka; resulting annual discharges allocated to each basin indicate that major rivers were approximately 3 times greater in discharge than their modern counterparts. Experiments with the bedrock equation suggest these discharges are capable of causing the dramatic incision of Alberta rivers. Uncertainty concerning the duration and magnitude of large floods operating during deglaciation creates large variations in results; however, even the most conservatively estimated discharges are shown to be capable of causing incision of rivers to depths greater than indicated by field observations. Very soon after incision, rivers on the Alberta plains began aggrading, and deposited fills up to 35 m thick. Radiocarbon ages of bone fragments indicate filling was in progress ca. 13-12 ka. Previous work on paraglacial sedimentation is suggestive of an indirect climate-change trigger for aggradation: debris-laden valley walls in the Canadian Rockies began shedding sediment into the major rivers as the valley became progressively more ice

  12. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  13. Suspended-sediment sources in an urban watershed, Northeast Branch Anacostia River, Maryland

    USGS Publications Warehouse

    Devereux, Olivia H.; Prestegaard, Karen L.; Needelman, Brian A.; Gellis, Allen C.

    2010-01-01

    Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land-based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank-erosion measurements, sediment budget and other methods.

  14. Great plains regional climate assessment technical report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and