Science.gov

Sample records for ac breakdown voltage

  1. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  2. Basic study of transient breakdown voltage in solid dielectric cables

    NASA Astrophysics Data System (ADS)

    Bahder, G.; Sosnowski, M.; Katz, C.

    1980-09-01

    A comprehensive review of the technical and scientific publications relating to crosslinked polyethylene (XLPE) and ethylene propylene rubber (EPR) insulated cables revealed that there is very little known with respect to the life expectancy, the final factory voltage test background and the mechanism of voltage breakdown of these cables. A new methodology for the investigation of breakdown voltages of XLPE and EPR insulated cables was developed which is based on the investigation of breakdown voltages at various voltage transients such as unipolarity pulses and dual-polarity pulses, and a.c. voltage at power and high frequency. Also, a new approach to statistical testing was developed which allows one to establish a correlation among the breakdown voltages obtained with various voltage transients. Finally, a method for the determination of threshold voltage regardless of the magnitude of apparent charge was developed. A model of breakdown and electrical aging of XLPE and EPR insulated cables was developed as well as life expectancy characteristics for high voltage stress XLPE insulated cables operated in a dry environment at room temperature and at 900 C.

  3. Novel dielectric reduces corona breakdown in ac capacitors

    NASA Technical Reports Server (NTRS)

    Loehner, J. L.

    1972-01-01

    Dielectric system was developed which consists of two layers of 25-gage paper separated by one layer of 50-gage polypropylene to reduce corona breakdown in ac capacitors. System can be used in any alternating current application where constant voltage does not exceed 400 V rms. With a little research it could probably be increased to 700 to 800 V rms.

  4. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  5. Spark gap with low breakdown voltage jitter

    DOEpatents

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  6. Comparative evaluation of breakdown strength of thin insulating materials under fast transient voltages

    SciTech Connect

    Rajan, J.S.; Dwarakanath, K.

    1996-12-31

    Laboratory methods of generating fast transient over-voltages are discussed in this paper. The results of the breakdown studies carried out with the Transmission line model Generator using plastic materials is presented. The breakdown is observed to be a fast front phenomenon and the electrode effects are critical. The magnitude of the breakdown voltage is one order higher than the corresponding ac and dc values.

  7. Effect of surface conditions affecting voltage breakdowns

    NASA Astrophysics Data System (ADS)

    Flauta, Randolph; Aghazarian, Maro; Caughman, John; Ruzic, David

    2008-11-01

    The maximum power transferred by ion cyclotron range of frequency (ICRF) antennas is dependent on the breakdown threshold when operated at high voltages. The voltage that these antennas can withstand is lowered and hence breakdowns occur due to many factors. The Surface Plasma Arcs by Radiofrequency - Control Study or SPARCS facility has a 0-15kV DC power supply to deliver power to flat cathode surface and semi-spherical anode made of Cu and Al under 10-8-10-6 torr vacuum conditions. The effects of different surface conditions on the breakdown threshold were then investigated. Also, as the ICRF antennas used for heating plasmas may come into contact with contaminants from the plasma, Li was also deposited on the cathode surface through in-situ evaporation coating and its effect on the breakdown threshold was investigated. Results on surface roughness showed no significant dependence of the breakdown threshold on macroscopic surface roughness in the cathode arithmetic roughness range of ˜77-1139nm. Microscopic surface features such as grain boundaries, impurities and imperfections may play a more visible role in affecting the vacuum breakdown.

  8. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  9. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  10. Breakdown voltage of discrete capacitors under single-pulse conditions

    NASA Technical Reports Server (NTRS)

    Domingos, H.; Scaturro, J.; Hayes, L.

    1981-01-01

    For electrostatic capacitors the breakdown voltage is inherently related to the properties of the dielectric, with the important parameters being the dielectric field strength which is related to the dielectric constant and the dielectric thickness. These are not necessarily related to the capacitance value and the rated voltage, but generally the larger values of capacitance have lower breakdown voltages. Foil and wet slug electrolytics can withstand conduction currents pulses without apparent damage (in either direction for foil types). For solid tantalums, damage occurs whenever the capacitor charges to the forming voltage.

  11. Prediction of Treeing Breakdown from Pulse Height of Partial Discharge on Voltage-Phase Angle

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki; Tanaka, Toshikatsu

    1985-02-01

    This paper describes the change in the partial discharge (PD) characteristics due to the growth of electrical trees in insulating materials under the application of an AC voltage. An electrical tree consists of branch-like dielectric breakdown paths. Investigation of a number of characteristic PD parameters shows that the φ-q distribution profile has a good correlation with tree growth. The φ-q distribution expresses the average pulse height as a function of the AC voltage-phase angle. The distribution indicates a common profile for trees growing in both epoxy resin and polyethylene. Tree growth in these materials can thus be detected by monitoring the profile of the φ-q distribution, and the final breakdown can be predicted from the tree growth.

  12. Analysis of the breakdown voltage in SOI and SOS technologies

    NASA Astrophysics Data System (ADS)

    Roig, J.; Vellvehi, M.; Flores, D.; Rebollo, J.; Millan, J.; Krishnan, S.; De Souza, M. M.; Sankara Narayanan, E. M.

    2002-02-01

    The aim of the paper is to analyse the breakdown voltage performance of lateral power devices in silicon on insulator (SOI) technologies. Both silicon on oxide (termed SOI as per the convention) and silicon on sapphire (SOS) technologies have been considered. Detailed numerical modelling together with analytical evaluation has been carried out on lateral devices employing uniformly doped and variation in lateral doping drift regions. The results indicate that existing theories to predict breakdown voltage are valid only in the case of ultrathin insulator layers and fail when ultrathick layers are considered. Predicted results for devices with ultrathick dielectric layers, as it is the case in SOS technology, are presented. Moreover, the breakdown voltage sensitivity with respect to the SOI layer and dielectric thickness is also analysed.

  13. Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2016-07-01

    The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.

  14. Ion behavior and interelectrode breakdown voltage of a drift tube

    NASA Astrophysics Data System (ADS)

    Geng, Hao; Zhao, Zhong-Jun; Duan, Yi-Xiang

    2015-05-01

    We experimentally studied ion behavior and interelectrode breakdown voltage. The ion behavior of a drift tube directly influences the detection of ion intensity, and then influences the detection sensitivity of a system. Interelectrode voltage and pressure directly influence the ion behavior. Gas discharge between electrodes influences the adjustments required for interelectrode voltage. The experimental results show: ion intensity increases exponentially with the increment of voltage between drift electrodes; ion intensity decreases exponentially as pressure increases; with the increment of pressure, the breakdown voltage at first decreases, and then increases; ion injection has a significant influence on breakdown voltage, and this influence depends on the pressure and shapes of the electrodes. We explain the results above through assumptions and by mathematical methods. Supported by Financial Support from the National Major Scientific Instruments and Equipment Development Special Funds (2011YQ030113), National Recruitment Program of Global Experts (NRPGE), the Hundred Talents Program of Sichuan Province (HTPSP) and the Startup Funding of Sichuan University for Setting up the Research Center of Analytical Instrumentation

  15. High Voltage Coaxial Vacuum Gap Breakdown for Pulsed Power Liners

    NASA Astrophysics Data System (ADS)

    Cordaro, Samuel; Bott-Suzuki, Simon; Caballero Bendixsen, Luis Sebastian

    2015-11-01

    The dynamics of Magnetized Liner Inertial Fusion (MagLIF)1, are presently under detailed study at Sandia National Laboratories. Alongside this, a comprehensive analysis of the influence of the specific liner design geometry in the MagLIF system on liner initiation is underway in the academic community. Recent work at UC San Diego utilizes a high voltage pulsed system (25kV, 150ns) to analyze the vacuum breakdown stage of liner implosion. Such experimental analyses are geared towards determining how the azimuthal symmetry of coaxial gap breakdown affect plasma initiation within the liner. The final aim of the experimental analysis is to assess to what scale symmetry remains important at high (MV) voltages. An analysis of the above will utilize plasma self-emission via optical MCP, current measurements, voltage measurements near the gap, exact location of breakdown via 2D b-dot probe triangulation, as well as measuring the evolution of the B-field along the length of the liner via b-dot array. Results will be discussed along with analytical calculations of breakdown mechanisms

  16. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    SciTech Connect

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  17. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    SciTech Connect

    Wu, Jian; Li, Xingwen Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  18. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici

    2015-06-01

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15-20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  19. Measuring breakdown voltage for objectively detecting ignition in fire research

    NASA Astrophysics Data System (ADS)

    Ochoterena, R.; Försth, M.; Elfsberg, Mattias; Larsson, Anders

    2013-10-01

    This paper presents a method intended for detecting the initiation of combustion and the presence of smoke in confined or open spaces by continuously applying an intermittent high-voltage pulse between the electrodes. The method is based on an electrical circuit which generates an electrical discharge measuring simultaneously the breakdown voltage between the electrodes. It has been successfully used for the detection of particle-laden aerosols and flames. However, measurements in this study showed that detecting pyrolysis products with this methodology is challenging and arduous. The method presented here is robust and exploits the necessity of having an ignition system which at the same time can automatically discern between clean air, flames or particle-laden aerosols and can be easily implemented in the existing cone calorimeter with very minor modifications.

  20. Voltage breakdown between closely spaced electrodes over polymeric insulator surfaces in air

    NASA Astrophysics Data System (ADS)

    Gray, Eoin W.; Harrington, Daniel J.

    1982-01-01

    Voltage breakdowns of some narrow gap electrodes [2-10 mil (0.05-0.25 mm)] on polymeric insulator surfaces (epoxy-glass and triazine) have been examined over the pressure range from atmospheric pressure to 127 Torr and are shown to be an air breakdown modified by the presence of the insulator. Breakdown values as a function of the number of the breakdown and discharge energy level were also examined. In the worst case the breakdown voltage was observed to decrease by approximately 1300 V after about five successive breakdowns. The breakdown voltage between narrowly spaced metallic contacts on dielectric surfaces has been assumed to exhibit a Gaussian distribution. Non-Gaussian, bimodal distributions have been observed in the present work. These bimodal distributions, found on fine line epoxy-glass and triazine printed wiring boards, and attempts for explanation in terms of the flashover discharge initiating mechanisms, including the effects of ultraviolet radiation and a negative-ion flux on breakdown, are described. Negative ions appear to reduce the standard deviation but do not reduce the breakdown voltage. Ultraviolet radiation reduces both the standard deviation and the breakdown voltage. Increasing the conductor overlap distance (line length) reduced the breakdown voltage.

  1. High Voltage Breakdown Levels in Various EPC Potting Materials

    NASA Technical Reports Server (NTRS)

    Komm, David S.

    2006-01-01

    This viewgraph presentation reviews exploration activities at JPL into various potting materials. Since high power space-borne microwave transmitters invariably use a vacuum tube as a final power amplifier, and this tube requires high electrode voltages for operation. The associated high voltage insulation typically represents a significant fraction of the mass of the transmitter. Since mass is always a premium resource on board spacecraft, we have been investigating materials with the potential to reduce the mass required for our applications here at JPL. This paper describes electrical breakdown results obtained with various potting materials. Conathane EN-11 (polyurethane) is the traditional HVPS encapsulant at JPL, but due to temperature limitations and durability issues it was deemed inappropriate for the particular application (i.e., CloudSat radar). The choices for the best available materials were epoxies, or silicones. Epoxies are too rigid, and were deemed inadvisable. Two silicones were further investigated (i.e.,ASTM E595- 93e2: GE RTV566(R) and Dow Corning 93-500X(R), another compound was considered (i.e., DC material, Sylgard 184(R)). "Loading" (adding filler materials) the potting compound will frequently alter the final material properties. Powdered alumina and borosilicate glass known as "microballoons" were investigated as possible loading materials. The testing of the materials is described. Each of the two loading materials offers advantages and disadvantages. The advantages and disadvantages are described.

  2. Dc to ac converter operates efficiently at low input voltages

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Self-oscillating dc to ac converter with transistor switching to produce a square wave output is used for low and high voltage power sources. The converter has a high efficiency throughout a wide range of loads.

  3. A quasi-analytical breakdown voltage model in four-layer punch-through TVS devices

    NASA Astrophysics Data System (ADS)

    Urresti, Jesus; Hidalgo, Salvador; Flores, David; Roig, Jaume; Rebollo, José; Mazarredo, Imanol

    2005-08-01

    A quasi-analytical model addressed to predict the breakdown voltage in four-layer transient voltage suppressor (TVS) diodes based on the punch-through effect is reported in this paper. For breakdown voltage in excess of 1 V, a closed form expression is derived. In addition, the three-layer TVS diode can also be described with the developed model. Finally, results obtained from the model are in good agreement with simulation and experimental data.

  4. Experimental Study on the Dielectric Breakdown Voltage of the Insulating Oil Mixed with Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Chul; Kim, Woo-Young

    In this study, we have measured the dielectric breakdown voltage of transformer oil-based nanofluids in accordance with IEC 156 standard and have investigated the dielectric breakdown performance with the application of an external magnetic field and different volume concentrations of magnetic nanoparticles. It is confirmed that the dielectric breakdown voltage of pure transformer oil is about 10 kV with a gap distance of 1 mm between electrodes. In the case of our transformer oil-based nanofluids with 0.08% < Φ < 0.39% (Φ means the volume concentration of magnetic nanoparticles in the fluid), the dielectric breakdown voltage is three times higher than that of pure transformer oil. Furthermore, when the external magnetic field is applied under the experimental vessel, the dielectric breakdown voltage of the nanofluids is above 40 kV, which is 30% higher than that without the external magnetic field.

  5. The effect of external visible light on the breakdown voltage of a long discharge tube

    NASA Astrophysics Data System (ADS)

    Shishpanov, A. I.; Ionikh, Yu. Z.; Meshchanov, A. V.

    2016-06-01

    The breakdown characteristics of a discharge tube with a configuration typical of gas-discharge light sources and electric-discharge lasers (a so-called "long discharge tube") filled with argon or helium at a pressure of 1 Torr have been investigated. A breakdown has been implemented using positive and negative voltage pulses with a linear leading edge having a slope dU/ dt ~ 10-107 V/s. Visible light from an external source (halogen incandescent lamp) is found to affect the breakdown characteristics. The dependences of the dynamic breakdown voltage of the tube on dU/ dt and on the incident light intensity are measured. The breakdown voltage is found to decrease under irradiation of the high-voltage anode of the tube in a wide range of dU/ dt. A dependence of the effect magnitude on the light intensity and spectrum is obtained. Possible physical mechanisms of this phenomenon are discussed.

  6. An AlGaN/GaN HEMT with enhanced breakdown and a near-zero breakdown voltage temperature coefficient

    NASA Astrophysics Data System (ADS)

    Xie, Gang; Tang, Cen; Wang, Tao; Guo, Qing; Zhang, Bo; Sheng, Kuang; Wai, Tung Ng

    2013-02-01

    An AlGaN/GaN high-electron mobility transistor (HEMT) with a novel source-connected air-bridge field plate (AFP) is experimentally verified. The device features a metal field plate that jumps from the source over the gate region and lands between the gate and drain. When compared to a similar size HEMT device with a conventional field plate (CFP) structure, the AFP not only minimizes the parasitic gate to source capacitance, but also exhibits higher OFF-state breakdown voltage and one order of magnitude lower drain leakage current. In a device with a gate to drain distance of 6 μm and a gate length of 0.8 μm, three times higher forward blocking voltage of 375 V was obtained at VGS = -5 V. In contrast, a similar sized HEMT with a CFP can only achieve a breakdown voltage no higher than 125 V using this process, regardless of device dimensions. Moreover, a temperature coefficient of 0 V/K for the breakdown voltage is observed. However, devices without a field plate (no FP) and with an optimized conventional field plate (CFP) exhibit breakdown voltage temperature coefficients of -0.113 V/K and -0.065 V/K, respectively.

  7. Electrical system for measurement of breakdown voltage of vacuum and gas-filled tubes using a dynamic method

    NASA Astrophysics Data System (ADS)

    Pejović, Milić M.; Milosavljević, Čedomir S.; Pejović, Momčilo M.

    2003-06-01

    This article describes an electrical system aimed at measuring and data acquisition of breakdown voltages of vacuum and gas-filled tubes. The measurements were performed using a nitrogen-filled tube at 4 mbar pressure. Based on the measured breakdown voltage data as a function of the applied voltage increase rate, a static breakdown voltage is estimated for the applied voltage gradient ranging from 0.1 to 1 V s-1 and from 1 to 10 V s-1. The histograms of breakdown voltages versus applied voltage increase rates from 0.1 and 0.5 V s-1 are approximated by the probability density functions using a fitting procedure.

  8. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Jin, Yang; Sima, Wenxia; Liu, Mengna

    2016-04-01

    This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate.

  9. Effect of magnetic nanoparticles on the lightning impulse breakdown voltage of transformer oil

    NASA Astrophysics Data System (ADS)

    Ghasemi, J.; Jafarmadar, S.; Nazari, M.

    2015-09-01

    In this study, the lightning impulse breakdown voltage of magnetic nanofluids based on transformer mineral oil for use in power systems was reviewed. Magnetic nanofluids are obtained from dispersion of the magnetic nanoparticles (Fe3 O4) within transformer oil, as the base fluid. The Fe3 O4 nanoparticles, using a coprecipitation method, were synthesized, coated with a surfactant, and dispersed using an ultrasonic processor, within the uninhibited transformer mineral oil NYTRO LIBRA. The lightning impulse breakdown voltage was obtained using sphere-sphere electrodes in an experimental setup for nano-oil, in volume concentration of 0.1-0.6%. Results indicate improved lightning impulse breakdown voltage under optimal conditions. Increase in the lightning impulse breakdown voltage of the nano-oil is mainly due to the dielectric and magnetic properties of Fe3 O4 nanoparticles, acting as free electrons snapper, and reduce the rate of free electrons production in the ionization process.

  10. Least Square Support Vector Machine Modelling of Breakdown Voltage of Solid Insulating Materials in the Presence of Voids

    NASA Astrophysics Data System (ADS)

    Behera, S.; Tripathy, R. K.; Mohanty, S.

    2013-03-01

    The least square formulation of support vector machine (SVM) was recently proposed and derived from the statistical learning theory. It is also marked as a new development by learning from examples based on neural networks, radial basis function and splines or other functions. Here least square support vector machine (LS-SVM) is used as a machine learning technique for the prediction of the breakdown voltage of solid insulator. The breakdown voltage is due to partial discharge of five solid insulating materials under ac condition. That has been predicted as a function of four input parameters such as thickness of insulating samples ` t', diameter of void ` d', the thickness of the void ` t 1' and relative permittivity of materials `ɛ r ' by using the LS-SVM model. From experimental studies performed on cylindrical-plane electrode system, the requisite training data is obtained. The voids with different dimension are artificially created. Detailed studies have been carried out to determine the LS-SVM parameters which give the best result. At the completion of training it is found that the LS-SVM model is capable of predicting the breakdown voltage V b = ( t, t 1, d, ɛ r ) very efficiently and with a small value of the mean absolute error.

  11. Ionizing potential waves and high-voltage breakdown streamers.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  12. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  13. Breakdown Characteristics of SF6 Gas under Non-Standard Lightning Impulse Voltage

    NASA Astrophysics Data System (ADS)

    Yuasa, Sadayuki; Okabe, Shigemitsu

    Evaluation of lightning surge waveforms that actually enter into substations is important to rationalization of the test voltage of electric power equipment. The standard lightning impulse voltage (1.2/50μs) is used for factory tests. However, the actual lightning surge waveforms in substations are different from the standard lightning impulse voltage because they are complex and are usually superimposed with various oscillations. Insulation characteristics of SF6 gas under such complex voltages have not been sufficiently clarified. This paper deals with gap and spacer surface breakdown characteristics in SF6 gas under sub-microsecond single pulses. The minimum breakdown voltages (Vmin) under experimental waveforms are higher than Vmin under the standard lightning impulse voltage. The evaluation method, which deals duration applied over 80% of peak voltage, can also estimate the insulation characteristics under single pulses with various conditions as well as oscillations.

  14. Fast recovery, high voltage silicon diodes for AC motor controllers

    NASA Technical Reports Server (NTRS)

    Balodis, V.; Berman, A. H.; Gaugh, C.

    1982-01-01

    The fabrication and characterization of a high voltage, high current, fast recovery silicon diode for use in AC motor controllers, originally developed for NASA for use in avionics power supplies, is presented. The diode utilizes a positive bevel PIN mesa structure with glass passivation and has the following characteristics: peak inverse voltage - 1200 volts, forward voltage at 50 amperes - 1.5 volts, reverse recovery time of 200 nanoseconds. Characterization data for the diode, included in a table, show agreement with design concepts developed for power diodes. Circuit diagrams of the diode are also given.

  15. Voltage-induced recovery of dielectric breakdown (high current resistance switching) in HfO2

    NASA Astrophysics Data System (ADS)

    El Kamel, F.; Gonon, P.; Vallée, C.; Jousseaume, V.; Grampeix, H.

    2011-01-01

    Metal/HfO2/Pt stacks (where the metal is Au, Ag, Co, Ni, Cr, or In) are voltage stressed to induce a high-to-low resistive transition. No current compliance is applied during stressing (except the 100 mA limit of the voltage source). As a consequence very high conductance states are reached after switching, similar to a hard breakdown. Samples conductance after breakdown can reach up to 0.1 S, depending on the metal electrode. Despite the high postbreakdown conductance level, the samples are able to recover an insulating state by further voltage biasing ("high current resistance switching").

  16. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  17. Design issues for lateral double-diffused metal-oxide-semiconductor with higher breakdown voltage.

    PubMed

    Sung, Kunsik; Won, Taeyoung

    2013-05-01

    In this paper, we discuss a new High-Side nLDMOSFET whose breakdown voltage is over 100 V while meeting the thermal budget for the conventional process. The proposed n-channel lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET) has a feature in that the structure comprises a gap of 5 microm between the DEEP N-WELL and the center of the source, the surface of which is implanted by the NADJUST-layer for high breakdown voltage and simultaneously the low specific on-resistance. The computer simulation of the proposed High-Side nLDMOS exhibits BVdss of 126 V and R(ON,sp) of as low as 2.50 m(omega) x cm2. The NBL, which plays a significant role as a blocking layer against the punch-through seems to function as a hurdle for increasing the breakdown voltage. PMID:23858840

  18. Breakdown in helium in high-voltage open discharge with subnanosecond current front rise

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Bokhan, P. A.; Zakrevskiy, Dm. E.

    2016-07-01

    Investigations of high-voltage open discharge in helium have shown a possibility of generation of current pulses with subnanosecond front rise, due to ultra-fast breakdown development. The open discharge is ignited between two planar cathodes with mesh anode in the middle between them. For gas pressure 6 Torr and 20 kV applied voltage, the rate of current rise reaches 500 A/(cm2 ns) for current density 200 A/cm2 and more. The time of breakdown development was measured for different helium pressures and a kinetic model of breakdown in open discharge is presented, based on elementary reactions for electrons, ions and fast atoms. The model also includes various cathode emission processes due to cathode bombardment by ions, fast atoms, electrons and photons of resonant radiation with Doppler shift of frequency. It is shown, that the dominating emission processes depend on the evolution of the discharge voltage during the breakdown. In the simulations, two cases of voltage behavior were considered: (i) the voltage is kept constant during the breakdown; (ii) the voltage is reduced with the growth of current. For the first case, the exponentially growing current is maintained due to photoemission by the resonant photons with Doppler-shifted frequency. For the second case, the dominating factor of current growth is the secondary electron emission. In both cases, the subnanosecond rise of discharge current was obtained. Also the effect of gas pressure on breakdown development was considered. It was found that for 20 Torr gas pressure the time of current rise decreases to 0.1 ns, which is in agreement with experimental data.

  19. Breakdown voltage in vertical power FLIMOSFETs with one internal floating island

    NASA Astrophysics Data System (ADS)

    Galadi, A.; Morancho, F.; Hassani, M. M.

    2008-09-01

    Recently a new power FLIMOSFET ('floating islands MOSFET') structure was proposed to reduce conduction losses in power MOS devices. The vertical FLIMOSFET offers a better trade-off between breakdown voltage and specific on-resistance compared to the conventional VDMOSFET. The improvement of this trade-off was obtained by inserting one (or several) floating island(s) in the epitaxial layer of the VDMOS transistor. In this paper, theoretical analysis of breakdown voltage of the FLIMOSFET with a single floating island is proposed. This analytical method exhibits good agreement with 2D simulations and measurements.

  20. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    PubMed

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer. PMID:26465471

  1. Effect of Doppler-shifted photons on subnanosecond breakdown in high-voltage pulse discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2016-06-01

    The experiments in high-voltage open discharge in helium [1, 2] showed a controlled current growth rate of 500 A/(cm2ns) for an applied voltage of 20 kV and gas pressure of 6 Torr. A kinetic model of the subnanosecond breakdown is developed to analyze the mechanism of current growth, which takes into account the kinetics of electrons, ions, fast atoms and photons with a Doppler shift (DS). DS photons appear in discharge due to collisions of heavy particles. Using particle in cell simulations, we show a critical role of DS photons in the electron emission from the cathode during the breakdown. Our experimental and calculation results show a decrease of the breakdown time with increasing gas pressure from 3 Torr to 16 Torr.

  2. Effect of magnetic field on breakdown voltage characteristics of a multigap pseudospark

    SciTech Connect

    Sriram, D.; Jain, K.K.

    1997-06-01

    An experimental investigation of the effect of magnetic field on the breakdown voltage characteristics of a multigap pseudospark device, with hydrogen gas, in a hollow anode{endash}cathode, as well as a hollow cathode{endash}anode configuration, is presented. The breakdown pressure at a particular discharge voltage increases with the increase in the applied axial magnetic field, and the magnitude of the increase is more pronounced at lower discharge voltages causing a right shift to the characteristic discharge curve in both the configurations. Application of a transverse magnetic field also resulted in a shift of the characteristic discharge curve towards the right. The observed results are compared and discussed with that found for parallel electrode geometry. {copyright} {ital 1997 American Institute of Physics.}

  3. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid

  4. Breakdown Characteristics of SF6 Gas under Non-Standard Lightning Impulse Voltage

    NASA Astrophysics Data System (ADS)

    Yuasa, Sadayuki; Okabe, Shigemitsu

    Evaluation of lightning surge waveforms that actually enter into substations is important to investigating the test voltage of gas insulated switchgear (GIS). The actual lightning surge waveforms in substations are different from the standard lightning impulse voltage because they are complex and are usually superimposed with various oscillations. This paper describes insulation characteristics in SF6 gas gap under the waveforms including oscillation (called waveforms B, C and D). The minimum breakdown voltages (Vmin) under experimental waveforms are higher than Vmin under the standard lightning impulse voltage. The evaluation method, which deals duration applied over 80% of peak voltage and conversion factor for second waves of waveform B, can estimate the insulation characteristics under waveforms B, C and D.

  5. Breakdown voltage reliability improvement in gas-discharge tube surge protectors employing graphite field emitters

    NASA Astrophysics Data System (ADS)

    Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc

    2012-04-01

    Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.

  6. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    SciTech Connect

    Xin, Qian; Yan, Linlong; Luo, Yi; Song, Aimin

    2015-03-16

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as −2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to −15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate.

  7. Study of breakdown voltage of indium-gallium-zinc-oxide-based Schottky diode

    NASA Astrophysics Data System (ADS)

    Xin, Qian; Yan, Linlong; Luo, Yi; Song, Aimin

    2015-03-01

    In contrast to the intensive studies on thin-film transistors based on indium gallium zinc oxide (IGZO), the research on IGZO-based diodes is still very limited, particularly on their behavior and stability under high bias voltages. Our experiments reveal a sensitive dependence of the breakdown voltage of IGZO Schottky diodes on the anode metal and the IGZO film thickness. Devices with an Au anode are found to breakdown easily at a reverse bias as low as -2.5 V, while the devices with a Pd anode and a 200-nm, fully depleted IGZO layer have survived up to -15 V. All diodes are fabricated by radio-frequency magnetron sputtering at room temperature without any thermal treatment, yet showing an ideality factor as low as 1.14, showing the possibility of achieving high-performance Schottky diodes on flexible plastic substrate.

  8. Physical mechanisms for reduction of the breakdown voltage in the circuit of a rod lightning protector with an opening microswitch

    SciTech Connect

    Bobrov, Yu. K.; Zhuravkov, I. V.; Ostapenko, E. I.; Starikov, V. V.; Yurgelenas, Yu. V.

    2010-12-15

    The effect of air gap breakdown voltage reduction in the circuit with an opening microswitch is substantiated from the physical point of view. This effect can be used to increase the efficiency of lightning protection system with a rod lightning protector. The processes which take place in the electric circuit of a lightning protector with a microswitch during a voltage breakdown are investigated. Openings of the microswitch are shown to lead to resonance overvoltages in the dc circuit and, as a result, efficient reduction in the breakdown voltage in a lightning protector-thundercloud air gap.

  9. Two dimensional triangulation of breakdown in a high voltage coaxial gap

    NASA Astrophysics Data System (ADS)

    Cordaro, S. W.; Bott-Suzuki, S. C.; Caballero Bendixsen, L. S.; Atoyan, Levon; Byvank, Tom; Potter, William; Kusse, B. R.; Greenly, J. B.

    2015-07-01

    We describe a technique by which magnetic field probes are used to triangulate the exact position of breakdown in a high voltage coaxial vacuum gap. An array of three probes is placed near the plane of the gap with each probe at 90° intervals around the outer (anode) electrode. These probes measure the azimuthal component of the magnetic field and are all at the same radial distance from the cylindrical axis. Using the peak magnetic field values measured by each probe, the current carried by the breakdown channel, and Ampères law we can calculate the distance away from each probe that the breakdown occurred. These calculated distances are then used to draw three circles each centered at the centers of the corresponding magnetic probes. The common intersection of these three circles then gives the predicted azimuthal location of the center of the breakdown channel. Test results first gathered on the coaxial gap breakdown device (240 A, 25 kV, 150 ns) at the University of California San Diego and then on COBRA (1 MA, 1 MV, 100 ns) at Cornell University indicate that this technique is relatively accurate and scales between these two devices.

  10. Al00.3Ga0.7N PN diode with breakdown voltage >1600 V

    DOE PAGESBeta

    Allerman, A. A.; Armstrong, A. M.; Fischer, A. J.; Dickerson, J. R.; Crawford, M. H.; King, M. P.; Moseley, M. W.; Wierer, J. J.; Kaplar, R. J.

    2016-07-21

    Demonstration of Al00.3Ga0.7N PN diodes grown with breakdown voltages in excess of 1600 V is reported. The total epilayer thickness is 9.1 μm and was grown by metal-organic vapour-phase epitaxy on 1.3-mm-thick sapphire in order to achieve crack-free structures. A junction termination edge structure was employed to control the lateral electric fields. A current density of 3.5 kA/cm2 was achieved under DC forward bias and a reverse leakage current <3 nA was measured for voltages <1200 V. The differential on-resistance of 16 mΩ cm2 is limited by the lateral conductivity of the n-type contact layer required by the front-surface contactmore » geometry of the device. An effective critical electric field of 5.9 MV/cm was determined from the epilayer properties and the reverse current–voltage characteristics. To our knowledge, this is the first aluminium gallium nitride (AlGaN)-based PN diode exhibiting a breakdown voltage in excess of 1 kV. Finally, we note that a Baliga figure of merit (Vbr2/Rspec,on) of 150 MW/cm2 found is the highest reported for an AlGaN PN diode and illustrates the potential of larger-bandgap AlGaN alloys for high-voltage devices.« less

  11. Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation

    NASA Astrophysics Data System (ADS)

    Schuegraf, Klaus F.; Hu, Chenming

    1994-05-01

    In this paper, we present a model for silicon dioxide breakdown characterization, valid for a thickness range between 25 angstrom and 130 angstrom, which provides a method for predicting dielectric lifetime for reduced power supply voltages and aggressively scaled oxide thicknesses. This model, based on hole injection from the anode, accurately predicts Q(sub BD) and t(sub BD) behavior including a fluence in excess of 10(exp 7) C/cm(exp 2) at an oxide voltage of 2.4 V for a 25 angstrom oxide. Moreover, this model is a refinement of and fully complementary with the well known 1/E model, while offering the ability to predict oxide reliability for low voltages.

  12. The influence of water in XLPE cable conductor on XLPE insulation breakdown voltage and partial discharge

    SciTech Connect

    Nikolajevic, S.V.; Stojanovic, B.B.

    1996-12-31

    This paper presents the results of a continuing investigation into degradation of the crosslinked polyethylene (XLPE) cable insulation. The paper deals with the changing of water absorption of various types of XLPE cable insulations: steam and nitrogen-dry cured crosslinked polyethylene (XL) and steam and nitrogen-dry cured water tree retardant crosslinked polyethylene (WTR-XL). The results of the study into effect of water absorption on breakdown stress (AC BDS) and partial discharge for different XLPE cable insulations are also given. During the aging tests, the cable conductor was poured with the tap water and the cable ends were properly closed.

  13. Energy dissipation on ion-accelerator grids during high-voltage breakdown

    SciTech Connect

    Menon, M.M.; Ponte, N.S.

    1981-01-01

    The effects of stored energy in the system capacitance across the accelerator grids during high voltage vacuum breakdown are examined. Measurements were made of the current flow and the energy deposition on the grids during breakdown. It is shown that only a portion (less than or equal to 40 J) of the total stored energy (congruent to 100 J) is actually dissipated on the grids. Most of the energy is released during the formation phase of the vacuum arc and is deposited primarily on the most positive grid. Certain abnormal situations led to energy depositions of about 200 J on the grid, but the ion accelerator endured them without exhibiting any deterioration in performance.

  14. Development of an AC Phase Controlled Testing Apparatus with an Impulse Voltage

    NASA Astrophysics Data System (ADS)

    Kando, Masaaki; Matsuo, Takashi

    Overvoltages as lightning surges and/or switching surges will affect power apparatuses and electric appliances, which make them of deterioration. However, recent AC testing apparatuses haven't been functions generating an impulse voltage. Moreover, the apparatuses with controlling an impulse voltage haven't been utilized except the low voltage function generator. Therefore, an AC phase controlled testing apparatus with an impulse voltage (0.8/6μs) has been developed in order to elucidate mechanism of the degradation in insulating materials with a AC power supply simulating the overvoltages.

  15. Study of Bulk and Elementary Screw Dislocation Assisted Reverse Breakdown in Low-Voltage (< 250 V) 4H-SiC p(sup +)n Junction Diodes--Part II: Dynamic Breakdown Properties. Part 2; Dynamic Breakdown Properties

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1999-01-01

    This paper outlines the dynamic reverse-breakdown characteristics of low-voltage (<250 V) small-area <5 x 10(exp -4) sq cm 4H-SiC p(sup +)n diodes subjected to nonadiabatic breakdown-bias pulsewidths ranging from 0.1 to 20 microseconds. 4H-SiC diodes with and without elementary screw dislocations exhibited positive temperature coefficient of breakdown voltage and high junction failure power densities approximately five times larger than the average failure power density of reliable silicon pn rectifiers. This result indicates that highly reliable low-voltage SiC rectifiers may be attainable despite the presence of elementary screw dislocations. However, the impact of elementary screw dislocations on other more useful 4H-SiC power device structures, such as high-voltage (>1 kV) pn junction and Schottky rectifiers, and bipolar gain devices (thyristors, IGBT's, etc.) remains to be investigated.

  16. Breakdown voltages for discharges initiated from plasma pulses produced by high-frequency excimer lasers

    SciTech Connect

    Yamaura, Michiteru

    2006-06-19

    The triggering ability under the different electric field was investigated using a KrF excimer laser with a high repetition rate of kilohertz order. Measurements were made of the magnitude of impulse voltages that were required to initiate a discharge from plasmas produced by a high-frequency excimer laser. Breakdown voltages were found to be reduced by 50% through the production of plasmas in the discharge gap by a high-frequency excimer laser. However, under direct-current electric field, triggering ability decreased drastically due to low plasma density. It is considered that such laser operation applied for laser-triggered lightning due to the produced location of plasma channel is formed under the impulse electric field since an electric field of the location drastically reduces temporary when the downward leader from thunderclouds propagates to the plasma channel.

  17. Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor

    NASA Astrophysics Data System (ADS)

    Jun, Luo; Sheng-Lei, Zhao; Min-Han, Mi; Wei-Wei, Chen; Bin, Hou; Jin-Cheng, Zhang; Xiao-Hua, Ma; Yue, Hao

    2016-02-01

    The effects of gate length LG on breakdown voltage VBR are investigated in AlGaN/GaN high-electron-mobility transistors (HEMTs) with LG = 1 μm˜ 20 μm. With the increase of LG, VBR is first increased, and then saturated at LG = 3 μm. For the HEMT with LG = 1 μm, breakdown voltage VBR is 117 V, and it can be enhanced to 148 V for the HEMT with LG = 3 μm. The gate length of 3 μm can alleviate the buffer-leakage-induced impact ionization compared with the gate length of 1 μm, and the suppression of the impact ionization is the reason for improving the breakdown voltage. A similar suppression of the impact ionization exists in the HEMTs with LG > 3 μm. As a result, there is no obvious difference in breakdown voltage among the HEMTs with LG = 3 μm˜20 μm, and their breakdown voltages are in a range of 140 V-156 V. Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002, 61106106, and 61204085).

  18. Rapid single flux quantum digital-to-analog converter for ac voltage standard

    NASA Astrophysics Data System (ADS)

    Maezawa, Masaaki; Hirayama, Fuminori; Suzuki, Motohiro

    2005-10-01

    A digital-to-analog (D/A) converter based on rapid single flux quantum (RSFQ) circuits is a potential device for establishing a new generation of ac voltage standards. We are developing RSFQ D/A converters that can generate an ac waveform with an accurately defined rms value. Our goal in the near future is the synthesis of an ac waveform with a 100-mV peak voltage that will allow accurate characterization of the thermal voltage converters currently used for setting ac-dc transfer standards. We have designed, fabricated and successfully tested key subsystems of the RSFQ D/A converter including a 10-stage pulse-number multiplier, a 1-bit slice of a pulse distributor and a 9.5-bit voltage multiplier.

  19. Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities

    SciTech Connect

    Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; Norem, J.; Li, D.; Zisman, M.; Torun, Y.; Rimmer, R.; Errede, D.; /Illinois U., Urbana

    2005-10-01

    There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity.

  20. Improving breakdown voltage performance of SOI power device with folded drift region

    NASA Astrophysics Data System (ADS)

    Qi, Li; Hai-Ou, Li; Ping-Jiang, Huang; Gong-Li, Xiao; Nian-Jiong, Yang

    2016-07-01

    A novel silicon-on-insulator (SOI) high breakdown voltage (BV) power device with interlaced dielectric trenches (IDT) and N/P pillars is proposed. In the studied structure, the drift region is folded by IDT embedded in the active layer, which results in an increase of length of ionization integral remarkably. The crowding phenomenon of electric field in the corner of IDT is relieved by the N/P pillars. Both traits improve two key factors of BV, the ionization integral length and electric field magnitude, and thus BV is significantly enhanced. The electric field in the dielectric layer is enhanced and a major portion of bias is borne by the oxide layer due to the accumulation of inverse charges (holes) at the corner of IDT. The average value of the lateral electric field of the proposed device reaches 60 V/μm with a 10 μm drift length, which increases by 200% in comparison to the conventional SOI LDMOS, resulting in a breakdown voltage of 607 V. Project supported by the Guangxi Natural Science Foundation of China (Grant Nos. 2013GXNSFAA019335 and 2015GXNSFAA139300), Guangxi Experiment Center of Information Science of China (Grant No. YB1406), Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing of China, Key Laboratory of Cognitive Radio and Information Processing (Grant No. GXKL061505), Guangxi Key Laboratory of Automobile Components and Vehicle Technology of China (Grant No. 2014KFMS04), and the National Natural Science Foundation of China (Grant Nos. 61361011, 61274077, and 61464003).

  1. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  2. Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect.

    PubMed

    Jiao, HuJun; Bauer, Gerrit E W

    2013-05-24

    The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE). Here we compute ac ISHE voltages much larger than the dc signals for various material combinations and discuss optimal conditions to observe the effect. The backflow of spin is shown to be essential to distill parameters from measured ISHE voltages for both dc and ac configurations. PMID:23745937

  3. Experimental studies on power frequency breakdown voltage of CF3I/N2 mixed gas under different electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxing; Xiao, Song; Han, Yefei; Cressault, Yann

    2016-02-01

    To verify the feasibility of replacing SF6 by CF3I/N2, we compared their power frequency breakdown performance with the influence of gas pressure, mixing ratio, and electric field utilization coefficient. Under different electric fields and mixing ratios, the power frequency breakdown voltage of CF3I/N2 increases linearly along with gas pressure. Besides, with the rise of the electric field utilization coefficient, the linear growth rate of breakdown voltage along with gas pressure gradually rises. The sensitivity of pure CF3I to electric field is particularly high and can be improved by the addition of N2. The mixture 30% CF3I/70% N2 at 0.3 MPa could replace pure SF6 in equipment requiring a low insulation, but the gas pressure or the content of CF3I need to be increased for higher insulation requirements.

  4. New internal multi-range resistors for ac voltage calibration by using TVC

    NASA Astrophysics Data System (ADS)

    Ali, Rasha S. M.

    2015-10-01

    Accurate calibration of ac voltages up to 1000 V by using thermal converters requires range resistors connected in series with the converter. The combination of a thermal converter and range resistor is known as the thermal voltage converter. In this paper, multi-range internal range resistors are designed and implemented in the National Institute for Standards (NIS), Egypt to cover the ac voltage ranges from 10 V to 750 V. The range resistor values are 2 kΩ, 10 kΩ, 20 kΩ, 40 kΩ, 100 kΩ, and 150 kΩ to cover the voltage ranges 10 V, 50 V, 100 V, 200 V, 500 V, and 750 V, respectively. The six range resistors are mounted in series with a single-junction thermo-element in the same box to provide a new thermal voltage converter. The required range resistor is selected by using a six-pin selector switch. Each resistor is connected to a selector pin. The new thermal voltage converter ranges are automatically calibrated against other standard thermal voltage converters at different frequencies by using a LabVIEW program to determine their ac-dc transfer difference at each range. The expanded uncertainties are estimated according to the GUM for all ranges at different frequencies. The performance of the new thermal voltage converter is also evaluated by comparing its ac-dc differences and its accuracy in measuring the ac voltage at different frequencies with a traditional thermal voltage converter.

  5. One-dimensional breakdown voltage model of SOI RESURF lateral power device based on lateral linearly graded approximation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Guo, Yu-Feng; Xu, Yue; Lin, Hong; Yang, Hui; Hong, Yang; Yao, Jia-Fei

    2015-02-01

    A novel one-dimensional (1D) analytical model is proposed for quantifying the breakdown voltage of a reduced surface field (RESURF) lateral power device fabricated on silicon on an insulator (SOI) substrate. We assume that the charges in the depletion region contribute to the lateral PN junctions along the diagonal of the area shared by the lateral and vertical depletion regions. Based on the assumption, the lateral PN junction behaves as a linearly graded junction, thus resulting in a reduced surface electric field and high breakdown voltage. Using the proposed model, the breakdown voltage as a function of device parameters is investigated and compared with the numerical simulation by the TCAD tools. The analytical results are shown to be in fair agreement with the numerical results. Finally, a new RESURF criterion is derived which offers a useful scheme to optimize the structure parameters. This simple 1D model provides a clear physical insight into the RESURF effect and a new explanation on the improvement in breakdown voltage in an SOI RESURF device. Project supported by the National Natural Science Foundation of China (Grant No. 61076073) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133223110003).

  6. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    NASA Astrophysics Data System (ADS)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  7. Breakdown in Atmospheric Pressure Plasma Jets: Nearby Grounds and Voltage Rise Time

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda; Kushner, Mark J.

    2015-09-01

    Atmospheric pressure plasma jets (APPJs) are being investigated to stimulate therapeutic responses in biological systems. These responses are not always consistent. One source of variability may be the design of the APPJs - the number and placement of electrodes, pulse power format - which affects the production of reactive species. In this study, the consequences of design parameters of an APPJ were computationally investigated using nonPDPSIM, a 2 d model. The configuration is a cylindrical tube with one or two ring exterior electrodes, with or without a center pin electrode. The APPJ operates in He/O2 flowing into humid air. We found that the placement of the electrical ground on and around the system is important to the breakdown characteristics of the APPJ, and the electron density and temperature of the resulting plasma. With a single powered ring electrode, the placement of the nearest ground may vary depending on the setup, and this significantly affects the discharge. With two-ring electrodes, the nearest ground plane is well defined, however more distant ground planes can also influence the discharge. With an ionization wave (IW) that propagates out of the tube and into the plume in tens of ns, the rise time of the voltage waveform can be on the same timescale, and so variations in the voltage rise time could produce different IW properties. The effect of ground placement and voltage waveform on IW formation (ns timescales) and production of reactive neutrals (ms timescales) will be discussed. Work supported by DOE (DE-SC0001319) and NSF (CHE-1124724). Done...processed 598 records...15:12:56

  8. Vox/Eox-Driven Breakdown of Ultrathin SiON Gate Dielectrics in p-Type Metal Oxide Semiconductor Field Effect Transistors under Low-Voltage Inversion Stress

    NASA Astrophysics Data System (ADS)

    Tsujikawa, Shimpei; Shiga, Katsuya; Umeda, Hiroshi; Yugami, Jiro

    2007-01-01

    The breakdown mechanism of ultrathin SiON gate dielectrics in p-type metal oxide semiconductor field effect transistors having p+gates (p+gate-pMOSFETs) has been studied. Systematic study with varying gate doping concentrations has revealed that, in the case of p+gate-pMOSFET in inversion mode, gate dielectric breakdown under stress voltage lower than -4 V is driven by oxide voltage (Vox) or oxide field (Eox), while the breakdown under stress voltage higher than -4 V is driven by gate voltage (Vg). The Vox/Eox-driven breakdown observed under low stress voltage is quite important to the reliability of low-voltage complementary metal oxide semiconductor (CMOS). By studying the mechanism of the breakdown, it has been clarified that the breakdown is not induced by electron current. The concept that the breakdown is due to same mechanism as the negative bias temperature instability (NBTI), namely the interfacial hydrogen release driven by Eox, has been shown to be possible. However, direct tunneling of holes driven by Vox has also been found to be a possible driving force of the breakdown. Although a decisive conclusion concerning the mechanism issue has not yet been obtained, the key factor that governs the breakdown has been shown to be Vox or Eox.

  9. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  10. A doping concentration-dependent upper limit of the breakdown voltage cutoff frequency product in Si bipolar transistors

    NASA Astrophysics Data System (ADS)

    Rieh, Jae-Sung; Jagannathan, Basanth; Greenberg, David; Freeman, Greg; Subbanna, Seshadri

    2004-02-01

    Recent high-speed Si-based bipolar transistors apparently exceed the Johnson Limit in terms of breakdown voltage-cutoff frequency product, and this paper addresses the relevant issues. First, BV CES rather than BV CEO is shown to be the representative breakdown voltage in describing the breakdown-speed trade-off in collector design, since BV CEO is modulated by the current gain which is irrelevant of the collector design and also practical bipolar circuits are rarely operated with open-base condition for which BV CEO is defined. In the same context, it is suggested BV CES be employed in representing the upper limit of breakdown voltage-cutoff frequency product. Second, a collector doping concentration-dependent upper limit of BV CES· fT product is proposed incorporating the doping concentration-dependent critical electric field and accurate values for related device parameters. With this new approach, it is shown that the limit is far larger than the Johnson Limit and the limit is still yet to be reached.

  11. Effects of Displacement Damage on the Time-Resolved Gain and Bandwidth of a Low Breakdown Voltage Si Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi

    2006-01-01

    Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.

  12. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    SciTech Connect

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  13. Cryocooler operation of SNIS Josephson arrays for AC Voltage standards

    NASA Astrophysics Data System (ADS)

    Sosso, A.; De Leo, N.; Fretto, M.; Monticone, E.; Roncaglione, L.; Rocci, R.; Lacquaniti, V.

    2014-05-01

    Avoiding liquid helium is now a worldwide issue, thus cryocooler operation is becoming mandatory for a wider use of superconductive electronics. Josephson voltage standards hold a peculiar position among superconducting devices, as they are in use in high precision voltage metrology since decades. Higher temperature operation would reduce the refrigerator size and complexity, however, arrays of Josephson junctions made with high temperature superconductors for voltage standard applications are not to date available. The SNIS (Superconductor-Normal metal-Insulator-Superconductor) junction technology developed at INRIM, based on low temperature superconductors, but capable of operation well above liquid helium temperature, is interesting for application to a compact cryocooled standard, allowing to set a compromise between device and refrigerator requirements. In this work, the behavior of SNIS devices cooled with a closed-cycle refrigerator has been investigated, both in DC and under RF irradiation. Issues related to thermal design of the apparatus to solve specific problems not faced with liquid coolants, like reduced cooling power and minimization of thermal gradients for uniform operation of the chip are discussed in detail.

  14. Development of Low-Frequency AC Voltage Measurement System Using Single-Junction Thermal Converter

    NASA Astrophysics Data System (ADS)

    Amagai, Yasutaka; Nakamura, Yasuhiro

    Accurate measurement of low-frequency AC voltage using a digital multimeter at frequencies of 4-200Hz is a challenge in the mechanical engineering industry. At the National Metrology Institute of Japan, we developed a low-frequency AC voltage measurement system for calibrating digital multimeters operating at frequencies down to 1 Hz. The system uses a single-junction thermal converter and employs a theoretical model and a three-parameter sine wave fitting algorithm based on the least-square (LS) method. We calibrated the AC voltage down to 1Hz using our measurement system and reduced the measurement time compared with that using thin-film thermal converters. Our measurement results are verified by comparison with those of a digital sampling method using a high-resolution analog-to-digital converter; our data are in agreement to within a few parts in 105. Our proposed method enables us to measure AC voltage with an uncertainty of 25 μV/V (k = 1) at frequencies down to 4 Hz and a voltage of 10 V.

  15. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  16. Effect of Reverse Bias Stress on Leakage Currents and Breakdown Voltages of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2011-01-01

    the processes under reverse bias conditions. In practice, there were instances when, due to unforeseen events, the system operated at conditions when capacitors experience periodically a relatively small reverse bias for some time followed by normal, forward bias conditions. In such a case an assessment should be made on the degree to which these capacitors are degraded by application of low-voltage reverse bias, and whether this degradation can be reversed by normal operating conditions. In this study, reverse currents in different types of tantalum capacitors were monitored at different reverse voltages below 15%VR and temperatures in the range from room to 145 C for up to 150 hours to get better understanding of the degradation process and determine conditions favorable to the unstable mode of operation. The reversibility of RB degradation has been evaluated after operation of the capacitors at forward bias conditions. The effect of reverse bias stress (RBS) on reliability at normal operating conditions was evaluated using highly accelerated life testing at voltages of 1.5VR and 2 VR and by analysis of changes in distributions of breakdown voltages. Possible mechanisms of RB degradation are discussed.

  17. Breakdown voltage improvement of LDMOSs by charge balancing: An inserted P-layer in trench oxide (IPT-LDMOS)

    NASA Astrophysics Data System (ADS)

    Orouji, Ali A.; Mehrad, Mahsa

    2012-03-01

    For the first time, the novel inserted P-layer in trench oxide of LDMOS structure (IPT-LDMOS) is proposed in which a trench oxide with inserted P-layer is considered in the drift region to improve the breakdown voltage. Our simulation with two dimensional ALTAS simulator shows that by determining the optimum doping concentration of the P-layer, the charges of the N-drift and P-layer regions would be balanced. Therefore, complete depletion at the breakdown voltage in the drift region happens. Also, electric field in the IPT-LDMOS is modified by producing additional peaks which decrease the common peaks near the drain and source junctions.

  18. Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Murphy, Anthony B.; Rong, Mingzhe; Looe, Hui M.; Spencer, Joseph W.

    2013-09-01

    Sulfur hexafluoride (SF6) gas, widely used in high-voltage circuit breakers, has a high global warming potential and hence substitutes are being sought. The use of a mixture of carbon tetrafluoride (CF4) and SF6 is examined here. It is known that this reduces the breakdown voltage at room temperature. However, the electrical breakdown in a circuit breaker after arc interruption occurs in a hot gas environment, with a complicated species composition because of the occurrence of dissociation and other reactions. The likelihood of breakdown depends on the electron interactions with all these species. The critical reduced electric field strength (the field at which breakdown can occur, relative to the number density) of hot SF6/CF4 mixtures corresponding to the dielectric recovery phase of a high voltage circuit breaker is calculated in the temperature range from 300 K to 3500 K. The equilibrium compositions of hot SF6/CF4 mixtures under different mixing fractions were determined based on Gibbs free energy minimization. Full sets of improved cross sections for interactions between electrons and the species present are presented. The critical reduced electric field strength of these mixtures was obtained by balancing electron generation and loss mechanisms. These were evaluated using the electron energy distribution function derived from the Boltzmann transport equation under the two-term approximation. The result indicates that critical electric field strength decreases with increasing heavy-particle temperature from 1500 to 3500 K. Good agreement was found between calculations for pure hot SF6 and pure hot CF4 and experimental results and previous calculations. The addition of CF4 to SF6 was found to increase the critical reduced electric field strength for temperatures above 1500 K, indicating the potential of replacing SF6 by SF6/CF4 mixtures in high-voltage circuit breakers.

  19. New SOI power device with multi-region high-concentration fixed interface charge and the model of breakdown voltage

    NASA Astrophysics Data System (ADS)

    Li, Qi; Li, Hai-Ou; Tang, Ning; Zhai, Jiang-Hui; Song, Shu-Xiang

    2015-03-01

    A new SOI power device with multi-region high-concentration fixed charge (MHFC) is reported. The MHFC is formed through implanting Cs or I ion into the buried oxide layer (BOX), by which the high-concentration dynamic electrons and holes are induced at the top and bottom interfaces of BOX. The inversion holes can enhance the vertical electric field and raise the breakdown voltage since the drain bias is mainly generated from the BOX. A model of breakdown voltage is developed, from which the optimal spacing has also been obtained. The numerical results indicate that the breakdown voltage of device proposed is increased by 287% in comparison to that of conventional LDMOS. Project supported by the State Key Laboratory of Electronic Thin Films and Integrated Devices of China (Grant No. KFJJ201205), the Department of Education Project of Guangxi Province, China (Grant No. 201202ZD041), the Postdoctoral Science Foundation Project of China (Grant Nos. 2012M521127 and 2013T60566), and the National Natural Science Foundation of China (Grant Nos. 61361011, 61274077, and 61464003).

  20. Simulating and modeling the breakdown voltage in a semi-insulating GaAs P+N junction diode

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Menezla, Brahimi. R.; Benchhima, M.

    2014-08-01

    This work aims to determine the characteristic I (breakdown voltage) of the inverse current in a GaAs PN junction diode, subject to a reverse polarization, while specifying the parameters that influence the breakdown voltage of the diode. In this work, we simulated the behavior of the ionization phenomenon by impact breakdown by avalanche of the PN junctions, subject to an inverse polarization. We will take into account both the trapping model in a stationary regime in the P+N structure using like material of basis the III-V compounds and mainly the GaAs semi-insulating in which the deep centers have in important densities. We are talking about the model of trapping in the space charge region (SCR) and that is the trap density donor and acceptor states. The carrier crossing the space charge region (SCR) of W thickness creates N electron—hole pairs: for every created pair, the electron and the hole are swept quickly by the electric field, each in an opposite direction, which comes back, according to an already accepted reasoning, to the crossing of the space charge region (SCR) by an electron or a hole. So the even N pair created by the initial particle provoke N2 ionizations and so forth. The study of the physical and electrical behaviour of semiconductors is based on the influence of the presence of deep centers on the characteristic I(V) current-tension, which requires the calculation of the electrostatic potential, the electric field, the integral of ionization, the density of the states traps, the diffusion current of minority in the regions (1) and (3), the current thermal generation in the region (2), the leakage current in the surface, and the breakdown voltage.

  1. Experimental study and two-dimensional modeling of avalanche breakdown voltage in polycrystalline silicon p-n junctions

    NASA Astrophysics Data System (ADS)

    Amrani, Mohammed; Benamara, Zineb; Chellali, Mohammed; Tizi, Schahrazade; Mohammed-Brahim, Tayeb

    2007-05-01

    A two-dimensional (2D) model of the avalanche breakdown mechanism is examined to achieve a lateral polycrystalline silicon (polysilicon) p+-n diode with high forward current and high breakdown voltage (BV). Samples with different film thicknesses (tf) were deposited by low-pressure chemical vapor deposition process. The p+ zone and n zone are doped by ionic implantation with boron and phosphorus, respectively. The measured current-voltage (I-V) characteristics show that BV varies between 6.4, 7.5, and 8.25V when tf varies between 250, 350, and 450nm, respectively. These data also show that when tf decreases, the forward current is high, the leakage current becomes higher under reverse bias, and BV decreases. We reveal that the breakdown phenomenon of our samples is dominated by the impact ionization effect. A 2D simulation of avalanche breakdown voltage versus the critical parameters of polysilicon diodes is implemented. The algorithm is based on the solution of Poisson's equation and calculating the ionization integral along various electric field lines computed from the potential distribution. By taking into account the localization of trap states in the grain boundaries, the effects on the breakdown voltage of the doping concentration ND, the intergranular trap state density NT, the grain sizes Lg, the disposition of the grain boundaries, and the film thickness tf are investigated. The simulation results show that the impact ionization mechanism is more accelerated in polysilicon than in single-crystalline silicon, and the BV(Lg), BV(ND), BV(NT), and BV(tf) curves are characterized by a succession of descending stair shapes due to the trapping of free carries by trap states contained in grain boundaries that are parallel to the metallurgic junction. By comparing simulation results with experimental data, we select the electron-hole ionization coefficients characterizing our samples: αn∞=1.0×106cm-1, Encrit=5.87×106Vcm-1, αp∞=1.582×106cm-1, and EPcrit=2

  2. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    SciTech Connect

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-15

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  3. Measurements of the volt-ampere characteristics and the breakdown voltages of direct-current helium and hydrogen discharges in microgaps

    NASA Astrophysics Data System (ADS)

    Klas, M.; Matejčik, Š.; Radjenović, B.; Radmilović-Radjenović, M.

    2014-10-01

    The discharge phenomena for micro meter gap sizes include many interesting problems from engineering and physical perspectives. In this paper, the authors deal with the experimental and theoretical results of the breakdown voltage and current-voltage characteristics of the direct-current helium and hydrogen discharges. The measurements were performed at a constant pressure of around one atmosphere, while varying the gap size between two parallel plane tungsten electrodes between 1 μm and 100 μm. From the measured breakdown voltage curves, the effective yields and the ionization coefficients were derived for both gases. Present data for the ionization coefficients correlate with the data obtained for the breakdown voltage curves measured for fixed 100 μm interelectrode separation. The current-voltage characteristics were plotted for the various gap sizes illustrating the role of the field emission effects in the microgaps. Based on the Fowler-Nordheim theory, the enhancement factors were determined. The gap spacing dependence of the field emission current can be explained by the introduction of two ideas, the first being a space charge effect by emitted electrons, and the second a change in the breakdown mechanism. Experimental results, presented here, demonstrate that Townsend phenomenology breaks down when field emission becomes the key mechanism affecting the breakdown and deforming the left hand side of the breakdown voltage curves.

  4. High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers

    PubMed Central

    2014-01-01

    In this paper, we numerically study an enhancement of breakdown voltage in AlGaN/GaN high-electron-mobility transistors (HEMTs) by using the AlGaN/GaN/AlGaN quantum-well (QW) electron-blocking layer (EBL) structure. This concept is based on the superior confinement of two-dimensional electron gases (2-DEGs) provided by the QW EBL, resulting in a significant improvement of breakdown voltage and a remarkable suppression of spilling electrons. The electron mobility of 2-DEG is hence enhanced as well. The dependence of thickness and composition of QW EBL on the device breakdown is also evaluated and discussed. PMID:25206318

  5. A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement

    NASA Astrophysics Data System (ADS)

    Jamali Mahabadi, S. E.; Rajabi, Saba; Loiacono, Julian

    2015-09-01

    In this paper a partial silicon on insulator (PSOI) lateral double diffused metal oxide semiconductor field effect transistor (LDMOSFET) with periodic buried oxide layer (PBO) for enhancing breakdown voltage (BV) and self-heating effects (SHEs) is proposed for the first time. This new structure is called periodic buried oxide partial silicon on insulator (PBO-PSOI). In this structure, periodic small pieces of SiO2 were used as the buried oxide (BOX) layer in PSOI to modulate the electric field in the structure. It was demonstrated that the electric field is distributed more evenly by producing additional electric field peaks, which decrease the common peaks near the drain and gate junctions in the PBO-PSOI structure. Hence, the area underneath the electric field curve increases which leads to higher breakdown voltage. Also a p-type Si window was introduced in the source side to force the substrate to share the vertical voltage drop, leading to a higher vertical BV. Furthermore, the Si window under the source and those between periodic pieces of SiO2 create parallel conduction paths between the active layer and substrate thereby alleviating the SHEs. Simulations with the two dimensional ATLAS device simulator from the Silvaco suite of simulation tools show that the BV of PBO-PSOI is 100% higher than that of the conventional partial SOI (C-PSOI) structure. Furthermore the PBO-PSOI structure alleviates SHEs to a greater extent than its C-PSOI counterpart. The achieved drain current for the PBO-PSOI structure (100 μA), at drain-source voltage of VDS = 100 V and gate-source voltage of VGS = 25 V, is shown to be significantly larger than that in C-PSOI and fully depleted SOI (FD-SOI) structures (87 μA and 51 μA respectively). Drain current can be further improved at the expense of BV by increasing the doping of the drift region.

  6. Nonlinear control of voltage source converters in AC-DC power system.

    PubMed

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. PMID:24906895

  7. Continuous Path Tracking Control by Considering Voltage Saturation and Current Saturation for AC Servo Motor

    NASA Astrophysics Data System (ADS)

    Sazawa, Masaki; Ohishi, Kiyoshi; Katsura, Seiichiro

    Continuous path tracking control is an important technology for the position control system such as factory automation field. Particulaly, large torque is required for continuous path tracking control at its start position and its goal position. Each AC servo motor of continuous path tracking control have limitation of current and voltage. Therefore, in controlling a multi-degree-of-freedom continuous path tracking control system, even if only the motor torque of one axis has the current limitation, the actual position response is not often equal to the desired trajectory reference. In order to overcome these problems, this paper proposes a new continuous path tracking control algorithm by considering both the saturation of voltage and current. The proposed method assures the coordinated motion by considering the saturation of voltage and current. The effectiveness of the proposed method is confirmed by the experimental results in this paper.

  8. Collector optimization for improving the product of the breakdown voltage-cutoff frequency in SiGe HBT

    NASA Astrophysics Data System (ADS)

    Qiang, Fu; Wanrong, Zhang; Dongyue, Jin; Yanxiao, Zhao; Lianghao, Zhang

    2015-04-01

    Compared with BVCEO, BVCES is more related to collector optimization and more practical significance, so that BVCES × fT rather than BVCEO × fT is employed in representing the limit of the product of the breakdown voltage-cutoff frequency in SiGe HBT for collector engineering design. Instead of a single decrease in collector doping to improve BVCES × fT and BVCEO × fT, a novel thin composite of N- and P+ doping layers inside the CB SCR is presented to improve the well-known tradeoff between the breakdown voltage and cut-off frequency in SiGe HBT, and BVCES and BVCEO are improved respectively with slight degradation in fT. As a result, the BVCES × fT product is improved from 537.57 to 556.4 GHz·V, and the BVCEO × fT product is improved from 309.51 to 326.35 GHz·V. Project supported by the National Natural Science Foundation of China (Nos. 60776051, 61006059, 61006044), the Beijing Natural Science Foundation (Nos. 4082007, 4143059, 4142007, 4122014), and the Beijing Municipal Education Committee (Nos. KM200710005015, KM200910005001).

  9. An Approach to Suppressing Both Shaft Voltage and Leakage Current in an AC Motor Driven by a Voltage-Source PWM Inverter

    NASA Astrophysics Data System (ADS)

    Doumoto, Takafumi; Akagi, Hirofumi

    This paper proposes a practical approach to suppressing both shaft voltage and leakage current in an ac motor driven by a voltage-source PWM inverter. This approach is characterized by using a neutral line of the ac motor. A common-mode inductor is connected between the inverter and the motor. Moreover, a resistor and a capacitor are connected in series between the motor neutral point and the inverter negative dc bus. This unique circuit configuration makes the common-mode inductor effective in reducing the common-mode voltage appearing at the motor terminals. As a result, both shaft voltage and ground current are significantly suppressed with low cost. Over-voltages at the end of a cable can be suppressed by a normal-mode inductor and a resistor which are connected in parallel. The validity and effectiveness of the new approach are verified by experimental results from a 5-kVA laboratory system.

  10. Induced Voltage Behavior on Pipelines Due to HV AC Interference: Effective Length Concept

    NASA Astrophysics Data System (ADS)

    Nassereddine, Mohamad; Rizk, Jamal; Nagrial, Mahmood; Hellany, Ali

    2015-04-01

    High-voltage infrastructure upgrade is expending due to the growth in populations. To save on easement cost and to reduce the environmental impact of these projects, HV transmission lines occupy the same easement as pipelines in many cases. This joint easement introduces the AC interference between transmission lines and pipelines. The induced voltage can reach a limit which will jeopardize the human safety. The cited research studies the induced voltage under the presence of the overhead earth wire (OHEW) using the shielding factor. The work in this paper studies the induced voltage using the OHEW section current along with the superposition theorem. The simulations are compared to the existing research methods. The case study along with the theoretical study discusses the advance accuracy of the proposed method over the existing shield factor used in the presence research. Furthermore, they introduce the effective length along with the effective shielding factor, which aids in computing the additional effect that the OHEW has on the induced voltage.

  11. Metrological traceability for AC High-Voltage in Inmetro up to 40 kV

    NASA Astrophysics Data System (ADS)

    Vitorio, P. C. O.; de Lima, V. R.; Borges Filho, O.; de Souza, L. A. A.; Asencios, O. W. G.

    2016-07-01

    This paper refers to a project carried out in Inmetro aiming to provide internal metrological traceability for 60 Hz AC High-Voltage up to 40 kV. It presents details about the method used, its equations and obtained results. A capacitance and tanb bridge, with a built-in current comparator, was used in combination with two standard capacitors to calibrate a standard potential transformer (PT), both in ratio and phase angle. The results obtained by Inmetro showed good agreement with PTB ones, for the same PT. The maximum estimated uncertainty was 0,0049% for ratio error and 104 μrad for phase angle error.

  12. Spin Hall voltages from a.c. and d.c. spin currents

    PubMed Central

    Wei, Dahai; Obstbaum, Martin; Ribow, Mirko; Back, Christian H.; Woltersdorf, Georg

    2014-01-01

    In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents—that is, without net charge transfer—is essential. When the magnetization vector in a ferromagnet–normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet–normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range. PMID:24780927

  13. Investigations of the electrical breakdown properties of insulator materials used in high voltage vacuum diodes

    SciTech Connect

    Shurter, R.P.; Carlson, R.L.; Melton, J.G.

    1993-08-01

    The Injector for the proposed Dual-Axis Radiographic Hydrodynamic Testing (DARHT) Facility at Los Alamos utilizes a monolithic insulator deployed in a radial configuration. The 1.83-m-diam {times} 25.4-cm-thick insulator with embedded grading rings separates the output oil transmission line from the vacuum vessel that contains the re-entrant anode and cathode assemblies. Although much work has been done by the pulse power community in studying surface flash-over of insulating materials used in both axial and radial configurations, dendrite growth at the roots of grading rings embedded in materials suitable for very large insulators is less well characterized. Degradation of several acrylic insulators has been observed in the form of dendrites growing at the roots of the grading rings for large numbers (100`s) of pulses on the prototype DARHT Injector and other machines using similar radial geometries. In a few cases, these dendrites have led to catastrophic bulk breakdown of the acrylic between two grading rings making the insulator a costly loss. Insulating materials under investigation are acrylic (Lucite), epoxy (Furane), and cross-linked polystyrene (Rexolite); each of these materials has its own particular mechanical and electrical merits. All of these materials have been cast and machined into the required large size for the Injector. Test methods and the results of investigations into the breakdown strength of various interface geometries and the susceptibility of these materials to dendrite growth are reported.

  14. An AlGaN/GaN HEMT with a reduced surface electric field and an improved breakdown voltage

    NASA Astrophysics Data System (ADS)

    Xie, Gang; Edward, Xu; Niloufar, Hashemi; Zhang, Bo; Fred, Y. Fu; Wai, Tung Ng

    2012-08-01

    A reduced surface electric field in an AlGaN/GaN high electron mobility transistor (HEMT) is investigated by employing a localized Mg-doped layer under the two-dimensional electron gas (2-DEG) channel as an electric field shaping layer. The electric field strength around the gate edge is effectively relieved and the surface electric field is distributed evenly as compared with those of HEMTs with conventional source-connected field plate and double field plate structures with the same device physical dimensions. Compared with the HEMTs with conventional source-connected field plates and double field plates, the HEMT with a Mg-doped layer also shows that the breakdown location shifts from the surface of the gate edge to the bulk Mg-doped layer edge. By optimizing both the length of Mg-doped layer, Lm, and the doping concentration, a 5.5 times and 3 times the reduction in the peak electric field near the drain side gate edge is observed as compared with those of the HEMTs with source-connected field plate structure and double field plate structure, respectively. In a device with VGS = -5 V, Lm = 1.5 μm, a peak Mg doping concentration of 8×1017 cm-3 and a drift region length of 10 μm, the breakdown voltage is observed to increase from 560 V in a conventional device without field plate structure to over 900 V without any area overhead penalty.

  15. Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage

    SciTech Connect

    Donko, Z.

    1995-12-31

    Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.

  16. Vacuum-chamber simulation of high-voltage breakdown in space

    NASA Astrophysics Data System (ADS)

    Logue, Andrew C.; Gordon, Lloyd B.

    1994-05-01

    The mockup channel tests for Space Power Experiments Aboard Rocket (SPEAR) I, SPEAR II, and SPEAR III will be examined in this paper. Specifically, high voltage results of mockup chamber tests will be compared with results of the flight hardware chamber tests and flight experiments. The authors will analyze the results obtained through the different phases of each of these programs and determine the effectiveness of the simulations that were performed in the vacuum chambers.

  17. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump.

    PubMed

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders; Hansen, Mikkel Fougt; Bruus, Henrik

    2007-11-01

    Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility of the measurements over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic concentration a hitherto unobserved reversal of the pumping direction has been measured in a regime, where both the applied voltage and the frequency are low, V(rms)<1.5 V and f<20 kHz , compared to previously investigated parameter ranges. The impedance spectrum has been thoroughly measured and analyzed in terms of an equivalent circuit diagram to rule out trivial circuit explanations of our findings. Our observations agree qualitatively, but not quantitatively, with theoretical electrokinetic models published in the literature. PMID:18233754

  18. Increased deposition of polychlorinated biphenyls (PCBs) under an AC high-voltage power line

    NASA Astrophysics Data System (ADS)

    Öberg, Tomas; Peltola, Pasi

    2009-12-01

    There is considerable public concern regarding the potential risks to health of electromagnetic fields in general and high-voltage power lines in particular. As epidemiological findings are not supported by a clearly defined mechanism of direct magnetic field interactions with the human body, potential indirect effects are of interest. It has been suggested that an increased exposure to chemical pollutants could occur near high-voltage power lines due to formation and deposition of charged aerosols. The current study reports empirical evidence that seems to support this hypothesis. The deposition of 18 congeners of polychlorinated biphenyls (PCBs) was studied by collecting samples of pine needles under a 400 kV AC power line and at reference sites in the vicinity. Compared to the reference sites, the average deposition of PCB congeners under the power line was almost double. This difference between the two groups of samples was statistically significant. While it is premature to draw any conclusions regarding the human exposure near high-voltage power lines, the issue deserves attention and further investigations.

  19. High breakdown voltage InGaAs/InP double heterojunction bipolar transistors with fmax = 256 GHz and BVCEO = 8.3 V

    NASA Astrophysics Data System (ADS)

    Wei, Cheng; Yan, Zhao; Hanchao, Gao; Chen, Chen; Naibin, Yang

    2012-01-01

    An InGaAs/InP DHBT with an InGaAsP composite collector is designed and fabricated using triple mesa structural and planarization technology. All processes are on 3-inch wafers. The DHBT with an emitter area of 1 × 15 μm2 exhibits a current cutoff frequency ft = 170 GHz and a maximum oscillation frequency fmax = 256 GHz. The breakdown voltage is 8.3 V, which is to our knowledge the highest BVCEO ever reported for InGaAs/InP DHBTs in China with comparable high frequency performances. The high speed InGaAs/InP DHBTs with high breakdown voltage are promising for voltage-controlled oscillator and mixer applications at W band or even higher frequencies.

  20. Voltage source ac-to-dc converters for high-power transmitters

    NASA Technical Reports Server (NTRS)

    Cormier, R.

    1990-01-01

    This work was done to optimize the design of the components used for the beam power supply, which is a component of the transmitters in the Deep Space Network (DSN). The major findings are: (1) the difference in regulation between a six-pulse and a twelve-pulse converter is at most 7 percent worse for the twelve-pulse converter; (2) the commutation overlap angle of a current source converter equals that of a voltage source converter with continuous line currents; (3) the sources of uncharacteristic harmonics are identified with SPICE simulation; (4) the use of an imperfect phase-shifting transformer for the twelve-pulse converter generates a harmonic at six times the line frequency; and (5) the assumptions usually made in analyzing converters can be relaxed with SPICE simulation. The results demonstrate the suitability of using SPICE simulation to obtain detailed performance predictions of ac-to-dc converters.

  1. Voltage gradients in solar array cavities as possible breakdown sites in spacecraft-charging-induced discharges

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Mills, H. E.; Orange, L.

    1981-01-01

    A possible explanation for environmentally-induced discharges on geosynchronous satellites exists in the electric fields formed in the cavities between solar cells - the small gaps formed by the cover slides, solar cells, metallic interconnects and insulating substrate. When exposed to a substorm environment, the cover slides become less negatively charged than the spacecraft ground. If the resultant electric field becomes large enough, then the interconnect could emit electrons (probably by field emission) which could be accelerated to space by the positive voltage on the covers. An experimental study was conducted using a small solar array segment in which the interconnect potential was controlled by a power supply while the cover slides were irradiated by monoenergetic electrons. It was found that discharges could be triggered when the interconnect potential became at least 500 volts negative with respect to the cover slides. Analytical modeling of satellites exposed to substorm environments indicates that such gradients are possible. Therefore, it appears that this trigger mechanism for discharges is possible.

  2. Tuning of liquid-crystal birefringence using a square ac variable frequency voltage

    NASA Astrophysics Data System (ADS)

    Hamdi, Rachid; Falih Bendimerad, Djalal; Benkelfat, Badr-Eddine; Vinouze, Bruno

    2015-10-01

    We demonstrate that the birefringence of the liquid-crystal cell (LCC) can be varied by applying different frequency values of a single applied ac square voltage. For the experimental evaluation of the birefringence, associated with a certain wavelength λ, as a function of the frequency F LCC of the electrical signal applied to the LCC, we use, for the first time to our knowledge, what we call here a frequency-dependent transmission technique. It consists in measuring the transmission responses between crossed and parallel polarizers as a function of the frequency F LCC. Experimental tests were carried out using a 7 μm-thick E63 nematic LCC and a laser source emitting at λ = 1.55 μm with a launch power of -3 dBm. The tuning voltage V LCC applied to the LCC is an alternative square wave electrical signal whose frequency ranges from 0.5 to 15 kHz. The peak to peak amplitude of the electrical signal is 5 V. The curve of the measured variations of the optical path difference of the LCC versus the frequency F LCC has a positive slope. Application to the tuning of the center wavelength of the transmission response of a one stage hybrid birefringent filter is shown as a proof-of-principle test.

  3. Effect of proton irradiation on AlGaN/GaN high electron mobility transistor off-state drain breakdown voltage

    SciTech Connect

    Hwang, Ya-Hsi; Li, Shun; Hsieh, Yueh-Ling; Ren, Fan; Pearton, Stephen J.; Patrick, Erin; Law, Mark E.; Smith, David J.

    2014-02-24

    The effect of proton irradiation on the off-state drain breakdown voltage of AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates was studied by irradiating protons from the backside of the samples through via holes fabricated directly under the active area of the HEMTs. There was no degradation of drain current nor enhancement of off-state drain voltage breakdown voltage observed for HEMTs irradiated with 275 keV protons, for which the defects created by the proton irradiation were intentionally placed in the GaN buffer. HEMTs with defects positioned in the 2 dimensional electron gas channel region and AlGaN barrier using 330 keV protons not only showed degradation of both drain current and extrinsic transconductance but also exhibited an improvement of the off-state drain breakdown voltage. Finite-element simulations showed the enhancement of the latter were due to a reduction in electric field strength at the gate edges by introduction of charged defects.

  4. Spectrographic analysis of bismuth-tin eutectic alloys by spark-ignited low-voltage ac-arc excitation

    NASA Technical Reports Server (NTRS)

    Huff, E. A.; Kulpa, S. J.

    1969-01-01

    Spectrographic method determines individual stainless steel components in molten bismuth-42 w/o tin eutectic to determine the solubility of Type 304 stainless steels. It utilizes the high sensitivity and precision of the spark-ignited, low-voltage ac-arc excitation of samples rendered homogeneous by dissolution.

  5. Plasmas in saline solutions sustained using rectified ac voltages: polarity and frequency effects on the discharge behaviour

    NASA Astrophysics Data System (ADS)

    Chang, Hung-wen; Hsu, Cheng-che

    2012-06-01

    In this work, three major problems, namely severe electrode damage, poor plasma stability and excess power consumption, arising in ac-driven plasmas in saline solutions are solved using a rectified power source. Diagnostic studies on the effects of power source polarity and frequency on the plasma behaviour are performed. Examination of I-V characteristics and temporally resolved light emission shows that the polarity significantly influences the current amplitude when the plasma exists, while the frequency alters the bubble dynamics, which in turn affects the plasma ignition voltage. When the plasma is driven by a rectified ac power source, the electrode erosion is reduced substantially. With a low frequency, moderate applied voltage and positively rectified ac power source (e.g. 100 Hz and 350 V), a stable plasma is ignited in nearly every power cycle.

  6. Design and simulation of high-breakdown-voltage GaN-based vertical field-effect transistor with interfacial charge engineering

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Liu, Dong; Bai, Zhiyuan; Luo, Qian; Yu, Qi

    2016-05-01

    A high-breakdown-voltage GaN-based vertical field-effect transistor with negative fixed interfacial charge engineering (GaN ICE-VHFET) is proposed in this work. The negative charge inverts an n-GaN buffer layer along the oxide/GaN interface, inducing a vertical hole layer. Thus, the entire buffer layer consists of a p+-hole inversion layer and an n-pillar buffer layer, and the p-pillar laterally depletes the n-GaN buffer layer, and the electric field distribution becomes more uniform. Simulation results show that the breakdown voltage of the GaN ICE-VHFET increases by 193% and the on-resistance of such a device is still very low when compared with those of conventional vertical FETs. Its figure of merit even exceeds the GaN one-dimensional limit.

  7. Breakdown voltage enhancement of AlGaN/GaN high electron mobility transistors by polyimide/chromium composite thin film passivation

    NASA Astrophysics Data System (ADS)

    Futong, Chu; Chao, Chen; Xingzhao, Liu

    2014-03-01

    A novel AlGaN/GaN high electric mobility transistor (HEMT) with polyimide (PI)/chromium (Cr) as the passivation layer is proposed for enhancing breakdown voltage and its DC performance is also investigated. The Cr nanoparticles firstly introduced in PI thin films by the co-evaporation can be used to increase the permittivity of PI film. The high-permittivity PI/Cr passivation acting as field plate can suppress the fringing electric field peak at the drain-side edge of the gate electrode. This mechanism is demonstrated in accord with measured results. The experimental results show that in comparison with the AlGaN/GaN HEMTs without passivation, the breakdown voltage of HEMTs with the PI/Cr composite thin films can be significantly improved, from 122 to 248 V.

  8. Dual trench AlGaN/GaN HEMT on SiC substrate: A novel device to improve the breakdown voltage and high power performance

    NASA Astrophysics Data System (ADS)

    Ghaffari, Majid; Orouji, Ali A.

    2016-06-01

    In this paper, an excellent performance AlGaN/AlN/GaN/SiC High Electron Mobility Transistor (HEMT) with a dual trench technique (DT-HEMT) is proposed. In the proposed technique, the dual trench between the buffer layer and the nucleation layer is created. Both the trenches are made of Gallium Nitride. A trench is created under the source region to increase the breakdown voltage. In addition, the drain current will improve due to a created trench in below the gate region. The DC and RF characteristics of the DT-HEMT are investigated. Also, the characteristics of the proposed structure compared with the characteristics of a conventional structure (C-HEMT). Our results indicate that the dual trench technique has excellent impacts on the device characteristics, especially on the drain current, breakdown voltage, and maximum output power density. The breakdown voltage, drain current, and maximum power density of DT-HEMT structure improve 56 %, 52 %, and 310 % in comparison with the C-HEMT, respectively. Also, using the dual trench technique, the maximum oscillation frequency, maximum available gain, short channel effect, maximum DC transconductance, and output resistance of the DT-HEMT structure will increase. Therefore, the proposed HEMT structure shows outstanding electrical properties compared to similar devices are based on conventional structures.

  9. A Servo System of AC Motor Based on Voltage Modulation Fitting for FPGA and Consideration of Voltage Saturation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Kanmachi, Tosiyuki; Ohishi, Kiyoshi

    This paper proposes a space voltage vector modulation (SVM) method for a speed servo system to obtain a quick current response. The proposed SVM method shortens the control lag time of the conventional SVM inverter. In addition, this proposed method is easily implemented of the hardware using a FPGA (Field Programmable Gate Array) because the proposed SVM equations is transformed into the expressions that hardly needs multiplication. By using the proposed SVM method, the servo system realizes a quick and stable current control with wide bandwidth. Moreover, by using PI controllers considering the voltage saturation and the torque limiter to the speed servo system, the servo system carries out a stable speed control on voltage saturation. Both the proposed SVM method and the PI controllers considering the voltage saturation are applied to a speed servo system of a vector controlled induction motor. The effectiveness of both the proposed SVM method and the PI controllers considering voltage saturation is verified by the experimental results.

  10. Study of the Dependence on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Bandler, Simon

    2011-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in the AC bias configuration. For x-ray photons at 6keV the AC biased pixel shows a best energy resolution of 3.7eV, which is about a factor of 2 worse than the energy resolution observed in identical DC-biased pixels. To better understand the reasons of this discrepancy, we investigated the detector performance as a function of temperature, bias working point and applied magnetic field. A strong periodic dependence of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recent weak-link behaviour observed inTES microcalorimeters.

  11. Characterization of combined power plasma jet using AC high voltage and nanosecond pulse for reactive species composition control

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Konishi, Hideaki; Kato, Toshiaki; Kaneko, Toshiro

    2014-10-01

    In the application studies for both bio-medical and agricultural applications, the roles of the reactive oxide and/or nitride species generated in the plasma has been reported as a key to control the effects and ill-effects on the living organism. The correlation between total OH radical exposure from an air atmospheric pressure plasma jet and the sterilization threshold on Botrytis cinerea is presented. With the increase of the OH radical exposure to the Botrytis cinerea, the probability of sterilization is increased. In this study, to resolve the roles of reactive species including OH radicals, a combined power plasma jet using nanosecond pulses and low-frequency sinusoidal AC high voltage (a few kHz) is studied for controlling the composition of the reactive species. The nanosecond pulses are superimposed on the AC voltage which is in synchronization with the AC phase. The undergoing work to characterize the combined power discharge with electric charge and voltage cycle on the plasma jet will also be presented to discuss the discharge characteristics to control the composition of the reactive species.

  12. Ac loss modelling and measurement of superconducting transformers with coated-conductor Roebel-cable in low-voltage winding

    NASA Astrophysics Data System (ADS)

    Pardo, Enric; Staines, Mike; Jiang, Zhenan; Glasson, Neil

    2015-11-01

    Power transformers using a high temperature superconductor (HTS) ReBCO coated conductor and liquid nitrogen dielectric have many potential advantages over conventional transformers. The ac loss in the windings complicates the cryogenics and reduces the efficiency, and hence it needs to be predicted in its design, usually by numerical calculations. This article presents detailed modelling of superconducting transformers with Roebel cable in the low-voltage (LV) winding and a high-voltage (HV) winding with more than 1000 turns. First, we model a 1 MVA 11 kV/415 V 3-phase transformer. The Roebel cable solenoid forming the LV winding is also analyzed as a stand-alone coil. Agreement between calculations and experiments of the 1 MVA transformer supports the model validity for a larger tentative 40 MVA 110 kV/11 kV 3-phase transformer design. We found that the ac loss in each winding is much lower when it is inserted in the transformer than as a stand-alone coil. The ac loss in the 1 and 40 MVA transformers is dominated by the LV and HV windings, respectively. Finally, the ratio of total loss over rated power of the 40 MVA transformer is reduced below 40% of that of the 1 MVA transformer. In conclusion, the modelling tool in this work can reliably predict the ac loss in real power applications.

  13. Ion fluxes and electro-osmotic fluid flow in electrolytes around a metallic nanowire tip under large applied ac voltage.

    PubMed

    Poetschke, M; Bobeth, M; Cuniberti, G

    2013-09-10

    Motivated by the analysis of electrochemical growth of metallic nanowires from solution, we studied ion fluxes near nanoelectrodes in a binary symmetric electrolyte on the basis of the modified Poisson-Nernst-Planck equations in the strongly nonlinear region at large applied ac voltage. For an approximate calculation of the electric field near the nanowire tip, concentric spherical blocking electrodes were considered with radius of the inner electrode being of typically a few ten nanometers. The spatiotemporal evolution of the ion concentrations within this spherical model was calculated numerically by using the finite element method. The potential drop at the electric double layer, the electric field enhancement at the electrode surface, and the field screening in the bulk solution were determined for different bulk concentrations, ac voltages, and frequencies. The appearance of ac electro-osmotic fluid flow at the tip of a growing metallic nanowire is discussed, based on an estimation of the body force in the liquid near the nanowire tip, which was modeled by a cylinder with hemispherical cap. Electric field components tangential to the electrode surface exist near the contact between cylinder and hemisphere. Our analysis suggests that ac electro-osmotic flow causes an additional convective transport of metal complexes to the tip of the growing metal nanowire and thus affects the nanowire growth velocity. PMID:23927385

  14. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    SciTech Connect

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John; Garris, Rebekah; Deline, Chris; Silverman, Timothy

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown due to partial-shading degradation.

  15. Design and experiment of 4H-SiC JBS diodes achieving a near-theoretical breakdown voltage with non-uniform floating limiting rings terminal

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Song, Qingwen; Tang, Xiaoyan; Zhang, Yimeng; Zhang, Yimen; Zhang, Yuming

    2016-09-01

    In this paper, a 4H-SiC Junction Barrier Schottky diode (JBS) with non-uniform floating limiting rings (FLRs) has been investigated and fabricated using n type 4H-SiC epitaxial layer with thickness of 31 μm and doping concentration of 3.3 × 1015 cm-3. According to the simulated results, the key parameters of a FLRs design to achieve a high voltage are the minimum space between two adjacent doped rings, spacing growth step and number of rings. The experimental results also show a great agreement with simulated results. Meanwhile, a near-ideal breakdown voltage of 3.7 kV was achieved, which yield around 95% of the parallel-plane breakdown voltage. The forward characteristics show that the fabricated JBS diodes have a forward current density of 210 A/cm2 at 3 V and a specific on-resistance (Rsp-on) of 7.58 mΩ cm2. Different FLRs parameters have no effect on the forward device performance.

  16. Electric breakdown effect in the current-voltage characteristics of amorphous indium oxide thin films near the superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Ovadia, M.; Shahar, D.

    2011-09-01

    Current-voltage characteristics in the insulator bordering superconductivity in disordered thin films exhibit current jumps of several orders of magnitude due to the development of a thermally bistable electronic state at very low temperatures. In this high-resolution study we find that the jumps can be composed of many (up to 100) smaller jumps that appear to be random. This indicates that inhomogeneity develops near the transition to the insulator and that the current breakdown proceed via percolative paths spanning from one electrode to the other.

  17. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Astrophysics Data System (ADS)

    Lipo, Thomas A.; Alan, Irfan

    1991-06-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  18. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    NASA Technical Reports Server (NTRS)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  19. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    NASA Astrophysics Data System (ADS)

    Sun, Shichuang; Fu, Kai; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Qi, Zhiqiang; Li, Shuiming; Sun, Qian; Cai, Yong; Dai, Jiangnan; Chen, Changqing; Zhang, Baoshun

    2016-01-01

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal-organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 1014 cm-2) and 90 keV (dose: 1 × 1014 cm-2), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current IDSmax at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance gmmax was 83 mS/mm.

  20. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report

    SciTech Connect

    Eager, G.S. Jr.; Seman, G.W.; Fryszczyn, B.

    1995-11-01

    Based on the successful completion of the extensive research project DOE/ET/29303-1 February 1982 to develop a new method for the determination of threshold voltage in XLPE and EPR insulated cables, tests were initiated to establish the maximum safe operating voltage stresses of crosslinked polyethylene insulated cables that become wet when they operate in a moist environment. The present report covers the measurement of the threshold voltage, the a.c. breakdown voltage and the impulse breakdown voltage of XLPE cable after undergoing accelerated laboratory aging in water. Model and 15 kV XLPE cables were manufactured in commercial equipment using state-of-the-art semiconducting shields and XLPE insulation. The threshold voltage, a.c. voltage breakdown and impulse voltage breakdown of the model cables were determined before aging, after aging one week and after aging 26 weeks. The model cable, following 26 weeks aging, was dried by passing dry gas through the conductor interstices which removed moisture from the cable. The threshold voltage, the a.c. voltage breakdown and the impulse voltage breakdown of the XLPE model cable after drying was measured.

  1. Study of the Dependency on Magnetic Field and Bias Voltage of an AC-Biased TES Microcalorimeter

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; Bruijn, M.; denHartog, R.; Hoevers, H.; deKorte, P.; vanderKuur, J.; Linderman, M.; Adams, J.; Bailey, C.; Bandler, S.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; Kelley, R.; Kilbourne, C.; Porter, F.; Sadlier, J.; Smith, S.

    2012-01-01

    At SRON we are studying the performance of a Goddard Space Flight Center single pixel TES microcalorimeter operated in an AC bias configuration. For x-ray photons at 6 keV the pixel shows an x-ray energy resolution Delta E(sub FWHM) = 3.7 eV, which is about a factor 2 worse than the energy resolution observed in an identical DC-biased pixel. In order to better understand the reasons for this discrepancy we characterized the detector as a function of temperature, bias working point and applied perpendicular magnetic field. A strong periodic dependency of the detector noise on the TES AC bias voltage is measured. We discuss the results in the framework of the recently observed weak-link behaviour of a TES microcalorimeter.

  2. GaN-based multi-two-dimensional-electron-gas-channel diodes on sapphire substrates with breakdown voltage of over 3 kV

    NASA Astrophysics Data System (ADS)

    Terano, Akihisa; Tsuchiya, Tomonobu; Mochizuki, Kazuhiro; Tanaka, Shigehisa; Nakamura, Tohru

    2015-06-01

    We investigated the achievability of low specific on-resistance and high breakdown voltage by GaN diodes consisting of three, five, and eight two-dimensional-electron-gas (2DEG) channels. The anode Schottky electrode and cathode Ohmic electrode were formed on each side wall of the multi-2DEG-channel and the n-type region was formed by Si-ion implantation in the cathode electrode-formation area of each multi-2DEG-channel. With increasing number of 2DEG channels of the diodes, specific on-resistance (RonA) showed a tendency to decrease; RonA of eight-2DEG-channel diodes was as low as 12.1 mΩ cm2. The breakdown voltage of all the fabricated diodes exceeded 3 kV. Although the electrical characteristics of the multi-2DEG-channel diodes fabricated on sapphire substrates were demonstrated, the number of cracks appearing on the epitaxial layer surface was found to increase with increasing number of 2DEG channels. Such crack formation was concluded to govern the practical limit for the number of 2DEG channels.

  3. Comparative analysis of breakdown mechanism in thin SiO2 oxide films in metal-oxide-semiconductor structures under the action of heavy charged particles and a pulsed voltage

    NASA Astrophysics Data System (ADS)

    Zinchenko, V. F.; Lavrent'ev, K. V.; Emel'yanov, V. V.; Vatuev, A. S.

    2016-02-01

    Regularities in the breakdown of thin SiO2 oxide films in metal-oxide-semiconductors structures of power field-effect transistors under the action of single heavy charged particles and a pulsed voltage are studied experimentally. Using a phenomenological approach, we carry out comparative analysis of physical mechanisms and energy criteria of the SiO2 breakdown in extreme conditions of excitation of the electron subsystem in the subpicosecond time range.

  4. The Design of Monolithic AC-coupled 1-Dimensional Voltage-Controlled-Oscillators (VCOs) Phased-array Network

    NASA Astrophysics Data System (ADS)

    Lie, Donald Y. C.; Lopez, J.

    2011-04-01

    A fully monolithic 1-Dimensional (1-D) AC-coupled Voltage-Controlled-Oscillators (VCOs) phased-array network design will be presented in this paper. This radio-frequency (RF) VCO array integrates on-chip inductors, varactors and bias current sources and it contains an odd number of VCOs AC-coupled through on-chip switchable resistor networks using MOSFETs. The measured results and SPICE simulated performance of the monolithic unit cell VCO agree reasonably well. Realistic circuit simulations in IBM 7HP 0.18 um BiCMOS design kit indicate promising results of the 1-D coupled-VCO array by showing the design can control the phasing of this on-chip VCO-array by means of tuning the edge elements and/or by varying the coupling strength via different resistor values using the on-chip MOSFET switches. Simulation data shows that it can offer high directivity and a possible element-to-element phase tuning arrangement that allows a ˜±20-30° degree coverage from broadside without the need for phase shifters or additional circuitry complexity. This AC-coupled 1-D VCO array, therefore, shows great potential for RF active antennas applications to perform wide angle beam steering for the highly used S-band.

  5. Space Charge Modulated Electrical Breakdown.

    PubMed

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20(th) century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  6. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  7. On the difference between breakdown and quench voltages of argon plasma and its relation to 4p–4s atomic state transitions

    SciTech Connect

    Forati, Ebrahim Piltan, Shiva; Sievenpiper, Dan

    2015-02-02

    Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the driving circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)

  8. Characteristics of corona impulses from insulated wires subjected to high ac voltages

    NASA Technical Reports Server (NTRS)

    Doreswamy, C. V.; Crowell, C. S.

    1976-01-01

    Corona discharges arise due to ionization of air or gas subject to high electric fields. The free electrons and ions contained in these discharges interact with molecules of insulating materials, resulting in chemical changes and destroying the electrical insulating properties. The paper describes some results of measurements aimed at determining corona pulse waveforms, their repetition rate, and amplitude distribution during various randomly-sampled identical time periods of a 60-Hz high-voltage wave. Described are properties of positive and negative corona impulses generated from typical conductors at various test high voltages. A possible method for calculating the energies, densities, and electromagnetic interferences by making use of these results is suggested.

  9. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system.

    PubMed

    Jiang, J; Ma, G M; Luo, D P; Li, C R; Li, Q M; Wang, W

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system. PMID:24593382

  10. A 65-kV insulated gate bipolar transistor switch applied in damped AC voltages partial discharge detection system

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Ma, G. M.; Luo, D. P.; Li, C. R.; Li, Q. M.; Wang, W.

    2014-02-01

    Damped AC voltages detection system (DAC) is a productive way to detect the faults in power cables. To solve the problems of large volume, complicated structure and electromagnetic interference in existing switches, this paper developed a compact solid state switch based on electromagnetic trigger, which is suitable for DAC test system. Synchronous electromagnetic trigger of 32 Insulated Gate Bipolar Transistors (IGBTs) in series was realized by the topological structure of single line based on pulse width modulation control technology. In this way, external extension was easily achieved. Electromagnetic trigger and resistor-capacitor-diode snubber circuit were optimized to reduce the switch turn-on time and circular layout. Epoxy encapsulating was chosen to enhance the level of partial discharge initial voltage (PDIV). The combination of synchronous trigger and power supply is proposed to reduce the switch volume. Moreover, we have overcome the drawback of the electromagnetic interference and improved the detection sensitivity of DAC by using capacitor storage energy to maintain IGBT gate driving voltage. The experimental results demonstrated that the solid-state switch, with compact size, whose turn-on time was less than 400 ns and PDIV was more than 65 kV, was able to meet the actual demands of 35 kV DAC test system.

  11. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2016-01-01

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm2/V s along with a sheet carrier density of 1.88 × 1013 cm-2 were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  12. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma

    NASA Astrophysics Data System (ADS)

    Itarashiki, Tomomasa; Hayashi, Nobuya; Yonesu, Akira

    2016-01-01

    Microwave plasma sterilization has recently been attracting attention for medical applications. However, it is difficult to perform low-temperature sterilization in short time periods. Increasing the output power shortens the time required for sterilization but causes the temperature to increase. To overcome this issue, we have developed a hybrid plasma system that combines a microwave torch plasma and a high-voltage mesh plasma, which allows radicals to be produced at low temperatures. Using this system, successful sterilization was shown to be possible in a period of 45 min at a temperature of 41 °C.

  13. Bias-voltage-controlled ac and dc magnetotransport phenomena in hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Smolyakov, D. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2015-06-01

    We report some ac and dc magnetotransport phenomena in silicon-based hybrid structures. The giant impedance change under an applied magnetic field has been experimentally found in the metal/insulator/semiconductor (MIS) diode with the Schottky barrier based on the Fe/SiO2/p-Si and Fe/SiO2/n-Si structures. The maximum effect is found to observe at temperatures of 10-30 K in the frequency range 10 Hz-1 MHz. Below 1 kHz the magnetoresistance can be controlled in a wide range by applying a bias to the device. A photoinduced dc magnetoresistance of over 104% has been found in the Fe/SiO2/p-Si back-to-back Schottky diode. The observed magnetic-field-dependent effects are caused by the interface states localized in the insula-tor/semiconductor interface.

  14. Final report on COOMET.EM-S5: Supplementary comparison of AC voltage ratio standards (COOMET project 396/UA/07)

    NASA Astrophysics Data System (ADS)

    Kikalo, V. N.; Petrovich, M. L.; Lobzhanidze, N. G.; Kisilev, V. V.; Styblikova, R.

    2013-01-01

    The comparison COOMET No 396/UA/07 of AC voltage ratio standards is registered in the BIPM key comparison database (KCDB) as supplementary comparison COOMET.EM-S5. It was conducted from June 2008 to July 2010 and involved the National Metrology Institutes of the Republic of Belarus, Georgia, the Russian Federation, the Czech Republic and Ukraine. SE "Ukrmetrteststandard" (Ukraine) was the Pilot laboratory for this exercise. The final report lists all data of measurement results and declared uncertainties as obtained by the participating NMIs. The degrees to which the values of the national standards correspond to the reference values of the supplementary comparison are quantitatively evaluated with the conclusions that the results obtained are recognized to be consistent taking into account the declared uncertainties. This gives evidence for supporting the corresponding Calibration and Measurement Capabilities for those values of voltage ratio at which NMIs have performed measurements. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by COOMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Electrical Effect in Silver-Point Realization Due to Cell Structure and Bias Voltage Based on Resistance Measurement Using AC and DC Bridges

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Harada, K.; Yamazawa, K.; Tamba, J.; Arai, M.

    2015-08-01

    Electrical effects related to insulating leakage represent one of the major factors contributing to uncertainties in measurements using high-temperature standard platinum resistance thermometers (HTSPRTs), especially during the realization of the silver freezing point (). This work is focused on the evaluation of the differences in resistance measurements observed when using AC resistance bridges and DC resistance bridges, hereafter, termed the AC-DC differences, as the result of various electrical effects. The magnitude of the AC-DC difference in several silver-point cells is demonstrated with several HTSPRTs. The effect of the cell structure on the AC-DC difference is evaluated by exchanging some components, part by part, within a silver-point cell. Then, the effect of the bias voltage applied to the heat pipe within the silver-point furnace is evaluated. Through the analysis of the experimental results and comparison with the reports in the literature, the importance of evaluating the AC-DC difference as a means to characterize the underlying electrical effects is discussed, considering that applying a negative bias condition to the furnace with respect to the high-temperature SPRT can minimize the AC-DC difference. Concluding recommendations are proposed on the components used in silver-point cells and the application of a bias voltage to the measurement circuit to minimize the effects of the electrical leakage.

  16. Study of Bulk and Elementary Screw Dislocation Assisted Reverse Breakdown in Low-Voltage (<250 V) 4H-SiC p+n Junction Diodes - Part 1: DC Properties

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Huang, Wei; Dudley, Michael

    1999-01-01

    Given the high density (approx. 10(exp 4)/sq cm) of elementary screw dislocations (Burgers vector = lc with no hollow core) in commercial SiC wafers and epilayers, all appreciable current (greater than 1 A) SiC power devices will likely contain elementary screw dislocations for the foreseeable future. It is therefore important to ascertain the electrical impact of these defects, particularly in high-field vertical power device topologies where SiC is expected to enable large performance improvements in solid-state high-power systems. This paper compares the DC-measured reverse-breakdown characteristics of low-voltage (less than 250 V) small-area (less than 5 x 10(exp -4) sq cm) 4H-SiC p(+)n diodes with and without elementary screw dislocations. Compared to screw dislocation-free devices, diodes containing elementary screw dislocations exhibited higher pre-breakdown reverse leakage currents, softer reverse breakdown I-V knees, and highly localized microplasmic breakdown current filaments. The observed localized 4H-SiC breakdown parallels microplasmic breakdowns observed in silicon and other semiconductors, in which space-charge effects limit current conduction through the local microplasma as reverse bias is increased.

  17. Study of Bulk and Elementary Screw Dislocation Assisted Reverse Breakdown in Low-Voltage (less than 250 V) 4H-SiC p(+)n Junction diodes. Part 1; DC Properties

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Huang, Wei; Dudley, Michael

    1998-01-01

    Given the high density (approx. 10(exp 4)/sq cm) of elementary screw dislocations (Burgers vector = 1c with no hollow core) in commercial SiC wafers and epilayers, all appreciable current (greater than 1 A) SiC power devices will likely contain elementary screw dislocations for the foreseeable future. It is therefore important to ascertain the electrical impact of these defects, particularly in high-field vertical power device topologies where SiC is expected to enable large performance improvements in solid-state high-power systems. This paper compares the DC-measured reverse-breakdown characteristics of low-voltage (less than 250 V) small-area (less than 5 x 10(exp -4)/sq cm) 4H-SiC p(+)n diodes with and without elementary screw dislocations. Compared to screw dislocation-free devices, diodes containing elementary screw dislocations exhibited higher pre-breakdown reverse leakage currents, softer reverse breakdown I-V knees, and highly localized microplasmic breakdown current filaments. The observed localized 4H-SiC breakdown parallels microplasmic breakdowns observed in silicon and other semiconductors, in which space-charge effects limit current conduction through the local microplasma as reverse bias is increased.

  18. High voltage breakdown studies of sol-gel MgO-ZrO 2 insulation coatings under various pressures at 298 K and 77 K

    NASA Astrophysics Data System (ADS)

    Cakiroglu, O.; Arda, L.; Hascicek, Y. S.

    2005-06-01

    High voltage breakdown (HV bd) tests were performed to investigate electrical properties of high temperature MgO-ZrO 2 insulation coatings on long-length stainless steel (SS) tapes under various pressures at room temperature (298 K) and liquid nitrogen temperature (77 K) for applications of HTS/LTS coils and magnets. After solutions were prepared from Mg and Zr based precursors, solvent and chelating agent, the coating were fabricated on SS substrates using reel-to-reel sol-gel technique. Coating thicknesses for 4, 8, and 9 dippings were about 7, 12, and 13 μm, respectively, and thickness of epoxy-impregnated samples (stycast 2850 FT/24 LV) were measured to be 32 μm. The pressure from 0 GPa to 0.54 GPa was applied on to test couples, the stycast thicknesses between the layers were varied 32-20 μm. Thickness of the coatings and epoxy-impregnated using stycast were determined by using environmental scanning electron microscopy (ESEM). The resistance, capacitance, and HV bd of the samples were measured by using standard machines HP 439 a high resistance meter, 161 analog digital capacitance meter and model 200-02R high voltage power supply, respectively. Electric strength and dielectric constant were calculated at 298 and 77 K under various pressures. The high HV bd, and electric strength values of the samples were 2.84 kV and 45.91 kV/mm, respectively. ESEM observation revealed that arcing spots in the insulation coatings become larger and deeper for higher HV bd’s.

  19. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivity (σac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  20. Domain Motion of Ferroelectricity of Bi2SrTa2O9 Single Crystals under an AC-Voltage Electric Field

    NASA Astrophysics Data System (ADS)

    Machida, Akio; Nagasawa, Naomi; Ami, Takaaki; Suzuki, Masayuki

    1999-02-01

    A novel phenomenon, which increases the remanent polarization of Bi2SrTa2O9 single crystals, a promising candidate for ferroelectric random access memories (FeRAM), has been identified. The single crystals, grown in vapor phases using the self-flux method, have a composition characterized asBixSryTa2O9 (x=2.08±0.09, y=1.04±0.06). Incontrast to BixSryTa2O9 (x=1.91±0.05, y=1.27±0.08) single crystals grown by the self-flux method, the coercive field of the present single crystals is smaller. Observing optical anisotropy in the c-plane, we found that this material has a paraelectric phase, which might originate from the partial distortion of the crystal. After voltage was applied, the paraelectric phase disappeared and the crystal became a ferroelectric domain structure. Measuring the electrical properties in the c-plane, the remanent polarization of the Bi2SrTa2O9 single crystal was increased by applying ac-voltage. One-hour annealing over the Curie temperature also produced a paraelectric phase in the crystal but it was confirmed that this paraelectric phase can also be decreased by applying ac-voltage. Using this ac-voltage application, we can clearly observe the domain structure of BiSTa single crystal for the first time.

  1. Space charge inhibition effect of nano-Fe{sub 3}O{sub 4} on improvement of impulse breakdown voltage of transformer oil based on improved Kerr optic measurements

    SciTech Connect

    Yang, Qing Yu, Fei; Sima, Wenxia; Zahn, Markus

    2015-09-15

    Transformer oil-based nanofluids (NFs) with 0.03 g/L Fe{sub 3}O{sub 4} nanoparticle content exhibit 11.2% higher positive impulse breakdown voltage levels than pure transformer oils. To study the effects of the Fe{sub 3}O{sub 4} nanoparticles on the space charge in transformer oil and to explain why the nano-modified transformer oil exhibits improved impulse breakdown voltage characteristics, the traditional Kerr electro-optic field mapping technique is improved by increasing the length of the parallel-plate electrodes and by using a photodetector array as a high light sensitivity device. The space charge distributions of pure transformer oil and of NFs containing Fe{sub 3}O{sub 4} nanoparticles can be measured using the improved Kerr electro-optic field mapping technique. Test results indicate a significant reduction in space charge density in the transformer oil-based NFs with the Fe{sub 3}O{sub 4} nanoparticles. The fast electrons are captured by the nanoparticles and are converted into slow-charged particles in the NFs, which then reduce the space charge density and result in a more uniform electric field distribution. Streamer propagation in the NFs is also obstructed, and the breakdown strengths of the NFs under impulse voltage conditions are also improved.

  2. Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Rasoulifard, M. H.; Hosseini, H.

    2016-02-01

    In this study, the dielectric breakdown strength of magnetic nanofluids based on transformer mineral oil for use in power systems is reviewed. Nano oil samples are obtained from dispersion of the magnetic nanofluid within uninhibited transformer mineral oil NYTRO LIBRA as the base fluid. AC dielectric breakdown voltage measurement was carried out according to IEC 60156 standard and the lightning impulse breakdown voltage was obtained by using the sphere-sphere electrodes in an experimental setup for nano oil in volume concentration of 0.1-0.6%. Results indicate improved AC and lightning impulse breakdown voltage of nano oil compared to the base oil. AC test was performed again after applying impulse current and result showed that nano oil unlike the base oil retains its dielectric properties. Increase the dielectric strength of the nano oil is mainly due to dielectric and magnetic properties of Fe3O4 nanoparticles that act as free electrons snapper, and reduce the rate of free electrons in the ionization process.

  3. Dielectric breakdown in mineral oil ITO 100 based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Kudelcik, J.; Bury, P.; Kopcansky, P.; Timko, M.

    The development of dielectric breakdown and the DC dielectric breakdown voltage of magnetic fluids based on inhibited transformer oil ITO 100 were investigated in parallel orientations of external magnetic field. It was shown that the breakdown voltage is strongly influenced by the magnetic nanoparticles. The magnetic fluids with the volume concentration 1and 0.2% had better dielectric properties than pure transformer oil. The increase of breakdown voltage was interpreted on the base of the bubble theory of breakdown.

  4. High voltage research (breakdown strengths of gaseous and liquid insulators) and environmental effects of dielectric gases. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect

    Christophorou, L.G.; James, D.R.; Pai, R.Y.

    1980-08-01

    Topics covered include basic studies of gaseous dielectrics, direct current breakdown strengths of gases/mixtures, environmental effects studies and decomposition analyses, impulse studies, breakdown strengths of binary mixtures with concentric cylinder geometry, and a discussion of the experimental apparatus. (GHT)

  5. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration

    SciTech Connect

    Kostyrya, I. D.; Tarasenko, V. F.

    2015-03-15

    Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U{sub m} ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U{sub m} behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.

  6. P-Channel Lateral Double-Diffused Metal-Oxide-Semiconductor Field-Effect Transistor with Split N-Type Buried Layer for High Breakdown Voltage and Low Specific On-Resistance

    NASA Astrophysics Data System (ADS)

    Liaw, Chorng-Wei; Chang, Ching-Hung; Lin, Ming-Jang; King, Ya-Ching; Hsu, Charles Ching-Hsiang; Lin, Chrong Jung

    2007-07-01

    Many high voltage complementary metal-oxide-semiconductor (HV-CMOS) processes are modified from a standard 5 V CMOS process by adding an N-type heavily doped layer under the P-well of a HV-PMOS drain terminal to isolate a high voltage P-well from a grounded P-substrate. The limitation of breakdown voltage is dominated by P-well concentration and junction depth. For designing a certain breakdown voltage (\\mathit{BV}dss) for a HV-PMOS, the original 5 V CMOS P-well concentration should be decreased, which could degrade 5 V CMOS characteristics, such as NMOS punch through and latch-up immunity. In this study, we demonstrate a novel HV-PMOS based on a split N-type buried layer (NBL), which provides a high \\mathit{BV}dss in a HV-CMOS process. The newly proposed device with NBL split under the P-well of a drain electrode increases \\mathit{BV}dss without degrading specific on-resistance (Ron,sp) and any added process complexity. From this result, P-well concentration could be increased to improve both 5 V NMOS characteristics and HV-PMOS Ron,sp.

  7. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ˜0.5-μs front duration

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2015-03-01

    Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ˜0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap ( U m ˜ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U m behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ˜100 ps was detected. At voltages of ˜50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ˜2 ns was generated, whereas the FWHM of the X-ray pulse increased to ˜100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.

  8. A novel single-stage isolated ac/dc converter with quasi-resonant zero-voltage-switching with a modified forward converter adopting capacitive output filter

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Bok; Youn, Myung-Joong

    2010-07-01

    A new single-stage isolated ac-dc converter, which can achieve a better efficiency and a better power factor, is proposed. It is based on a general forward topology so that it can utilise the transformer more than converters based on flyback topology. In addition, since the capacitive output filter is adopted instead of an inductive type filter, the voltages on the secondary rectifiers can be clamped to the output voltage; meanwhile, the capacitor used in the output filter can be utilised for the resonance with the leakage inductance, and the turn-off loss in the primary main switch and the dissipative loss in the snubber can be reduced. Moreover, since this converter can be operated at the boundary conduction mode, the line input current can be automatically shaped as the waveform of a line voltage and quasi-resonant zero voltage switching can be also obtained. Therefore, it features higher efficiency, lower voltage stress and a smaller-sized transformer than other topologies. A 100 W prototype has been built and tested for the verification of the proposed topology.

  9. Investigation of the breakdown products produced from electrical discharge in selected CFC replacement fluids

    SciTech Connect

    Hawley-Fedder, R.; Goerz, D.; Koester, C.; Wilson, M.

    1996-04-01

    LLNL personnel have designed and constructed a special purpose electrical test stand to evaluate CFCs and CFC replacement fluids under simulated AC, DC, and pulsed breakdown conditions. The test stand includes an electrical diagnostic system which allows the measurement of breakdown voltage, discharge current, arc power, and energy associated with each pulse. The appropriate data that is collected in order to correlate the quantity of by-products produced with the pertinent control variables, such as voltage, current, pulse width, pulse repetition frequency, and energy. Along with the electrical test stand, LLNL has extensive chemical analysis facilities that enable us to perform gas chromatographic and gas chromatographic-mass spectrometric analysis of various fluids to identify and quantify the breakdown products formed under various scenarios of electrical energy deposition.

  10. Breakdown in the pretext tokamak

    SciTech Connect

    Benesch, J.F.

    1981-06-01

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.

  11. A.C. Susceptibility in MAGNESIUM(1+T)TITANIUM(T)IRON(2 -2T)OXYGEN(4) Near the Breakdown of Ferrimagnetic Order

    NASA Astrophysics Data System (ADS)

    Lautzenhiser, Frans Peter

    1990-01-01

    The complex a.c. susceptibility _ {Xac} in t = 0.45 and 0.5 powder samples of the ferrimagnetic magnesium-titanium-iron oxide spinel have been measured. Frequency, a.c. amplitude, and d.c. field were varied with temperatures ranging from 5K to above the ferrimagnetic Neel temperature T _{N} (285K and 225K, respectively). For fixed frequency f, temperature T, and a.c. amplitude H _{ac}, a monotonic decrease in _{Xac} with increasing d.c. field, characteristic of superparamagnetism (SPM), was seen over the range of field 0.5 Oe < H_{dc} < 65 Oe. The derivative -d_ {Xac}/dH_{ dc} shows a sharp peak near T _{p} = 225K in the t = 0.45 sample. For fixed f, H_{dc}, and T, an increase in _ {Xac} with H_ {ac} was observed over the range of amplitudes 10^{-3} Oe < H_{ac } < 10 Oe. At 200Hz, this nonlinear a.c. response reaches a peak at T_{ac} = 55K and 70K in the t = 0.45 and 0.5 samples respectively. The peak temperature T_{ac} is reduced by lowering f. This frequency dependence is seen neither in the ferrimagnetic Neel temperature nor in the broad peaks of the a.c. susceptibility which occur near T = 0.8T_{N}. Although similar to a SPM blocking transition, the transition at T_{ac} is interpreted as a spin glass freezing temperature. The samples used in this study were previously analyzed by Brand et al. (J. Phys. F 15 1987 (1985).) using d.c. susceptibility and Mossbauer effect measurements.

  12. Back gate induced breakdown mechanisms for thin layer SOI field P-channel LDMOS

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Qiao, Ming; He, Yitao; Yang, Wen; Li, Zhaoji; Zhang, Bo

    2016-01-01

    The back gate (BG) induced breakdown mechanisms for thin layer SOI Field P-channel LDMOS (FPLDMOS) are investigated in this paper. Surface breakdown, bulk breakdown and punch-through breakdown are discussed, revealing that the block capability depends on not drain voltage (Vd), but also BG voltage (VBG). For surface breakdown, the breakdown voltage (BVs) increases linearly with VBG increasing. An expression of BVs on VBG is given, providing a good fitting to measured and simulated results. Bulk breakdown with a low breakdown voltage is attributed to high VBG. VBG induces depletion in n-well, giving rise to punch-through breakdown. A design requirement for the thin layer SOI FPLDMOS is proposed that breakdown voltages for the three breakdown mechanisms are compelled to be higher than the supply voltage of switching IC.

  13. Critical current density and ac harmonic voltage generation in YBaCuO thin films by the screening technique

    NASA Astrophysics Data System (ADS)

    Pérez-López, Israel O.; Gamboa, Fidel; Sosa, Víctor

    2010-12-01

    The temperature and field dependence of harmonics in voltage Vn=Vn‧-iVn″ using the screening technique have been measured for YBaCuO superconducting thin films. Using the Sun model we obtained the curves for the temperature-dependent critical current density Jc(T). In addition, we applied the criterion proposed by Acosta et al. to compute Jc(T). Also, we made used of the empirical law Jc∝(1-T/Tc)n as an input in our calculations to reproduce experimental harmonic generation up to the fifth harmonic. We found that most models fit well the fundamental voltage but higher harmonics are poorly reproduced. Such behavior suggests the idea that higher harmonics contain information concerning complex processes like flux creep or thermally assisted flux flow.

  14. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect

    Alex, J.; Schminke, W.

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  15. Note: Measuring breakdown characteristics during the hot re-ignition of high intensity discharge lamps using high frequency alternating current voltage.

    PubMed

    van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W

    2013-04-01

    To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented. PMID:23635237

  16. A Hybrid PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps

    NASA Astrophysics Data System (ADS)

    Moore, Stan G.; Moore, Christopher H.; Boerner, Jeremiah J.

    2014-10-01

    Triggered vacuum spark gaps (TVSGs) can be used as high voltage, high current switches with a fast switching time and a variable operating voltage, such as in pulsed power applications and crowbar circuits that protect against overvoltage conditions. Hybrid particle-in-cell (PIC) and direct simulation Monte Carlo (DSMC) methods can be used to simulate breakdown in TVSGs. In this talk, we present results of a one-dimensional hybrid PIC/DSMC model and show that changing the density and velocity of injected neutral particles (which can be related to the surface temperature) significantly changes both the time to breakdown and the existence of a short-lived starvation mode in the current waveform. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Asymmetric synthesis of crambescin A-C carboxylic acids and their inhibitory activity on voltage-gated sodium channels.

    PubMed

    Nakazaki, Atsuo; Nakane, Yoshiki; Ishikawa, Yuki; Yotsu-Yamashita, Mari; Nishikawa, Toshio

    2016-06-21

    Synthesis of both enantiomers of crambescin B carboxylic acid is described. A cis-enyne starting material was epoxidized under the conditions of Katsuki asymmetric epoxidation to give 95% ee of the epoxide, which was transformed to crambescin B carboxylic acid via bromocation-triggered cascade cyclization as the key step. Enantiomerically pure crambescin A and C carboxylic acids were also synthesized from the product of the cascade reaction. Structure-activity relationship (SAR) studies against voltage-gated sodium channel (VGSC) inhibition using those synthetic compounds revealed that the natural enantiomer of crambescin B carboxylic acid was most active and comparable to tetrodotoxin, and the unalkylated cyclic guanidinium structure is indispensible, while the carboxylate moiety is not important. The absolute stereochemistry of crambescin A was determined by a comparison of the methyl ester derived from natural crambescin A with that derived from the stereochemically defined crambescin A carboxylic acid synthesized in this study. PMID:27215973

  18. Non-oxidized porous silicon-based power AC switch peripheries

    NASA Astrophysics Data System (ADS)

    Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

    2012-10-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries.

  19. Non-oxidized porous silicon-based power AC switch peripheries.

    PubMed

    Menard, Samuel; Fèvre, Angélique; Valente, Damien; Billoué, Jérôme; Gautier, Gaël

    2012-01-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries. PMID:23057856

  20. Non-oxidized porous silicon-based power AC switch peripheries

    PubMed Central

    2012-01-01

    We present in this paper a novel application of porous silicon (PS) for low-power alternating current (AC) switches such as triode alternating current devices (TRIACs) frequently used to control small appliances (fridge, vacuum cleaner, washing machine, coffee makers, etc.). More precisely, it seems possible to benefit from the PS electrical insulation properties to ensure the OFF state of the device. Based on the technological aspects of the most commonly used AC switch peripheries physically responsible of the TRIAC blocking performances (leakage current and breakdown voltage), we suggest to isolate upper and lower junctions through the addition of a PS layer anodically etched from existing AC switch diffusion profiles. Then, we comment the voltage capability of practical samples emanating from the proposed architecture. Thanks to the characterization results of simple Al-PS-Si(P) structures, the experimental observations are interpreted, thus opening new outlooks in the field of AC switch peripheries. PMID:23057856

  1. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  2. Reliability of HfO2 metal-insulator-metal capacitors under AC stress

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Jomni, F.; Gonon, P.; Khaldi, O.; Latu-Romain, L.; Mannequin, C.; Bsiesy, A.; Basrour, S.; Yangui, B.

    2016-04-01

    The electrical reliability of HfO2 based metal-insulator-metal capacitors is investigated under AC stress voltage. The capacitance-time (C-t) and conductance-time (G-t) responses are studied for different stress amplitudes and frequencies. Time-to-breakdown is observed to strongly depend on the electrode nature. Electrical degradation is discussed via a model based on oxygen vacancy/oxygen ions generation. Defect generation is controlled by the injecting nature of electrodes. Partial recovery, and so time-to-breakdown, are controlled by the ability of electrodes to store oxygen.

  3. Breakdown properties of epoxy nanodielectric

    SciTech Connect

    Tuncer, Enis; Cantoni, Claudia; More, Karren Leslie; James, David Randy; Polyzos, Georgios; Sauers, Isidor; Ellis, Alvin R

    2010-01-01

    Recent developments in polymeric dielectric nanocomposites have shown that these novel materials can improve design of high voltage (hv) components and systems. Some of the improvements can be listed as reduction in size (compact hv systems), better reliability, high energy density, voltage endurance, and multifunctionality. Nanodielectric systems demonstrated specific improvements that have been published in the literature by different groups working with electrical insulation materials. In this paper we focus on the influence of in-situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles on the dielectric breakdown characteristics of an epoxy-based nanocomposite system. The in-situ synthesis of the particles creates small nanoparticles on the order of 10 nm with narrow size distribution and uniform particle dispersion in the matrix. The breakdown strength of the nanocomposite was studied as a function of TiO{sub 2} concentration at cryogenic temperatures. It was observed that between 2 and 6wt% yields high breakdown values for the nanodielectric.

  4. Electrical Breakdown in Solids

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Zutavern, Fred; Kambour, Kenneth; Moore, Chris; Mar, Alan

    During electron breakdown of a solid subjected to a large electric field, impact ionization causes growth of an electron-hole plasma. This growth process is opposed by Auger recombination of the electron-hole pairs. In our work, such breakdown is investigated by obtaining steady-state solutions to the Boltzmann equation. In these calculations, the carriers are heated by the electric field and cooled by phonon emission. Our results imply that breakdown may lead to high carrier-density current filaments. Conductive filaments have been observed in optically-triggered, high-power photoconductive semiconductor switch (PCSS) devices being developed at Sandia Labs. The relationship between the steady-state computed solutions to the observed filaments will be discussed in the presentation. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  5. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  6. Pulsed electric breakdown in adipose tissue

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Scully, Noah; Paithankar, Dilip

    2011-08-01

    High voltage pulses of sub-microsecond duration can instigate electrical breakdown in adipose tissue, which is followed by a spark discharge. Breakdown voltages are generally lower than observed for purified lipids but higher than for air. Development of breakdown for the repetitive application of pulses resembles a gradual and stochastic process as reported for partial discharges in solid dielectrics. The inflicted tissue damage itself is confined to the gap between electrodes, providing a method to use spark discharges as a precise surgical technique.

  7. Scintillation Breakdowns in Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Scintillations in solid tantalum capacitors are momentarily local breakdowns terminated by a self-healing or conversion to a high-resistive state of the manganese oxide cathode. This conversion effectively caps the defective area of the tantalum pentoxide dielectric and prevents short-circuit failures. Typically, this type of breakdown has no immediate catastrophic consequences and is often considered as nuisance rather than a failure. Scintillation breakdowns likely do not affect failures of parts under surge current conditions, and so-called "proofing" of tantalum chip capacitors, which is a controllable exposure of the part after soldering to voltages slightly higher than the operating voltage to verify that possible scintillations are self-healed, has been shown to improve the quality of the parts. However, no in-depth studies of the effect of scintillations on reliability of tantalum capacitors have been performed so far. KEMET is using scintillation breakdown testing as a tool for assessing process improvements and to compare quality of different manufacturing lots. Nevertheless, the relationship between failures and scintillation breakdowns is not clear, and this test is not considered as suitable for lot acceptance testing. In this work, scintillation breakdowns in different military-graded and commercial tantalum capacitors were characterized and related to the rated voltages and to life test failures. A model for assessment of times to failure, based on distributions of breakdown voltages, and accelerating factors of life testing are discussed.

  8. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  9. Low-temperature (77-300 K) current-voltage characteristics of 4H-SiC p{sup +}-p-n{sup +} diodes: Effect of impurity breakdown in the p-type base

    SciTech Connect

    Ivanov, P. A. Potapov, A. S.; Samsonova, T. P.

    2012-04-15

    The effect of impurity breakdown on the low-temperature (77-300 K) current-voltage (I-V) characteristics of 4H-SiC diodes with a p-type base has been studied. Experimental samples were fabricated from CVD-grown (chemical vapor deposition) commercial p{sup +}-p-n{sup +} 4H-SiC structures. A high electric field in the p-type base was created by applying a forward bias to the diodes. It was found that, at temperatures of 136, 89, and 81 K, the commonly observed 'diode' portion of the I-V characteristics is followed by a portion in which the current grows more rapidly due to the impact ionization of frozen-out Al acceptor atoms in the ground (unexcited) state. At temperatures of 81 and 77 K, this portion is followed by one with a negative differential resistance due to the regenerative dynistor-like switching of the diode, caused by impact ionization of aluminum atoms in the excited state.

  10. Reduction of Electric Breakdown Voltage in LC Switching Shutters / Elektriskās Caursites Sprieguma Samazināšana Šķidro Kristālu Šūnās

    NASA Astrophysics Data System (ADS)

    Mozolevskis, G.; Ozols, A.; Nitiss, E.; Linina, E.; Tokmakov, A.; Rutkis, M.

    2015-10-01

    Liquid crystal display (LCD) industry is among the most rapidly growing and innovating industries in the world. Here continuously much effort is devoted towards developing and implementing new types of LCDs for various applications. Some types of LCDs require relatively high voltages for their operation. For example, bistable displays, in which an altering field at different frequencies is used for switching from clear to scattering states and vice versa, require electric fields at around 10 V/μm for operation. When operated at such high voltages an electrical breakdown is very likely to occur in the liquid crystal (LC) cell. This has been one of the limiting factors for such displays to reach market. In the present paper, we will report on the results of electrical breakdown investigations in high-voltage LC cells. An electrical breakdown in the cell is observed when current in the liquid crystal layer is above a specific threshold value. The threshold current is determined by conductivity of the liquid crystal as well as point defects, such as dust particles in LC layer, pinholes in coatings and electrode hillocks. In order to reduce the currents flowing through the liquid crystal layer several approaches, such as electrode patterning and adding of various buffer layers in the series with LC layer, have been tested. We demonstrate that the breakdown voltages can be significantly improved by means of adding insulating thin films. Šķidro kristālu ekrānu (LCD) industrija ir viena no visstraujāk augošajām industrijām pasaulē. Daudz pūļu un resursu tiek veltīti jauna tipa LCD izstrādē dažādiem pielietojumiem. Atsevišķa tipa LCD funkcionēšanai nepieciešami augsti spriegumi. Piemēram, bistabilos LCD, kuros izkliedējošs (ieslēgts) un dzidrs (izslēgts) stāvoklis tiek iegūts ar dažādu frekvenču maiņsprieguma palīdzību, elektriskā lauka intensitāte šķidrā kristāla slānī var sasniegt pat 10 V/μm. Augstās elektriskā lauka intensit

  11. KEY COMPARISONS: Final report: SIM regional comparison of ac-dc voltage transfer difference (SIM.EM.K6a, SIM.EM-K9 and SIM.EM-K11)

    NASA Astrophysics Data System (ADS)

    Campos, Sara; Filipski, Piotr; Izquierdo, Daniel; Afonso, Edson; Landim, Régis P.; Di Lillo, Lucas; Lipe, Thomas

    2009-01-01

    Three comparisons of ac-dc voltage transfer difference held from January to December 2004 are reported. Six NMIs in the SIM region took part: NRC (Canada), NIST (United States of America), CENAM (Mexico), INTI (Argentina), UTE (Uruguay) and INMETRO (Brazil). The comparisons were proposed to assess the measurement capabilities in ac-dc voltage transfer difference of the NMIs in the SIM region. The test points were selected to link the results with the equivalent CCEM Key Comparisons, through three NMIs participating in both SIM and CCEM key comparisons. Additionally, a SIM.EM-Supplementary comparison was proposed, in support of the SIM NMIs' power/energy meter calibration capabilities. One technical protocol and one travelling standard were used, to economize on time and resources. The report shows the degree of equivalence in the SIM region and also the degree of equivalence with the corresponding CCEM reference value. The results of all participants support the values and uncertainties of the applicable CMC entries for ac-dc voltage transfer difference in the Key Comparison Database held at the BIPM. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  12. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  13. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  14. Effects of thermal and electrical stressing on the breakdown behavior of space wiring

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Stavnes, Mark; Suthar, Jayant; Laghari, Javaid

    1995-01-01

    Several failures in the electrical wiring systems of many aircraft and space vehicles have been attributed to arc tracking and damaged insulation. In some instances, these failures proved to be very costly as they have led to the loss of many aircraft and imperilment of space missions. Efforts are currently underway to develop lightweight, reliable, and arc track resistant wiring for aerospace applications. In this work, six wiring constructions were evaluated in terms of their breakdown behavior as a function of temperature. These hybrid constructions employed insulation consisting of Kapton, Teflon, and cross-linked Tefzel. The properties investigated included the 400 Hz AC dielectric strength at ambient and 200 C, and the lifetime at high temperature with an applied bias of 40, 60, and 80% of breakdown voltage level. The results obtained are discussed, and conclusions are made concerning the suitability of the wiring constructions investigated for aerospace applications.

  15. Electrical breakdown of transformer oil with sulfur hexafluoride and air bubbles

    NASA Astrophysics Data System (ADS)

    Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Akimov, P. L.; Yusupov, D. I.; Kulikov, Yu. M.; Panov, V. A.

    2015-07-01

    The influence of gas bubbles on the breakdown voltage of transformer oil is experimentally studied. The influence of the oil flow on the electrical characteristics of breakdown is analyzed. It is shown that sulfur hexafluoride and air bubbles decrease the breakdown voltage.

  16. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  17. Final report on SIM bilateral INMETRO-LNE comparisons SIM.EM-K6.1 and SIM.EM-K9.1: AC-DC voltage transfer difference

    NASA Astrophysics Data System (ADS)

    Vasconcellos, Renata de Barros e.; Poletaeff, Andre

    2014-01-01

    The objective of this comparison was to compare the measurement capabilities of INMETRO and LNE in the field of AC-DC voltage transfer. INMETRO participated in the previous SIM comparison of AC-DC voltage transfer standards in 2004. In the last few years INMETRO has been improving the methodology of its AC-DC voltage transfer difference measurements, now using multijunction thermal converters. The degrees of equivalence of INMETRO relative to the corresponding CCEM key comparison reference values range between 0.1 µV/V and 10 µV/V in the frame of the SIM.EM-K6.1 key comparison, and between 0.5 µV/V and 4 µV/V in the frame of the SIM.EM-K9.1 key comparison. In all cases, they are consistent with the associated uncertainties. For results that are not linked to CCEM key comparisons, the agreement between INMETRO and LNE is very good at 1.5 V/50 kHz (0.1 µV/V). At 10 Hz (at 1.5 V and at 1000 V) a larger difference is observed between the two laboratories, which remains nevertheless consistent with the given uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  18. Modeling of ac dielectric barrier discharge

    SciTech Connect

    Shang, J. S.; Huang, P. G.

    2010-06-15

    The qualitative electrodynamic field of the dielectric barrier discharge in air is studied by a three-component, drift-diffusion plasma model including the Poisson equation of plasmadynamics. The critical media interface boundary conditions independent of the detailed mechanisms of surface absorption, diffusion, recombination, and charge accumulation on electrode or dielectrics are developed from the theory of electromagnetics. The computational simulation duplicates the self-limiting feature of dielectric barrier discharge for preventing corona-to-spark transition, and the numerical results of the breakdown voltage are compared very well with data. According to the present modeling, the periodic electrodynamic force due to charge separation over the electrodes also exerts on alternative directions from the exposed to encapsulated electrodes over a complete ac cycle as experimental observations.

  19. Threshold criteria for undervoltage breakdown

    NASA Astrophysics Data System (ADS)

    Cooley, James E.; Choueiri, Edgar Y.

    2008-05-01

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain discharge gap are experimentally and theoretically explored. The minimum number of injected electrons required to achieve breakdown in a parallel-plate gap is measured in argon at pd values of 3-10 Torr m using ultraviolet laser pulses to photoelectrically release electrons from the cathode. This value was found to scale inversely with voltage at constant pd and with pressure within the parameter range explored. A dimensionless theoretical description of the phenomenon is formulated and numerically solved. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low gain. It is also found that fewer electrons are required as the gain due to electron-impact ionization (α process) is increased, or as the sensitivity of the α process to electric field is enhanced by increasing the gas pressure. A predicted insensitivity to ion mobility implies that the breakdown is determined during the first electron avalanche when space-charge distortion is greatest.

  20. Electrical breakdown studies with Mycalex insulators

    SciTech Connect

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-05-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures.

  1. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  2. Structural evolution of nanoporous ultra-low k dielectrics under voltage stress

    NASA Astrophysics Data System (ADS)

    Raja, Archana; Shaw, Thomas; Grill, Alfred; Laibowitz, Robert; Heinz, Tony

    2013-03-01

    High speed interconnects in advanced integrated circuits require ultra-low-k dielectrics. Reduction of the dielectric constant is achieved via incorporation of nanopores in structures containing silicon, carbon, oxygen and hydrogen (SiCOH). We study nanoporous SiCOH films of k=2.5 and thicknesses of 40 - 400 nm. Leakage currents develop in the films under long-term voltage stress, eventually leading to breakdown and chip failure. Previous work* has shown the build-up of trap states as dielectric breakdown progresses. Using FTIR spectroscopy we have tracked the reorganization of the bonds in the SiCOH networks induced by voltage stress. Our results indicate that the cleavage of the Si-C and SiC-O bonds contribute toward increase in the density of bulk trapping states as breakdown is approached. AC conductance and capacitance measurements have also been carried out to describe interfacial and bulk traps and mechanisms. Comparison of breakdown properties of films with differing carbon content will also be presented to further delineate the role of carbon. *Atkin, J.M.; Shaw, T.M.; Liniger, E.; Laibowitz, R.B.; Heinz, T.F. Reliability Physics Symposium (IRPS), 2012 IEEE International Supported by the Semiconductor Research Corporation

  3. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  4. Forecasting of high voltage insulation performance: Testing of recommended potting materials and of capacitors

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1984-01-01

    Nondestructive high voltage test techniques (mostly electrical methods) are studied to prevent total or catastrophic breakdown of insulation systems under applied high voltage in space. Emphasis is on the phenomenon of partial breakdown or partial discharge (P.D.) as a symptom of insulation quality, notably partial discharge testing under D.C. applied voltage. Many of the electronic parts and high voltage instruments in space experience D.C. applied stress in service, and application of A.C. voltage to any portion thereof would be prohibited. Suggestions include: investigation of the ramp test method for D.C. partial discharge measurements; testing of actual flight-type insulation specimen; perfect plotting resin samples with controlled defects for test; several types of plotting resins and recommendations of the better ones from the electrical characteristics; thermal and elastic properties are also considered; testing of commercial capaciters; and approximate acceptance/rejection/rerating criteria for sample test elements for space use, based on D.C. partial discharge.

  5. Pre-breakdown evaluation of gas discharge mechanisms in microgaps

    SciTech Connect

    Semnani, Abbas; Peroulis, Dimitrios; Venkattraman, Ayyaswamy; Alexeenko, Alina A.

    2013-04-29

    The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

  6. Current contacts and the breakdown of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    van Son, P. C.; Kruithof, G. H.; Klapwijk, T. M.

    1990-12-01

    The nonlinearities in the I-V characteristics have been studied of high-mobility Si metal oxide semiconductor field-effect transistors in the quantum Hall regime. The breakdown curves were measured with different sets of voltage contacts and for different directions of magnetic field and current. Comparison of these curves shows that the breakdown of the quantum Hall effect (QHE) in these samples is an intrinsic effect that starts at the current contact where the electrons are injected into the two-dimensional electron gas (2DEG). This fundamental asymmetry and the crucial role of the current contact are explained using the Büttiker-Landauer approach to the QHE and its recent extension to the nonlinear regime. The electron-injection process contains two mechanisms that lead to breakdown voltages in the 2DEG. We have identified both experimentally by comparing the critical currents of different configurations of current and voltage contacts. In one of the mechanisms, the nonequilibrium distribution of electrons that is injected into the 2DEG extends to the voltage contacts. This means that the equilibration length of the 2D electrons is at least of the order of 100 μm. For currents far beyond breakdown and for voltage contacts that are further from the electron-injection contact, the breakdown characteristics are harder to understand. The variation of the electron density of the 2DEG due to the large Hall voltage has to be taken into account as well as the equilibration induced by additional voltage contacts.

  7. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  8. Nonequilibrium breakdown of a correlated insulator through pattern formation

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; Antipov, Andrey E.; Rubtsov, Alexey N.

    2016-04-01

    We study the breakdown of an interaction-induced insulator under an imposed bias voltage. A rich voltage-temperature phase diagram is found that contains phases with a spatially patterned charge gap. Nonequilibrium conditions are shown to be able to change the antiferromagnetic nature of the equilibrium correlations. Above a threshold voltage, smaller than the charge gap, the formation of patterns occurs together with the emergence of midgap states yielding a finite conductance. We discuss the experimental implications of this proposed scenario for the breakdown of the insulating state.

  9. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  10. Insulator breakdown measurements in a poor vacuum and their interpretation

    SciTech Connect

    Vogtlin, G.E.

    1990-06-01

    Breakdown measurements have been made on insulators with 0 and 45 degree angle surfaces. A technique of observing the electrons produced from the process has given some insight into the mechanisms involved. A three nanosecond pulse was used to induce breakdown. The electrons striking the anode were observed with a plastic fluor and open shutter camera. Two breakdown patterns were interpreted as cathode initiated and anode initiated breakdown. The breakdown process normally encountered was anode initiated with a positive 45 degree insulator. If the anode side was relieved with an internal electrode, the breakdown changed to cathode initiated at a higher level. If the cathode surface was then anodized, the breakdown switched back to the anode at an even higher level. Individual explosive emission sites on the cathode surface could be observed. Insulator breakdown was usually not associated with these sites. Multiple pulses allowed measurement of plasma expansion of the explosive emission sites. It is believed that breakdown with longer pulses is due to the expansion of the explosive emission site plasma to the insulator surface. Measurements were conducted with and without voltage conditioning. It appears that conditioning is achieved without explosive emission. It is believed that this is due to organic fibers that are removed by the conditioning. Organic fibers were used to induce both anode and cathode breakdown. Measurements of fiberous material have shown explosive emission a low as 100 kV on a three nanosecond time scale and below 20 kv/cm on a longer time scale. 8 refs., 5 figs.

  11. Nanocomposite dielectrics in PbO-BaO-Na2O-Nb2O5-SiO2 system with high breakdown strength for high voltage capacitor applications.

    PubMed

    Zhang, Qingmeng; Luo, Jun; Tang, Qun; Han, Dongfang; Zhou, Yi; Du, Jun

    2012-11-01

    Nanocomposite dielectrics in 6PbO-4BaO-20Na2O-40Nb2O5-30SiO2 system were prepared via melt-quenching followed by controlled crystallization. X-ray diffraction studies reveal that Pb2Nb2O7, Ba,NaNb5O15, NaNbO3 and PbNb2O6 phases are formed from the as-quenched glass annealed in temperature range from 700 degrees C to 850 degrees C. Ba2NaNb5O15, Pb2Nb2O7 crystallizes at 700 degrees C and then Pb2Nb2O7 disappears at 850 degrees C, while PbNb2O6 and NaNbO3 are formed at 850 degrees C. Microstructural observation shows that the crystallized particles are nanometer-sized and randomly distributed with glass matrix being often found at grain boundaries. The dielectric constant of the nanocomposites formed at different crystallization temperatures shows good frequency and electric field stability. The breakdown strength is slightly decreased when the glass-ceramics thickness is varied from 1 mm to 4 mm. The corresponding energy density could reach 2.96 J/cm3 with a breakdown strength of 58 kV/mm for thickness of 1 mm. PMID:23421296

  12. Breakdown of atmospheric pressure microgaps at high excitation frequencies

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-05-07

    Microwave (mw) breakdown of atmospheric pressure microgaps is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current (dc) microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied.

  13. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  14. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  15. Dielectric breakdown in a dilute plasma: A 20 kilovolt limited study

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Grier, N. T.

    1972-01-01

    A dielectric breakdown study was made of several materials proposed for high-voltage (16-kV) use on solar-cell arrays at space conditions. The tests were made in an argon plasma whose electron density and temperature approximately simulated conditions at an altitude of 300 km. The maximum voltage used was 20 kV. The results indicate that the breakdown voltages of the materials tested are larger than those quoted in the literature for dielectric between two metal electrodes.

  16. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  17. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  18. Module Two: Voltage; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will study and learn what voltage is, how it is generated, what AC (alternating current) and DC (direct current) are and why both kinds are needed, and how to measure voltages. The module is divided into six lessons: EMF (electromotive force) from chemical action, magnetism, electromagnetic induction, AC voltage, the…

  19. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  20. Voltage-clearance recommendations for printed boards

    SciTech Connect

    Jennings, C W; Cave, G; Evans, A; Harrington, D J; Kirchenbaum, J; Martz, R E; Mierendorf, R C; Smith, G A

    1980-01-01

    Present and future trends in printed board designs point to higher circuit densities with narrower lines and closer spacings. Some designers are now laying out boards with 0.13 mm lines and spacings. The reduction of nominal spacing between conductive elements has raised questions concerning the adequacy of present voltage-clearance recommendations. The present recommendations are considered too conservative in that they are weighted with large safety factors, especially for small clearances, and are frequently disregarded by many designers. Published voltage breakdown measurements made on printed boards with comb patterns with their enhanced conductor test lengths show breakdowns occurring at much higher voltages than those specified for the clearances in existing documents. A Task Group was set up to review published breakdown measurements and to make any additional measurements necessary to provide voltage-clearance recommendations. These recommendations are reported.

  1. Soft breakdown characteristics of ultralow-k time-dependent dielectric breakdown for advanced complementary metal-oxide semiconductor technologies

    NASA Astrophysics Data System (ADS)

    Chen, Fen; Shinosky, Michael

    2010-09-01

    During technology development, the study of ultralow-k (ULK) time-dependent dielectric breakdown (TDDB) is important for assuring robust reliability. As the technology advances, the increase in ULK leakage current noise level and reversible current change induced by soft breakdown (SBD) during stress has been observed. In this paper, the physical origin of SBD and reversible breakdown, and its correlation to conventional hard breakdowns (HBDs) were extensively studied. Based on constant voltage stress (CVS) and constant current stress (CCS) results, it was concluded that SBD in ULK is an intrinsic characteristic for ULK material, and all first breakdown events most likely are soft instead of hard. Therefore, a unified understanding of SBD and HBD for low-k TDDB was established. Furthermore, the post-SBD and HBD breakdown conduction characteristics were explored and their impacts on circuit operation were discussed. Based on current limited constant voltage stress studies, it was found that the power dissipation, not the stored energy, determined the severity of ULK dielectric breakdown, and the postbreakdown conduction properties. A percolation-threshold controlled, variable-range-hopping (VRH) model was proposed to explain all postbreakdown aspects of SBD and HBD of ULK material.

  2. High Voltage Power Supply Design Guide for Space

    NASA Technical Reports Server (NTRS)

    Bever, Renate S.; Ruitberg, Arthur P.; Kellenbenz, Carl W.; Irish, Sandra M.

    2006-01-01

    This book is written for newcomers to the topic of high voltage (HV) in space and is intended to replace an earlier (1970s) out-of-print document. It discusses the designs, problems, and their solutions for HV, mostly direct current, electric power, or bias supplies that are needed for space scientific instruments and devices, including stepping supplies. Output voltages up to 30kV are considered, but only very low output currents, on the order of microamperes. The book gives a brief review of the basic physics of electrical insulation and breakdown problems, especially in gases. It recites details about embedment and coating of the supplies with polymeric resins. Suggestions on HV circuit parts follow. Corona or partial discharge testing on the HV parts and assemblies is discussed both under AC and DC impressed test voltages. Electric field analysis by computer on an HV device is included in considerable detail. Finally, there are many examples given of HV power supplies, complete with some of the circuit diagrams and color photographs of the layouts.

  3. Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps

    NASA Astrophysics Data System (ADS)

    Meng, Guodong; Cheng, Yonghong; Dong, Chengye; Wu, Kai

    2014-12-01

    The understanding of electrical breakdown in atmospheric air across micrometer gaps is critically important for the insulation design of micro & nano electronic devices. In this paper, planar aluminum electrodes with gaps ranging from 2 μm to 40 μm were fabricated by microelectromechanical system technology. The influence factors including gap width and surface dielectric states were experimentally investigated using the home-built test and measurement system. Results showed that for SiO2 layers the current sustained at 2-3 nA during most of the pre-breakdown period, and then rose rapidly to 10-30 nA just before breakdown due to field electron emission, followed by the breakdown. The breakdown voltage curves demonstrated three stages: (1) a constantly decreasing region (the gap width d < 5 μm), where the field emission effect played an important role just near breakdown, supplying enough initial electrons for the breakdown process; (2) a plateau region with a near constant breakdown potential (5 μm < d < 10 μm) (3) a region for large gaps that adhered to Paschen's curve (d > 10 μm). And the surface dielectric states including the surface resistivity and secondary electron yield were verified to be related to the propagation of discharge due to the interaction between initial electrons and dielectrics.

  4. Bulk breakdown in rexolite for non-uniform field geometries and single polarity pulses <10 microseconds.

    SciTech Connect

    Savage, Mark Edward; Stoltzfus, Brian Scott

    2005-06-01

    Although there is much written in regards to voltage breakdown of polymeric insulators under AC and DC conditions, much less is written involving Rexolite{copyright}(1422), non-uniform field geometries, and impulse conditions. Yet, in order to design optimized pulsed power systems with some desired degree of reliability, understanding the behavior of this type of insulating system is needed. Specifically, Sandia National Laboratory's ZR project, which will use anode plugs in the vacuum stack (thus increasing the electrical stress in the Rexolite insulators), needs to be able to estimate the reliability of these vacuum stack insulators. In an effort to estimate the insulator's lifetime small scale testing is in progress. Nine samples have been tested so far and at least ten more will be tested. Results from the current testing suggest that the Rexolite 'ages' from pulse to pulse, that there is some volume dependence on breakdown strength, and that the electrode-vacuum-insulator interface has an affect on the insulator lifetime.

  5. Controlled electron emission and vacuum breakdown with nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Seznec, B.; Dessante, Ph; Caillault, L.; Babigeon, J.-L.; Teste, Ph; Minea, T.

    2016-06-01

    Vacuum electron sources exploiting field emission are generally operated in direct current (DC) mode. The development of nanosecond and sub-nanosecond pulsed power supplies facilitates the emission of compact bunches of electrons of high density. The breakdown level is taken as the highest value of the voltage avoiding the thermo-emission instability. The effect of such ultra-fast pulses on the breakdown voltage and the emitted electron current is discussed as a result of the thermo-emission modelling applied to a significant protrusion. It is found that pulsing very rapidly the vacuum breakdown occurs at higher voltage values than for the DC case, because it rises faster than the heat diffusion. In addition, the electron emission current increases significantly regardless of the theoretical approach is used. A comparative study of this theoretical work is discussed for several different forms of the protrusion (elliptic and hyperbolic) and different metals (hence varying the melting point), particularly refractory (tungsten) versus conductor (titanium). Pulsed mode operation can provide an increase on breakdown voltage (up to 18%) and a significant increase (up to 330%) of the electron extracted current due to its high non-linear dependency with the voltage, for the case for the case with a hyperbolic protrusion.

  6. Backside optimization for improving avalanche breakdown behavior of 4.5 kV IGBT

    NASA Astrophysics Data System (ADS)

    Xiaoli, Tian; Jiang, Lu; Yuan, Teng; Wenliang, Zhang; Shuojin, Lu; Yangjun, Zhu

    2015-03-01

    The static avalanche breakdown behavior of 4.5 kV high-voltage IGBT is studied by theory analysis and experiment. The avalanche breakdown behaviors of the 4.5 kV IGBTs with different backside structures are investigated and compared by using the curve tracer. The results show that the snap back behavior of the breakdown waveform is related to the bipolar PNP gain, which leads to the deterioration of the breakdown voltage. There are two ways to optimize the backside structure, one is increasing the implant dose of the N+ buffer layer, the other is decreasing the implant dose of the P+ collector layer. It is found that the optimized structure is effective in suppressing the snap back behavior and improving the breakdown characteristic of high voltage IGBT. Project supported by the National Major Science and Technology Special Project of China (No. 2011ZX02503-003).

  7. Experimental validation of a high voltage pulse measurement method.

    SciTech Connect

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobate's (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps - 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensor's U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  8. Analysis of Laser Breakdown Data

    NASA Astrophysics Data System (ADS)

    Becker, Roger

    2009-03-01

    Experiments on laser breakdown for ns pulses of 532 nm or 1064 nm light in water and dozens of simple hydrocarbon liquids are analyzed and compared to widely-used models and other laser breakdown experiments reported in the literature. Particular attention is given to the curve for the probability of breakdown as a function of the laser fluence at the beam focus. Criticism is made of the na"ive forms of both ``avalanche'' breakdown and multi-photon breakdown. It appears that the process is complex and is intimately tied to the chemical group of the material. Difficulties with developing an accurate model of laser breakdown in liquids are outlined.

  9. Inexpensive pulse-train converter measures analog voltage

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1977-01-01

    Converter measures small voltages or currents in presence of very large common-mode voltages (thousands of volts ac or dc). Advantages are low power consumption, transmission via single isolated channel, simplicity, and operation from single-polarity power supply.

  10. Experimental and theoretical studies of a high temperature cesium-barium tacitron, with application to low voltage-high current inversion. Final report, April 1, 1993--February 28, 1994

    SciTech Connect

    Murray, C.S.; El-Genk, M.S.

    1994-02-01

    A low voltage/high current switch refer-red as ``Cs-Ba tacitron`` is studied for use as a dc to ac inverter in high temperature and/or ionizing radiation environments. The operational characteristics of the Cs-Ba tacitron as a switch were investigated experimentally in three modes: (a) breakdown mode, (b) I-V mode, and (c) current modulation mode. Operation parameters measured include switching frequencies up to 20 kHz, hold-off voltages up to 200 V, current densities in excess of 15 A/CM{sup 2}, switch power density of 1 kW/cm{sup 2}, and a switching efficiency in excess of 90 % at collector voltages greater than 30 V. Also, if the discharge current is circuit limited to a value below the maximum thermal emission current density, the voltage drop is constant and below 3 V.

  11. Voltage regulator

    SciTech Connect

    Rossetti, N.

    1986-12-09

    This patent describes a prior art integrated circuit voltage regulator having an unregulated voltage input terminal and a regulated voltage output terminal, and further comprising: a first transistor having an emitter, a collector and a base, the first transistor having a first base-emitter voltage characteristic, the collector of the first transistor being connected through a first resistor to a current source. The current source is derived from the unregulated voltage, the emitter of the first transistor being connected through a second resistor to a reference voltage; and a second transistor having an emitter, a collector and a base, the second transistor having a second base-emitter voltage characteristic, the base of the second transistor being connected to the collector of the first transistor. The collector of the second transistor is connected to the current source, the emitter of the second transistor being connected to the reference voltage. The regulated output of the voltage regulator is provided at the collector of the second transistor and the regulated voltage output is a function of the first base-emitter voltage characteristic of the first transistor plus the quantity comprising the difference between the first base-emitter voltage characteristic of the first transistor and the second base-emitter voltage characteristic of the second transistor, times the ratio of the value of resistance of the first resistor and the value of resistance of the second resistor. The improvement described here comprises: a third transistor having a collector, an emitter and a base.

  12. Radiatively heated high voltage pyroelectric crystal pulser

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Chen, A. X.; Leung, K.-N.; Morse, D. H.; Raber, T. N.

    2014-01-01

    Thin lithium tantalate pyroelectric crystals in a multi-stage pulser were heated by quartz lamps during their charging phase to generate high voltage pulses. The charging voltage was determined empirically based on the measured breakdown voltage in air and verified by the induced breakdown voltage of an external high voltage power supply. A four-stage pyroelectric crystal device generated pulse discharges of up to 86 kV using both quartz lamps (radiative) and thermoelectric (conductive) heating. Approximately 50 mJ of electrical energy was harvested from the crystals when radiatively heated in air, and up to 720 mJ was produced when the crystals were submerged in a dielectric fluid. It is anticipated that joule-level pulse discharges could be obtained by employing additional stages and optimizing the heating configuration.

  13. Beauty in the Breakdown

    ERIC Educational Resources Information Center

    Brisco, Nicole

    2008-01-01

    Most human beings look at erosion as the destruction of a surface, but artists can see that erosion often creates indefinable beauty. Where do you see beauty in the breakdown? In this article, the author presents an innovative lesson that would allow students to observe both human and physical nature. In this activity students will create a work…

  14. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    SciTech Connect

    Lockwitz, Sarah; Jostlein, Hans

    2015-06-12

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of high voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.

  15. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    DOE PAGESBeta

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less

  16. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  17. High voltage switches having one or more floating conductor layers

    SciTech Connect

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  18. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Electric field breakdown in single molecule junctions.

    PubMed

    Li, Haixing; Su, Timothy A; Zhang, Vivian; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha

    2015-04-22

    Here we study the stability and rupture of molecular junctions under high voltage bias at the single molecule/single bond level using the scanning tunneling microscope-based break-junction technique. We synthesize carbon-, silicon-, and germanium-based molecular wires terminated by aurophilic linker groups and study how the molecular backbone and linker group affect the probability of voltage-induced junction rupture. First, we find that junctions formed with covalent S-Au bonds are robust under high voltage and their rupture does not demonstrate bias dependence within our bias range. In contrast, junctions formed through donor-acceptor bonds rupture more frequently, and their rupture probability demonstrates a strong bias dependence. Moreover, we find that the junction rupture probability increases significantly above ∼1 V in junctions formed from methylthiol-terminated disilanes and digermanes, indicating a voltage-induced rupture of individual Si-Si and Ge-Ge bonds. Finally, we compare the rupture probabilities of the thiol-terminated silane derivatives containing Si-Si, Si-C, and Si-O bonds and find that Si-C backbones have higher probabilities of sustaining the highest voltage. These results establish a new method for studying electric field breakdown phenomena at the single molecule level. PMID:25675085

  20. Voltage limitations of electrostatic accelerators

    SciTech Connect

    Hyder, H. R. McK.

    1999-04-26

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine.

  1. Voltage limitations of electrostatic accelerators

    SciTech Connect

    Hyder, H.R. )

    1999-04-01

    The history of electrostatic accelerators has been punctuated by a series of projects in which innovative designs have failed to meet the expectations of their designers. From the early, air-insulated Van de Graaffs at Round Hill to certain of the large pressurized heavy ion accelerators of the 1970s and 1980s, increases in size or changes in design and materials have not always led to the maximum voltages expected or extrapolated. Since these failures have continued beyond childhood into a mature technology, it is reasonable to assume that the causes of voltage limitation are varied and complex. They have remained poorly understood for a number of reasons: resources for an extended program of research into breakdown and failure of electrostatic generators have always been meager, especially for large machines devoted to nuclear research; the inaccessibility of pressurized generators makes instrumentation difficult and testing slow; the calculation of transient and dynamic effects is laborious and the results difficult to verify; voltage test experiments on operating accelerators are inhibited by the significant risk of damage due to energy release on breakdown: and the total voltages (though not the local fields) achieved in many electrostatic accelerators exceed those produced in any other man-made environment. In this review, the behavior of several generators of different designs is examined in order to assess the importance of the various design features and operating conditions that control the maximum voltage achievable in a working machine. [copyright] [ital 1999 American Institute of Physics.

  2. The influence of the sand-dust environment on air-gap breakdown discharge characteristics of the plate-to-plate electrode

    NASA Astrophysics Data System (ADS)

    He, Bo; Zhang, Gang; Chen, Bangfa; Gao, Naikui; Li, Yaozhong; Peng, Zongren; Jin, Haiyun

    2010-03-01

    The experiments of plane-plane gap discharge was carried out in an environment of artificial sandstorm. By comparing and analyzing the differences in gap breakdown voltage between the sand & dust environment and clean air, some problems were investigated, such as effects of wind speed and particle concentration on the breakdown voltage, differences of gap discharge characteristics between the dust & sand medium and the clean air medium. The results showed that compared with the clean air environment, the dust & sand environment had a decreased gap breakdown voltage. The longer the gap distance, the greater the voltage drop; the breakdown voltage decreased with the increase of particle concentration in flow. With the increase of wind speed, the breakdown voltage decreased at the beginning and rose afterwards. The results of the paper may helpful for further research regarding the unidentified flashover and external insulation characteristics of the HV power grid in the dust & sand environment.

  3. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  4. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  5. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  6. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  7. Mechanisms of gas breakdown in non-uniform electric field between flat electrodes

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Osmayev, Ruslan; Yegorenkov, Vladimir

    2015-09-01

    This paper studies how the electric field non-uniformity and the electron diffusion escape affect the DC gas breakdown between flat electrodes. We registered the breakdown curves of the DC discharge between the electrodes having the radius of Re = 6 mm with the inter-electrode gap values L between 3 and 72 mm in the tubes of inner diameter values of 13 and 56 mm within the nitrogen pressure range p from 0.02 to 120 Torr. We found that the breakdown curves for the gap of 3 mm actually match in the total pressure range, the diffusion escape of electrons to the tube walls playing no role in the gas breakdown process. In a narrow tube the minimum breakdown voltage is constant in the range of L/Re <= 1 but with the subsequent gap growth it increases linearly in order to compensate for the diffusion loss to the tube walls. For the wide tubes of 56 mm in diameter and for the gap of 72 mm the breakdown curves possess more flat minima and they run in the range of lower breakdown voltage values than one for a narrow tube. The minimum breakdown voltage grows slowly only in the range of L/Re >2. and Scientific Center of Physical Technologies, Svobody Sq.6, Kharkov, 61022, Ukraine.

  8. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  9. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  10. Reduction of breakdown threshold by metal nanoparticle seeding in a DC microdischarge

    NASA Astrophysics Data System (ADS)

    Sawyer, Jordan; Abboud, Jacques; Zhang, Zhili; Adams, Steven F.

    2015-01-01

    Significant reduction of the breakdown threshold in a DC microdischarge via seeding metal nanoparticles has been demonstrated. Compared to standard Paschen curves in dry air, reductions in the breakdown voltage of 5% to 25% were obtained for PD values (the product of pressure and electrode gap distance) ranging from 20 to 40 Torr-cm by seeding aluminum and iron nanoparticles with mean sizes of 75 nm and 80 nm, respectively. No secondary energy source was required to achieve this breakdown threshold reduction. From high-speed chemiluminescence imaging of the discharge evolution, breakdown was shown to be initiated at reduced voltages. Following breakdown, the increase in temperature ignited some of the nanoparticles near the cathode. Results suggest that possible charging of the nanoparticles within the gap may reduce the effective transient distance, leading to the threshold reduction.

  11. High field breakdown characteristics of carbon nanotube thin film transistors.

    PubMed

    Gupta, Man Prakash; Behnam, Ashkan; Lian, Feifei; Estrada, David; Pop, Eric; Kumar, Satish

    2013-10-11

    The high field properties of carbon nanotube (CNT) network thin film transistors (CN-TFTs) are important for their practical operation, and for understanding their reliability. Using a combination of experimental and computational techniques we show how the channel geometry (length L(C) and width W(C)) and network morphology (average CNT length L(t) and alignment angle distribution θ) affect heat dissipation and high field breakdown in such devices. The results suggest that when WC ≥ L(t), the breakdown voltage remains independent of W(C) but varies linearly with L(C). The breakdown power varies almost linearly with both W(C) and L(C) when WC > L(t). We also find that the breakdown power is more susceptible to the variability in the network morphology compared to the breakdown voltage. The analysis offers new insight into the tunable heat dissipation and thermal reliability of CN-TFTs, which can be significantly improved through optimization of the network morphology and device geometry. PMID:24029606

  12. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  13. An automatic bridge for inductive voltage dividers

    SciTech Connect

    Chang, P.; Liang, C.P.; Hsiao, J.C.

    1994-12-31

    We describe an automatic, injection-type bridge for inductive voltage divider (IVD) applications at low audio frequencies. We used it to self-calibrate programmable IVDs fabricated in house, by an automated {open_quotes}boot-strap{close_quotes} procedure. It is the heart of our reference standard for ac voltage ratios as well as a calibration system for IVDs.

  14. Subnanosecond processes in the stage of breakdown formation in gas at a high pressure

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Bykov, N. M.; Ivanov, S. N.

    2008-12-01

    Results are presented from experimental studies of the prebreakdown stage of a discharge in nitrogen at pressures of a few tens of atmospheres, gap voltages higher than 140 kV, and a voltage rise time of about 1 ns. Breakdown occurs at the front of the voltage pulse; i.e., the time of breakdown formation is shorter than the front duration. It is shown that, in gaps with a nonuniform electric field, the breakdown formation time is mainly determined by the time of avalanche development to the critical number of charge carriers. The subsequent stages of breakdown (the development of the ionization wave and the buildup of the conductivity in the weakly conducting channel bridging the gap) turn out to be shorter than this time or comparable to it.

  15. Partial discharge in a high voltage experimental test assembly

    SciTech Connect

    Koss, R.J.; Brainard, J.P.

    1998-07-01

    This study was initiated when a new type of breakdown occurred in a high voltage experimental test assembly. An anomalous current pulse was observed, which indicated partial discharges, some leading to total breakdowns. High voltage insulator defects are shown along with their effect on the electrostatic fields in the breakdown region. OPERA electromagnetic field modeling software is used to calculate the fields and present a cause for the discharge. Several design modifications are investigated and one of the simplest resulted in a 25% decrease in the field at the discharge surface.

  16. Anomalous memory effect in the breakdown of low-pressure argon in a long discharge tube

    SciTech Connect

    Meshchanov, A. V.; Korshunov, A. N.; Ionikh, Yu. Z.; Dyatko, N. A.

    2015-08-15

    The characteristics of breakdown of argon in a long tube (with a gap length of 75 cm and diameter of 2.8 cm) at pressures of 1 and 5 Torr and stationary discharge currents of 5–40 mA were studied experimentally. The breakdown was initiated by paired positive voltage pulses with a rise rate of ∼10{sup 8}–10{sup 9} V/s and duration of ∼1–10 ms. The time interval between pairs was varied in the range of Τ ∼ 0.1–1 s, and that between pulses in a pair was varied from τ = 0.4 ms to ≈Τ/2. The aim of this work was to detect and study the so-called “anomalous memory effect” earlier observed in breakdown in nitrogen. The effect consists in the dynamic breakdown voltage in the second pulse in a pair being higher than in the first pulse (in contrast to the “normal” memory effect, in which the relation between the breakdown voltages is opposite). It is found that this effect is observed when the time interval between pairs of pulses is such that the first pulse in a pair is in the range of the normal memory effect of the preceding pair (under the given conditions, Τ ≈ 0.1–0.4 s). In this case, at τ ∼ 10 ms, the breakdown voltage of the second pulse is higher than the reduced breakdown voltage of the first pulse. Optical observations of the ionization wave preceding breakdown in a long tube show that, in the range of the anomalous memory effect and at smaller values of τ, no ionization wave is detected before breakdown in the second pulse. A qualitative interpretation of the experimental results is given.

  17. High-voltage portable pulsed power supply fed by low voltage source

    NASA Astrophysics Data System (ADS)

    Rezanejad, Mohammad; Sheikholeslami, Abdolreza; Adabi, Jafar; Valinejad, Mohammadreza

    2016-05-01

    This article proposes a new structure of voltage multiplier for portable pulsed power applications. In this configuration, which is based on capacitor-diode voltage multiplier, the capacitors are charged by low AC input voltage and discharge through the load in series during pulse generation mode. The proposed topology is achieved by integrating of solid-state switches with conventional voltage multiplier, which can increase the low input voltage step by step and generate high-voltage high-frequency pulsed power across the load. After some discussion, simulations and experimental results are provided to verify the effectiveness of the proposed topology.

  18. Electrical breakdown of soil under nonlinear pulsed current spreading

    NASA Astrophysics Data System (ADS)

    Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Panov, V. A.; Son, E. E.; Efimov, B. V.; Danilin, A. N.; Kolobov, V. V.; Selivanov, V. N.; Ivonin, V. V.

    2015-07-01

    Laboratory investigations on pulsed current spreading from spherical electrodes and evolution of electrical breakdown of silica sand with different water contents under a 15-20 kV voltage pulse were carried out. A sharp nonlinear decrease in the pulsed resistance of soil was observed when the current density exceeded a certain threshold value. Then ionization-overheating instability develops and leads to current contraction and plasma channel formation in the soil. The method for determination of the threshold electric field for ionization is proposed. Electrical discharge in wet sand was found to develop with a significant delay time for long discharge gaps similar to thermal breakdown.

  19. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-07-01

    Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.

  20. Voltage balanced multilevel voltage source converter system

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.

  1. Work breakdown structure guide

    SciTech Connect

    Not Available

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  2. Design of external insulation for VLF/LF bands via breakdown investigation

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanabria, Doeg

    This document reports about the role of humidity and frequency upon the breakdown of air in uniform and non-uniform electric fields for the Very Low and Low Frequency (VLF/LF) Bands (10-100 kHz), used for long distance communication. Experiments were conducted using a parallel plane configuration for a gap length range of 5-52.5 mm and a frequency range of 18-52 kHz and 60 Hz. Rod/rod and rod/plane configurations were tested at 60 Hz and 30 kHz, for a gap length range of 8-1000 mm. The results indicate that the breakdown voltage at 30 kHz is affected by humidity with varying impact based on gap configuration and length. The results show that breakdown voltage at VLF/LF decreases with humidity for uniform field gaps, opposite to that observed at 60 Hz. Short (8-45 mm) non-uniform gaps show a reduction in the breakdown voltage with humidity, while no significant variation is observed for long gaps (125-1000 mm). Breakdown voltages are observed to be markedly lower for 30 kHz when compared to the same gap at 60 Hz. The observed breakdown phenomena are explained in terms of increased space charge due to the higher frequencies. Models and humidity correction to estimate breakdown voltages at VLF/LF frequencies for uniform and non-uniform configurations were developed. Electric field simulation, space charge calculation and least squares regression were used. The models are shown to be useful for predicting breakdown voltages at VLF/LF for uniform field gap spacings up to 125 mm and nonuniform field gap spacings up to 4 m.

  3. Method of making high breakdown voltage semiconductor device

    DOEpatents

    Arthur, Stephen D.; Temple, Victor A. K.

    1990-01-01

    A semiconductor device having at least one P-N junction and a multiple-zone junction termination extension (JTE) region which uniformly merges with the reverse blocking junction is disclosed. The blocking junction is graded into multiple zones of lower concentration dopant adjacent termination to facilitate merging of the JTE to the blocking junction and placing of the JTE at or near the high field point of the blocking junction. Preferably, the JTE region substantially overlaps the graded blocking junction region. A novel device fabrication method is also provided which eliminates the prior art step of separately diffusing the JTE region.

  4. On Preliminary Breakdown

    NASA Astrophysics Data System (ADS)

    Beasley, W. H.; Petersen, D.

    2013-12-01

    The preliminary breakdown phase of a negative cloud-to-ground lightning flash was observed in detail. Observations were made with a Photron SA1.1 high-speed video camera operating at 9,000 frames per second, fast optical sensors, a flat-plate electric field antenna covering the SLF to MF band, and VHF and UHF radio receivers with bandwidths of 20 MHz. Bright stepwise extensions of a negative leader were observed at an altitude of 8 km during the first few milliseconds of the flash, and were coincident with bipolar electric field pulses called 'characteristic pulses'. The 2-D step lengths of the preliminary processes were in excess of 100 meters, with some 2-D step lengths in excess of 200 meters. Smaller and shorter unipolar electric field pulses were superposed onto the bipolar electric field pulses, and were coincident with VHF and UHF radio pulses. After a few milliseconds, the emerging negative stepped leader system showed a marked decrease in luminosity, step length, and propagation velocity. Details of these events will be discussed, including the possibility that the preliminary breakdown phase consists not of a single developing lightning leader system, but of multiple smaller lightning leader systems that eventually join together into a single system.

  5. High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion

    NASA Astrophysics Data System (ADS)

    Sommerer, Timothy J.

    2014-05-01

    We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  6. Breakdown and Partial Discharge Measurements of Some Commonly Used Dielectric Materials in Liquid Nitrogen for HTS Applications

    SciTech Connect

    James, David Randy; Sauers, Isidor; Ellis, Alvin R; Tuncer, Enis; Tekletsadik, Kasegn; Hazelton, Drew

    2007-01-01

    For high temperature superconducting (HTS) power applications it is necessary to improve the understanding of the dielectric properties of materials in a cryogenic environment. It is necessary to know the breakdown strength of materials and systems as a function of gap in order to scale to higher voltages. The partial discharge (PD) onset voltage for materials is also very important since the primary aging mechanism at cryogenic temperature is PD. Another important design characteristic is the surface flashover voltage of a material in liquid nitrogen as a function of gap. With these characteristics in mind, several generic materials were investigated under a variety of electrode and gap configurations. The impulse breakdown voltage and PD onset of three types of commercial polyetherimide, filled and unfilled, were measured at room temperature and 77 K. A modest increase in PD onset voltage was observed at the lower temperature. Breakdown voltages of fiberglass reinforced plastic (FRP) cylinders for two wall thicknesses were measured which showed a decrease in strength at the larger gap. Breakdown voltages for liquid nitrogen using a sphere-plane electrode geometry were measured. Also flashover voltages along a FRP plate immersed in liquid nitrogen were performed for sphere-plane and rod-plane electrodes at 1 bar pressure. It was found that the breakdown voltage increased only slightly with increasing gap lengths.

  7. Optoelectronic switching in diamond and optical surface breakdown

    SciTech Connect

    Lipatov, E I; Tarasenko, V F

    2008-03-31

    The optoelectronic switching in two natural diamond samples of type 2-A is studied at voltages up to 1000 V and the energy density of control 60-ns, 308-nm laser pulses up to 0.6 J cm{sup -2}. It is shown that the design of a diamond switch affects the switching efficiency. When the energy density exceeds 0.2 J cm{sup -2} and the interelectrode surface is completely illuminated, the surface breakdown is initiated by UV radiation, which shunts the current flow through the diamond crystal. When the illumination of the interelectrode surface is excluded, the surface breakdown does not occur. The threshold radiation densities sufficient for initiating the surface breakdown are determined for electric field strengths up to 10 kV cm{sup -1}. (laser applications and other topics in quantum electronics)

  8. Breakdown of silicon particle detectors under proton irradiation

    SciTech Connect

    Vaeyrynen, S.; Raeisaenen, J.; Kassamakov, I.; Tuominen, E.

    2009-11-15

    Silicon particle detectors made on Czochralski and float zone silicon materials were irradiated with 7 and 9 MeV protons at a temperature of 220 K. During the irradiations, the detectors were biased up to their operating voltage. Specific values for the fluence and flux of the irradiation were found to cause a sudden breakdown in the detectors. We studied the limits of the fluence and the flux in the breakdown as well as the behavior of the detector response function under high flux irradiations. The breakdown was shown to be an edge effect. Additionally, the buildup of an oxide charge is suggested to lead to an increased localized electric field, which in turn triggers a charge carrier multiplication. Furthermore, we studied the influences of the type of silicon material and the configuration of the detector guard rings.

  9. Resistance of a pulsed electrical breakdown channel in ionic crystals

    NASA Astrophysics Data System (ADS)

    Punanov, I. F.; Emlin, R. V.; Kulikov, V. D.; Cholakh, S. O.

    2014-04-01

    A technique for estimating the resistance of the electrical breakdown channel in ionic crystals is proposed. This technique is based on measuring the channel velocity in a sample when a ballast resistor is connected to the circuit of a needle anode and on using the theoretical dependence of the channel velocity on the channel conductivity. The breakdown channel resistance at a voltage of 140 kV is about 6.5 kΩ in KCl and about 6.1 kΩ in KBr. These resistances are shown to characterize a gas phase. The gas-phase resistance is found to be nonuniform along the breakdown channel. The head part ˜1 mm long has the maximum resistance. This head region is concluded to contain dielectric substance clusters, which then decompose into metal and halogen ions. The cluster lifetime is ˜10-9 s.

  10. Grammatical Errors and Communication Breakdown.

    ERIC Educational Resources Information Center

    Tomiyama, Machiko

    This study investigated the relationship between grammatical errors and communication breakdown by examining native speakers' ability to correct grammatical errors. The assumption was that communication breakdown exists to a certain degree if a native speaker cannot correct the error or if the correction distorts the information intended to be…

  11. Breakdown of organic insulators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1983-01-01

    Solar cells and their associated electrical interconnects and leads were encapsulated in transparent elastomeric materials. Their purpose in a photovoltaic module, one of the most important for these elastomeric encapsulation materials, is to function as electrical insulation. This includes internal insulation between adjacent solar cells, between other encapsulated electrical parts, and between the total internal electrical circuitry and external metal frames, grounded areas, and module surfaces. Catastrophic electrical breakdown of the encapsulant insulation materials or electrical current through these materials or module edges to external locations can lead to module failure and can create hazards to humans. Electrical insulation stability, advanced elastomeric encapsulation materials are developed which are intended to be intrinsically free of in-situ ionic impurities, have ultralow water absorption, be weather-stable (UV, oxygen), and have high mechanical flexibility. Efforts to develop a method of assessing the life potential of organic insulation materials in photovoltaic modules are described.

  12. Dual-voltage power supply has increased efficiency

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1966-01-01

    Simple circuit provides two different dc output voltages from an ac source. It employs a full-wave rectifier connected to two passive branches from which the separate dc voltages are taken. The outputs have low ripple and good voltage regulation.

  13. Failure Modes during Low-Voltage Electrowetting.

    PubMed

    Mibus, Marcel; Hu, Xiaoyu; Knospe, Carl; Reed, Michael L; Zangari, Giovanni

    2016-06-22

    Low-voltage electrowetting devices allow significant contact angle changes below a 50 V bias; however, operation under prolonged cycling and failure modes have not yet been sufficiently elucidated. In this work, the failure modes and performance degradation of Cytop (23-210 nm)/aluminum oxide (15-44 nm) bilayers have been investigated. Contact angle and leakage current were measured during stepped voltage measurements up to failure, showing three electrowetting response regimes: ideal Young-Lippmann behavior, contact angle saturation, and dielectric breakdown. The onset of ionic conduction in aluminum oxide and the resulting breakdown control when the layer would ultimately fail, but the thickness of the Cytop layer determined the achievable contact angle versus voltage characteristics. Cyclic electrowetting measurements studied the repeatability of contact angle change using an applied voltage above or below the voltage drop needed for polymer breakdown (VT). Results show repeatable electrowetting below VT and a rapidly diminishing contact angle response above VT. The leakage current and injected charge cannot be used to comprehensively assess the stability of the system during operation. The contact potential difference measured with a Kelvin probe provides an alternative means of assessing the extent of the damage. PMID:27253515

  14. A relationship between statistical time to breakdown distributions and pre-breakdown negative differential resistance at nanometric scale

    SciTech Connect

    Foissac, R.; Blonkowski, S.; Delcroix, P.; Kogelschatz, M.

    2014-07-14

    Using an ultra-high vacuum Conductive atomic force microscopy (C-AFM) current voltage, pre-breakdown negative differential resistance (NDR) characteristics are measured together with the time dependent dielectric breakdown (TDDB) distributions of Si/SiON (1.4 and 2.6 nm thick). Those experimental characteristics are systematically compared. The NDR effect is modelled by a conductive filament growth. It is showed that the Weibull TDDB statistic distribution scale factor is proportional to the growth rate of an individual filament and then has the same dependence on the electric field. The proportionality factor is a power law of the ratio between the surfaces of the CAFM tip and the filament's top. Moreover, it was found that, for the high fields used in those experiments, the TDDB acceleration factor as the growth rate characteristic is proportional to the Zener tunnelling probability. Those observations are discussed in the framework of possible breakdown or forming mechanism.

  15. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones. PMID:22243320

  16. Study of breakdown in an ablative pulsed plasma thruster

    NASA Astrophysics Data System (ADS)

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-01

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (˜1-10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  17. Study of breakdown in an ablative pulsed plasma thruster

    SciTech Connect

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  18. Oxide thinning percolation statistical model for soft breakdown in ultrathin gate oxides

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jer; Kang, Ting-Kuo; Liu, Chuan-Hsi; Chang, Yih J.; Fu, Kuan-Yu

    2000-07-01

    An existing cell-based percolation model with parameter correlation can find its potential applications in assessing soft-breakdown (BD) statistics as long as the oxide thinning due to the localized physical damage near the SiO2/Si interface is accounted for. The resulting model is expressed explicitly with the critical trap number per cell nBD and the remaining oxide thickness tox' both as parameters. Reproduction of time-to-bimodal (soft- and hard-) breakdown statistical data from 3.3-nm-thick gate-oxide samples yields nBD of 3 and 4 for soft and hard breakdown, respectively. The extracted tox' of 1.0 nm for soft breakdown, plus the transition layer thickness of 0.5 nm in the model, is fairly comparable with literature values from current-voltage fitting. The dimension and area of the localized physically damaged region or percolation path (cell) are quantified as well. Based on the work, the origins of soft and hard breakdown are clarified in the following: (i) soft breakdown behaves intrinsically as hard breakdown, that is, they share the same defect (neutral trap) generation process and follow Poisson random statistics; (ii) both are independent events corresponding to different tox' requirements; and (iii) hard breakdown takes place in a certain path located differently from that for the first soft breakdown.

  19. Dielectric breakdown of polycrystalline alumina: A weakest-link failure analysis

    NASA Astrophysics Data System (ADS)

    Block, Benjamin

    The effects of varying electrode geometry (ball and ring) and size (radius), dielectric media (castor oil and DialaRTM oil), specimen thickness, and concentration of defects on the dielectric breakdown strength of commercial-grade alumina and high-purity fine-grained (HPFG) alumina were investigated. The breakdown strength was expressed in terms of the maximum electric field in the ceramic at the breakdown voltage calculated by finite element analysis (FEA). The breakdown strength decreased systematically with increasing electrode radius and specimen thickness. The breakdown strength increased with decreasing concentration of defects. The breakdown strength was higher in the Diala RTM oil (dielectric constant, epsilonr = 2.3 +/- 0.12) as compared to the castor oil (epsilonr = 4.59 +/- 0.06). The breakdown strength was higher for the HPFG alumina as compared to the commercial- grade alumina. These effects of the electrode geometry, specimen thickness, concentration of defects, and of the dielectric media were analyzed with a weakest-link failure model employing the Laplace and Weibull distributions for a population of defects in the material. The measured size or scaling effects of the electrodes, specimen thickness, concentration of defects, and of the liquid media on breakdown strength were in better agreement with the Laplace distribution for the population. The measured concentration of surface defects was in good agreement with the concentration of surface defects estimated from the surface area scaling of the breakdown field with the Laplace distribution.

  20. RF breakdown experiments at SLAC

    SciTech Connect

    Laurent, L.; Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C.

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  1. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  2. Nonlinear Theory and Breakdown

    NASA Technical Reports Server (NTRS)

    Smith, Frank

    2007-01-01

    The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.

  3. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  4. Corona and Motor Voltage Interim Report

    SciTech Connect

    Hsu, J.S.

    2005-05-06

    It has been suggested that to meet the FreedomCAR objectives for cost, size, weight, efficiency, and reliability higher buss voltages be utilized in HEV and FC automotive applications. The reasoning is that since electric power is equal to the product of voltage and current for a given power a higher voltage and lower current would result in smaller cable and inverter switching components. Consequently, the system can be lighter and smaller. On the other hand, higher voltages are known to require better and thicker electrical insulation that reduce the available slot area for motor windings. One cause of slow insulation breakdown is corona that gradually erodes the insulation and shortens the life expectancy of the motor. This study reports on the results of a study on corona initiating voltages for mush-wound and bobbin-wound stators. A unique testing method is illustrated.

  5. Fast shut-down protection system for radio frequency breakdown and multipactor testing.

    PubMed

    Graves, T P; Hanson, P; Michaelson, J M; Farkas, A D; Hubble, A A

    2014-02-01

    Radio frequency (RF) breakdown such as multipactor or ionization breakdown is a device-limiting phenomenon for on-orbit spacecraft used for communication, navigation, or other RF payloads. Ground testing is therefore part of the qualification process for all high power components used in these space systems. This paper illustrates a shut-down protection system to be incorporated into multipactor/ionization breakdown ground testing for susceptible RF devices. This 8 channel system allows simultaneous use of different diagnostic classes and different noise floors. With initiation of a breakdown event, diagnostic signals increase above a user-specified level, which then opens an RF switch to eliminate RF power from the high power amplifier. Examples of this system in use are shown for a typical setup, illustrating the reproducibility of breakdown threshold voltages and the lack of multipactor conditioning. This system can also be utilized to prevent excessive damage to RF components in tests with sensitive or flight hardware. PMID:24593380

  6. Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2016-06-01

    Electronics miniaturization motivates gas breakdown predictions for microscale and smaller gaps, since traditional breakdown theory fails when gap size, d, is smaller than ˜15 μm at atmospheric pressure, patm. We perform a matched asymptotic analysis to derive analytic expressions for breakdown voltage, Vb, at patm for 1 nm ≤ d ≤ 35 μm. We obtain excellent agreement between numerical, analytic, and particle-in-cell simulations for argon, and show Vb decreasing as d → 0, instead of increasing as predicted by Paschen's law. This work provides an analytic framework for determining Vb at atmospheric pressure for various gap distances that may be extended to other gases.

  7. Voltage modulation of propagating spin waves in Fe

    SciTech Connect

    Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti; Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya; Suzuki, Yoshishige

    2015-05-07

    The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.

  8. Improvement in power frequency strength of high voltage insulation structures. Final report

    SciTech Connect

    Lanoue, T.J.

    1980-09-01

    The need is foreseen to improve the power frequency strength of multi-dielectric insulation structures compared to the lightning and switching impulse strength. A fundamental investigation of the reaction of complex insulation models to voltages from the lightning impulse range through the long time power frequency range has been conducted. The results of this investigation will make it possible to determine principles for improving the power frequency strengths. The improvement in the power frequency strength should then make it possible to design insulation systems with optimized insulation spaces which would have adequate margin for power frequency overvoltages and would be properly coordinated with the arresters. The project involved three main areas of investigation: a review of system overvoltages; insulation studies in oil, using small models and complex insulation modes; and insulation studies in SF/sub 6/ gas. The studies and experiments are described, and the results are itemized. It is recommended that future insulation studies in oil should include a thorough investigation to correlate impurity particle concentration, size, shape, and type (metallic, dielectric) commonly found in power apparatus with 60 Hz breakdown of ASTM-D1816 standard electrodes, and a fundamental investigation should be undertaken to sort out the role played by electrohydrodynamic liquid motion in the AC breakdown of simple non-uniform field gaps and oil-paper insulation models for very pure and contaminated oil.

  9. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    SciTech Connect

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe; Kirchartz, Thomas

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.

  10. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    SciTech Connect

    Esch, H. P. L. de Simonin, A.; Grand, C.

    2015-04-08

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm{sup 2} electrodes have been performed at an electrode distance d=11 mm under vacuum (P∼5×10{sup −6} mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ∼10000 seconds of high-voltage (HV) on-time, having accumulated ∼1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (∼100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  11. High stored-energy breakdown tests on electrodes made of stainless steel, copper, titanium and molybdenum

    NASA Astrophysics Data System (ADS)

    de Esch, H. P. L.; Simonin, A.; Grand, C.

    2015-04-01

    IRFM have conducted resilience tests on electrodes made of Cu, stainless steel 304L, Ti and Mo against breakdowns up to 170 kV and 300 J. The tests of the 10×10 cm2 electrodes have been performed at an electrode distance d=11 mm under vacuum (P˜5×10-6 mbar). No great difference in voltage holding between the materials could be identified; all materials could reach a voltage holding between 140 and 170 kV over the 11 mm gap, i.e. results scatter within a ±10% band. After exposure to ˜10000 seconds of high-voltage (HV) on-time, having accumulated ˜1000 breakdowns, the electrodes were inspected. The anodes were covered with large and small craters. The rugosity of the anodes had increased substantially, that of the cathodes to a lesser extent. The molybdenum electrodes are least affected, but this does not show in their voltage holding capability. It is hypothesized that penetrating high-energy electrons from the breakdown project heat below the surface of the anode and cause a micro-explosion of material when melting point is exceeded. Polished electrodes have also been tested. The polishing results in a substantially reduced breakdown rate in the beginning, but after having suffered a relatively small number (˜100) of breakdowns, the polished electrodes behaved the same as the unpolished ones.

  12. A Matter of Quantum Voltages

    SciTech Connect

    Sellner, Bernhard; Kathmann, Shawn M.

    2014-11-14

    Voltages inside matter are relevant to crystallization, materials science, biology, catalysis, and aqueous chemistry. Electron holography is able to measure the variation of voltages in matter and modern supercomputers allow the calculation of quantum voltages with practically unlimited spatial and temporal resolution of bulk systems. Of particular interest is the Mean Inner Potential (Vo) - the spatial average of these voltages. Voltages are very sensitive to the distribution of electrons and provide metrics to understand interactions in condensed phases. In the present study, we find excellent agreement with measurements of Vo for vitrified water and salt crystals and demonstrate the impact of covalent and ionic bonding as well as intermolecular/atomic interactions. Furthermore, we predict Vo as well as the fluctuations of these voltages in aqueous NaCl electrolytes and characterize the changes in their behavior as the resolution increases below the size of atoms. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Fundamentals of undervoltage breakdown through the Townsend mechanism

    NASA Astrophysics Data System (ADS)

    Cooley, James E.

    electrons required to achieve breakdown is measured in argon at pd values of 3-10 Torr-m. The required electron pulse magnitude was found to scale inversely with pressure and voltage in this parameter range. When higher-power infrared laser pulses were used to heat the cathode surface, a faster, streamer-like breakdown mechanism was occasionally observed. As an example application, an investigation into the requirements for initiating discharges in Gas-fed Pulsed Plasma Thrusters (GFPPTs) is conducted. Theoretical investigations based on order-of-magnitude characterizations of previous GFPPT designs reveal that high-conductivity arc discharges are required for critically-damped matching of circuit components, and that relatively fast streamer breakdown is preferable to minimize delay between triggering and current sheet formation. The faster breakdown mechanism observed in the experiments demonstrates that such a discharge process can occur. However, in the parameter space occupied by most thrusters, achieving the phenomenon by way of a space charge distortion caused purely by an electron pulse should not be possible. Either a transient change in the distribution of gas density, through ablation or desorption, or a thruster design that occupies a different parameter space, such as one that uses higher mass bits, higher voltages, or smaller electrode spacing, is required for undervoltage breakdown to occur.

  14. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    NASA Technical Reports Server (NTRS)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  15. Controllable high voltage source having fast settling time

    NASA Technical Reports Server (NTRS)

    Doong, H.; Acuna, M. H. (Inventor)

    1975-01-01

    A high voltage dc stepping power supply for sampling a utilization device such as an electrostatic analyzer has a relatively fast settling time for voltage steps. The supply includes a waveform generator for deriving a low voltage staircase waveform that feeds a relatively long response time power supply, deriving a high output voltage generally equal to a predetermined multiple of the input voltage. In the power supply, an ac voltage modulated by the staircase waveform is applied to a step-up transformer and then to a voltage multiplier stack to form a high voltage, relatively poor replica of the input waveform at an intermediate output terminal. A constant dc source, applied to the input of the power supply, biases the voltage at the intermediate output terminal to be in excess of the predetermined multiple of the input voltage.

  16. Scaling law for direct current field emission-driven microscale gas breakdown

    SciTech Connect

    Venkattraman, A.; Alexeenko, A. A.

    2012-12-15

    The effects of field emission on direct current breakdown in microscale gaps filled with an ambient neutral gas are studied numerically and analytically. Fundamental numerical experiments using the particle-in-cell/Monte Carlo collisions method are used to systematically quantify microscale ionization and space-charge enhancement of field emission. The numerical experiments are then used to validate a scaling law for the modified Paschen curve that bridges field emission-driven breakdown with the macroscale Paschen law. Analytical expressions are derived for the increase in cathode electric field, total steady state current density, and the ion-enhancement coefficient including a new breakdown criterion. It also includes the effect of all key parameters such as pressure, operating gas, and field-enhancement factor providing a better predictive capability than existing microscale breakdown models. The field-enhancement factor is shown to be the most sensitive parameter with its increase leading to a significant drop in the threshold breakdown electric field and also to a gradual merging with the Paschen law. The proposed scaling law is also shown to agree well with two independent sets of experimental data for microscale breakdown in air. The ability to accurately describe not just the breakdown voltage but the entire pre-breakdown process for given operating conditions makes the proposed model a suitable candidate for the design and analysis of electrostatic microscale devices.

  17. Scaling law for direct current field emission-driven microscale gas breakdown

    NASA Astrophysics Data System (ADS)

    Venkattraman, A.; Alexeenko, A. A.

    2012-12-01

    The effects of field emission on direct current breakdown in microscale gaps filled with an ambient neutral gas are studied numerically and analytically. Fundamental numerical experiments using the particle-in-cell/Monte Carlo collisions method are used to systematically quantify microscale ionization and space-charge enhancement of field emission. The numerical experiments are then used to validate a scaling law for the modified Paschen curve that bridges field emission-driven breakdown with the macroscale Paschen law. Analytical expressions are derived for the increase in cathode electric field, total steady state current density, and the ion-enhancement coefficient including a new breakdown criterion. It also includes the effect of all key parameters such as pressure, operating gas, and field-enhancement factor providing a better predictive capability than existing microscale breakdown models. The field-enhancement factor is shown to be the most sensitive parameter with its increase leading to a significant drop in the threshold breakdown electric field and also to a gradual merging with the Paschen law. The proposed scaling law is also shown to agree well with two independent sets of experimental data for microscale breakdown in air. The ability to accurately describe not just the breakdown voltage but the entire pre-breakdown process for given operating conditions makes the proposed model a suitable candidate for the design and analysis of electrostatic microscale devices.

  18. Improvement of Ron under AC Operation of Floating Island and Thick Bottom Oxide Trench Gate MOSFET (FITMOS)

    NASA Astrophysics Data System (ADS)

    Takaya, Hidefumi; Miyagi, Kyosuke; Hamada, Kimimori

    A MOSFET structure called a FITMOS (Floating Island and Thick Bottom Oxide Trench Gate MOSFET) that exhibits a record low loss in the 60V breakdown voltage (BVdss) range has been successfully developed. The following improvements achieved progress in the characteristic of FITMOS. (1) At the time of AC operation, the charges in the floating P islands that are a feature of the floating type device become greater, thereby increasing the on-resistance (Ron) due to the JFET effect. This issue was solved by forming passive hole gates in the end walls of the trenches. The Ron under AC operation is equivalent to the Ron under DC operation. This paper clarified the influence of the passive hole gate diffusion layer shape and the impurity concentration to BVdss and AC operation. (2) The trade-off of BVdss and Ron has been improved by making the floating island into an elliptical form. A BVdss of 83V and a specific on-resistance (RonA) of 36mΩmm2 were obtained.

  19. Voltage Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.

  20. Plasma breakdown and combustion ignition

    NASA Astrophysics Data System (ADS)

    McNeill, Donald H.; Tran, Phuoc

    2001-10-01

    Ignition in chemically reactive media and electrical breakdown are among the most widely used transient processes. The two phenomena operate together during electrical (and laser) spark ignition of combustible gases. Analogs between them show up in Semenov's early (1920's) work on chemical chain reactions and on thermal breakdown of dielectrics. Both breakdown and ignition are under active study today. The energy source for breakdown is an applied electric field, and that for ignition, an applied flux of heat or radicals. Electrons and intermediate reactants are the corresponding driver particles, with a velocity difference that implies a vast difference in the growth rates for the two processes. Combustion takes place in a fuel-oxidant mixture, and an ignited reaction can proceed until the fuel or oxidant is depleted, while a (non-afterglow, non-fusion) plasma is sustained by an external power supply. The energy balance, propagation behavior, and time evolution of some specific forms of plasma breakdown and chemical ignition are further compared in order to illustrate their physical nature.

  1. Vortex breakdown incipience: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  2. Electrical breakdown in tissue electroporation.

    PubMed

    Guenther, Enric; Klein, Nina; Mikus, Paul; Stehling, Michael K; Rubinsky, Boris

    2015-11-27

    Electroporation, the permeabilization of the cell membrane by brief, high electric fields, has become an important technology in medicine for diverse application ranging from gene transfection to tissue ablation. There is ample anecdotal evidence that the clinical application of electroporation is often associated with loud sounds and extremely high currents that exceed the devices design limit after which the devices cease to function. The goal of this paper is to elucidate and quantify the biophysical and biochemical basis for this phenomenon. Using an experimental design that includes clinical data, a tissue phantom, sound, optical, ultrasound and MRI measurements, we show that the phenomenon is caused by electrical breakdown across ionized electrolysis produced gases near the electrodes. The breakdown occurs primarily near the cathode. Electrical breakdown during electroporation is a biophysical phenomenon of substantial importance to the outcome of clinical applications. It was ignored, until now. PMID:26482855

  3. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1985-08-05

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  4. Low voltage arc formation in railguns

    DOEpatents

    Hawke, Ronald S.

    1987-01-01

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile.

  5. Low voltage arc formation in railguns

    DOEpatents

    Hawke, R.S.

    1987-11-17

    A low voltage plasma arc is first established across the rails behind the projectile by switching a low voltage high current source across the rails to establish a plasma arc by vaporizing a fuse mounted on the back of the projectile, maintaining the voltage across the rails below the railgun breakdown voltage to prevent arc formation ahead of the projectile. After the plasma arc has been formed behind the projectile a discriminator switches the full energy bank across the rails to accelerate the projectile. A gas gun injector may be utilized to inject a projectile into the breech of a railgun. The invention permits the use of a gas gun or gun powder injector and an evacuated barrel without the risk of spurious arc formation in front of the projectile. 2 figs.

  6. Kerr electro-optic field mapping study of the effect of charge injection on the impulse breakdown strength of transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zahn, M.

    2013-10-01

    The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.

  7. Spectral Measurements from the Optical Emission of the A.C. Plasma Anemometer

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Marshall, Curtis; Corke, Thomas; Gogineni, Sivaram

    2015-11-01

    The optical emission properties of a new class of AC-driven flow sensors based on a glow discharge (plasma) is presented. These results extend the utility of the plasma sensor that has recently been developed for measurements in high-enthalpy flows. The plasma sensor utilizes a high frequency (1MHz) AC discharge between two electrodes as the main sensing element. The voltage drop across the discharge correlates to changes in the external flow which can be calibrated for mass-flux (ρU) or pressure depending on the design of the electrodes and orientation relative to the free-stream flow direction. Recent experiments examine the potential for spectral analysis of the optical emission of the discharge to provide additional insight to the flow field. These experiments compare the optical emission of the plasma to emission from breakdown due to an ND:YAG laser. The oxygen 777.3 nm band in particular is a focus of interest as a marker for the determination of gas density.

  8. Electrical safety for high voltage arrays

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.

    1983-01-01

    A number of key electrical safety requirements for the high voltage arrays of central station photovoltaic power systems are explored. The suitability of representative industrial DC power switchgear for control and fault protection was evaluated. Included were AC/DC circuit breakers, electromechanical contactors and relays, load interruptors, cold disconnect devices, sectionalizing switches, and high voltage DC fuses. As appropriate, steady state and transient characteristics were analyzed. Failure modes impacting upon operation and maintenance safety were also identified, as were the voltage withstand and current interruption levels.

  9. Response of dairy cattle to transient voltages and magnetic fields

    SciTech Connect

    Reinemann, D.J.; Laughlin, N.K.; Stetson, L.E.

    1995-07-01

    Stray voltages in dairy facilities have been studied since the 1970`s. Previous research using steady-state ac and dc voltages has defined cow-contact voltage levels which may cause behavior and associated production problems. This research was designed to address concerns over possible effects of transient voltages and magnetic fields on dairy cows. Dairy cows response to transient voltages and magnetic fields was measured. The waveforms of the transient voltages applied were: 5 cycles of 60-Hz ac with a total pulse time of 83 ms, 1 cycle of 60-Hz ac with a total pulse time of 16 ms, and 1 cycle of an ac square wave (spiking positive and negative) of 2-ms duration. Alternating magnetic fields were produced by passing 60-Hz ac fundamental frequency with 2nd and 3rd harmonic and random noise components in metal structures around the cows. The maximum magnetic field associated with this current flow was in excess of 4 G. A wide range of sensitivity to transient voltages was observed among cows. Response levels from 24 cows to each transient exposure were normally distributed. No responses to magnetic fields were observed.

  10. Partial discharges and breakdown in C3F8

    NASA Astrophysics Data System (ADS)

    Koch, M.; Franck, C. M.

    2014-10-01

    Traditional search processes of gases or gas mixtures for replacing SF6 involve time consuming measurements of partial discharges and breakdown behaviour for several voltage waveforms and different field configurations. Recently a model for prediction of this behaviour for SF6 was described in literature. The model only requires basic properties of the gas such as the critical field strength and the effective ionization coefficient, which can be obtained by swarm parameter measurements, and thermodynamic properties, which can be calculated. In this paper, we show for the well-known and electronegative gas octafluoropropane (C3F8) that it is possible to transfer the model developed for SF6 to this gas to describe the breakdown behaviour of C3F8. Thus the model can be beneficial in the screening process of new insulation gases.

  11. Gas breakdown and plasma impedance in split-ring resonators

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Parsons, Stephen; Hopwood, Jeffrey

    2016-02-01

    The appearance of resonant structures in metamaterials coupled to plasmas motivates the systematic investigation of gas breakdown and plasma impedance in split-ring resonators over a frequency range of 0.5-9 GHz. In co-planar electrode gaps of 100 μm, the breakdown voltage amplitude decreases from 280 V to 225 V over this frequency range in atmospheric argon. At the highest frequency, a microplasma can be sustained using only 2 mW of power. At 20 mW, we measure a central electron density of 2 × 1020 m-3. The plasma-electrode overlap plays a key role in the microplasma impedance and causes the sheath impedance to dominate the plasma resistance at very low power levels. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  12. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ji, Yanfeng; Pan, Chengbin; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Hui, Fei; Shi, Yuanyuan; Larcher, Luca; Wu, Ernest; Lanza, Mario

    2016-01-01

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO2, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  13. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/√Hz is achieved.

  14. A battery-based, low-noise voltage source.

    PubMed

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7 x 10(-7) over 6.5 h and a noise level equal or smaller than 30 nV/square root(Hz) is achieved. PMID:20590260

  15. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  16. Anisotropic Dielectric Breakdown of Hexagonal Boron Nitride Film

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    Hexagonal boron nitride (h-BN) is considered as ideal substrate for 2D material devises. However, the reliability of insulating properties of h-BN itself has not been clarified yet. In this study, the anisotropic dielectric breakdown of h-BN is studied. We have found that the dielectric breakdown in c axis direction using a conductive atomic force microscope proceeded in the layer-by-layer manner. The obtained dielectric field strength was ~12 MV/cm, which is comparable to the conventional SiO2. On the other hand, to estimate the dielectric field strength in a direction perpendicular to c axis, voltage is applied to a relatively thick h-BN (10-60 nm) through Cr/Au electrodes fabricated on the h-BN. We realized that the absorbed water on h-BN significantly affect the IV characters and the breakdown voltage. After the adsorbed water was removed by the heating in vacuum, the dielectric field strength was determined to be ~3 MV/cm, which is the same order as that in c axis direction. This value could be increased when we consider the effect of electric field concentration around the metal electrode. Although the large difference in dielectric filed strength for two directions was initially expected due to the highly-anisotropic layered structure with the van der Waals bonding, it was not the case because the sp2 bonding should be broken for dielectric breakdown regardless of its direction. This research was supported by Grants-in-Aid for Scientific Research on Innovative Areas and for Research Activity Start-up by MEXT, Japan.

  17. Non-contact current and voltage sensor

    DOEpatents

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  18. Recovery of consciousness in broilers following combined dc and ac stunning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Broilers in the United States are typically electrically stunned using low voltage-high frequency pulsed DC water bath stunners and in the European Union broilers are electrocuted using high voltage-low frequency AC. DC stunned broilers regain consciousness in the absence of exsanguination and AC st...

  19. In situ study on low-k interconnect time-dependent-dielectric-breakdown mechanisms

    SciTech Connect

    Boon Yeap, Kong; Gall, Martin; Liao, Zhongquan; Sander, Christoph; Muehle, Uwe; Zschech, Ehrenfried; Justison, Patrick; Aubel, Oliver; Hauschildt, Meike; Beyer, Armand; Vogel, Norman

    2014-03-28

    An in situ transmission-electron-microscopy methodology is developed to observe time-dependent dielectric breakdown (TDDB) in an advanced Cu/ultra-low-k interconnect stack. A test structure, namely a “tip-to-tip” structure, was designed to localize the TDDB degradation in small dielectrics regions. A constant voltage is applied at 25 °C to the “tip-to-tip” structure, while structural changes are observed at nanoscale. Cu nanoparticle formation, agglomeration, and migration processes are observed after dielectric breakdown. The Cu nanoparticles are positively charged, since they move in opposite direction to the electron flow. Measurements of ionic current, using the Triangular-Voltage-Stress method, suggest that Cu migration is not possible before dielectric breakdown, unless the Cu/ultra-low-k interconnect stacks are heated to 200 °C and above.

  20. Analysis of the polarity effects in the electrical breakdown of liquids.

    SciTech Connect

    Woodworth, Joseph Ray; Qian, J.; Joshi, Ravindra P.; Schamiloglu, Edl; Gaudet, John A.; Lehr, Jane Marie

    2005-03-01

    Electrical breakdown simulations are carried out for liquids in response to a sub-microsecond ({approx}100-200 ns) voltage pulse. This model builds on our previous analysis and focuses particularly on the polarity effect seen experimentally in point-plane geometries. The flux-corrected transport approach is used for the numerical implementation. Our model adequately explains experimental observations of pre-breakdown current fluctuations, streamer propagation and branching as well as disparities in hold-off voltage and breakdown initiation times between the anode and cathode polarities. It is demonstrated that polarity effects basically arise from the large mobility difference between electrons and ions. The higher electron mobility leads to greater charge smearing and diffusion that impacts the local electric field distributions. Non-linear couplings between the number density, electric field and charge generation rates then collectively affect the formation of ionized channels and their temporal dynamics.

  1. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 μm). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  2. Power factor control system for AC induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1977-01-01

    A power factor control system for use with ac induction motors was designed which samples lines voltage and current through the motor and decreases power input to the motor proportional to the detected phase displacement between current and voltage. This system provides, less power to the motor, as it is less loaded.

  3. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    NASA Astrophysics Data System (ADS)

    Pejović, Milić M.; Denić, Dragan B.; Pejović, Momčilo M.; Nešić, Nikola T.; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  4. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices

    SciTech Connect

    Pejovic, Milic M.; Denic, Dragan B.; Pejovic, Momcilo M.; Nesic, Nikola T.; Vasovic, Nikola

    2010-10-15

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  5. A single-phase embedded Z-source DC-AC inverter.

    PubMed

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241

  6. A Single-Phase Embedded Z-Source DC-AC Inverter

    PubMed Central

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241

  7. Numerical parameter constraints for accurate PIC-DSMC simulation of breakdown from arc initiation to stable arcs

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Hopkins, Matthew; Moore, Stan; Boerner, Jeremiah; Cartwright, Keith

    2015-09-01

    Simulation of breakdown is important for understanding and designing a variety of applications such as mitigating undesirable discharge events. Such simulations need to be accurate through early time arc initiation to late time stable arc behavior. Here we examine constraints on the timestep and mesh size required for arc simulations using the particle-in-cell (PIC) method with direct simulation Monte Carlo (DMSC) collisions. Accurate simulation of electron avalanche across a fixed voltage drop and constant neutral density (reduced field of 1000 Td) was found to require a timestep ~ 1/100 of the mean time between collisions and a mesh size ~ 1/25 the mean free path. These constraints are much smaller than the typical PIC-DSMC requirements for timestep and mesh size. Both constraints are related to the fact that charged particles are accelerated by the external field. Thus gradients in the electron energy distribution function can exist at scales smaller than the mean free path and these must be resolved by the mesh size for accurate collision rates. Additionally, the timestep must be small enough that the particle energy change due to the fields be small in order to capture gradients in the cross sections versus energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  8. Protein breakdown in cancer cachexia.

    PubMed

    Sandri, Marco

    2016-06-01

    Skeletal muscle is a highly adaptive tissue, capable of altering muscle fiber size, functional capacity and metabolism in response to physiological stimuli. However, pathological conditions such as cancer growth compromise the mechanisms that regulate muscle homeostasis, resulting in loss of muscle mass, functional impairment and compromised metabolism. This tumor-induced condition is characterized by enhanced muscle protein breakdown and amino acids release that sustain liver gluconeogenesis and tissue protein synthesis. Proteolysis is controlled by the two most important cellular degradation systems, the ubiquitin proteasome and autophagy lysosome. These systems are carefully regulated by different signalling pathways that determine protein and organelle turnover. In this review we will describe the involvement of the ubiquitin proteasome and autophagy lysosome systems in cancer cachexia and the principal signalling pathways that regulate tumor-induced protein breakdown in muscle. PMID:26564688

  9. Shaft Voltage and Life of Bearing electric-erosion for the Brushless DC Motor

    NASA Astrophysics Data System (ADS)

    Maetani, Tatsuo; Isomura, Yoshinori; Komiyama, Hiroshi; Morimoto, Shigeo

    This paper describes the life of noise of bearing electro-erosion in the shaft voltage of brushless DC motors. We confirmed that shaft voltage is suppressed to equal to or less than the dielectric breakdown voltage of bearing lubricant in the insulated rotor proposed for suppression of shaft voltage. However, since bearing electro-erosion appears over time along with the deterioration of noise performance, the threshold of the shaft voltage to secure noise performance over long periods of time is necessary. Therefore, the threshold of the shaft voltage that influences the life of noise was obtained in acceleration tests.

  10. Nanopore Fabrication by Controlled Dielectric Breakdown

    PubMed Central

    Tabard-Cossa, Vincent

    2014-01-01

    Nanofabrication techniques for achieving dimensional control at the nanometer scale are generally equipment-intensive and time-consuming. The use of energetic beams of electrons or ions has placed the fabrication of nanopores in thin solid-state membranes within reach of some academic laboratories, yet these tools are not accessible to many researchers and are poorly suited for mass-production. Here we describe a fast and simple approach for fabricating a single nanopore down to 2-nm in size with sub-nm precision, directly in solution, by controlling dielectric breakdown at the nanoscale. The method relies on applying a voltage across an insulating membrane to generate a high electric field, while monitoring the induced leakage current. We show that nanopores fabricated by this method produce clear electrical signals from translocating DNA molecules. Considering the tremendous reduction in complexity and cost, we envision this fabrication strategy would not only benefit researchers from the physical and life sciences interested in gaining reliable access to solid-state nanopores, but may provide a path towards manufacturing of nanopore-based biotechnologies. PMID:24658537

  11. Proposed RF Breakdown Studies at the AWA

    SciTech Connect

    Antipov, S.; Conde, M.; Gai, W.; Power, J.G.; Spentzouris, L.; Yusof, Z.; Dolgashev, V.; /SLAC

    2007-03-21

    A study of breakdown mechanism has been initiated at the Argonne Wakefield Accelerator (AWA). Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. We plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV) to determine the role of explosive electron emission in the breakdown process. Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector [1] that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after the breakdown can shed some light on a number of observations such as the crater formation process.

  12. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  13. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  14. Breakdown-induced thermochemical reactions in HfO2 high-κ/polycrystalline silicon gate stacks

    NASA Astrophysics Data System (ADS)

    Ranjan, R.; Pey, K. L.; Tung, C. H.; Tang, L. J.; Ang, D. S.; Groeseneken, G.; De Gendt, S.; Bera, L. K.

    2005-12-01

    The chemistry of dielectric-breakdown-induced microstructural changes in HfO2 high-κ/polycrystalline silicon gate nMOSFETs under constant voltage stress has been studied. Based on an electron energy loss spectrometry analysis, the hafnium and oxygen chemical bonding in the breakdown induced Hf-based compounds of a "ball-shaped" defect is found to be different compared to the stoichiometric HfO2 and SiO2. The formation of possibly HfSixOy and HfSix compounds in the "ball-shaped" defect is attributed to a thermochemical reaction triggered by the gate dielectric breakdown.

  15. Programmable high voltage power supply with regulation confined to the high voltage section

    NASA Technical Reports Server (NTRS)

    Castell, Karen D. (Inventor); Ruitberg, Arthur P. (Inventor)

    1994-01-01

    A high voltage power supply in a dc-dc converter configuration includes a pre-regulator which filters and regulates the dc input and drives an oscillator which applies, in turn, a low voltage ac signal to the low side of a step-up high voltage transformer. The high voltage side of the transformer drives a voltage multiplier which provides a stepped up dc voltage to an output filter. The output voltage is sensed by a feedback network which then controls a regulator. Both the input and output of the regulator are on the high voltage side, avoiding isolation problems. The regulator furnishes a portion of the drive to the voltage multiplier, avoiding having a regulator in series with the load with its attendant, relatively high power losses. This power supply is highly regulated, has low power consumption, a low parts count and may be manufactured at low cost. The power supply has a programmability feature that allows for the selection of a large range of output voltages.

  16. Degradation of AlGaN/GaN high-electron mobility transistors in the current-controlled off-state breakdown

    SciTech Connect

    Kuzmik, J. Jurkovič, M.; Gregušová, D.; Ťapajna, M.; Brunner, F.; Cho, M.; Würfl, J.; Meneghesso, G.

    2014-04-28

    We investigate degradation mechanisms in AlGaN/GaN HEMTs which were repeatedly driven into the current-controlled off-state breakdown or subject to 60 s voltage- or current-controlled off state stresses. The current-controlled sweep in to the breakdown allows the sustainability of breakdown that can not be observed in the voltage controlled sweep. Only temporal changes were observed in the HEMT dc performance after repetitive sweeps, which were explained by charging/discharging of the HEMT surface at the gate-to-drain access region and in the GaN buffer below the gate. Similar changes were observed also if high-voltage stress has been applied on the drain; however, permanent degradation appears after 60 s current-controlled breakdown stress. In this case, the drain leakage current, as well as the breakdown current, increases significantly. On the other hand, the breakdown voltage, as well as the gate characteristics, remains unaltered. We suggest that the avalanche-injection process is governing the off-state breakdown event with a dominant role of the potential barrier at the channel-buffer interface.

  17. Breakdown in vapors of alcohols: methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran Lj.; Sivos, Jelena; Skoro, Nikola; Maric, Dragana; Malovic, Gordana

    2014-10-01

    Breakdown data for vapors of the two simplest alcohols - methanol and ethanol - are presented. The breakdown is achieved between plan-parallel electrodes, where cathode is made of copper and anode is a thin film of platinum deposited on quartz window. Diameter of electrodes is 5.4 cm and electrode gap 1.1 cm. We compare breakdown voltages (Paschen curves) for methyl and ethyl alcohol in the pressure range 0.1--2 Torr. In both vapors, the pressure is kept well below the vapor pressure, to prevent formation of liquid droplets. For each point of Paschen curves corresponding axial profiles of emission are recorded by ICCD camera in visual part of the spectra. Axial intensity distributions reveal important processes of excitation. Both vapors show strong emission peak near the cathode at all pd values covered by measurements, which indicates that excitation by ions and fast neutrals play important role in the discharge. Preliminary spectrally resolved measurements of the discharge structure with optical filters show that dominantly emission comes from CH band at 431 nm. There is a very low intensity of H α emission detected in ethanol vapor at high E/N, while it is much stronger in methanol even at lower E/N. It is interesting to note that H α emission in methanol exhibits exponential increase of intensity from the cathode to the anode, so it comes mainly from excitation by electrons, not heavy particles. Supported by MESTD Projects ON171037 and III41011.

  18. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    SciTech Connect

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  19. Field emission driven direct current argon discharges and electrical breakdown mechanism across micron scale gaps

    NASA Astrophysics Data System (ADS)

    Matejčik, Štefan; Radjenović, Branislav; Klas, Matej; Radmilović-Radjenović, Marija

    2015-11-01

    In this paper results of the experimental and theoretical studies of the field emission driven direct current argon microdischarges for the gaps between 1 μm and 100 μm are presented and discussed. The breakdown voltage curves and Volt-Ampere characteristics proved to be a fertile basis providing better understanding of the breakdown phenomena in microgaps. Based on the measured breakdown voltage curves, the effective yields have been estimated confirming that the secondary electron emission due to high electric field generated in microgaps depends primarily on the electric field leading directly to the violation of the Paschen's law. Experimental data are supported by the theoretical predictions that suggest departure from the scaling law and a flattening of the Paschen curves at higher pressures confirming that Townsend phenomenology breaks down when field emission becomes the key mechanism leading to the breakdown. Field emission of electrons from the cathode, the space charge effects in the breakdown and distinction between the Fowler-Nordheim field emission and the space charge limited current density are also analyzed. Images and Volt-Ampere characteristics recorded at the electrode gap size of 20 μm indicate the existence of a discharge region similar to arc at the pressure of around 200 Torr has been observed. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  20. Formation of extended directional breakdown channels produced by a copper wire exploding in the atmosphere

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pletnev, N. V.

    2013-12-01

    Experimental data for switching initiated by the electrical breakdown of air gaps up to 1.9 m long with an arbitrary geometry that are produced by an exploding copper wire 90 μm in diameter are presented. At an initial voltage of 11 kV, the stored energy equals 100-2100 J. Two channel formation conditions are possible: explosion of a wire without electrical breakdown and electrical breakdown in a channel produced by an exploding wire with a delay (current pause) no longer than 250 μs. Current and voltage waveforms across the discharge gap, as well as the resistivity values, under the electrical breakdown conditions are shown. Mechanisms and conditions for streamer initiation at a mean electric field strength in the discharge gap of 5.3-17.0 kV/m are discussed. The geometrical dimensions of plasma objects in the forming channel, the run of the electrical current under breakdown, and the formation mechanism of wire explosion products are found from color microphotographs. The formation mechanism of large aerosols in the form of tiny spherical copper and copper oxide (CuO, Cu2O) particles under wire explosion conditions is discussed.

  1. Microstructure and dielectric properties of BaTiO{sub 3} ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application

    SciTech Connect

    Wang, Min-Jia; Yang, Hui; Zhang, Qi-Long; Lin, Zhi-Sheng; Zhang, Zi-Shan; Yu, Dan; Hu, Liang

    2014-12-15

    Graphical abstract: Core–shell structure can be obtained in BaTiO{sub 3} ceramics co-doped with Y–Mg-Ga-Si. Y-Mg-Ga-Si co-dopant can obviously reduce dielectric loss, improve AC breakdown voltage and flatten temperature dependence of capacitance curve. - Highlights: • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics with core-shell structure were prepared. • Y{sup 3+}, Mg{sup 2+}, and Ga{sup 3+} dissolved in the lattice BaTiO{sub 3} replacing Ba{sup 2+} site or Ti{sup 4+} site. • Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries as a shell maker. • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics show high AC breakdown voltage and low tanδ. - Abstract: The microstructures and dielectric properties of Y-Mg-Ga-Si co-doped barium titanate ceramics were investigated. Y{sup 3+} dissolved in the lattice of BaTiO{sub 3} replacing both Ba{sup 2+} site and Ti{sup 4+} site, and Mg{sup 2+} replaced Ti{sup 4+} site. The replacements of Y{sup 3+} and Mg{sup 2+} inhibit the grain growth, cause tetragonal-to-pseudocubic phase transition, reduce the dielectric loss, and flatten the temperature dependence of capacitance curve. The incorporation of Ga{sup 3+} can improve sintering and increase permittivity. Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries, and play an important role as a shell maker in the formation of the core–shell structure in the co-doped BaTiO{sub 3} ceramics. Excellent dielectric properties: ϵ{sub r} = ∼2487, tanδ = ∼0.7% (at 1 kHz), ΔC/C{sub 25} < ∼6.56% (from −55 °C to 125 °C) and alternating current breakdown voltage E < ∼4.02 kV/mm can be achieved in the BaTiO{sub 3}–0.02Y{sub 2}O{sub 3}–0.03MgO–0.01Ga{sub 2}O{sub 3}–0.005SiO{sub 2} ceramics sintered at 1380 °C. This material has a potential application in alternating current multilayer ceramic capacitor.

  2. Cryogenic High Voltage Insulation Breaks for ITER

    NASA Astrophysics Data System (ADS)

    Kovalchuk, O. A.; Safonov, A. V.; Rodin, I. Yu.; Mednikov, A. A.; Lancetov, A. A.; Klimchenko, Yu. A.; Grinchenko, V. A.; Voronin, N. M.; Smorodina, N. V.; Bursikov, A. S.

    High voltage insulation breaks are used in cryogenic lines with gas or liquid (helium, hydrogen, nitrogen, etc.) at a temperature range of 4.2-300 K and pressure up to 30 MPa to insulate the parts of an electrophysical facility with different electrical potentials. In 2013 JSC "NIIEFA" delivered 95 high voltage insulation breaks to the IO ITER, i.e. 65 breaks with spiral channels and 30 breaks with uniflow channels. These high voltage insulation breaks were designed, manufactured and tested in accordance with the ITER Technical Specifications: «Axial Insulating Breaks for the Qualification Phase of ITER Coils and Feeders». The high voltage insulation breaks consist of the glass-reinforced plastic cylinder equipped with channels for cryoagent and stainless steel end fittings. The operating voltage is 30 kV for the breaks with spiral channels (30 kV HV IBs) and 4 kV for the breaks with uniflow channels (4 kV HV IBs). The main design feature of the 30 kV HV IBs is the spiral channels instead of a linear one. This approach has enabled us to increase the breakdown voltage and decrease the overall dimensions of the high voltage insulation breaks. In 2013 the manufacturing technique was developed to produce the high voltage insulation breaks with the spiral and uniflow channels that made it possible to proceed to serial production. To provide the acceptance tests of the breaks a special test facility was prepared. The helium tightness test at 10-11 m3Pa/s under the pressure up to 10 MPa, the high voltage test up to 135 kV and different types of mechanical tests were carried out at the room and liquid nitrogen temperatures.

  3. Breakdown

    ERIC Educational Resources Information Center

    Moskowitz, Eva

    2006-01-01

    The multiplicity of ills facing the nation's public schools can depress even the most optimistic. In this article, the author presents her views about the school system and the negative effects that labor agreements have had on it. Her views on how to solve some seemingly intractable education problems have been informed by two experiences: her…

  4. High Temperature Characteristic in Electrical Breakdown and Electrical Conduction of Epoxy/Boron-nitride Composite

    NASA Astrophysics Data System (ADS)

    Takenaka, Yutaka; Kurimoto, Muneaki; Murakami, Yoshinobu; Nagao, Masayuki

    The power module for the electrical vehicle needs electrical insulation material with high thermal conductivity. Recently, the epoxy insulating material filled with boron-nitride particles (epoxy/boron-nitride composite) is focused as an effective solution. However, the insulation performance of epoxy/boron-nitride composite was not investigated enough especially at the high temperature in which the power module was used, i.e. more than 100°C. In this paper, we investigated high temperature characteristics in electrical breakdown and conduction current of epoxy/boron-nitride composite. Breakdown test under the application of DC lamp voltage and impulse voltage clarified that the epoxy/boron-nitride composite had the constant breakdown strength even in the high temperature. Comparison of the epoxy/boron-nitride composite with previous material, which was epoxy/alumina composite, indicated that the breakdown voltage of the epoxy/boron-nitride composite in the high temperature was found to be higher than that of epoxy/alumina composite under the same thermal-transfer quantity among them. Furthermore, conduction current measurement of epoxy/boron-nitride composite in the high temperature suggested the possibility of the ionic conduction mechanism.

  5. Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges

    SciTech Connect

    Baranov, O.; Romanov, M.; Kumar, S.; Zong, X. X.; Ostrikov, K.

    2011-03-15

    Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.

  6. High voltage, low inductance hydrogen thyratron study program, phase 5

    NASA Astrophysics Data System (ADS)

    Friedman, S.

    1983-08-01

    50 kv per stage dynamic breakdown voltage (DBV) was demonstrated in low inductance multistage hydrogen thyratrons for total voltages up to nearly 200 kv, at pressures consistent with a 10 ns current rise time. High peak current operation has been demonstrated up to 14 ka at 56 kv (the limits of our high current test kit). Bottom stage holdoff the per stage DBV are comparable to that of the best single stage thyratrons, bottom stage holdoff, stage voltage addition, and prefire problems are solved.

  7. [The Emission Spectroscopy of Nitrogen Discharge under Low Voltage at Room Temperature].

    PubMed

    Shen, Li-hua; Yu, Chun-xia; Yan, Bei; Zhang, Cheng-xiao

    2015-03-01

    A set of direct current (DC) discharge device of N2 plasma was developed, carbon nanotubes (CNT) modified ITO electrode was used as anode, aluminum plate as cathode, with -80 μm separation between them. Nitrogen emission spectra was observed at room temperature and low DC voltage (less than 150 V), and the emission spectrometry was used to diagnose the active species of the process of nitrogen discharge. Under DC discharge, the strongest energy band N2 (C3π(u)), the weak Gaydon's Green system N2 (H3 -Φ(u)-G3 Δ(g)) and the emission line of nitrogen atoms (4 p-4 p0) at 820 nm were observed. Found that metastable state of nitrogen molecules were the main factors leading to a series of excited state nitrogen atoms and nitrogen ionization. Compared the emission spectra under DC with that under alternating current (AC) (1.1 kV), and it can be seen that under DC the spectra band of nitrogen atoms can be obviously observed, and there was a molecular band in the range of 500 - 800 nm. The effect of oxygen and hydrogen on the emission spectra of nitrogen was investigated. The results showed that the oxygen inhibited the luminescence intensity of nitrogen, but the shape of spectra unchanged. All of the second positive system, Gaydon's Green system and atomic lines of nitrogen can be observed. The second positive system and Gaydon's Green system of nitrogen will be greatly affected when the volume ratio of nitrogen and hydrogen greatly affected is 1 : 1, which was due to the hydrogen. The hydrogen can depresse nitrogen plasma activation, and make the Gaydon's Green System disappeared. CNT modified ITO electrode can reduce the breakdown voltage, and the optical signal generated by the weakly ionized gas can be observed by the photo-multiplier tube at low voltage of 10 V. PMID:26117899

  8. A method for encapsulating high voltage power transformers

    NASA Astrophysics Data System (ADS)

    Sanchez, Robert O.

    Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a carboxyl terminated butadiene nitril (CTBN) modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a diallyl phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.

  9. A method for encapsulating high voltage power transformers

    SciTech Connect

    Sanchez, R.O.

    1990-01-01

    Voltage breakdowns become a major concern in reducing the size of high-voltage power converter transformers. Even the smallest of voids can provide a path for corona discharge which can cause a dielectric breakdown leading to a transformer failure. A method of encapsulating small high voltage transformers has been developed. The method virtually eliminates voids in the impregnation material, provides an exceptional dielectric between windings and provides a mechanically rugged package. The encapsulation material is a CTBN modified mica filled epoxy. The method requires heat/vacuum to impregnate the coil and heat/pressure to cure the encapsulant. The transformer package utilizes a Diallyl Phthalate (DAP) contact assembly in which a coated core/coil assembly is mounted and soldered. This assembly is then loaded into an RTV mold and the encapsulation process begins.

  10. Influence of magnetic field on the electric breakdown in penning ion source.

    PubMed

    Mahjour-Shafiei, M; Noori, H; Ranjbar, A H

    2011-11-01

    A cold-cathode penning-type ion source has been developed in our laboratory to study the electric breakdown in this type of sources. The breakdown voltage was measured as a function of axial magnetic field, in the range of 440-600 G, and anode length, in steps of 14, 20, and 24 mm. The measurement was performed with stainless steel cathodes in argon gas at pressure of 4 × 10(-2) mbar. Furthermore, a model was developed to explain the breakdown voltage data. In the construction of the model, the first Townsend coefficient was not directly used to avoid difficulties originating from the non-uniformity of the electric field. The empirical parameters of the model were obtained using the experimental data. The equation γ = c × (E(z)/N)(n), expressing the effective secondary emission coefficient in terms of reduced electric field, which was needed in the modeling process, was inspired from previous works. The parameters c and n were then calculated from the empirical parameters of the model. The n parameter turned out to be 0.59, which differs from the value reported by other authors merely by 1.6%. Three values, 0.010, 0.013, and 0.017 corresponding to the three anodes were obtained for the c parameter. These numbers are in good agreement with 0.01, which has been reported in the previous works. It was also found that the value of n has a decisive impact on the breakdown voltage curve in the high breakdown voltage region. PMID:22128971

  11. Influence of magnetic field on the electric breakdown in penning ion source

    NASA Astrophysics Data System (ADS)

    Mahjour-Shafiei, M.; Noori, H.; Ranjbar, A. H.

    2011-11-01

    A cold-cathode penning-type ion source has been developed in our laboratory to study the electric breakdown in this type of sources. The breakdown voltage was measured as a function of axial magnetic field, in the range of 440-600 G, and anode length, in steps of 14, 20, and 24 mm. The measurement was performed with stainless steel cathodes in argon gas at pressure of 4 × 10-2 mbar. Furthermore, a model was developed to explain the breakdown voltage data. In the construction of the model, the first Townsend coefficient was not directly used to avoid difficulties originating from the non-uniformity of the electric field. The empirical parameters of the model were obtained using the experimental data. The equation γ = c × (Ez/N)n, expressing the effective secondary emission coefficient in terms of reduced electric field, which was needed in the modeling process, was inspired from previous works. The parameters c and n were then calculated from the empirical parameters of the model. The n parameter turned out to be 0.59, which differs from the value reported by other authors merely by 1.6%. Three values, 0.010, 0.013, and 0.017 corresponding to the three anodes were obtained for the c parameter. These numbers are in good agreement with 0.01, which has been reported in the previous works. It was also found that the value of n has a decisive impact on the breakdown voltage curve in the high breakdown voltage region.

  12. Comparison between measured and simulated breakdown characteristics in micro discharges in argon

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran; Radmilovic-Radjenovic, Marija; Maguire, Paul; Mahony, Charles; Skoro, Nikola; Maric, Dragana

    2007-10-01

    Devices with micron and sub-micron gaps can face a serious challenge due to electrical breakdown during manufacturing, handling and operation. Therefore, it is necessary to be aware of the breakdown voltage for different gaps. Gas breakdown and Volt-Ampere characteristics are studied in an atmospheric pressure argon discharges. Experimental results are compared with the results obtained by using PIC/MCC code in order to establish whether the standard micro discharges operate in Townsend regime or in Glow Regime. The code is adjusted to include field emission effect in microgaps. It is applied manly for the breakdown stage but may also follow the formation of the space charge. The measurements of Volt-Ampere and breakdown characteristics of micro discharges were performed down to 20,μm gaps at pressures up to 400,orr. Paschen curves reveal that very tight geometry is required to avoid long path breakdown at the left hand side of the Paschen curve. It is critical to measure width of the discharge to test the scaling and regime of operation of micro discharges.

  13. Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

    PubMed Central

    Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary. PMID:22606043

  14. Synthesis mechanism of low-voltage praseodymium oxide doped zinc oxide varistor ceramics prepared through modified citrate gel coating.

    PubMed

    Abdullah, Wan Rafizah Wan; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2012-01-01

    High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr(6)O(11)) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr(6)O(11) addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr(6)O(11) from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr(6)O(11) content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary. PMID:22606043

  15. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  16. Internal structure of a vortex breakdown

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1986-01-01

    An axisymmetric vortex breakdown was well simulated by the vortex filament method. The agreement with the experiment was qualitatively good. In particular, the structure in the interior of the vortex breakdown was ensured to a great degree by the present simulation. The second breakdown, or spiral type, which occurs downstream of the first axisymmetric breakdown, was simulated more similarly to the experiment than before. It shows a kink of the vortex filaments and strong three-dimensionality. Furthermore, a relatively low velocity region was observed near the second breakdown. It was also found that it takes some time for this physical phenomenon to attain its final stage. The comparison with the experiment is getting better as time goes on. In this paper, emphasis is placed on the comparison of the simulated results with the experiment. The present results help to make clear the mechanism of a vortex breakdown.

  17. On a criterion for vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, R. E.; Gatski, T. B.; Grosch, C. H.

    1987-01-01

    A criterion for the onset of vortex breakdown is proposed. Based upon previous experimental, computational, and theoretical studies, an appropriately defined local Rossby number is used to delineate the region where breakdown occurs. In addition, new numerical results are presented which further validate this criterion. A number of previous theoretical studies concentrating on inviscid standing-wave analyses for trailing wing-tip vortices are reviewed and reinterpreted in terms of the Rossby number criterion. Consistent with previous studies, the physical basis for the onset of breakdown is identified as the ability of the flow to sustain such waves. Previous computational results are reviewed and re-evaluated in terms of the proposed breakdown criterion. As a result, the cause of breakdown occurring near the inflow computational boundary, common to several numerical studies, is identified. Finally, previous experimental studies of vortex breakdown for both leading edge and trailing wing-tip vortices are reviewed and quantified in terms of the Rossby number criterion.

  18. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  19. Time dependent breakdown in silicon dioxide films

    NASA Technical Reports Server (NTRS)

    Svensson, C.; Shumka, A.

    1975-01-01

    An investigation was conducted regarding the possible existence of a time-dependent breakdown mechanism in thermal oxides of the type used as gate oxide in MOS circuits. Questions of device fabrication are discussed along with details concerning breakdown measurements and the determination of C-V characteristics. A relatively large prebreakdown current observed in one of the cases is related to the time-dependent breakdown.

  20. Recent advances of high voltage AlGaN/GaN power HFETs

    NASA Astrophysics Data System (ADS)

    Uemoto, Yasuhiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi; Ueda, Daisuke

    2009-02-01

    We review our recent advances of GaN-based high voltage power transistors. These are promising owing to low on-state resistance and high breakdown voltage taking advantages of superior material properties. However, there still remain a couple of technical issues to be solved for the GaN devices to replace the existing Si-based power devices. The most critical issue is to achieve normally-off operation which is strongly desired for the safety operation, however, it has been very difficult because of the built-in polarization electric field. Our new device called GIT (Gate Injection Transistor) utilizing conductivity modulation successfully achieves the normally-off operation keeping low on-state resistance. The fabricated GIT on a Si substrate exhibits threshold voltage of +1.0V. The obtained on-state resistance and off-state breakdown voltage were 2.6mΩ•cm2 and 800V, respectively. Remaining technical issue is to further increase the breakdown voltage. So far, the reported highest off-state breakdown voltage of AlGaN/GaN HFETs has been 1900V. Overcoming these issues by a novel device structure, we have demonstrated the world highest breakdown voltages of 10400V using thick poly-crystalline AlN as a passivation film and Via-holes through sapphire which enable very efficient layout of the lateral HFET array avoiding any undesired breakdown of passivation films. Since conventional wet or dry etching cannot be used for chemically stable sapphire, high power pulsed laser is used to form the via-holes. The presented GaN power devices demonstrate that GaN is advantageous for high voltage power switching applications replacing currently used Si-based power MOSFETs and IGBTs.

  1. Laser-induced electric breakdown in solids

    NASA Technical Reports Server (NTRS)

    Bloembergen, N.

    1974-01-01

    A review is given of recent experimental results on laser-induced electric breakdown in transparent optical solid materials. A fundamental breakdown threshold exists characteristic for each material. The threshold is determined by the same physical process as dc breakdown, namely, avalanche ionization. The dependence of the threshold on laser pulse duration and frequency is consistent with this process. The implication of this breakdown mechanism for laser bulk and surface damage to optical components is discussed. It also determines physical properties of self-focused filaments.

  2. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  3. Work Breakdown Structure (WBS) Handbook

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  4. Breakdown Degradation Associated with Elementary Screw Dislocations in 4H-SiC P(+)N Junction Rectifiers

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.; Huang, W.; Dudley, M.

    1998-01-01

    It is well-known that SiC wafer quality deficiencies are delaying the realization of outstandingly superior 4H-SiC power electronics. While efforts to date have centered on eradicating micropipes (i.e., hollow core super-screw dislocations with Burgers vector greater than 2c), 4H-SiC wafers and epilayers also contain elementary screw dislocations (i.e., Burgers vector = lc with no hollow core) in densities on the order of thousands per sq cm, nearly 100-fold micropipe densities. This paper describes an initial study into the impact of elementary screw dislocations on the reverse-bias current-voltage (I-V) characteristics of 4H-SiC p(+)n diodes. First, Synchrotron White Beam X-ray Topography (SWBXT) was employed to map the exact locations of elementary screw dislocations within small-area 4H-SiC p(+)n mesa diodes. Then the high-field reverse leakage and breakdown properties of these diodes were subsequently characterized on a probing station outfitted with a dark box and video camera. Most devices without screw dislocations exhibited excellent characteristics, with no detectable leakage current prior to breakdown, a sharp breakdown I-V knee, and no visible concentration of breakdown current. In contrast devices that contained at least one elementary screw dislocation exhibited a 5% to 35% reduction in breakdown voltage, a softer breakdown I-V knee, and visible microplasmas in which highly localized breakdown current was concentrated. The locations of observed breakdown microplasmas corresponded exactly to the locations of elementary screw dislocations identified by SWBXT mapping. While not as detrimental to SiC device performance as micropipes, the undesirable breakdown characteristics of elementary screw dislocations could nevertheless adversely affect the performance and reliability of 4H-SiC power devices.

  5. Voltage Node Arcing in the ICRH Antenna Vacuum Transmission Lines at JET

    SciTech Connect

    Monakhov, I.; Graham, M.; Mayoral, M.-L.; Nicholls, K.; Walden, A.

    2007-09-28

    The observation of parasitic low-VSWR activity during operations of JET RF plant and the damage caused by arcing at the voltage-node in the vacuum transmission line (VTL) in 2004 highlight the importance of the problem of low-voltage breakdown in the ICRH systems. Simulations demonstrate little response of the RF circuit to the voltage-node arcing which explains why it remains largely unnoticed and complicates the design of protection systems. Analysis of the damage pattern produced by the voltage-node arcing suggests that multipactor-related phenomena occurring at elevated voltage thresholds in conditions of unfavorable VTL geometry are most plausible arc-provoking factors.

  6. Breakdown characteristics and conditioning of carbon and refractory metal electrodes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2004-01-01

    High voltage carbon and refractory metal electrodes employed in devices used in space, such as ion thrusters and traveling wave tubes, can be easily damaged by electrical breakdown and arcing events. Modification of the electrode surfaces due to these events can impact the voltage hold off capability of the surfaces, which could lead to additional arcing, further damage, and the potential for device failure. On the cathode-potential surface, the arc energy is deposited by all of the processes at the surface ultimately responsible for net electron emission, such as melting, vapor and particulate formation, sputtering, ion bombardment, etc. On the anode-potential surface, the energy is deposited from the plasma or electron stream that crosses the gap, which causes surface damage by local heating. In spite of this energy dependence on the damage, many systems that use arc discharges characterize the amount of material removed from the surfaces and the lifetime of the device for voltage hold-off by the amount of current that passes through the arc, or the 'Coulomb-rating'. The results of a series of tests that were preformed on the boltage hold off capability and damage to carbon-carbon composite surfaces and molybdenum surfaces due to induced arcing will be presented and discussed. Damage to the surfaces was characterized by the field emission performance after the arc initiation and SEM photographs for the different energy and coulomb-transfer arc conditions. Both conditioning and damage to the surfaces were observed, and will be related to the characteristics of the electrical breakdown.

  7. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  8. HIGH VOLTAGE GENERATOR

    DOEpatents

    Zito, G.V.

    1959-04-21

    This patent relates to high voltage supply circuits adapted for providing operating voltages for GeigerMueller counter tubes, and is especially directed to an arrangement for maintaining uniform voltage under changing conditions of operation. In the usual power supply arrangement for counter tubes the counter voltage is taken from across the power supply output capacitor. If the count rate exceeds the current delivering capaciiy of the capacitor, the capacitor voltage will drop, decreasing the counter voltage. The present invention provides a multivibrator which has its output voltage controlled by a signal proportional to the counting rate. As the counting rate increases beyond the current delivering capacity of the capacitor, the rectified voltage output from the multivibrator is increased to maintain uniform counter voltage.

  9. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  10. Conversion of methane to higher hydrocarbons in ac nonequilibrium plasmas

    SciTech Connect

    Thanyachotpaiboon, K.; Chavadej; Caldwell, T.A.; Lobban, L.L.; Mallinson, R.G.

    1998-10-01

    The effects of plasma chemistry on the conversion of methane were studied using a dielectric barrier discharge reactor at ambient temperatures. A dielectric barrier discharge reactor generates a nonequilibrium plasma when a sufficiently high voltage is applied across the reactor`s electrodes. Methane molecules are activated at this temperature and coupled to form C{sub 2} hydrocarbons, higher hydrocarbons, and hydrogen. The study on the effect of voltage, residence time and third bodies on methane conversion and product selectivity shows that methane conversion initially increases with increasing voltage and residence time above the breakdown voltage, and product selectivities are essentially independent of the voltage. Production of hydrogen during the reaction limits olefin production. Methane conversion also increases when helium and ethane are in the feed stream. Helium and ethane both appear to be more easily activated than methane and enhance methane activation and conversion.

  11. Fast-Recovery, High-Voltage Power Diode

    NASA Technical Reports Server (NTRS)

    Sundberg, G.; Berman, A.; Balodis, V.; Gaugh, C.; Duffin, J.; Karatnicki, H.; Larson, E.

    1985-01-01

    New family of fast-recovery high-voltage power diodes compatible with D60T and D7ST transistors developed. Have wide range of applications in spacecraft and aircraft electrical distribution equipment, dc/dc inverters, and ac motor controllers for high-horsepower electric motors operating from 480-volt ac lines. Fast-Recovery 1,200-V Power Diodes use chip of hexagonal geometry to maximize effective silicon area.

  12. Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Nengchao; Jin, Hai; Zhuang, Ge; Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen

    2014-07-01

    A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded.

  13. Breakdown assisted by a novel electron drift injection in the J-TEXT tokamak

    SciTech Connect

    Wang, Nengchao; Jin, Hai; Zhuang, Ge Ding, Yonghua; Pan, Yuan; Cen, Yishun; Chen, Zhipeng; Huang, Hai; Liu, Dequan; Rao, Bo; Zhang, Ming; Zou, Bichen

    2014-07-15

    A novel electron drift injection (EDI) system aiming to improve breakdown behavior has been designed and constructed on the Joint Texas EXperiment Tokamak Tokamak. Electrons emitted by the system undergo the E×B drift, ∇B drift and curvature drift in sequence in order to traverse the confining magnetic field. A local electrostatic well, generated by a concave-shaped plate biased more negative than the cathode, is introduced to interrupt the emitted electrons moving along the magnetic field line (in the parallel direction) in an attempt to bring an enhancement of the injection efficiency and depth. A series of experiments have demonstrated the feasibility of this method, and a penetration distance deeper than 9.5 cm is achieved. Notable breakdown improvements, including the reduction of breakdown delay and average loop voltage, are observed for discharges assisted by EDI. The lower limit of successfully ionized pressure is expanded.

  14. Statistical analysis of the electrical breakdown time delay distributions in krypton

    NASA Astrophysics Data System (ADS)

    Maluckov, Čedomir A.; Karamarković, Jugoslav P.; Radović, Miodrag K.; Pejović, Momčilo M.

    2006-08-01

    The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.

  15. Statistical analysis of the electrical breakdown time delay distributions in krypton

    SciTech Connect

    Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M.

    2006-08-15

    The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6 mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.

  16. Fundamental studies on passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1993-06-01

    Using photoelectrochemical impedance and admittance spectroscopies, a fundamental and quantitative understanding of the mechanisms for the growth and breakdown of passive films on metal and alloy surfaces in contact with aqueous environments is being developed. A point defect model has been extended to explain the breakdown of passive films, leading to pitting and crack growth and thus development of damage due to localized corrosion.

  17. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis. PMID:26787907

  18. Procedures used in the calibration of AC calibrators

    SciTech Connect

    Salazar, M.T.

    1991-02-01

    This report describes an automatic calibration system used in the calibration of all precision AC calibrators. The system includes an AC-DC Transfer Standard, a DC Voltage Standard, and a high-resolution digital multimeter, with an IBM-XT Personal Computer for data acquisition and analysis. Specialized instrumentation and measurement techniques make it possible to achieve high accuracy measurements with repeatability. 5 refs., 3 figs.

  19. High Voltage Design Guidelines: A Timely Update

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Kirkici, H.; Ensworth, Clint (Technical Monitor)

    2001-01-01

    The evolving state of high voltage systems and their increasing use in the space program have called for a revision of the High Voltage Design Guidelines, Marshall Space Flight Center technical document MSFC-STD-531, originally issued September 1978 (previously 50 M05189b, October 1972). These guidelines deal in depth with issues relating to the specification of materials, particularly electrical insulation, as well as design practices and test methods. Emphasis is on corona and Paschen breakdown as well as plasma effects for Low Earth Orbiting systems. We will briefly review the history of these guidelines as well as their immediate predecessors and discuss their range of applicability. In addition, this document has served as the basis for several derived works that became focused, program-specific HV guidelines. We will briefly review two examples, guidelines prepared for the X-33 program and for the Space Shuttle Electric Auxiliary Power Unit (EAPU) upgrade.

  20. Preventing Delayed Voltage Recovery with Voltage-Regulating Distributed Energy Resources

    SciTech Connect

    Adhikari, Sarina; Li, Fangxing; Li, Huijuan; Xu, Yan; Kueck, John D; Rizy, D Tom

    2009-01-01

    With the large use of residential air conditioner (A/C) motors during the summer peaks, the potential of motor stalling events have increased in the recent years. The stalled motor loads have been found to be the most important cause of delayed voltage recovery following severe system disturbances, such as a subtransmission fault. The proper modeling of the stalled motors is a very important factor in identifying the effect of these motors in voltage recovery after the fault. This paper presents a methodology for modeling the stalled low inertia induction motors based on a sample utility system and a small primary distribution circuit. The prevention of the stalling of motors plays an important role in maintaining the voltage profile of the system after system disturbances. Distributed Energy Resource (DER) is used to prevent the motor stalling events so that the delayed voltage recovery of the system may be avoided.

  1. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    DOE PAGESBeta

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; et al

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remainmore » superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.« less

  2. High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy

    SciTech Connect

    Qi, Meng; Zhao, Yuning; Yan, Xiaodong; Li, Guowang; Verma, Jai; Fay, Patrick; Nomoto, Kazuki; Zhu, Mingda; Hu, Zongyang; Protasenko, Vladimir; Song, Bo; Xing, Huili Grace; Jena, Debdeep; Bader, Samuel

    2015-12-07

    Molecular beam epitaxy grown GaN p-n vertical diodes are demonstrated on single-crystal GaN substrates. A low leakage current <3 nA/cm{sup 2} is obtained with reverse bias voltage up to −20 V. With a 400 nm thick n-drift region, an on-resistance of 0.23 mΩ cm{sup 2} is achieved, with a breakdown voltage corresponding to a peak electric field of ∼3.1 MV/cm in GaN. Single-crystal GaN substrates with very low dislocation densities enable the low leakage current and the high breakdown field in the diodes, showing significant potential for MBE growth to attain near-intrinsic performance when the density of dislocations is low.

  3. Comparative study of electrical breakdown properties of deionized water and heavy water under pulsed power conditions

    NASA Astrophysics Data System (ADS)

    Veda Prakash, G.; Kumar, R.; Saurabh, K.; Nasir, Anitha, V. P.; Chowdhuri, M. B.; Shyam, A.

    2016-01-01

    A comparative study of electrical breakdown properties of deionized water (H2O) and heavy water (D2O) is presented with two different electrode materials (stainless steel (SS) and brass) and polarity (positive and negative) combinations. The pulsed (˜a few tens of nanoseconds) discharges are conducted by applying high voltage (˜a few hundred kV) pulse between two hemisphere electrodes of the same material, spaced 3 mm apart, at room temperature (˜26-28 °C) with the help of Tesla based pulse generator. It is observed that breakdown occurred in heavy water at lesser voltage and in short duration compared to deionized water irrespective of the electrode material and applied voltage polarity chosen. SS electrodes are seen to perform better in terms of the voltage withstanding capacity of the liquid dielectric as compared to brass electrodes. Further, discharges with negative polarity are found to give slightly enhanced discharge breakdown voltage when compared with those with positive polarity. The observations corroborate well with conductivity measurements carried out on original and post-treated liquid samples. An interpretation of the observations is attempted using Fourier transform infrared measurements on original and post-treated liquids as well as in situ emission spectra studies. A yet another important observation from the emission spectra has been that even short (nanosecond) duration discharges result in the formation of a considerable amount of ions injected into the liquid from the electrodes in a similar manner as reported for long (microseconds) discharges. The experimental observations show that deionised water is better suited for high voltage applications and also offer a comparison of the discharge behaviour with different electrodes and polarities.

  4. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  5. Mixed voltage VLSI design

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Rennels, David; Alkalaj, Leon

    1993-01-01

    A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.

  6. Omega shape channel LDMOS: A novel structure for high voltage applications

    NASA Astrophysics Data System (ADS)

    Mehrad, Mahsa

    2016-01-01

    A new device structure for high breakdown voltage and low specific on resistance of the LDMOS device is proposed in this paper. The main idea in the proposed structure is using omega shape channel. The benefits of omega shape channel could be determined by extending depletion region in the drift region that causes low specific on resistance. Also, uniform horizontal electric field would be achieved that results in high breakdown voltage. The proposed structure is called Omega-shape Channel LDMOS (OCH-LDMOS). The simulation with two dimensional ATLAS simulator shows that the breakdown voltage increases to 712 V from 243 V of the conventional LDMOS at 12 μm drift length. Also, effective values of doping, length, and depth of Ω-shape channel are investigated.

  7. The EP-4(0) shielding kits: a new approach to protection from induced voltage

    SciTech Connect

    Vorob'ev, A. Yu.; Otmorskii, S. G.; Smekalov, V. V.; Gorozhankina, E. N.; Sosunov, N. N.; Bol'shunov, A. M.

    2011-09-15

    Problems of safety in work on overhead power lines and the overhead railroad ac contact network under induced voltages are considered. The use of additional individual protection systems is proposed to provide protection from electric shock during such work.

  8. High voltage with Si series photovoltaics.

    SciTech Connect

    Hsia, Alex; Bennett, Reid Stuart; Patel, Rupal K.; Nasby, Robert D.; Stein, David J.

    2006-02-01

    A monolithic crystalline Si photovoltaic device, developing a potential of 2,120 Volts, has been demonstrated. The monolithic device consists of 3600 small photovoltaic cells connected in series and fabricated using standard CMOS processing on SOI wafers. The SOI wafers with trenches etched to the buried oxide (BOX) depth are used for cell isolation. The photovoltaic cell is a Si pn junction device with the n surface region forming the front surface diffused region upon which light impinges. Contact is formed to the deeper diffused region at the cell edge. The p+ deep-diffused region forms the contact to the p-type base region. Base regions were 5 or 10 {micro}m thick. Series connection of individual cells is accomplished using standard CMOS interconnects. This allows for the voltage to range from approximately 0.5 Volts for a single cell to above a thousand volts for strings of thousands of cells. The current is determined by cell area. The voltage is limited by dielectric breakdown. Each cell is isolated from the adjacent cells through dielectric-filled trench isolation, the substrate through the SOI buried oxide, and the metal wiring by the deposited pre-metal dielectric. If any of these dielectrics fail (whether due to high electric fields or inherent defects), the photovoltaic device will not produce the desired potential. We have used ultra-thick buried oxide SOI and several novel processes, including an oxynitride trench fill process, to avoid dielectric breakdown.

  9. Low voltage operation of plasma focus

    SciTech Connect

    Shukla, Rohit; Sharma, S. K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B. K.; Adhikary, B.; Shyam, A.

    2010-08-15

    Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 {mu}F capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

  10. High-voltage 4H-SiC trench MOS barrier Schottky rectifier with low forward voltage drop using enhanced sidewall layer

    NASA Astrophysics Data System (ADS)

    Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo

    2015-12-01

    In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL-TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL-TMBS rectifier compared with the performance of a conventional TMBS rectifier.

  11. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  12. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim; Kurt, Erol

    2016-08-01

    A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current-voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength ( E/ N), electron density ne, and secondary-electron emission ( γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

  13. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim; Kurt, Erol

    2016-05-01

    A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current-voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength (E/N), electron density ne, and secondary-electron emission (γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

  14. High Voltage SPT Performance

    NASA Technical Reports Server (NTRS)

    Manzella, David; Jacobson, David; Jankovsky, Robert

    2001-01-01

    A 2.3 kW stationary plasma thruster designed to operate at high voltage was tested at discharge voltages between 300 and 1250 V. Discharge specific impulses between 1600 and 3700 sec were demonstrated with thrust between 40 and 145 mN. Test data indicated that discharge voltage can be optimized for maximum discharge efficiency. The optimum discharge voltage was between 500 and 700 V for the various anode mass flow rates considered. The effect of operating voltage on optimal magnet field strength was investigated. The effect of cathode flow rate on thruster efficiency was considered for an 800 V discharge.

  15. Gas breakdown and secondary electron yields

    NASA Astrophysics Data System (ADS)

    Marić, Dragana; Savić, Marija; Sivoš, Jelena; Škoro, Nikola; Radmilović-Radjenović, Marija; Malović, Gordana; Petrović, Zoran Lj.

    2014-06-01

    In this paper we present a systematic study of the gas breakdown potentials. An analysis of the key elementary processes in low-current low-pressure discharges is given, with an aim to illustrate how such discharges are used to determine swarm parameters and how such data may be applied to modeling discharges. Breakdown data obtained in simple parallel-plate geometry are presented for a number of atomic and molecular gases. Ionization coefficients, secondary electron yields and their influence on breakdown are analyzed, with special attention devoted to non-hydrodynamic conditions near cathode.

  16. Breakdown of Benford's law for birth data

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Herteliu, C.; Ileanu, B.

    2015-02-01

    Long birth time series for Romania are investigated from Benford's law point of view, distinguishing between families with a religious (Orthodox and Non-Orthodox) affiliation. The data extend from Jan. 01, 1905 till Dec. 31, 2001, i.e. over 97 years or 35 429 days. The results point to a drastic breakdown of Benford's law. Some interpretation is proposed, based on the statistical aspects due to population sizes, rather than on human thought constraints when the law breakdown is usually expected. Benford's law breakdown clearly points to natural causes.

  17. Fundamental studies of passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  18. Common-Mode Voltage Characteristics of Matrix Converter According to PWM Method

    NASA Astrophysics Data System (ADS)

    Hara, Hidenori; Yamamoto, Eiji; Yamada, Kenji; Yamanaka, Katsutoshi; Zenke, Michihiko; Kang, Jun-Koo; Kume, Tsuneo Joe

    The matrix converter (MxC) is an ac-to-ac conversion device that can generate variable magnitude variable frequency output voltage. Nine bi-directional switches of MxC allow PWM control of output voltages and input currents. PWM switching needs “switch commutations” from one switch to another. During the switch commutations, however, unwanted voltage error occurs similar to the dead time effects in Voltage Source Inverter (VSI). When PWM pulse width is narrower than the time required for the commutation, voltage error increases rapidly. This voltage distortion is critical in the low speed operation as system becomes sensitive to even a small voltage error. In this paper, a new PWM strategy is proposed for improving voltage control performance in the low voltage region. Based on the input and output voltage information, PWM pulse-widths are controlled to avoid incomplete commutations. The feasibility of the proposed method is proved by simulation and experimental results. In addition, common mode voltage characteristics of MxC are discussed. Common-mode voltage and dv/dt cause motor bearing and ground leakage currents through the parasitic capacitances. Leakage current creates noise problems that can interfere with other equipment. Common-mode voltage characteristics of MxC are presented and discussed using two PWM methods. Simulated and experimental results are presented. Common-mode voltage of two-level VSI and MxC are also compared.

  19. Determination of threshold and maximum operating electric stresses for selected high voltage insulations. Task III. Investigation of high voltage capacitor insulation. Progress report No. 4

    SciTech Connect

    Sosnowski, M.; Eager, G.S. Jr.

    1984-03-01

    This report covers the investigation of threshold voltage of capacitor insulation. The experimental work was performed on samples prepared from commercial polypropylene insulated, liquid-filled capacitors. The samples were vacuum-impregnated with the original capacitor insulating liquid obtained from the manufacturer. A limited number of full-size capacitor elements also were tested. Impulse voltage breakdown tests with dc voltage prestressing were performed at room temperature and 75/sup 0/C. From the results of these tests, the threshold voltage of the samples of the capacitor insulation was determined at both temperatures and that of the whole capacitor elements at room temperature. The threshold voltage of the capacitor insulation was found to be approximately equal to the impulse breakdown voltage. No difference was found between the threshold voltage at room temperature and at 75/sup 0/C. The threshold voltage of the whole capacitor elements at room temperature was found to be equal to approximately 80% of the threshold voltage of the capacitor insulation samples.

  20. Investigation of problems associated with solid encapsulation of high voltage electronic assemblies; also Reynolds connector study

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1975-01-01

    Electric breakdown prevention in vacuum and encapsulation of high voltage electronic circuits was studied. The lap shear method was used to measure adhesive strengths. The permeation constants of air at ambient room temperature through four different space-grade encapsulants was measured. Order of magnitude was calculated for the time that air bubble pressures drop to the corona region. High voltage connectors with L-type cable attached were tested in a vacuum system at various pressures. The cable system was shown to suppress catastrophic breakdown when filled with and surrounded by gas in the corona region of pressures, but did not prove to be completely noise free.

  1. Primary measurement of total ultrasonic power with improved accuracy in rf voltage measurement.

    PubMed

    Dubey, P K; Kumar, Ashok; Kumar, Yudhisther; Gupta, Reeta; Joshi, Deepa

    2010-10-01

    Out of the various existing ultrasonic power measurement techniques, the radiation force balance method using microbalance is most widely used in low power (below 1 W) regime. The major source of uncertainty associated with this technique is the error in ac voltage measurement applied to the transducer for the generation of ultrasonic waves. The sources that deteriorate the ac voltage measurement accuracy include cable length and impedance mismatch. We introduce a new differential peak to peak measurement approach to reduce the ac voltage measurement error. The method holds the average peak amplitude of each polarity. Ultralow offset difference amplifier is used to measure peak to peak voltage. The method is insensitive to the variations in the dc offset of the source. The functionality of this method has been tested and compared with the conventional rf voltage measurement method. The output of this proposed technique is dc, which can be measured with an error of less than 0.1%. PMID:21034111

  2. Phonon-Induced Electron-Hole Excitation and ac Conductance in Molecular Junction

    NASA Astrophysics Data System (ADS)

    Ueda, Akiko; Utsumi, Yasuhiro; Imamura, Hiroshi; Tokura, Yasuhiro

    2016-04-01

    We investigate the linear ac conductance of molecular junctions under a fixed dc bias voltage in the presence of an interaction between a transporting electron and a single local phonon in a molecule with energy ω0. The electron-phonon interaction is treated by the perturbation expansion. The ac conductance as a function of the ac frequency ωac decreases or increases compared with the noninteracting case depending on the magnitude of the dc bias voltage. Furthermore, a dip emerges at ωac ˜ 2ω0. The dip originates from the modification of electron-hole excitation by the ac field, which cannot be obtained by treating the phonon in the linear regime of a classical forced oscillation.

  3. System and method for determining stator winding resistance in an AC motor

    DOEpatents

    Lu, Bin; Habetler, Thomas G.; Zhang, Pinjia; Theisen, Peter J.

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  4. Breakdown-Resistant RF Connectors for Vacuum

    NASA Technical Reports Server (NTRS)

    Caro, Edward R.; Bonazza, Walter J.

    1987-01-01

    Resilient inserts compensate for insulation shrinkage. Coaxial-cable connector for radio-frequency (RF) energy resists electrical breakdown in vacuum. Used on RF equipment in vacuum chambers as well as in spaceborne radar and communication gear.

  5. Microwave air breakdown enhanced with metallic initiators

    SciTech Connect

    Herring, G. C.; Popovic, S.

    2008-03-31

    We have determined X-band (9.4 GHz) electric field strengths required to obtain air breakdown at atmospheric pressure in the presence of metallic initiators, which are irradiated with repetitive (30 pulses/s) microwave pulses of 3 {mu}s duration and 200 kW peak power. Using a half-wavelength initiator, a factor of 40 reduction (compared to no initiator) was observed in the electric field required to achieve breakdown. The present measurements are compared to a previously published model for air breakdown, which was originally validated with S-band (3 GHz) frequencies and single 40 {mu}s pulses. We find good agreement between this previous model and our present measurements of breakdown with X-band frequencies and repetitive 3 {mu}s pulses.

  6. Tracking MOV operability under degraded voltage condition by periodic test measurements

    SciTech Connect

    Hussain, B.; Behera, A.K.; Alsammarae, A.J.

    1996-12-31

    The purpose of this paper is to develop a methodology for evaluating the operability of Alternating Current (AC) Motor Operated Valve (MOV) under degraded voltage condition, based on the seating parameter measured during surveillance/testing. This approach will help resolve Nuclear Regulatory Commission`s (NRC`s) concern on verifying the AC MOV`s design basis capability through periodic testing.

  7. Contributions to theory of vortex breakdown

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.; Uberoi, M. S.

    A study is made of vortex breakdown in stratified flows, and it is found that a positive stratification in the vortex where the density is increasing away from the axis, postpones the vortex breakdown and vice versa. This is apparent due to the density increasing in a direction opposite to that of an effective gravity which would correspond to a topheavy arrangement under gravity. It is also shown that a wavemotion promotes the possibility of axisymmetric flow downstream of the transaction.

  8. Humidity effects on wire insulation breakdown strength.

    SciTech Connect

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  9. Variable-frequency inverter controls torque, speed, and braking in ac induction motors

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1974-01-01

    Dc to ac inverter provides optimum frequency and voltage to ac induction motor, in response to different motor-load and speed requirements. Inverter varies slip frequency of motor in proportion to required torque. Inverter protects motor from high current surges, controls negative slip to apply braking, and returns energy stored in momentum of load to dc power source.

  10. Multiple high voltage output DC-to-DC power converter

    NASA Technical Reports Server (NTRS)

    Cronin, Donald L. (Inventor); Farber, Bertrand F. (Inventor); Gehm, Hartmut K. (Inventor); Goldin, Daniel S. (Inventor)

    1977-01-01

    Disclosed is a multiple output DC-to-DC converter. The DC input power is filtered and passed through a chopper preregulator. The chopper output is then passed through a current source inverter controlled by a squarewave generator. The resultant AC is passed through the primary winding of a transformer, with high voltages induced in a plurality of secondary windings. The high voltage secondary outputs are each solid-state rectified for passage to individual output loads. Multiple feedback loops control the operation of the chopper preregulator, one being responsive to the current through the primary winding and another responsive to the DC voltage level at a selected output.

  11. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing.

    PubMed

    Patel, N; Branch, D W; Schamiloglu, E; Cular, S

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment. PMID:26329223

  12. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    NASA Astrophysics Data System (ADS)

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-01

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  13. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  14. Comparative study of 0° X-cut and Y + 36°-cut lithium niobate high-voltage sensing

    SciTech Connect

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2015-08-15

    A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO{sub 3}) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

  15. Comparative study of 0° X-cut and Y+36°-cut lithium niobate high-voltage sensing

    DOE PAGESBeta

    Patel, N.; Branch, D. W.; Schamiloglu, E.; Cular, S.

    2015-08-11

    A comparison study between Y+36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y+36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 μs voltage pulses to bothmore » crystals, the voltage-induced shift scaled linearly with voltage. For the Y+36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz–100 kHz. Using the same conditions as the Y+36° cut, the 0° X-cut crystal sensed a shift of 10–273 ps for DC voltages and 189–813 ps for AC voltage application. For 5 μs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250–2 ns and the Y+36°-cut crystal sensed a time shift of 0.115–1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. Furthermore, when the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.« less

  16. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  17. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  18. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury, scald, or other injury....

  19. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563....1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy soft rot, leak, or wet breakdown following freezing injury....

  20. Dielectric breakdown in nano-porous thin films

    NASA Astrophysics Data System (ADS)

    Borja, Juan Pablo

    Unknown to most computer users and mobile device enthusiasts, we have finally entered into a critical age of chip manufacturing. January of 2014 marks the official start of the quest by the semiconductor industry to successfully integrate sub 14nm process technology nodes in accordance to the International Technology Roadmap for Semiconductors (ITRS). The manufacturing of nano-scale features represents a major bottleneck of its own. However, a bigger challenge lies in reliably isolating the massive chip interconnect network. The present work is aimed at generating a theoretical and experimental framework to predict dielectric breakdown for thin films used in computer chip components. Here, a set of experimental techniques are presented to assess and study dielectric failure in novel thin films. A theory of dielectric breakdown in thin nano-porous films is proposed to describe combined intrinsic and metal ion catalyzed failure. This theory draws on experimental evidence as well as fundamental concepts from mass and electronic charge transport. The drift of metal species was found to accelerate intrinsic dielectric failure. The solubility of metals species such as Cu was found to range from 7.0x1025 ions/m3 to 1.86x1026 ions/m3 in 7% porous SiCOH films. The diffusion coefficient for Cu species was found to span from 4.2x10-19 m2/s to 1.86x10-21 m2/s. Ramped voltage stress experiments were used to identify intrinsic failure from metal catalyzed failure. Intrinsic breakdown is defined when time to failure against applied field ramp rate results in ∂(ln(TTF))/∂(ln(R)) ≈ -1. Intrinsic failure was studied using Au. Here, ∂(ln(TTF))/∂(ln(R)) ≈ -0.95, which is an experimental best case scenario for intrinsic failure. Au is commonly reluctant to ionize which means that failure occurs in the absence of ionic species. Metal catalyzed failure was investigated using reactive electrodes such as Cu, and Ag. Here, trends for ∂(ln(TTF))/∂(ln(R)) significantly

  1. The AC clean-fog test for contaminated insulators

    SciTech Connect

    Cherney, E.A.; Beausejour, Y.; Cheng, T.C.; Lloyd, K.J.; Marrone, G.; Moran, J.H.; Naito, K.; Pargamin, L.

    1983-03-01

    The paper summarizes the results of clean-fog tests conducted by eleven task force laboratories on a common suspension insulator, IEEE insulator. The test series done according to a specific set of guidelines, show considerable dispersion in the fifty per cent flashover voltage between the laboratories. The significant parameters of the clean-fog method that influence the fifty per cent flashover voltage are discussed. More controls in testing are needed before the formalization of the clean-fog method as a standard contamination test for high voltage ac insulators can be made.

  2. A computational study of the topology of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Gatski, Thomas B.

    1991-01-01

    A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.

  3. Optical voltage reference

    DOEpatents

    Rankin, Richard; Kotter, Dale

    1994-01-01

    An optical voltage reference for providing an alternative to a battery source. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function.

  4. Optical voltage reference

    DOEpatents

    Rankin, R.; Kotter, D.

    1994-04-26

    An optical voltage reference for providing an alternative to a battery source is described. The optical reference apparatus provides a temperature stable, high precision, isolated voltage reference through the use of optical isolation techniques to eliminate current and impedance coupling errors. Pulse rate frequency modulation is employed to eliminate errors in the optical transmission link while phase-lock feedback is employed to stabilize the frequency to voltage transfer function. 2 figures.

  5. High-power ac/dc variable load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.; Birnbach, S.; Bruce, L. D.; Smith, L.

    1975-01-01

    Design of medium-power dynamic electrical load simulator has been extended to permit simulation of ac as well as dc loads and to provide for operation at higher power levels. Simulator is internally protected against reverse voltage, overvoltage, overcurrent, and overload conditions.

  6. Zero Voltage Soft Switching Duty Cycle Pulse Modulated High Frequency Inverter-Fed

    NASA Astrophysics Data System (ADS)

    Ishitobi, Manabu; Matsushige, Takayuki; Nakaoka, Mutsuo; Bessyo, Daisuke; Omori, Hideki; Terai, Haruo

    The utility grid voltage of commercial AC power source in Japan and USA is 100V, but in other Asian and European countries, it is 220V. In recent years, in Japan 200V outputted single-phase three-wire system begins to be used for high power applications. In 100V utility AC power applications and systems, an active voltage clamped quasi-resonant inverter circuit topology sing IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped asymmetrical soft switching PWM high-frequency inverter type AC-DC converter using IGBTs which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. The zero voltage soft switching inverter treated here can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull (SEPP) type soft switching PWM inverter are evaluated and discussed for 100V and 200V common use consumer microwave oven. The harmonic line current components in the utility AC power side of the AC-DC power converter with ZVS-PWM SEPP inverter are reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  7. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits

    NASA Astrophysics Data System (ADS)

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ˜1.8 V amplitude with ˜135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (˜10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies.

  8. Note: Complementary metal-oxide-semiconductor high voltage pulse generation circuits.

    PubMed

    Sun, Jiwei; Wang, Pingshan

    2013-10-01

    We present two types of on-chip pulse generation circuits. The first is based on CMOS pulse-forming-lines (PFLs). It includes a four-stage charge pump, a four-stacked-MOSFET switch and a 5 mm long PFL. The circuit is implemented in a 0.13 μm CMOS process. Pulses of ~1.8 V amplitude with ~135 ps duration on a 50 Ω load are obtained. The obtained voltage is higher than 1.6 V, the rated operating voltage of the process. The second is a high-voltage Marx generator which also uses stacked MOSFETs as high voltage switches. The output voltage is 11.68 V, which is higher than the highest breakdown voltage (~10 V) of the CMOS process. These results significantly extend high-voltage pulse generation capabilities of CMOS technologies. PMID:24182184

  9. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  10. Dual Ground Plane for high-voltage MOSFET in UTBB FDSOI technology

    NASA Astrophysics Data System (ADS)

    Litty, Antoine; Ortolland, Sylvie; Golanski, Dominique; Cristoloveanu, Sorin

    2015-10-01

    For the first time, the investigation and fabrication of a high-voltage MOSFET (HVMOS) in Ultra-Thin Body and Buried oxide Fully Depleted technology (UTBB-FDSOI) is reported. Through TCAD simulations, the lateral electric field profile and related breakdown voltage behaviour are studied. Taking benefit of the FDSOI assets, an original HVMOS architecture, featuring a Dual Ground Plane, is proposed to optimize the electric field profile distribution. As a new lever for high voltage, the Dual Ground Plane enables a "RESURF-like" effect, electrostatically improving classical HVMOS figures of merit: the breakdown voltage (BV) and the specific-on resistance (RON.S). Experimental results confirm the potential of the Dual Ground Plane solution for HVMOS device in 28 nm UTBB-FDSOI technology and beyond.

  11. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  12. Power conditioning for low-voltage piezoelectric stack energy harvesters

    NASA Astrophysics Data System (ADS)

    Skow, E.; Leadenham, S.; Cunefare, K. A.; Erturk, A.

    2016-04-01

    Low-power vibration and acoustic energy harvesting scenarios typically require a storage component to be charged to enable wireless sensor networks, which necessitates power conditioning of the AC output. Piezoelectric beam-type bending mode energy harvesters or other devices that operate using a piezoelectric element at resonance produce high voltage levels, for which AC-DC converters and step-down DC-DC converters have been previously investigated. However, for piezoelectric stack energy harvesters operating off-resonance and producing low voltage outputs, a step-up circuit is required for power conditioning, such as seen in electromagnetic vibration energy scavengers, RF communications, and MEMS harvesters. This paper theoretically and experimentally investigates power conditioning of a low-voltage piezoelectric stack energy harvester.

  13. Conditions for electron runaway under leader breakdown of long gaps

    SciTech Connect

    Ul'yanov, K. N.

    2008-04-15

    An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined.

  14. Analysis Code for High Gradient Dielectric Insulator Surface Breakdown

    SciTech Connect

    Ives, Robert Lawrence; Verboncoeur, John; Aldan, Manuel

    2010-05-30

    High voltage (HV) insulators are critical components in high-energy, accelerator and pulsed power systems that drive diverse applications in the national security, nuclear weapons science, defense and industrial arenas. In these systems, the insulator may separate vacuum/non-vacuum regions or conductors with high electrical field gradients. These insulators will often fail at electric fields over an order of magnitude lower than their intrinsic dielectric strength due to flashover at the dielectric interface. Decades of studies have produced a wealth of information on fundamental processes and mechanisms important for flashover initiation, but only for relatively simple insulator configurations in controlled environments. Accelerator and pulsed power system designers are faced with applying the fundamental knowledge to complex, operational devices with escalating HV requirements. Designers are forced to rely on “best practices” and expensive prototype testing, providing boundaries for successful operation. However, the safety margin is difficult to estimate, and system design must be very conservative for situations where testing is not practicable, or replacement of failed parts is disruptive or expensive. The Phase I program demonstrated the feasibility of developing an advanced code for modeling insulator breakdown. Such a code would be of great interest for a number of applications, including high energy physics, microwave source development, fusion sciences, and other research and industrial applications using high voltage devices.

  15. Investigation of breakdown processes in automotive HID lamps

    NASA Astrophysics Data System (ADS)

    Bergner, Andre; Hoebing, Thomas; Ruhrmann, Cornelia; Mentel, Juergen; Awakowicz, Peter

    2011-10-01

    HID lamps are used for applications where high lumen output levels are required. Car headlights are a special field of HID lamp application. For security reasons and lawful regulations these lamps have to have a fast run-up phase and the possibility of hot re-strike. Therefore the background gas pressure amounts to 1.5 MPa xenon. But this high background gas pressure has the disadvantage that the ignition voltage becomes quite high due to Paschen's law. For that reason this paper deals with the investigation of the breakdown process of HID lamps for automotive application. The ignition is investigated by electrical as well as optical methods. Ignition voltage and current are measured on a nanosecond time scale and correlated with simultaneous phase resolved high speed photography done by an ICCD camera. So the ignition process can be observed from the first light emission until to the formation of whole discharge channel. The authors gratefully acknowledge the financial support by BMBF within the European project 'SEEL - Solutions for Energy Efficient Lighting' (FKZ: 13N11265). Furthermore the author would like to thank Philips Lighting (Aachen) for valuable discussions.

  16. Use of additives to improve the particle-initiated breakdown strength of SF{sub 6}

    SciTech Connect

    Chalmers, I.D.; Farish, O.; MacGregor, S.J.

    1995-12-31

    There has been considerable effort over many years to identify gases which are superior to SF{sub 6} for use in gas-insulated-substation (GIS) applications. Most of this work has been concerned with the {open_quote}intrinsic{close_quote} or uniform-field strength of the new gas or gas mixture. However, the most important requirement in GIS is for an improved tolerance to the high local fields associated with electrode surface defects or with free conducting particles. Particulate contamination is almost impossible to eliminate in large GIS and moving particles can trigger breakdown at levels as low as 20% of the expected strength of the system based on the macroscopic field. Experiments in small point-plane gaps can provide useful insight into the mechanisms by which breakdown is initiated at surface protrusions, or when a particle comes into contact with an electrode. In such experiments, it has been found that some gas mixtures have nonuniform-field strengths considerably greater than pure SF{sub 6}. In particular the addition of small quantities ({approximately}1%) of triethylamine or Freon 113 were found to suppress the development of breakdown {open_quote}leader{close_quote} discharges and to provide enhanced corona shielding of the point. Point-plane studies in SF{sub 6} have pointed to the possibility of modelling ac particle-initiated breakdown on the basis of a leader propagation criterion, while the work with additives offered the promise of an improvement in particle tolerance of GIS. The present investigation was designed to find out whether the small-gap fixed-point results were confirmed in full-scale tests in coaxial geometry with the particles free to move under the action of the applied ac field.

  17. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  18. Voltage-time Characteristics and Reliability Evaluation Method of Oil-filled Transformer for Non-effectively Grounded Voltage Class

    NASA Astrophysics Data System (ADS)

    Takami, Jun; Tsuboi, Toshihiro; Okabe, Shigemitsu

    The power frequency withstand voltage tests are specified on electric power equipment in JEC-0102 by evaluating the lifetime reliability with a Weibull distribution function. It may be applied on 66-154kV transformer for non-effectively grounded voltage class. The present paper describes the results that measured AC insulation characteristics (Voltage-time characteristics) and Weibull parameters for oil-filled transformer of 66-154kV class. These measurement parameters were compared with the conventional Weibull parameters, which were applied for oil-filled transformer of voltage class above 154kV. Furthermore the non-partial discharge test voltage was evaluated by trial calculations, using the parameters obtained this time or typical parameters.

  19. HIGH VOLTAGE REGULATOR

    DOEpatents

    Wright, B.T.

    1959-06-01

    A high voltage regulator for use with calutrons is described which rapidly restores accelerating voltage after a sudden drop such as is caused by sparking. The rapid restoration characteristic prevents excessive contamination of lighter mass receiver pockets by the heavier mass portion of the beam. (T.R.H.)

  20. 4-bit Bipolar Triangle Voltage Waveform Generator Using Single-Flux-Quantum Circuit

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoki; Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki; Mizugaki, Yoshinao

    SFQ digital-to-analog converters (DACs) are one of the candidates for AC voltage standards. We have proposed SFQ-DACs based on frequency modulation (FM). Bipolar output is required for applications of AC voltage standards, while our previous SFQ-DACs generated only positive voltages. In this paper, we present our design of a 4-bit bipolar triangle voltage waveform generator comprising an SFQ-DAC. The waveform generator has two output ports. Synthesized half-period waveforms are alternately generated in one of the output ports. The bipolar output is realized by observing the differential voltage between the ports. We confirmed a 72-μVPP bipolar triangle voltage waveform at the frequency of 35.7 Hz.

  1. Effect of positive ions on the microwave generation in a low-voltage vircator

    NASA Astrophysics Data System (ADS)

    Filatov, R. A.; Kalinin, Yu. A.; Hramov, A. E.

    2006-06-01

    The effect of vacuum conditions on the characteristics of microwave generation in a nonrelativistic electron beam with a virtual cathode (VC) formed in a retarding field (low-voltage vircator) has been experimentally studied. The ionization of residual gases in the working chamber of a low-voltage vircator leads to displacement of the VC out of the interaction space, which results in breakdown of the microwave generation. The experimental data agree with the results of numerical simulations.

  2. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  3. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  4. Obstacle-induced spiral vortex breakdown

    NASA Astrophysics Data System (ADS)

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-08-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by the free-stream velocity, and the adverse pressure gradient. They were controlled through the incidence angle of the elliptical hydrofoil, the free-stream velocity and the sphere diameter. A single helical breakdown of the vortex was systematically observed over a wide range of experimental parameters. The helical breakdown coiled around the sphere in the direction opposite to the vortex but rotated along the vortex direction. We have observed that the location of vortex breakdown moved upstream as the swirl number or the sphere diameter was increased. LDV measurements were corrected using a reconstruction procedure taking into account the so-called vortex wandering and the size of the LDV measurement volume. This allows us to investigate the spatio-temporal linear stability properties of the flow and demonstrate that the flow transition from columnar to single helical shape is due to a transition from convective to absolute instability.

  5. Vortex Breakdown in Atmospheric Columnar Vortices.

    NASA Astrophysics Data System (ADS)

    Lugt, H. J.

    1989-12-01

    Vortex breakdown occurs in tornadoes and waterspouts. This phenomenon may give information on the state and future behavior of those whirlwinds. Because of the rarity of recorded events, archival sources are consulted for qualitative descriptions from earlier times and compared with contemporary sources. Drawings and eyewitness reports from earlier times, rare photographs, movies, and observations from recent years indicate the occurrence of vortex breakdown in tornadoes and waterspouts near the ground, in the midsection of the funnel, and close to or inside the parent cloud. Since the contour of the whirlwind's funnel is delineated only by markers in the form of condensates, dust, or other debris, these markers may distort or obscure the evidence of vortex breakdown. This is a likely reason for the rare observation and identification of vortex breakdown which might be more common in whirlwinds than has been previously thought. According to the records examined, meteorologists deserve the honor for discovering and describing vortex breakdown long before the systematic investigation of recent years.

  6. Planned waveguide electric field breakdown studies

    SciTech Connect

    Wang Faya; Li Zenghai

    2012-12-21

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  7. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  8. Electric voltage generation by antiferromagnetic dynamics

    NASA Astrophysics Data System (ADS)

    Yamane, Yuta; Ieda, Jun'ichi; Sinova, Jairo

    2016-05-01

    We theoretically demonstrate dc and ac electric voltage generation due to spin motive forces originating from domain wall motion and magnetic resonance, respectively, in two-sublattice antiferromagnets. Our theory accounts for the canting between the sublattice magnetizations, the nonadiabatic electron spin dynamics, and the Rashba spin-orbit coupling, with the intersublattice electron dynamics treated as a perturbation. This work suggests a way to observe and explore the dynamics of antiferromagnetic textures by electrical means, an important aspect in the emerging field of antiferromagnetic spintronics, where both manipulation and detection of antiferromagnets are needed.

  9. Visualizing Electrical Breakdown and ON/OFF States in Electrically Switchable Suspended Graphene Break Junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Bao, Wenzhong; Zhao, Zeng; Huang, Jhao-Wun; Standley, Brian; Liu, Gang; Wang, Fenglin; Kratz, Philip; Jing, Lei; Bockrath, Marc; Lau, Chun Ning

    2012-04-01

    Narrow gaps are formed in suspended single to few layer graphene devices using a pulsed electrical breakdown technique. The conductance of the resulting devices can be programmed by the application of voltage pulses, with a voltage of 2.5V~4.5V corresponding to an ON pulse and voltages ~8V corresponding to OFF pulses. Electron microscope imaging of the devices shows that the graphene sheets typically remain suspended and that the device conductance tends to zero when the observed gap is large. The switching rate is strongly temperature dependent, which rules out a purely electromechanical switching mechanism. This observed switching in suspended graphene devices strongly suggests a switching mechanism via atomic movement and/or chemical rearrangement, and underscores the potential of all-carbon devices for integration with graphene electronics.

  10. Inhibited pattern formation by asymmetrical high-voltage excitation in nematic fluids.

    PubMed

    Salamon, Péter; Éber, Nándor; Fekete, Balázs; Buka, Ágnes

    2014-08-01

    In contrast to the predictions of the standard theory of electroconvection (EC), our experiments showed that the action of superposed ac and dc voltages rather inhibits pattern formation than favors the emergence of instabilities; the patternless region may extend to much higher voltages than the individual ac or dc thresholds. The pattern formation induced by such asymmetrical voltage was explored in a nematic liquid crystal in a wide frequency range. The findings could be qualitatively explained for the conductive EC, but represent a challenging problem for the dielectric EC. PMID:25215747

  11. Effect of floating conducting objects on critical switching impulse breakdown of air insulation

    SciTech Connect

    Rizk, F.A.M.

    1995-07-01

    The paper analyses the mechanism of breakdown of phase-to-ground and phase-to-phase air insulation in the presence of large conducting floating objects, under critical switching impulse stress. A new physical modeling approach is introduced which involves determination of the potential of the floating object by charge simulation technique, assessment of streamer breakdown and/or leader inception and propagation in the partial gaps and finally predicts the critical breakdown voltage of various configurations. As to phase-to-ground insulation, the investigation covers rod-plane, conductor-plane and conductor-tower leg configurations with different gap spacings as well as different shapes, dimensions and positions of the floating object. The phase-to-phase study additionally includes the effect of negative switching impulse content of the applied stress. The model is in excellent agreement with experiment and provides a novel tool for assessment of the effect of floating objects on switching impulse breakdown of some basic air gap configurations relevant to live line work.

  12. Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks.

    PubMed

    Li, Jinghua; Franklin, Aaron D; Liu, Jie

    2015-09-01

    Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, the coexistence of semiconducting (s-) and metallic (m-) SWNTs remains a considerable challenge since the latter causes significant degradation in device performance. Here we demonstrate a facile and effective approach to selectively break all m-SWNTs by stacking two layers of horizontally aligned SWNTs to form crossbars and applying a voltage to the crossed SWNT arrays. The introduction of SWNT junctions amplifies the disparity in resistance between s- and m-pathways, leading to a complete deactivation of m-SWNTs while minimizing the degradation of the semiconducting counterparts. Unlike previous approaches that required an electrostatic gate to achieve selectivity in electrical breakdown, this junction process is gate-free and opens the way for straightforward integration of thin-film s-SWNT devices. Comparison to electrical breakdown in junction-less SWNT devices without gating shows that this junction-based breakdown method yields more than twice the average on-state current retention in the resultant s-SWNT arrays. Systematic studies show that the on/off ratio can reach as high as 1.4 × 10(6) with a correspondingly high retention of on-state current compared to the initial current value before breakdown. Overall, this method provides important insight into transport at SWNT junctions and a simple route for obtaining pure s-SWNT thin film devices for broad applications. PMID:26263184

  13. Local Dynamic Reactive Power for Correction of System Voltage Problems

    SciTech Connect

    Kueck, John D; Rizy, D Tom; Li, Fangxing; Xu, Yan; Li, Huijuan; Adhikari, Sarina; Irminger, Philip

    2008-12-01

    Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results

  14. Anticipating electrical breakdown in dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.

    2013-04-01

    The output strain of a dielectric elastomer actuator is directly proportional to the square of its applied electric field. However, since the likelihood of electric breakdown is elevated with an increased applied field, the maximum operating electric field of the dielectric elastomer is significantly derated in systems employing these actuators so that failure due to breakdown remains unlikely even as the material ages. In an effort to ascertain the dielectric strength so that stronger electric fields can be applied, partial discharge testing is used to assess the health of the actuator by detecting the charge that is released when localized instances of breakdown partially bridge the insulator. Pre-stretched and unstretched samples of VHB4910 tape were submerged in dielectric oil to remove external sources of partial discharges during testing, and the partial discharge patterns were recorded just before failure of the dielectric sample.

  15. High-voltage 6H-SiC p-n junction diodes

    NASA Technical Reports Server (NTRS)

    Matus, L. G.; Powell, J. A.; Salupo, C. S.

    1991-01-01

    A chemical vapor deposition (CVD) process has been used to produce device structures of n- and p-type 6H-SiC epitaxial layers on commercially produced single-crystal 6H-SiC wafers. Mesa-style p-n junction diodes were successfully fabricated from these device structures using reactive ion etching, oxide passivation, and electrical contact metallization techniques. When tested in air, the 6H-SiC diodes displayed excellent rectification characteristics up to the highest temperature tested, 600 C. To observe avalanche breakdown of the p-n junction diodes, testing under a high-electrical-strength liquid was necessary. The avalanche breakdown voltage was 1000 V representing the highest reverse breakdown voltage to be reported for any CVD-grown SiC diode.

  16. Spectrometers for RF breakdown studies for CLIC

    NASA Astrophysics Data System (ADS)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  17. A Simple Design Method Based on Vector Control of AC Machines with LC Filter

    NASA Astrophysics Data System (ADS)

    Saito, Ryosuke; Kubota, Hisao

    This paper presents a simple voltage control system of AC machines using PWM voltage source inverter with output LC filters. By assuming a motor as a current source, the voltage is controlled by a simple proportional differential (PD) control. The vector control and PD control can be separately controlled in this system. A method for disturbance rejection is also described. The effectiveness of the proposed method is verified by simulations and experiments.

  18. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  19. Dynamics of the breakdown of granular clusters

    NASA Astrophysics Data System (ADS)

    Coppex, François; Droz, Michel; Lipowski, Adam

    2002-07-01

    Recently van der Meer et al. studied the breakdown of a granular cluster [Phys. Rev. Lett. 88, 174302 (2002)]. We reexamine this problem using an urn model, which takes into account fluctuations and finite-size effects. General arguments are given for the absence of a continuous transition when the number of urns (compartments) is greater than two. Monte Carlo simulations show that the lifetime of a cluster τ diverges at the limits of stability as τ~N1/3, where N is the number of balls. After the breakdown, depending on the dynamical rules of our urn model, either normal or anomalous diffusion of the cluster takes place.

  20. Substation voltage upgrading

    SciTech Connect

    Panek, J.; Elahi, H.; Sublich, M. . Systems Development and Engineering Dept.)

    1989-08-01

    Substation voltage uprating, i.e., conversion of a substation from a lower rated voltage to a higher rated voltage without a complete substation rebuild, can lead to excellent economic benefits. Utilization of the old substation layout and/or the existing equipment, to some extent, is the practical objective of such an uprating. The objective of this project was to assess the opportunities for substation uprating in the industry, to establish feasibility for such uprating and to study methods for accomplishing it. The final aim of the project was to provide guidance to utilities interested in uprating. 56 refs., 41 figs., 18 tabs.

  1. Low voltage to high voltage level shifter and related methods

    NASA Technical Reports Server (NTRS)

    Mentze, Erik J. (Inventor); Hess, Herbert L. (Inventor); Buck, Kevin M. (Inventor); Cox, David F. (Inventor)

    2006-01-01

    A shifter circuit comprises a high and low voltage buffer stages and an output buffer stage. The high voltage buffer stage comprises multiple transistors arranged in a transistor stack having a plurality of intermediate nodes connecting individual transistors along the stack. The transistor stack is connected between a voltage level being shifted to and an input voltage. An inverter of this stage comprises multiple inputs and an output. Inverter inputs are connected to a respective intermediate node of the transistor stack. The low voltage buffer stage has an input connected to the input voltage and an output, and is operably connected to the high voltage buffer stage. The low voltage buffer stage is connected between a voltage level being shifted away from and a lower voltage. The output buffer stage is driven by the outputs of the high voltage buffer stage inverter and the low voltage buffer stage.

  2. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  3. Automatic Mode Switching Method for Torque Priority Control of IPMSM by Considering Voltage Saturation

    NASA Astrophysics Data System (ADS)

    Nakama, Takao; Hanada, Toshihiro; Ohishi, Kiyoshi; Makishima, Shingo; Uezono, Keiichi; Yasukawa, Shinobu

    This paper proposes a new current control method for interior permanent magnet synchronous motor (IPMSM). In the case of AC motor control, two axis current feedback control is performed to control the voltage amplitude and phase. When the inverter voltage is saturated, current control is achieved by controlling the voltage phase. Conventional techniques require switching the mode of the control system from variable-voltage mode to voltage-saturation mode. However, in conventional techniques, the transient voltage saturation occurs by switching the control system. The proposed method achieves the current control in variable voltage mode and voltage saturation mode without switching the control system. Moreover, the current response is not affected by the rotor speed. The numerical simulation results and experimental results confirm the effectiveness of proposed current control method.

  4. Water permeation and dielectric breakdown. Water permeability in Pub Tedlar. Pub/Tedlar as a function of temperature and humidity

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1985-01-01

    Moisture transport and dielectric breakdown of polyvinyl butyral (PVB), Tedlar, and PVB/Tedlar composites were addressed. Data for the temperature range between 20 and 80 C showed that the moisture flux through the composite is governed by the slower material; and that the composite permeability is intermediate to those of the component material, as predicted by theory. Data for Tedlar at 71 C, showing the dependence of moisture flux on relative humidity, was also presented. Dielectric breakdown data were less precise and less conclusive. The generally applied theoretical model does not match the experimental data. The PVB/Tedlar composite exhibited greater voltage breakdown resistance than either component. Testing of EVA and EVA/Tedlar composites is underway.

  5. Imaging voltage in neurons

    PubMed Central

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  6. High Voltage TAL Performance

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Jankovsky, Robert S.; Rawlin, Vincent K.; Manzella, David H.

    2001-01-01

    The performance of a two-stage, anode layer Hall thruster was evaluated. Experiments were conducted in single and two-stage configurations. In single-stage configuration, the thruster was operated with discharge voltages ranging from 300 to 1700 V. Discharge specific impulses ranged from 1630 to 4140 sec. Thruster investigations were conducted with input power ranging from 1 to 8.7 kW, corresponding to power throttling of nearly 9: 1. An extensive two-stage performance map was generated. Data taken with total voltage (sum of discharge and accelerating voltage) constant revealed a decrease in thruster efficiency as the discharge voltage was increased. Anode specific impulse values were comparable in the single and two-stage configurations showing no strong advantage for two-stage operation.

  7. High voltage power supply

    NASA Technical Reports Server (NTRS)

    Ruitberg, A. P.; Young, K. M. (Inventor)

    1985-01-01

    A high voltage power supply is formed by three discrete circuits energized by a battery to provide a plurality of concurrent output signals floating at a high output voltage on the order of several tens of kilovolts. In the first two circuits, the regulator stages are pulse width modulated and include adjustable ressistances for varying the duty cycles of pulse trains provided to corresponding oscillator stages while the third regulator stage includes an adjustable resistance for varying the amplitude of a steady signal provided to a third oscillator stage. In the first circuit, the oscillator, formed by a constant current drive network and a tuned resonant network included a step up transformer, is coupled to a second step up transformer which, in turn, supplies an amplified sinusoidal signal to a parallel pair of complementary poled rectifying, voltage multiplier stages to generate the high output voltage.

  8. Extension of thickness-dependent dielectric breakdown law on adiabatically compressed ferroelectric materials

    SciTech Connect

    Shkuratov, Sergey I.; Baird, Jason; Talantsev, Evgueni F.

    2013-02-04

    It is experimentally found that the E{sub b}(d) = {gamma} {center_dot} d{sup -{xi}} law describing the thickness-dependent breakdown electric field for solid dielectrics at ambient conditions can be extended for dielectrics in other thermodynamic states. It follows from the experimental results reported herein that the breakdown field, E{sub b}(d), of Pb(Zr{sub 0.95}Ti{sub 0.05})O{sub 3} (PZT 95/5) and Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT 52/48) ferroelectrics subjected to explosive adiabatic compression obeys the above-mentioned law in a wide range of voltages, up to 150 kV.

  9. Pre-breakdown cavitation nanopores in the dielectric fluid in the inhomogeneous, pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Pekker, Mikhail; Shneider, Mikhail N.

    2015-10-01

    This paper discusses the nanopores emerging and developing in a liquid dielectric under the action of the ponderomotive electrostrictive forces in a nonuniform electric field. It is shown that the gradient of the electric field in the vicinity of the rupture (cavitation nanopore) substantially increases and determines whether the rupture grows or collapses. The cavitation rupture in the liquid (nanopore) tends to stretch along the lines of the original field. The mechanism of the breakdown associated with the generation of secondary ruptures in the vicinity of the poles of the nanopore is proposed. The estimations of the extension time for nanopore in water and oil (polar and nonpolar liquids, respectively) are presented. A new mechanism of nano- and subnanosecond breakdown in the insulating (transformer) oil that can be realized in the vicinity of water microdroplets in nanosecond high-voltage devices is considered.

  10. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    SciTech Connect

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor' D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.

    2013-05-15

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of {approx}10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  11. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  12. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  13. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics.

    PubMed

    Veda Prakash, G; Kumar, R; Patel, J; Saurabh, K; Shyam, A

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results. PMID:24387484

  14. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Höft, H.; Becker, M. M.; Kettlitz, M.

    2016-03-01

    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  15. Explosive Electric Breakdown due to Conducting-Particle Deposition on an Insulating Substrate

    NASA Astrophysics Data System (ADS)

    Oliveira, Cláudio L. N.; Araújo, Nuno A. M.; Andrade, José S.; Herrmann, Hans J.

    2014-10-01

    We introduce a theoretical model to investigate the electric breakdown of a substrate on which highly conducting particles are adsorbed and desorbed with a probability that depends on the local electric field. We find that, by tuning the relative strength q of this dependence, the breakdown can change from continuous to explosive. Precisely, in the limit in which the adsorption probability is the same for any finite voltage drop, we can map our model exactly onto the q-state Potts model and thus the transition to a jump occurs at q=4. In another limit, where the adsorption probability becomes independent of the local field strength, the traditional bond percolation model is recovered. Our model is thus an example of a possible experimental realization exhibiting a truly discontinuous percolation transition.

  16. High voltage DC power supply

    DOEpatents

    Droege, T.F.

    1989-12-19

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively. 7 figs.

  17. High voltage DC power supply

    DOEpatents

    Droege, Thomas F.

    1989-01-01

    A high voltage DC power supply having a first series resistor at the output for limiting current in the event of a short-circuited output, a second series resistor for sensing the magnitude of output current, and a voltage divider circuit for providing a source of feedback voltage for use in voltage regulation is disclosed. The voltage divider circuit is coupled to the second series resistor so as to compensate the feedback voltage for a voltage drop across the first series resistor. The power supply also includes a pulse-width modulated control circuit, having dual clock signals, which is responsive to both the feedback voltage and a command voltage, and also includes voltage and current measuring circuits responsive to the feedback voltage and the voltage developed across the second series resistor respectively.

  18. Low-voltage gyrotrons

    SciTech Connect

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-15

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  19. Low-voltage gyrotrons

    NASA Astrophysics Data System (ADS)

    Glyavin, M. Yu.; Zavolskiy, N. A.; Sedov, A. S.; Nusinovich, G. S.

    2013-03-01

    For a long time, the gyrotrons were primarily developed for electron cyclotron heating and current drive of plasmas in controlled fusion reactors where a multi-megawatt, quasi-continuous millimeter-wave power is required. In addition to this important application, there are other applications (and their number increases with time) which do not require a very high power level, but such issues as the ability to operate at low voltages and have compact devices are very important. For example, gyrotrons are of interest for a dynamic nuclear polarization, which improves the sensitivity of the nuclear magnetic resonance spectroscopy. In this paper, some issues important for operation of gyrotrons driven by low-voltage electron beams are analyzed. An emphasis is made on the efficiency of low-voltage gyrotron operation at the fundamental and higher cyclotron harmonics. These efficiencies calculated with the account for ohmic losses were, first, determined in the framework of the generalized gyrotron theory based on the cold-cavity approximation. Then, more accurate, self-consistent calculations for the fundamental and second harmonic low-voltage sub-THz gyrotron designs were carried out. Results of these calculations are presented and discussed. It is shown that operation of the fundamental and second harmonic gyrotrons with noticeable efficiencies is possible even at voltages as low as 5-10 kV. Even the third harmonic gyrotrons can operate at voltages about 15 kV, albeit with rather low efficiency (1%-2% in the submillimeter wavelength region).

  20. Heme content and breakdown in developing chloroplasts

    SciTech Connect

    Thomas, J.; Weinstein, J.D. )

    1990-05-01

    Heme regulates tetrapyrrole biosynthesis in plants by inhibition of {delta}-aminolevulinic acid (ALA) synthesis, product inhibition of heme synthesis, and possibly other mechanisms. Plastid heme levels may be modulated by heme synthesis, breakdown and/or efflux. Heme breakdown may be catalyzed by a chloroplast localized heme oxygenase. Chloroplasts isolated from greening cucumber cotyledons were incubated in the presence or absence of various components thought to modulate heme breakdown. Following the incubations, the chloroplasts were broken (freeze-thaw) and then supplemented with horseradish peroxidase apoenzyme. The reconstituted peroxidase activity was used to determine the amount of free heme remaining (Thomas Weinstein (1989) Plant Physiol. 89S: 74). Chloroplasts, freshly isolated from seedlings greened for 16 hours, contained approximately 37 pmol heme/mg protein. When chloroplasts were incubated with 5 mM NADPH for 30 min, the endogenous heme dropped to unmeasurable levels. Exogenous heme was also broken down when NADPH was included in the incubation. Heme levels could be increased by the inclusion of 50 {mu}M ALA and/or p-hydroxymercuribenzoate. The increase due to exogenous ALA was blocked by levulinic acid, an inhibitor of ALA utilization. NADPH-dependent heme breakdown acid was inhibited by p-hydroxymercuribenzoate.

  1. Fear of breakdown and the unlived life.

    PubMed

    Ogden, Thomas H

    2014-04-01

    Winnicott's Fear of breakdown is an unfinished work that requires that the reader be not only a reader, but also a writer of this work which often gestures toward meaning as opposed to presenting fully developed ideas. The author's understanding of the often confusing, sometimes opaque, argument of Winnicott's paper is as follows. In infancy there occurs a breakdown in the mother-infant tie that forces the infant to take on, by himself, emotional events that he is unable to manage. He short-circuits his experience of primitive agony by generating defense organizations that are psychotic in nature, i.e., they substitute self-created inner reality for external reality, thus foreclosing his actually experiencing critical life events. By not experiencing the breakdown of the mother-infant tie when it occurred in infancy, the individual creates a psychological state in which he lives in fear of a breakdown that has already happened, but which he did not experience. The author extends Winnicott's thinking by suggesting that the driving force of the patient's need to find the source of his fear is his feeling that parts of himself are missing and that he must find them if he is to become whole. What remains of his life feels to him like a life that is mostly an unlived life. PMID:24620827

  2. How to Avoid Language Breakdown? Circumlocution!

    ERIC Educational Resources Information Center

    Salomone, Ann Masters; Marsal, Florence

    1997-01-01

    Circumlocution can prevent communication breakdown and is a required function at the Advanced level on the American Council on the Teaching of Foreign Languages (ACTFL) Oral Proficiency Scale. To encourage this communicative strategy, researchers conducted a study of two intermediate college French classes: one that encouraged circumlocution and…

  3. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  4. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  5. ac electroosmotic pumping induced by noncontact external electrodes

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  6. Extending membrane pore lifetime with AC fields: A modeling study

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Bogdan Neculaes, V.

    2012-07-01

    AC (sinusoidal) fields with frequencies from kilohertz to gigahertz have been used for gene delivery. To understand the impact of AC fields on electroporation dynamics, we couple a nondimensionalized Smoluchowski equation to an exact representation of the cell membrane voltage obtained solving the Laplace equation. The slope of the pore energy function, dφ/dr, with respect to pore radius is critical in predicting pore dynamics in AC fields because it can vary from positive, inducing pore shrinkage, to negative, driving pore growth. Specifically, the net sign of the integral of dφ/dr over time determines whether the average pore size grows (negative), shrinks (positive), or oscillates (zero) indefinitely about a steady-state radius, rss. A simple analytic relationship predicting the amplitude of the membrane voltage necessary for this behavior agrees well with simulation for frequencies from 500 kHz to 5 MHz for rss < 10 nm. For larger pore size (rss > 10 nm), dφ/dr oscillates about a negative value, suggesting that a net creation of pores may be necessary to maintain a constant pore size. In both scenarios, the magnitude of rss depends only upon the amplitude of the membrane voltage and not directly upon the applied field frequency other than the relationship between the amplitudes of the applied field and membrane voltage.

  7. Induction cell breakdown experiments for the Dual-Axis Radiographic Hydrotest (DARHT) Facility

    SciTech Connect

    Earley, L.M.; Barnes, G.A.; Eversole, S.A.; Kauppila, T.J.; Keel, G.; Liska, D.J.; Moir, D.C.; Parsons, W.M.; Rader, D.C.

    1991-01-01

    Linear induction cells for the Dual-Axis Radiographic Hydrotest (DARHT) Facility have been tested to determine their high-voltage breakdown characteristics. A variety of full scale insulators were tested both in actual cells and in fixtures simulating induction cells. All insulators were constructed using cross-linked polystyrene (Rexolite). High-voltage pulses up to 550 kV were applied to the insulators using both a 60-ns pulse Blumlein and a 200-ns pulse cable Marx. Two different vacuum gaps were used in these tests, 1.46 and 1.91 cm. The tests were performed at various vacuum levels ranging from 1 {times} 10{sup {minus}6} to 5 {times} 10{sup {minus}8} torr. Breakdown tests of the insulators were also performed with an electron beam generated in the vacuum gap through the use of a velvet emitter. The gap voltage and current were measured using calibrated E-dot and B-dot probes. 15 refs., 7 figs.

  8. Electrical breakdown of carbon nanotube devices and the predictability of breakdown position

    NASA Astrophysics Data System (ADS)

    Goswami, Gopal Krishna; Nanda, Karuna Kar

    2012-06-01

    We have investigated electrical transport properties of long (>10 μm) multiwalled carbon nanotubes (NTs) by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by current annealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs) with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs.

  9. Performance and breakdown characteristics of irradiated vertical power GaN P-i-N diodes

    SciTech Connect

    King, M. P.; Armstrong, A. M.; Dickerson, J. R.; Vizkelethy, G.; Fleming, R. M.; Campbell, J.; Wampler, W. R.; Kizilyalli, I. C.; Bour, D. P.; Aktas, O.; Nie, H.; Disney, D.; Wierer, Jr., J.; Allerman, A. A.; Moseley, M. W.; Kaplar, R. J.

    2015-10-29

    Electrical performance and defect characterization of vertical GaN P-i-N diodes before and after irradiation with 2.5 MeV protons and neutrons is investigated. Devices exhibit increase in specific on-resistance following irradiation with protons and neutrons, indicating displacement damage introduces defects into the p-GaN and n- drift regions of the device that impact on-state device performance. The breakdown voltage of these devices, initially above 1700 V, is observed to decrease only slightly for particle fluence <; 1013 cm-2. Furthermore, the unipolar figure of merit for power devices indicates that while the on-resistance and breakdown voltage degrade with irradiation, vertical GaN P-i-Ns remain superior to the performance of the best available, unirradiated silicon devices and on-par with unirradiated modern SiC-based power devices.

  10. Thickness and temperature dependences of the degradation and the breakdown for MgO-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Min; Song, Yun-Heub

    2015-03-01

    The reliability of a magnetic tunnel junction (MTJ) with an MgO tunnel barrier was evaluated. In particular, various voltage tests were used to investigate the effects of the barrier thickness and the temperature on the resistance drift. We compared the resistance change during a constant voltage stress (CVS) test and confirmed a trap/detrap phenomenon during the interval stress for different barrier thicknesses and temperatures. The resistance drift representing degradation and the time to breakdown (T BD ) representing the breakdown characteristic were better for a thicker barrier and lower temperature, but were worse for a thinner barrier and a higher temperature. The results suggest that breakdown and degradation due to trap generation strongly depend on both the barrier thickness and the temperature. Furthermore, as the TBD varies at steady rates with changing barrier thickness, temperature, and electric field, we assume that a MTJ with an adnormal thin layer of MgO can be screened effectively based on the predicted T BD . As a result, the barrier thickness and the temperature are very important in determining the reliability of a MTJ, and this study is expected to be helpful in understanding the degradation and the breakdown of a MTJ.

  11. Influence of the hot filament on the electrical breakdown characteristics in the presence of Ar/N2

    NASA Astrophysics Data System (ADS)

    Borkhari, Arian Fateh; Yasserian, Kiomars

    2013-01-01

    The influence of a hot filament on the electrical breakdown characteristics is studied for different ratios of argon and nitrogen gases for a wide range of pressure. The vacuum tube consists of two parallel plane stainless steels used as cathode and anode accompanied with a tungsten filament located behind the cathode. Paschen's curves are obtained for different ratios of argon and nitrogen as a function of pressure for various electric currents of the hot filament. The first and second Townsend coefficients as well as the ionization efficiency and secondary ionization coefficient are obtained for different filament currents. In addition, the influences of the nitrogen partial pressure on the forgoing parameters are obtained. It is shown that, increase of the filament current causes the decrease of the electrical breakdown voltage which is more pronounced in low pressures. Furthermore, introducing the nitrogen gas leads to the increase of the breakdown voltage and decrease of the ionization efficiency as well as the first and second Townsend coefficients. Moreover, it is concluded that, in the middle range of pressure, the presence of the hot filament results to the electrical breakdown which reveals the linear features.

  12. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  13. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  14. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  15. Multilevel cascade voltage source inverter with separate DC sources

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  16. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  17. A computational study of the taxonomy of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Gatski, Thomas B.

    1990-01-01

    The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.

  18. Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets.

    PubMed Central

    Axen, K V; Schubart, U K; Blake, A D; Fleischer, N

    1983-01-01

    Breakdown of phosphatidylinositol (PI) has been shown to be increased during Ca2+-mediated stimulation of cellular responses in many systems and has been proposed to be involved in stimulus-secretion coupling. The effects on PI breakdown of insulin secretagogues that alter cellular Ca2+ or cyclic (c)AMP levels were investigated in perifused rat islets of Langerhans. Isolated islets were labeled with myo-[2-3H(N)]inositol and the efflux of 3H-labeled metabolites was monitored. Glucose (16.7 mM) greatly increased 3H release in a manner that paralleled the second phase of the insulin secretory response; by 60 min, the amount of [3H]PI in the islet decreased by 50%. Removal of Ca2+ from the perifusate or blockade of Ca2+ entry through the voltage-dependent channels by D600 (20 microM) abolished the glucose-induced increase in 3H efflux. Depolarization with 47 mM K+, which increases Ca2+ entry, stimulated protracted 3H and insulin release. Glucose-stimulated output of 3H was not prevented by epinephrine (1 microM) even though the insulin response was abolished. In contrast, 3H output was not affected by isobutylmethylxanthine (1 mM), known to raise cellular levels of cAMP, although insulin release was stimulated. These findings indicate that PI breakdown is not related to the exocytotic process since stimulation of insulin release and PI breakdown could be uncoupled, and that it is not associated with cAMP-mediated regulation of insulin release. PI breakdown in islets differs from the immediate, transient phenomenon reported in other systems in both its timing and requirement for Ca2+. It appears to result from the entry of Ca2+ and not to be the mechanism by which glucose initiates Ca2+ influx. PMID:6192142

  19. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  20. Interplay between electron overheating and ac Josephson effect

    NASA Astrophysics Data System (ADS)

    De Cecco, A.; Le Calvez, K.; Sacépé, B.; Winkelmann, C. B.; Courtois, H.

    2016-05-01

    We study the response of high-critical-current proximity Josephson junctions to a microwave excitation. Electron overheating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron overheating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron overheating is obtained.

  1. Device for monitoring cell voltage

    DOEpatents

    Doepke, Matthias; Eisermann, Henning

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  2. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  3. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  4. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  5. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  6. 7 CFR 51.1563 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Soft rot or wet breakdown. 51.1563 Section 51.1563... STANDARDS) United States Standards for Grades of Potatoes 1 Definitions § 51.1563 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  7. 7 CFR 51.1582 - Soft rot or wet breakdown.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Soft rot or wet breakdown. 51.1582 Section 51.1582... STANDARDS) United States Consumer Standards for Potatoes Definitions § 51.1582 Soft rot or wet breakdown. Soft rot or wet breakdown means any soft, mushy, or leaky condition of the tissue such as slimy...

  8. Recent Studies of RF Breakdown Physics in Normal Conducting Cavities

    SciTech Connect

    Dolgashev, Valery; /SLAC

    2012-06-11

    The operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The behavior of the rf breakdown depends on multiple parameters, including the input rf power, rf circuit, cavity shape and material. Here we discuss recent experimental data and theoretical studies of rf breakdown physics.

  9. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  10. Bus-controlled power driver circuits for high voltages, using linear compatible I2L logic

    NASA Astrophysics Data System (ADS)

    Clauss, H.; Kuebler, M.

    1986-04-01

    A technology for monolithic integration of bipolar transistors, having breakdown voltages greater than or = to 60 V, and I2L-logic was developed. Bipolar transistors with high breakdown voltages must have thick, low doped epitaxial layers and low dc current gain, but I2L-logic with high packing density and short gate delay demands thin epitaxial layers and high dc current gain. A process with two epitaxial layers with buried layer and different intrinsic base doping for the two types of npn-transistor was developed. Bus-controlled power driver circuits for inductive loads in industrial systems were realized. Devices have 60 V maximum supply voltage and, electronically limited, 260 mA max output current.

  11. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  12. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  13. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  14. Changes in behavioral responses of Lygus lineolaris (Hemiptera: Miridae) from various applied signal voltages during EPG recordings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 3rd-generation AC-DC electrical penetration graph (EPG) monitor was used to study feeding behaviors of pre-reproductive adult Lygus lineolaris (Hemiptera: Miridae) on pinhead (<3mm) cotton squares, applying different signal voltages at several input impedances. The AC-DC monitor allows a user to s...

  15. Amplitude-temporal characteristics of a supershort avalanche electron beam generated during subnanosecond breakdown in air and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.

    2016-04-01

    The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  16. Dielectric breakdown properties of hot SF6 gas contaminated by copper at temperatures of 300-3500 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Zhong, Linlin; Rong, Mingzhe; Yang, Aijun; Liu, Dingxin; Wu, Yi; Miao, Song

    2015-04-01

    The dielectric breakdown properties of hot SF6 gas during the dielectric recovery phase play an important role in understanding gas breakdown occurring in high-voltage circuit breakers. This paper is devoted to the theoretical investigation of dielectric breakdown properties of hot SF6 gas contaminated by copper at temperatures of 300-3500 K and pressures of 0.01-1.6 MPa. The equilibrium compositions of SF6-Cu mixtures are obtained with the consideration of condensed species. The unknown ionization cross sections for CuS, CuF and CuF2 are calculated using a Deutsch-Märk (DM) formalism based on quantum chemistry. The two-term Boltzmann equation is adopted to numerically calculate the electron energy distribution function, collision ionization coefficient and electron attachment coefficient. Then the reduced critical electric field strength is determined when the effective ionization coefficient equals to zero. The influences of the Cu proportion and gas pressure on the dielectric breakdown properties are investigated. It is shown that the existence of copper compounds increases the concentration of high-energy electrons significantly, even for the case with a very low percentage (e.g. 1% Cu). With the increase of copper content, the value of (E/N)cr is reduced remarkably at temperatures below 3000 K, but enhanced slightly above 3000 K. It is also found that the increase of pressure can improve the dielectric breakdown performance of hot SF6-Cu mixtures.

  17. STABILITY OF HIGH VOLTAGE MODULATORS FOR NONLINEAR LOADS

    SciTech Connect

    PAWLEY,J.C; TOOKER,J; PEAVY,J; CARY,W.P; NEREM,A; HOYT,D; LOHR,J

    2003-10-01

    OAK-B135 Gyrotrons have a nonlinear voltage--current characteristic such that the small signal or ac impedance changes as operational voltage and currents are reached. The ac impedance determines the stability of a voltage or current control system. this can become particularly challenging when several gyrotron are connected in parallel to a single modulator. With all gyrotrons hooked to a common ground, large current loops can be generated as well as non-canceling currents in individual coaxial lines. These inequalities can provide the required feedback impulse to start an oscillation condition in the power system for the tubes. Recent operation of two CPI 110 GHz gyrotrons in the MN class from a single modulator on DIII-D has shown instability in the power system. An oscillation in the drive current occurs at various points in the ramp up and flat top portions of the 80 kV voltage pulse with each tube drawing 40 A at full voltage. Efforts to stabilize these instabilities are presented along with some modeling and examination of the issues for gyrotron modulators.

  18. Technical Aspects of the Advanced Camera For Surveys Repair (ACS-R)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen; Cheng, Edward S.; Sirianni, Marco

    2008-01-01

    The ACS Repair (ACS-R) team includes contributors from NASA's Goddard Space Flight Center, Ball Aerospace, and Teledyne Imaging Sensors; It determined that all of the capabilities of the ACS could be restored and created a concept for the ACS-R component of SN4. ACSR will restore the WFC of ACS by replacing the existing CCD Electronics Box (CEB) with the CEB-Replacement (CEB-R) and providing power from a new Low Voltage Power Supply Replacement (LVPS-8). The new LVPS-R will also attempt to restore the HRC function by providing power through the original power bus. In this presentation, we faeus on the concept and technical aspects of the ACS-R.

  19. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  20. Electron launching voltage monitor

    DOEpatents

    Mendel, C.W.; Savage, M.E.

    1992-03-17

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.