DOE Office of Scientific and Technical Information (OSTI.GOV)
Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.« less
Kublanov, Ilya V.; Sigalova, Olga M.; Gavrilov, Sergey N.; ...
2017-02-20
The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H 2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family,more » while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H 2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.« less
High-throughput sequencing reveals circular substrates for an archaeal RNA ligase
Becker, Hubert F.; Héliou, Alice; Djaout, Kamel; Lestini, Roxane; Regnier, Mireille; Myllykallio, Hannu
2017-01-01
ABSTRACT It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules. PMID:28277897
Miroshnichenko, Margarita L; Kostrikina, Nadezhda A; Chernyh, Nikolai A; Pimenov, Nikolai V; Tourova, Tatyana P; Antipov, Alexei N; Spring, Stefan; Stackebrandt, Erko; Bonch-Osmolovskaya, Elizaveta A
2003-01-01
A novel, moderately thermophilic, strictly anaerobic, mixotrophic bacterium, designated strain LF13T, was isolated from a deep-sea hydrothermal chimney sample that was collected at a vent site at 14 degrees 45' N, 44 degrees 59' W on the Mid-Atlantic Ridge. Cells were Gram-negative, thin, non-motile rods of variable length. Strain LF13T grew optimally at pH 6.8-7.0 and 60 degrees C with 2.5% (w/v) NaCl. It grew chemo-organoheterotrophically, fermenting proteinaceous substrates, pyruvate and Casamino acids. The strain was able to grow by respiration, utilizing molecular hydrogen (chemolithoheterotrophically) or acetate as electron donors and nitrate as an electron acceptor. Ammonium was formed in the course of denitrification. One-hundred milligrams of yeast extract per litre were required for growth of the strain. The G + C content of the genomic DNA of strain LF13T was 42.5 mol%. Neither 16S rDNA sequence similarity values nor phylogenetic analysis unambiguously related strain LF13T with members of any recognized bacterial phyla. On the basis of 16S rDNA sequence comparisons, and in combination with physiological and morphological traits, a novel genus, Caldithrix, is proposed, with strain LF13T (= DSM 13497T =VKM B-2286T) representing the type species, Caldithrix abyssi.
Crystal structure of PAV1-137: a protein from the virus PAV1 that infects Pyrococcus abyssi.
Leulliot, N; Quevillon-Cheruel, S; Graille, M; Geslin, C; Flament, D; Le Romancer, M; van Tilbeurgh, H
2013-01-01
Pyrococcus abyssi virus 1 (PAV1) was the first virus particle infecting a hyperthermophilic Euryarchaeota (Pyrococcus abyssi strain GE23) that has been isolated and characterized. It is lemon shaped and is decorated with a short fibered tail. PAV1 morphologically resembles the fusiform members of the family Fuselloviridae or the genus Salterprovirus. The 18 kb dsDNA genome of PAV1 contains 25 predicted genes, most of them of unknown function. To help assigning functions to these proteins, we have initiated structural studies of the PAV1 proteome. We determined the crystal structure of a putative protein of 137 residues (PAV1-137) at a resolution of 2.2 Å. The protein forms dimers both in solution and in the crystal. The fold of PAV1-137 is a four- α -helical bundle analogous to those found in some eukaryotic adhesion proteins such as focal adhesion kinase, suggesting that PAV1-137 is involved in protein-protein interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delfosse, Vanessa; Hugonnet, Jean-Emmanuel; Sougakoff, Wladimir
The crystallization of a hypothetical penicillin-binding protein from the archaeon P. abyssi in space group C2 by hanging-drop vapour diffusion is reported. The genome of the hyperthermophilic archaeon Pyrococcus abyssi contains a gene (pab0087) encoding a penicillin-binding protein (PBP) homologue. This sequence consists of 447 residues and shows significant sequence similarity to low-molecular-weight PBPs and class C β-lactamases. The Pab0087 protein was overexpressed, purified and crystallized. Diffraction data from two different crystal forms were collected to 2.7 and 2.0 Å resolution. Both crystals belong to space group C2, with unit-cell parameters a = 160.59, b = 135.74, c = 113.02more » Å, β = 117.36° and a = 166.97, b = 131.25, c = 189.39 Å, β = 113.81°, respectively. The asymmetric unit contains four and eight molecules, respectively, with fourfold non-crystallographic symmetry.« less
Structure and substrate ion binding in the sodium/proton antiporter PaNhaP
Wöhlert, David; Kühlbrandt, Werner; Yildiz, Özkan
2014-01-01
Sodium/proton antiporters maintain intracellular pH and sodium levels. Detailed structures of antiporters with bound substrate ions are essential for understanding how they work. We have resolved the substrate ion in the dimeric, electroneutral sodium/proton antiporter PaNhaP from Pyrococcus abyssi at 3.2 Å, and have determined its structure in two different conformations at pH 8 and pH 4. The ion is coordinated by three acidic sidechains, a water molecule, a serine and a main-chain carbonyl in the unwound stretch of trans-membrane helix 5 at the deepest point of a negatively charged cytoplasmic funnel. A second narrow polar channel may facilitate proton uptake from the cytoplasm. Transport activity of PaNhaP is cooperative at pH 6 but not at pH 5. Cooperativity is due to pH-dependent allosteric coupling of protomers through two histidines at the dimer interface. Combined with comprehensive transport studies, the structures of PaNhaP offer unique new insights into the transport mechanism of sodium/proton antiporters. DOI: http://dx.doi.org/10.7554/eLife.03579.001 PMID:25426802
The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.
Castrec, Benoît; Laurent, Sébastien; Henneke, Ghislaine; Flament, Didier; Raffin, Jean-Paul
2010-03-05
A glycine-rich motif described as being involved in human polymerase delta proliferating cell nuclear antigen (PCNA) binding has also been identified in all euryarchaeal DNA polymerase D (Pol D) family members. We redefined the motif as the (G)-PYF box. In the present study, Pol D (G)-PYF box motif mutants from Pyrococcus abyssi were generated to investigate its role in functional interactions with the cognate PCNA. We demonstrated that this motif is not essential for interactions between PabPol D (P. abyssi Pol D) and PCNA, using surface plasmon resonance and primer extension studies. Interestingly, the (G)-PYF box is located in a hydrophobic region close to the active site. The (G)-PYF box mutants exhibited altered DNA binding properties. In addition, the thermal stability of all mutants was reduced compared to that of wild type, and this effect could be attributed to increased exposure of the hydrophobic region. These studies suggest that the (G)-PYF box motif mediates intersubunit interactions and that it may be crucial for the thermostability of PabPol D. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jolivet, E.; L'Haridon, S.; Corre, E.; Gérard, E.; Myllykallio, H.; Forterre, P.; Prieur, D.
2001-08-01
In this paper we present many results on radioresistance of hyperthermophilic archaeon isolated from deep-sea hydrothermal vents. Effects of gamma (γ) irradiation was first tested with Pyrococcus abyssi and showed that this micro-organism did not show any loss of viability until 2 kGy of γ-irradiation. Pulse Field Gel Electrophoresis (PFGE) analysis conducted with different species belonging to Archaea and Bacteria suggest that no specific DNA protection system exist that could explain the radioresistance of P. abyssi. Moreover, the genomic DNA completely fragmented after 2 kGy is fully restored in vivo under optimal growth conditions. The DNA replication or irradiated cells at 2,5 kGy is delayed by a lag phase which could coincide to this DNA repair. An associated mechanism of DNA repair by excision could act with the recombinational DNA repair. In parallel to these studies three hyperthermophilic archaeons highly resistant to ionizing radiation were isolated from deep-sea hydrothermal vents after the enrichment cultures were submitted to elevated irradiation doses (up to 20 and 30 kGy). All these novel species were more radioresistant than P. abyssi.
Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Kevin M.; Schufreider, Ann K.; McGill, Melissa A.
2010-12-17
Research highlights: {yields} The Pyrococcus abyssi lon protease intein promotes efficient protein splicing. {yields} Inteins with mutations that interfere with individual steps of splicing do not promote unproductive side reactions. {yields} The intein splices with Lys in place of the highly conserved penultimate His. {yields} The intein is flanked by a Gly-rich region at its C terminus that may increase the efficiency of the third step of splicing, Asn cyclization coupled to peptide bond cleavage. -- Abstract: Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled tomore » ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.« less
Orange, F; Westall, F; Disnar, J-R; Prieur, D; Bienvenu, N; Le Romancer, M; Défarge, Ch
2009-09-01
Hydrothermal activity was common on the early Earth and associated micro-organisms would most likely have included thermophilic to hyperthermophilic species. 3.5-3.3 billion-year-old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro-organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro-organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro-organisms were placed in a silica-saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro-organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.
Song, Qinghao; Wang, Yan; Yin, Chong; Zhang, Xiao-Hua
2016-08-01
Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry. Copyright © 2016 Elsevier Inc. All rights reserved.
Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P.; Khun, Joelle; Vos, Marten H.; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier
2012-01-01
Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5′ and 3′ flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction. PMID:22431731
Creze, Christophe; Ligabue, Alessio; Laurent, Sébastien; Lestini, Roxane; Laptenok, Sergey P; Khun, Joelle; Vos, Marten H; Czjzek, Mirjam; Myllykallio, Hannu; Flament, Didier
2012-05-04
Pyrococcus abyssi NucS is the founding member of a new family of structure-specific DNA endonucleases that interact with the replication clamp proliferating cell nuclear antigen (PCNA). Using a combination of small angle x-ray scattering and surface plasmon resonance analyses, we demonstrate the formation of a stable complex in solution, in which one molecule of the PabNucS homodimer binds to the outside surface of the PabPCNA homotrimer. Using fluorescent labels, PCNA is shown to increase the binding affinity of NucS toward single-strand/double-strand junctions on 5' and 3' flaps, as well as to modulate the cleavage specificity on the branched DNA structures. Our results indicate that the presence of a single major contact between the PabNucS and PabPCNA proteins, together with the complex-induced DNA bending, facilitate conformational flexibility required for specific cleavage at the single-strand/double-strand DNA junction.
Serre, Marie-Claude; El Arnaout, Toufic; Brooks, Mark A; Durand, Dominique; Lisboa, Johnny; Lazar, Noureddine; Raynal, Bertrand; van Tilbeurgh, Herman; Quevillon-Cheruel, Sophie
2013-01-01
Tyrosine recombinases are conserved in the three kingdoms of life. Here we present the first crystal structure of a full-length archaeal tyrosine recombinase, XerA from Pyrococcus abyssi, at 3.0 Å resolution. In the absence of DNA substrate XerA crystallizes as a dimer where each monomer displays a tertiary structure similar to that of DNA-bound Tyr-recombinases. Active sites are assembled in the absence of dif except for the catalytic Tyr, which is extruded and located equidistant from each active site within the dimer. Using XerA active site mutants we demonstrate that XerA follows the classical cis-cleavage reaction, suggesting rearrangements of the C-terminal domain upon DNA binding. Surprisingly, XerA C-terminal αN helices dock in cis in a groove that, in bacterial tyrosine recombinases, accommodates in trans αN helices of neighbour monomers in the Holliday junction intermediates. Deletion of the XerA C-terminal αN helix does not impair cleavage of suicide substrates but prevents recombination catalysis. We propose that the enzymatic cycle of XerA involves the switch of the αN helix from cis to trans packing, leading to (i) repositioning of the catalytic Tyr in the active site in cis and (ii) dimer stabilisation via αN contacts in trans between monomers.
Tomkuvienė, Miglė; Ličytė, Janina; Olendraitė, Ingrida; Liutkevičiūtė, Zita; Clouet-d'Orval, Béatrice; Klimašauskas, Saulius
2017-09-01
Archaeal fibrillarin (aFib) is a well-characterized S -adenosyl methionine (SAM)-dependent RNA 2'- O -methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'- O -methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'- O -methylated positions in the 16S rRNA of P. abyssi , positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution. © 2017 Tomkuvienė et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Yafremava, Liudmila S; Di Giulio, Massimo; Caetano-Anollés, Gustavo
2013-01-01
Amino acid substitution patterns between the nonbarophilic Pyrococcus furiosus and its barophilic relative P. abyssi confirm that hydrostatic pressure asymmetry indices reflect the extent to which amino acids are preferred by barophilic archaeal organisms. Substitution patterns in entire protein sequences, shared protein domains defined at fold superfamily level, domains in homologous sequence pairs, and domains of very ancient and very recent origin now provide further clues about the environment that led to the genetic code and diversified life. The pyrococcal proteomes are very similar and share a very early ancestor. Relative amino acid abundance analyses showed that biases in the use of amino acids are due to their shared fold superfamilies. Within these repertoires, only two of the five amino acids that are preferentially barophilic, aspartic acid and arginine, displayed this preference significantly and consistently across structure and in domains appearing in the ancestor. The more primordial asparagine, lysine and threonine displayed a consistent preference for nonbarophily across structure and in the ancestor. Since barophilic preferences are already evident in ancient domains that are at least ~3 billion year old, we conclude that barophily is a very ancient trait that unfolded concurrently with genetic idiosyncrasies in convergence towards a universal code.
Perche-Letuvée, Phanélie; Kathirvelu, Velavan; Berggren, Gustav; Clemancey, Martin; Latour, Jean-Marc; Maurel, Vincent; Douki, Thierry; Armengaud, Jean; Mulliez, Etienne; Fontecave, Marc; Garcia-Serres, Ricardo; Gambarelli, Serge; Atta, Mohamed
2012-01-01
Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed. PMID:23043105
Ishikawa, Ken; Watanabe, Miki; Kuroita, Toshihiro; Uchiyama, Ikuo; Bujnicki, Janusz M; Kawakami, Bunsei; Tanokura, Masaru; Kobayashi, Ichizo
2005-07-21
To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5'-GTAC and leave a 3'-TA overhang (5'-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90 degrees C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure.
Lang, Weeranuch; Sirisansaneeyakul, Sarote; Martins, Lígia O; Ngiwsara, Lukana; Sakairi, Nobuo; Pathom-aree, Wasu; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo
2014-01-01
This study reports the characterization of the ability of Dermacoccus spp. isolated from the deepest point of the world's oceans for azo dye decolorization. A detailed investigation of Dermacoccus abyssi MT1.1(T) with respect to the azoreductase activity and enzymatic mechanism as well as the potential role of the bacterial strain for biocleaning of industrial dye baths is reported. Resting cells with oxygen-insensitive azoreductase resulted in the rapid decolorization of the polysulfonated dye Brilliant Black BN (BBN) which is a common food colorant. The highest specific decolorization rate (vs) was found at 50 °C with a moderately thermal tolerance for over 1 h. Kinetic analysis showed the high rates and strong affinity of the enzymatic system for the dye with a Vmax = 137 mg/g cell/h and a Km = 19 mg/L. The degradation of BBN produces an initial orange intermediate, 8-amino-5-((4-sulfonatophenyl)diazenyl)naphthalene-2-sulfonic acid, identified by mass spectrometry which is later converted to 4-aminobenzene sulfonic acid. Nearly 80% of the maximum vs is possible achieved in resting cell treatment with the salinity increased up to 5.0% NaCl in reaction media. Therefore, this bacterial system has potential for dye decolorization bioprocesses occurring at high temperature and salt concentrations e.g. for cleaning dye-containing saline wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dwivedi, Shweta; Kruparani, Shobha P; Sankaranarayanan, Rajan
2004-09-01
Threonyl-tRNA synthetase (ThrRS) faces a crucial double-discrimination problem during the translation of genetic code. Most ThrRSs from the archaeal kingdom possess a unique editing domain that differs from those of eubacteria and eukaryotes. In order to understand the structural basis of the editing mechanism in archaea, the editing module of ThrRS from Pyrococcus abyssi comprising of the first 183 amino-acid residues was cloned, expressed, purified and crystallized. The crystals belong to the trigonal space group P3(1(2))21, with one molecule in the asymmetric unit.
Natale, D A; Shankavaram, U T; Galperin, M Y; Wolf, Y I; Aravind, L; Koonin, E V
2000-01-01
Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Special-purpose databases organized on the basis of phylogenetic analysis and carefully curated with respect to known and predicted protein functions provide for a significant improvement in genome annotation. A differential genome display approach helps in a systematic investigation of common and distinct features of gene repertoires and in some cases reveals unexpected connections that may be indicative of functional similarities between phylogenetically distant organisms and of lateral gene exchange.
Natale, Darren A; Shankavaram, Uma T; Galperin, Michael Y; Wolf, Yuri I; Aravind, L; Koonin, Eugene V
2000-01-01
Background: Standard archival sequence databases have not been designed as tools for genome annotation and are far from being optimal for this purpose. We used the database of Clusters of Orthologous Groups of proteins (COGs) to reannotate the genomes of two archaea, Aeropyrum pernix, the first member of the Crenarchaea to be sequenced, and Pyrococcus abyssi. Results: A. pernix and P. abyssi proteins were assigned to COGs using the COGNITOR program; the results were verified on a case-by-case basis and augmented by additional database searches using the PSI-BLAST and TBLASTN programs. Functions were predicted for over 300 proteins from A. pernix, which could not be assigned a function using conventional methods with a conservative sequence similarity threshold, an approximately 50% increase compared to the original annotation. A. pernix shares most of the conserved core of proteins that were previously identified in the Euryarchaeota. Cluster analysis or distance matrix tree construction based on the co-occurrence of genomes in COGs showed that A. pernix forms a distinct group within the archaea, although grouping with the two species of Pyrococci, indicative of similar repertoires of conserved genes, was observed. No indication of a specific relationship between Crenarchaeota and eukaryotes was obtained in these analyses. Several proteins that are conserved in Euryarchaeota and most bacteria are unexpectedly missing in A. pernix, including the entire set of de novo purine biosynthesis enzymes, the GTPase FtsZ (a key component of the bacterial and euryarchaeal cell-division machinery), and the tRNA-specific pseudouridine synthase, previously considered universal. A. pernix is represented in 48 COGs that do not contain any euryarchaeal members. Many of these proteins are TCA cycle and electron transport chain enzymes, reflecting the aerobic lifestyle of A. pernix. Conclusions: Special-purpose databases organized on the basis of phylogenetic analysis and carefully curated with respect to known and predicted protein functions provide for a significant improvement in genome annotation. A differential genome display approach helps in a systematic investigation of common and distinct features of gene repertoires and in some cases reveals unexpected connections that may be indicative of functional similarities between phylogenetically distant organisms and of lateral gene exchange. PMID:11178258
Medvedev, Kirill E; Alemasov, Nikolay A; Vorobjev, Yuri N; Boldyreva, Elena V; Kolchanov, Nikolay A; Afonnikov, Dmitry A
2014-10-15
The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.
Sims, Lynn M; Igarashi, Robert Y
2012-08-15
Ribosomal function is dependent on multiple proteins. The ABCE1 ATPase, a unique ABC superfamily member that bears two Fe₄S₄ clusters, is crucial for ribosomal biogenesis and recycling. Here, the ATPase activity of the Pyrococcus abyssi ABCE1 (PabABCE1) was studied using both apo- (without reconstituted Fe-S clusters) and holo- (with full complement of Fe-S clusters reconstituted post-purification) forms, and is shown to be jointly regulated by the status of Fe-S clusters and Mg²⁺. Typically ATPases require Mg²⁺, as is true for PabABCE1, but Mg²⁺ also acts as a negative allosteric effector that modulates ATP affinity of PabABCE1. Physiological [Mg²⁺] inhibits the PabABCE1 ATPase (K(i) of ∼1 μM) for both apo- and holo-PabABCE1. Comparative kinetic analysis of Mg²⁺ inhibition shows differences in degree of allosteric regulation between the apo- and holo-PabABCE1 where the apparent ATP K(m) of apo-PabABCE1 increases >30-fold from ∼30 μM to over 1 mM with M²⁺. This effect would significantly convert the ATPase activity of PabABCE1 from being independent of cellular energy charge (φ) to being dependent on φ with cellular [Mg²⁺]. These findings uncover intricate overlapping effects by both [Mg²⁺] and the status of Fe-S clusters that regulate ABCE1's ATPase activity with implications to ribosomal function. Copyright © 2012 Elsevier Inc. All rights reserved.
The box C/D sRNP dimeric architecture is conserved across domain Archaea
Bower-Phipps, Kathleen R.; Taylor, David W.; Wang, Hong-Wei; Baserga, Susan J.
2012-01-01
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2′-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species—Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus—indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain. PMID:22753779
The box C/D sRNP dimeric architecture is conserved across domain Archaea.
Bower-Phipps, Kathleen R; Taylor, David W; Wang, Hong-Wei; Baserga, Susan J
2012-08-01
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.
PCR performance of a thermostable heterodimeric archaeal DNA polymerase
Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine
2014-01-01
DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315
Pichard-Kostuch, Adeline; Zhang, Wenhua; Liger, Dominique; Daugeron, Marie-Claire; Letoquart, Juliette; Li de la Sierra-Gallay, Ines; Forterre, Patrick; Collinet, Bruno; van Tilbeurgh, Herman; Basta, Tamara
2018-04-12
N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-L-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use different mechanism for TC-AMP synthesis. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
2014-01-01
Background The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. Results The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. Conclusions The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners. PMID:25315147
Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P
2000-04-07
Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into the origin and functions of methylation guide small nucleolar RNAs and illuminate the still elusive role of rRNA ribose methylations. Copyright 2000 Academic Press.
Pseudomonas abyssi sp. nov., isolated from the abyssopelagic water of the Mariana Trench.
Wei, Yuli; Mao, Haiyan; Xu, Yunping; Zou, Wencai; Fang, Jiasong; Blom, Jochen
2018-06-21
A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain MT5 T , was isolated from deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 28 °C (range, 4-45 °C), pH 5-7 (pH 4-11) and with 3-7 % (w/v) NaCl (0-18 %). Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MT5 T was related to members of the genus Pseudomonas and shared the highest sequence identities with Pseudomonas pachastrellae CCUG 46540 T (99.6 %), Pseudomonas aestusnigri VGXO14 T (98.5 %) and Pseudomonas oceani KX 20 T (98.4 %). The 16S rRNA gene sequence identities between strain MT5 T and other members of the genus Pseudomonas were below 96.7 %. The digital DNA-DNA hybridization values between strain MT5 T and the two type strains, P. pachastrellae and P. aestusnigri, were 38.9±2.5 and 25.8±2.4 %, respectively. The average nucleotide identity values between strain MT5 T and the two type strains were 90.3 and 87.0 %, respectively. Strain MT5 T and the two type strains shared 94.98 and 86.2 % average amino acid identity, and 30 and 33 Karlin genomic signature, respectively. The sole respiratory menaquinone was Q-9. The major polar lipids were phosphatidylethanolamine, diphosphatidyglycerol and phosphatidylglycerol. The predominant cellular fatty acids of strain MT5 T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (35.3 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (24.1 %), C16 : 0 (15.9 %) and C12 : 0 (7.2 %). The G+C content of the genomic DNA was 61.2 mol%. The combined genotypic and phenotypic data indicated that strain MT5 T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas abyssi sp. nov. is proposed, with the type strain MT5 T (=KCTC 62295 T =MCCC 1K03351 T ).
Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc
2016-08-22
Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.
Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc
2016-01-01
Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same ‘double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs. PMID:27548043
Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.
Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi
2016-11-01
Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moritake, Yuto; Tanaka, Takuo
2018-02-05
We propose and demonstrate the elimination of substrate influence on plasmon resonance by using selective and isotropic etching of substrates. Preventing the red shift of the resonance due to substrates and improving refractive index sensitivity were experimentally demonstrated by using plasmonic nanostructures fabricated on silicon substrates. Applying substrate etching decreases the effective refractive index around the metal nanostructures, resulting in elimination of the red shift. Improvement of sensitivity to the refractive index environment was demonstrated by using plasmonic metamaterials with Fano resonance based on far field interference. Change in quality factors (Q-factors) of the Fano resonance by substrate etching was also investigated in detail. The presence of a closely positioned substrate distorts the electric field distribution and degrades the Q-factors. Substrate etching dramatically increased the refractive index sensitivity reaching to 1532 nm/RIU since the electric fields under the nanostructures became accessible through substrate etching. The FOM was improved compared to the case without the substrate etching. The method presented in this paper is applicable to a variety of plasmonic structures to eliminate the influence of substrates for realizing high performance plasmonic devices.
Renalier, Marie-Hélène; Joseph, Nicole; Gaspin, Christine; Thebault, Patricia; Mougin, Annie
2005-07-01
We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.
When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism
Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel
2003-01-01
Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385
High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.
Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze
2010-08-01
To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.
Yuen, Clement; Zheng, Wei; Huang, Zhiwei
2008-01-01
We report a novel postgrowth microwave heating implementation by selectively modifying hierarchical polystyrene (PS) bead substrates coated with gold (Au) films to effectively improve the surface-enhanced Raman scattering (SERS) effect on the analytes. The SERS signal of probe molecule rhodamine 6G (Rh 6G) on the microwave-treated Au-PS substrates can be improved by 10-fold, while the detection limit of Rh 6G in concentration can be enhanced by two orders of magnitude compared to the as-growth substrates. The high-quality SERS spectrum of saliva can also be acquired using the modified substrates, demonstrating the potential for the realization of the high-performance SERS substrates for biomedical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun Sining, E-mail: alexsyun1974@yahoo.com.c; Lim, Sangwoo
2011-02-15
The application of electrospun nanofibers in electronic devices is limited due to their poor adhesion to conductive substrates. To improve this, a seed layer (SD) is introduced on the FTO substrate before the deposition of the electrospun composite nanofibers. This facilitates the release of interfacial tensile stress during calcination and enhances the interfacial adhesion of the AZO nanofiber films with the FTO substrate. Dye-sensitized solar cells (DSSC) based on these AZO nanofiber photoelectrodes have been fabricated and investigated. An energy conversion efficiency ({eta}) of 0.54-0.55% has been obtained under irradiation of AM 1.5 simulated sunlight (100 mW/cm{sup 2}), indicating amore » massive improvement of {eta} in the AZO nanofiber film DSSCs after SD-treatment of the FTO substrate as compared to those with no treatment. The SD-treatment has been demonstrated to be a simple and facile method to solve the problem of poor adhesion between electrospun nanofibers and the conductive substrate. -- Graphical abstract: The poor adhesion between electrospun nanofibers and substrate is improved by a simple and facile seed layer (SD) treatment. The energy conversion efficiency of AZO nanofiber-based DSSCs has been greatly increased by SD-treatment of the FTO substrate. Display Omitted Research highlights: {yields} A simple and facile method (SD-treatment) has been demonstrated. {yields} The poor adhesion between electrospun nanofibers and substrate is improved by the SD-treatment. {yields} The {eta} of AZO nanofiber-based DSSCs has been greatly improved by SD-treatment of the FTO substrate.« less
NASA Astrophysics Data System (ADS)
Chung, Seungjun; Lee, Jae-Hyun; Jeong, Jaewook; Kim, Jang-Joo; Hong, Yongtaek
2009-06-01
We report substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes (OLEDs). Heat dissipation behavior of top-emission OLEDs fabricated on silicon, glass, and planarized stainless steel substrates was measured by using an infrared camera. Peak temperature measured from the backside of each substrate was saturated to be 21.4, 64.5, and 40.5 °C, 180 s after the OLED was operated at luminance of 10 000 cd/m2 and 80% luminance lifetime was about 198, 31, and 96 h, respectively. Efficient heat dissipation through the highly thermally conductive substrates reduced temperature increase, resulting in much improved OLED lifetime.
A study to improve the mechanical properties of silicon carbide ribbon fibers
NASA Technical Reports Server (NTRS)
Debolt, H. E.; Robey, R. J.
1976-01-01
Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.
Second generation engineering of transketolase for polar aromatic aldehyde substrates.
Payongsri, Panwajee; Steadman, David; Hailes, Helen C; Dalby, Paul A
2015-04-01
Transketolase has significant industrial potential for the asymmetric synthesis of carboncarbon bonds with new chiral centres. Variants evolved on propanal were found previously with nascent activity on polar aromatic aldehydes 3-formylbenzoic acid (3-FBA), 4-formylbenzoic acid (4-FBA), and 3-hydroxybenzaldehyde (3-HBA), suggesting a potential novel route to analogues of chloramphenicol. Here we evolved improved transketolase activities towards aromatic aldehydes, by saturation mutagenesis of two active-site residues (R358 and S385), predicted to interact with the aromatic substituents. S385 variants selectively controlled the aromatic substrate preference, with up to 13-fold enhanced activities, and KM values comparable to those of natural substrates with wild-type transketolase. S385E even completely removed the substrate inhibition for 3-FBA, observed in all previous variants. The mechanisms of catalytic improvement were both mutation type and substrate dependent. S385E improved 3-FBA activity via kcat, but reduced 4-FBA activity via KM. Conversely, S385Y/T improved 3-FBA activity via KM and 4-FBA activity via kcat. This suggested that both substrate proximity and active-site orientation are very sensitive to mutation. Comparison of all variant activities on each substrate indicated different binding modes for the three aromatic substrates, supported by computational docking. This highlights a potential divergence in the evolution of different substrate specificities, with implications for enzyme engineering. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahmati, Ehsan; Ahmadi-Boroujeni, Mehdi
2018-04-01
One of the shortcomings of photoconductive (PC) antennas in terahertz (THz) generation is low effective radiated power in the desirable direction. In this paper, we propose a defective photonic crystal (DPC) substrate consisting of a customized 2D array of air holes drilled into a solid substrate in order to improve the radiation characteristics of THz PC antennas. The effect of the proposed structure on the performance of a conventional THz PC antenna has been examined from several aspects including radiation efficiency, directivity, and field distribution. By comparing the radiation performance of the THz antenna on the proposed DPC substrate to that of the conventional solid substrate, it is shown that the proposed technique can significantly improve the efficiency and directivity of the THz PC antenna over a wide frequency range. It is achieved by reducing the amount of power coupled to the substrate surface waves and limiting the radiation in undesirable directions. In addition, it is found that the sensitivity of directivity to the substrate thickness is considerably decreased and the adverse Fabry-Perot effects of the thick substrate are reduced by the application of the proposed DPC substrate.
Smart substrates: Making multi-chip modules smarter
NASA Astrophysics Data System (ADS)
Wunsch, T. F.; Treece, R. K.
1995-05-01
A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.
Evaluation of Production Version of the NASA Improved Inorganic-Organic Separator
NASA Technical Reports Server (NTRS)
Sheibley, D.
1983-01-01
The technology of an inorganic-organic (I/O) separator, which demonstrated improved flexibility, reduced cost, production feasibility and improved cycle life was developed. Substrates to replace asbestos and waterbased separator coatings to replace the solvent based coatings were investigated. An improved fuel cell grade asbestos sheet was developed and a large scale production capability for the solvent based I/O separator was demonstrated. A cellulose based substrate and a nonwoven polypropylene fiber substrate were evaluated as replacements for the asbestos. Both the cellulose and polypropylene substrates were coated with solvent based and water based coatings to produce a modified I/O separator. The solvent based coatings were modified to produce aqueous separator coatings with acceptable separator properties. A single ply fuel cell grade asbestos with a binder (BTA) was produced. It has shown to be an acceptable substrate for the solvent and water based separator coatings, an acceptable absorber for alkaline cells, and an acceptable matrix for alkaline fuel cells. The original solvent based separator (K19W1), using asbestos as a substrate, was prepared.
Method for improving the performance of oxidizable ceramic materials in oxidizing environments
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore A. (Inventor)
2002-01-01
Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
NASA Astrophysics Data System (ADS)
Hoarfrost, Adrienne; Snider, Rachel; Arnosti, Carol
2017-02-01
Extracellular enzymatic activities initiate microbially-driven heterotrophic carbon cycling in subsurface sediments. While measurement of hydrolytic activities in sediments is fundamental to our understanding of carbon cycling, these measurements are often technically difficult due to sorption of organic substrates to the sediment matrix. Most methods that measure hydrolysis of organic substrates in sediments rely on recovery of a fluorophore or fluorescently-labeled target substrate from a sediment incubation. The tendency for substrates to sorb to sediments results in lower recovery of an added substrate, and can result in data that are unusable or difficult to interpret. We developed a treatment using competitive desorption of a fluorescently-labeled, high molecular weight organic substrate that improves recovery of the labeled substrate from sediment subsamples. Competitive desorption treatment improved recovery of the fluorescent substrate by a median of 66%, expanded the range of sediments for which activity measurements could be made, and was effective in sediments from a broad range of geochemical contexts. More reliable measurements of hydrolytic activities in sediments will yield usable and more easily interpretable data from a wider range of sedimentary environments, enabling better understanding of microbially-catalyzed carbon cycling in subsurface environments.
Liu, Yanping; Yu, Faquan
2011-04-08
Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.
Berdejo, Stephanie; Rowe, Mark; Bond, John W
2012-03-01
Three relatively new reagents for developing latent fingermarks on porous substrates, 1,2-indandione (IND), 5-methylthioninhydrin (5-MTN), and lawsone, are compared with the more widely used ninhydrin and 1,8-diazofluoren (DFO). Developed latent fingermark visualization on 10 different substrates comprising colored papers, cardboard, and cellophane rather than conventional printer and writing/notepad paper is assessed using latent fingermark deposits from 48 donors. Results show improved fluorescent fingermark visualization using IND compared with DFO on a range of colored cardboards and thick white paper, thus extending the range of substrates known to yield improved visualization with IND. Adding zinc chloride to IND failed to yield any further improvement in fluorescent fingermark visualization. 5-MTN (with and without zinc chloride posttreatment) showed no improvement in visualization compared with ninhydrin and DFO although visible fingermarks were developed. Lawsone produced fluorescent visible fingermarks only with white substrates, which were inferior to those produced with DFO. © 2011 American Academy of Forensic Sciences.
X-Ray Fluorescence Determination of Sulphur in Oils by a Thin Film Method.
1983-09-01
thickness. The procedure utilises a mixture of samp and an alkyd resin to improve adhesion to a Mylar substrate and to reduce sample flow during...thickness. The procedure utilises a mixture of sample and an alkyd resin to improve adhesion to a Mylar substrate and to reduce sample flow during...film. By incorporating an alkyd resin into the sample mixture the adhesion of the oil film to the Mylar sheet substrate is improved to the extent that
Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate
NASA Astrophysics Data System (ADS)
Amanov, Auezhan; Pyun, Young-Sik
2016-07-01
In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.
Microstructure and Antiwear Property of Laser Cladding Ni-Co Duplex Coating on Copper.
Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui
2016-07-28
Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni-Co duplex coatings comprised a Co-based solid solution, Cr₇C₃, (Fe,Ni) 23 C₆, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni-Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni-Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties.
Tsai, Shau-Wei; Chen, Chun-Chi; Yang, Hung-Shien; Ng, I-Son; Chen, Teh-Liang
2006-08-01
In comparison with the biocatalyst engineering and medium engineering approaches, very few examples have been reported on using the substrate engineering approach such as substrate-assisted catalysis (SAC) for naturally occurring or engineered lipases and serine proteases to improve the enzyme activity and enantioselectivity. By employing lipase-catalyzed hydrolysis of (R,S)-naproxen esters in water-saturated isooctane as the model system, we demonstrate the proton shuttle device to the leaving alcohol of the substrate as a new means of SAC to effectively improve the lipase activity or enantioselectivity. The result cannot only provide a strong evidence for the rate-limiting proton transfer for the bond-breaking of tetrahedron intermediate of the acylation step, but also sheds light for performing the hydrolysis, transesterification or aminolysis in organic solvents for the ester substrate that originally lipases cannot catalyze, but now can after introducing the device.
Active substrates improving sensitivity in biomedical fluorescence microscopy
NASA Astrophysics Data System (ADS)
Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.
2005-08-01
Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.
Improvement in surface conditions of electroplated Fe-Pt thick-film magnets
NASA Astrophysics Data System (ADS)
Yanai, T.; Honda, J.; Hamamura, R.; Omagari, Y.; Yamada, H.; Fujita, N.; Takashima, K.; Nakano, M.; Fukunaga, H.
2018-05-01
Fe-Pt thick-films were electroplated on Ta, Ti, Co, Ni, and Cu plates (substrates) using a direct current, and the surface morphology, the magnetic properties, and the crystal structure of the films were evaluated. The films plated on the Co, Ni, and Cu substrates showed much smooth surface compared with those for the Ta and Ti ones, and we confirmed that the Cu plate was the most attractive substrate due to very small cracks after an annealing for L10 ordering. High coercivity (>800 kA/m) for the Cu substrate is almost the same as that for our previous study in which we employed the Ta substrate, and we found that the Cu plate is a hopeful substrate to improve the surface conditions of electroplated Fe-Pt thick-film magnets.
Wafer scale BN on sapphire substrates for improved graphene transport.
Vangala, Shivashankar; Siegel, Gene; Prusnick, Timothy; Snure, Michael
2018-06-11
Wafer scale (2") BN grown by metal organic chemical vapor deposition (MOCVD) on sapphire was examined as a weakly interacting dielectric substrate for graphene, demonstrating improved transport properties over conventional sapphire and SiO 2 /Si substrates. Chemical vapor deposition grown graphene was transferred to BN/sapphire substrates for evaluation of more than 30 samples using Raman and Hall effects measurements. A more than 2x increase in Hall mobility and 10x reduction in sheet carrier density was measured for graphene on BN/sapphire compared to sapphire substrates. Through control of the MOCVD process, BN films with roughness ranging from <0.1 nm to >1 nm were grown and used to study the effects of substrate roughness on graphene transport. Arrays of graphene field effect transistors were fabricated on 2" BN/sapphire substrates demonstrating scalability and device performance enhancement.
The effects of substrate pre-treatment on anaerobic digestion systems: a review.
Carlsson, My; Lagerkvist, Anders; Morgan-Sagastume, Fernando
2012-09-01
Focus is placed on substrate pre-treatment in anaerobic digestion (AD) as a means of increasing biogas yields using today's diversified substrate sources. Current pre-treatment methods to improve AD are being examined with regard to their effects on different substrate types, highlighting approaches and associated challenges in evaluating substrate pre-treatment in AD systems and its influence on the overall system of evaluation. WWTP residues represent the substrate type that is most frequently assessed in pre-treatment studies, followed by energy crops/harvesting residues, organic fraction of municipal solid waste, organic waste from food industry and manure. The pre-treatment effects are complex and generally linked to substrate characteristics and pre-treatment mechanisms. Overall, substrates containing lignin or bacterial cells appear to be the most amendable to pre-treatment for enhancing AD. Approaches used to evaluate AD enhancement in different systems is further reviewed and challenges and opportunities for improved evaluations are identified. Copyright © 2012 Elsevier Ltd. All rights reserved.
Process for metallization of a substrate by irradiative curing of a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
1999-01-01
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by irradiating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface having metallic clusters. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
Process for metallization of a substrate by curing a catalyst applied thereto
Chen, Ken S.; Morgan, William P.; Zich, John L.
2002-10-08
An improved additive process for metallization of substrates is described whereby a catalyst solution is applied to a surface of a substrate. Metallic catalytic clusters can be formed in the catalyst solution on the substrate surface by heating the substrate. Electroless plating can then deposit metal onto the portion of the substrate surface coated with catalyst solution. Additional metallization thickness can be obtained by electrolytically plating the substrate surface after the electroless plating step.
Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.
Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea
2014-08-15
Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends. Copyright © 2014 Elsevier B.V. All rights reserved.
Role of substrate quality on IC performance and yields
NASA Technical Reports Server (NTRS)
Thomas, R. N.
1981-01-01
The development of silicon and gallium arsenide crystal growth for the production of large diameter substrates are discussed. Large area substrates of significantly improved compositional purity, dopant distribution and structural perfection on a microscopic as well as macroscopic scale are important requirements. The exploratory use of magnetic fields to suppress convection effects in Czochralski crystal growth is addressed. The growth of large crystals in space appears impractical at present however the efforts to improve substrate quality could benefit from the experiences gained in smaller scale growth experiments conducted in the zero gravity environment of space.
Goyal, Amit; Kroeger, Donald M.
2003-11-11
A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.
Microstructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper
Wang, Yiyong; Liang, Zhipeng; Zhang, Junwei; Ning, Zhe; Jin, Hui
2016-01-01
Ni–Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al2O3/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning electron microscopy and optical microscopy, and the phases of the coatings were analyzed by X-ray diffraction. Their hardness was measured using a microhardness tester. Experimental results showed that defect-free composite coatings were obtained and that the coatings were metallurgically bonded to the substrates. The surface of the Ni–Co duplex coatings comprised a Co-based solid solution, Cr7C3, (Fe,Ni)23C6, and other strengthening phases. The microhardness and wear resistance of the duplex coatings were significantly improved compared with the Cu substrates. The average microhardness of the cladded coatings was 845.6 HV, which was approximately 8.2 times greater than that of the Cu substrates (102.6 HV). The volume loss of the Cu substrates was approximately 7.5 times greater than that of the Ni–Co duplex coatings after 60 min of sliding wear testing. The high hardness of and lack of defects in the Ni–Co duplex coatings reduced the plastic deformation and adhesive wear of the Cu substrates, resulting in improved wear properties. PMID:28773755
Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R
2015-10-15
Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced "burn-in" effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.
Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.
Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju
2013-11-01
To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.
Masks For Deposition Of Aspherical Optical Surfaces
NASA Technical Reports Server (NTRS)
Rogers, John R.; Martin, John D.
1992-01-01
Masks of improved design developed for use in fabrication of aspherical, rotationally symmetrical surfaces of mirrors, lenses, and lens molds by evaporative deposition onto rotating substrates. In deposition chamber, source and mask aligned with axis of rotation of substrate. Mask shadows source of rotating substrate. Azimuthal opening (as function of radius) in mask proportional to desired thickness (as function of radius) to which material deposited on substrate. Combination of improved masks and modern coating chambers provides optical surfaces comparable or superior to those produced by conventional polishing, computer-controlled polishing, replication from polished molds, and diamond turning, at less cost in material, labor, and capital expense.
Graphene electrodes for stimulation of neuronal cells
NASA Astrophysics Data System (ADS)
Koerbitzer, Berit; Krauss, Peter; Nick, Christoph; Yadav, Sandeep; Schneider, Joerg J.; Thielemann, Christiane
2016-06-01
Graphene has the ability to improve the electrical interface between neuronal cells and electrodes used for recording and stimulation purposes. It provides a biocompatible coating for common electrode materials such as gold and improves the electrode properties. Graphene electrodes are also prepared on SiO2 substrate to benefit from its optical properties like transparency. We perform electrochemical and Raman characterization of gold electrodes with graphene coating and compare them with graphene on SiO2 substrate. It was found that the substrate plays an important role in the performance of graphene and show that graphene on SiO2 substrate is a very promising material combination for stimulation electrodes.
Santos, Mateus P; Marcante, Rafael C; Santana, Thiago T; Tanaka, Henrique S; Funari, Pascoal; Alberton, Luiz R; Faria, Eliete V; Valle, Juliana S; Colauto, Nelson B; Linde, Giani A
2015-01-01
Many alternative compounds have been tested to improve poultry performance but few of them have previously used mycelial-colonized substrate to partially replace standard diet in broiler chickens. The objective of this study was to evaluate broiler chicken production, health, and meat sensory characteristics, with partial replacement of the standard diet by Pleurotus ostreatus-colonized substrate. One hundred fifty 1-day-old male Cobb chicks were given standard diet partially replaced by 0, 5, 10, 100, or 200 g·kg⁻¹ of P. ostreatus-colonized substrate and randomly distributed into five treatments. Each treatment had three replicates, with 10 birds per replicate, totaling 30 birds. The replacement of the standard diet by 10 g·kg⁻¹ of colonized substrate increased (P≤0.05) chicken body mass up to 57% at 21 days, and up to 28% at 42 days. In general, partial replacement of standard diet by colonized substrate increased hematocrits and typical lymphocytes, and reduced low density lipoproteins. Also, it reduced chicken production period up to 21% and there is no meat taste alteration. The use of P. ostreatus-colonized substrate in chicken feeding is an alternative method to improve broiler chicken production.
Nickel enhanced graphene growth directly on dielectric substrates by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Wofford, Joseph M.; Speck, Florian; Seyller, Thomas; Lopes, Joao Marcelo J.; Riechert, Henning
2016-07-01
The efficacy of Ni as a surfactant to improve the crystalline quality of graphene grown directly on dielectric Al2O3(0001) substrates by molecular beam epitaxy is examined. Simultaneously exposing the substrate to a Ni flux throughout C deposition at 950 °C led to improved charge carrier mobility and a Raman spectrum indicating less structural disorder in the resulting nanocrystalline graphene film. X-ray photoelectron spectroscopy confirmed that no residual Ni could be detected in the film and showed a decrease in the intensity of the defect-related component of the C1s level. Similar improvements were not observed when a lower substrate temperature (850 °C) was used. A close examination of the Raman spectra suggests that Ni reduces the concentration of lattice vacancies in the film, possibly by catalytically assisting adatom incorporation.
Wafer bonded virtual substrate and method for forming the same
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcuberta i [Paris, FR
2007-07-03
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
Wafer bonded virtual substrate and method for forming the same
NASA Technical Reports Server (NTRS)
Atwater, Jr., Harry A. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcuberta i (Inventor)
2007-01-01
A method of forming a virtual substrate comprised of an optoelectronic device substrate and handle substrate comprises the steps of initiating bonding of the device substrate to the handle substrate, improving or increasing the mechanical strength of the device and handle substrates, and thinning the device substrate to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. The handle substrate is typically Si or other inexpensive common substrate material, while the optoelectronic device substrate is formed of more expensive and specialized electro-optic material. Using the methodology of the invention a wide variety of thin film electro-optic materials of high quality can be bonded to inexpensive substrates which serve as the mechanical support for an optoelectronic device layer fabricated in the thin film electro-optic material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opachich, Yekaterina; MacPhee, Andrew
A photocathode designs that leverage the grazing incidence geometry yield improvements through the introduction of recessed structures, such as cones, pyramids, pillars or cavities to the photocathode substrate surface. Improvements in yield of up to 20 times have been shown to occur in grazing incidence geometry disclosed herein due to a larger path length of the X-ray photons which better matches the secondary electron escape depth within the photocathode material. A photocathode includes a substrate having a first side and a second side, the first side configured to receive x-ray energy and the second side opposing the first side. Amore » structured surface is associated with the second side of the substrate such that the structured surface includes a plurality of recesses from the second side of the substrate into the substrate.« less
NASA Astrophysics Data System (ADS)
Nooshabadi, Fatemeh; Yang, Hee-Jeong; Cheng, Yunfeng; Xie, Hexin; Rao, Jianghong; Cirillo, Jeffrey D.; Maitland, Kristen C.
2016-03-01
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the most frequent causes of death worldwide. The slow growth rate of Mtb limits progress toward understanding tuberculosis including diagnosis of infections and evaluating therapeutic efficacy. Development of near-infrared (NIR) β-lactamase (BlaC)-specific fluorogenic substrate has made a significant breakthrough in the whole-animal imaging to detect Mtb infection. The reporter enzyme fluorescence (REF) system using a BlaC-specific fluorogenic substrate has improved the detection sensitivity in whole-animal optical imaging down to ~104 colony forming units (CFU) of bacteria, about 100-fold improvement over recombinant strains. However, improvement of detection sensitivity is strongly needed for clinical diagnosis of early stage infection at greater tissue depth. In order to improve detection sensitivity, we have integrated a fiber-based microendoscpe into a whole-animal imaging system to transmit the excitation light from the fiber bundle to the fluorescent target directly and measure fluorescent level using BlaC-specific REF substrate in the mouse lung. REF substrate, CNIR800, was delivered via aerosol route to the pulmonary infected mice with M. bovis BCG strain at 24 hours post-infection and groups of mice were imaged at 1-4 hours post-administration of the substrate using the integrated imaging system. In this study we evaluated the kinetics of CNIR800 substrate using REF technology using the integrated imaging system. Integration of these technologies has great promise for improved detection sensitivity allowing pre-clinical imaging for evaluation of new therapeutic agents.
DICER-ARGONAUTE2 Complex in Continuous Fluorogenic Assays of RNA Interference Enzymes
Bernard, Mark A.; Wang, Leyu; Tachado, Souvenir D.
2015-01-01
Mechanistic studies of RNA processing in the RNA-Induced Silencing Complex (RISC) have been hindered by lack of methods for continuous monitoring of enzymatic activity. “Quencherless” fluorogenic substrates of RNAi enzymes enable continuous monitoring of enzymatic reactions for detailed kinetics studies. Recombinant RISC enzymes cleave the fluorogenic substrates targeting human thymidylate synthase (TYMS) and hypoxia-inducible factor 1-α subunit (HIF1A). Using fluorogenic dsRNA DICER substrates and fluorogenic siRNA, DICER+ARGONAUTE2 mixtures exhibit synergistic enzymatic activity relative to either enzyme alone, and addition of TRBP does not enhance the apparent activity. Titration of AGO2 and DICER in enzyme assays suggests that AGO2 and DICER form a functional high-affinity complex in equimolar ratio. DICER and DICER+AGO2 exhibit Michaelis-Menten kinetics with DICER substrates. However, AGO2 cannot process the fluorogenic siRNA without DICER enzyme, suggesting that AGO2 cannot self-load siRNA into its active site. The DICER+AGO2 combination processes the fluorogenic siRNA substrate (K m=74 nM) with substrate inhibition kinetics (K i=105 nM), demonstrating experimentally that siRNA binds two different sites that affect Dicing and AGO2-loading reactions in RISC. This result suggests that siRNA (product of DICER) bound in the active site of DICER may undergo direct transfer (as AGO2 substrate) to the active site of AGO2 in the DICER+AGO2 complex. Competitive substrate assays indicate that DICER+AGO2 cleavage of fluorogenic siRNA is specific, since unlabeled siRNA and DICER substrates serve as competing substrates that cause a concentration-dependent decrease in fluorescent rates. Competitive substrate assays of a series of DICER substrates in vitro were correlated with cell-based assays of HIF1A mRNA knockdown (log-log slope=0.29), suggesting that improved DICER substrate designs with 10-fold greater processing by the DICER+AGO2 complex can provide a strong (~2800-fold) improvement in potency for mRNA knockdown. This study lays the foundation of a systematic biochemical approach to optimize nucleic acid-based therapeutics for Dicing and ARGONAUTE2-loading for improving efficacy. PMID:25793518
Better Back Contacts for Solar Cells on Flexible Substrates
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Ribelin, Rosine M.
2006-01-01
Improved low-resistance, semitransparent back contacts, and a method of fabricating them, have been developed for solar photovoltaic cells that are made from thin films of I-III-VI2 semiconductor materials on flexible, high-temperatureresistant polyimide substrates or superstrates. The innovative aspect of the present development lies in the extension, to polyimide substrates or superstrates, of a similar prior development of improved low-resistance, semitransparent back contacts for I-III-VI2 solar cells on glass substrates or superstrates. A cell incorporating this innovation can be used either as a stand-alone photovoltaic device or as part of a monolithic stack containing another photovoltaic device that utilizes light of longer wavelengths.
Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas
2015-12-19
Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.
Low, Ze-Xian; Liu, Qi; Shamsaei, Ezzatollah; Zhang, Xiwang; Wang, Huanting
2015-01-01
Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. PMID:25803239
Optically initiated silicon carbide high voltage switch
Caporaso, George J [Livermore, CA; Sampayan, Stephen E [Manteca, CA; Sullivan, James S [Livermore, CA; Sanders,; David, M [Livermore, CA
2011-02-22
An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.
A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.
Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan
2016-05-01
Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
High Quantum Efficiency OLED Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiang, Joseph
The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution processmore » on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.« less
Prevention of corrosion with polyaniline
NASA Technical Reports Server (NTRS)
Ahmad, Naseer (Inventor); MacDiarmid, Alan G. (Inventor)
1997-01-01
Methods for improving the corrosion inhibition of a metal or metal alloy substrate surface are provided wherein the substrate surface is coated with a polyaniline film. The polyaniline film coating is applied by contacting the substrate surface with a solution of polyaniline. The polyaniline is dissolved in an appropriate organic solvent and the solvent is allowed to evaporate from the substrate surface yielding the polyaniline film coating.
Wafer bonded epitaxial templates for silicon heterostructures
Atwater, Jr., Harry A.; Zahler, James M [Pasadena, CA; Morral, Anna Fontcubera I [Paris, FR
2008-03-11
A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.
Wafer bonded epitaxial templates for silicon heterostructures
NASA Technical Reports Server (NTRS)
Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)
2008-01-01
A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.
Pd/Ni-WO3 anodic double layer gasochromic device
Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Liu, Ping
2004-04-20
An anodic double layer gasochromic sensor structure for optical detection of hydrogen in improved response time and with improved optical absorption real time constants, comprising: a glass substrate; a tungsten-doped nickel oxide layer coated on the glass substrate; and a palladium layer coated on the tungsten-doped nickel oxide layer.
Improvement of carbon nanotube field emission properties by ultrasonic nanowelding
NASA Astrophysics Data System (ADS)
Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei
2008-12-01
Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.
Improved FCG-1 cell technology
NASA Astrophysics Data System (ADS)
Breault, R. D.; Congdon, J. V.; Coykendall, R. D.; Luoma, W. L.
1980-10-01
Fuel cell performance in the ribbed substrate cell configuration consistent with that projected for a commercial power plant is demonstrated. Tests were conducted on subscale cells and on two 20 cell stacks of 4.8 MW demonstrator size cell components. These tests evaluated cell stack materials, processes, components, and assembly configurations. The first task was to conduct a component development effort to introduce improvements in 3.7 square foot, ribbed substrate acid cell repeating parts which represented advances in performance, function, life, and lower cost for application in higher pressure and temperature power plants. Specific areas of change were the electrode substrate, catalyst, matrix, seals, separator plates, and coolers. Full sized ribbed substrate stack components incorporating more stable materials were evaluated at increased pressure (93 psia) and temperature (405 F) conditions. Two 20 cell stacks with a 3.7 square feet, ribbed substrate cell configuration were tested.
Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili
2010-05-12
Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.
Kumar, D Dinesh; Kaliaraj, Gobi Saravanan
2018-01-01
Protecting from wear and corrosion of many medical devices in the biomedical field is an existing scientific challenge. Surface modification with multilayer ZrN/Cu coating was deposited on medical grade stainless steel (SS) and titanium substrates to enhance their surface properties. Structural results revealed that the ZrN/Cu coatings are highly crystalline and uniform microstructure on both the substrates. Dry and wet tribological measurements of the coated titanium substrate exhibit enhanced wear resistance and low friction coefficient due to the improved microstructure. Similarly, the corrosion resistance was exceptionally improved on titanium substrates, resulting from the high inertness of coating to the SBF electrolyte solution. Antibacterial activity and epifluorescence results signify the effective killing of pathogens by means of ion release killing as well as contact killing mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shih, Wen-Ching; Huang, Yi-Fan; Wu, Mu-Shiang
2017-10-01
ZnO films with c-axis (0002) orientation have been successfully grown by RF magnetron sputtering on Al2O3/glass substrates. The alumina films were firstly deposited on glass substrates, and then secondly deposited on interdigital transducer/ZnO film/alumina film/glass substrates by electron beam evaporation. The crystalline structure and surface roughness of the films were investigated by X-ray diffraction and atomic force microscopy, respectively. The phase velocity and coupling coefficient of the surface acoustic wave (SAW) device were both increased when we deposited the double alumina layers. On the other hand, the temperature coefficient of frequency becomes better if we increase the thickness of the lower alumina film. The experimental result is beneficial for improving the performance of the ZnO thin-film SAW devices on inexpensive glass substrates.
Coatings on reflective mask substrates
Tong, William Man-Wai; Taylor, John S.; Hector, Scott D.; Mangat, Pawitter J. S.; Stivers, Alan R.; Kofron, Patrick G.; Thompson, Matthew A.
2002-01-01
A process for creating a mask substrate involving depositing: 1) a coating on one or both sides of a low thermal expansion material EUVL mask substrate to improve defect inspection, surface finishing, and defect levels; and 2) a high dielectric coating, on the backside to facilitate electrostatic chucking and to correct for any bowing caused by the stress imbalance imparted by either other deposited coatings or the multilayer coating of the mask substrate. An film, such as TaSi, may be deposited on the front side and/or back of the low thermal expansion material before the material coating to balance the stress. The low thermal expansion material with a silicon overlayer and a silicon and/or other conductive underlayer enables improved defect inspection and stress balancing.
NASA Astrophysics Data System (ADS)
Gao, Haiyong; Yan, Fawang; Zhang, Yang; Li, Jinmin; Zeng, Yiping; Wang, Guohong
2008-01-01
Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS.
Resistive hydrogen sensing element
Lauf, Robert J.
2000-01-01
Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.
2014-09-01
Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less
Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate
NASA Astrophysics Data System (ADS)
Chan, Chia-Hua; Hou, Chia-Hung; Tseng, Shao-Ze; Chen, Tsing-Jen; Chien, Hung-Ta; Hsiao, Fu-Li; Lee, Chien-Chieh; Tsai, Yen-Ling; Chen, Chii-Chang
2009-07-01
This letter describes the improved output power of GaN-based light-emitting diodes (LEDs) formed on a nanopatterned sapphire substrate (NPSS) prepared through etching with a self-assembled monolayer of 750-nm-diameter SiO2 nanospheres used as the mask. The output power of NPSS LEDs was 76% greater than that of LEDs on a flat sapphire substrate. Three-dimensional finite-difference time-domain calculation predicted a 40% enhancement in light extraction efficiency of NPSS LEDs. In addition, the reduction of full widths at half maximum in the ω-scan rocking curves for the (0 0 2) and (1 0 2) planes of GaN on NPSS suggested improved crystal quality.
Tribology of nitrided-coated steel-a review
NASA Astrophysics Data System (ADS)
Bhaskar, Santosh V.; Kudal, Hari N.
2017-01-01
Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.
Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-11-16
Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Qun; Degano, Alicia L.; Penati, Judith; Zhuo, Justin; Roe, Charles R.; Ronnett, Gabriele V.
2014-01-01
Rett syndrome (RTT) is an autism spectrum disorder (ASD) caused by mutations in the X-linked MECP2 gene that encodes methyl-CpG binding protein 2 (MeCP2). Symptoms range in severity and include psychomotor disabilities, seizures, ataxia, and intellectual disability. Symptom onset is between 6-18 months of age, a critical period of brain development that is highly energy-dependent. Notably, patients with RTT have evidence of mitochondrial dysfunction, as well as abnormal levels of the adipokines leptin and adiponectin, suggesting overall metabolic imbalance. We hypothesized that one contributor to RTT symptoms is energy deficiency due to defective nutrient substrate utilization by the TCA cycle. This energy deficit would lead to a metabolic imbalance, but would be treatable by providing anaplerotic substrates to the TCA cycle to enhance energy production. We show that dietary therapy with triheptanoin significantly increased longevity and improved motor function and social interaction in male mice hemizygous for Mecp2 knockout. Anaplerotic therapy in Mecp2 knockout mice also improved indicators of impaired substrate utilization, decreased adiposity, increased glucose tolerance and insulin sensitivity, decreased serum leptin and insulin, and improved mitochondrial morphology in skeletal muscle. Untargeted metabolomics of liver and skeletal muscle revealed increases in levels of TCA cycle intermediates with triheptanoin diet, as well as normalizations of glucose and fatty acid biochemical pathways consistent with the improved metabolic phenotype in Mecp2 knockout mice on triheptanoin. These results suggest that an approach using dietary supplementation with anaplerotic substrate is effective in improving symptoms and metabolic health in RTT. PMID:25299635
A Bottom-Up Proteomic Approach to Identify Substrate Specificity of Outer-Membrane Protease OmpT.
Wood, Sarah E; Sinsinbar, Gaurav; Gudlur, Sushanth; Nallani, Madhavan; Huang, Che-Fan; Liedberg, Bo; Mrksich, Milan
2017-12-22
Identifying peptide substrates that are efficiently cleaved by proteases gives insights into substrate recognition and specificity, guides development of inhibitors, and improves assay sensitivity. Peptide arrays and SAMDI mass spectrometry were used to identify a tetrapeptide substrate exhibiting high activity for the bacterial outer-membrane protease (OmpT). Analysis of protease activity for the preferred residues at the cleavage site (P1, P1') and nearest-neighbor positions (P2, P2') and their positional interdependence revealed FRRV as the optimal peptide with the highest OmpT activity. Substituting FRRV into a fragment of LL37, a natural substrate of OmpT, led to a greater than 400-fold improvement in OmpT catalytic efficiency, with a k cat /K m value of 6.1×10 6 L mol -1 s -1 . Wild-type and mutant OmpT displayed significant differences in their substrate specificities, demonstrating that even modest mutants may not be suitable substitutes for the native enzyme. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advancements in anti-reflective surface structures (ARSS) for near- to mid-infrared optics
NASA Astrophysics Data System (ADS)
Florea, Catalin M.; Busse, Lynda E.; Bayya, Shyam S.; Shaw, Brandon; Aggarwal, Ish D.; Sanghera, Jas S.
2013-06-01
Fused silica, YAG crystals, and spinel ceramics substrates have been successfully patterned through reactive ion etching (RIE). Reflection losses as low as 0.1% have been demonstrated for fused silica at 1.06 microns. Laser damage thresholds have been measured for substrates with ARSS and compared with uncoated and/or thin-film anti-reflection (AR) coated substrates. Thresholds as high as 100 J/cm2 have been demonstrated in fused silica with ARSS at 1.06 microns, with ARSS substrates showing improved thresholds when compared with uncoated substrates.
Heat pipe with improved wick structures
Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.
2000-01-01
An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.
Novel immobilization of a quaternary ammonium moiety on keratin fibers for medical applications.
Yu, Dan; Cai, Jackie Y; Liu, Xin; Church, Jeffrey S; Wang, Lijing
2014-09-01
This paper introduces a new approach for immobilizing a quaternary ammonium moiety on a keratinous substrate for enhanced medical applications. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in the keratin, followed by reaction with [2-(acryloyloxy)ethyl]trimethylammonium chloride through thiol-ene click chemistry. The modified substrate was characterized with Raman and infrared spectroscopy, and assessed for its antibacterial efficacy and other performance changes. The results have demonstrated that the quaternary ammonium moiety has been effectively attached onto the keratin structure, and the resultant keratin substrate exhibits a multifunctional effect including antibacterial and antistatic properties, improved liquid moisture management property, improved dyeability and a non-leaching characteristic of the treated substrate. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.
2013-01-01
Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521
NASA Astrophysics Data System (ADS)
Tiwari, Durgesh Laxman; Sivasankaran, K.
This paper presents improved performance of Double Gate Graphene Nanomesh Field Effect Transistor (DG-GNMFET) with h-BN as substrate and gate oxide material. The DC characteristics of 0.95μm and 5nm channel length devices are studied for SiO2 and h-BN substrate and oxide material. For analyzing the ballistic behavior of electron for 5nm channel length, von Neumann boundary condition is considered near source and drain contact region. The simulated results show improved saturation current for h-BN encapsulated structure with two times higher on current value (0.375 for SiO2 and 0.621 for h-BN) as compared to SiO2 encapsulated structure. The obtained result shows h-BN to be a better substrate and oxide material for graphene electronics with improved device characteristics.
Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R.
2010-01-01
Background Bioluminescence imaging (BLI) permits the noninvasive quantitation and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. Methods With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. Results In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were 8–15 times higher than that of the prototypical RLuc-native coelenterazine combination. Conclusions Our results demonstrate that substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and that appropriate selection of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI. PMID:20527045
Kimura, Takahiro; Hiraoka, Kei; Kasahara, Noriyuki; Logg, Christopher R
2010-06-01
Bioluminescence imaging (BLI) permits the non-invasive quantification and localization of transduction and expression by gene transfer vectors. The tendency of tissue to attenuate light in the optical region, however, limits the sensitivity of BLI. Improvements in light output from bioluminescent reporter systems would allow the detection of lower levels of expression, smaller numbers of cells and expression from deeper and more attenuating tissues within an animal. With the goal of identifying substrates that allow improved sensitivity with Renilla luciferase (RLuc) and Gaussia luciferase (GLuc) reporter genes, we evaluated native coelenterazine and three of its most promising derivatives in BLI of cultured cells transduced with retroviral vectors encoding these reporters. Of the eight enzyme-substrate pairs tested, the two that performed best were further evaluated in mice to compare their effectiveness for imaging vector-modified cells in live animals. In cell culture, we observed striking differences in luminescence levels from the various enzyme-substrate combinations and found that the two luciferases exhibited markedly distinct abilities to generate light with the substrates. The most effective pairs were RLuc with the synthetic coelenterazine derivative ViviRen, and GLuc with native coelenterazine. In animals, these two pairs allowed similar detection sensitivities, which were eight- to 15-fold higher than that of the prototypical RLuc-native coelenterazine combination. Substrate selection can dramatically influence the detection sensitivity of RLuc and GLuc and appropriate choice of substrate can greatly improve the performance of reporter genes encoding these enzymes for monitoring gene transfer by BLI.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2007-06-01
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. For the substrate, surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. AHA was useful for pretreatment before film deposition on a plastic substrate because the changes in surface state relate to adhesion improvement. It is concluded that this method is a promising technique for preparing high-performance plastic substrates at low temperatures.
An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates.
Molle, Virginie; Leiba, Jade; Zanella-Cléon, Isabelle; Becchi, Michel; Kremer, Laurent
2010-11-01
Identification of the phosphorylated residues of bacterial Ser/Thr protein kinase (STPK) substrates still represents a challenging task. Herein, we present a new strategy allowing the rapid determination of phosphoacceptors in kinase substrates, essentially based on the dual expression of the kinase with its substrate in the surrogate E. coli, followed by MS analysis in a single-step procedure. The performance of this strategy is illustrated using two distinct proteins from Mycobacterium tuberculosis as model substrates, the GroEL2 and HspX chaperones. A comparative analysis with a standard method that includes mass spectrometry analysis of in vitro phosphorylated substrates is also addressed.
Bosshart, Andreas; Hee, Chee Seng; Bechtold, Matthias; Schirmer, Tilman; Panke, Sven
2015-03-02
Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jażdżewska, Anna M.; Corbari, Laure; Driskell, Amy; Frutos, Inmaculada; Havermans, Charlotte; Hendrycks, Ed; Hughes, Lauren; Lörz, Anne-Nina; Bente Stransky; Tandberg, Anne Helene S.; Vader, Wim; Brix, Saskia
2018-01-01
Abstract Amphipods constitute an abundant part of Icelandic deep-sea zoobenthos yet knowledge of the diversity of this fauna, particularly at the molecular level, is scarce. The present work aims to use molecular methods to investigate genetic variation of the Amphipoda sampled during two IceAGE collecting expeditions. The mitochondrial cytochrome oxidase subunit 1 (COI) of 167 individuals originally assigned to 75 morphospecies was analysed. These targeted morhospecies were readily identifiable by experts using light microscopy and representative of families where there is current ongoing taxonomic research. The study resulted in 81 Barcode Identity Numbers (BINs) (of which >90% were published for the first time), while Automatic Barcode Gap Discovery revealed the existence of 78 to 83 Molecular Operational Taxonomic Units (MOTUs). Six nominal species (Rhachotropis helleri, Arrhis phyllonyx, Deflexilodes tenuirostratus, Paroediceros propinquus, Metopa boeckii, Astyra abyssi) appeared to have a molecular variation higher than the 0.03 threshold of both p-distance and K2P usually used for amphipod species delineation. Conversely, two Oedicerotidae regarded as separate morphospecies clustered together with divergences in the order of intraspecific variation. The incongruence between the BINs associated with presently identified species and the publicly available data of the same taxa was observed in case of Paramphithoe hystrix and Amphilochus manudens. The findings from this research project highlight the necessity of supporting molecular studies with thorough morphology species analyses. PMID:29472762
Geslin, C.; Gaillard, M.; Flament, D.; Rouault, K.; Le Romancer, M.; Prieur, D.; Erauso, G.
2007-01-01
Only one virus-like particle (VLP) has been reported from hyperthermophilic Euryarchaeotes. This VLP, named PAV1, is shaped like a lemon and was isolated from a strain of “Pyrococcus abyssi,” a deep-sea isolate. Its genome consists of a double-stranded circular DNA of 18 kb which is also present at a high copy number (60 per chromosome) free within the host cytoplasm but is not integrated into the host chromosome. Here, we report the results of complete analysis of the PAV1 genome. All the 25 predicted genes, except 3, are located on one DNA strand. A transcription map has been made by using a reverse transcription-PCR assay. All the identified open reading frames (ORFs) are transcribed. The most significant similarities relate to four ORFs. ORF 180a shows 31% identity with ORF 181 of the pRT1 plasmid isolated from Pyrococcus sp. strain JT1. ORFs 676 and 678 present similarities with a concanavalin A-like lectin/glucanase domain, which could be involved in the process of host-virus recognition, and ORF 59 presents similarities with the transcriptional regulator CopG. The genome of PAV1 displays unique features at the nucleic and proteinic level, indicating that PAV1 should be attached at least to a novel genus or virus family. PMID:17449623
Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick
2010-01-01
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814
NASA Astrophysics Data System (ADS)
Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin
2014-01-01
A simple thermal cycle annealing (TCA) process was used to improve the quality of GaN grown on a Si substrate. The X-ray diffraction (XRD) and etch pit density (EPD) results revealed that using more process cycles, the defect density cannot be further reduced. However, the performance of GaN-based metal-semiconductor-metal (MSM) photodiodes (PDs) prepared on Si substrates showed significant improvement. With a two-cycle TCA process, it is found that the dark current of the device was only 1.46 × 10-11 A, and the photo-to-dark-current contrast ratio was about 1.33 × 105 at 5 V. Also, the UV/visible rejection ratios can reach as high as 1077.
Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant
2014-01-21
Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.
Photoresist substrate having robust adhesion
Dentinger, Paul M [Sunol, CA
2005-07-26
A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.
NASA Astrophysics Data System (ADS)
Corti, Giancarlo; Brown, Justin; Rajabi, Negar; McIlroy, D. N.
2018-03-01
The growth efficiency of one-dimension (1D) nanostructures via the vapor-liquid-solid process is commonly attributed to parameters such as precursor vapor pressure, substrate temperature, and the choice of the catalyst. The work presented herein is an investigation of the use of silica nanosprings (SNs) as a 3D substrate for improving the growth efficiency of SN themselves. SNs are a 1D nanomaterial that form a nonwoven structure with optimal geometric characteristics and surface properties that mitigate collisions between growing nanosprings and ripening of the gold catalyst, which should improve SN yield. Nanospring growth, for an eight hour period, on an SN coated surface relative to an equivalent flat substrate increased from ≈25 mgh-1 to ≈80 mgh-1, respectively. All things being equal, by splitting the typical amount of catalyst, in this case gold, between the first and second growth, the double growth procedure produced more than three times more nanosprings than the equivalent single growth of a SN. In addition, using an SN as a substrate increased the sustained growth condition from four to eight hours, and thus increased by a factor of ten the gravimetric yield of SNs relative to the mass of gold used.
Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping
NASA Astrophysics Data System (ADS)
Kwon, Youngim; Yang, Changyol; Yoon, Sang-Hwa; Um, Han-Don; Lee, Jung-Ho; Yoo, Bongyoung
2013-11-01
A major goal in solar cell research is to reduce the cost of the final module. Reducing the thickness of the crystalline silicon substrate to several tens of micrometers can reduce material costs. In this work, we describe the electrodeposition of a Ni-P alloy, which induces high stress in the silicon substrate at room temperature. The induced stress enables lift-off of the thin-film silicon substrate. After lift-off of the thin Si film, the mother substrate can be reused, reducing material costs. Moreover, the low-temperature process expected to be improved Si substrate quality.
High power RF window deposition apparatus, method, and device
Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel
2017-07-04
A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.
Radiation tolerant back biased CMOS VLSI
NASA Technical Reports Server (NTRS)
Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)
2003-01-01
A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.
Pure silver ohmic contacts to N- and P- type gallium arsenide materials
Hogan, Stephen J.
1986-01-01
Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.
Group I-III-VI.sub.2 semiconductor films for solar cell application
Basol, Bulent M.; Kapur, Vijay K.
1991-01-01
This invention relates to an improved thin film solar cell with excellent electrical and mechanical integrity. The device comprises a substrate, a Group I-III-VI.sub.2 semiconductor absorber layer and a transparent window layer. The mechanical bond between the substrate and the Group I-III-VI.sub.2 semiconductor layer is enhanced by an intermediate layer between the substrate and the Group I-III-VI.sub.2 semiconductor film being grown. The intermediate layer contains tellurium or substitutes therefor, such as Se, Sn, or Pb. The intermediate layer improves the morphology and electrical characteristics of the Group I-III-VI.sub.2 semiconductor layer.
Process for radiation grafting hydrogels onto organic polymeric substrates
Ratner, Buddy D.; Hoffman, Allan S.
1976-01-01
An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.
Dong, Daming; Jiao, Leizi; Du, Xiaofan; Zhao, Chunjiang
2017-04-20
In this study, we developed a substrate to enhance the sensitivity of LIBS by 5 orders of magnitude. Using a combination of field enhancement due to the metal nanoparticles in the substrate, the aggregate effect of super-hydrophobic interfaces and magnetic confinement, we performed a quantitative measurement of copper in solution with concentrations on the ppt level. We also demonstrated that the substrate improves quantitative measurements by providing an opportunity for internal standardization.
Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert
2002-01-01
A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Chen, Yiqing; Luo, Alan A.
2014-12-01
"Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.
NASA Astrophysics Data System (ADS)
Kaabi, Abderrahmen; Bienvenu, Yves; Ryckelynck, David; Pierre, Bertrand
2014-03-01
Power electronics modules (>100 A, >500 V) are essential components for the development of electrical and hybrid vehicles. These modules are formed from silicon chips (transistors and diodes) assembled on copper substrates by soldering. Owing to the fact that the assembly is heterogeneous, and because of thermal gradients, shear stresses are generated in the solders and cause premature damage to such electronics modules. This work focuses on architectured materials for the substrate and on lead-free solders to reduce the mechanical effects of differential expansion, improve the reliability of the assembly, and achieve a suitable operating temperature (<175°C). These materials are composites whose thermomechanical properties have been optimized by numerical simulation and validated experimentally. The substrates have good thermal conductivity (>280 W m-1 K-1) and a macroscopic coefficient of thermal expansion intermediate between those of Cu and Si, as well as limited structural evolution in service conditions. An approach combining design, optimization, and manufacturing of new materials has been followed in this study, leading to improved thermal cycling behavior of the component.
Lightweight Electrode For Nickel/Hydrogen Cell
NASA Technical Reports Server (NTRS)
Britton, Doris L.
1994-01-01
Improved substrate for nickel electrode increases specific energy of nickel/hydrogen cell. Consists of 50 percent by weight nickel fiber, 35 percent nickel powder, and 15 percent cobalt powder. Porosity and thickness of nickel electrodes affect specific energy, initial performance, and cycle life of cell. Substrate easily manufactured with much larger porosities than those of heavy-sintered state-of-art nickel substrate.
Re-polarization of nuclear spins using selective SABRE-INEPT.
Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L
2018-02-01
A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH 2 , the H 2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε. For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε≈260 for 15 N nuclei, whereas SABRE-INEPT with re-polarization yields ε>2000. We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Re-polarization of nuclear spins using selective SABRE-INEPT
NASA Astrophysics Data System (ADS)
Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.
2018-02-01
A method is proposed for significant improvement of NMR pulse sequences used in high-field SABRE (Signal Amplification By Reversible Exchange) experiments. SABRE makes use of spin order transfer from parahydrogen (pH2, the H2 molecule in its singlet spin state) to a substrate in a transient organometallic Ir-based complex. The technique proposed here utilizes "re-polarization", i.e., multiple application of an NMR pulse sequence used for spin order transfer. During re-polarization only the form of the substrate, which is bound to the complex, is excited by selective NMR pulses and the resulting polarization is transferred to the free substrate via chemical exchange. Owing to the fact that (i) only a small fraction of the substrate molecules is in the bound form and (ii) spin relaxation of the free substrate is slow, the re-polarization scheme provides greatly improved NMR signal enhancement, ε . For instance, when pyridine is used as a substrate, single use of the SABRE-INEPT sequence provides ε ≈ 260 for 15N nuclei, whereas SABRE-INEPT with re-polarization yields ε > 2000 . We anticipate that the proposed method is useful for achieving maximal NMR enhancement with spin hyperpolarization techniques.
NASA Astrophysics Data System (ADS)
Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd
In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.
Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles
NASA Astrophysics Data System (ADS)
Liu, Aiguo; Guo, Mianhuan; Hu, Hailong
2010-08-01
Surface of a low carbon steel Q235 substrate was melted by a plasma torch, and tungsten carbide (WC) particles were injected into the melt pool. WC reinforced surface metal matrix composite (MMC) was synthesized. Dry sliding wear behavior of the surface MMC was studied and compared with the substrate. The results show that dry sliding wear resistance of low carbon steel can be greatly improved by plasma melt injection of WC particles. Hardness of the surface MMC is much higher than that of the substrate. The high hardness lowers the adhesion and abrasion of the surface MMC, and also the friction coefficient of it. The oxides formed in the sliding process also help to lower the friction coefficient. In this way, the dry sliding wear resistance of the surface MMC is greatly improved.
Bitterlich, Michael; Franken, Philipp; Graefe, Jan
2018-01-01
Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria; Goradia, Chandra; Goradia, Manju; Thomas, Ralph D.; Brinker, David J.; Fatemi, Navid S.; Honecy, Frank S.
1991-01-01
Preliminary results indicate that Cd-doped substrates are better candidates for achieving high efficiency solar cells fabricated by closed-ampoule sulfur (S) diffusion than Zn-doped substrates. The differences in performance parameters (i.e., 14.3 percent efficiency for Cd-doped vs. 11.83 percent in the case of Zn-doped substrates of comparable doping and etch pit densities) were explained in terms of a large increase in dislocation density as a result of S diffusion in the case of Zn-doped as compared to Cd-doped substrates. The In(x)S(y) and probably Zn(S) precipitates in the case of Zn-doped substrates, produce a dead layer which extends deep below the surface and strongly affects the performance parameters. It should be noted that the cells had an unoptimized single layer antireflective coating of SiO, a grid shadowing of 6.25 percent, and somewhat poor contacts, all contributing to a reduction in efficiency. It is believed that by reducing the external losses and further improvement in cell design, efficiencies approaching 17 percent at 1 AMO, 25 degrees should be possible for cells fabricated on these relatively high defect density Cd-doped substrates. Even higher efficiencies, 18 to 19 percent should be possible by using long-lifetime substrates and further improving front surface passivation. If solar cells fabricated on Cd-doped substrates turn out to have comparable radiation tolerance as those reported in the case of cells fabricated on Zn-doped substrates, then for certain space missions 18 to 19 percent efficient cells made by this method of fabrication would be viable.
Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials
Hogan, S.J.
1983-03-13
Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.
Wang, Dongxia; Baudys, Jakub; Ye, Yiming; Rees, Jon C.; Barr, John R.; Pirkle, James L.; Kalb, Suzanne R.
2015-01-01
Botulinum neurotoxins (BoNTs) are a family of seven toxin serotypes that are the most toxic substances known to man. Intoxication with BoNT causes flaccid paralysis and can lead to death if untreated with serotype specific antibodies. Supportive care, including ventilation, may be necessary. Rapid and sensitive detection of BoNT is necessary for timely clinical confirmation of clinical botulism. Previously, our laboratory developed a fast and sensitive mass spectrometry (MS) method termed the Endopep-MS assay. The BoNT serotypes are rapidly detected and differentiated by extracting the toxin with serotype specific antibodies and detecting the unique and serotype specific cleavage products of peptide substrates that mimic the sequence of the BoNT native targets. To further improve the sensitivity of the Endopep-MS assay, we report here the optimization of the substrate peptide for the detection of BoNT/A. Modifications on the terminal groups of the original peptide substrate with acetylation and amidation significantly improved the detection of BoNT/A cleavage products. The replacement of some internal amino acid residues with single or multiple substitutions led to further improvement. An optimized peptide increased assay sensitivity five fold with toxin spiked into buffer solution or different biological matrices. PMID:23017875
Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong
2016-02-21
Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.
Exercise in muscle glycogen storage diseases.
Preisler, Nicolai; Haller, Ronald G; Vissing, John
2015-05-01
Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.
Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.
2004-01-01
Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785
Lu, Wen-Tong P.; Garcia, Earl R.
1983-01-01
Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.
d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard
2016-02-10
Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification of synergistic impacts during anaerobic co-digestion of organic wastes.
Astals, S; Batstone, D J; Mata-Alvarez, J; Jensen, P D
2014-10-01
Anaerobic co-digestion has been widely investigated, but there is limited analysis of interaction between substrates. The objective of this work was to assess the role of carbohydrates, protein and lipids in co-digestion behaviour separately, and together. Two sets of batch tests were done, each set consisting of the mono-digestion of three substrates, and the co-digestion of seven mixtures. The first was done with pure substrates--cellulose, casein and olive oil--while in the second slaughterhouse waste--paunch, blood and fat--were used as carbohydrate, protein and lipid sources, respectively. Synergistic effects were mainly improvement of process kinetics without a significant change in biodegradability. Kinetics improvement was linked to the mitigation of inhibitory compounds, particularly fats dilution. The exception was co-digestion of paunch with lipids, which resulted in an improved final yield with model based analysis indicating the presence of paunch improved degradability of the fatty feed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Resistance training and mitochondrial metabolism
USDA-ARS?s Scientific Manuscript database
Objective: To determine if resistance exercise training improves skeletal muscle substrate oxidative capacity in older adults. Background: A decline in skeletal muscle oxidative capacity occurs with aging. Aerobic exercise increases skeletal muscle’s ability to oxidize multiple substrates. Th...
[Biogas production from cellulose-containing substrates: a review].
Tsavkelova, E A; Netrusov, A I
2012-01-01
Anaerobic microbial conversion of organic substrates to various biofuels is one of the alternative energy sources attracting the greatest attention of scientists. The advantages of biogas production over other technologies are the ability of methanogenic communities to degrade a broad range of substrates and concomitant benefits: neutralization of organic waste, reduction of greenhouse gas emission, and fertilizer production. Cellulose-containing materials are a good substrate, but their full-scale utilization encounters a number of problems, including improvement of the quality and amount ofbiogas produced and maintenance of the stability and high efficiency of microbial communities. We review data on microorganisms that form methanogenic cellulolytic communities, enzyme complexes of anaerobes essential for cellulose fiber degradation, and feedstock pretreatment, as biodegradation is hindered in the presence of lignin. Methods for improving biogas production by optimization of microbial growth conditions are considered on the examples of biogas formation from various types of plant and paper materials: writing paper and cardboard.
NASA Astrophysics Data System (ADS)
Wang, Meng; Wang, Bin; Wu, Shixuan; Guo, Tingke; Li, Haoyu; Guo, Zhaoqing; Wu, Junhua; Jia, Peiyuan; Wang, Yuxia; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou
2015-02-01
We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.
Thin glass substrates for mobile applications
NASA Astrophysics Data System (ADS)
Mauch, Reiner H.; Wegener, Holger; Kruse, Anke; Hildebrand, Norbert
2000-10-01
Flat panel displays play an important role as the visual interface for today's electronic devices (Notebook computers, PDA's, pagers, mobile phones, etc.). Liquid Crystal Display's are dominating the market. While for higher resolution displays active matrix displays like Thin Film Transistor LCD's are used, portable devices are mainly using Super Twisted Nematic (STN) displays. Based on the application, STN displays for mobile applications require thinner glass substrates with improved surface quality at a lower cost. The requirements and trends for STN glass substrates are identified and discussed. Different glass manufacturing processes are used today for the manufacture of these substrates. Advantages and disadvantages of the different glass substrate types are presented and discussed.
Influence of design variables on radiation hardness of silicon MINP solar cells
NASA Technical Reports Server (NTRS)
Anderson, W. A.; Solaun, S.; Rao, B. B.; Banerjee, S.
1985-01-01
Metal-insulator-N/P silicon (MINP) solar cells were fabricated using different substrate resistivity values, different N-layer designs, and different I-layer designs. A shallow junction into an 0.3 ohm-cm substrate gave best efficiency whereas a deeper junction into a 1 to 4 ohm-cm substrate gave improved radiation hardness. I-layer design variation did little to influence radiation hardness.
Article having an improved platinum-aluminum-hafnium protective coating
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)
2005-01-01
An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.
U.S. Army Research Laboratory Annual Review 2011
2011-12-01
pioneered a defect reduction process using thermal cycle annealing (TCA) for improving mercury cadmium telluride ( MCT ) grown on scalable silicon (Si...substrates. Currently, the use of MCT -- a mainstay material for Army infrared (IR) systems -- is limited due to high levels of dislocations when...grown on scalable substrates such as Si (an inexpensive substrate material). These dislocations increase pixel noise and limit IR focal plane array
Isikhuemhen, Omoanghe S; Mikiashvilli, Nona A
2009-11-01
Solid waste from anaerobic digestion of litter from the commercial production of broiler chickens has limited use as fertilizer. Its disposal is a major problem for digester operators who are seeking alternative use for anaerobic digester solids, also referred to as solid waste (SW). The use of SW as substrates for the cultivation of Pleurotus ostreatus strain MBFBL400 was investigated. Lignocellulolytic enzymes activity, substrate utilization, and mushroom yield were evaluated in ten different substrate combinations (SCs) containing varying amounts of solid waste, wheat straw, and millet. Nutritional content of mushrooms produced on the different substrates was also determined. Substrates containing 70-80% wheat straw, 10-20% SW, and 10-20% millet were found to produce the highest mushroom yield (874.8-958.3 g/kg). Loss of organic matter in all SCs tested varied from 45.8% to 56.2%, which had positive correlation with the biological efficiency. Laccase, peroxidase, and carboxymethylcellulase (CMCase) activities were higher before fruiting, whereas xylanase showed higher activities after mushroom fruiting. SW increased the nutritional content in mushrooms harvested, and the combination of wheat straw and SW with millet significantly improved mushroom yield. Our findings demonstrated the possibility of utilizing anaerobic digester solids in mushroom cultivation. The application of SW as such could improve the financial gains in the overall economy of anaerobic digester plants.
Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.
2015-01-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138
Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W
2015-10-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Electrical characterization of anodic alumina substrate with via-in-pad structure
NASA Astrophysics Data System (ADS)
Kim, Moonjung
2013-10-01
An anodic alumina substrate has been developed as a package substrate for dynamic random access memory devices. Unlike the conventional package substrates commonly made by laminating an epoxy-based core and cladding with copper, this substrate is fabricated using aluminum anodization technology. The anodization process produces a thick aluminum oxide layer on the aluminum substrate to be used as a dielectric layer. Placing copper patterns on the anodic aluminum oxide layer forms a new substrate structure that consists of a layered structure of aluminum, anodic aluminum oxide, and copper. Using selective anodization in the fabrication process, a via structure connecting the top copper layer and bottom aluminum layer is demonstrated. Additionally, by putting vias directly in the bond and ball pads in the substrate design, the via-in-pad structure is applied in this work. These two-layer metal structures and via-in-pad arrangements make routing easier and thus provide more design flexibility. Additionally, this new package substrate has improved the power distribution network impedance given the characteristics of these structures.
Method of applying a cerium diffusion coating to a metallic alloy
Jablonski, Paul D [Salem, OR; Alman, David E [Benton, OR
2009-06-30
A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).
Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate
NASA Technical Reports Server (NTRS)
Qiu, Y.; Uhl, D.
2002-01-01
InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.
NASA Astrophysics Data System (ADS)
Guo, Lei; Zhang, Chang Xing; Deng, Li; Zhang, Guo Xin; Xu, Hai Jun; Sun, Xiao Ming
2014-06-01
A green, low-cost and highly efficient surface-enhanced Raman scattering (SERS) substrate was achieved by a chemical deposition of silver nanoparticles on a cicada wing, which has the large-scale nanosized protrusions on its surface. Employing the already-formed Ag/cicada wing as substrate for SERS detection, the detection limit for rhodamine 6G could reach 10-7M, the Raman enhancement factor of the substrate was as large as 106 and the relative standard deviation remains lower than 7%. The three-dimensional finite-difference time-domain simulation results showed that two types of inter-Ag-nanoparticle nanogaps in the formed geometry created a huge number of SERS "hot spots" where the electromagnetic field is substantially amplified and contributes to the higher SERS sensitivity. Meanwhile, the water contact angle of the SERS substrate is roughly 150°, which indicates the super-hydrophobic surface of the substrate. This feature may be conducive to the gathering of target molecules during the SERS detection, which in turn further improves the detection limit of target molecules. In order to improve the application of the substrate, thiram was used as the probe molecule, and the detection limit also reached 10-7 M. Meanwhile, the calibration of the Raman peak intensities of Rhodamine 6G and thiram allowed their quantitative detection. Therefore, the green and low-cost SERS substrates could be used for fast and quantitative detection of trace organic molecules. Our findings may contribute to the development of the green and low-cost SERS substrates and will allow the fast and quantitative detection of trace organic molecules.
Deposition method for producing silicon carbide high-temperature semiconductors
Hsu, George C.; Rohatgi, Naresh K.
1987-01-01
An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.
Substrates suitable for deposition of superconducting thin films
Feenstra, Roeland; Boatner, Lynn A.
1993-01-01
A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.
Superconducting thin films on potassium tantalate substrates
Feenstra, Roeland; Boatner, Lynn A.
1992-01-01
A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.
IMPROVED EQUIPMENT CLEANING IN COATED AND LAMINATED SUBSTRATE MANUFACTURING FACILITIES (PHASE II)
The report discusses EPA efforts to identify, demonstrate, and publish pollution prevention information and opportunities for equipment cleaning for the coated and laminated substrate manufacturing industry. It summarizes initial data collected and summarized during industry obse...
Improved process for epitaxial deposition of silicon on prediffused substrates
NASA Technical Reports Server (NTRS)
Clarke, M. G.; Halsor, J. L.; Word, J. C.
1968-01-01
Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction.
NASA Astrophysics Data System (ADS)
Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata
2018-02-01
It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.
CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.
1995-05-01
Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.
Holt film wall shear instrumentation for boundary layer transition research
NASA Technical Reports Server (NTRS)
Schneider, Steven P.
1994-01-01
Measurements of the performance of hot-film wall-shear sensors were performed to aid development of improved sensors. The effect of film size and substrate properties on the sensor performance was quantified through parametric studies carried out both electronically and in a shock tube. The results show that sensor frequency response increases with decreasing sensor size, while at the same time sensitivity decreases. Substrate effects were also studied, through parametric variation of thermal conductivity and heat capacity. Early studies used complex dual-layer substrates, while later studies were designed for both single-layer and dual-layer substrates. Sensor failures and funding limitations have precluded completion of the substrate thermal-property tests.
Vitreous carbon mask substrate for X-ray lithography
Aigeldinger, Georg [Livermore, CA; Skala, Dawn M [Fremont, CA; Griffiths, Stewart K [Livermore, CA; Talin, Albert Alec [Livermore, CA; Losey, Matthew W [Livermore, CA; Yang, Chu-Yeu Peter [Dublin, CA
2009-10-27
The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.
IMPROVED EQUIPMENT CLEANING IN COATED AND LAMINATED SUBSTRATE MANUFACTURING FACILITIES (PHASE I)
The report gives results of a Phase I study to characterize current equipment cleaning practices in the coated and laminated substrate manufacturing industry, to identify alternative cleaning technologies, and to identify demonstrable technologies and estimate their emissions imp...
Ion plated gold films: Properties, tribological behavior and performance
NASA Technical Reports Server (NTRS)
Spalvins, Talivaldis
1987-01-01
The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.
Nanoconfinement platform for nanostructure quantification via grazing-transmission X-ray scattering
Black, Charles T.; Yager, Kevin G.
2017-01-31
A nano-confinement platform that may allow improved quantification of the structural order of nanometer-scale systems. Sample-holder `chips` are designed for the GTSAXS experimental geometry. The platform involves fabricated nanostructured sample holders on and in one or more corners of a substrate support where the sample material of interest is positioned at the corner of the substrate support. In an embodiment, the substrate material making up the substrate support beneath the sample-holding area is removed. A scattering x-ray sample platform includes a substrate support arranged in a parallelepiped form, having a substantially flat base and a substantially flat top surface, the top surface being substantially parallel with the base, the parallelepiped having a plurality of corners. At least one corner of the substrate support has a sample holding area formed in the top surface of the substrate support and within a predetermined distance from the corner. The sample holding area includes a regular array of nano-wells formed in the top surface of the substrate support.
Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia
2016-05-05
Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photo-Attachment of Biomolecules for Miniaturization on Wicking Si-Nanowire Platform
Cheng, He; Zheng, Han; Wu, Jia Xin; Xu, Wei; Zhou, Lihan; Leong, Kam Chew; Fitzgerald, Eugene; Rajagopalan, Raj; Too, Heng Phon; Choi, Wee Kiong
2015-01-01
We demonstrated the surface functionalization of a highly three-dimensional, superhydrophilic wicking substrate using light to immobilize functional biomolecules for sensor or microarray applications. We showed here that the three-dimensional substrate was compatible with photo-attachment and the performance of functionalization was greatly improved due to both increased surface capacity and reduced substrate reflectivity. In addition, photo-attachment circumvents the problems induced by wicking effect that was typically encountered on superhydrophilic three-dimensional substrates, thus reducing the difficulty of producing miniaturized sites on such substrate. We have investigated various aspects of photo-attachment process on the nanowire substrate, including the role of different buffers, the effect of wavelength as well as how changing probe structure may affect the functionalization process. We demonstrated that substrate fabrication and functionalization can be achieved with processes compatible with microelectronics processes, hence reducing the cost of array fabrication. Such functionalization method coupled with the high capacity surface makes the substrate an ideal candidate for sensor or microarray for sensitive detection of target analytes. PMID:25689680
Molecular modeling of lipase binding to a substrate-water interface.
Gruber, Christian C; Pleiss, Jürgen
2012-01-01
Interactions of lipases with hydrophobic substrate-water interfaces are of great interest to design improved lipase variants and engineer reaction conditions. This chapter describes the necessary steps to carry out molecular dynamics simulations of Candida antarctica lipase B at tributyrin-water interface using the GROMACS simulation software. Special attention is drawn to the preparation of the protein and the substrate-water interface and to the analysis of the obtained trajectory.
Carlson, David E.
1982-01-01
An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.
Terahertz Difference-Frequency Quantum Cascade Laser Sources on Silicon
2016-12-22
temperature. The introduction of the Cherenkov waveguide scheme in these devices grown on semi- insulating InP substrates enabled generation of tens...room temperature, a factor of 5 improvement over the best reference devices on a native semi- insulating InP substrate. © 2016 Optical Society of America...implementation of the Cherenkov emission scheme [10]. Cherenkov THz DFG-QCLs reported so far use a semi- insulating (SI) InP substrate. SI InP
NASA Astrophysics Data System (ADS)
Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang
2015-12-01
Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.
Ke, Jhong-Ciao; Wang, Yeong-Her; Chen, Kan-Lin; Huang, Chien-Jung
2016-03-01
The effect of organic solar cells (OSCs) by using different power O2 plasma treatments on indium tin oxide (ITO) substrate was studied. The power of O2 plasma treatment on ITO substrate was varied from 20W to 80W, and the power conversion efficiency of device was improved from 1.18% to 1.93% at 20W O2 plasma treatment. The function of O2 plasma treatment on ITO substrate was to remove the surface impurity and to improve the work function of ITO, which can reduce the energy offset between the ITO and SubPc layer and depress the leakage current of device, leading to the shunt resistance increased from 897 to 1100Ωcm(2). The surface roughness of ITO decreased from 3.81 to 3.33nm and the work function of ITO increased from 4.75 to 5.2eV after 20W O2 plasma treatment on ITO substrate. As a result, the open circuit voltage and the fill factor were improved from 0.46 to 0.70V and from 0.56 to 0.61, respectively. However, the series resistance of device was dramatically increased as the power of O2 plasma treatment exceeds 40W, leading to the efficiency reduction. The result is attributed to the variation of oxygen vacancies in ITO film after the 60, 80W O2 plasma treatment. As a consequence, the power of O2 plasma treatment on ITO substrate for the OSCs application should be controlled below 40W to avoid affecting the electricity of ITO film. Copyright © 2015 Elsevier Inc. All rights reserved.
Complex Formed between Intramembrane Metalloprotease SpoIVFB and Its Substrate, Pro-σK*
Zhang, Yang; Halder, Sabyasachi; Kerr, Richard A.; Parrell, Daniel; Ruotolo, Brandon; Kroos, Lee
2016-01-01
Intramembrane metalloproteases (IMMPs) are conserved from bacteria to humans and control many important signaling pathways, but little is known about how IMMPs interact with their substrates. SpoIVFB is an IMMP that cleaves Pro-σK during Bacillus subtilis endospore formation. When catalytically inactive SpoIVFB was coexpressed with C-terminally truncated Pro-σK(1–126) (which can be cleaved by active SpoIVFB) in Escherichia coli, the substrate dramatically improved solubilization of the enzyme from membranes with mild detergents. Both the Pro(1–20) and σK(21–126) parts contributed to improving SpoIVFB solubilization from membranes, but only the σK part was needed to form a stable complex with SpoIVFB in a pulldown assay. The last 10 residues of SpoIVFB were required for improved solubilization from membranes by Pro-σK(1–126) and for normal interaction with the substrate. The inactive SpoIVFB·Pro-σK(1–126)-His6 complex was stable during affinity purification and gel filtration chromatography. Disulfide cross-linking of the purified complex indicated that it resembled the complex formed in vivo. Ion mobility-mass spectrometry analysis resulted in an observed mass consistent with a 4:2 SpoIVFB·Pro-σK(1–126)-His6 complex. Stepwise photobleaching of SpoIVFB fused to a fluorescent protein supported the notion that the enzyme is tetrameric during B. subtilis sporulation. The results provide the first evidence that an IMMP acts as a tetramer, give new insights into how SpoIVFB interacts with its substrate, and lay the foundation for further biochemical analysis of the enzyme·substrate complex and future structural studies. PMID:26953342
Rodgers, Essie M.; Heaslip, Breeana M.; Cramp, Rebecca L.; Riches, Marcus; Gordos, Matthew A.
2017-01-01
Abstract Worldwide declines in riverine fish abundance and diversity have been linked to the fragmentation of aquatic habitats through the installation of instream structures (e.g. culverts, dams, weirs and barrages). Restoring riverine connectivity can be achieved by remediating structures impeding fish movements by, for example, replacing smooth substrates of pipe culverts with naturalistic substrates (i.e. river stones; culvert roughening). However, empirical evaluations of the efficacy of such remediation efforts are often lacking despite the high economic cost. We assessed the effectiveness of substrate roughening in improving fish swimming performance and linked this to estimates of upstream passage success. Critical swimming speeds (Ucrit) of two small-bodied fish, purple-spotted gudgeon (Mogurnda adspersa; 7.7–11.6 cm total length, BL) and crimson-spotted rainbowfish (Melanotaenia duboulayi; 4.2–8.7 cm BL) were examined. Swimming trials were conducted in a hydraulic flume fitted with either a smooth acrylic substrate (control) or a rough substrate with fixed river stones. Swimming performance was improved on the rough compared to the smooth substrate, with Mo. adspersa (Ucrit-smooth = 0.28 ± 0.0 m s−1, 2.89 ± 0.1 BL s−1, Ucrit-rough = 0.36 ± 0.02 m s−1, 3.66 ± 0.22 BL s−1, mean ± s.e) and Me. duboulayi (Ucrit-smooth = 0.46 ± 0.01 m s−1, 7.79 ± 0.33 BL s−1; Ucrit-rough = = 0.55 ± 0.03 m s−1, 9.83 ± 0.67 BL s−1, mean ± s.e.) both experiencing a 26% increase in relative Ucrit. Traversable water velocity models predicted maximum water speeds allowing successful upstream passage of both species to substantially increase following roughening remediation. Together these findings suggest culvert roughening may be a solution which allows hydraulic efficiency goals to be met, without compromising fish passage. PMID:28567285
Rodgers, Essie M; Heaslip, Breeana M; Cramp, Rebecca L; Riches, Marcus; Gordos, Matthew A; Franklin, Craig E
2017-01-01
Worldwide declines in riverine fish abundance and diversity have been linked to the fragmentation of aquatic habitats through the installation of instream structures (e.g. culverts, dams, weirs and barrages). Restoring riverine connectivity can be achieved by remediating structures impeding fish movements by, for example, replacing smooth substrates of pipe culverts with naturalistic substrates (i.e. river stones; culvert roughening). However, empirical evaluations of the efficacy of such remediation efforts are often lacking despite the high economic cost. We assessed the effectiveness of substrate roughening in improving fish swimming performance and linked this to estimates of upstream passage success. Critical swimming speeds ( U crit ) of two small-bodied fish, purple-spotted gudgeon ( Mogurnda adspersa ; 7.7-11.6 cm total length, BL) and crimson-spotted rainbowfish ( Melanotaenia duboulayi ; 4.2-8.7 cm BL) were examined. Swimming trials were conducted in a hydraulic flume fitted with either a smooth acrylic substrate (control) or a rough substrate with fixed river stones. Swimming performance was improved on the rough compared to the smooth substrate, with Mo. adspersa ( U crit-smooth = 0.28 ± 0.0 m s -1 , 2.89 ± 0.1 BL s -1 , U crit-rough = 0.36 ± 0.02 m s -1 , 3.66 ± 0.22 BL s -1 , mean ± s.e) and Me. duboulayi ( U crit-smooth = 0.46 ± 0.01 m s -1 , 7.79 ± 0.33 BL s -1 ; U crit-rough = = 0.55 ± 0.03 m s -1 , 9.83 ± 0.67 BL s -1 , mean ± s.e.) both experiencing a 26% increase in relative U crit . Traversable water velocity models predicted maximum water speeds allowing successful upstream passage of both species to substantially increase following roughening remediation. Together these findings suggest culvert roughening may be a solution which allows hydraulic efficiency goals to be met, without compromising fish passage.
Fu, Jiayin; Chuah, Yon Jin; Ang, Wee Tong; Zheng, Nan; Wang, Dong-An
2017-05-30
Myocardiocyte derived from pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), is a promising cell source for cardiac tissue engineering. Combined with microfluidic technologies, a heart-on-a-chip is very likely to be developed and function as a platform for high throughput drug screening. Polydimethylsiloxane (PDMS) silicone elastomer is a widely-used biomaterial for the investigation of cell-substrate interactions and biochip fabrication. However, the intrinsic PDMS surface hydrophobicity inhibits cell adhesion on the PDMS surface, and PDMS surface modification is required for effective cell adhesion. Meanwhile, the formulation of PDMS also affects the behaviors of the cells. To fabricate PDMS-based biochips for ESC pluripotency maintenance and cardiac differentiation, PDMS surface modification and formulation were optimized in this study. We found that a polydopamine (PD) with gelatin coating greatly improved the ESC adhesion, proliferation and cardiac differentiation on its surface. In addition, different PDMS substrates varied in their surface properties, which had different impacts on ESCs, with the 40 : 1 PDMS substrate being more favorable for ESC adhesion and proliferation as well as embryoid body (EB) attachment than the other PDMS substrates. Moreover, the ESC pluripotency was best maintained on the 5 : 1 PDMS substrate, while the cardiac differentiation of the ESCs was optimal on the 40 : 1 PDMS substrate. Based on the optimized coating method and PDMS formulation, biochips with two different designs were fabricated and evaluated. Compared to the single channels, the multiple channels on the biochips could provide larger areas and accommodate more nutrients to support improved ESC pluripotency maintenance and cardiac differentiation. These results may contribute to the development of a real heart-on-a-chip for high-throughput drug screening in the future.
Enhanced adhesion for LIGA microfabrication by using a buffer layer
Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.
2004-01-27
The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).
Enhanced adhesion for LIGA microfabrication by using a buffer layer
Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.
2001-01-01
The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).
Visible-blind ultraviolet photodetectors on porous silicon carbide substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naderi, N.; Hashim, M.R., E-mail: roslan@usm.my
2013-06-01
Highlights: • Highly reliable UV detectors are fabricated on porous silicon carbide substrates. • The optical properties of samples are enhanced by increasing the current density. • The optimized sample exhibits enhanced sensitivity to the incident UV radiation. - Abstract: Highly reliable visible-blind ultraviolet (UV) photodetectors were successfully fabricated on porous silicon carbide (PSC) substrates. High responsivity and high photoconductive gain were observed in a metal–semiconductor–metal ultraviolet photodetector that was fabricated on an optimized PSC substrate. The PSC samples were prepared via the UV-assisted photo-electrochemical etching of an n-type hexagonal silicon carbide (6H-SiC) substrate using different etching current densities. Themore » optical results showed that the current density is an outstanding etching parameter that controls the porosity and uniformity of PSC substrates. A highly porous substrate was synthesized using a suitable etching current density to enhance its light absorption, thereby improving the sensitivity of UV detector with this substrate. The electrical characteristics of fabricated devices on optimized PSC substrates exhibited enhanced sensitivity and responsivity to the incident radiation.« less
Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish
2017-01-01
Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
Novel materials for high-efficiency solar cells
NASA Astrophysics Data System (ADS)
Kojima, Nobuaki; Natori, Masato; Suzuki, Hidetoshi; Inagaki, Makoto; Ohshita, Yoshio; Yamaguchi, Masafumi
2009-08-01
Our Toyota Technological Institute group has investigated various novel materials for solar cells from organic to III-V compound materials. In this paper, we report our recent results in conductivity control of C60 thin films by metal-doping for organic solar cells, and mobility improvement of (In)GaAsN compounds for III-V tandem solar cells. The epitaxial growth of Mg-doped C60 films was attempted. It was found that the epitaxial growth of Mg-doped C60 film was enabled by using mica (001) substrate in the low Mg concentration region (Mg/C60 molar ratio < 1). The crystal quality of the epitaxial Mg-doped C60 film was improved drastically in compared with micro-crystalline film on glass substrate. Such drastic improvement of crystal quality in the epitaxial films resulted significant increase in conductivity. This result may indicate the significant increase of carrier mobility. Crystal quality improvement of CBE-grown GaAsN materials was investigated. We achieved the reduction of residual impurity concentration by chemical reaction control on the growing surface by modifying flow sequence of precursors and by increasing step density on the surface by using a vicinal GaAs substrate. Furthermore, the improvement in carrier mobility was observed, and it was suggested that the reduction of both residual impurities and N-related defects leads this improvement.
Improvement of organic solar cells by flexible substrate and ITO surface treatments
NASA Astrophysics Data System (ADS)
Cheng, Yuang-Tung; Ho, Jyh-Jier; Wang, Chien-Kun; Lee, William; Lu, Chih-Chiang; Yau, Bao-Shun; Nain, Jhen-Liang; Chang, Shun-Hsyung; Chang, Chiu-Cheng; Wang, Kang L.
2010-10-01
In this paper, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. Next, using a DC-reactive magnetron sputter, indium tin oxide (ITO) thin films of 90 nm are grown on a substrate treated by detergent. Then, various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM/PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6 × 10 -4 Ω cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best WF value of 5.22 eV. This improves about 8.30% in the WF compared with that of the untreated ITO film. In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density ( Jsc) and 92.7% enhancement in conversion efficiency ( η) over the untreated solar cell are obtained.
Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian
2016-10-15
Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots
Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng
2011-01-01
Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627
NASA Astrophysics Data System (ADS)
Takata, Fumiya; Gushi, Toshiki; Anzai, Akihito; Toko, Kaoru; Suemasu, Takashi
2018-03-01
We grow MnAl films on different underlayers by molecular beam epitaxy (MBE), and investigate their structural and magnetic properties. L10-ordered MnAl films were successfully grown both on an MgO(0 0 1) single-crystalline substrate and on an Mn4N(0 0 1) buffer layer formed on MgO(0 0 1) and SrTiO3(0 0 1) substrates. For the MgO substrate, post rapid thermal annealing (RTA) drastically improved the crystalline quality and the degree of L10-ordering, whereas no improvement in the crystallinity was achieved by altering the substrate temperature (TS) during MBE growth. However, high-quality L10-MnAl films were formed on the Mn4N buffer layer by simply varying TS. Structural analysis using X-ray diffraction showed MnAl on an MgO substrate had a cubic structure whereas MnAl on the Mn4N buffer had a tetragonal structure. This difference in crystal structure affected the magnetic properties of the MnAl films. The uniaxial magnetic anisotropy constant (Ku) was drastically improved by inserting an Mn4N buffer layer. We achieved a perpendicular magnetic anisotropy of Ku = 5.0 ± 0.7 Merg/cm3 for MnAl/Mn4N film on MgO and 6.0 ± 0.2 Merg/cm3 on STO. These results suggest that Mn4N has potential as an underlayer for L10-MnAl.
NASA Technical Reports Server (NTRS)
Kubacki, R. M. (Inventor)
1978-01-01
A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernsman, Bernard; Fiedor, Joseph N.; Irr, Lawrence G.
2016-10-04
A back surface reflector (BSR) is described. The BSR includes a reflecting layer, a substrate and an adhesion layer between the reflecting layer and the substrate. The adhesion layer includes 3-mercaptopropyl (trimethoxy) silane (a.k.a. Merc).
Ion plating technique improves thin film deposition
NASA Technical Reports Server (NTRS)
Mattox, D. M.
1968-01-01
Ion plating technique keeps the substrate surface clean until the film is deposited, allows extensive diffusion and chemical reaction, and joins insoluble or incompatible materials. The technique involves the deposition of ions on the substrate surface while it is being bombarded with inert gas ions.
Xing, Yang; Bu, Lingxi; Sun, Dafeng; Liu, Zhiping; Liu, Shijie; Jiang, Jianxin
2015-10-01
This study reports four schemes to pretreat wet furfural residues (FRs) with sodium bisulfite for production of fermentable sugar. The results showed that non-detoxified FRs (pH 2-3) had great potential to lower the cost of bioconversion. The optimal process was that unwashed FRs were first pretreated with bisulfite, and the whole slurry was then directly used for enzymatic hydrolysis. A maximum glucose yield of 99.4% was achieved from substrates pretreated with 0.1 g NaHSO3/g dry substrate (DS), at a relatively low temperature of 100 °C for 3 h. Compared with raw material, enzymatic hydrolysis at a high-solid of 16.5% (w/w) specifically showed more excellent performance with bisulfite treated FRs. Direct bisulfite pretreatment improved the accessibility of substrates and the total glucose recovery. Lignosulfonate in the non-detoxified slurry decreased the non-productive adsorption of cellulase on the substrate, thus improving enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved biogas production from whole stillage by co-digestion with cattle manure.
Westerholm, Maria; Hansson, Mikael; Schnürer, Anna
2012-06-01
Whole stillage, as sole substrate or co-digested with cattle manure, was evaluated as substrate for biogas production in five mesophilic laboratory-scale biogas reactors, operating semi-continuously for 640 days. The process performance was monitored by chemical parameters and by quantitative analysis of the methanogenic and acetogenic population. With whole stillage as sole substrate the process showed clear signs of instability after 120 days of operation. However, co-digestion with manure clearly improved biogas productivity and process stability and indicated increased methane yield compared with theoretical values. The methane yield at an organic loading rate (OLR) at 2.8 g VS/(L×day) and a hydraulic retention time (HRT) of 45 days with a substrate mixture 85% whole stillage and 15% manure (based on volatile solids [VS]) was 0.31 N L CH(4)/gVS. Surprisingly, the abundance of the methanogenic and acetogenic populations remained relatively stable throughout the whole operation and was not influenced by process performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Improved GaSb-based quantum well laser performance through metamorphic growth on GaAs substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Christopher J. K., E-mail: richardson@lps.umd.edu; He, Lei; Apiratikul, Paveen
The promise of the metamorphic growth paradigm is to enable design freedom of the substrate selection criteria beyond current choices that are limited by lattice matching requirements. A demonstration of this emerging degree of freedom is reported here by directly comparing identical laser structures grown both pseudomorphically on a GaSb substrate and metamorphically on a GaAs substrate. Improved thermal performance of the metamorphic laser material enables a higher output power before thermal roll-over begins. These performance gains are demonstrated in minimally processed gain-guided broad-area type-I lasers emitting close to 2-μm wavelengths and mounted p-side up. Continuous wave measurements at roommore » temperature yield a T{sub 0} of 145 K and peak output power of 192 mW from metamorphic lasers, compared to a T{sub 0} of 96 K and peak output power of 164 mW from identical lasers grown pseudomorphically on GaSb.« less
Liu, Chuanyang; Li, Huan; Zhang, Yuyao; Liu, Can
2016-11-01
Anaerobic co-digestion of sewage sludge and food waste was tested at two different total solid (TS) concentrations. In the low-solids group with TS 4.8%, the biogas production increased linearly as the ratio of food waste in substrate increased from 0 to 100%, but no synergetic effect was found between the two substrates. Moreover, the additive food waste resulted in the accumulation of volatile fatty acids and decelerated biogas production. Thus, the blend ratio of food waste should be lower than 50%. While in the high-solids group with TS 14%, the weak alkaline environment with pH 7.5-8.5 avoided excessive acidification but high concentration of free ammonia was a potential risk. However, good synergetic effect was found between the two substrates because the added food waste improved mass transfer in sludge cake. Thus, 50% was recommended as the optimum ratio of food waste in substrate because of the best synergetic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture1[OPEN
Rogers, Eric D.; Monaenkova, Daria; Mijar, Medhavinee; Goldman, Daniel I.
2016-01-01
Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. PMID:27208237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Xiaohui; Bowden, Mark E.; Engelhard, Mark H.
Three commercial cellulase preparations, Novozymes Cellic® Ctec2, Dupont Accellerase® 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulose enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulose performance. While the degree of polymerization of cellulose in the reference substrates didmore » not present a major recalcitrance factor to Novozymes Cellic® Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.« less
Nanoplasmonic-gold-cylinder-array-enhanced terahertz source
NASA Astrophysics Data System (ADS)
Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu
2016-12-01
Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).
Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.
2017-01-01
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308
Ju, Xiaohui; Bowden, Mark; Engelhard, Mark; Zhang, Xiao
2014-05-01
Three commercial cellulase preparations, Novozymes Cellic(®) Ctec2, Dupont Accellerase(®) 1500, and DSM Cytolase CL, were evaluated for their hydrolytic activity using a set of reference biomass substrates with controlled substrate characteristics. It was found that lignin remains a significant recalcitrance factor to all the preparations, although different enzyme preparations respond to the inhibitory effect of lignin differently. Also, different types of biomass lignin can inhibit cellulase enzymes in different manners. Enhancing enzyme activity toward biomass fiber swelling is an area significantly contributing to potential improvement in cellulase performance. While the degree of polymerization of cellulose in the reference substrates did not present a major recalcitrance factor to Novozymes Cellic(®) Ctec2, cellulose crystallite has been shown to have a significant lower reactivity toward all enzyme mixtures. The presence of polysaccharide monooxygenases (PMOs) in Novozymes Ctec2 appears to enhance enzyme activity toward decrystallization of cellulose. This study demonstrated that reference substrates with controlled chemical and physical characteristics of structural features can be applied as an effective and practical strategy to identify cellulosic enzyme activities toward specific biomass recalcitrance factor(s) and provide specific targets for enzyme improvement.
Zabawa, Thomas P; Chemler, Sherry R
2007-05-10
The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate [Cu(ND)2]. Cu(ND)2 allowed the less-polar solvent dichloroethane (DCE) to be used, and as a consequence, decomposition of less-reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines), and alpha-amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction.
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation. PMID:28603535
NASA Astrophysics Data System (ADS)
Lai, Min; Jin, Ziyang; Yang, Xinyi; Wang, Huaying; Xu, Kui
2017-02-01
The aim of this study was to fabricate a novel drug-releasing bioactive platform that has excellent potential for improving osteoblast differentiation and inhibiting osteoclast resorption. TiO2 nanotubes (TNTs) with an outer diameter of around 70 nm were prepared by an anodization method. TNTs were filled with simvastatin (SV) and then coated using chitosan/gelatin multilayers (TNT-SV-LBL). The successful fabrication of TNT-SV-LBL substrates was confirmed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. The in vitro release behavior of simvastatin from TNT-SV-LBL substrates showed a sustained release as compared to the uncoated group. Osteoblasts adhering to TNT-SV-LBL substrates attached well and displayed significantly higher (p < 0.01) cell viability compared with the other substrates. More importantly, osteoblasts grown on TNT-SV-LBL substrates displayed a statistically significant (p < 0.01 or p < 0.05) increase in protein production levels of alkaline phosphatase (ALP), osteocalcin (OC) and mRNA expression of runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN), OC and osteoprotegerin (OPG) compared to the other groups after 4, 7 and 14 days of culture, respectively. Additionally, multinuclear osteoclastic differentiation of RAW264.7 cells grown on TNT-SV-LBL substrates was inhibited as confirmed by tartrate-resistant acid phosphatase (TRAP) analysis. These results demonstrated that bio-functionalized substrates with SV and chitosan/gelatin multilayers have great potential for improving osteoblast differentiation, as well as inhibiting osteoclast formation. Therefore, these advanced surface and chemical capabilities make this substrate well suited for the development of a drug-releasing Ti implant for bone regeneration.
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m 2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.
Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer
Feng, Tom; Ghosh, Amal K.
1980-01-01
Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.
Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad
2014-01-01
Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.
Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad
2014-01-01
Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes. PMID:25763058
SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME II: PROCESS OVERVIEW
This volume presents initial results of a study to identify the issues and barriers associated with retrofitting existing solvent-based equipment to accept waterbased adhesives as part of an EPA effort to improve equipment cleaning in the coated and laminated substrate manufactur...
Improving Defense Acquisition Management and Policy Through a Life-Cycle Affordability Framework
2014-02-04
substrates based on gender, culture, and propensity. Four Design a neurofeedback -based training program that will produce changes in neuronal substrates...Validate the training program by iterating Step 3 until the desired behavioral outcome is achieved. Confirm that the neurofeedback creates desired
A review on the applications of microbial electrolysis cells in anaerobic digestion.
Yu, Zhengsheng; Leng, Xiaoyun; Zhao, Shuai; Ji, Jing; Zhou, Tuoyu; Khan, Aman; Kakde, Apurva; Liu, Pu; Li, Xiangkai
2018-05-01
Anaerobic digestion (AD) has been widely used for biogas or biofuel generation from waste treatment. Because a low production rate and instability of AD occur frequently, various technologies have been applied to improvement of AD. Microbial electrolysis cells (MECs), an emerging technology, can convert organic matter into hydrogen, methane, and other value-added products. Recent studies showed that application of MEC to AD (MEC-AD) can accelerate degradation of a substrate (including recalcitrant compounds) and alter AD microbial community by enriching exoelectrogens and methanogens thus increasing biogas production. With stable microbial communities established, improvement of MEC-AD for methane production was achieved. MEC-AD process can be monitored in real-time by detecting electric signals, which linearly correlate with substrate concentrations. This review attempts to evaluate interactions among the decomposition of substrates, MEC-AD system, and the microbial community. This analysis should provide useful insights into the improvement of methane production and the performance of MEC-AD. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monolithic amorphous silicon modules on continuous polymer substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimmer, D.P.
This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience canmore » increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.« less
Tabor, P S; Neihof, R A
1982-10-01
We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method.
Tabor, Paul S.; Neihof, Rex A.
1982-01-01
We report a method which combines epifluorescence microscopy and microautoradiography to determine both the total number of microorganisms in natural water populations and those individual organisms active in the uptake of specific substrates. After incubation with 3H-labeled substrate, the sample is filtered and, while still on the filter, mounted directly in a film of autoradiographic emulsion on a microscope slide. The microautoradiogram is processed and stained with acridine orange, and, subsequently, the filter is removed before microscopic observation. This novel preparation resulted in increased accuracy in direct counts made from the autoradiogram, improved sensitivity in the recognition of uptake-active (3H-labeled) organisms, and enumeration of a significantly greater number of labeled organisms compared with corresponding samples prepared by a previously reported method. Images PMID:16346120
NASA Astrophysics Data System (ADS)
Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.
2017-12-01
Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, D.J.
Three types of boron/epoxy prepreg tape were prestressed to fracture weak sites along the fiber by winding over 0.3- to 0.6-inch diameter rollers prior to lamination. The prestressed prepreg was then laminated, and design allowable testing was conducted to determine if mechanical strength properties are increased and data scatter is reduced by prestressing. The types of prepreg studied were standard 'Rigidite' 5505/4 prepreg, carbon substrate boron fiber prepreg, and a prepreg made from 'defect' tungsten substrate boron that was manufactured in a high-speed, low-cost, production process. The strength of angleply composites of both 'Rigidite' 5505/4 and carbon substrate boron compositesmore » were unaffected by prestressing. A study was made to determine if prepreg costs could be reduced by manufacturing low-cost 'defect' boron fiber and prestressing it to improve its properties. The results of this study were inconclusive. The test results show prestressing marginally improved some composite properties while others were reduced. On 'Rigidite' 5505/4 unidirectional composites, fatigue strength was significantly improved by prestressing, while longitudinal tensile strength was reduced at room temperature and 350 F. On unidirectional carbon substrate boron composites, the longitudinal tensile strength at room temperature and 350F was increased with attendant variability, while fatigue strength at high stress levels was reduced but not affected at low stress levels.« less
Lin, Yuan; Wang, Luling; Zhang, Peibiao; Wang, Xin; Chen, Xuesi; Jing, Xiabin; Su, Zhaohui
2006-03-01
Poly(L-lactide) (PLLA) surface was modified via aminolysis by poly(allylamine hydrochloride) (PAH) at high pH and subsequent electrostatic self-assembly of poly(sodium styrenesulfonate) (PSS) and PAH, and the process was monitored by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. These modified PLLAs were then used as charged substrates for further incorporation of gelatin to improve their cytocompatibility. The amphoteric nature of the gelatin was exploited and the gelatin was adsorbed to the negatively charged PLLA/PSS and positively charged PLLA/PAH at pH=3.4 and 7.4, respectively. XPS and water contact angle data indicated that the gelatin adsorption at pH=3.4 resulted in much higher surface coverage by gelatin than at pH=7.4. All the modified PLLA surfaces became more hydrophilic than the virgin PLLA. Chondrocyte culture was used to test the cell attachment, cell morphology and cell viability on the modified PLLA substrates. The results showed that the PAH and PSS modified PLLA exhibited better cytocompatibility than virgin PLLA, and the incorporation of the gelatin on these modified PLLA substrates further improved their cytocompatibility, with the PLLA/PSS substrate treated with the gelatin at pH=3.4 being the best, exceeding the chondrocyte compatibility of the tissue culture polystyrene.
Amorphous-Metal-Film Diffusion Barriers
NASA Technical Reports Server (NTRS)
Nicolet, M. A.
1987-01-01
Incorporation of N into Ni/W films reduces reactivity with Si substrate. Paper describes reactions between Si substrates and deposited amorphous Ni/W or Ni/N/W films. Thermal stability of amorphous Ni/W films as diffusion barriers in Si markedly improved by introduction of N into Ni/W films during deposition.
The Integration of Nanoscale Techniques for an Improved Battery Technology
2012-06-08
anodized aluminum oxide ( AAO ) membranes that were 13...nanoporous anodized aluminum oxide ( AAO ) substrate [13]. During sputtering, thickened columnar growths form around the pores of the substrate...investigates an interpenetrating network structure where ―tubes‖ of polymer electrolyte are placed in the nanopores of anodic aluminum oxide ( AAO
NASA Astrophysics Data System (ADS)
Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu
2006-03-01
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.
Thompson, Anthony Mark; Gray, Dennis Michael; Jackson, Melvin Robert
2003-05-13
A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.
Chemically attached gold nanoparticle-carbon nanotube hybrids for highly sensitive SERS substrate
NASA Astrophysics Data System (ADS)
Beqa, Lule; Singh, Anant Kumar; Fan, Zheng; Senapati, Dulal; Ray, Paresh Chandra
2011-08-01
Surface-enhanced Raman spectroscopy (SERS) has been shown as one of the most powerful analytical tool with high sensitivity. In this manuscript, we report the chemical design of SERS substrate, based on gold nanoparticles of different shapes-decorated with carbon nanotube with an enhancement factor of 7.5 × 1010. Shape dependent result shows that popcorn shape gold nanoparticle decorated SWCNT is the best choice for SERS substrate due to the existence of 'lightning rod effect' through several sharp edges or corners. Our results provide a good approach to develop highly sensitive SERS substrates and can help to improve the fundamental understanding of SERS phenomena.
NASA Astrophysics Data System (ADS)
Tsai, Yu-Sheng; Wang, Shun-Hsi; Chen, Chuan-Hung; Cheng, Chien-Lung; Liao, Teh-Chao
2009-12-01
The influence of heat dissipation on the performances of organic light-emitting diode (OLED) is investigated by measuring junction temperature and by calculating the rate of heat flow. The calculated rate of heat flow reveals that the key factors include the thermal conductivity, the substrate thickness, and the UV glue. Moreover, the use of copper substrate can effectively dissipate the joule heat, which then reduces the temperature gradient. Finally, it is shown that the use of a high thermal conductivity thinner substrate can enhance the thermal conductivity of OLED and the luminance efficiency as well.
Surface Modification of Plastic Substrates Using Atomic Hydrogen
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.
Graphene as discharge layer for electron beam lithography on insulating substrate
NASA Astrophysics Data System (ADS)
Liu, Junku; Li, Qunqing; Ren, Mengxin; Zhang, Lihui; Chen, Mo; Fan, Shoushan
2013-09-01
Charging of insulating substrates is a common problem during Electron Beam lithography (EBL), which deflects the beam and distorts the pattern. A homogeneous, electrically conductive, and transparent graphene layer is used as a discharge layer for EBL processes on insulating substrates. The EBL resolution is improved compared with the metal discharge layer. Dense arrays of holes with diameters of 50 nm and gratings with line/space of 50/30 nm are obtained on quartz substrate. The pattern placement errors and proximity effect are suppressed over a large area and high quality complex nanostructures are fabricated using graphene as a conductive layer.
Variation in capture efficiency of a beach seine for small fishes
Parsley, M.J.; Palmer, D.E.; Burkhardt, R.W.
1989-01-01
We determined the capture efficiency of a beach seine as a means of improving abundance estimates of small fishes in littoral areas. Capture efficiency for 14 taxa (individual species or species groups) was determined by seining within an enclosure at night over fine and coarse substrates in the John Day Reservoir, Oregon–Washington. Mean efficiency ranged from 12% for prickly sculpin Cottus asper captured over coarse substrates to 96% for peamouth Mylocheilus caurinus captured over fine substrates. Mean capture efficiency for a taxon (genus or species) was generally higher over fine substrates than over coarse substrates, although mean capture efficiencies over fine substrates were significantly greater for only 3 of 10 taxa. Capture efficiency generally was not influenced by fish density or by water temperature (range, 8–26°C). Conclusions about the relative abundance of taxa captured by seining can change substantially after capture efficiencies are taken into account.
NASA Astrophysics Data System (ADS)
Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur
2017-12-01
The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.
Highly Efficient SERS Nanowire/Ag Composites
2007-01-01
Ga2O3 nanowires was performed by the vapor- liquid-solid (VLS) growth in a tube furnace, using Si(100) and Si(111) substrates and a 20 nm Au film3. Ga...Rhodamine 6G/methanol and DNT/methanol dilutions. The Ga2O3 /Ag nanowire composite substrates are shown in Figure 1a. As can be seen, they consist of a...significant improvement over nanosphere-type SERS substrates. Conclusion: Randomly oriented Ga2O3 /Ag nanowire networks have been formed and we
Review of space radiation interaction with ZERODUR
NASA Astrophysics Data System (ADS)
Carré, Antoine; Westerhoff, Thomas; Hull, Tony; Doyle, D.
2017-09-01
ZERODUR has been and is still being successfully used as mirror substrates for a large number of space missions. Improvements in CNC machining at SCHOTT allow to achieve extremely light weighted substrates incorporating very thin ribs and face sheets. This paper is reviewing data published on the interaction of space radiation with ZERODUR. Additionally, this paper reports on considerations and experiments which are needed to confidently apply an updated model on ZERODUR behavior under space radiation for extremely light weighted ZERODUR substrates.
NASA Astrophysics Data System (ADS)
Ye, Yingjie; Chen, Jin; Ding, Qianqian; Lin, Dongyue; Dong, Ronglu; Yang, Liangbao; Liu, Jinhuai
2013-06-01
Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization.Ag-coated sea-urchin-like Fe3O4@C core-shell particles can be synthesized by a facile one-step solvothermal method, followed by deposition of high-density Ag nanoparticles onto the carbon surface through an in situ growth process, respectively. The as-synthesized Ag-coated Fe3O4@C particles can be used as a surface-enhanced Raman scattering (SERS) substrate holding reproducible properties under an external magnetic force. The magnetic function of the particles allows concentrating the composite particles into small spatial regions, which can be exploited to decrease the amount of material per analysis while improving its SERS detection limit. In contrast to the traditional SERS substrates, the present Fe3O4@C@Ag particles hold the advantages of enrichment of organic pollutants for improving SERS detection limit and recycled utilization. Electronic supplementary information (ESI) available: Additional XRD patterns and SEM images of Fe3O4@C particles, SERS spectra of 4-ATP and 4-MPY using Fe3O4@C@Ag particles as the active substrates, magnetic behaviour of Fe3O4@C and Fe3O4@C@Ag particles. See DOI: 10.1039/c3nr01273e
The Structure of Lombricine Kinase
Bush, D. Jeffrey; Kirillova, Olga; Clark, Shawn A.; Davulcu, Omar; Fabiola, Felcy; Xie, Qing; Somasundaram, Thayumanasamy; Ellington, W. Ross; Chapman, Michael S.
2011-01-01
Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309–317, which is disordered in substrate-free structures of homologs and is known from the NMR of arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His178. Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates. PMID:21212263
Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki
2017-01-01
We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests. PMID:28436426
Mitigation of substrate defects in reticles using multilayer buffer layers
Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.
2001-01-01
A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.
Hisatomi, Takashi; Brillet, Jérémie; Cornuz, Maurin; Le Formal, Florian; Tétreault, Nicolas; Sivula, Kevin; Grätzel, Michael
2012-01-01
Hematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.2 V. The benefit from Ga2O3 underlayers was most pronounced when the thickness of the underlayer was approximately 2 nm. Thinner underlayers did not work effectively as a template presumably because of insufficient crystallinity of the underlayer, while thicker ones diminished the PEC performance of hematite because the underlayer prevented electron injection from hematite to a conductive substrate due to the large conduction band offset. The enhancement of PEC performance by a Ga2O3 underlayer was more significant for thinner hematite layers owing to greater margins for improving the crystallinity of ultrathin hematite. It was confirmed that a Ga2O3 underlayer was applicable to a rough conducting substrate loaded with Sb-doped SnO2 nanoparticles, improving the photocurrent by a factor of 1.4. Accordingly, a Ga2O3 underlayer could push forward the development of host-guest-type nanocomposites consisting of highly-rough substrates and extremely-thin hematite absorbers.
Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei.
Nagavalli, M; Ponamgi, S P D; Girijashankar, V; Venkateswar Rao, L
2015-01-01
Production of Rifamycin SV from cheaper agro-industrial by-products using mutant strain of Amycolatopsis mediterranei OVA5-E7 in solid state fermentation (SSF) was optimized. Among the agro-based substrates used, ragi bran was found suitable for maximizing the yield of Rifamycin SV (1310 mg 100 g(-1) ds). The yield can be further enhanced to 19·7 g Kg(-1) of dry substrate by supplementing the substrate with deoiled cotton cake (10% w/w) using optimized fermentation parameters such as maintaining 80% moisture, pH 7·0, 30°C incubation temperature, inoculum 25% v/w and carrying the solid state fermenting for 9 days. Manipulating these seven specifications, the end product yield achieved in our experimentation was 20 g of Rifamycin SV Kg(-1) ds. Eventually, an overall 5-fold improvement in Rifamycin SV production was achieved. Antibiotics such as rifamycin are broad-spectrum antimicrobial drugs used in large-scale worldwide as human medicine towards controlling diseases. Amycolatopsis mediterranei strain which produces this antibiotic was earlier used in submerged fermentation yielded lower amounts of rifamycin. By employing cheaper agro-industrial by-products, we produced upto 20 g rifamycin SV per Kg dry substrate used under optimized solid state fermentation conditions. Keeping in view, the role of rifamycin in meeting the medical demands of world's increasing population; we successfully used an improved strain on cheaper substrates with optimized fermentation parameters and achieved a 5-fold improvement in rifamycin SV production. © 2014 The Society for Applied Microbiology.
Lee, Whitaik David; Gawri, Rahul; Pilliar, Robert M; Stanford, William L; Kandel, Rita A
2017-10-15
Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this organization using isolated deep zone cartilage cells and a sol-gel hydroxyapatite coated bone substitute material composed of calcium polyphosphate (CPP). Developing a layer of calcified cartilage at the interface should contribute to enhancing the success of this "osteochondral-like" construct following implantation to repair cartilage defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.
1989-01-01
An attempt is made to improve device efficiencies by depositing indium tin oxide onto epitaxially grown p-InP on p(+)-InP substrates. This leads to a reduction in the device series resistance, high-quality reproducible surfaces, and an improvement in the transport properties of the base layer. Moreover, many of the facets associated with badly characterized bulk liquid encapsulated Czochralski substrates used in previous investigations are removed in this way.
Zabawa, Thomas P.
2008-01-01
The copper(II) carboxylate promoted diamination reaction has been improved by the use of the organic soluble copper(II) neodecanoate [Cu(ND)2]. Cu(ND)2 allowed the less polar solvent, dichloroethane (DCE) to be used, and as a consequence, decomposition of less reactive substrates could be avoided. High diastereoselectivity was observed in the synthesis of 2,5-disubstituted pyrrolidines. Ureas, bis(anilines) and α-amido pyrroles derived from 2-allylaniline could also participate in the diamination reaction. PMID:17447781
NASA Astrophysics Data System (ADS)
Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D.; Zuo, Daniel; Kesler, Benjamin; Chuang, Shun-Lien; Hu, Hefei; Kim, Kyou-Hyun; Ting Lu, Yen; Hsieh, K. C.; Zuo, Jian-Min
2011-07-01
We propose and demonstrate strain-balanced InAs/GaSb type-II superlattices (T2SLs) grown on InAs substrates employing GaAs-like interfacial (IF) layers by metalorganic chemical vapor deposition (MOCVD) for effective strain management, simplified growth scheme, improved materials crystalline quality, and reduced substrate absorption. The in-plane compressive strain from the GaSb layers in the T2SLs on the InAs was completely balanced by the GaAs-like IF layers formed by controlled precursor carry-over and anion exchange effects, avoiding the use of complicated IF layers and precursor switching schemes that were used for the MOCVD growth of T2SLs on GaSb. An infrared (IR) p-i-n photodiode structure with 320-period InAs/GaSb T2SLs on InAs was grown and the fabricated devices show improved performance characteristics with a peak responsivity of ˜1.9 A/W and a detectivity of ˜6.78 × 109 Jones at 8 μm at 78 K. In addition, the InAs buffer layer and substrate show a lower IR absorption coefficient than GaSb substrates in most of the mid- and long-IR spectral range.
Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin
2018-01-01
This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Nacher, L.; Garcia-Sanoguera, D.; Fenollar, O.
2010-06-02
In this work we have used atmospheric plasma technology on polyethylene surface with different treatment conditions. These modify surface pre-treatments on polyethylene, thus having a positive effect on overall surface activity of polymer surface and, consequently, adhesion properties can be remarkably improved. We have evaluated the influence of the nozzle/substrate distance and atmospheric plasma speed on wettability changes and adhesion properties. Wettability changes have been studied by contact angle measurements and subsequent surface energy calculation. Mechanical characterization of adhesion joints has been carried out in two different ways: peel and shear tensile test. The overall results show a remarkable increasemore » in mechanical properties of adhesion joints for low nozzle/substrate distances and low speed. So plasma atmospheric technology is highly useful to increase adhesion properties of polypropylene.« less
Enhanced Raman scattering in porous silicon grating.
Wang, Jiajia; Jia, Zhenhong; Lv, Changwu
2018-03-19
The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.
High power cascaded mid-infrared InAs/GaSb light emitting diodes on mismatched GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Provence, S. R., E-mail: sydney-provence@uiowa.edu; Ricker, R.; Aytac, Y.
2015-09-28
InAs/GaSb mid-wave, cascaded superlattice light emitting diodes are found to give higher radiance when epitaxially grown on mismatched GaAs substrates compared to lattice-matched GaSb substrates. Peak radiances of 0.69 W/cm{sup 2}-sr and 1.06 W/cm{sup 2}-sr for the 100 × 100 μm{sup 2} GaSb and GaAs-based devices, respectively, were measured at 77 K. Measurement of the recombination coefficients shows the shorter Shockley-Read-Hall recombination lifetime as misfit dislocations for growth on GaAs degrade the quantum efficiency only at low current injection. The improved performance on GaAs was found to be due to the higher transparency and improved thermal properties of the GaAs substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittelsteadt, Cortney; Argun, Avni; Laicer, Castro
In polymer electrolyte membrane (PEM) fuel cells and electrolyzes, attaining and maintaining high membrane conductivity and durability is crucial for performance and efficiency. The use of low equivalent weight (EW) perfluorinated ionomers is one of the few options available to improve membrane conductivity. However, excessive dimensional changes of low EW ionomers upon application of wet/dry or freeze/thaw cycles yield catastrophic losses in membrane integrity. Incorporation of ionomers within porous, dimensionally-stable perforated polymer electrolyte membrane substrates provides improved PEM performance and longevity. The present invention provides novel methods using micromolds to fabricate the perforated polymer electrolyte membrane substrates. These novel methodsmore » using micromolds create uniform and well-defined pore structures. In addition, these novel methods using micromolds described herein may be used in batch or continuous processing.« less
Tuning the properties of an MgO layer for spin-polarized electron transport
NASA Astrophysics Data System (ADS)
Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua
2014-08-01
The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.
Microstructures and Dry Sliding Wear Resistance of the Laser Ceramics Composite Coating on Pure Ti
NASA Astrophysics Data System (ADS)
Liu, Peng; Zhang, Yuanbin; Luo, Hui; Huo, Yushuang
2012-06-01
In this study, Al-Ti-Co was used to improve the surface performance of pure Ti. Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti. Laser cladding of the Al-Ti-Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.
Breather cloth for vacuum curing
NASA Technical Reports Server (NTRS)
Reed, M. W.
1979-01-01
Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.
Müller-Matthesius, R
1975-05-01
The sensitivity of enzyme kinetic substrate determinations can be improved with the aid of competitive inhibitors. As an example, the determination of glucose dehydrogenase in the presence of potassium thiocyanate is described. The method has the advantage of rapid operation with satisfactory precision.
AIN-Coated Al(2)O(3) Substrates For Electronic Circuits
NASA Technical Reports Server (NTRS)
Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen
1996-01-01
Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.
Jankowsky, E; Strunk, G; Schwenzer, B
1997-01-01
Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial compounds have facilitating potential. Effects of 12mer PNA- (peptide nucleic acid), RNA- and DNA-facilitators of identical sequence were measured with three substrates containing either 942, 452 or 39 nucleotides. The PNA facilitator enhances the ribozyme activity with both, the 942mer and the 452mer substrate to a slightly smaller extent than RNA and DNA facilitators. This effect was observed up to PNA facilitator:substrate ratios of 200:1. The enhancement becomes smaller as the PNA facilitator:substrate ratio exceeds 200:1. With the 39mer substrate, the PNA facilitator decreases the ribozyme activity by more than 100-fold, even at PNA facilitator:substrate ratios of 1:1. Although with long substrates the effect of the PNA facilitator is slightly smaller than the effect of identical RNA or DNA facilitators, PNA may be a more practical choice for potential applications in vivo because PNA is much more resistant to degradation by cellular enzymes. PMID:9207013
NASA Astrophysics Data System (ADS)
Dovzhenko, Dmitriy; Terekhin, Vladimir; Vokhmincev, Kirill; Sukhanova, Alyona; Nabiev, Igor
2017-01-01
Multiplex detection of different antigens in human serum in order to reveal diseases at the early stage is of interest nowadays. There are a lot of biosensors, which use the fluorescent labels for specific detection of analytes. For instance, common method for detection of antigens in human serum samples is enzyme-linked immunosorbent assay (ELISA). One of the most effective ways to improve the sensitivity of this detection method is the use of a substrate that could enhance the fluorescent signal and make it easier to collect. Two-dimensional (2D) photonic crystals are very suitable structures for these purposes because of the ability to enhance the luminescent signal, control the light propagation and perform the analysis directly on its surface. In our study we have calculated optimal parameters for 2D-dimensional photonic crystal consisting of the array of silicon nano-rods, fabricated such photonic crystal on a silicon substrate using reactive ion etching and showed the possibility of its efficient application as a substrate for ELISA detection of human cancer antigens.
X-Ray Computed Tomography Reveals the Response of Root System Architecture to Soil Texture.
Rogers, Eric D; Monaenkova, Daria; Mijar, Medhavinee; Nori, Apoorva; Goldman, Daniel I; Benfey, Philip N
2016-07-01
Root system architecture (RSA) impacts plant fitness and crop yield by facilitating efficient nutrient and water uptake from the soil. A better understanding of the effects of soil on RSA could improve crop productivity by matching roots to their soil environment. We used x-ray computed tomography to perform a detailed three-dimensional quantification of changes in rice (Oryza sativa) RSA in response to the physical properties of a granular substrate. We characterized the RSA of eight rice cultivars in five different growth substrates and determined that RSA is the result of interactions between genotype and growth environment. We identified cultivar-specific changes in RSA in response to changing growth substrate texture. The cultivar Azucena exhibited low RSA plasticity in all growth substrates, whereas cultivar Bala root depth was a function of soil hardness. Our imaging techniques provide a framework to study RSA in different growth environments, the results of which can be used to improve root traits with agronomic potential. © 2016 American Society of Plant Biologists. All Rights Reserved.
Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems
NASA Technical Reports Server (NTRS)
Marshall, Kenneth L. (Inventor)
2009-01-01
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
Liquid crystal devices especially for use in liquid crystal point diffraction interferometer systems
Marshall, Kenneth L [Rochester, NY
2009-02-17
Liquid crystal point diffraction interferometer (LCPDI) systems that can provide real-time, phase-shifting interferograms that are useful in the characterization of static optical properties (wavefront aberrations, lensing, or wedge) in optical elements or dynamic, time-resolved events (temperature fluctuations and gradients, motion) in physical systems use improved LCPDI cells that employ a "structured" substrate or substrates in which the structural features are produced by thin film deposition or photo resist processing to provide a diffractive element that is an integral part of the cell substrate(s). The LC material used in the device may be doped with a "contrast-compensated" mixture of positive and negative dichroic dyes.
NASA Astrophysics Data System (ADS)
Sung, Young Hoon; Jung, Pil-Hoon; Han, Kyung-Hoon; Kim, Yang Doo; Kim, Jang-Joo; Lee, Heon
2017-10-01
In order to increase the out-coupling efficiency of organic light emitting diodes, conical Si oxide nanostructures were formed on a glass substrate using nanoimprint lithography with hydrogen silsesquioxane. Then, the substrate was planarized with TiO2 nanoparticles. Since TiO2 nanoparticles have a higher refractive index than Si oxide, the surface of substrate is physically flat, but optically undulated in a manner that enables optical scattering and suppression of total internal reflection. Subsequently, OLEDs formed on a substrate with nanostructured Si oxide and a TiO2 planarization layer exhibit a 25% increase in out-coupling efficiency by suppressing total internal reflection.
Superhydrophobic SERS substrates based on silicon hierarchical nanostructures
NASA Astrophysics Data System (ADS)
Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi
2018-02-01
Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in practical food safety inspection applications.
Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Isern, Nancy; Olson, Aaron K; Des Rosiers, Christine; Portman, Michael A
2013-08-19
Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8-hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2-(13)C]-pyruvate as an oxidative substrate and [(13)C6]-L-leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near-baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl-CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (≈80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO.
Epitaxy of boron phosphide on AlN, 4H-SiC, 3C-SiC and ZrB2 substrates
NASA Astrophysics Data System (ADS)
Padavala, Balabalaji
The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AlN, 4H-SiC, 3C-SiC and ZrB2 by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail. Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [11¯00] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB2 at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH 3 to B2H6 resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm -1), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm2/V˙s and a lowest carrier concentration of 3.15x1018 cm -3. Raman imaging had lower values of FWHM (4.8 cm-1 ) and a standard deviation (0.56 cm-1) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB2/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB2 substrates. Among the substrates studied, AlN/sapphire proved to be the best choice for BP epitaxy, even though it did not eliminate rotational twinning in BP. The substrates investigated in this work were found to be viable for BP epitaxy and show promising potential for further enhancement of BP properties.
Conductive stability of graphene on PET and glass substrates under blue light irradiation
NASA Astrophysics Data System (ADS)
Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin
2018-01-01
Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.
Bouallagui, H; Lahdheb, H; Ben Romdan, E; Rachdi, B; Hamdi, M
2009-04-01
The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46-2.51 g volatile solids (VS)l(-1)d(-1), of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.
Beltrán, Carolina; Jeison, David; Fermoso, Fernando G; Borja, Rafael
2016-08-23
The microalgae Chlorella sorokiniana are used as co-substrate for waste activated sludge (WAS) anaerobic digestion. The specific objective of this research was to evaluate the feasibility of improving methane production from anaerobic digestion of WAS in co-digestion with this microalga, based on an optimized mixture percentage. Thus, the anaerobic co-digestion of both substrates aims to overcome the drawbacks of the anaerobic digestion of single WAS, simultaneously improving its management. Different co-digestion mixtures (0% WAS-100% microalgae; 25% WAS-75% microalgae; 50% WAS-50% microalgae; 75% WAS-25% microalgae; 100% WAS-0% microalgae) were studied. The highest methane yield (442 mL CH4/g VS) was obtained for the mixture with 75% WAS and 25% microalgae. This value was 22% and 39% higher than that obtained in the anaerobic digestion of the sole substrates WAS and microalgae, respectively, as well as 16% and 25% higher than those obtained for the co-digestion mixtures with 25% WAS and 75% microalgae and 50% WAS and 50% microalgae, respectively. The kinetic constant of the process increased 42%, 42% and 12%, respectively, for the mixtures with 25%, 50% and 75% of WAS compared to the substrate without WAS. Anaerobic digestion of WAS, together with C. sorokiniana, has been clearly improved by ensuring its viability, suitability and efficiency.
Improving yield of PZT piezoelectric devices on glass substrates
NASA Astrophysics Data System (ADS)
Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan
2012-10-01
The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be < 90%. For this work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.
Gharasoo, Mehdi; Centler, Florian; Van Cappellen, Philippe; Wick, Lukas Y; Thullner, Martin
2015-05-05
Microbial degradation is an important process in many environments controlling for instance the cycling of nutrients or the biodegradation of contaminants. At high substrate concentrations toxic effects may inhibit the degradation process. Bioavailability limitations of a degradable substrate can therefore either improve the overall dynamics of degradation by softening the contaminant toxicity effects to microorganisms, or slow down the biodegradation by reducing the microbial access to the substrate. Many studies on biodegradation kinetics of a self-inhibitive substrate have mainly focused on physiological responses of the bacteria to substrate concentration levels without considering the substrate bioavailability limitations rising from different geophysical and geochemical dynamics at pore-scale. In this regard, the role of bioavailability effects on the kinetics of self-inhibiting substrates is poorly understood. In this study, we theoretically analyze this role and assess the interactions between self-inhibition and mass transfer-limitations using analytical/numerical solutions, and show the findings practical relevance for a simple model scenario. Although individually self-inhibition and mass-transfer limitations negatively impact biodegradation, their combined effect may enhance biodegradation rates above a concentration threshold. To our knowledge, this is the first theoretical study describing the cumulative effects of the two mechanisms together.
Ang, Ee L; Obbard, Jeffrey P; Zhao, Huimin
2007-02-01
Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.
NASA Astrophysics Data System (ADS)
Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang
2018-05-01
Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.
Gottfried, Jennifer L
2013-02-01
Laser-induced breakdown spectroscopy is a promising approach for explosive residue detection, but several limitations to its widespread use remain. One issue is that the emission spectra of the residues are dependent on the substrate composition because some of the substrate is usually entrained in the laser-induced plasma and the laser-material interaction can be significantly affected by the substrate type. Here, we have demonstrated that despite the strong spectral variation in cyclotrimethylenetrinitramine (RDX) residues applied to various metal substrates, classification of the RDX residue independent of substrate type is feasible. Several approaches to improving the chemometric models based on partial least squares discriminant analysis (PLS-DA) have been described: classifying the RDX residue spectra together in one class independent of substrate, using selected emission intensities and ratios to increase the true positive rate (TPR) and decrease the false positive rate (FPR), and fusing the results from two PLS-DA models generated using the full broadband spectra and selected intensities and ratios. The combination of these approaches resulted in a TPR of 97.5% and a FPR of 1.0% for RDX classification on metal substrates.
Ductile film delamination from compliant substrates using hard overlayers
Cordill, M.J.; Marx, V.M.; Kirchlechner, C.
2014-01-01
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems. PMID:25641995
Ductile film delamination from compliant substrates using hard overlayers.
Cordill, M J; Marx, V M; Kirchlechner, C
2014-11-28
Flexible electronic devices call for copper and gold metal films to adhere well to polymer substrates. Measuring the interfacial adhesion of these material systems is often challenging, requiring the formulation of different techniques and models. Presented here is a strategy to induce well defined areas of delamination to measure the adhesion of copper films on polyimide substrates. The technique utilizes a stressed overlayer and tensile straining to cause buckle formation. The described method allows one to examine the effects of thin adhesion layers used to improve the adhesion of flexible systems.
2009-05-01
2 Figure 2. Schematic of a Schottky diode structure (a) grown on an insulating substrate such as sapphire that requires front side...an on-axis substrate at 1000 °C taken (a) at a high magnification and (b) in a region where micropores were observed. ..........8 Figure 5. The 5 x...is useful for vertical high power devices. It can also be made insulating by growing it in a very pure state, which is useful for lateral high
Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
Beattie, Kenneth L.
1998-01-01
An improved microfabricated apparatus for conducting a multiplicity of individual and simultaneous binding reactions is described. The apparatus comprises a substrate on which are located discrete and isolated sites for binding reactions. The apparatus is characterized by discrete and isolated regions that extend through said substrate and terminate on a second surface thereof such that when a test sample is allowed to the substrate, it is capable of penetrating through each such region during the course of said binding reaction. The apparatus is especially useful for sequencing by hybridization of DNA molecules.
Micro-optic lens for data storage
NASA Technical Reports Server (NTRS)
Milster, T. D.; Trusty, R. M.; Wang, M. S.; Froehlich, F. F.; Erwin, J. Kevin
1991-01-01
A new type of microlens for data storage applications that has improved off-axis performance is described. The lens consists of a micro Fresnel pattern on a curved substrate. The radius of the substrate is equal to the focal length of the lens. If the pattern and substrate are thin, the combination satisfies the Abbe sine condition. Therefore, the lens is free of coma. We analyze a 0.5 numerical aperture, 0.50 mm focal length lens in detail. A 0.16 numerical aperture lens was fabricated holographically, and results are presented.
Modeling Visible/Near-Infrared Photometric Properties of Dustfall on a Known Substrate
NASA Technical Reports Server (NTRS)
Sohl-Dickstein, J.; Johnson, J. R.; Grundy, W. M.; Guinness, E.; Graff, T.; Shepard, M. K.; Arvidson, R. E.; Bell, J. F., III; Christensen, P.; Morris, R.
2005-01-01
We present a comprehensive visible/near-infrared two-layer radiative transfer modeling study using laboratory spectra of variable dust thicknesses deposited on substrates with known photometric parameters. The masking effects of Martian airfall dust deposition on rocks, soils, and lander/rover components provides the incentive to improve two-layer models [1-3]. It is believed that the model presented will facilitate understanding of the spectral and compositional properties of both the dust layer and substrate material, and allow for better compensation for dust deposition.
Influence of Microstructure on the Electrical Properties of Heteroepitaxial TiN Films
NASA Astrophysics Data System (ADS)
Xiang, Wenfeng; Liu, Yuan; Zhang, Jiaqi
2018-05-01
Heteroepitaxial TiN films were deposited on Si substrates by pulse laser deposition at different substrate temperature. The microstructure and surface morphology of the films were investigated by X-ray diffraction (θ-2θ scan, ω-scan, and ϕ-scan) and atomic force microscopy. The electrical properties of the prepared TiN films were studied using a physical property measurement system. The experimental results showed that the crystallinity and surface morphology of the TiN films were improved gradually with increasing substrate temperature below 700 °C. Specially, single crystal TiN films were prepared when substrate temperature is above 700 °C; However, the quality of TiN films gradually worsened when the substrate temperature was increased further. The electrical properties of the films were directly correlated to their crystalline quality. At the optimal substrate temperature of 700 °C, the TiN films exhibited the lowest resistivity and highest mobility of 25.7 μΩ cm and 36.1 cm2/V s, respectively. In addition, the mechanism concerning the influence of substrate temperature on the microstructure of TiN films is discussed in detail.
Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.
2018-03-01
In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.
Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-06-01
To study the substrate dependence of light emission characteristics of transverse-magnetic (TM)-polarized light emitted from BAlGaN/AlN quantum wells (QWs) grown on GaN and AlN substrates were investigated theoretically. It is found that the topmost valence subband for QW structures grown on AlN substrate, is heavy hole state (HH1) while that for QW structures grown on GaN substrate is crystal-field split off light hole state (CL1), irrespective of the boron content. Since TM-polarized light emission is associated with the light hole state, the TM-polarized emission peak of BAlGaN/AlN QW structures grown on GaN substrate is expected to be much larger than that of the QW structure grown on AlN substrate. Also, both QW structures show that the spontaneous emission peak of BAlGaN/AlN QW structures would be improved with the inclusion of the boron. However, it rapidly begins to decrease when the boron content exceeds a critical value.
Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.
Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand
2017-05-01
Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.
NASA Astrophysics Data System (ADS)
Blochet, Quentin; Delloro, Francesco; N'Guyen, Franck; Jeulin, Dominique; Borit, François; Jeandin, Michel
2017-04-01
This article is dealing with the effects of surface preparation of the substrate on aluminum cold-sprayed coating bond strength. Different sets of AA2024-T3 specimens have been coated with pure Al 1050 feedstock powder, using a conventional cold spray coating technique. The sets were grit-blasted (GB) before coating. The study focuses on substrate surface topography evolution before coating and coating-substrate interface morphology after coating. To study coating adhesion by LASAT® technique for each set, specimens with and without preceding GB treatment were tested in load-controlled conditions. Then, several techniques were used to evaluate the effects of substrate surface treatment on the final coating mechanical properties. Irregularities induced by the GB treatment modify significantly the interface morphology. Results showed that particle anchoring was improved dramatically by the presence of craters. The substrate surface was characterized by numerous anchors. Numerical simulation results exhibited the increasing deformation of particle onto the grit-blasted surface. In addition, results showed a strong relationship between the coating-substrate bond strength on the deposited material and surface preparation.
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
The Structure of Lombricine Kinase: Implications for Phosphagen Conformational Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, D. Jeffrey; Kirillova, Olga; Clark, Shawn A.
2012-05-29
Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309-317, which is disordered in substrate-free structures of homologs and is known from the NMR ofmore » arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His{sup 178}. Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates.« less
Jiu, Jinting; Sugahara, Tohru; Nogi, Masaya; Araki, Teppei; Suganuma, Katsuaki; Uchida, Hiroshi; Shinozaki, Kenji
2013-12-07
Silver nanowire (AgNW) films with a random mesh structure have attracted considerable attention as high-performance flexible transparent electrodes that can replace the expensive and brittle ITO-sputtered films widely used in displays, touch screens, and solar cells. Methods such as heating, pressure treatment, and light treatment are usually used to obtain an optically transparent and electrically conductive film comparable to those of commercial ITO. However, the adhesion between the AgNW film and the substrate is so weak that other overcoatings or extra treatments are necessary. Here, a high-intensity pulsed light (HIPL) sintering technique was developed to rapidly and simply sinter the AgNW film and thus achieve strong adhesion and even high conductivity on these flexible polymer substrates which will be widely applied to the printing of electronic devices. The conductivity of the AgNW film closely depended on the thermal performance of substrates, and the adhesion was determined by the soft state of the substrate surface originating from the glass transition or melting of substrates with light intensity. The rapid sintering technique can be popularized to fabricate new devices on these polymer substrates by considering the thermal properties of the substrate to improve the performance of devices.
Xu, Defu; Li, Yingxue; Fan, Xiaolong; Guan, Yidong; Fang, Hua; Zhao, Xiaoli
2013-01-01
Four constructed wetland systems were studied to investigate the effects of adding Eisenia fetida on the purifying capacity of constructed wetlands. Addition of E. fetida increased the photosynthetic rate (Pn), transpiration rate (Tr) and chlorophyll meter value of leaves of Iris pseudacorus L. in the constructed wetlands by 16, 35 and 7%, respectively. Compared with the substrate only system, evapotranspiration losses were increased by 8, 48 and 56% for the wetland systems with substrate and E. fetida, with substrate and I. pseudacorus, and with substrate, I. pseudacorus and E. fetida, respectively. Addition of E. fetida to the substrate only and substrate and plant wetland systems decreased the substrate bulk density by 3 and 6%, respectively. The addition of E. fetida to the system with substrate and plants increased the removal efficiency of chemical oxygen demand (CODMn), total nitrogen (TN) and total phosphorus by 5, 7 and 22%, respectively. Evapotranspiration losses were significantly positively correlated with the removal efficiency of CODMn (P < 0.01). The significantly negative correlation between the removal efficiency TN and bulk density was found (P < 0.05). Therefore, E. fetida could stimulate I. pseudacorus growth and improve the substrate bulk density in the constructed wetland, resulting in enhanced purifying capacity.
The effect of substrate on electric field enhancement of Tip-enhanced Raman spectroscopy (TERS)
NASA Astrophysics Data System (ADS)
Bahreini, Maryam
2018-01-01
The characterization of materials down to a few-molecule level is a key challenge in nanotechnology. Raman spectroscopy is a powerful method that provides chemical information via nondestructive vibrational fingerprinting. Unfortunately, this method suffers from signal weakness which prevents the study of small quantities. Tip-enhanced Raman spectroscopy (TERS) which combines the chemical sensitivity of Raman spectroscopy (RS) with high spatial resolution of scanning probe microscopy (SPM), provides chemical images of surfaces at the nanometer scale. In this method, irradiation of an SPM tip by a focused laser beam results in enhancement of local electric field via two reasons of localized surface plasmon resonance and lightning rod effect. This enhancement leads to the enhancement in Raman intensity from the sample surface in the vicinity of tip. In all TERS measurements, samples should be located on a substrate. In this paper, the dependence of the electric field enhancement to the substrate has been investigated. In simulations, three-dimensional finite-difference time-domain (3D-FDTD) method is used for numerical solution of Maxwell's equations. Our results show that the electric field enhancement is weak for the tip alone case. Introducing a substrate provides further electric field enhancement via near field electromagnetic dipole-dipole coupling between the tip and substrate. Since the side-illumination geometry is used for laser irradiation, the vertical component of the incident field plays a dominant role in the electric field enhancement. Therefore, the coupling effect between the tip and the substrate is the key contribution to the enhancement. For the case of silicon tip and the gold substrate, the electric field enhancement is improved considerably. There is an optimal tip size for TERS because of the competing effects of the radiation damping and the surface scattering of the tip. The results show the substrate as an effective tool for the improvement of the TERS detection sensitivity.
Degradation of tannins in spent coffee grounds by Pleurotus sajor-caju.
Wong, Y S; Wang, X
1991-09-01
Pleurotus sajor-caju PL27, a white rot fungus, degraded up to 87% of the tannins in spent coffee grounds as a solid substrate over 32 days. Degradation of tannins was enhanced if potato and dextrose were included. The potential nutritive value of the substrate as animal feed may be improved by this process.
USDA-ARS?s Scientific Manuscript database
Increased interest in sustainable production of renewable diesel and other valuable bioproducts is redoubling efforts to improve economic feasibility of microbial-based oil production. The yeast Yarrowia lipolytica is capable of employing a wide variety of substrates to produce oil and valuable co-p...
NASA Technical Reports Server (NTRS)
Toy, M. S.; Stringham, R. S. (Inventor)
1980-01-01
Aromatic polyamides with improved nonflammability characteristics are produced by contacting a polyamide substrate with a gaseous medium comprising a minor amount of a haloolefinic material and an inert diluent in the presence of light having sufficient energy to effect chemical addition of the haloolefin to the polyamide substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosserman, Mary A.; Downey, Theresa; Noinaj, Nicholas
Baeyer–Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C–C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed usmore » to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.« less
Koutrotsios, Georgios; Kalogeropoulos, Nick; Kaliora, Andriana C; Zervakis, Georgios I
2018-06-20
Pleurotus ostreatus, P. eryngii, and P. nebrodensis were cultivated on nonconventional substrates containing grape marc (GMC) or olive mill byproducts (OMB); wheat straw (WHS) served as control. GMC-based media demonstrated equal/better mushroom productivity than WHS for P. eryngii and P. nebrodensis, while the cultivation performance of P. eryngii was improved in OMB-based media. Both GMC and OMB substrates led to large increase of fruit-bodies content in phenolic acids, resveratrol, triterpenic compounds, and ergosterol; in particular, P. eryngii mushrooms presented significantly more total phenolics and exhibited much higher antioxidant activity (2- to 8-fold increase). Furthermore, substrates containing GMC or OMB presented up to 27% increase in mushroom β-glucans. Overall, Pleurotus species responded in a different and mostly substrate-specific manner by selectively absorbing organic compounds. Phenolics and squalene content of substrates correlated very well with mushrooms antioxidant activity and ergosterol, respectively; the same was observed for triterpenics' content of substrates and mushrooms.
NASA Astrophysics Data System (ADS)
Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun
2018-05-01
The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.
Li, R; Barton, HA; Maurer, TS
2015-01-01
Liver cirrhosis is a disease characterized by the loss of functional liver mass. Physiologically based pharmacokinetic (PBPK) modeling was applied to interpret and predict how the interplay among physiological changes in cirrhosis affects pharmacokinetics. However, previous PBPK models under cirrhotic conditions were developed for permeable cytochrome P450 substrates and do not directly apply to substrates of liver transporters. This study characterizes a PBPK model for liver transporter substrates in relation to the severity of liver cirrhosis. A published PBPK model structure for liver transporter substrates under healthy conditions and the physiological changes for cirrhosis are combined to simulate pharmacokinetics of liver transporter substrates in patients with mild and moderate cirrhosis. The simulated pharmacokinetics under liver cirrhosis reasonably approximate observations. This analysis includes meta-analysis to obtain system-dependent parameters in cirrhosis patients and a top-down approach to improve understanding of the effect of cirrhosis on transporter-mediated drug disposition under cirrhotic conditions. PMID:26225262
Advances in silicon carbide Chemical Vapor Deposition (CVD) for semiconductor device fabrication
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Petit, Jeremy B.; Matus, Lawrence G.
1991-01-01
Improved SiC chemical vapor deposition films of both 3C and 6H polytypes were grown on vicinal (0001) 6H-SiC wafers cut from single-crystal boules. These films were produced from silane and propane in hydrogen at one atmosphere at a temperature of 1725 K. Among the more important factors which affected the structure and morphology of the grown films were the tilt angle of the substrate, the polarity of the growth surface, and the pregrowth surface treatment of the substrate. With proper pregrowth surface treatment, 6H films were grown on 6H substrates with tilt angles as small as 0.1 degrees. In addition, 3C could be induced to grow within selected regions on a 6H substrate. The polarity of the substrate was a large factor in the incorporation of dopants during epitaxial growth. A new growth model is discussed which explains the control of SiC polytype in epitaxial growth on vicinal (0001) SiC substrates.
Witte, C.C.; Wildhaber, M.L.; Arab, A.; Noltie, Douglas B.
2009-01-01
Topeka shiners (Notropis topeka), an endangered minnow species, typically spawn on or around breeding Lepomis sunfish (Centrarchidae) nests. Why spawning Topeka shiners are attracted to these nests is unclear, but having the nesting sunfish provide shiner eggs with improved aeration, a lessening of siltation, and protection from egg predators are possibilities. We tested the substrate utilisation of Topeka shiners in outdoor tanks in the absence of sunfish to determine the shiner's fundamental choice. Shiners were provided with substrate patches of cleaned sand, small gravel, large gravel, and small cobble, and the bare floor of the tank. The substrate above which a male shiner established his territory was used as evidence of choice. A statistically significant choice for sand substrates was demonstrated. This fundamental choice might influence which sunfish nests Topeka shiners use, given that nest substrate characteristics differ both between sunfish species and within species by spawning site location. ?? 2009 John Wiley & Sons A/S.
Applying a biodeposition layer to increase the bond of a repair mortar on a mortar substrate.
Snoeck, D; Wang, J; Bentz, D P; De Belie, N
2018-02-01
One of the major concerns in infrastructure repair is a sufficient bond between the substrate and the repair material, especially for the long-term performance and durability of the repaired structure. In this study, the bond of the repair material on the mortar substrate is promoted via the biodeposition of a calcium carbonate layer by a ureolytic bacterium. X-ray diffraction and scanning electron microscopy were used to examine the interfaces between the repair material and the substrate, as well as the polymorph of the deposited calcium carbonate. The approximately 50 μm thick biodeposition film on the mortar surface mostly consisted of calcite and vaterite. Both the repair material and the substrate tended to show a good adherence to that layer. The bond, as assessed by slant shear specimen testing, was improved by the presence of the biodeposition layer. A further increase was found when engineering the substrate surface using a structured pattern layer of biodeposition.
NASA Astrophysics Data System (ADS)
Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da
2016-03-01
Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.
Ferrer, Pablo; Cambra-López, María; Cerisuelo, Alba; Peñaranda, David S; Moset, Verónica
2014-01-01
Anaerobic co-digestion of pig slurry with four agricultural substrates (tomato, pepper, persimmon and peach) was investigated. Each agricultural substrate was tested in co-digestion with pig slurry at four inclusion levels: 0%, 15%, 30% and 50%. Inclusion levels consisted in the replacement of the volatile solids (VS) from the pig slurry with the VS from the agricultural substrate. The effect of substrate type and inclusion level on the biochemical methane potential (BMP) was evaluated in a batch assay performed at 35 °C for 100 days. Agricultural substrate's chemical composition was also analyzed and related with BMP. Additionally, Bacteria and Archaea domains together with the four main methanogenic archaeal orders were quantified using quantitative real-time TaqMan polymerase chain reaction (qPCR) at the end of the experiment to determine the influence of agricultural substrate on sludge's microbial composition. Results showed that vegetable substrates (pepper and tomato) had higher lipid and protein content and lower carbohydrates than fruit substrates (persimmon and peach). Among substrates, vegetable substrates showed higher BMP than fruit substrates. Higher BMP values were obtained with increasing addition of agricultural substrate. The replacement of 50% of VS from pig slurry by tomato and pepper increased BMP in 41% and 44%, respectively compared with pig slurry only. Lower increments in BMP were achieved with lower inclusion levels. Results from qPCR showed that total bacteria and total archaea gene concentrations were similar in all combinations tested. Methanomicrobiales gene concentrations dominated over the rest of individual archaeal orders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio
2014-12-01
The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.
NASA Astrophysics Data System (ADS)
Wu, Dongxue; Ma, Ping; Liu, Boting; Zhang, Shuo; Wang, Junxi; Li, Jinmin
2016-05-01
GaN-based flip-chip light-emitting diodes (FC-LEDs) grown on nanopatterned sapphire substrates (NPSS) are fabricated using self-assembled SiO2 nanospheres as masks during inductively coupled plasma etching. By controlling the pattern spacing, epitaxial GaN can be grown from the top or bottom of patterns to obtain two different GaN/substrate interfaces. The optoelectronic characteristics of FC-LED chips with different GaN/sapphire interfaces are studied. The FC-LED with an antireflective interface layer consisting of a NPSS with GaN in the pattern spacings demonstrates better optical properties than the FC-LED with an interface embedded with air voids. Our study indicates that the two types of FC-LEDs grown on NPSS show higher crystal quality and improved electrical and optical characteristics compared with those of FC-LEDs grown on conventional planar sapphire substrates.
NASA Astrophysics Data System (ADS)
Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young
2018-02-01
The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.
Solid Lubrication Fundamentals and Applications. Chapter 2
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1998-01-01
This chapter describes powerful analytical techniques capable of sampling tribological surfaces and solid-film lubricants. Some of these techniques may also be used to determine the locus of failure in a bonded structure or coated substrate; such information is important when seeking improved adhesion between a solid-film lubricant and a substrate and when seeking improved performance and long life expectancy of solid lubricants. Many examples are given here and through-out the book on the nature and character of solid surfaces and their significance in lubrication, friction, and wear. The analytical techniques used include the late spectroscopic methods.
NASA Astrophysics Data System (ADS)
Ni, Yuyang; Li, Jun; Huang, Zhenzhen; He, Ke; Zhuang, Jiaqi; Yang, Wensheng
2013-11-01
The using of macromolecular additives is known to be a simple and effective way to improve the activity of immobilized enzymes on solid support, yet the mechanism has not been well understood. Taking horseradish peroxidase (HRP) as an example, only 30 % of its catalytic activity was kept after being immobilized on the surface of 25-nm Au nanoparticles, mainly attributed to the conformational change of the heme-containing active site. The catalytic activity of HRP was significantly improved to 80 % when a certain amount of bovine serum albumin (BSA) was added at the initial stage of the immobilization. Systematic spectral investigation indicated that the addition of BSA inhibited the tertiary structure change around the active site, which was a prerequisite for improved activity of the immobilized HRP. Steady-state kinetic analyses revealed that the introduction of BSA could effectively improve the turnover rate of substrate to product in spite of slight reduced affinity to substrates, which also contributed to the improved catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoyu; Graduate University of Chinese Academy of Sciences, Beijing 100049; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn
Graphical abstract: High performance broadband antireflective and water-repellent coatings were fabricated on glass substrates, which can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. - Highlights: • Broadband anti-reflective and water-repellent coatings were fabricated. • Transmittance increased to 99.0%, significantly higher than that of commercial solar glasses. • The performance of standard solar cells with the AR coating was enhanced as much as 6.6%. - Abstract: High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layermore » (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO{sub 2} nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system.« less
Ważny, Rafał; Rozpądek, Piotr; Jędrzejczyk, Roman J; Śliwa, Marta; Stojakowska, Anna; Anielska, Teresa; Turnau, Katarzyna
2018-04-01
Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.
Duicu, Oana M; Privistirescu, Andreea; Wolf, Adrian; Petruş, Alexandra; Dănilă, Maria D; Raţiu, Corina D; Muntean, Danina M; Sturza, Adrian
2017-11-01
Diabetic cardiomyopathy has been systematically associated with compromised mitochondrial energetics and increased generation of reactive oxygen species (ROS) that underlie its progression to heart failure. Methylene blue is a redox drug with reported protective effects mainly on brain mitochondria. The purpose of the present study was to characterize the effects of acute administration of methylene blue on mitochondrial respiration, H 2 O 2 production, and calcium sensitivity in rat heart mitochondria isolated from healthy and 2 months (streptozotocin-induced) diabetic rats. Mitochondrial respiratory function was assessed by high-resolution respirometry. H 2 O 2 production and calcium retention capacity were measured spectrofluorimetrically. The addition of methylene blue (0.1 μmol·L -1 ) elicited an increase in oxygen consumption of mitochondria energized with complex I and II substrates in both normal and diseased mitochondria. Interestingly, methylene blue elicited a significant increase in H 2 O 2 release in the presence of complex I substrates (glutamate and malate), but had an opposite effect in mitochondria energized with complex II substrate (succinate). No changes in the calcium retention capacity of healthy or diabetic mitochondria were found in the presence of methylene blue. In conclusion, in cardiac mitochondria isolated from diabetic and nondiabetic rat hearts, methylene blue improved respiratory function and elicited a dichotomic, substrate-dependent effect on ROS production.
NASA Astrophysics Data System (ADS)
Sui, Chaofan; Wang, Kaige; Wang, Shuang; Ren, Junying; Bai, Xiaohong; Bai, Jintao
2016-03-01
Most of SERS applications are constricted by heterogeneous hotspots and aggregates of nanostructure, which result in low sensitivity and poor reproducibility of characteristic signals. This work intends to introduce SERS properties of a type of SERS-active substrate, Au-CuCl2-AAO, which is innovatively developed on a porous anodic alumina oxide (AAO) template. Spectral measuring results of Rhodamine 6G (R6G) on this substrate optimized by controlling morphology and gold thickness showed that enhancement factor (2.30 × 107) and detection limit (10-10 M) were both improved and represented better performance than its template AAO. Homogenous hot spots across the region of interest were achieved by scanning SERS intensity distribution for the band at 1505 cm-1 in 5 × 5 μm2 area. Furthermore, the promising SERS activity of the flower-patterned substrate was theoretically explained through simulation of the electromagnetic field distribution. In addition, this SERS substrate is proposed for applications within the field of chemical and biochemical analyses.Most of SERS applications are constricted by heterogeneous hotspots and aggregates of nanostructure, which result in low sensitivity and poor reproducibility of characteristic signals. This work intends to introduce SERS properties of a type of SERS-active substrate, Au-CuCl2-AAO, which is innovatively developed on a porous anodic alumina oxide (AAO) template. Spectral measuring results of Rhodamine 6G (R6G) on this substrate optimized by controlling morphology and gold thickness showed that enhancement factor (2.30 × 107) and detection limit (10-10 M) were both improved and represented better performance than its template AAO. Homogenous hot spots across the region of interest were achieved by scanning SERS intensity distribution for the band at 1505 cm-1 in 5 × 5 μm2 area. Furthermore, the promising SERS activity of the flower-patterned substrate was theoretically explained through simulation of the electromagnetic field distribution. In addition, this SERS substrate is proposed for applications within the field of chemical and biochemical analyses. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06771e
Bienholz, Anja; Al-Taweel, Ahmad; Roeser, Nancy F; Kribben, Andreas; Feldkamp, Thorsten; Weinberg, Joel M
2014-01-01
Kidney proximal tubules subjected to hypoxia/reoxygenation develop a nonesterified fatty acid-induced energetic deficit characterized by persistent partial mitochondrial deenergization that can be prevented and reversed by citric acid cycle substrates. To further assess the role of competition between fatty acids and substrates on inner membrane substrate carriers in the deenergization and the contribution to deenergization of fatty acid effects on respiratory function, digitonin-permeabilized rabbit and mouse tubules were studied using either addition of exogenous oleate after control normoxic incubation or increases of endogenous fatty acids produced by hypoxia/reoxygenation. The results demonstrated major effects of matrix oxaloacetate accumulation on succinate-supported energization and respiration and their modification by fatty acids. Improvements of energization in the presence of fatty acids by glutamate were shown to result predominantly from lowering matrix oxaloacetate rather than from amelioration of transmembrane cycling of fatty acids and uncoupling. Mouse tubules had 2.5 fold higher rates of succinate utilization, which resulted in stronger effects of oxaloacetate accumulation than rabbit tubules. Hypoxia/reoxygenation induced respiratory inhibition that was more severe for complex I-dependent substrates. Fatty acids themselves did not acutely contribute to this respiratory inhibition, but lowering them during 60 min. reoxygenation to allow recovery of ATP during that period alleviated it. These data clarify the basis for the nonesterified fatty acid-induced mitochondrial energetic deficit in kidney proximal tubules that impairs structural and functional recovery and provide insight into interactions that need to be considered in the design of substrate-based interventions to improve mitochondrial function.
Trollope, K. M.; Görgens, J. F.
2015-01-01
The Aspergillus japonicus β-fructofuranosidase catalyzes the industrially important biotransformation of sucrose to fructooligosaccharides. Operating at high substrate loading and temperatures between 50 and 60°C, the enzyme activity is negatively influenced by glucose product inhibition and thermal instability. To address these limitations, the solvent-exposed loop regions of the β-fructofuranosidase were engineered using a combined crystal structure- and evolutionary-guided approach. This semirational approach yielded a functionally enriched first-round library of 36 single-amino-acid-substitution variants with 58% retaining activity, and of these, 71% displayed improved activities compared to the parent. The substitutions yielding the five most improved variants subsequently were exhaustively combined and evaluated. A four-substitution combination variant was identified as the most improved and reduced the time to completion of an efficient industrial-like reaction by 22%. Characterization of the top five combination variants by isothermal denaturation assays indicated that these variants displayed improved thermostability, with the most thermostable variant displaying a 5.7°C increased melting temperature. The variants displayed uniquely altered, concentration-dependent substrate and product binding as determined by differential scanning fluorimetry. The altered catalytic activity was evidenced by increased specific activities of all five variants, with the most improved variant doubling that of the parent. Variant homology modeling and computational analyses were used to rationalize the effects of amino acid changes lacking direct interaction with substrates. Data indicated that targeting substitutions to loop regions resulted in improved enzyme thermostability, specific activity, and relief from product inhibition. PMID:26253664
Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing
2018-05-01
Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.
Microfabricated structures with electrical isolation and interconnections
NASA Technical Reports Server (NTRS)
Clark, William A. (Inventor); Juneau, Thor N. (Inventor); Roessig, Allen W. (Inventor); Lemkin, Mark A. (Inventor)
2001-01-01
The invention is directed to a microfabricated device. The device includes a substrate that is etched to define mechanical structures at least some of which are anchored laterally to the remainder of the substrate. Electrical isolation at points where mechanical structures are attached to the substrate is provided by filled isolation trenches. Filled trenches may also be used to electrically isolate structure elements from each other at points where mechanical attachment of structure elements is desired. The performance of microelectromechanical devices is improved by 1) having a high-aspect-ratio between vertical and lateral dimensions of the mechanical elements, 2) integrating electronics on the same substrate as the mechanical elements, 3) good electrical isolation among mechanical elements and circuits except where electrical interconnection is desired.
NASA Astrophysics Data System (ADS)
Lin, Yu-Sheng; Yeh, J. Andrew
2011-09-01
High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.
Ion Beam Sputtered Coatings of Bioglass
NASA Technical Reports Server (NTRS)
Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne
1982-01-01
The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.
NASA Astrophysics Data System (ADS)
Arora, Sweety; Rekha, M. Y.; Gupta, Abhay; Srivastava, Chandan
2018-02-01
The inert and hydrophobic nature of carbon nanotubes (CNTs) makes them a potential material for corrosion protection coatings. In this work, a uniform coating of multi-walled CNTs (MWCNTs) was formed over a mild steel substrate by direct decomposition of a ferrocene-benzene mixture over the substrate which was kept inside a chemical vapor deposition setup at a temperature of 800°C. The MWCNTs formed over the substrate were characterized using x-ray diffraction, Raman spectroscopy and transmission electron microscopy techniques. Corrosion behavior of the bare and MWCNT-coated mild steel substrate was examined through potentiodynamic polarization and electrochemical impedance spectroscopy methods. A significant improvement in the corrosion resistance in terms of the reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the MWCNT-coated mild steel plate. Corrosion resistance increased due to MWCNT coating.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, P.
1996-12-31
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, P.
1995-10-10
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal-to-noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.
Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.
Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin
2012-12-14
GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.
NASA Astrophysics Data System (ADS)
Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul
2018-06-01
The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe; Haider, Ali
2016-01-15
Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties,more » the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.« less
Origin of the mosaicity in graphene grown on Cu(111)
NASA Astrophysics Data System (ADS)
Nie, Shu; Wofford, Joseph M.; Bartelt, Norman C.; Dubon, Oscar D.; McCarty, Kevin F.
2011-10-01
We use low-energy electron microscopy to investigate how graphene grows on Cu(111). Graphene islands first nucleate at substrate defects such as step bunches and impurities. A considerable fraction of these islands can be rotationally misaligned with the substrate, generating grain boundaries upon interisland impingement. New rotational boundaries are also generated as graphene grows across substrate step bunches. Thus, rougher substrates lead to higher degrees of mosaicity than do flatter substrates. Increasing the growth temperature improves crystallographic alignment. We demonstrate that graphene growth on Cu(111) is surface diffusion limited by comparing simulations of the time evolution of island shapes with experiments. Islands are dendritic with distinct lobes, but unlike the polycrystalline, four-lobed islands observed on (100)-textured Cu foils, each island can be a single crystal. Thus, epitaxial graphene on smooth, clean Cu(111) has fewer structural defects than it does on Cu(100).
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, Peter
1995-01-01
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.
System for monitoring the growth of crystalline films on stationary substrates
Sheldon, Peter
1996-01-01
A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.
Aerobic biological treatment of leachates from municipal solid waste landfill.
Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M
2004-01-01
The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).
The significance of nanoparticles on bond strength of polymer concrete to steel
Douba, A.; Genedy, M.; Matteo, E. N.; ...
2017-01-03
Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less
The significance of nanoparticles on bond strength of polymer concrete to steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douba, A.; Genedy, M.; Matteo, E. N.
Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less
Improved catalysts for carbon and coal gasification
McKee, D.W.; Spiro, C.L.; Kosky, P.G.
1984-05-25
This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.
Increased voltage photovoltaic cell
NASA Technical Reports Server (NTRS)
Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)
1985-01-01
A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.
SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Attachment system for silica tiles. [thermal protection for space shuttle orbiter
NASA Technical Reports Server (NTRS)
Dotts, R. L.; Holt, J. W. (Inventor)
1982-01-01
An improved method for markedly increasing the bond strength between a rigid, porous refractory material and non-rigid substrate by densifying the face of the rigid material opposing the substrate is discussed. Densification is accomplished by wetting the refractory material and then impregnating it with a composite slurry having a particle size to fill voids of the porous material.
Fabrication Of SNS Weak Links On SOS Substrates
NASA Technical Reports Server (NTRS)
Hunt, Brian D.
1995-01-01
High-quality superconductor/normal-conductor/superconductor (SNS) devices ("weak links") containing epitaxial films of YBa(2)Cu(3)O(7-x) and SrTiO(3) fabricated on silicon-on-sapphire (SOS) substrates with help of improved multilayer buffer system. Process for fabrication of edge-defined SNS weak links described in "Edge-Geometry SNS Devices Made of Y/Ba/Cu" (NPO-18552).
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.
2012-01-01
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates.
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J
2012-02-21
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (k(cat)/K(M)) for competing substrates, even though adaptive substitutions may affect K(M) and k(cat) separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities.
Kim, Hyungsoo; Bong, Jihye; Mikael, Solomon; Kim, Tong June; Williams, Justin C.; Ma, Zhenqiang
2016-01-01
Flexible graphene transistors built on a biocompatible Parylene C substrate would enable active circuitry to be integrated into flexible implantable biomedical devices. An annealing method to improve the performance of a flexible transistor without damaging the flexible substrate is also desirable. Here, we present a fabrication method of a flexible graphene transistor with a bottom-gate coplanar structure on a Parylene C substrate. Also, a current annealing method and its effect on the device performance have been studied. The localized heat generated by the current annealing method improves the drain current, which is attributed to the decreased contact resistance between graphene and S/D electrodes. A maximum current annealing power in the Parylene C-based graphene transistor has been extracted to provide a guideline for an appropriate current annealing. The fabricated flexible graphene transistor shows a field-effect mobility, maximum transconductance, and a Ion/Ioff ratio of 533.5 cm2/V s, 58.1 μS, and 1.76, respectively. The low temperature process and the current annealing method presented here would be useful to fabricate two-dimensional materials-based flexible electronics. PMID:27795570
NASA Astrophysics Data System (ADS)
Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.
2015-11-01
Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.
NASA Astrophysics Data System (ADS)
Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo
2015-02-01
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.
The Use of Arbuscular Mycorrhizal Fungi to Improve Strawberry Production in Coir Substrate
Robinson Boyer, Louisa; Feng, Wei; Gulbis, Natallia; Hajdu, Klara; Harrison, Richard J.; Jeffries, Peter; Xu, Xiangming
2016-01-01
Strawberry is an important fruit crop within the UK. To reduce the impact of soil-borne diseases and extend the production season, more than half of the UK strawberry production is now in substrate (predominantly coir) under protection. Substrates such as coir are usually depleted of microbes including arbuscular mycorrhizal fungi (AMF) and consequently the introduction of beneficial microbes is likely to benefit commercial cropping systems. Inoculating strawberry plants in substrate other than coir has been shown to increase plants tolerance to soil-borne pathogens and water stress. We carried out studies to investigate whether AMF could improve strawberry production in coir under low nitrogen input and regulated deficit irrigation. Application of AMF led to an appreciable increase in the size and number of class I fruit, especially under either deficient irrigation or low nitrogen input condition. However, root length colonization by AMF was reduced in strawberry grown in coir compared to soil and Terragreen. Furthermore, the appearance of AMF colonizing strawberry and maize roots grown in coir showed some physical differences from the structure in colonized roots in soil and Terragreen: the colonization structure appeared to be more compact and smaller in coir. PMID:27594859
Automatic graphene transfer system for improved material quality and efficiency
Boscá, Alberto; Pedrós, Jorge; Martínez, Javier; Palacios, Tomás; Calle, Fernando
2016-01-01
In most applications based on chemical vapor deposition (CVD) graphene, the transfer from the growth to the target substrate is a critical step for the final device performance. Manual procedures are time consuming and depend on handling skills, whereas existing automatic roll-to-roll methods work well for flexible substrates but tend to induce mechanical damage in rigid ones. A new system that automatically transfers CVD graphene to an arbitrary target substrate has been developed. The process is based on the all-fluidic manipulation of the graphene to avoid mechanical damage, strain and contamination, and on the combination of capillary action and electrostatic repulsion between the graphene and its container to ensure a centered sample on top of the target substrate. The improved carrier mobility and yield of the automatically transferred graphene, as compared to that manually transferred, is demonstrated by the optical and electrical characterization of field-effect transistors fabricated on both materials. In particular, 70% higher mobility values, with a 30% decrease in the unintentional doping and a 10% strain reduction are achieved. The system has been developed for lab-scale transfer and proved to be scalable for industrial applications. PMID:26860260
Longtin, Rémi; Ramon Sanchez-Valencia, Juan; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo
2015-01-01
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected. PMID:27877755
Three-dimensional impedance engineering for mixed-signal system-on-chip applications
NASA Astrophysics Data System (ADS)
Chong, Kyuchul
A novel approach for three-dimensional substrate impedance engineering of p-/p+ epi substrate is proposed for mixed-signal integrated circuit applications. This technology requires minimum intrusion to conventional Si CMOS processing, but offers astounding improvements with regard to RF crosstalk via substrate and RF passive device performance. The engineered substrate consists of conducting as well as semi-insulating regions strategically placed three-dimensionally throughout the volume of the substrate. The p-/p+ epi substrate is used to prevent latch-up at tight design rules in high performance digital CMOS. Metal vias are fabricated from the front side using electroless plating method for Faraday cage isolation structure as well as "true ground" contacts. A self-limiting micro-PS formation process is employed to allow the insertion of semi-insulating regions from the backside of the wafer and RIE etch to remove p- layer is performed from the front side completely eliminating any parasitic pathways for crosstalk. The crosstalk isolation methods in this study are based on the principle of RF noise shielding in addition to insulating. Both the suppression of crosstalk by the metal vias and micro-PS trench isolation are so significant that the crosstalk goes down to the noise floor of the conventional measurement instruments. The use of micro-PS layer effectively can reduce the parasitic substrate effect. These reductions result in higher Q and fr of inductors on micro-PS region. Inductors located on micro-PS are subjected to a much less stringent set of constraints than that on bulk Si substrates, allowing for much higher inductance without severe sacrifice in Q and fr, and much higher Q for with reasonable inductance and fr. The bond pad structure using micro-PS can significantly reduce the parasitic bond pad capacitance and increases the crosstalk isolation characteristic. Reducing the parasitic pad capacitance by using micro-PS results in high bond pad resonant frequency of up to 56.2 GHz. The crosstalk between bond pads becomes much smaller than that of conventional p- bulk substrate by using micro-PS. In addition, the use of micro-PS leads to greatly improved transformer performances including higher Q and fr, mutual reactive coupling coefficients with larger useable band-width and maximum available gain by reducing the substrate effect.
Solar-induced chemical vapor deposition of diamond-type carbon films
Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.
1994-09-13
An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.
Solar-induced chemical vapor deposition of diamond-type carbon films
Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.
1994-01-01
An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.
Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation
Polishchuk, Kimberly Ann
2013-03-05
The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.
Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate
NASA Astrophysics Data System (ADS)
Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.
2017-08-01
Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.
PhosD: inferring kinase-substrate interactions based on protein domains.
Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming
2017-04-15
Identifying the kinase-substrate relationships is vital to understanding the phosphorylation events and various biological processes, especially signal transductions. Although large amount of phosphorylation sites have been detected, unfortunately, it is rarely known which kinases activate those sites. Despite distinct computational approaches have been proposed to predict the kinase-substrate interactions, the prediction accuracy still needs to be improved. In this paper, we propose a novel probabilistic model named as PhosD to predict kinase-substrate relationships based on protein domains with the assumption that kinase-substrate interactions are accomplished with kinase-domain interactions. By further taking into account protein-protein interactions, our PhosD outperforms other popular approaches on several benchmark datasets with higher precision. In addition, some of our predicted kinase-substrate relationships are validated by signaling pathways, indicating the predictive power of our approach. Furthermore, we notice that given a kinase, the more substrates are known for the kinase the more accurate its predicted substrates will be, and the domains involved in kinase-substrate interactions are found to be more conserved across proteins phosphorylated by multiple kinases. These findings can help develop more efficient computational approaches in the future. The data and results are available at http://comp-sysbio.org/phosd. xm_zhao@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
A multiwell format assay for heparanase.
Behzad, Farhad; Brenchley, Paul E C
2003-09-15
This assay employs a biotinylated heparan sulfate glycosaminoglycan (HSGAG) substrate that is covalently linked to the surface of 96-well immunoassay plates. The ratio of biotin:HSGAG and the coating concentration of substrate bound to the wells have been optimized and allow removal of biotin HSGAG within 60 min of incubation at 37 degrees C in assay buffer with a standard dilution of bacterial heparitinase or platelet heparanase. Loss of biotin signal from the well surface is detected on incubation with peroxidase-streptavidin followed by color development using 3,3',5,5'-tetramethylbenzidine as the peroxidase substrate. The new assay allows specific detection of heparanase activity in multiple samples in a total time of 3 h including a 1-h substrate digestion step and is a significant improvement with regard to sensitivity, specificity, and ease of handling of multiple samples compared to other described assays. Heparanase specifically degrades the biotinylated HSGAG substrate, when used with an optimized assay buffer. A range of enzymes including collagenase, trypsin, plasmin, pepsin, chondroitinases, hyaluronidase, and neuraminidase show no effect on the substrate under optimized assay conditions. The covalent linkage of the substrate to the well prevents leaching of substrate and allows preparation and long-term storage of substrate-coated plates. The assay can be used to detect heparanase levels in clinical samples and cell culture supernatants and is ideal as a screening method for antagonists of enzyme activity.
Respective effects of oxygen and energy substrate deprivation on beta cell viability.
Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric
2015-01-01
Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation of antenna-coupled Nb5N6 microbolometer THz detector with substrate resonant cavity.
Tu, Xuecou; Jiang, Chengtao; Xiao, Peng; Kang, Lin; Zhai, Shimin; Jiang, Zhou; Feng Su, Run; Jia, Xiaoqing; Zhang, Labao; Chen, Jian; Wu, Peiheng
2018-04-02
Fabricating resonant cavities with conventional methods to improve the coupling efficiency of a detector in the terahertz (THz) region is difficult for the wavelength is too long. Here, we propose a solution by using the substrate cavity effect given that the substrate wavelength and thickness of the preparation device are in the same order. The planar dipole antenna-coupled Nb 5 N 6 microbolometers with different substrate thicknesses were fabricated. The interference effect of the substrate cavity on the optical voltage response of the detector is analyzed experimentally and theoretically. The experimental results show that the optical response of the detector is determined by the length of the substrate cavity. Thus, the THz devices with different detection frequencies can be designed by changing the substrate cavity length. Furthermore, on the basis of this substrate cavity effect, an asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a movable metallic planar mirror at the backside of the Si substrate. The incident THz radiation on the Nb 5 N 6 microbolometer can be effectively manipulated by changing the substrate-mirror distance to modulate the phase relation between the reflect wave and the incident wave. The distinct radiation control can be observed, and the experiments can be well explained by numerically analyzing the responsivity dynamics that highlights the role of the FP cavity effect during radiation. All of the results discussed here can be extended to a broad range of frequency and other type of THz detectors.
Dudek, Hanna M.; de Gonzalo, Gonzalo; Torres Pazmiño, Daniel E.; Stępniak, Piotr; Wyrwicz, Lucjan S.; Rychlewski, Leszek; Fraaije, Marco W.
2011-01-01
Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope. PMID:21724896
Spectrophotometric determination of substrate-borne polyacrylamide.
Lu, Jianhang; Wu, Laosheng
2002-08-28
Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were <7.5% in all cases. The optimum range of PAM in each sample is 10-80 microg. The technique can serve as an effective tool in improving PAM application and facilitating PAM-related research.
Process for oxidation of hydrogen halides to elemental halogens
Lyke, Stephen E.
1992-01-01
An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.
NASA Astrophysics Data System (ADS)
Yokoyama, Moe; Yamada, Kenji; Nishimura, Takahiro; Kido, Michiko; Jeong, Hieyong; Ohno, Yuko
2015-03-01
Therapeutic drug monitoring (TDM) contributes to safe and effective pharmacotherapy in clinical fields. A simple, rapid, low-cost, and minimally-invasive drug measurement method attracts much interest for point-of-care TDM. Tear fluids can be collected minimally-invasively compared to blood sampling and there is a correlation between a drug concentration in tears and that in bloods. Surface enhanced Raman spectroscopy (SERS) with paper-based substrate is useful for point-of-care TDM owing to inexpensiveness and high-sensitivity. Paper is also a safe tear collection tool. Then we are studying on a paper-based SERS of tear specimen for point-of-care TDM. In this paper, to improve sensitivity in measuring drug concentration in tear fluids, we fabricated a SERS substrate by coating gold nano-rods on a paper substrate and evaluated whether the fabricated substrate can enhance Raman scattering. Sodium phenobarbital (PB), an anti-convulsant agent, was used as a target. In experiment, the fabricated substrate indicated the lower detection limit of PB in a solution than a plain paper substrate. This result showed the potential of the paper based SERS substrate to measure drug concentration in tears simply and inexpensively.
NASA Technical Reports Server (NTRS)
Gruener, J. E.; Ming, Doug; Galindo, C., Jr.; Henderson, K. E.
2006-01-01
The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops.
NASA Technical Reports Server (NTRS)
Debolt, H. E.; Krukonis, V. J.
1973-01-01
Silicon carbide (SiC) ribbon filaments were produced on a carbon ribbon substrate, about 1500 microns (60 mils) wide and 100 microns (4 mils) thick in lengths up to 2 meters (6 ft), and with tensile strengths up to 142 KN/cm sq (206 Ksi). During the course of the study, ribbon filaments of boron were also produced on the carbon ribbon substrate; the boron ribbon produced was extremely fragile. The tensile strength of the SiC ribbon was limited by large growths or flaws caused by anomalies at the substrate surface; these anomalies were either foreign dirt or substrate imperfections or both. Related work carried out on round 100 micron (4 mils) diameter SiC filaments on a 33 micron (1.3 mil) diameter, very smooth carbon monofilament substrate has shown that tensile strengths as high as 551 KN/cm sq (800 Ksi) are obtainable with the SiC-carbon round substrate combination, and indicates that if the ribbon substrate surface and ribbon deposition process can be improved similar strengths can be realizable. Cost analysis shows that 100 micron x 5-10 micron SiC ribbon can be very low cost reinforcement material.
Bajaj, Mini; Winter, Josef
2013-10-15
High strength automobile industry wastewater, collected from decanters (DECA) of the pre-treatment plant after oil, grease and sludge separation, was investigated for production of methane in the absence and presence of glucose or excess aerobic sludge (AS) from a lab scale suspension reactor as co-substrates. The highest methane production from DECA wastewater was 335.4 L CH4/kg CODsoluble removal which decreased in the presence of the co-substrates to 232.5 (with 2 g/L glucose) and to 179 (with 40% AS) L CH4/kg CODsoluble removal, respectively. Around 95% of total methane was produced within 5 days of incubation of DECA at 37 °C when no co-substrate was added. Addition of co-substrates did not improve biodegradation of DECA but overall methane production from DECA + co-substrates was increased due to co-substrate biodegradation. The anaerobic inoculum, capable of producing 2.4 mol of hydrogen/mol of glucose under zinc induced inhibitory conditions, was unable to produce hydrogen from DECA as substrate under the same conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
An improved tri-tube cryogenic gravel sampler.
Fred H. Everest; Carl E. McLemore; John F. Ward
1980-01-01
The tri-tube cryogenic gravel sampler has been improved, and accessories have been developed that increase its reliability and safety of operation, reduce core extraction time, and allow accurate partitioning of cores into subsamples. The improved tri-tube sampler is one of the most versatile and efficient substrate sampling tools yet developed.
NASA Astrophysics Data System (ADS)
Lee, Young-Joo; Shin, Hae-A.-Seul; Nam, Dae-Hyun; Yeon, Han-Wool; Nam, Boae; Woo, Kyoohee; Joo, Young-Chang
2015-01-01
The mechanical fatigue of Cu films and lines on flexible substrates was investigated, and an improvement in the structures through the use of a MoTi alloy under-layer was proposed. Fatigue reliability was decreased by 3-fold in lines compared with films in the tensile condition and by 6-fold in the compressive condition. Crack formation was observed to be more detrimental for lines than for films. With a MoTi under-layer, the fatigue limit was increased by 2 times that of a structure without MoTi in the tensile condition and by 15 times in the compressive bending condition. The suppression of delamination through the use of a MoTi under-layer improved the fatigue reliability under compressive bending.
2012-01-01
In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance. PMID:22673046
NASA Astrophysics Data System (ADS)
Fraga, M. A.; Contin, A.; Rodríguez, L. A. A.; Vieira, J.; Campos, R. A.; Corat, E. J.; Trava Airoldi, V. J.
2016-02-01
Many developments have been made to improve the quality and adherence of CVD diamond films onto WC-Co hard metal tools by the removing the cobalt from the substrate surface through substrate pretreatments. Here we compare the efficiency of three chemical pretreatments of WC-Co substrates for this purpose. First, the work was focused on a detailed study of the composition and structure of as-polished and pretreated substrate surfaces to characterize the effects of the substrate preparation. Considering this objective, a set of WC-9% Co substrates, before and after pretreatment, was analyzed by FEG-SEM, EDS and x-ray diffraction (XRD). The second stage of the work was devoted to the evaluation of the influence of seeding process, using 4 nm diamond nanoparticles, on the morphology and roughness of the pretreated substrates. The last and most important stage was to deposit diamond coatings with different crystallite sizes (nano and micro) by hot-filament CVD to understand fully the mechanism of growth and adhesion of CVD diamond films on pretreated WC-Co substrates. The transition from nano to microcrystalline diamond was achieved by controlling the CH4/H2 gas ratio. The nano and microcrystalline samples were grown under same time at different substrate temperatures 600 °C and 800 °C, respectively. The different substrate temperatures allowed the analysis of the cobalt diffusion from the bulk to the substrate surface during CVD film growth. Furthermore, it was possible to evaluate how the coating adhesion is affected by the diffusion. The diamond coatings were characterized by Raman spectroscopy, XRD, EDS, FEG-SEM, atomic force microscope and 1500 N Rockwell indentation to evaluate the adhesion.
Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.
2005-10-18
An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.
2003-09-09
An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos
2014-01-01
Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582
Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos
2014-03-28
Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO₃ solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface.
NASA Astrophysics Data System (ADS)
Xuan, Ming-dong; Dai, Long-gui; Jia, Hai-qiang; Chen, Hong
2014-01-01
Periodic triangle truncated pyramid arrays are successfully fabricated on the sapphire substrate by a low-cost and high-efficiency laser interference lithography (LIL) system. Through the combination of dry etching and wet etching techniques, the nano-scale patterned sapphire substrate (NPSS) with uniform size is prepared. The period of the patterns is 460 nm as designed to match the wavelength of blue light emitting diode (LED). By improving the stability of the LIL system and optimizing the process parameters, well-defined triangle truncated pyramid arrays can be achieved on the sapphire substrate with diameter of 50.8 mm. The deviation of the bottom width of the triangle truncated pyramid arrays is 6.8%, which is close to the industrial production level of 3%.
Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus
NASA Astrophysics Data System (ADS)
Hussnain, A.; Rawat, R. S.; Ahmad, R.; Umar, Z. A.; Hussain, T.; Lee, P.; Chen, Z.
2015-07-01
Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3 kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.
1991-01-01
A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, S.M.; Tao, H.; Todd-Copley, J.A.
1991-06-11
A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.
Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs.
Markov, Aleksandr; Maybeck, Vanessa; Wolf, Nikolaus; Mayer, Dirk; Offenhäusser, Andreas; Wördenweber, Roger
2018-06-06
The interface between cells and inorganic surfaces represents one of the key elements for bioelectronics experiments and applications ranging from cell cultures and bioelectronics devices to medical implants. In the present paper, we describe a way to tailor the biocompatibility of substrates in terms of cell growth and to significantly improve cell-chip communication, and we also demonstrate the reusability of the substrates for cell experiments. All these improvements are achieved by coating the substrates or chips with a self-assembled monolayer (SAM) consisting of a mixture of organic molecules, (3-aminopropyl)-triethoxysilane and (3-glycidyloxypropyl)-trimethoxysilane. By varying the ratio of these molecules, we are able to tune the cell density and live/dead ratios of rat cortical neurons cultured directly on the mixed SAM as well as neurons cultured on protein-coated SAMs. Furthermore, the use of the SAM leads to a significant improvement in cell-chip communications. Action potential signals of up to 9.4 ± 0.6 mV (signal-to-noise ratio up to 47) are obtained for HL-1 cells on microelectrode arrays. Finally, we demonstrate that the SAMs facilitate a reusability of the samples for all cell experiments with little re-processing.
Jayabalan, Prakash; Tan, Andrea R; Rahaman, Mohammed N; Bal, B Sonny; Hung, Clark T; Cook, James L
2011-10-01
Replacement of diseased areas of the joint with tissue-engineered osteochondral grafts has shown potential in the treatment of osteoarthritis. Bioactive glasses are candidates for the osseous analog of these grafts. (1) Does Bioactive Glass 13-93 (BG 13-93) as a subchondral substrate improve collagen and glycosaminoglycan production in a tissue-engineered cartilage layer? (2) Does BG 13-93 as a culture medium supplement increase the collagen and glycosaminoglycan production and improve the mechanical properties in a tissue-engineered cartilage layer? In Study 1, bioactive glass samples (n = 4) were attached to a chondrocyte-seeded agarose layer to form an osteochondral construct, cultured for 6 weeks, and compared to controls. In Study 2, bioactive glass samples (n = 5) were cocultured with cell-seeded agarose for 6 weeks. The cell-seeded agarose layer was exposed to BG 13-93 either continuously or for the first or last 2 weeks in culture or had no exposure. Osteochondral constructs with a BG 13-93 base had improved glycosaminoglycan deposition but less collagen II content. Agarose scaffolds that had a temporal exposure to BG 13-93 within the culture medium had improved mechanical and biochemical properties compared to continuous or no exposure. When used as a subchondral substrate, BG 13-93 did not improve biochemical properties compared to controls. However, as a culture medium supplement, BG 13-93 improved the biochemical and mechanical properties of a tissue-engineered cartilage layer. BG 13-93 may not be suitable in osteochondral constructs but could have potential as a medium supplement for neocartilage formation.
Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface
NASA Astrophysics Data System (ADS)
Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang
2018-03-01
High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.
Schmölzer, Katharina; Mädje, Katharina; Nidetzky, Bernd; Kratzer, Regina
2012-03-01
We report herein on bioprocess development guided by the hydrophobicities of substrate and product. Bioreductions of o-chloroacetophenone are severely limited by instability of the catalyst in the presence of aromatic substrate and (S)-1-(2-chlorophenyl)ethanol. In situ substrate supply and product removal was used to protect the utilized Escherichia coli whole cell catalyst based on Candida tenuis xylose reductase during the reaction. Further engineering at the levels of the catalyst and the reaction media was matched to low substrate concentrations in the aqueous phase. Productivities obtained in aqueous batch reductions were 21-fold improved by addition of 20% (v/v) hexane, NAD(+), expression engineering, cell permeabilization and pH optimization. Reduction of 300 mM substrate was accomplished in 97% yield and use of the co-solvent hexane in subsequent extraction steps led to 88% recovery. Product loss due to high catalyst loading was minimized by using the same extractant in bioreduction and product isolation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang
2018-01-01
Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.
Files, Matthew D.; Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A.
2014-01-01
Background Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia‐reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia‐reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Methods and Results Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2‐13C]pyruvate and [13C6, 15N]l‐leucine to evaluate oxidative metabolism by gas chromatography‐mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Conclusions Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO‐induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning. PMID:24650924
Files, Matthew D; Kajimoto, Masaki; O'Kelly Priddy, Colleen M; Ledee, Dolena R; Xu, Chun; Des Rosiers, Christine; Isern, Nancy; Portman, Michael A
2014-03-20
Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and/or by ECMO. We tested the hypothesis that although ECMO partially ameliorates metabolic abnormalities induced by ischemia-reperfusion, these abnormalities persist or recur with weaning. We also determined if thyroid hormone supplementation (triiodothyronine) during ECMO improves oxidative metabolism and cardiac function. Neonatal piglets underwent transient coronary ischemia to induce cardiac injury then were separated into 4 groups based on loading status. Piglets without coronary ischemia served as controls. We infused into the left coronary artery [2-(13)C]pyruvate and [(13)C6, (15)N]l-leucine to evaluate oxidative metabolism by gas chromatography-mass spectroscopy and nuclear magnetic resonance methods. ECMO improved survival, increased oxidative substrate contribution through pyruvate dehydrogenase, reduced succinate and fumarate accumulation, and ameliorated ATP depletion induced by ischemia. The functional and metabolic benefit of ECMO was lost with weaning, yet triiodothyronine supplementation during ECMO restored function, increased relative pyruvate dehydrogenase flux, reduced succinate and fumarate, and preserved ATP stores. Although ECMO provides metabolic rest by decreasing energy demand, metabolic impairments persist, and are exacerbated with weaning. Treating ECMO-induced thyroid depression with triiodothyronine improves substrate flux, myocardial oxidative capacity and cardiac contractile function. This translational model suggests that metabolic targeting can improve weaning.
Inclusion of Body Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 degrees Celsius durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Selective coating for solar panels. [using black chrome and black nickel
NASA Technical Reports Server (NTRS)
Mcdonald, G. E. (Inventor)
1977-01-01
The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns.
Oleksandr Skyba; Daniel Cullen; Carl J. Douglas; Shawn D. Mansfield
2016-01-01
Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the...
Photocatalytic efficiency of CdS film synthesized by CBD method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiyama, T.; Sato, Y.; Jeyadevan, B.
2006-05-15
Cadmium Sulfide semiconductor has comparatively small band gap and act as photocatalyst under irradiation of visible light. For practical use, it is convenient to fix the photocatalyst on a substrate as a thin film. In this study, we prepared CdS thin film on Ti substrate by Chemical Bath Deposition (CBD). To improve photocatalytic activity, CdS film was annealed and optimum thickness was investigated.
The use of biochar substrates for soil reclamation - results of experiments in Northeastern Germany
NASA Astrophysics Data System (ADS)
Lukas, Stefan; Haubold-Rosar, Michael
2017-04-01
After the model of the very fertile "Terra preta do Indio" in Amazonia, the joint project "LaTerra" has been taken up a new technology for the production of organic substrates using biochar as admixture to the composting and fermentation of biomass to test its application for soil improvement, reclamation and remediation purposes. Processing organic materials or residues and the creation of high quality organic soil improving materials will close material cycles and contribute to the value added on a regional scale. This should be an essential part of a sustainable material flow management. The presentation will focus on the application of biochar substrates for the reclamation of sandy soils in Northeastern Germany. Lignite mining activities leave raw soils without humus on dumps and tips. The rapid formation and maintenance of a balanced humus and nutrient budget is of great importance. Field, lysimeter and pot experiments were part of the research program in order to find out the impact of biochar substrate application on soil functions and plant growth and to derive quality criteria and recommendations for practice. The results of the experiments show that application of biochar substrates (BCS) improved soil properties like nutrient supply, organic carbon content, water storage and cation exchange capacity. However, crop yields did not increase in the year of BCS application on the test sites or even decreased on the dumped soil with rising amounts of BCS. This is a consequence of nitrogen immobilization and sorption in the soils treated with BCS. Therefore, BCS applications should be combined with mineral fertilization of nitrogen and BCS production should be modified aiming to improve contents and release of plant available nitrogen. In the third year after BCS application variants treated with 60 t BCS ha-1 (15 Vol.-% biochar) showed highest yields, exceeding the variants with mineral fertilization. On the dumped soil, in the fourth and fifth year after application all variants exceeded yields of mineral fertilization by 5 to 15 % with maximum in variants treated with 90 t BCS (15 Vol.-% biochar) ha-1.
[Preparation and Performance of Ultrafast γ-CuI Scintillation Conversion Screen].
Xia, Ming; Gu, Mu; Liu, Xiao-lin; Liu, Bo; Huang, Shi-ming; Ni, Chen
2015-04-01
Micro-columnar structured γ-CuI scintillation conversion screen with columnar diameter in the micrometer and thickness about 17 µm were prepared by thermal evaporation method on quartz substrates with different temperatures. X-ray excited luminescence spectra of the screens show two peaks located at 430 nm and near 700 nm, which correspond to the fast and slow emission components, respectively. The fast one dominated. The intensity of 430 nm peak decreased as the substrate temperature rose from 170 °C to 210 °C. At the same time the intensity of 700 nm band increased. The changes may be attributed to the iodine loss from screen caused by the substrate temperature. The phenomenon of iodine loss was observed by the Rutherford backscattering experiment. The crystal structure of the screens presents (111) preferred orientation, which is independent of the substrate temperature. As the temperature rose to 210 °C, two weak additional peaks of (220) and (420) γ-CuI crystal planes in X-ray diffraction patterns appeared due to the increase in kinetic energy of CuI molecules. The scanning electron microscopy images of the screens showed that the columnar structure was improved when the substrate temperature increased from 170 °C to 190 °C, but it would be degenerated when the temperature continued to rise to 210 °C because of the surface and bulk diffusion effects of the depositing molecules. Finally, the spatial resolution of the γ-CuI scintillation screens was measured by knife-edge method, and they are 4.5, 7.2 and 5.6lp · mm(-1) for the screens prepared at the substrates temperatures of 170, 190 and 210 °C, respectively. The result shows that micro-column structure could improve the spatial resolution of γ-CuI scintillation screen.
Improving Fatigue Strength of polymer concrete using nanomaterials.
DOT National Transportation Integrated Search
2016-11-30
Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...
NASA Astrophysics Data System (ADS)
Barthwal, Sumit; Lim, Si-Hyung
2015-02-01
We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.
Improved plaque materials for aerospace nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Luksha, E.; Gordy, D. J.
1971-01-01
Improved cadmium electrode substrates with precisely controlled microstructures for possible use in aerospace nickel-cadmium cells were prepared. The preparative technique was a powder metallurgical process in which a fugitive pore-former and a nickel powder were blended, then isostatically compacted, and subsequently sintered. Cadmium electrodes prepared from such substrates were cycle tested using an accelerated tortuous test regime. It was discovered that plaques of 60% or 80% porosity prepared with a 25 micron pore-former were better than state-of-the-art electrodes in terms of efficienty and/or mechanical strength. The 60% structures were particularly outstanding in this respect in that they had efficiencies only 5-10 percentage points lower than state-of-the-art electrodes and vastly superior mechanical properties. This added strength was observed to eliminate cracking and physical degradation of the electrodes during processing and cycling. The cadmium electrodes prepared from the 80% porous substrates proved to be the best electrodes made during the course of the work from the point of view of highest efficiency. Three-point bend tests were used to measure mechanical properties of the plaques produced and also as a general characterization tool. In addition, the BET surface areas of selected specimens was determined. The SEM was used for judging microscopic uniformity and quantitatively determining the induced pore size and various other fine structures in the substrates. The technique of X-ray radiography was used to follow the bulk uniformity of the substrates at various stages of their processing.
NASA Astrophysics Data System (ADS)
Fan, Xizhi; Wang, Ying; Zou, Binglin; Gu, Lijian; Huang, Wenzhi; Cao, Xueqiang
2014-02-01
Sprayed Al or diffused Mg-Al layer was designed as interlayer between the thermal barrier coatings (TBCs) and Mg alloy substrate. The effects of the interlayer on the bond properties of the coats were investigated. Al layers were prepared by arc spraying and atmospheric plasma spraying (APS), respectively. Mg-Al diffused layer was obtained after the heat treatment of the sprayed sample (Mg alloy with APS Al coat) at 400 °C. The results show that sprayed Al interlayer does not improve the bond stability of TBCs. The failure of the TBCs on Mg alloy with Al interlayer occurs mainly due to the low strength of Al layer. Mg-Al diffused layer improves corrosion resistance of substrate and the bond interface. The TBCs on Mg alloy with Mg-Al diffused interlayer shows better bond stability than the sample of which the TBCs is directly sprayed on Mg alloy substrate by APS.
Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates.
Ji, Xiaoli; Lou, Weiwei; Wang, Qi; Ma, Jianfeng; Xu, Haihong; Bai, Qing; Liu, Chuantong; Liu, Jinsong
2012-01-01
In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO(2)) double layer coatings were successfully developed on titanium (Ti) substrates intended for biomedical applications. A TiO(2) coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO(2) coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO(2) double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO(2) coatings on Ti substrates might be a promising material for bone replacement.
Modified laser-annealing process for improving the quality of electrical P-N junctions and devices
Wood, Richard F.; Young, Rosa T.
1984-01-01
The invention is a process for producing improved electrical-junction devices. The invention is applicable, for example, to a process in which a light-sensitive electrical-junction device is produced by (1) providing a body of crystalline semiconductor material having a doped surface layer, (2) irradiating the layer with at least one laser pulse to effect melting of the layer, (3) permitting recrystallization of the melted layer, and (4) providing the resulting body with electrical contacts. In accordance with the invention, the fill-factor and open-circuit-voltage parameters of the device are increased by conducting the irradiation with the substrate as a whole at a selected elevated temperature, the temperature being selected to effect a reduction in the rate of the recrystallization but insufficient to effect substantial migration of impurities within the body. In the case of doped silicon substrates, the substrate may be heated to a temperature in the range of from about 200.degree. C. to 500.degree. C.
NASA Astrophysics Data System (ADS)
Li, Wei-Shuo; Lin, Tsyr-Rou; Yang, Hsiu-Ting; Li, Yu-Ren; Chuang, Kai-Chi; Li, Yi-Shao; Luo, Jun-Dao; Hus, Chain-Shu; Cheng, Huang-Chung
2018-06-01
In this study, zinc oxide nanorods (ZnO-NRs) grown via a low-temperature hydrothermal growth process are used as the electron transport layer (ETL) owing to their low temperature process and three-dimensional structure, which increases the surface area and thereby improves photovoltaic performance. To further improve the performance of solar cells, substrate preheating before spin-coating PbI2 and perovskite films was conducted. With the increase in preheating temperature, the grain size, surface uniformity, and crystallinity of perovskite increased. Consequently, the photovoltaic performances of the devices with 150-nm-long ZnO-NRs and substrate preheating at 150 °C showed an optimum open-circuit voltage (V oc) of 0.84 V, a short-circuit current (J sc) of 21.43 mA/cm2, a fill factor (FF) of 57.42%, and a power conversion efficiency (PCE) of 10.34% owing to the superior quality of the perovskite films having smooth surfaces with fewer pinholes.
He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng
2016-11-01
Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kim, Sujin; Bae, Sang-Jeong; Hahn, Ji-Sook
2016-04-07
Spatial organization of metabolic enzymes allows substrate channeling, which accelerates processing of intermediates. Here, we investigated the effect of substrate channeling on the flux partitioning at a metabolic branch point, focusing on pyruvate metabolism in Saccharomyces cerevisiae. As a platform strain for the channeling of pyruvate flux, PYK1-Coh-Myc strain was constructed in which PYK1 gene encoding pyruvate kinase is tagged with cohesin domain. By using high-affinity cohesin-dockerin interaction, the pyruvate-forming enzyme Pyk1 was tethered to heterologous pyruvate-converting enzymes, lactate dehydrogenase and α-acetolactate synthase, to produce lactic acid and 2,3-butanediol, respectively. Pyruvate flux was successfully redirected toward desired pathways, with a concomitant decrease in ethanol production even without genetic attenuation of the ethanol-producing pathway. This pyruvate channeling strategy led to an improvement of 2,3-butanediol production by 38%, while showing a limitation in improving lactic acid production due to a reduced activity of lactate dehydrogenase by dockerin tagging.
Zhu, Yuankun; Mendelsberg, Rueben J.; Zhu, Jiaqi; ...
2012-11-26
Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). In this study, it is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 x 10 -5 Ωcm, high electron mobility of 142 cm 2/Vs, and mean transmittance over 80% frommore » 500-1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.« less
Nuclear fuel elements having a composite cladding
Gordon, Gerald M.; Cowan, II, Robert L.; Davies, John H.
1983-09-20
An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.
Modified silica sol coatings for surface enhancement of leather.
Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir
2012-06-01
The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.
Chiejina, Nneka Virginia
2015-01-01
Development of efficient substrate formulas to improve yield and shorten production time is one of the prerequisites for commercial cultivation of edible mushrooms. In this study, fifteen substrate formulas consisting of varying ratios of palm press fibre (PPF), mahogany sawdust (MS), Gmelina sawdust, wheat bran (WB), and fixed proportions of 1% calcium carbonate (CaCO3) and 1% sucrose were assessed for efficient Lentinus squarrosulus production. Proximate compositions of mushrooms produced on the different substrate formulas were also analysed and compared. Substrate formulations containing 85% PPF, 13% WB, 1% CaCO3, and 1% sucrose were found to produce the highest carpophore yield, biological efficiency and size (206.5 g/kg, 61.96%, and 7.26 g, respectively). Days to production (first harvest) tended to increase with an increase in the amount of WB in the substrate formulas, except for PPF based formulas. The addition of WB in amounts equivalent to 8~18% in substrate formulas containing 80~90% PPF resulted in a decrease in the time to first harvest by an average of 17.7 days compared to 80~90% MS with similar treatment. Nutritional content of mushrooms was affected by the different substrate formulas. Protein content was high for mushrooms produced on formulas containing PPF as the basal substrate. Thus, formulas comprising PPF, WB, CaCO3, and sucrose at 85% : 13% : 1% : 1%) respectively could be explored as starter basal ingredients for efficient large scale production of L. squarrosulus. PMID:26839507
Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum
Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole
2015-01-01
Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062
Kim, Moonkyung; Kim, Byung-Chul; Choi, Yongju; Nam, Kyoungphile
2017-12-01
The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Guo, Cheng-Long; Cao, Hong-Xia; Pei, Hong-Shan; Guo, Fei-Qiang; Liu, Da-Meng
2015-04-01
A multiphase mixture model was developed for revealing the interaction mechanism between biochemical reactions and transfer processes in the entrapped-cell photobioreactor packed with gel granules containing Rhodopseudomonas palustris CQK 01. The effects of difference operation parameters, including operation temperature, influent medium pH value and porosity of packed bed, on substrate concentration distribution characteristics and photo-hydrogen production performance were investigated. The results showed that the model predictions were in good agreement with the experimental data reported. Moreover, the operation temperature of 30 °C and the influent medium pH value of 7 were the most suitable conditions for photo-hydrogen production by biodegrading substrate. In addition, the lower porosity of packed bed was beneficial to enhance photo-hydrogen production performance owing to the improvement on the amount of substrate transferred into gel granules caused by the increased specific area for substrate transfer in the elemental volume. Copyright © 2015 Elsevier Ltd. All rights reserved.
Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing
2016-11-01
Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. Copyright © 2016 Elsevier Ltd. All rights reserved.
Piezoelectric polymer multilayer on flexible substrate for energy harvesting.
Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui
2013-09-01
A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.
Is hexagonal boron nitride always good as a substrate for carbon nanotube-based devices?
Kang, Seoung-Hun; Kim, Gunn; Kwon, Young-Kyun
2015-02-21
Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.
Electronic structure of BaO/W cathode surfaces
NASA Technical Reports Server (NTRS)
Muller, Wolfgang
1989-01-01
The local electronic structure of the emissive layer of barium dispenser thermionic cathodes is investigated theoretically using the relativistic scattered-wave approach. The interaction of Ba and O with W, Os, and W-Os alloy surfaces is studied with atomic clusters modeling different absorption environments representative of B- and M-type cathodes. Ba is found to be strongly oxidized, while O and the metal substrate are in a reduced chemical state. The presence of O enhances the surface dipole and Ba binding energy relative to Ba on W. Model results for W-Os alloy substrates show only relatively small changes in Ba and O for identical geometries, but very large charge redistributions inside the substrate, which are attributed to the electronegativity difference between Os and W. If Os is present in the surface layer, the charge transfer from Ba to the substrate and the Ba binding energy increase relative to W. Explanations are offered for the improved electron emission from alloy surfaces and the different emission enhancement for different alloy substrates.
Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming
2016-09-21
We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Huang, Chen-Yu; Lin, Ssu-Fan; Chen, Sheng-Hui
2011-09-01
Residual or internal stresses directly affect a variety of phenomena including adhesion, generation of crystalline defects, perfection of epitaxial layers and formation of film surface growths such as hillocks and whiskers. Sputtering oxide films with high density promote high compressive stress, and it offers researchers a reference if the value of residual stress could be analyzed directly. Since, the study of residual stress of SiO2 and Nb2O5 thin film deposited by DC magnetron sputtered on hard substrate (BK7) and flexible substrate (PET and PC). A finite element method (FEM) with an equivalent-reference-temperature (ERT) technique had been proposed and used to model and evaluate the intrinsic strains of layered structures. The research has improved the equivalent reference temperature (ERT) technique of the simulation of intrinsic strain for oxygen film. The results have also generalized two models connecting to the lattice volume to predict the residual stress of hard substrate and flexible substrate with error of 3% and 6%, respectively.
NASA Astrophysics Data System (ADS)
Dai, LongGui; Yang, Fan; Yue, Gen; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Chen, Hong
2014-11-01
Generally, nano-scale patterned sapphire substrate (NPSS) has better performance than micro-scale patterned sapphire substrate (MPSS) in improving the light extraction efficiency of LEDs. Laser interference lithography (LIL) is one of the powerful fabrication methods for periodic nanostructures without photo-masks for different designs. However, Lloyd's mirror LIL system has the disadvantage that fabricated patterns are inevitably distorted, especially for large-area twodimensional (2D) periodic nanostructures. Herein, we introduce two-beam LIL system to fabricate consistent large-area NPSS. Quantitative analysis and characterization indicate that the high uniformity of the photoresist arrays is achieved. Through the combination of dry etching and wet etching techniques, the well-defined NPSS with period of 460 nm were prepared on the whole sapphire substrate. The deviation is 4.34% for the bottom width of the triangle truncated pyramid arrays on the whole 2-inch sapphire substrate, which is suitable for the application in industrial production of NPSS.
NASA Astrophysics Data System (ADS)
Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile
2017-02-01
Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.
Morrell-Falvey, Jennifer L.; Elkins, James G.; Wang, Zhi-Wu
2015-05-30
This study took advantage of resorufin cellobioside as a fluorescent substrate to determine the distribution of cellulase activity in cellulosic biomass fermentation systems. Cellulolytic biofilms were found to express nearly four orders greater cellulase activity compared to planktonic cultures of Clostridium thermocellum and Caldicellulosiruptor obsidiansis, which can be primarily attributed to the high cell concentration and surface attachment. The formation of biofilms results in cellulases being secreted close to their substrates, which appears to be an energetically favorable stategy for insoluble substrate utilization. For the same reason, cellulases should be closely associated with the surfaces of suspended cell in solublemore » substrate-fed culture, which has been verified with cellobiose-fed cultures of C. thermocellum and C. obsidiansis. This study addressed the importance of cellulase activity distribution in cellulosic biomass fermentation, and provided theoretical foundation for the leading role of biofilm in cellulose degradation. System optimization and reactor designs that promote biofilmformation in cellulosic biomass hydrolysismay promise an improved cellulosic biofuel process.« less
NASA Astrophysics Data System (ADS)
Nishio, Mitsuhiro; Saito, Katsuhiko; Urata, Kensuke; Okamoto, Yasuhiro; Tanaka, Daichi; Araki, Yasuhiro; Abiru, Masakatsu; Mori, Eiichiro; Tanaka, Tooru; Guo, Qixin
2015-03-01
The growth of undoped and phosphorus (P)-doped Zn1-xMgxSeyTe1-y layers on (100) ZnTe substrates by metalorganic vapor phase epitaxy was carried out. The compositions of Mg and Se, surface morphology, roughness and Raman property were characterized as a function of substrate temperature. Not only the compositions of Mg and Se but also the crystal quality of undoped Zn1-xMgxSeyTe1-y layer strongly depended upon the substrate temperature. Furthermore, the growth of Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe substrate was achieved independent of the transport rate of trisdimethylaminophosphorus. Undoped Zn1-xMgxSeyTe1-y layer nearly-lattice-matched to ZnTe led to improvement of surface roughness. On the other hand, P doping brought about deterioration of crystalline quality.
Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer
NASA Astrophysics Data System (ADS)
Banik, Meneka; Mukherjee, Rabibrata
Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.
Li, Liyuan; Pan, Guohui; Zhu, Xifen; Fan, Keqiang; Gao, Wubin; Ai, Guomin; Ren, Jinwei; Shi, Mingxin; Olano, Carlos; Salas, José A; Yang, Keqian
2017-07-01
Glycosyltransferases (GTs)-mediated glycodiversification studies have drawn significant attention recently, with the goal of generating bioactive compounds with improved pharmacological properties by diversifying the appended sugars. The key to achieving glycodiversification is to identify natural and/or engineered flexible GTs capable of acting upon a broad range of substrates. Here, we report the use of a combinatorial biosynthetic approach to probe the substrate flexibility of JadS, the GT in jadomycin biosynthesis, towards different non-native NDP-sugar substrates, enabling us to identify six jadomycin B analogues with different sugar moieties. Further structural engineering by precursor-directed biosynthesis allowed us to obtain 11 new jadomycin analogues. Our results for the first time show that JadS is a flexible O-GT that can utilize both L- and D- sugars as donor substrates, and tolerate structural changes at the C2, C4 and C6 positions of the sugar moiety. JadS may be further exploited to generate novel glycosylated jadomycin molecules in future glycodiversification studies.
Natural substrate lift-off technique for vertical light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen
2014-04-01
Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.
Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.
2016-07-05
An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.
Processing of hydroxylapatite coatings on titanium alloy bone prostheses
Nastasi, M.A.; Levine, T.E.; Mayer, J.W.; Pizziconi, V.B.
1998-10-06
Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.
Processing of hydroxylapatite coatings on titanium alloy bone prostheses
Nastasi, Michael A.; Levine, Timothy E.; Mayer, James W.; Pizziconi, Vincent B.
1998-01-01
Processing of hydroxylapatite sol-gel films on titanium alloy bone prostheses. A method utilizing non-line-of-sight ion beam implantation and/or rapid thermal processing to provide improved bonding of layers of hydroxylapatite to titanium alloy substrates while encouraging bone ingrowth into the hydroxylapatite layers located away from the substrate, is described for the fabrication of prostheses. The first layer of hydroxylapatite is mixed into the substrate by the ions or rapidly thermally annealed, while subsequent layers are heat treated or densified using ion implantation to form layers of decreasing density and larger crystallization, with the outermost layers being suitable for bone ingrowth.
NASA Technical Reports Server (NTRS)
Thomsen, III, Donald Laurence (Inventor); Cano, Roberto J. (Inventor); Jensen, Brian J. (Inventor); Hales, Stephen J. (Inventor); Alexa, Joel A. (Inventor)
2014-01-01
Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.
Workshop on Heteroepitaxial InP Solar Cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Walters, R. W.
1993-01-01
In a generic sense, the justification for any sort of InP solar cell research applies, i.e. to take advantage of the inherently high radiation resistance and efficiency of InP solar cells. To be more specific, the approach is justified by its potential for significant cost reduction and the availability of greatly increased cell area afforded by substrates such as Si and Ge. The use of substrates, such as the latter two, would result in increased ruggedness, ease of handling, and improved manufacturability. The use of more rugged substrates would lead to a greatly increased capability for cell thinning leading to the desirable feature of reduced array weight.
Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S
2013-04-30
An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.
Overlay metallic-cermet alloy coating systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
NASA Astrophysics Data System (ADS)
Yamada, K.; Endo, T.; Imai, H.; Kido, M.; Jeong, H.; Ohno, Y.
2016-03-01
We have developed the point-of-care therapeutic drug monitoring kit based on Raman Spectroscopy of tear fluid. In this study, we were examined a soft substrate for an optimal lattice based on nanoimprint lithography using cyclo-olefin polymer to improve the sensitivity for measuring drug concentration in tear fluid. This is photonics crystal which is one of the nano-photonics based device was fabricated. Target is Sodium Phenobarbital which is an anticonvulsant agent. We show the effectiveness of Surface Enhanced Raman Spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, M.; Coupeau, C.; Colin, J.
2005-01-10
The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.
NASA Astrophysics Data System (ADS)
Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli
2018-05-01
It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.
Flexible fluoropolymer filled protective coatings
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Mirtich, Michael J.; Sovey, James S.; Nahra, Henry; Rutledge, Sharon K.
1991-01-01
Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications.
Process for utilizing low-cost graphite substrates for polycrystalline solar cells
NASA Technical Reports Server (NTRS)
Chu, T. L. (Inventor)
1978-01-01
Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.
Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase
Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; ...
2015-02-25
A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase rPPEs, which will help guide future development of more efficient rPPE variants.« less
Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin
A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase rPPEs, which will help guide future development of more efficient rPPE variants.« less
Wang, Shuyu; Yu, Shifeng; Lu, Ming; ...
2017-03-15
In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less
Juettner, Norbert E; Schmelz, Stefan; Bogen, Jan P; Happel, Dominic; Fessner, Wolf-Dieter; Pfeifer, Felicitas; Fuchsbauer, Hans-Lothar; Scrima, Andrea
2018-05-01
Transglutaminase from Streptomyces mobaraensis (MTG) has become a powerful tool to covalently and highly specifically link functional amines to glutamine donor sites of therapeutic proteins. However, details regarding the mechanism of substrate recognition and interaction of the enzyme with proteinaceous substrates still remain mostly elusive. We have determined the crystal structure of the Streptomyces papain inhibitory protein (SPI p ), a substrate of MTG, to study the influence of various substrate amino acids on positioning glutamine to the active site of MTG. SPI p exhibits a rigid, thermo-resistant double-psi-beta-barrel fold that is stabilized by two cysteine bridges. Incorporation of biotin cadaverine identified Gln-6 as the only amine acceptor site on SPI p accessible for MTG. Substitution of Lys-7 demonstrated that small and hydrophobic residues in close proximity to Gln-6 favor MTG-mediated modification and are likely to facilitate introduction of the substrate into the front vestibule of MTG. Moreover, exchange of various surface residues of SPI p for arginine and glutamate/aspartate outside the glutamine donor region influences the efficiency of modification by MTG. These results suggest the occurrence of charged contact areas between MTG and the acyl donor substrates beyond the front vestibule, and pave the way for protein engineering approaches to improve the properties of artificial MTG-substrates used in biomedical applications. © 2018 The Protein Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuyu; Yu, Shifeng; Lu, Ming
In this study, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide filmmore » coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. Finally, this proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.« less
Enzyme Biosensing Based on Zinc Oxide Nanostructures as Active Surface
NASA Astrophysics Data System (ADS)
Iftimie, N.; Steigmann, R.; Savin, A.; Tugui, C. A.; Munteanu, C.
2018-06-01
Ag/ZnO mesostructures deposited onto substrates different were analysed in order to use ZnO as bioactive surface. This paper presents the results obtained at the eNDE of strips gratings deposited on different substrates used as bioactive surface using the EM sensor with MM lens in order to improve the emphasizing of the evanescent waves appeared when the slits of MSG are filled with immobilized enzymes.
Enhancing the efficiency of sortase-mediated ligations through nickel-peptide complex formation.
David Row, R; Roark, Travis J; Philip, Marina C; Perkins, Lorena L; Antos, John M
2015-08-14
A modified sortase A recognition motif containing a masked Ni(2+)-binding peptide was employed to boost the efficiency of sortase-catalyzed ligation reactions. Deactivation of the Ni(2+)-binding peptide using a Ni(2+) additive improved reaction performance at low to equimolar ratios of the glycine amine nucleophile and sortase substrate. The success of this approach was demonstrated with both peptide and protein substrates.
Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface
NASA Astrophysics Data System (ADS)
Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling
2014-12-01
Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.
Hydrogen-surfactant-assisted coherent growth of GaN on ZnO substrate
NASA Astrophysics Data System (ADS)
Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Zhu, Junyi
2018-01-01
Heterostructures of wurtzite based devices have attracted great research interest because of the tremendous success of GaN in light emitting diodes (LED) industry. High-quality GaN thin films on inexpensive and lattice matched ZnO substrates are both commercially and technologically desirable. Intrinsic wetting conditions, however, forbid such heterostructures as the energy of ZnO polar surfaces is much lower than that of GaN polar surfaces, resulting in 3D growth mode and poor crystal quality. Based on first-principles calculations, we propose the use of surfactant hydrogen to dramatically alter the growth mode of the heterostructures. Stable H-involved surface configurations and interfaces are investigated with the help of our newly developed modelling techniques. The temperature and chemical potential dependence of our proposed strategy, which is critical in experiments, is predicted by applying the experimental Gibbs free energy of H2. Our thermodynamic wetting condition analysis is a crucial step for the growth of GaN on ZnO, and we find that introducing H will not degrade the stability of ZnO substrate. This approach will allow the growth of high-quality GaN thin films on ZnO substrates. We believe that our new strategy may reduce the manufactory cost, improve the crystal quality, and improve the efficiency of GaN-based devices.
A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays
NASA Astrophysics Data System (ADS)
Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.
2012-03-01
A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.
Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel
2017-07-01
Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.
Nielfa, A; Cano, R; Pérez, A; Fdez-Polanco, M
2015-03-01
Solid wastes from industrial, commercial and community activities are of growing concern as the total volume of waste produced continues to increase. The knowledge of the specific composition and characteristics of the waste is an important tool in the correct development of the anaerobic digestion process. The problems derived from the anaerobic digestion of sole substrates with high lipid, carbohydrate or protein content lead to the co-digestion of these substrates with another disposed waste, such as sewage sludge. The kinetic of the anaerobic digestion is especially difficult to explain adequately, although some mathematical models are able to represent the main aspects of a biological system, thus improving understanding of the parameters involved in the process. The aim of this work is to evaluate the experimental biochemical methane potential on the co-digestion of sewage sludge with different solid wastes (grease; spent grain and cow manure) through the implementation of four kinetic models. The co-digestion of grease waste and mixed sludge obtained the best improvements from the sole substrates, with additional positive synergistic effects. The Gompertz model fits the experimental biochemical methane potential to an accuracy of 99%, showing a correlation between the percentage of lipid in the substrates and co-digestions and the period of lag phase. © The Author(s) 2015.
Portan, D V; Deligianni, D D; Deligianni, K; Kroustalli, A A; Tyllianakis, M; Papanicolaou, G C
2018-03-01
A goal of current implantology research is to design devices that induce controlled, guided, and rapid healing. Nanoscale structured substrates [e.g., titania nanotubes (TNTs) or carbon nanotubes (CNTs)] dramatically improve the functions of conventional biomaterials. The present investigation evaluated the behavior of osteoblasts cells cultured on smooth and nanostructured substrates, by measuring osteoblasts specific biomarkers [alkaline phosphatase (AP) and total protein] and cells adhesion strength to substrates, followed by semi-empirical modeling to predict the experimental results. Findings were in total agreement with the current state of the art. The proliferation, as well as the AP and total protein levels were higher on the nanostructure phases (TNTs, CNTs) comparing to the smooth ones (plastic and pure titanium). Cells adhesion strength measured was found higher on the nanostructured materials. This coincided with a higher value of proteins which are directly implicated in the process of adherence. Results were accurately predicted through the Viscoelastic Hybrid Interphase Model. A gradual adherence of bone cells to implants using multilayered biomaterials that involve biodegradable polymeric films and a nanoscale modification of titanium surface is suggested to improve performance through an interphase-mediated osteointegration of orthopedic implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 621-628, 2018. © 2017 Wiley Periodicals, Inc.
Long-lived thermal control materials for high temperature and deep space applications
NASA Technical Reports Server (NTRS)
Whitt, Robin; O'Donnell, Tim
1988-01-01
Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper.
NASA Astrophysics Data System (ADS)
Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun
2017-08-01
In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.
Chu, C L; Guo, C; Sheng, X B; Dong, Y S; Lin, P H; Yeung, K W K; Chu, Paul K
2009-07-01
A new surface modification protocol encompassing an electropolishing pretreatment (EP) and subsequent photoelectrocatalytic oxidation (PEO) has been developed to improve the surface properties of biomedical nickel titanium (NiTi) shape memory alloy (SMA). Electropolishing is a good way to improve the resistance to localized breakdown of NiTi SMA whereas PEO offers the synergistic effects of advanced oxidation and electrochemical oxidation. Our results indicate that PEO leads to the formation of a sturdy titania film on the EP NiTi substrate. There is an Ni-free zone near the top surface and a graded interface between the titania layer and NiTi substrate, which bodes well for both biocompatibility and mechanical stability. In addition, Ni ion release from the NiTi substrate is suppressed, as confirmed by the 10-week immersion test. The modulus and hardness of the modified NiTi surface increase with larger indentation depths, finally reaching plateau values of about 69 and 3.1GPa, respectively, which are slightly higher than those of the NiTi substrate but much lower than those of a dense amorphous titania film. In comparison, after undergoing only EP, the mechanical properties of NiTi exhibit an inverse change with depth. The deformation mechanism is proposed and discussed. Our results indicate that surface modification by dual EP and PEO can notably suppress Ni ion release and improve the biocompatibility of NiTi SMA while the surface mechanical properties are not compromised, making the treated materials suitable for hard tissue replacements.
NASA Astrophysics Data System (ADS)
Matsui, Motohide; Nariki, Shinya; Sakai, Naomichi; Iwafuchi, Kengo; Murakami, Masato
2006-07-01
We used Ba-Cu-O substrates to fabricate bulk Nd-Ba-Cu-O superconductors using a top-seeded melt-growth method. There were several advantages for the use of Ba-Cu-O substrate compared to conventional substrate materials such as MgO, ZrO2, Al2O3, RE123 and RE211 (RE = rare earth). The Ba-Cu-O did not react with the precursor and minimized liquid loss. Accordingly, the introduction of large-sized cracks was suppressed. We also found that Tc values were high at the bottom regions, which was ascribed to the beneficial effect of Ba-Cu-O in suppressing Nd/Ba substitution. As a result, we obtained bulk Nd-Ba-Cu-O superconductors that exhibited fairly good field-trapping capabilities, even at the bottom surfaces.
Properties of spray-deposited liquid-phase exfoliated graphene films
NASA Astrophysics Data System (ADS)
Sales, Maria Gabriela C.; Dela Vega, Ma. Shanlene D. C.; Vasquez, Magdaleno R., Jr.
2018-01-01
In this study, we demonstrate the feasibility of spray-depositing exfoliated graphene on flexible polyimide (PI) and rigid (soda lime glass) substrates for optoelectronic applications. The water contact angles of the substrates increased by 13% (for PI) and 49% (for glass) when the surfaces are pretreated with hexamethyldisiloxane, which significantly improved the adhesion of the films. Raman spectral analyses confirmed a minimum of 15 and a maximum of 23 layers of exfoliated graphene deposited on the substrates. After deposition, the films were exposed to 13.56 MHz radio-frequency plasma containing an admixture of argon and nitrogen gases. Plasma treatment modified the electrical properties with a response analogous to that of a rectifier. A 39% increase in transmittance in the visible region was also observed especially for glass substrates after plasma treatment without a significant change in film electrical conductivity.
NASA Astrophysics Data System (ADS)
Holiday, L. F.; Gibson, U. J.
2006-12-01
We report on the use of dielectric coatings to improve the contrast of longitudinal magneto-optic Kerr effect signals from submicron magnetic structures. Electron-beam lithography was used to define disks in 22 nm thick Ni films deposited on Si substrates. The structures were measured in four configurations: as-deposited, through a fused silica prism using index-matching fluid, coated with ZnS, and using a prism on top of the ZnS layer. The modified samples show up to 20 times improvement in the MOKE contrast due to admittance matching to the magnetic material and suppression of the substrate reflectance. The behavior is successfully predicted by a model that includes the magneto-optic response of the nickel layer and accounts for the fraction of the beam intercepted by the magnetic structure.
NASA Astrophysics Data System (ADS)
Ze, LIU; Guogang, YU; Anping, HE; Ling, WANG
2017-09-01
The physical vapor deposition method is an effective way to deposit Al2O3 and Er2O3 on 316L stainless steel substrates acting as tritium permeation barriers in a fusion reactor. The distribution of residual thermal stress is calculated both in Al2O3 and Er2O3 coating systems with planar and rough substrates using finite element analysis. The parameters influencing the thermal stress in the sputter process are analyzed, such as coating and substrate properties, temperature and Young’s modulus. This work shows that the thermal stress in Al2O3 and Er2O3 coating systems exhibit a linear relationship with substrate thickness, temperature and Young’s modulus. However, this relationship is inversed with coating thickness. In addition, the rough substrate surface can increase the thermal stress in the process of coating deposition. The adhesive strength between the coating and the substrate is evaluated by the shear stress. Due to the higher compressive shear stress, the Al2O3 coating has a better adhesive strength with a 316L stainless steel substrate than the Er2O3 coating. Furthermore, the analysis shows that it is a useful way to improve adhesive strength with increasing interface roughness.
Surface modification and characterization of indium-tin oxide for organic light-emitting devices.
Zhong, Z Y; Jiang, Y D
2006-10-15
In this work, we used different treatment methods (ultrasonic degreasing, hydrochloric acid treatment, and oxygen plasma) to modify the surfaces of indium-tin oxide (ITO) substrates for organic light-emitting devices. The surface properties of treated ITO substrates were studied by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), sheet resistance, contact angle, and surface energy measurements. Experimental results show that the ITO surface properties are closely related to the treatment methods, and the oxygen plasma is more efficient than the other treatments since it brings about smoother surfaces, lower sheet resistance, higher work function, and higher surface energy and polarity of the ITO substrate. Moreover, polymer light-emitting electrochemical cells (PLECs) with differently treated ITO substrates as device electrodes were fabricated and characterized. It is found that surface treatments of ITO substrates have a certain degree of influence upon the injection current, brightness, and efficiency, but hardly upon the turn-on voltages of current injection and light emission, which are in agreement with the measured optical energy gap of the electroluminescent polymer. The oxygen plasma treatment on the ITO substrate yields the best performance of PLECs, due to the improvement of interface formation and electrical contact of the ITO substrate with the polymer blend in the PLECs.
NASA Astrophysics Data System (ADS)
Nakano, M.; Kondo, H.; Yamashita, A.; Yanai, T.; Itakura, M.; Fukunaga, H.
2018-05-01
PLD (Pulsed Laser Deposition) method with high laser energy density (LED) above 10 J/cm2 followed by a flash annealing enabled us to obtain isotropic nano-composite thick-film magnets with (BH)max ≧ 80 kJ/m3 on polycrystalline Ta substrates. We also have demonstrated that a dispersed structure composed of α-Fe together with Nd2Fe14B phases with the average grain diameter of approximately 20 nm could be formed on the Ta substrates. In this study, we tried to enhance the (BH)max value by controlling the microstructure due to the usage of different metal based substrates with each high melting point such as Ti, Nb, and W. Although it was difficult to vary the microstructure and to improve the magnetic properties of the films deposited on the substrates, we confirmed that isotropic thick-film magnets with (BH)max ≧ 80 kJ/m3 based on the nano-dispersed α-Fe and Nd2Fe14B phases could be obtained on various metal substrates with totally different polycrystalline structure. On the other hand, the use of a glass substrate lead to the deterioration of magnetic properties of a film prepared using the same preparation process.
Liquid-Phase Processing of Barium Titanate Thin Films
NASA Astrophysics Data System (ADS)
Harris, David Thomas
Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements . Our system exhibits flux-film-substrate interactions that can lead to dramatic changes to the microstructure. This effect is especially pronounced onc -sapphire, with Al diffusion from the substrate leading to formation of an epitaxial BaAl2O4 second phase at the substrate-film interface. The formation of this second phase in the presence of a liquid phase seeds {111} twins that drive abnormal grain growth. The orientation of the sapphire substrate determines the BaAl2O 4 morphology, enabling control the abnormal grain growth behavior. CuO additions leads to significant grain growth at 900 °C, with average grain size approaching 500 nm. The orthorhombic-tetragonal phase transition is clearly observable in temperature dependent measurements and both linear and nonlinear dielectric properties are improved. All films containing CuO are susceptible to aging. A number of other systems were investigated for efficacy at temperatures below 900 °C. Pulsed laser deposition was used to study flux + BaTiO 3 targets, layered flux films, and in situ liquids. RF-magnetron sputtering using a dual-gun approach was used to explore integration on flexible foils with Ba1-xSrxTiO3. Many of these systems were based on the BaO-B2O3 system, which has proven effective in thin films, multilayer ceramic capacitors, and bulk ceramics. Modifiers allow tailoring of the microstructure at 900 °C, however no compositions were found, and no reports exist in the open literature, that provide significant grain growth or densification below 900 °C. Liquid phase fluxes offer a promising path forward for low temperature processing of barium titanate, with the ultimate goal of integration with metalized silicon substrates. This work demonstrates significant improvements to dielectric properties and the necessity of understanding interactions in the film-flux-substrate system.
The next generation of solar panel substrates?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gledhill, K.M.; Boswell, R.L.; Paul, J.G.
For over 25 years, satellite power system designers have used rigid honeycomb panels as solar array substrates. Those years have seen very little improvement in the performance of these rigid systems. A new technology under development at the Phillips Laboratory, however, may undo this stagnancy. Composite isogrid panel structures offer a number of potential advantages over honeycomb sandwich structures for solar array applications, including stiffness, weight, and cost improvements. Phillips Laboratory will be performing a series of evaluative tests on the isogrid structure to determine its suitability as a substitute for honeycomb sandwiches in solar panel applications. Testing will includemore » three-point bending, thermal vacuum, and thermal cycling.« less
Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes
NASA Astrophysics Data System (ADS)
Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.
2013-12-01
Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.
Raman microscopy of individual living human embryonic stem cells
NASA Astrophysics Data System (ADS)
Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.
2010-04-01
We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.
Andorfer, Mary C.
2018-01-01
Flavin dependent halogenases (FDHs) catalyze the halogenation of organic substrates by coordinating reactions of reduced flavin, molecular oxygen, and chloride. Targeted and random mutagenesis of these enzymes has been used to both understand and alter their reactivity. These studies have led to insights into residues essential for catalysis and FDH variants with improved stability, expanded substrate scope, and altered site selectivity. Mutations throughout FDH structures have contributed to all of these advances. More recent studies have sought to rationalize the impact of these mutations on FDH function and to identify new FDHs to deepen our understanding of this enzyme class and to expand their utility for biocatalytic applications. PMID:29589959
OLED with improved light outcoupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen; Sun, Yiru
2016-11-29
An OLED may include regions of a material having a refractive index less than that of the substrate, or of the organic region, allowing for emitted light in a waveguide mode to be extracted into air. These regions can be placed adjacent to the emissive regions of an OLED in a direction parallel to the electrodes. The substrate may also be given a nonstandard shape to further improve the conversion of waveguide mode and/or glass mode light to air mode. The outcoupling efficiency of such a device may be up to two to three times the efficiency of a standardmore » OLED. Methods for fabricating such a transparent or top-emitting OLED is also provided.« less
Enhancement of graphene visibility on transparent substrates by refractive index optimization.
Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter
2013-05-20
Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.
Pérez-Rodríguez, Ileana; Ricci, Jessica; Voordeckers, James W; Starovoytov, Valentin; Vetriani, Costantino
2010-05-01
A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1(T), was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at degrees 50' N 10 degrees 17' W. The cells were Gram-negative-staining rods, approximately 1-1.5 mum long and 0.3-0.5 mum wide. Strain MB-1(T) grew at 25-65 degrees C (optimum 55 degrees C), with 10-35 g NaCl l(-1) (optimum 20 g l(-1)) and at pH 4.5-8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H(2) as the energy source and CO(2) as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N(2)/CO(2) gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmH(T), Nautilia abyssi PH1209(T) and Nautilia lithotrophica 525(T) (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1(T) (=DSM 22087(T) =JCM 15746(T)).
Tang, Kai; Lin, Dan; Zheng, Qiang; Liu, Keshao; Yang, Yujie; Han, Yu; Jiao, Nianzhi
2017-06-27
Marine phages are spectacularly diverse in nature. Dozens of roseophages infecting members of Roseobacter clade bacteria were isolated and characterized, exhibiting a very high degree of genetic diversity. In the present study, the induction of two temperate bacteriophages, namely, vB_ThpS-P1 and vB_PeaS-P1, was performed in Roseobacter clade bacteria isolated from the deep-sea water, Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014, respectively. Two novel phages in morphological, genomic and proteomic features were presented, and their phylogeny and evolutionary relationships were explored by bioinformatic analysis. Electron microscopy showed that the morphology of the two phages were similar to that of siphoviruses. Genome sequencing indicated that the two phages were similar in size, organization, and content, thereby suggesting that these shared a common ancestor. Despite the presence of Mu-like phage head genes, the phages are more closely related to Rhodobacter phage RC1 than Mu phages in terms of gene content and sequence similarity. Based on comparative genomic and phylogenetic analysis, we propose a Mu-like head phage group to allow for the inclusion of Mu-like phages and two newly phages. The sequences of the Mu-like head phage group were widespread, occurring in each investigated metagenomes. Furthermore, the horizontal exchange of genetic material within the Mu-like head phage group might have involved a gene that was associated with phage phenotypic characteristics. This study is the first report on the complete genome sequences of temperate phages that infect deep-sea roseobacters, belonging to the Mu-like head phage group. The Mu-like head phage group might represent a small but ubiquitous fraction of marine viral diversity.
Palmberger, Thomas F; Laffleur, Flavia; Greindl, Melanie; Bernkop-Schnürch, Andreas
2015-08-01
Recently, the cationic polymer thiolated chitosan has been reported to modulate drug absorption by inhibition of intestinal efflux pumps. The objective of this study was to evaluate in vitro and in vivo whether thiolated anionic biopolymers also show an efflux pump inhibitory effect in order to improve intestinal transcellular drug uptake. Therefore, three thiomers have been synthesized due covalent attachment of cysteine to various polymer backbones: pectin-cysteine (pect-cys), carboxymethylcellulose-cysteine (CMC-cys) and alginate-cysteine (alg-cys). In vitro, the permeation enhancing properties of these thiomers and their corresponding unmodified polymers have been evaluated on rat small intestine in Ussing-type chambers, using sulforhodamine 101 (SR-101) as MRP2 model substrate. In comparison to buffer only, SR-101 transport in presence of pect-cys, CMC-cys and alg-cys was improved 1.5-fold, 1.8-fold and 3.0-fold, respectively. Due to the comparatively best in vitro performance of thiolated alginate, it has been chosen for in vivo studies: a SR-101 solution containing 4% (w/v) alg-cys led to an AUC0 ≥ 12 of SR-101 of 109 ng ml(-1)h in rats representing a 3.8-fold improvement in comparison to a SR-101 buffer solution. Unmodified alginate improved the AUC0 ≥ 12 of SR-101 by a factor of 1.9. These findings suggest thiolated alginate as promising auxiliary agent for drugs being anionic efflux pump substrates, since the oral bioavailability of a MRP2 substrate could be significantly improved. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
Man, Michael K. L.; Deckoff-Jones, Skylar; Winchester, Andrew; ...
2016-02-12
Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distorted crystalline structure, and rough surface morphology. The ability to protect these properties of monolayer TMDs, such as molybdenum disulfide (MoS 2), on standard Si-based substrates, will enable their use in opto-electronic devices and scientific investigations. Here we show that an atomically thin buffer layer of hexagonal-boron nitride (hBN) protects themore » range of key opto-electronic, structural, and morphological properties of monolayer MoS 2 on Si-based substrates. The hBN buffer restores sharp diffraction patterns, improves monolayer flatness by nearly two-orders of magnitude, and causes over an order of magnitude enhancement in photoluminescence, compared to bare Si and SiO 2 substrates. Lastly, our demonstration provides a way of integrating MoS 2 and other 2D monolayers onto standard Si-substrates, thus furthering their technological applications and scientific investigations.« less
NASA Astrophysics Data System (ADS)
Zhang, H. X.; Yu, H. J.; Chen, C. Z.
2015-05-01
The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.
Dropwise Condensation on Soft Hydrophobic Coatings.
Phadnis, Akshay; Rykaczewski, Konrad
2017-10-31
Promoting dropwise condensation (DWC) could improve the efficiency of many industrial systems. Consequently, a lot of effort has been dedicated to finding durable materials that could sustainably promote DWC as well as finding routes to enhance the heat transfer rate during this phase change process. Motivated by previous reports of substrate softening increasing droplet nucleation rate, here we investigated how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. Specifically, we experimentally quantified the effect of hydrophobic elastomer's shear modulus on droplet nucleation density and shedding radius. To quantify the impact of substrate softening on heat transfer through individual droplets, we combined analytical solution of elastomer deformation induced by droplets with finite element modeling of the heat transfer process. By substituting these experimentally and theoretically derived values into DWC heat transfer model, we quantified the compounding effect of the substrate's mechanical properties on the overall heat transfer rate. Our results show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate. This trend is primarily driven by additional thermal resistance of the liquid posed by depression of the soft substrate.
Improved Boat For Liquid-Phase Epitaxy
NASA Technical Reports Server (NTRS)
Connolly, John C.
1991-01-01
Liquid-phase epitaxial (LPE) growth boat redesigned. Still fabricated from ultra-high-purity graphite, but modified to permit easy disassembly and cleaning, along with improved wiping action for more complete removal of melt to reduce carry-over of gallium. Larger substrates and more uniform composition obtained.
Hakkaart, Xavier D V; Pronk, Jack T; van Maris, Antonius J A
2017-01-01
Understanding microbial growth and metabolism is a key learning objective of microbiology and biotechnology courses, essential for understanding microbial ecology, microbial biotechnology and medical microbiology. Chemostat cultivation, a key research tool in microbial physiology that enables quantitative analysis of growth and metabolism under tightly defined conditions, provides a powerful platform to teach key features of microbial growth and metabolism. Substrate-limited chemostat cultivation can be mathematically described by four equations. These encompass mass balances for biomass and substrate, an empirical relation that describes distribution of consumed substrate over growth and maintenance energy requirements (Pirt equation), and a Monod-type equation that describes the relation between substrate concentration and substrate-consumption rate. The authors felt that the abstract nature of these mathematical equations and a lack of visualization contributed to a suboptimal operative understanding of quantitative microbial physiology among students who followed their Microbial Physiology B.Sc. courses. The studio-classroom workshop presented here was developed to improve student understanding of quantitative physiology by a set of question-guided simulations. Simulations are run on Chemostatus, a specially developed MATLAB-based program, which visualizes key parameters of simulated chemostat cultures as they proceed from dynamic growth conditions to steady state. In practice, the workshop stimulated active discussion between students and with their teachers. Moreover, its introduction coincided with increased average exam scores for questions on quantitative microbial physiology. The workshop can be easily implemented in formal microbial physiology courses or used by individuals seeking to test and improve their understanding of quantitative microbial physiology and/or chemostat cultivation.
Wang, Dongxia; Krilich, Joan; Baudys, Jakub; Barr, John R.; Kalb, Suzanne R.
2015-01-01
It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1 mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay. PMID:25913863
Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin
2013-10-01
As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.
Li, Ning-Bo; Xu, Wen-Hua; Xiao, Gui-Yong; Zhao, Jun-Han; Lu, Yu-Peng
2017-11-01
Thermal oxidation technology was widely investigated as one of effective surface modification method for improving the bioactivity and biocompatibility of titanium and its alloys. In this work, the induction heat oxidization method, a fast, efficient, economical and environmental protective technology, was applied to prepare the submicron-morphological oxide coating with variable rutile TiO 2 equiaxed crystallites on the surface of pure Ti substrates after cold-drawing with 10-20% deformations. The results showed the plastic-deformed Ti cylinders recrystallized during induction heating treatment (IHT) for 10-20s which resulted in evolution of microstructures as well as slight improvement of microhardness. The surface characteristics of TiO 2 crystallites in oxidation layers were determined by the microstructural evolutions of Ti substrate in terms of the nucleation and growth of TiO 2 crystallites. Specially, the oxidized surface with 50-75nm roughness and more uniform and finer equiaxed oxide grains remarkablely improved the apatite deposition after bioactive evaluation in 1.5 × SBF for 7 days. This work provided a potential method to create controlled bioactive oxide coatings with submicro-/nano-scaled TiO 2 crystallites on titanium substrate in terms of the role of metallographic microstructure in the formation process of titanium oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced in-situ control for III-nitride RF power device epitaxy
NASA Astrophysics Data System (ADS)
Brunner, F.; Zettler, J.-T.; Weyers, M.
2018-04-01
In this contribution, the latest improvements regarding wafer temperature measurement on 4H-SiC substrates and, based on this, of film thickness and composition control of GaN and AlGaN layers in power electronic device structures are presented. Simultaneous pyrometry at different wavelengths (950 nm and 405 nm) reveal the advantages and limits of the different temperature measurement approaches. Near-UV pyrometry gives a very stable wafer temperature signal without oscillations during GaN growth since the semi-insulating 4H-SiC substrate material becomes opaque at temperatures above 550 °C at the wavelength of 405 nm. A flat wafer temperature profile across the 100 mm substrate diameter is demonstrated despite a convex wafer shape at AlGaN growth conditions. Based on the precise assignment of wafer temperature during MOVPE we were able to improve the accuracy of the high-temperature n-k database for the materials involved. Consequently, the measurement accuracy of all film thicknesses grown under fixed temperature conditions improved. Comparison of in situ and ex situ determined layer thicknessess indicate an unintended etching of the topmost layer during cool-down. The details and limitations of real-time composition analysis for lower Al-content AlGaN barrier layers during transistor device epitaxy are shown.
Laser modification of thermally sprayed coatings
NASA Astrophysics Data System (ADS)
Uglov, A. A.; Fomin, A. D.; Naumkin, A. O.; Pekshev, P. Iu.; Smurov, I. Iu.
1987-08-01
Experimental results are reported on the modification of thermally sprayed coatings on steels and aluminum alloys using pulsed YAG and CW CO2 lasers. In particular, results obtained for self-fluxing Ni9CrBSi powders, ZRO2 ceramic, and titanium are examined. It is shown that the laser treatment of thermally sprayed coatings significantly improves their physicomechanical properties; it also makes it possible to obtain refractory coatings on low-melting substrates with good coating-substrate adhesion.
Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections
2013-10-01
observation allowed us to improve the substrate specificity assay and identify that threonine serves as an optimal substrate in the pyrophosphate exchange...activity was obtained, and the activity now seems to be optimal with the small hydroxyl containing amino acids threonine and serine. These... diabetic ulcers are favored sites of infection (6, 7). A. baumannii has also been shown to cause infections outside the health care setting, namely, severe
High Efficiency Thermoelectric Materials and Devices
NASA Technical Reports Server (NTRS)
Kochergin, Vladimir (Inventor)
2013-01-01
Growth of thermoelectric materials in the form of quantum well super-lattices on three-dimensionally structured substrates provide the means to achieve high conversion efficiency of the thermoelectric module combined with inexpensiveness of fabrication and compatibility with large scale production. Thermoelectric devices utilizing thermoelectric materials in the form of quantum well semiconductor super-lattices grown on three-dimensionally structured substrates provide improved thermoelectric characteristics that can be used for power generation, cooling and other applications..
Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.
Cortes-Tolalpa, Larisa; Norder, Justin; van Elsas, Jan Dirk; Falcao Salles, Joana
2018-03-01
The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.
Jennett, Tyson S; Zheng, Youbin
2018-06-01
This review is a synthesis of the current knowledge regarding the effects of green roof substrate components and their retentive capacity for nutrients, particularly phosphorus (P). Substrates may behave as either sources or sinks of P depending on the components they are formulated from, and to date, the total P-adsorbing capacity of a substrate has not been quantified as the sum of the contributions of its components. Few direct links have been established among substrate components and their physicochemical characteristics that would affect P-retention. A survey of recent literature presented herein highlights the trends within individual component selection (clays and clay-like material, organics, conventional soil and sands, lightweight inorganics, and industrial wastes and synthetics) for those most common during substrate formulation internationally. Component selection will vary with respect to ease of sourcing component materials, cost of components, nutrient-retention capacity, and environmental sustainability. However, the number of distinct components considered for inclusion in green roof substrates continues to expand, as the desires of growers, material suppliers, researchers and industry stakeholders are incorporated into decision-making. Furthermore, current attempts to characterize the most often used substrate components are also presented whereby runoff quality is correlated to entire substrate performance. With the use of well-described characterization (constant capacitance model) and modeling techniques (the soil assemblage model), it is proposed that substrates optimized for P adsorption may be developed through careful selection of components with prior knowledge of their chemical properties, that may increase retention of P in plant-available forms, thereby reducing green roof fertilizer requirements and P losses in roof runoff. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Defu; Gu, Jiaru; Li, Yingxue; Zhang, Yu; Howard, Alan; Guan, Yidong; Li, Jiuhai; Xu, Hui
2016-01-01
The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found. However, the average removal efficiency of P was higher in IVFCW with a mixture of river sand and Qing sand as substrate than in IVFCW with river sand as substrate. Invertase activity in December was higher in IVFCW that used a mixture of river sand and Qing sand as substrate than in IVFCW which used only river sand as substrate. However, urease activity, nitrification potential, and total number of bacteria in December was higher in IVFCW that employed river sand as substrate than in IVFCW with a mixture of river sand and Qing sand as substrate. The addition of earthworms into the integrated vertical flow constructed wetland increased the above-ground biomass, enzyme activity (catalase, urease, and invertase), nitrification potentials, and total number of bacteria in December. The above-ground biomass of wetland plants was significantly positively correlated with urease and nitrification potentials (p < 0.01). The addition of earthworms into IVFCW increased enzyme activity and nitrification potentials in December, which resulted in improving purifying capability.
Chin, Alan; Keshavarz, Majid; Wang, Qi
2018-04-13
Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in themore » open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. Lastly, this observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Alan; Keshavarz, Majid; Wang, Qi
Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in themore » open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. Lastly, this observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.« less
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl
2015-04-01
The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of
Genetic improvement of native xylose-fermenting yeasts for ethanol production.
Harner, Nicole K; Wen, Xin; Bajwa, Paramjit K; Austin, Glen D; Ho, Chi-Yip; Habash, Marc B; Trevors, Jack T; Lee, Hung
2015-01-01
Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient. This remains one of the key challenges in lignocellulosic biomass conversion. Native pentose-fermenting yeasts can ferment both glucose and xylose in lignocellulosic biomass to ethanol. However, they perform poorly in the presence of hydrolysate inhibitors, exhibit low ethanol tolerance and glucose repression, and ferment pentoses less efficiently than the main hexoses glucose and mannose. This paper reviews classical and molecular strain improvement strategies applied to native pentose-fermenting yeasts for improved ethanol production from xylose and lignocellulosic substrates. We focus on Pachysolen tannophilus, Scheffersomyces (Candida) shehatae, Scheffersomyces (Pichia) stipitis, and Spathaspora passalidarum which are good ethanol producers among the native xylose-fermenting yeasts. Strains obtained thus far are not robust enough for efficient ethanol production from lignocellulosic hydrolysates and can benefit from further improvements.
Formation of intermetallic compound coating on magnesium AZ91 cast alloy
NASA Astrophysics Data System (ADS)
Zhu, Tianping; Gao, Wei
2009-08-01
This study describes an intermetallic compound coating formed on AZ91 Mg cast alloy. The Al sputtered on AZ91 cast alloy reacted with substrate during a short period of heat treatment at 435°C, resulting in the formation of a continuous intermetallic compound layer. The short period treatment has the advantage of minimizing the negative effect on the microstructure of substrate and the mechanical properties, comparing with the reported diffusion coatings. DSC measurement and examination on the cross-section of Al sputtered samples show that local melting occurred along the Al/substrate interface at the temperature range between 430~435°C. The formation mechanism of intermetallic compound coating is proposed in terms of the local melting at Al/substrate interface. The salt water immersion test showed significant improvement in corrosion resistance of the intermetallic compound coated AZ91 cast alloy compared with the as-cast alloys.
NASA Astrophysics Data System (ADS)
Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng
2018-01-01
Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.
Song, Xueping; Jiang, Yan; Rong, Xianjian; Wei, Wei; Wang, Shuangfei; Nie, Shuangxi
2016-09-01
The surface characterization and chemical analysis of bamboo substrates by alkali hydrogen peroxide pretreatment (AHPP) were investigated in this study. The results tended to manifest that AHPP prior to enzymatic and chemical treatment was potential for improving accessibility and reactivity of bamboo substrates. The inorganic components, organic solvent extractives and acid-soluble lignin were effectively removed by AHPP. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface of bamboo chips had less lignin but more carbohydrate after pre-treatment. Fiber surfaces became etched and collapsed, and more pores and debris on the substrate surface were observed with Scanning Electron Microscopy (SEM). Brenauer-Emmett-Teller (BET) results showed that both of pore volume and surface area were increased after AHPP. Although XRD analysis showed that AHPP led to relatively higher crystallinity, pre-extraction could overall enhance the accessibility of enzymes and chemicals into the bamboo structure. Copyright © 2016. Published by Elsevier Ltd.
Chemical-mechanical polishing of recessed microelectromechanical devices
Barron, Carole C.; Hetherington, Dale L.; Montague, Stephen
1999-01-01
A method is disclosed for micromachining recessed layers (e.g. sacrificial layers) of a microelectromechanical system (MEMS) device formed in a cavity etched into a semiconductor substrate. The method uses chemical-mechanical polishing (CMP) with a resilient polishing pad to locally planarize one or more of the recessed layers within the substrate cavity. Such local planarization using the method of the present invention is advantageous for improving the patterning of subsequently deposited layers, for eliminating mechanical interferences between functional elements (e.g. linkages) of the MEMS device, and for eliminating the formation of stringers. After the local planarization of one or more of the recessed layers, another CMP step can be provided for globally planarizing the semiconductor substrate to form a recessed MEMS device which can be integrated with electronic circuitry (e.g. CMOS, BiCMOS or bipolar circuitry) formed on the surface of the substrate.
Monte Carlo study of the hetero-polytypical growth of cubic on hexagonal silicon carbide polytypes
NASA Astrophysics Data System (ADS)
Camarda, Massimo
2012-08-01
In this article we use three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on misoriented hexagonal (4H and 6H) substrates. We analyze the quality of the 3C-SiC film varying the polytype, the miscut angle and the initial surface morphology of the substrate. We find that the use of 6H misoriented (4°-10° off) substrates, with step bunched surfaces, can strongly improve the quality of the cubic epitaxial film whereas the 3C/4H growth is affected by the generation of dislocations, due to the incommensurable periodicity of the 3C (3) and the 4H (4) polytypes. For these reasons, a proper pre-growth treatment of 6H misoriented substrates can be the key for the growth of high quality, twin free, 3C-SiC films.
Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju
2016-03-07
We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.
Chemical-mechanical polishing of recessed microelectromechanical devices
Barron, C.C.; Hetherington, D.L.; Montague, S.
1999-07-06
A method is disclosed for micromachining recessed layers (e.g. sacrificial layers) of a microelectromechanical system (MEMS) device formed in a cavity etched into a semiconductor substrate. The method uses chemical-mechanical polishing (CMP) with a resilient polishing pad to locally planarize one or more of the recessed layers within the substrate cavity. Such local planarization using the method of the present invention is advantageous for improving the patterning of subsequently deposited layers, for eliminating mechanical interferences between functional elements (e.g. linkages) of the MEMS device, and for eliminating the formation of stringers. After the local planarization of one or more of the recessed layers, another CMP step can be provided for globally planarizing the semiconductor substrate to form a recessed MEMS device which can be integrated with electronic circuitry (e.g., CMOS, BiCMOS or bipolar circuitry) formed on the surface of the substrate. 23 figs.
Electroluminescent device having improved light output
Tyan,; Yuan-Sheng, [Webster, NY; Preuss, Donald R [Rochester, NY; Farruggia, Giuseppe [Webster, NY; Kesel, Raymond A [Avon, NY; Cushman, Thomas R [Rochester, NY
2011-03-22
An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.
Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk
2016-05-11
Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.
Improving efficiency of transport fuels production by thermal hydrolysis of waste activated sludge
NASA Astrophysics Data System (ADS)
Gulshin, Igor
2017-10-01
The article deals with issues of transport biofuels. Transport biofuels are an important element of a system of energy security. Moreover, as part of a system it is inextricably linked to the urban, rural or industrial infrastructure. The paper discusses methods of increasing the yield of biogas from anaerobic digesters at wastewater treatment plants. The thermal hydrolysis method was considered. The main advantages and drawbacks of this method were analyzed. The experimental biomass (from SNDOD-bioreactor) and high-organic substrate have been previously studied by respirometry methods. A biomethane potential of the investigated organic substrate has high rates because of substrate composition (the readily biodegradable substrate in the total composition takes about 85%). Waste activated sludge from SNDOD-bioreactor can be used for biofuel producing with high efficiency especially with pre-treatment like a thermal hydrolysis. Further studies have to consider the possibility of withdrawing inhibitors from waste activated sludge.
Propagation of misfit dislocations from buffer/Si interface into Si
Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA
2011-08-30
Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.
High-quality GaN epitaxially grown on Si substrate with serpentine channels
NASA Astrophysics Data System (ADS)
Wei, Tiantian; Zong, Hua; Jiang, Shengxiang; Yang, Yue; Liao, Hui; Xie, Yahong; Wang, Wenjie; Li, Junze; Tang, Jun; Hu, Xiaodong
2018-06-01
A novel serpentine-channeled mask was introduced to Si substrate for low-dislocation GaN epitaxial growth and the fully coalesced GaN film on the masked Si substrate was achieved for the first time. Compared with the epitaxial lateral overgrowth (ELOG) growth method, this innovative mask only requires one-step epitaxial growth of GaN which has only one high-dislocation region per mask opening. This new growth method can effectively reduce dislocation density, thus improving the quality of GaN significantly. High-quality GaN with low dislocation density ∼2.4 × 107 cm-2 was obtained, which accounted for about eighty percent of the GaN film in area. This innovative technique is promising for the growth of high-quality GaN templates and the subsequent fabrication of high-performance GaN-based devices like transistors, laser diodes (LDs), and light-emitting diodes (LEDs) on Si substrate.
Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog
2016-12-27
A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.
Measurement of Interfacial Adhesion in Glass-Epoxy Systems Using the Indentation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchins, Karen Isabel
2015-07-01
The adhesion of coatings often controls the performance of the substrate-coating system. Certain engineering applications require an epoxy coating on a brittle substrate to protect and improve the performance of the substrate. Experimental observations and measurements of interfacial adhesion in glass-epoxy systems are described in this thesis. The Oliver and Pharr method was utilized to calculate the bulk epoxy hardness and elastic modulus. Spherical indentations were used to induce delaminations at the substrate-coating interface. The delamination sizes as a function of load were used to calculate the interfacial toughness. The interfacial fracture energy of my samples is an order ofmore » magnitude higher than a previous group who studied a similar glass-epoxy system. A comparison study of how different glass treatments affect adhesion was also conducted: smooth versus rough, clean versus dirty, stressed versus non-stressed.« less
Chen, Shuming; Kwok, Hoi Sing
2010-01-04
Light extraction from organic light-emitting diodes (OLEDs) by scattering the light is one of the effective methods for large-area lighting applications. In this paper, we present a very simple and cost-effective method to rough the substrates and hence to scatter the light. By simply sand-blasting the edges and back-side surface of the glass substrates, a 20% improvement of forward efficiency has been demonstrated. Moreover, due to scattering effect, a constant color over all viewing angles and uniform light pattern with Lambertian distribution has been obtained. This simple and cost-effective method may be suitable for mass production of large-area OLEDs for lighting applications.
NASA Astrophysics Data System (ADS)
Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng
2012-09-01
We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.
Coating with overlay metallic-cermet alloy systems
NASA Technical Reports Server (NTRS)
Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)
1984-01-01
A base layer of an oxide dispersed, metallic alloy (cermet) is arc plasma sprayed onto a substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use. A top layer of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then arc plasma sprayed onto the base layer. A heat treatment is used to improve the bonding. The base layer serves as an inhibitor to interdiffusion between the protective top layer and the substrate. Otherwise, the 10 protective top layer would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Katsuhisa, E-mail: k.murakami@bk.tsukuba.ac.jp; Hiyama, Takaki; Kuwajima, Tomoya
2015-03-02
A single layer of graphene with dimensions of 20 mm × 20 mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50 nm to 200 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ok, Kyung-Chul; Park, Jin-Seong, E-mail: hkim-2@naver.com, E-mail: jsparklime@hanyang.ac.kr; Ko Park, Sang-Hee
We demonstrated the fabrication of flexible amorphous indium gallium zinc oxide thin-film transistors (TFTs) on high-temperature polyimide (PI) substrates, which were debonded from the carrier glass after TFT fabrication. The application of appropriate buffer layers on the PI substrates affected the TFT performance and stability. The adoption of the SiN{sub x}/AlO{sub x} buffer layers as water and hydrogen diffusion barriers significantly improved the device performance and stability against the thermal annealing and negative bias stress, compared to single SiN{sub x} or SiO{sub x} buffer layers. The substrates could be bent down to a radius of curvature of 15 mm and themore » devices remained normally functional.« less
ZnO buffer layer for metal films on silicon substrates
Ihlefeld, Jon
2014-09-16
Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
AM OLED using a-Si TFT backplane on flexible plastic substrate
NASA Astrophysics Data System (ADS)
Sarma, Kalluri R.; Schmidt, John; Roush, Jerry; Chanley, Charles; Dodd, Sonia R.
2004-09-01
Amorphous silicon TFT technology continues to show promise for fabricating large area high resolution flexible AM OLED displays. This paper describes the recent progress in the flexible AM OLED development efforts at Honeywell since our publication in this conference's proceedings in 2003, describing the feasibility of fabricating a 64x64 pixel AM OLED on a flexible plastic substrate. In this paper we describe the design, and fabrication of a 160x160(x3) pixel AM OLED on a flexible plastic substrate with an equivalent 80cgpi resolution. Flexibility characteristics of the fabricated displays are discussed. Further advances and improvements required for extending the size and resolution of flexible AM OLED displays are discussed.
NASA Technical Reports Server (NTRS)
Anton, R.; Poppa, H.; Flanders, D. C.
1982-01-01
The graphoepitaxial alignment of vapor-deposited discrete metal crystallites is investigated in the nucleation and growth stages and during annealing by in situ UHV/TEM techniques. Various stages of nucleation, growth and coalescence of vapor deposits of Au, Ag, Pb, Sn, and Bi on amorphous, topographically structured C substrates are analyzed by advanced dark-field techniques to detect preferred local orientations. It is found that the topography-induced orientation of metal crystallites depends strongly on their mobility and their respective tendency to develop pronounced crystallographic shapes. Lowering of the average surface free energies and increasing the crystallographic surface energy anisotropies cause generally improved graphoepitaxial alignments.
Compensated amorphous silicon solar cell
Devaud, Genevieve
1983-01-01
An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.
NASA Astrophysics Data System (ADS)
Morton, Kenneth D., Jr.; Torrione, Peter A.; Collins, Leslie
2011-05-01
Laser induced breakdown spectroscopy (LIBS) can provide rapid, minimally destructive, chemical analysis of substances with the benefit of little to no sample preparation. Therefore, LIBS is a viable technology for the detection of substances of interest in near real-time fielded remote sensing scenarios. Of particular interest to military and security operations is the detection of explosive residues on various surfaces. It has been demonstrated that LIBS is capable of detecting such residues, however, the surface or substrate on which the residue is present can alter the observed spectra. Standard chemometric techniques such as principal components analysis and partial least squares discriminant analysis have previously been applied to explosive residue detection, however, the classification techniques developed on such data perform best against residue/substrate pairs that were included in model training but do not perform well when the residue/substrate pairs are not in the training set. Specifically residues in the training set may not be correctly detected if they are presented on a previously unseen substrate. In this work, we explicitly model LIBS spectra resulting from the residue and substrate to attempt to separate the response from each of the two components. This separation process is performed jointly with classifier design to ensure that the classifier that is developed is able to detect residues of interest without being confused by variations in the substrates. We demonstrate that the proposed classification algorithm provides improved robustness to variations in substrate compared to standard chemometric techniques for residue detection.
Vieira, Fabrício Rocha; de Andrade, Meire Cristina Nogueira
2016-11-01
In recent years, oyster mushroom (Pleurotus ostreatus) has become one of the most cultivated mushrooms in the world, mainly in Brazil. Among many factors involved in a mushroom production, substrate preparation is the most critical step, which can be influenced by composting management techniques. Looking forward to optimizing the substrate preparation process, were tested different composting conditions (7 and 14 days of composting with or without conditioning), potential raw materials (decumbens grass, brizantha grass and sugarcane straw) and nitrogen supplementation (with or without wheat bran) on oyster mushroom yield and biological efficiency (BE). The substrate composted for 7 days with conditioning showed higher yield and biological efficiency of mushroom (24.04 and 100.54 %, respectively). Substrates without conditioning (7 and 14 days of composting) showed smaller mushroom yield and biological efficiency. Among the raw materials tested, brizantha grass showed higher mushroom yield followed by decumbens grass, sugarcane straw and wheat straw (28.5, 24.32, 23.5 and 19.27 %, respectively). Brizantha grass also showed higher biological efficiency followed by sugarcane straw, decumbens grass and wheat straw (123.95, 103.70, 96.90 and 86.44 %, respectively). Supplementation with wheat bran improved yield and biological efficiency in all substrate formulations tested; thus, oyster mushroom yield and biological efficiency were influenced by substrate formulation (raw materials), supplementation and composting conditions.
Strategies to improve fiber utilization in swine
2013-01-01
Application of feed processing methods and use of exogenous feed additives in an effort to improve nutrient digestibility of plant-based feed ingredients for swine has been studied for decades. The following review will discuss several of these topics, including: fiber characterization, impact of dietary fiber on gastrointestinal physiology, energy, and nutrient digestibility, mechanical processing of feed on fiber and energy digestibility, and the use of exogenous enzymes in diets fed to growing pigs. Taken together, the diversity and concentration of chemical characteristics that exists among plant-based feed ingredients, as well as interactions among constituents within feed ingredients and diets, suggests that improvements in nutrient digestibility and pig performance from mechanical processing or adding exogenous enzymes to diets fed to swine depends on a better understanding of these characteristics, but also relating enzyme activity to targeted substrates. It may be that an enzyme must not only match a target substrate(s), but there may also need to be a ′cocktail′ of enzymes to effectively breakdown the complex matrixes of fibrous carbohydrates, such that the negative impact of these compounds on nutrient digestibility or voluntary feed intake are alleviated. With the inverse relationship between fiber content and energy digestibility being well described for several feed ingredients, it is only logical that development of processing techniques or enzymes that degrade fiber, and thereby improve energy digestibility or voluntary feed intake, will be both metabolically and economically beneficial to pork production. PMID:23497595
Aebersold, Mathias J.; Thompson-Steckel, Greta; Joutang, Adriane; Schneider, Moritz; Burchert, Conrad; Forró, Csaba; Weydert, Serge; Han, Hana; Vörös, János
2018-01-01
Bottom-up neuroscience aims to engineer well-defined networks of neurons to investigate the functions of the brain. By reducing the complexity of the brain to achievable target questions, such in vitro bioassays better control experimental variables and can serve as a versatile tool for fundamental and pharmacological research. Astrocytes are a cell type critical to neuronal function, and the addition of astrocytes to neuron cultures can improve the quality of in vitro assays. Here, we present cellulose as an astrocyte culture substrate. Astrocytes cultured on the cellulose fiber matrix thrived and formed a dense 3D network. We devised a novel co-culture platform by suspending the easy-to-handle astrocytic paper cultures above neuronal networks of low densities typically needed for bottom-up neuroscience. There was significant improvement in neuronal viability after 5 days in vitro at densities ranging from 50,000 cells/cm2 down to isolated cells at 1,000 cells/cm2. Cultures exhibited spontaneous spiking even at the very low densities, with a significantly greater spike frequency per cell compared to control mono-cultures. Applying the co-culture platform to an engineered network of neurons on a patterned substrate resulted in significantly improved viability and almost doubled the density of live cells. Lastly, the shape of the cellulose substrate can easily be customized to a wide range of culture vessels, making the platform versatile for different applications that will further enable research in bottom-up neuroscience and drug development. PMID:29535595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muratore, C.; Korenyi-Both, A.; Bultman, J. E.
2007-07-15
The use of polymer matrix composites in aerospace propulsion applications is currently limited by insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide necessary protection; however, adhesion to many high temperature polymer matrix composite (PMC) materials is poor. A low pressure oxygen plasma treatment process was developed to improve adhesion of CN{sub x} coatings to a carbon reinforced, fluorinated polymer matrix composite. Fullerene-like CN{sub x} was selected as an erosion resistant coating for its high hardness-to-elastic modulus ratio and elastic resilience which were expected to reduce erosion from media incident at different angles (normal or glancing) relativemore » to the surface. In situ x-ray photoelectron spectroscopy was used to evaluate the effect of the plasma treatment on surface chemistry, and electron microscopy was used to identify changes in the surface morphology of the PMC substrate after plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon fibers were exposed after plasma treatment. CN{sub x} coatings were then deposited on oxygen treated PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated composite substrates. The combination of PMC pretreatment and coating with CN{sub x} reduced the erosion rate by an order of magnitude for normally incident particles.« less
Oxidized film structure and method of making epitaxial metal oxide structure
Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA
2003-02-25
A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1998-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media
Arnold, Frances H.; Moore, Jeffrey C.
1999-01-01
A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Rocco; Chang, Aram; Peltier-Pain, Pauline
2012-03-15
Directed evolution is a valuable technique to improve enzyme activity in the absence of a priori structural knowledge, which can be typically enhanced via structure-guided strategies. In this study, a combination of both whole-gene error-prone polymerase chain reaction and site-saturation mutagenesis enabled the rapid identification of mutations that improved RmlA activity toward non-native substrates. These mutations have been shown to improve activities over 10-fold for several targeted substrates, including non-native pyrimidine- and purine-based NTPs as well as non-native d- and l-sugars (both a- and b-isomers). This study highlights the first broadly applicable high throughput sugar-1-phosphate nucleotidyltransferase screen and the firstmore » proof of concept for the directed evolution of this enzyme class toward the identification of uniquely permissive RmlA variants.« less