Science.gov

Sample records for ac complex impedance

  1. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  2. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  3. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.

  4. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  5. Active impedance matching of complex structural systems

    NASA Technical Reports Server (NTRS)

    Macmartin, Douglas G.; Miller, David W.; Hall, Steven R.

    1991-01-01

    Viewgraphs on active impedance matching of complex structural systems are presented. Topics covered include: traveling wave model; dereverberated mobility model; computation of dereverberated mobility; control problem: optimal impedance matching; H2 optimal solution; statistical energy analysis (SEA) solution; experimental transfer functions; interferometer actuator and sensor locations; active strut configurations; power dual variables; dereverberation of complex structure; dereverberated transfer function; compensators; and relative power flow.

  6. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  7. Structural and complex AC impedance spectroscopic studies of A 2CoNbO 6 (A = Sr, Ba) ordered double perovskites

    NASA Astrophysics Data System (ADS)

    Bashir, J.; Shaheen, R.

    2011-05-01

    Powder X-ray diffraction has been employed to study the crystal structures of Sr 2CoNbO 6 ( SCNO) and Ba 2CoNbO 6 ( BCNO) double perovskites. Rietveld fit to the X-ray diffraction data showed that Ba 2CoNbO 6 perovskites was monoclinic with space group P2 1/ n whereas Sr 2CoNbO 6 was found to be tetragonal with space group I4/ m. Like other cobalt based perovskites, both materials exhibit high values of dielectric constant at room temperature and low frequencies. Room temperature impedance and modulus spectra, measured over the 1 Hz to 10 MHz, reveal two relaxation processes with different relaxation times which were attributed to the grain and grain boundaries.

  8. Laser Raman and ac impedance spectroscopic studies of PVA: NH 4NO 3 polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Hema, M.; Selvasekarapandian, S.; Hirankumar, G.; Sakunthala, A.; Arunkumar, D.; Nithya, H.

    2010-01-01

    Ion conducting polymer electrolyte PVA:NH 4NO 3 has been prepared by solution casting technique and characterized using XRD, Raman and ac impedance spectroscopic analyses. The amorphous nature of the polymer films has been confirmed by XRD and Raman spectroscopy. An insight into the deconvoluted Raman peaks of υ1 vibration of NO 3- anion for the polymer electrolyte reveals the dominancy of ion aggregates at higher NH 4NO 3 concentration. From the ac impedance studies, the highest ion conductivity at 303 K has been found to be 7.5 × 10 -3 S cm -1 for 80PVA:20NH 4NO 3. The conductivity of the polymer electrolytes has been found to depend on the degree of dissociation of the salt in the host polymer matrix. The combination of the above-mentioned analyses has proven worth while and in fact necessary in order to achieve better understanding of these complex systems.

  9. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  10. AC impedance electrochemical modeling of lithium-ion positive electrodes.

    SciTech Connect

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.; Chemical Engineering; IIT

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF{sub 6} dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes [1]. Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley [2]. The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation [3]. The resulting system of differential

  11. An AC impedance study of steel in concrete

    NASA Astrophysics Data System (ADS)

    Lay, P.; Lawrence, P. F.; Wilkins, N. J. M.; Williams, D. E.

    1984-01-01

    Impedance measurements executed between both steel and platinum electrodes embedded in both porous and non-porous concretes were used to explore the physical characteristics of the system. A simple method is described for measuring high impedances (up to 500 M) in which the unknown impedance is compared with the imput impedance of the measuring instrument, previously calibrated. Impedance measurements on concrete immersed in an electrolyte were used to quantify concrete quality, and the dynamics of wetting, drying and electrolyte exchange were explored: the dynamics of such processes are considered to be among the factors determining the rate of corrosion of steel reinforcement under some conditions, since intermittent wetting is an efficient method for transporting oxygen and salt into the concrete. The existence of cracks along the electrode-concrete interface was inferred. Impedance changes consequent on the initiation of corrosion of steel electrodes were noted, but the changes were small and not clear-cut.

  12. Investigation of water and ice by ac impedance using electrochemical properties cup.

    PubMed

    Chin, K B; Buehler, M G; Seshadri, S; Keymeulen, D; Anderson, R C; Dutz, S; Narayanan, S R

    2007-01-01

    Water and ice were investigated by ac impedance with the electrochemical properties cup in an effort to develop an in situ instrument for water characterization. In liquid water, the impedance modulus decreased with the increase in charge carriers. In the ice, the impedance measurements were characterized by the dielectric relaxation and its corresponding activation energy. The activation energy of 0.400 eV was determined for pure ice. With ice containing Cl(-) anions, the activation energy was 0.24 eV. H(+) and OH(-) doped ice has the lowest activation energy for dielectric relaxation. Results from previous works are similar to the results reported in this study.

  13. Electrical transport properties of Mn-Ni-Zn ferrite using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Azizar Rahman, M.; Hossain, A. K. M. Akther

    2014-02-01

    Polycrystalline Mn0.45Ni0.05Zn0.50Fe2O4 was prepared by a standard solid state reaction technique. We report the electrical properties of this ferrite using ac impedance spectroscopy as a function of frequency (20 Hz-10 MHz) at different temperatures (50-350 °C). X-ray diffraction patterns reveal the formation of cubic spinel structure. Complex impedance analysis has been used to separate the grain and grain boundary resistance of this ferrite. The variation of grain and grain boundary conductivities with temperature confirms semiconducting behavior. The dielectric permittivity shows dielectric dispersion at lower frequency and reveals that it has almost the same value on the high-frequency side. The non-coincidence of peaks corresponding to modulus and impedance indicates deviation from Debye-type relaxation. A similar value of activation energy is obtained from impedance and modulus spectra, indicating that charge carriers overcome the same energy barrier during relaxation. Electron hopping is responsible for ac conduction in this ferrite. The electron hopping shifts toward higher frequency with increasing temperature, below which the conductivity is frequency independent. The frequency-independent ac conductivity has been observed at and above 300 °C in the frequency range 20 Hz-1 MHz. This frequency-independent ac conductivity is due to the long-range movement of the mobile charge carriers.

  14. AC Impedance Studies on Metal/Nanoporous Silicon/ p-Silicon Structures

    NASA Astrophysics Data System (ADS)

    Mabrook, M. F.; Ray, A. K.

    2017-04-01

    Alternating current (AC) impedance measurements have been performed on 10- to 15- μm thick porous silicon layers on a (100) p-type silicon ( p(+)Si) substrate with the aluminium (Al) top electrode in a sandwich configuration in the range of 20 Hz-1 MHz and in the temperature ranging between 152 K and 292 K. The ac conductivity σ ac was found to increase with frequency f according to the universal power law: σ_{{ac}} = Afs where the exponent s is a frequency and temperature-dependent quantity. A hopping process is found to be dominant at low temperatures and high frequencies, while a thermally activated free band process is responsible for conduction at higher temperatures. Capacitance is found to decrease with frequency but increase with temperature. Frequency dependence of the loss tangent is observed with a temperature-dependent minimum value.

  15. AC Impedance Studies on Metal/Nanoporous Silicon/p-Silicon Structures

    NASA Astrophysics Data System (ADS)

    Mabrook, M. F.; Ray, A. K.

    2016-11-01

    Alternating current (AC) impedance measurements have been performed on 10- to 15-μm thick porous silicon layers on a (100) p-type silicon (p(+)Si) substrate with the aluminium (Al) top electrode in a sandwich configuration in the range of 20 Hz-1 MHz and in the temperature ranging between 152 K and 292 K. The ac conductivity σ ac was found to increase with frequency f according to the universal power law: σ_{ac} = Afs where the exponent s is a frequency and temperature-dependent quantity. A hopping process is found to be dominant at low temperatures and high frequencies, while a thermally activated free band process is responsible for conduction at higher temperatures. Capacitance is found to decrease with frequency but increase with temperature. Frequency dependence of the loss tangent is observed with a temperature-dependent minimum value.

  16. AC Impedance Analysis of Corrosion Fatigue in Naval Aircraft Alloys.

    DTIC Science & Technology

    1987-05-01

    bridge. 2.3 Inhibitor Systems A saturated xylene solution of tri-alkyl (C8-CI0) ammonium complexes of the inhibiting anions borate, molybdate, dichromate ...dedThs the electrochemical rate of oxidation in hite crack tip by a factor of 100. The role of aqueous and organic phase dichrom &’e, nitrite, borate and...UNCLASSIFIED NADC 87183-60 SI 4NITY CLASSIFICATI ON 0 THIS PACE 𔃺.01 M borate reduces the cathodically aerated CF. The molybdate and dichromate inhibitors at

  17. Impedance matching based stability criteria for ac microgrids

    NASA Astrophysics Data System (ADS)

    Mendoza-Araya, Patricio A.

    Well logs, measured in depth, must be tied to seismograms, processed in time, using a time-depth function. Well ties are commonly computed using manual techniques, and are therefore prone to human error. I first introduce an automatic single-well tie method that uses smooth dynamic time warping to compute time shifts that align a synthetic seismogram with a seismic trace. These time shifts are constrained to be smoothly varying. I also show that these well ties, in my example, are insensitive to the complexity of my synthetic seismogram modeling. Tying multiple wells compounds errors in single well ties, and maintaining consistency among multiple single well ties is difficult. I introduce an automatic approach to tying multiple wells that improves consistency among well ties. I first model synthetic seismograms for each well. I then create a synthetic image by interpolating the synthetic seismograms between the wells and along seismic image structure. I use smooth dynamic image warping to align the synthetic image to the seismic image and compute updated time-depth functions for each well. I then interpolate the updated time-depth functions between the wells, and map the time-migrated seismic image to depth.

  18. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    NASA Technical Reports Server (NTRS)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  19. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  20. Laser Raman, XRD, DSC and Ac-Impedance Analysis of Polymer Blend Electrolyte Based on Eco-Friendly Pva-Pvp Blend with NH4NO3

    NASA Astrophysics Data System (ADS)

    Rajeswari, N.; Selvasekarapandian, S.; Prabaharan, S. R. S.; Kawamura, J.; Iwai, Y.; Karthikeyan, S.

    2013-07-01

    Proton conducting polymer blend electrolytes have attractive interest because of their advantages such as processability, flexibility, electrochemical stability, easy handling and their applications to a variety of electrochemical devices such as fuel cells, chemical sensor and electrochemical displays. In the present work, the films of 50PVA-50PVP blend with different MWt% concentrations of NH4NO3 have been prepared by solution casting techniques using distilled water as a solvent. The prepared films have been investigated by different techniques such as XRD, DSC, Laser Raman and AC Impedance spectroscopy. XRD studies reveal the amorphous nature of the polymer blend-salt complexes. The glass transition temperature has been calculated from the DSC analysis. From the AC Impedance spectroscopy, the high conductivity of the 30MWt% of NH4NO3 doped 50PVA-50PVP polymer complex has been found to be the order of 1.41 × 10-3S cm-1 at room temperature.

  1. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  2. Ionic conductivity and electrical relaxation of nanocrystalline scandia-stabilized c-zirconia using complex impedance analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Manna, I.

    2008-07-01

    A solid solution of 8 mol% of scandia-stabilized cubic-zirconia (8ScSZ) has been prepared by co-precipitation technique. The synthesized powder has an average crystallite size ∼40 nm, surface area of 8.49 m 2/g, and agglomerated particle size of 150 nm. The activation energy of 8ScSZ has been calculated from impedance loss spectra; electrical modulus spectra are in the range of 0.90-1.30 eV. The frequency and temperature-dependent conductivities and impedance were measured in range of 50 Hz-1 MHz and 300-900 K, respectively. Complex impedance spectra, complex modulus formalism and complex conductivity spectra have been carefully analyzed in order to separate the grain, grain boundary and electrode-electrolyte effects. Analysis of ac impedance data using complex impedance indicates a typical negative temperature coefficient of resistance (NTCR) behavior of the materials. The intrinsic conductivity is mainly due to hopping of mobile ions among the available localized site. Relaxation time obtained from complex conductivity spectra are matched well with the impedance loss and modulus loss spectra. Impedance analysis suggests the presence of temperature-dependent electrical relaxation process in the material.

  3. Single grain boundary characterization of Nb-doped SrTiO{sub 3} bicrystals using ac four-point impedance spectroscopy

    SciTech Connect

    Hwang, Jin-Ha; Johnson, Kevin D.; Mason, Thomas O.; Dravid, Vinayak P.

    2000-05-01

    AC four-point impedance spectroscopy has been applied to Nb-doped SrTiO{sub 3} bicrystals. Due to the simplified geometry and highly conductive bulk of the bicrystal, the reference impedance of the electrode was significantly reduced, validating the applicability of ac four-point impedance spectroscopy for electroceramics. DC current-voltage characteristics without any interference due to electrodes confirmed these ac measurements. Using ac four-point impedance spectroscopy, grain boundary contributions are isolated and the corresponding grain boundary thickness and resistivity are estimated. (c) 2000 American Institute of Physics.

  4. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; Sadleir, J.

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  5. AC impedance spectroscopy and conductivity studies of Dy doped Bi4V2O11 ceramics

    NASA Astrophysics Data System (ADS)

    Bag, Sasmitarani; Das, Parthasarathi; Behera, Banarji

    2017-03-01

    The ac impedance and conductivity properties of Dy doped Bi4V2 - x Dy x O11 (x = 0.05, 0.10, 0.15 and 0.20) ceramics prepared by solid-state reaction technique, in a wide frequency range at different temperatures have been studied. All the samples exhibited β-type phase orthorhombic structure at room temperature. The Nyquist plot confirmed the presence of both grain and grain boundary effects for all Dy doped samples. Double relaxation behavior was also observed. The grain and grain boundary resistance decreases with rise in temperature for all the concentration and exhibits a typical negative temperature co-efficient of resistance (NTCR) behavior. An analysis of the electric modulus suggests the possible hopping mechanism for electrical transport processes of all the materials. The ac conductivity spectrum obeys Jonscher's universal power law. DC conductivity of the materials were also studied and values of the activation energy found to be 0.40, 0.49, 0.73 and 0.78 eV for the compositions x = 0.05, 0.10, 0.15 and 0.20, respectively, at different temperatures (150-375 °C).

  6. High Dynamic Range Complex Impedance Measurement System for Petrophysical Usage

    NASA Astrophysics Data System (ADS)

    Chen, R.; He, X.; Yao, H.; Tan, S.; Shi, H.; Shen, R.; Yan, C.; Zeng, P.; He, L.; Qiao, N.; Xi, F.; Zhang, H.; Xie, J.

    2015-12-01

    Spectral induced polarization method (SIP) or complex resistivity method is increasing its application in metalliferous ore exploration, hydrocarbon exploration, underground water exploration, monitoring of environment pollution, and the evaluation of environment remediation. And the measurement of complex resistivity or complex impedance of rock/ore sample and polluted water plays a fundamental role in improving the application effect of SIP and the application scope of SIP. However, current instruments can't guaranty the accuracy of measurement when the resistance of sample is less than 10Ω or great than 100kΩ. A lot of samples, such as liquid, polluted sea water, igneous rock, limestone, and sandstone, can't be measured with reliable complex resistivity result. Therefore, this problem projects a shadow in the basic research and application research of SIP. We design a high precision measurement system from the study of measurement principle, sample holder, and measurement instrument. We design input buffers in a single board. We adopt operation amplifier AD549 in this system because of its ultra-high input impedance and ultra-low current noise. This buffer is good in acquiring potential signal across high impedance sample. By analyzing the sources of measurement error and errors generated by the measurement system, we propose a correction method to remove the error in order to achieve high quality complex impedance measurement for rock and ore samples. This measurement system can improve the measurement range of the complex impedance to 0.1 Ω ~ 10 GΩ with amplitude error less than 0.1% and phase error less than 0.1mrad when frequency ranges as 0.01 Hz ~ 1 kHz. We tested our system on resistors with resistance as 0.1Ω ~ 10 GΩ in frequency range as 1 Hz ~ 1000 Hz, and the measurement error is less than 0.1 mrad. We also compared the result with LCR bridge and SCIP, we can find that the bridge's measuring range only reaches 100 MΩ, SCIP's measuring range

  7. An electrochemical study of corrosion protection by primer-topcoat systems on 4130 steel with ac impedance and dc methods

    NASA Technical Reports Server (NTRS)

    Mendrek, M. J.; Higgins, R. H.; Danford, M. D.

    1988-01-01

    To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.

  8. Effect of 60Co gamma irradiation on dielectric and complex impedance properties of Dy3+ substituted Ni-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Veena, M.; Somashekarappa, A.; Shankaramurthy, G. J.; Jayanna, H. S.; Somashekarappa, H. M.

    2016-12-01

    Nanocrystalline Ni1-xZnxFe2-yDyyO4 (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0.0 and 0.1) ferrites were synthesized by combustion method. Ni-Zn-Dy nanoferrites were investigated by X-ray diffraction, scanning electron microscopy, dielectric and impedance properties, before and after γ-irradiation process by 60Co γ-radiation with a dose rate of 310 kGy. The lattice parameter of irradiated samples increased attributed to the conversion of smaller size Fe3+ ions to larger size Fe2+ ions on ionizing effect of gamma radiation. Experimental results reveal that reduction in dielectric constant (ε‧), loss tangent (tan δ), real (Z‧) and imaginary (Z‧‧) impedance and increase in ac conductivity (σac) have been increased with increasing in frequency. It was found that ε‧, tan δ, σac increase, Z‧‧ and Z‧‧ reach a maximum value and thereafter decrease with further Zn ion substitution. The values of ε‧, tan δ and σac decrease with Dy3+ substitution and enhanced after irradiation. The complex impedance analysis suggesting predominant contribution to conduction was through the grain boundary.

  9. AC impedance spectroscopy studies on solid-state sintered zinc aluminum oxide (ZnAl2O4) ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2012-07-01

    In the present investigation Zinc Aluminum Oxide (ZnAl2O4) is prepared by solid-state reaction technique. Dielectric constant (ɛ'), dielectric loss(tan δ), ac conductivity (σac) as a function of temperature are studied by varying frequencies from 100 Hz to 1MHz using an impedance analyzer. The dielectric constant and dielectric loss increases gradually with an increase of temperature, but it decreases with increase of frequency. The ac conductivity (σac) also increases with increases of frequency. The transition peaks for ZnAl2O4 are observed at 490°C, 510°C, 520°C for the frequencies 1 KHz, 10 KHz and 100 KHz. No transition peaks are found for the frequency 100 Hz and 1 MHz because of high conductive loss.

  10. Cryogenic calibration setup for broadband complex impedance measurements

    NASA Astrophysics Data System (ADS)

    Diener, P.; Couëdo, F.; Marrache-Kikuchi, C.; Aprili, M.; Gabelli, J.

    2014-08-01

    Reflection measurements give access to the complex impedance of a material on a wide frequency range. This is of interest to study the dynamical properties of various materials, for instance disordered superconductors. However reflection measurements made at cryogenic temperature suffer from the difficulty to reliably subtract the circuit contribution. Here we report on the design and first tests of a setup able to precisely calibrate in situ the sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during the same cool down, the sample and three calibration standards.

  11. Identification of fluids and an interface between fluids by measuring complex impedance

    DOEpatents

    Lee, David O.; Wayland, Jr., James R.

    1989-01-01

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface.

  12. Identification of fluids and an interface between fluids by measuring complex impedance

    DOEpatents

    Lee, D.O.; Wayland, J.R. Jr.

    1989-12-05

    Complex impedance measured over a predefined frequency range is used to determine the identity of different oils in a column. The location of an interface between the oils is determined from the percent frequency effects of the complex impedance measured across the interface. 5 figs.

  13. Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external AC electric field.

    PubMed

    Gholipur, Reza; Khorshidi, Zahra; Bahari, Ali

    2017-03-27

    Metamaterials have surprisingly broadened the range of available practical applications in new devices such as shielding, microwave absorbing, and novel antenna. More researches are related to the tuning DNG frequency bands of ordered or disordered metamaterials, and far less research has focused on the importance of impedance matching behavior, and is not effort and attention in adjusting the magnitude of negative permittivity values. This is particularly important if devices deal with low amplitude signals such as radio or TV antenna. The carbon/hafnium nickel oxide (C/Hf0.9Ni0.1Oy) nanocomposites with simultaneously negative permittivity and negative permeability, excellent metamaterial performance and good impedance matching could become an efficient alternative for the ordered metamaterials in wave-transparent, microwave absorbing, and solar energy harvesting fields. In this study, we prepared C/Hf0.9Ni0.1Oy nanocomposites by solvothermal method, and we clarified how the impedance matching and double negative (DNG) behaviors of C/Hf0.9Ni0.1Oy can be tuned by an external AC electric field created by electric quadrupole system. External electric field allows for the alignment of the well-dispersed nanoparticles of carbon with long-range orientations order. We believe that this finding broadens our understanding of moderate conductive material-based random metamaterials (MCMRMs), and provides a novel strategy for replacing high loss ordered or disordered metamaterials with MCMRMs.

  14. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  15. AC-impedance measurements during thermal runaway process in several lithium/polymer batteries

    NASA Astrophysics Data System (ADS)

    Uchida, I.; Ishikawa, H.; Mohamedi, M.; Umeda, M.

    In this work, we present a set of thermal characterization experiments of charged prismatic polymer lithium-ion battery (PLB) comparatively with those of a lithium-ion battery (LIB). These cells at different state of charge (SOC) were tested inside an accelerated rate calorimeter (ARC) to determine the onset-of-thermal runaway (OTR) temperatures. In addition, the thermally activated components of these cells were followed by monitoring the impedance (at 1 kHz) and the open-circuit voltage (OCV) as a function of temperature. An increase in the impedance was observed at around 133 °C corresponding to the polyethylene separator shutdown. Above 140 °C, the OCV dropped to zero indicating an internal short-circuit due the separator meltdown suggesting that the pinholes created in the separator at meltdown are large enough to create an internal short-circuit.

  16. Broadband Impedance Microscopy for Research on Complex Quantum Materials

    DTIC Science & Technology

    2016-02-08

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Broadband impedance microscopy, nanoscale electrical imaging, collective behavior ...materials, showing the typical dielectric relaxation and resonant behaviors [5-7]. Little is known, however, on the microscopic details of these

  17. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    SciTech Connect

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  18. AC impedance modelling study on porous electrodes of proton exchange membrane fuel cells using an agglomerate model

    NASA Astrophysics Data System (ADS)

    Gerteisen, Dietmar; Hakenjos, Alex; Schumacher, Jürgen O.

    A one-dimensional model of the PEM fuel cell cathode is developed to analyse ac impedance spectra and polarisation curves. The porous gas diffusion electrode is assumed to consist of a network of dispersed catalyst (Pt/C) forming spherically shaped agglomerated zones that are filled with electrolyte. The coupled differential equation system describes: ternary gas diffusion in the backing (O2 , N2 , water vapour), Fickian diffusion and Tafel kinetics for the oxygen reduction reaction (ORR) inside the agglomerates, proton migration with ohmic losses and double-layer charging in the electrode. Measurements are made of a temperature-controlled fuel cell with a geometric area of 1.4 cm × 1.4 cm. Lateral homogeneity is ensured by using a high stoichiometry of λmin . The model predicts the behaviour of measured polarisation curves and impedance spectra. It is found that a better humidification of the electrode leads to a higher volumetric double-layer capacity. The catalyst layer resistance shows the same behaviour depending on the humidification as the membrane resistance. Model parameters, e.g. Tafel slope, ionic resistance and agglomerate radius are varied. A sensitivity analysis of the model parameters is conducted.

  19. Electrical transport properties of CoMn0.2-xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsay, Chien-Yie; Lin, Yi-Hsiang; Wang, Yao-Ming; Chang, Horng-Yi; Lei, Chien-Ming; Jen, Shien-Uang

    2016-05-01

    In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2-xGaxFe1.8O4 (x=0, 0.1, and 0.2) prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z') and the imaginary part (Z") of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb) also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb) significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  20. Oxygen diffusion in niobia-doped zirconia as surrogate for oxide film on Zr-Nb alloy: AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Yamana, Teppei; Arima, Tatsumi; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya

    2013-11-01

    The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0-2.6 wt% Nb2O5 were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ˜1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb2O5. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [VO] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb5+ and VO and by no segregation of Nb ions in the space-charge layers, respectively.

  1. Impedance technology reveals correlations between cytotoxicity and lipophilicity of mono and bimetallic phosphine complexes.

    PubMed

    Fonteh, P; Elkhadir, A; Omondi, B; Guzei, I; Darkwa, J; Meyer, D

    2015-08-01

    Label free impedance technology enables the monitoring of cell response patterns post treatment with drugs or other chemicals. Using this technology, a correlation between the lipophilicity of metal complexes and the degree of cytotoxicity was observed. Au(L1)Cl (1), AuPd(L1)(SC4H8)Cl3 (1a) and Au(L2)Cl (2) [L1 = diphenylphosphino-2-pyridine; L2 = 2-(2-(diphenylphosphino)ethyl)-pyridine] were synthesised, in silico drug-likeness and structure-activity relationship monitored using impedance technology. Dose dependent changes in cytotoxicity were observed for the metal complexes resulting in IC50s of 12.5 ± 2.5, 18.3 ± 8.3 and 16.9 ± 0.5 µM for 1, 1a and 2 respectively in an endpoint assay. When a real time impedance assay was used, dose-dependent responses depicting patterns that suggested slower uptake (at a toxic 20 µM) and faster recovery of the cells (at the less toxic 10 µM) of the bimetallic complex (1a) compared to the monometallic complexes (1 and 2) was observed. These data agreed with the ADMET findings of lower aqueous solubility of 1a and non-ideal lipophilicity (AlogP98 of 6.55) over more water soluble 1 and 2 with ideal lipophilicity (4.91 and 5.03 respectively) values. The additional coordination of a Pd atom to the nitrogen atom of a pyridine ring, the sulfur atom of a tetrahydrothiophene moiety and two chlorine atoms in 1a could be contributing to the observed differences when compared to the monometallic complexes. This report presents impedance technology as a means of correlating drug-likeness of lipophilic phosphine complexes containing similar backbone structures and could prove valuable in filtering drug-like compounds in a drug discovery project.

  2. The investigation of dielectric properties and ac conductivity of new ceramic diphosphate Ag0.6Na0.4FeP2O7 using impedance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Megdiche, M.; Gargouri, M.

    2016-10-01

    In this paper, Ag0.6Na0.4FeP2O7 has been synthesized by solid state reaction method. The ceramic compound was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrational spectroscopy and impedance measurements. In fact, the investigated sample has shown single phase type monoclinic structure with P21/C space group. The frequency-dependent electrical data are analyzed in the frame-work of conductivity and electric modulus formalisms. The real and imaginary parts of complex impedance are well fitted to equivalent circuit model based on the Z-View-software. Besides, the observed frequency dependence of conductivity is found to obey Jonscher's universal law. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping (CBH). The theoretical fitting between the proposed model and the experimental data showed good agreement. The contribution of single polaron and bipolaron hopping to a.c. conductivity in present compound is also studied. The ionic conductivity is discussed on the basis of the structural characteristics of the sample.

  3. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    PubMed

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  4. An impedance study of complex Al/Cu-Al2O3 electrode

    NASA Astrophysics Data System (ADS)

    Denisova, J.; Katkevics, J.; Erts, D.; Viksna, A.

    2011-06-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate different Cu deposition regimes on Al surface obtained by internal electrolysis and to characterize properties of fabricated electrodes. EIS experimental data confirmed that Cu deposition by internal electrolysis is realized and the complex electrode system is obtained. The main difficulty in preparation of Al/Cu electrodes is to prevent aluminium oxidation before and during electrochemical deposition of Cu particles. In this work NaCl, CH3COONa, K2SO4, mono- and diammonium citrate electrolytes were examined to determine their suitability for impedance measurements. Al/Cu-Al2O3 electrode composition was approved by equivalent circuit analysis, optical and scanning electron microscope methods. The most optimal Cu deposition mode using internal electrolysis was determined. The obtained results are promising for future electrochemical fabrication of nanostructures directly on Al surfaces by internal electrolysis.

  5. Investigation of the electroreduction of silver sulfite complexes by means of electrochemical FFT impedance spectroscopy.

    PubMed

    Valiūniene, A; Baltrūnas, G; Valiūnas, R; Popkirov, G

    2010-08-15

    The electroreduction kinetics of silver sulfite complexes was investigated by electrochemical fast Fourier transform (FFT) impedance spectroscopy (0.061-1500 Hz). The time dependences of the real and imaginary components of impedance were determined in a solution containing 0.05 M Ag (I) and 1M Na(2)SO(3). The mean duration of silver ad-atom diffusion on the surface to the nearest crystallization centre was calculated: during the first 210 s of contact with the electrolyte, these values increase from 0.66 up to 1.77 s; thereafter, this variation stabilizes and the mean duration of silver ad-atom diffusion reaches an almost constant value (1.56 s).

  6. Evaluation of indirect impedance for measuring microbial growth in complex food matrices.

    PubMed

    Johnson, N; Chang, Z; Bravo Almeida, C; Michel, M; Iversen, C; Callanan, M

    2014-09-01

    The suitability of indirect impedance to accurately measure microbial growth in real food matrices was investigated. A variety of semi-solid and liquid food products were inoculated with Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Lactobacillus plantarum, Pseudomonas aeruginosa, Escherichia coli, Salmonella enteriditis, Candida tropicalis or Zygosaccharomyces rouxii and CO2 production was monitored using a conductimetric (Don Whitely R.A.B.I.T.) system. The majority (80%) of food and microbe combinations produced a detectable growth signal. The linearity of conductance responses in selected food products was investigated and a good correlation (R(2) ≥ 0.84) was observed between inoculum levels and times to detection. Specific growth rate estimations from the data were sufficiently accurate for predictive modeling in some cases. This initial evaluation of the suitability of indirect impedance to generate microbial growth data in complex food matrices indicates significant potential for the technology as an alternative to plating methods.

  7. Modeling the electric image produced by objects with complex impedance in weakly electric fish.

    PubMed

    Fujita, Kazuhisa; Kashimori, Yoshiki

    2010-08-01

    Weakly electric fish generate an electric field around their body by electric organ discharge (EOD). By measuring the modulation of the electric field produced by an object in the field these fish are able to accurately locate an object. Theoretical and experimental studies have focused on the amplitude modulations of EODs produced by resistive objects. However, little is known about the phase modulations produced by objects with complex impedance. The fish must be able to detect changes in object impedance to discriminate between food and nonfood objects. To investigate the features of electric images produced by objects with complex impedance, we developed a model that can be used to map the electric field around the fish body. The present model allows us to calculate the spatial distribution of the amplitude and phase shift in an electric image. This is the first study to investigate the changes in amplitude and phase shift of electric images induced by objects with complex impedance in wave-type fish. Using the model, we show that the amplitude of the electric image exhibits a sigmoidal change as the capacitance and resistance of an object are increased. Similarly, the phase shift exhibits a significant change within the object capacitance range of 0.1-100 nF. We also show that the spatial distribution of the amplitude and phase shifts of the electric image resembles a "Mexican hat" in shape for varying object distances and sizes. The spatial distribution of the phase shift and the amplitude was dependent on the object distance and size. Changes in the skin capacitance were associated with a tradeoff relationship between the magnitude of the amplitude and phase shift of the electric image. The specific range of skin capacitance (1-100 nF) allows the receptor afferents to extract object features that are relevant to electrolocation. These results provide a useful basis for the study of the neural mechanisms by which weakly electric fish recognize object features

  8. AC motor diagnostics system based on complex parametric analysis

    NASA Astrophysics Data System (ADS)

    Korolev, N. A.; Solovev, S. V.

    2017-02-01

    The article deals with the principle of evaluation of technical condition, based on a comprehensive analysis of the motor parameters which is a main unit in mechanical engineering. Diagnostics system and residential life assessment of electromechanical equipment is presented based on the AC engine and algorithms of its work. The important challenge of diagnostics remains the well-timed faults detection and maintenance and repair organization. The solution of such challenge remains accuracy and reliability of diagnostic systems.

  9. Characterizing and Modeling the Noise and Complex Impedance of Feedhorn-Coupled TES Polarimeters

    SciTech Connect

    Appel, J. W.; Beall, J. A.; Essinger-Hileman, T.; Parker, L. P.; Staggs, S. T.; Visnjic, C.; Zhao, Y.; Austermann, J. E.; Halverson, N. W.; Henning, J. W.; Simon, S. M.; Becker, D.; Britton, J.; Cho, H. M.; Hilton, G. C.; Irwin, K. D.; Niemack, M. D.; Yoon, K. W.; Benson, B. A.; Bleem, L. E.

    2009-12-16

    We present results from modeling the electrothermal performance of feedhorn-coupled transition edge sensor (TES) polarimeters under development for use in cosmic microwave background (CMB) polarization experiments. Each polarimeter couples radiation from a corrugated feedhorn through a planar orthomode transducer, which transmits power from orthogonal polarization modes to two TES bolometers. We model our TES with two- and three-block thermal architectures. We fit the complex impedance data at multiple points in the TES transition. From the fits, we predict the noise spectra. We present comparisons of these predictions to the data for two TESes on a prototype polarimeter.

  10. Homogeneous superconducting phase in TiN film: A complex impedance study

    NASA Astrophysics Data System (ADS)

    Diener, P.; Schellevis, H.; Baselmans, J. J. A.

    2012-12-01

    The low frequency complex impedance of a high resistivity 92 μ Ω cm and 100 nm thick TiN superconducting film has been measured via the transmission of several high sensitivity GHz microresonators, down to TC/50. The temperature dependence of the kinetic inductance follows closely BCS local electrodynamics, with one well defined superconducting gap. This evidences the recovery of a homogeneous superconducting phase in TiN far from the disorder and composition driven transitions. Additionally, we observe a linearity between resonator quality factor and frequency temperature changes, which can be described by a two fluid model.

  11. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  12. Wideband characterization of the complex wave number and characteristic impedance of sound absorbers.

    PubMed

    Salissou, Yacoubou; Panneton, Raymond

    2010-11-01

    Several methods for measuring the complex wave number and the characteristic impedance of sound absorbers have been proposed in the literature. These methods can be classified into single frequency and wideband methods. In this paper, the main existing methods are revisited and discussed. An alternative method which is not well known or discussed in the literature while exhibiting great potential is also discussed. This method is essentially an improvement of the wideband method described by Iwase et al., rewritten so that the setup is more ISO 10534-2 standard-compliant. Glass wool, melamine foam and acoustical/thermal insulator wool are used to compare the main existing wideband non-iterative methods with this alternative method. It is found that, in the middle and high frequency ranges the alternative method yields results that are comparable in accuracy to the classical two-cavity method and the four-microphone transfer-matrix method. However, in the low frequency range, the alternative method appears to be more accurate than the other methods, especially when measuring the complex wave number.

  13. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  14. Influence of Dopants on Electrical Properties of ZnO-V2O5 Varistors Deduced from AC Impedance and Variable-Temperature Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Li, Taotao; Qi, Ting; Qin, Qingwei; Li, Guangqiang; Zhu, Bailin; Wu, Run; Xie, Changsheng

    2012-07-01

    The influence of MnO2, PbO, and a mixture of MnO2, PbO, and B2O3 on the electrical and dielectric properties of ZnO-V2O5 ceramics was studied by alternating-current (AC) impedance and variable-temperature dielectric spectroscopy. The results show that, compared with the resistivity of the intervening layer at the grain boundary, the Schottky barrier present at the grain boundary is much more important for varistor performance, which can be significantly improved by using a mixture of MnO2, PbO, and B2O3. Consequently, better varistor performance is achieved for 94.5 mol.% ZnO + 0.5 mol.% V2O5 + 1.0 mol.% MnO2 + 2.0 mol.% PbO + 2.0 mol.% B2O3 (ZVMPB), i.e., nonlinear coefficient α = 35.3 and leakage current density I l = 2.72 μA/cm2. The activation energy for the characteristic dielectric relaxation process is in the range of 0.339 eV to 0.365 eV, indicating that it is only associated with oxygen vacancy V{O/·}.

  15. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  16. Numerical analysis of complex impedance and microwave absorption of metamaterials composed of split cut wires on grounded dielectric substrate

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Hee; Liu, Tian; Kim, Sung-Soo

    2014-06-01

    The microwave absorption of metamaterials composed of split cut wire (SCW) on grounded dielectric substrate has been investigated on the basis of equivalent transmission line circuit. S-parameters (S 11 and S 21) and input impedance are numerically simulated with variations of the thickness and dielectric loss of the substrate and the geometry of the SCW. Magnetic resonance resulting from antiparallel currents between SCW and ground plane was observed at the frequency of minimum reflection loss. The simulated resonance frequency and reflection loss can be explained well on the basis of the circuit theory of an LC resonator. Analysis of the input impedance of the high impedance surface has shown that perfect absorption can be obtained at the optimized impedance-matching condition, which is dependent on SCW width, thickness and the dielectric loss of the substrate. Better insight into the absorption mechanism of metamaterial absorbers can be attained through the parametric analysis on complex impedance of SCW and its relationship with reflection loss.

  17. Determining electron temperature for small spherical probes from network analyzer measurements of complex impedance

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Fernsler, R. F.; Blackwell, D. D.; Amatucci, W. E.

    2008-12-01

    In earlier work, using a network analyzer, it was shown that collisionless resistance (CR) exists in the sheath of a spherical probe when driven by a small rf signal. The CR is inversely proportional to the plasma density gradient at the location where the applied angular frequency equals the plasma frequency ωpe. Recently, efforts have concentrated on a study of the low-to-intermediate frequency response of the probe to the rf signal. At sufficiently low frequencies, the CR is beyond cutoff, i.e., below the plasma frequency at the surface of the probe. Since the electron density at the probe surface decreases as a function of applied (negative) bias, the CR will extend to lower frequencies as the magnitude of negative bias increases. Therefore to eliminate both CR and ion current contributions, the frequencies presently being considered are much greater than the ion plasma frequency, ωpi, but less than the plasma frequency, ωpe(r0), where r0 is the probe radius. It is shown that, in this frequency regime, the complex impedance measurements made with a network analyzer can be used to determine electron temperature. An overview of the theory is presented along with comparisons to data sets made using three stainless steel spherical probes of different sizes in different experimental environments and different plasma parameter regimes. The temperature measurements made by this method are compared to those made by conventional Langmuir probe sweeps; the method shown here requires no curve fitting as is the usual procedure with Langmuir probes when a Maxwell-Boltzmann electron distribution is assumed. The new method requires, however, a solution of the Poisson equation to determine the approximate sheath dimensions and integrals to determine approximate plasma and sheath inductances. The solution relies on the calculation of impedance for a spherical probe immersed in a collisionless plasma and is based on a simple circuit analogy for the plasma. Finally, the

  18. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  19. A New Approach for Resolution of Complex Tissue Impedance Spectra in Hearts

    PubMed Central

    Barr, Roger C.

    2014-01-01

    This study was designed to test the feasibility of using sinusoidal approximation in combination with a new instrumentation approach to resolve complex impedance (uCI) spectra from heart preparations. To assess that feasibility, we applied stimuli in the 10–4000 Hz range and recorded potential differences (uPDs) in a four-electrode configuration that allowed identification of probe constants (Kp) during calibration that were in turn used to measure total tissue resistivity ρt from rabbit ventricular epicardium. Simultaneous acquisition of a signal proportional to the supplied current (Vstim) with uPD allowed identification of the V –I ratio needed for ρt measurement, as well as the phase shift from Vstim to uPD needed for uCI spectra resolution. Performance with components integrated to reduce noise in cardiac electrophysiologic experiments, in particular, and provide accurate electrometer-based measurements, in general, was first characterized in tests using passive loads. Load tests showed accurate uCI recovery with mean uPD SNRs between 101 and 103 measured with supplied currents as low as 10 nA. Comparable performance characteristics were identified during calibration of nine arrays built with 250 µm Ag/AgCl electrodes, with uCIs that matched analytic predictions and no apparent effect of frequency (F = 0.12, P = 0.99). The potential ability of parasitic capacitance in the presence of the electrode–electrolyte interface associated with the small sensors to influence the uCI spectra was therefore limited by the instrumentation. Resolution of uCI spectra in rabbit ventricle allowed measurement of ρt = 134 ± 53 Ω·cm. The rapid identification available with this strategy provides an opportunity for new interpretations of the uCI spectra to improve quantification of disease-, region-, tissue-, and species-dependent intercellular uncoupling in hearts. PMID:23625349

  20. Synthesis, Spectroscopic, ac Conductivity and Thermal Studies on Co(III) Acetylacetonate-Iodine Complex

    NASA Astrophysics Data System (ADS)

    Hashem, H. A.; Refat, M. S.

    A spectrophotometric study of 1:1 donor-acceptor complex, cobalt (III) acetylacetonate (donor) and iodine (σ-acceptor) has been preformed. The equilibrium constants, (K) and the absorpitivity (ɛ) for the formation of the iodine complex have been calculated. The predicted structure of the solid triiodide charge-transfer complex reported in this study is further supported by thermal, far and mid infrared spectroscopic measurements. Electron transfer from Co (acac = 2, 4-pentanedionate)3 to iodine leads to the formation of an organic semiconductor with the formula of [Co(acac)3]_2 I+. I3-. The kinetic parameters (nonisothermal method) for their decomposition have been evaluated by graphical methods using the equations of Freeman-Carroll (FC), Horowitz-Metzger (HM) and Coats-Redfern (CR). The ac conductivity and dielectric properties of [Co(acac)3]_2 I+. I3- have been measured over the frequency 50-106 Hz at temperature 298 K.

  1. Microstructural studies of AgNbO{sub 3} ceramic by using complex impedance spectroscopy

    SciTech Connect

    Gangaprasad, K.; Rao, T. Durga; Niranjan, Manish K.; Asthana, Saket

    2015-06-24

    Lead-free piezoelectric silver niobate ceramic was synthesized by conventional solid state route. Room temperature X-ray diffraction pattern revealed that the sample crystallizes in single phase orthorhombic perovskite structure. Scanning electron micrographs of AgNbO{sub 3} ceramic showed that the average grain size is in the range 2–3 µm. The electrical properties were investigated by using impedance spectroscopy. Appearance of single semicircular arc in the Nyquist plot indicated the presence of grain contribution in the sample. Single RC parallel circuit model was employed to extract bulk capacitance (C{sub b}), resistance (R{sub b}) and electrical conductivity (σ{sub b}). The activation energy calculated from impedance and modulus data indicate that same types of charge carriers (oxygen vacancy movements) are responsible for conduction and relaxation.

  2. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  3. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  4. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Tuca, Silviu-Sorin; Badino, Giorgio; Gramse, Georg; Brinciotti, Enrico; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Rankl, Christian; Hinterdorfer, Peter; Kienberger, Ferry

    2016-04-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S 11 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y cell = 185 μS + j285 μS and Y bacteria = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance-capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement.

  5. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy.

    PubMed

    Tuca, Silviu-Sorin; Badino, Giorgio; Gramse, Georg; Brinciotti, Enrico; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Rankl, Christian; Hinterdorfer, Peter; Kienberger, Ferry

    2016-04-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S 11 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y cell = 185 μS + j285 μS and Y bacteria = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance-capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement.

  6. Complex impedance and conductivity of agar-based ion-conducting polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Nwanya, A. C.; Amaechi, C. I.; Udounwa, A. E.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-04-01

    Agar-based electrolyte standing films with different salts and weak acids as ion and proton conductors were prepared and characterized by X-ray diffraction, UV-visible spectrophotometry, photoluminescence emission spectroscopy and electrochemical impedance spectroscopy. The salts used are lithium perchlorate (LiClO4) and potassium perchlorate (KClO4), while the weak acids used are acetic acid (CH3COOH) and lactic acid (C3H6O3). The values of the ion conductivity obtained for the agar-based polymer films are 6.54 × 10-8, 9.12 × 10-8, 3.53 × 10-8, 2.24 × 10-8 S/cm for the agar/acetic acid, agar/lactic acid, agar/LiClO4 and agar/KClO4 polymer films, respectively. As a function of temperature, the ion conductivity exhibits an Arrhenius behavior and the estimated activation energy is ≈0.1 eV for all the samples. The samples depicted high values of dielectric permittivity toward low frequencies which is due mostly to electrode polarization effect. The samples showed very high transparency (85-98 %) in the visible region, and this high transparency is one of the major requirements for application in electrochromic devices (ECD). The values of conductivity and activation energy obtained indicate that the electrolytes are good materials for application in ECD.

  7. Complex impedance, dielectric relaxation and electrical conductivity studies of Ba1-xSrxTiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Elbasset, A.; Sayouri S, S.; Abdi, F.; Lamcharfi, T.; Mrharrab, L.

    2017-03-01

    In this work, we prepared series of Ba1-xSrxTiO3 (BSxT) powders, with different strontium concentrations (x = 0, 0.025, 0.75, 0.10, 0.125 and 0.15), by the sol-gel method. The variation of structure in the Ba1-xSrxTiO3 system was analyzed using XRD and Raman techniques. The field dependence of dielectric relaxation and conductivity was measured over a wide frequency range from room temperature to 400 °C. The activation energy, calculated from the thermal variation of the conductivity for different frequencies, showed that the Sr has significant effects on the properties of BaTiO3. Relaxation times extracted using the imaginary part of the complex impedance (Z’’(ω)) and the modulus (M’’(ω)) were also found to follow the Arrhenius law and showed an anomaly around the phase transition temperature.

  8. Study of complex impedance spectroscopic properties of Na{sub 2}Pb{sub 2}Pr{sub 2}W{sub 2}Ti{sub 4}Nb{sub 4}O{sub 30} Ceramic

    SciTech Connect

    Biswal, L.; Das, Piyush R.; Behera, Banarji

    2012-07-23

    The polycrystalline sample of Na{sub 2}Pb{sub 2}Pr{sub 2}W{sub 2}Ti{sub 4}Nb{sub 4}O{sub 30} was prepared by high temperature solid state reaction technique. The formation of compounds with an orthorhombic structure was confirmed by X-ray diffraction technique. Surface morphology study showed homogenous distribution of plate and rod like grains over the entire surface with less porosity. The study of effect of temperature on impedance parameters in the frequency range 10{sup 2}-10{sup 6} Hz and temperature range 30-500 Degree-Sign C revealed the presence of both bulk and grain boundary effects above 275 Degree-Sign C. The bulk resistance of the material decreased with rise in temperature exhibiting a typical negative temperature coefficient of resistance (NTCR) behavior like a semiconductor. Both the complex impedance and modulus studies suggested the presence of non-Debye type of relaxation in the materials. The ac conductivity spectrum obeys Johnsche's universal power law.

  9. Anisotropic Artificial Impedance Surfaces

    NASA Astrophysics Data System (ADS)

    Quarfoth, Ryan Gordon

    Anisotropic artificial impedance surfaces are a group of planar materials that can be modeled by the tensor impedance boundary condition. This boundary condition relates the electric and magnetic field components on a surface using a 2x2 tensor. The advantage of using the tensor impedance boundary condition, and by extension anisotropic artificial impedance surfaces, is that the method allows large and complex structures to be modeled quickly and accurately using a planar boundary condition. This thesis presents the theory of anisotropic impedance surfaces and multiple applications. Anisotropic impedance surfaces are a generalization of scalar impedance surfaces. Unlike the scalar version, anisotropic impedance surfaces have material properties that are dependent on the polarization and wave vector of electromagnetic radiation that interacts with the surface. This allows anisotropic impedance surfaces to be used for applications that scalar surfaces cannot achieve. Three of these applications are presented in this thesis. The first is an anisotropic surface wave waveguide which allows propagation in one direction, but passes radiation in the orthogonal direction without reflection. The second application is a surface wave beam shifter which splits a surface wave beam in two directions and reduces the scattering from an object placed on the surface. The third application is a patterned surface which can alter the scattered radiation pattern of a rectangular shape. For each application, anisotropic impedance surfaces are constructed using periodic unit cells. These unit cells are designed to give the desired surface impedance characteristics by modifying a patterned metallic patch on a grounded dielectric substrate. Multiple unit cell geometries are analyzed in order to find the setup with the best performance in terms of impedance characteristics and frequency bandwidth.

  10. Emission “Off-On” effect from europium complexes triggered by AcO anion: Synthesis, characterization and sensing performance

    NASA Astrophysics Data System (ADS)

    Li, Xiaogang; Zhang, Dong; Li, Jing

    2014-06-01

    In this paper, a series of Eu(III) complexes based on four diamine ligands and two diketone ligands were synthesized. Their single crystal structures were studied, where intermolecular π-π stacking was found. The photophysical parameters of these Eu(III) complexes were measured, along with their ligand triplet levels. The energy transfer mechanism between ligand and metal center was discussed in detail. Energy transfer roll-back was found in Eu(III) complexes owing large-conjugated diamine ligands, compromising emissive performance. This energy transfer roll-back, however, could be stopped by the presence of AcO anion, leading to Eu(III) complex emission enhancement. The sensing performance of such Eu(III) complexes was thus investigated in detail. High sensitivity and selectivity were observed.

  11. Emission "Off-On" effect from europium complexes triggered by AcO anion: synthesis, characterization and sensing performance.

    PubMed

    Li, Xiaogang; Zhang, Dong; Li, Jing

    2014-06-05

    In this paper, a series of Eu(III) complexes based on four diamine ligands and two diketone ligands were synthesized. Their single crystal structures were studied, where intermolecular π-π stacking was found. The photophysical parameters of these Eu(III) complexes were measured, along with their ligand triplet levels. The energy transfer mechanism between ligand and metal center was discussed in detail. Energy transfer roll-back was found in Eu(III) complexes owing large-conjugated diamine ligands, compromising emissive performance. This energy transfer roll-back, however, could be stopped by the presence of AcO anion, leading to Eu(III) complex emission enhancement. The sensing performance of such Eu(III) complexes was thus investigated in detail. High sensitivity and selectivity were observed.

  12. Electron Impedances

    SciTech Connect

    P Cameron

    2011-12-31

    It is only recently, and particularly with the quantum Hall effect and the development of nanoelectronics, that impedances on the scale of molecules, atoms and single electrons have gained attention. In what follows the possibility that characteristic impedances might be defined for the photon and the single free electron is explored is some detail, the premise being that the concepts of electrical and mechanical impedances are relevant to the elementary particle. The scale invariant quantum Hall impedance is pivotal in this exploration, as is the two body problem and Mach's principle.

  13. Effect of antimony on the semiconducting properties of the anodic plumbous oxide film formed in sulfuric acid solution I. Studies with alternating-current (a.c.) impedance

    NASA Astrophysics Data System (ADS)

    He, Zhuo-Li; Pu, Cong; Zhou, Wei-Fang

    The semiconducting properties of the anodic plumbous oxide films formed on lead and leadantimony alloys in 4.5 M H 2SO 4 (20 °C) at 0.9 V (versus Hg/Hg 2SO 4) for 2 h have been studied using the a.c. method. From the Mott-Schottky plots, the films are demonstrated to be n-type semiconductors. The flat-band potentials of the films on Pb, Pb—1at.%Sb, Pb—3at.%Sb and Pb—9at.%Sb are -0.95, -1.0, -0.69 and -0.70 V (versus Hg/Hg 2SO 4), respectively; while the corresponding donor densities are 0.82×10 16, 1.2×10 17, 5.5×10 17 and 6.3×10 17 cm -3. The shift of the flat-band potential to more positive values with increase in the antimony content is probably due to the occlusion of a Sb 2O 3 phase in the film. The effect of antimony on the donor density and the lattice-defect density of the n-type semiconductor oxide both conform to the Hauffe Rules.

  14. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  15. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    NASA Astrophysics Data System (ADS)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  16. Microstructure, AC impedance and DC electrical conductivity characteristics of NiFe2-xGdxO4 (x = 0, 0.05 and 0.075)

    NASA Astrophysics Data System (ADS)

    Kamala Bharathi, K.; Markandeyulu, G.; Ramana, C. V.

    2012-03-01

    The structure and electrical characteristics of Gd doped Ni ferrite materials, namely NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4, are reported to demonstrate their improved electrical properties compared to that of pure NiFe2O4. NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds crystallize in the cubic inverse spinel phase with a very small amount of GdFeO3 additional phase while pure NiFe2O4 crystallize in inverse spinel phase without any impurity phase. The back scattered electron imaging analysis indicate the primary and secondary formation in NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds. Atomic force microscopy measurements indicate that the bulk grains are ˜2-5 micron size while the grain boundaries are thin compared to bulk grains. Impedance spectroscopic analysis at different temperature indicates the different relaxation mechanisms and their variation with temperature, bulk grain and grain-boundary contributions to the electrical conductivity (Rg) and capacitance (Cg) of these materials. The conductivity in pure NiFeO4 is found to be predominantly due to intrinsic bulk contribution (Rg=213 kΩ and Cg=4.5 x 10-8 F). In the case of NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds, grain and grain-boundary contributions to the conductivity are clearly observed. The DC conductivity values (at 300 K) of NiFe2O4, NiFe1.95Gd0.05O4 and NiFe1.925Gd0.075O4 compounds are found to be 1.06 x 10-7 Ω-1 cm-1, 5.73 x 10-8 Ω-1 cm-1 and 1.28 x 10-8 Ω-1 cm-1 respectively.

  17. The ac-magnetic susceptibility and dielectric response of complex spin ordering processes in Mn₃O₄

    SciTech Connect

    Thota, Subhash E-mail: wilfrid.prellier@ensicaen.fr; Singh, Kiran; Simon, Ch.; Prellier, Wilfrid E-mail: wilfrid.prellier@ensicaen.fr; Nayak, Sanjib; Kumar, Jitendra

    2014-09-14

    We report a meticulous study of the ac-magnetization dynamics (χ{sub ac}(T)), relative dielectric permittivity ε{sub r}(T), and magneto-dielectric (Δε{sub r}/ε{sub r}(H)) response of various complex magnetic transitions that occur below the ferrimagnetic Néel temperature T{sub N} of Mn₃O₄. Besides the known sequence of transitions at T{sub N}~42.75 K, T₁~39 K, and T₂~34 K, the existence of a new anomaly reported recently at 38 K (T*) has been successfully probed by χ{sub ac}(T) and ε{sub r}(T) measurements. The effect of external dc-bias fields (H{sub DC}) and driving frequency (f) on the above mentioned transitions has been investigated in consonance with the ε{sub r}(T) and Δε{sub r}/ε{sub r}(T,H) results. For the first time, we observed a clear hysteresis of about 5.15 K in the zero-field ε{sub r}(T) across the incommensurate-to-commensurate transition T₂~34 K, which provides evidence to the first-order nature of this transition. The Arrott plot (H/M vs. M²}) criterion has been used to distinguish the nature of all the sequential transitions that take place below T{sub N}.

  18. Improving the dynamic performance of a complex AC/DC system by HVDC control modifications

    SciTech Connect

    Hammad, A.E. ); Gagnon, J. ); McCallum, D. )

    1990-10-01

    The power system of Hydro-Quebec has a peak load of approximately 27 GW. The great distance between the production sites and the load centers introduces stability limitations, which is the reason why the Quebec grid cannot be economically synchronized (through ac transmission with limited capacity) with the U.S. northeastern network. Power exports are therefore dependent on the use of HVDC links of which Hydro-Quebec now possesses five, for a capacity of over 2600 MW. Such a capacity will again soon increase. At the moment, the Chateauguay scheme has the largest HVDC capacity. It transfers 1000 MW by means of two Back-to-Back converter blocks. Various automatic control systems are installed on the Chateauguay scheme owing to the fact that a single circuit of a 765 kV ac line transmits the output of both the HVDC converter stations as well as the output from Beauharnois hydro generating station. Such controls have performed satisfactorily since 1984. However, a remarkable improvement of the overall ac/dc system dynamic performance can be gained by making certain modifications in some of these HVDC system controls. This paper presents the salient features of such control modifications, currently under consideration, using the results of an investigation by digital and analogue simulations that demonstrate the achieved improvements.

  19. Concentration dependence of nanochannel impedance and the determination of surface charge

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Liel, Uri; Yossifon, Gilad

    2014-03-01

    In this paper, we demonstrate the variation of nanochannel impedance with bulk (reservoir) electrolyte concentration. The impedance of a nanochannel is shown to correspond to a characteristic deformed semicircular arc. The degree of deformation decreases with increasing concentration, and at a sufficiently low concentration the complex impedance saturates, becoming essentially independent of the reservoir concentration. This behavior is indicative of a surface-conduction dominant regime. Here we demonstrate that this effect extends beyond dc conductance and affects the ac response of the system as well, including both phase relationship and magnitude. The nanochannel resistance, obtained from low-voltage ac measurements, is then used to extract the nanochannel surface charge density. This is found to increase in magnitude with increasing electrolyte concentration.

  20. Input Impedance of the Microstrip SQUID Amplifier

    NASA Astrophysics Data System (ADS)

    Kinion, Darin; Clarke, John

    2008-03-01

    We present measurements of the complex scattering parameters of microstrip SQUID amplifiers (MSA) cooled to 4.2 K. The input of the MSA is a microstrip transmission line in the shape of a square spiral coil surrounding the hole in the SQUID washer that serves as the ground plane. The input impedance is found by measuring the reverse scattering parameter (S11) and is described well by a low-loss transmission line model. We map the low-loss transmission line model into an equivalent parallel RLC circuit in which a resistance R, inductance L, and capacitance C are calculated from the resonant frequency, characteristic impedance and attenuation factor. Using this equivalent RLC circuit, we model the MSA and input network with a lumped circuit model that accurately predicts the observed gain given by the forward scattering parameter (S21). We will summarize results for different coil geometries and terminations as well as SQUID bias conditions. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

  1. Synthesis and structure of dimeric anthracene-9-carboxylato bridged dinuclear erbium(III) complex, [Er(2)(9-AC)(6)(DMF)(2)(H(2)O)(2)].

    PubMed

    Kusrini, Eny; Adnan, Rohana; Saleh, Muhammad I; Yan, Lim-Kong; Fun, Hoong-Kun

    2009-05-01

    We study the influence of the bulky aromatic rings, e.g. anthracence-9-carboxylic acid (9-ACA) with a large conjugated pi-system on the structure and spectroscopic properties of [Er(2)(9-AC)(6)(DMF)(2)(H(2)O)(2)] complex where 9-AC=anthracence-9-carboxylato and DMF=N,N'-dimethylformamide. The complex has been prepared from the erbium chloride and 9-ACA in the mixture of H(2)O:DMF solution (4:1, v/v) followed by pH adjustment to 6. The complex is crystallized in a monoclinic system with space group P2(1)/n. The two Er(III) ions are double bridged by the deprotonated carboxyl groups of two 9-AC anions (O1 and O1A), forming an eight-coordination number. The chelating bidentate (O,O), chelating-bridging tridentate (O,O,O') and monodentate of 9-AC anions are observed in the dinuclear [Er(2)(9-AC)(6)(DMF)(2)(H(2)O)(2)] complex. The Er-Er distance is 4.015A in the dimeric unit. Intramolecular O-Hcdots, three dots, centeredO and C-Hcdots, three dots, centeredO hydrogen bonds as well as numerous of intermolecular C-Hcdots, three dots, centeredpi interactions between the anthracene rings by edge-to-face interactions linked the dinuclear dimeric units into two-dimensional supramolecular network in a propeller-arrangement. Electronic absorption spectra of the Er(III) complex and its salt were measured. The emission spectrum of the complex is composed of a broad band due to the emission of intraligand pi*-->pi transition from the 9-AC anions and a shoulder peak originating from the 4f-4f emission transition of the Er(III) ions. The complex has a high thermal stability which can be attributed to the effectively increase the rigidity of the 9-AC anions.

  2. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  3. Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticle

    NASA Astrophysics Data System (ADS)

    Dhaou, Mohamed Houcine; Hcini, Sobhi; Mallah, Abdulrahman; Bouazizi, Mohamed Lamjed; Jemni, Abdelmajid

    2017-01-01

    Spinel ferrite having composition Ni0.5Mg0.3Cu0.2Fe2O4 was prepared by the sol-gel technique at 1473 K. The X-ray diffraction results indicate that the ferrite sample has a cubic spinel-type structure with Fdbar{3}m space group. The electrical properties of the studied sample using complex impedance spectroscopy technique have been investigated in the frequency range 102-107 Hz and in the temperature range 300-500 K. The total conductivity curves for sample are found to obey Jonscher power law ( σ( ω) = σ dc + Aω n ) with an increase in the frequency exponent ( n) as temperature increases. The activation energy deduced from the analysis of the conductivity curves matches very well with the value estimated from the relaxation time, indicating that relaxation process and electrical conductivity are attributed to the same defect. Nyquist plots of impedance show semicircle arcs for sample, and an electrical equivalent circuit has been proposed to explain the impedance results. The effect of frequency and temperature on dielectric constant ( ɛ″) and dielectric loss (tan δ) has also been discussed in terms of hopping of charge carriers between Fe2+ and Fe3+ ions.

  4. [Experimental study on electrical impedance properties of human hepatoma cells].

    PubMed

    Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing

    2014-10-01

    The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs.

  5. The frequency dependent impedance of an HVdc converter

    SciTech Connect

    Wood, A.R.; Arrillaga, J.

    1995-07-01

    A linear and direct method of determining the frequency dependent impedance of a 12 pulse HVdc converter is presented. Terms are developed for both the dc and ac side impedances of the converter, including the effect of the firing angle control system, the commutation period, and the variability of the commutation period. The impedance predictions are verified by dynamic simulation.

  6. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  7. A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models

    SciTech Connect

    Udhay Ravishankar; Milos manic

    2013-08-01

    This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSim micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.

  8. Dielectric relaxation in AC powder electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah

    2017-01-01

    The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.

  9. A.c. conductivity and dielectric properties of LiNi 3/5Cu 2/5VO 4 ceramics

    NASA Astrophysics Data System (ADS)

    Ram, Moti

    2010-03-01

    The LiNi 3/5Cu 2/5VO 4 was synthesized using solution-based chemical method whose dielectric and a.c. conductivity properties were investigated using complex impedance spectroscopy (CIS) technique. Variation of dielectric constant ( εr) as a function of frequency at different temperatures indicates low frequency dispersion. A.c conductivity analysis indicates that electrical conduction in the material is a thermally activated process. Frequency dependence of a.c. conductivity at different temperatures obeys Jonscher's universal law: σ ac= σ dc+ A( ω) n.

  10. Structure of the Rtt109-AcCoA/Vps75 Complex and Implications for Chaperone-Mediated Histone Acetylation

    PubMed Central

    Tang, Yong; Holbert, Marc A.; Delgoshaie, Neda; Wurtele, Hugo; Guillemette, Benoît; Meeth, Katrina; Yuan, Hua; Drogaris, Paul; Lee, Eun-Hye; Durette, Chantal; Thibault, Pierre; Verreault, Alain; Cole, Philip A.; Marmorstein, Ronen

    2011-01-01

    Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27 and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ~12 Å diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3–H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones prior to deposition. PMID:21256037

  11. Electromagnetic scattering by impedance structures

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1987-01-01

    The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.

  12. Impedance Analysis of Surface-Bound Biomembranes

    DTIC Science & Technology

    1990-06-08

    and identify by block numb (i FIELD GROUP SUB-GROLm--- AC Impedance, Biomembranes, Lipid, Electrod\\) ’CBiosensor - O ( S. &-’te ,,• J ABSTRACT...Instit-ute 57 Union St., Worcester, MA 01608 ABSTRACTElcchria isThe impedance of different electrode substratesElcharacteriz l biomemance atnactuses fomed ...T10 2), indium/tin oxide (ITO) and platinum electrodes that have been "primed" by covalent attachment of long-chained alkyl groups . The electroes were

  13. Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase.

    PubMed

    Varghese, J N; Epa, V C; Colman, P M

    1995-06-01

    The three-dimensional X-ray structure of a complex of the potent neuraminidase inhibitor 4-guanidino-Neu5Ac2en and influenza virus neuraminidase (Subtype N9) has been obtained utilizing diffraction data to 1.8 A resolution. The interactions of the inhibitor, solvent water molecules, and the active site residues have been accurately determined. Six water molecules bound in the native structure have been displaced by the inhibitor, and the active site residues show no significant conformational changes on binding. Sialic acid, the natural substrate, binds in a half-chair conformation that is isosteric to the inhibitor. The conformation of the inhibitor in the active site of the X-ray structure concurs with that obtained by theoretical calculations and validates the structure-based design of the inhibitor. Comparison of known high-resolution structures of neuraminidase subtypes N2, N9, and B shows good structural conservation of the active site protein atoms, but the location of the water molecules in the respective active sites is less conserved. In particular, the environment of the 4-guanidino group of the inhibitor is strongly conserved and is the basis for the antiviral action of the inhibitor across all presently known influenza strains. Differences in the solvent structure in the active site may be related to variation in the affinities of inhibitors to different subtypes of neuraminidase.

  14. Three-dimensional structure of the complex of 4-guanidino-Neu5Ac2en and influenza virus neuraminidase.

    PubMed Central

    Varghese, J. N.; Epa, V. C.; Colman, P. M.

    1995-01-01

    The three-dimensional X-ray structure of a complex of the potent neuraminidase inhibitor 4-guanidino-Neu5Ac2en and influenza virus neuraminidase (Subtype N9) has been obtained utilizing diffraction data to 1.8 A resolution. The interactions of the inhibitor, solvent water molecules, and the active site residues have been accurately determined. Six water molecules bound in the native structure have been displaced by the inhibitor, and the active site residues show no significant conformational changes on binding. Sialic acid, the natural substrate, binds in a half-chair conformation that is isosteric to the inhibitor. The conformation of the inhibitor in the active site of the X-ray structure concurs with that obtained by theoretical calculations and validates the structure-based design of the inhibitor. Comparison of known high-resolution structures of neuraminidase subtypes N2, N9, and B shows good structural conservation of the active site protein atoms, but the location of the water molecules in the respective active sites is less conserved. In particular, the environment of the 4-guanidino group of the inhibitor is strongly conserved and is the basis for the antiviral action of the inhibitor across all presently known influenza strains. Differences in the solvent structure in the active site may be related to variation in the affinities of inhibitors to different subtypes of neuraminidase. PMID:7549872

  15. Structure, magnetic and complex impedance analysis of (1-x)BaTiO{sub 3}- xMgFe{sub 2}O{sub 4} composite

    SciTech Connect

    Zolkepli, M. F. A. Zainuddin, Z.

    2015-09-25

    MgFe{sub 2}O{sub 4} was synthesized by using sol-gel auto-combustion technique and coupled with BaTiO{sub 3} using the conventional solid state reaction method with different weight fraction of x = 0.00, 0.02, 0.04, 0.06 and 0.08 to form (1-x)BaTiO{sub 3} - xMgFe{sub 2}O{sub 4} composite. The structure, magnetic properties and complex impedance analysis of the composite samples were studied using X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) and High-frequency response analyzer (HFRA) respectively. XRD patterns showed a single phase tetragonal BaTiO{sub 3} for each composition due to the very small amount of MgFe{sub 2}O{sub 4}. The hysteresis loop confirmed that the composite has soft magnetic properties by addition of MgFe{sub 2}O{sub 4}. Small coercive field, HC has been recorded and it decreased with the increasing of MgFe{sub 2}O{sub 4} weight fraction. However, magnetization increased when the amount of MgFe{sub 2}O{sub 4} is increased. Impedance analysis conducted in range of 0.1 Hz to 10 MHz showed two depressed semicircle arcs for samples with MgFe{sub 2}O{sub 4} due to the resistive and capacitive behavior of the bulk and grain boundaries of the samples.

  16. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon

    2016-07-12

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  17. Impedance Spectroscopic Studies of BiFeO3-Pb(ZrTi)O3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Choudhary, R. N. P.; Barik, Subrat K.; Katiyar, R. S.

    BiFeO3-Pb(ZrTi)O3 [i.e., (Bi1-xPbx)(Fe1-xZr0.6xTi0.4x)O3 (x = 0.15, 0.25, 0.40, 0.50)] nanocomposites were synthesized using mechanical activation followed by a solid-state reaction technique. The dielectric parameters (capacitance, dissipation factor D, impedance Z and phase angle Φ) of all the samples were measured in a wide range of frequencies (1 kHz-1 MHz) and temperatures (300-630 K) in air atmosphere using an impedance analyzer with low signal amplitude of 500 mV. Electrical properties of the compounds were studied using a complex impedance spectroscopy (CIS) technique. The frequency dependence of electrical data was analyzed in the framework of conductivity and modulus formalisms. AC conductivity spectrum obeys Jonscher's universal power law.

  18. A New Design Method of AC Filter for Static Var Compensator

    NASA Astrophysics Data System (ADS)

    Tamura, Yuji; Irokawa, Shoichi; Takeda, Hideo; Takagi, Kikuo; Noro, Yasuhiro; Ametani, Akihiro

    A new approach of the AC filter design for the SVC (Static Var Compensator) is proposed in this paper. When the SVC consists of TCR(s) (Thyristor Controlled Reactor(s)) or TCT(s) (Thyristor Controlled Transformer(s)) and the AC filter(s), it is required to design AC filter(s) carefully to meet regulation level of harmonic voltage and current at the connection point of the SVC. In general, the AC filter design may require many iterative calculations of the harmonic performance by changing electrical parameters of the AC filter until all the harmonic voltage and current performances at the connection point of the SVC meet the regulation level on various conditions in terms of the filter de-tuning cases and the AC power system conditions. In this respect a new AC filter design approach is proposed, which is innovative on evaluation method of the performance to predetermine the permissible range of the AC filter harmonic impedance on the complex plane. By using this method, the iterations of the calculation can be reduced and it enables more efficient process of the design providing clear accountability of the decision of AC filter parameters.

  19. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation.

    PubMed

    Bleichert, Franziska; Balasov, Maxim; Chesnokov, Igor; Nogales, Eva; Botchan, Michael R; Berger, James M

    2013-10-08

    In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.

  20. Characterizations of chitosan-ammonium triflate (NH4CF3SO3) complexes by FTIR and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Khiar, A. S. Ahmad; Puteh, R.; Arof, A. K.

    2006-02-01

    Polymer electrolytes using chitosan and ammonium triflate (NH4CF3SO3) were prepared using the solution cast technique. FTIR confirms the complexation of chitosan and NH4CF3SO3 with shifting of the amine peak at 1591 cm-1 to 1573 cm-1. The highest conducting sample contains 50 wt% of NH4CF3SO3 and at room temperature has a conductivity of 8.91 × 10-7 S cm-1. The model of Rice and Roth has been used to calculate the number density of mobile ions (n), mobility (μ) and diffusion constant (D). Conductivity was found to be dependent on the number of mobile ions. Analysis of electrical modulus and dissipation factor (tan δ) shows that charge transport occurs through a hopping mechanism.

  1. Autographa californica Multiple Nucleopolyhedrovirus AC83 is a Per Os Infectivity Factor (PIF) Protein Required for Occlusion-Derived Virus (ODV) and Budded Virus Nucleocapsid Assembly as well as Assembly of the PIF Complex in ODV Envelopes.

    PubMed

    Javed, Muhammad Afzal; Biswas, Siddhartha; Willis, Leslie G; Harris, Stephanie; Pritchard, Caitlin; van Oers, Monique M; Donly, B Cameron; Erlandson, Martin A; Hegedus, Dwayne D; Theilmann, David A

    2017-03-01

    Baculovirus occlusion-derived virus (ODV) initiates infection of lepidopteran larval hosts by binding to the midgut epithelia, which is mediated by per os infectivity factors (PIFs). Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes seven PIF proteins, of which PIF1 to PIF4 form a core complex in ODV envelopes to which PIF0 and PIF6 loosely associate. Deletion of any pif gene results in ODV being unable to bind or enter midgut cells. AC83 also associates with the PIF complex, and this study further analyzed its role in oral infectivity to determine if it is a PIF protein. It had been proposed that AC83 possesses a chitin binding domain that enables transit through the peritrophic matrix; however, no chitin binding activity has ever been demonstrated. AC83 has been reported to be found only in the ODV envelopes, but in contrast, the Orgyia pseudotsugata MNPV AC83 homolog is associated with both ODV nucleocapsids and envelopes. In addition, unlike known pif genes, deletion of ac83 eliminates nucleocapsid formation. We propose a new model for AC83 function and show AC83 is associated with both ODV nucleocapsids and envelopes. We also further define the domain required for nucleocapsid assembly. The cysteine-rich region of AC83 is also shown not to be a chitin binding domain but a zinc finger domain required for the recruitment or assembly of the PIF complex to ODV envelopes. As such, AC83 has all the properties of a PIF protein and should be considered PIF8. In addition, pif7 (ac110) is reported as the 38th baculovirus core gene.IMPORTANCE ODV is essential for the per os infectivity of the baculovirus AcMNPV. To initiate infection, ODV binds to microvilli of lepidopteran midgut cells, a process which requires a group of seven virion envelope proteins called PIFs. In this study, we reexamined the function of AC83, a protein that copurifies with the ODV PIFs, to determine its role in the oral infection process. A zinc finger domain was identified and

  2. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac.

    PubMed

    Sayyed, Ali H; Gatsi, Roxani; Ibiza-Palacios, M Sales; Escriche, Baltasar; Wright, Denis J; Crickmore, Neil

    2005-11-01

    A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.

  3. Autographa californica Multiple Nucleopolyhedrovirus Ac34 Protein Retains Cellular Actin-Related Protein 2/3 Complex in the Nucleus by Subversion of CRM1-Dependent Nuclear Export

    PubMed Central

    Mu, Jingfang; Zhang, Yongli; Hu, Yangyang; Hu, Xue; Zhou, Yuan; Pei, Rongjuan; Wu, Chunchen; Chen, Jizheng; van Oers, Monique M.; Chen, Xinwen; Wang, Yun

    2016-01-01

    Actin, nucleation-promoting factors (NPFs), and the actin-related protein 2/3 complex (Arp2/3) are key elements of the cellular actin polymerization machinery. With nuclear actin polymerization implicated in ever-expanding biological processes and the discovery of the nuclear import mechanisms of actin and NPFs, determining Arp2/3 nucleo-cytoplasmic shuttling mechanism is important for understanding the function of nuclear actin. A unique feature of alphabaculovirus infection of insect cells is the robust nuclear accumulation of Arp2/3, which induces actin polymerization in the nucleus to assist in virus replication. We found that Ac34, a viral late gene product encoded by the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), is involved in Arp2/3 nuclear accumulation during virus infection. Further assays revealed that the subcellular distribution of Arp2/3 under steady-state conditions is controlled by chromosomal maintenance 1 (CRM1)-dependent nuclear export. Upon AcMNPV infection, Ac34 inhibits CRM1 pathway and leads to Arp2/3 retention in the nucleus. PMID:27802336

  4. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  5. Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex.

    PubMed

    Seifert, Franziska; Ciszak, Ewa; Korotchkina, Lioubov; Golbik, Ralph; Spinka, Michael; Dominiak, Paulina; Sidhu, Sukhdeep; Brauer, Johanna; Patel, Mulchand S; Tittmann, Kai

    2007-05-29

    At the junction of glycolysis and the Krebs cycle in cellular metabolism, the pyruvate dehydrogenase multienzyme complex (PDHc) catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. In mammals, PDHc is tightly regulated by phosphorylation-dephosphorylation of three serine residues in the thiamin-dependent pyruvate dehydrogenase (E1) component. In vivo, inactivation of human PDHc correlates mostly with phosphorylation of serine 264, which is located at the entrance of the substrate channel leading to the active site of E1. Despite intense investigations, the molecular mechanism of this inactivation has remained enigmatic. Here, a detailed analysis of microscopic steps of catalysis in human wild-type PDHc-E1 and pseudophosphorylation variant Ser264Glu elucidates how phosphorylation of Ser264 affects catalysis. Whereas the intrinsic reactivity of the active site in catalysis of pyruvate decarboxylation remains nearly unaltered, the preceding binding of substrate to the enzyme's active site via the substrate channel and the subsequent reductive acetylation of the E2 component are severely slowed in the phosphorylation variant. The structure of pseudophosphorylation variant Ser264Glu determined by X-ray crystallography reveals no differences in the three-dimensional architecture of the phosphorylation loop or of the active site, when compared to those of the wild-type enzyme. However, the channel leading to the active site is partially obstructed by the side chain of residue 264 in the variant. By analogy, a similar obstruction of the substrate channel can be anticipated to result from a phosphorylation of Ser264. The kinetic and thermodynamic results in conjunction with the structure of Ser264Glu suggest that phosphorylation blocks access to the active site by imposing a steric and electrostatic barrier for substrate binding and active site coupling with the E2 component. As a Ser264Gln variant, which carries no charge at position 264, is also selectively

  6. DNA hydrolytic cleavage by the diiron(III) complex Fe(2)(DTPB)(mu-O)(mu-Ac)Cl(BF(4))(2): comparison with other binuclear transition metal complexes.

    PubMed

    Liu, Changlin; Yu, Siwang; Li, Dongfeng; Liao, Zhanru; Sun, Xiaohui; Xu, Huibi

    2002-02-25

    The binuclear structure of Fe(2)(DTPB)(mu-O)(mu-Ac)Cl(BF(4))(2) (DTPB = 1,1,4,7,7-penta (2'-benzimidazol-2-ylmethyl)-triazaheptane, Ac = acetate) was characterized by UV-visible absorption and infrared spectra and NMR and ESR. The binding interaction of DNA with the diiron complex was examined spectroscopically. Supercoiled and linear DNA hydrolytic cleavage by the diiron complex is supported by the evidence from anaerobic reactions, free radical quenching, high performance liquid chromatography experiments, and enzymatic manipulation such as T4 ligase ligation, 5'-(32)P end-labeling, and footprinting analysis. The estimation of rate for the supercoiled DNA double strand cleavage shows one of the largest known rate enhancement factors, approximately 10(10) against DNA. Moreover, the DNA hydrolysis chemistry needs no coreactant such as hydrogen peroxide. The poor sequence-specific DNA cleavage indicated by the restriction analysis of the pBR322 DNA linearized by the diiron complex might be due to the diiron complex bound to DNA by a coordination of its two ferric ions to the DNA phosphate oxygens, as suggested by spectral characterizations. The hydrolysis chemistry for a variety of binuclear metal complexes including Fe(2)(DTPB)(mu-O)(mu-Ac)Cl(BF(4))(2) is compared. It is established that the dominant factors for the DNA hydrolysis activities of the binuclear metal complexes are the mu-oxo bridge, labile and anionic ligands, and open coordination site(s). Concerning the hydrolytic mechanisms, the diiron complex Fe(2)(DTPB)(mu-O)(mu-Ac)Cl(BF(4))(2) might share many points in common with the native purple acid phosphatases.

  7. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  8. Impedance Measurement for the Analysis of Corrosion Induced Failures.

    DTIC Science & Technology

    1982-02-01

    for a C-Mn Steel (C1117) in 1 M Na3PO4 , pH=4, T-21 C and in 1.0 M NaHCO3/0.1 M Na CO, T=70 C at controlled potentials with continuous recording of the...Impedance Parameters for C1117 Steel in 1 N Na3PO4 , pH = 4.............................................. 25 IV A.C. Impedance Parameters for Al 7075...CERT with continuous recording of the ac impedance.........................5 2 Anodic potentiodynamic polarization curves for 1008 steel in 1N Na3PO4

  9. Impedance analysis of BaMo1-xWxO4 ceramics

    NASA Astrophysics Data System (ADS)

    Bouzidi, C.; Sdiri, N.; Boukhachem, A.; Elhouichet, H.; Férid, M.

    2015-06-01

    The materials BaMo1-xWxO4 (x = 0.00, 0.05, 0.10, 0.15 and 0.20) were prepared by solid state reaction method. XRD analysis showed that the prepared samples crystallize in tetragonal structure with a preferred orientation of the crystallites along (1 1 2) direction. The values of optical band gap and Urbach energy are in the ranges 2.21-2.44 eV and 77.82-151.51 meV, respectively. Their impedance analysis have been determined in frequency and temperature range of (40-106 Hz) and (30-800 °C) respectively. The Nyquist diagrams were investigated in terms of equivalent circuits due to resistors and constant phase elements (CPE). Complex impedance analysis showed the behavior of a dielectric relaxation non-Debye type. We found that resistance of the compounds decreases with temperature, which is related to the electrical conductivity improvement. Conductivity measurements using σac were performed on compact pellets of these materials. The ac conductivity versus frequency shows Jonscher's universal power law. In order to study the activation energy versus temperature, we have chosen the small polaron hopping (SPH) model. The obtained activation energy values ranges from 0.29 to 1.08 eV. The dielectric constant (ε) and dielectric loss (tan δ) decreased with frequency, however the ac conductivity (σac) increased.

  10. Dielectric and impedance spectroscopic studies of neodymium gallate

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  11. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  12. The binuclear nickel center in the A-cluster of acetyl-CoA synthase (ACS) and two biomimetic dinickel complexes studied by X-ray absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schrapers, P.; Mebs, S.; Ilina, Y.; Warner, D. S.; Wörmann, C.; Schuth, N.; Kositzki, R.; Dau, H.; Limberg, C.; Dobbek, H.; Haumann, M.

    2016-05-01

    Acetyl-CoA synthase (ACS) is involved in the bacterial carbon oxide conversion pathway. The binuclear nickel sites in ACS enzyme and two biomimetic synthetic compounds containing a Ni(II)Ni(II) unit (1 and 2) were compared using XAS/XES. EXAFS analysis of ACS proteins revealed similar Ni-N/O/S bond lengths and Ni-Ni/Fe distances as in the crystal structure in oxidized ACS, but elongated Ni-ligand bonds in reduced ACS, suggesting more reduced nickel species. The XANES spectra of ACS and the dinickel complexes showed overall similar shapes, but less resolved pre-edge and edge features in ACS, attributed to more distorted square-planar nickel sites in particular in reduced ACS. DFT calculation of pre-edge absorption and Kβ2,5 emission features reproduced the experimental spectra of the synthetic complexes, was sensitive even to the small geometry differences in 1 and 2, and indicated low-spin Ni(II) sites. Comparison of nickel sites in proteins and biomimetic compounds is valuable for deducing structural and electronic differences in response to ligation and redox changes.

  13. Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding

    PubMed Central

    Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian

    2012-01-01

    Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514

  14. AC conductivity and dielectric relaxation of tris(N,N-dimethylanilinium) hexabromidostannate(IV) bromide: (C8H12N)3SnBr6.Br

    NASA Astrophysics Data System (ADS)

    Chouaib, H.; Kamoun, S.

    2015-10-01

    The X-ray powder analysis, thermogravimetric analysis, differential scanning calorimetry analysis and complex impedance spectroscopic data have been carried out on (C8H12N)3SnBr6.Br compound. The results show that this compound exhibits a phase transition at (T=365±2 K) which has been characterized by differential scanning calorimetry (DSC), AC conductivity and dielectric measurements. The AC conductivity, the modulus analysis, the dielectric constants and the polarizability have been studied using impedance in the temperature range from 334 K to 383 K and in the frequency range between 20 Hz and 2 MHz. The temperature dependence of DC conductivity follows the Arrhenius law. Moreover, the frequency dependence of conductivity follows Jonscher's dynamical law with the relation: σ(ω , T) =σDC + B(T)ω s(T) . Relaxation peaks can be observed in the complex modulus analysis and after a transformation of the complex permittivity ε* to the complex polarizability α*.

  15. Dielectric and impedance behavior of neodymium substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Bhat, Bilal Hamid; Samad, Rubiya; Want, Basharat

    2016-09-01

    In this study, dielectric behavior and complex impedance of neodymium (Nd) substituted strontium hexaferrite system: Sr1- x Nd x Fe12O19 ( x = 0.0, 0.05, 0.1, 0.15, 0. 20), synthesized by citrate precursor technique, have been evaluated as a function of applied frequency and temperature. Variation of dielectric constant and dielectric loss with frequency shows the identical behavior for all the compositions. The value of dielectric constant increases with Nd doping. Relaxation process is observed in the composition x = 0.20, and the peaks in this composition shift toward the higher-frequency region as the temperature increases. The dielectric constants show temperature-independent behavior at low temperature, whereas at higher temperatures it increases for all the frequencies. The AC conductivity follows Jonscher's power law, showing that conduction mechanism is due to polaron hopping. Complex impedance as a function of composition and temperature is used to examine the role of grain and grain boundary in the prepared material. Cole-cole plot shows only one semicircle up to x = 0.15, while as for x = 0.20 two semicircles are observed. The conduction mechanism is explained on the basis of both grain and grain boundary.

  16. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  17. The Aberdeen Impedance Imaging System.

    PubMed

    Kulkarni, V; Hutchison, J M; Mallard, J R

    1989-01-01

    The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal.

  18. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  19. AC Impedance Behavior of LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 Hydrogen-Storage Alloy: Effect of Surface Area

    NASA Astrophysics Data System (ADS)

    Tliha, M.; Khaldi, C.; Lamloumi, J.

    2016-04-01

    The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.

  20. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

    NASA Astrophysics Data System (ADS)

    Mahato, Dev K.; Sinha, T. P.

    2017-01-01

    Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance ( Z″) and the normalized imaginary part of modulus ( M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

  1. Muscle dystrophy-causing ΔK32 lamin A/C mutant does not impair functions of nucleoplasmic LAP2α - lamin A/C complexes in mice

    PubMed Central

    Pilat, Ursula; Dechat, Thomas; Bertrand, Anne T; Woisetschläger, Nikola; Gotic, Ivana; Spilka, Rita; Biadasiewicz, Katarzyna; Bonne, Gisèle; Foisner, Roland

    2015-01-01

    Summary A-type lamins are components of the nuclear lamina, a filamentous network of the nuclear envelope in metazoans that supports nuclear architecture. In addition, lamin A/C can also be found in the nuclear interior. This nucleoplasmic lamin pool is soluble in physiological buffer, depends on the presence of the lamin-binding protein, Lamina-associated polypeptide 2α (LAP2α) and regulates cell cycle progression in tissue progenitor cells. ΔK32 mutations in A-type lamins cause severe congenital muscle disease in humans and a muscle maturation defect in LmnaΔK32/ΔK32 knock-in mice. At molecular level, mutant ΔK32 lamin A/C protein levels were reduced and all mutant lamin A/C was soluble and mislocalized to the nucleoplasm. To test the role of LAP2α in nucleoplasmic ΔK32 lamin A/C regulation and functions, we deleted LAP2α in LmnaΔK32/ΔK32 knock-in mice. In double mutant mice the LmnaΔK32/ΔK32- linked muscle defect was unaffected. LAP2α interacted with mutant lamin A/C, but unlike wild-type lamin A/C, the intranuclear localization of ΔK32 lamin A/C was not affected by loss of LAP2α. In contrast, loss of LAP2α in LmnaΔK32/ΔK32 mice impaired the regulation of tissue progenitor cells like in lamin A/C wild type animals. These data indicate that a LAP2α-independent assembly defect of ΔK32 lamin A/C is predominant for the mouse pathology, while the LAP2α-linked functions of nucleoplasmic lamin A/C in the regulation of tissue progenitor cells are not affected in LmnaΔK32/ΔK32 mice. PMID:23444379

  2. Acoustic impedance measurements of pulse tube refrigerators

    NASA Astrophysics Data System (ADS)

    Iwase, Takashi; Biwa, Tetsushi; Yazaki, Taichi

    2010-02-01

    Complex acoustic impedance is determined in a prototype refrigerator that can mimic orifice-type, inertance-type, and double inlet-type pulse tube refrigerators from simultaneous measurements of pressure and velocity oscillations at the cold end. The impedance measurements revealed the means by which the oscillatory flow condition in the basic pulse tube refrigerator is improved by additional components such as a valve and a tank. The working mechanism of pulse tube refrigerators is explained based on an electrical circuit analogy.

  3. Dielectric and Impedance Spectroscopy of Barium Bismuth Vanadate Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Sutar, B. C.; Choudhary, R. N. P.; Das, Piyush R.

    2014-07-01

    Structural, micro-structural and electrical properties of barium bismuth vanadate Ba(Bi0.5V0.5)O3 ceramics were investigated. X-ray diffraction (XRD) analysis of the prepared material confirmed the formation of the compound with monoclinic crystal system. Scanning electron microscopy (SEM) of the compound exhibits well-defined grains that are uniformly distributed throughout the surface of the sample. Dielectric properties of the compound were studied as a function of temperature at different frequencies. An observation of dielectric anomaly at 295 °C is due to ferroelectric phase transition that was later confirmed by the appearance of hysteresis loop. Detailed studies of complex impedance spectroscopy have provided a better understanding of the relaxation process and correlations between the microstructure-electrical properties of the materials. The nature of frequency dependence of ac conductivity obeys the Debye power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor.

  4. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  5. Overview Of Impedance Sensors

    NASA Astrophysics Data System (ADS)

    Abele, John E.

    1989-08-01

    Electrical impedance has been one of the many "tools of great promise" that physicians have employed in their quest to measure and/or monitor body function or physiologic events. So far, the expectations for its success have always exceeded its performance. In simplistic terms, physiologic impedance is a measure of the resistance in the volume between electrodes which changes as a function of changes in that volume, the relative impedance of that volume, or a combination of these two. The history and principles of electrical impedance are very nicely reviewed by Geddes and Baker in their textbook "Principles of Applied Biomedical Instrumentation". It is humbling, however, to note that Cremer recorded variations in electrical impedance in frog hearts as early as 1907. The list of potential applications includes the measurement of thyroid function, estrogen activity, galvanic skin reflex, respiration, blood flow by conductivity dilution, nervous activity and eye movement. Commercial devices employing impedance have been and are being used to measure respiration (pneumographs and apneamonitors), pulse volume (impedance phlebographs) and even noninvasive cardiac output.

  6. Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rajeswaran

    Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer

  7. Tracking of electrochemical impedance of batteries

    NASA Astrophysics Data System (ADS)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  8. Adaptive impedance control of redundant manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    A scheme for controlling the mechanical impedance of the end-effector of a kinematically redundant manipulator is presented. The proposed control system consists of two subsystems: an adaptive impedance controller which generates the Cartesian-space control input F (is a member of Rm) required to provide the desired end-effector impedance characteristics, and an algorithm that maps this control input to the joint torque T (is a member of Rn). The F to T map is constructed so that the robot redundancy is utilized to improve either the kinematic or dynamic performance of the robot. The impedance controller does not require knowledge of the complex robot dynamic model or parameter values for the robot, the payload, or the environment, and is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme is very general and is computationally efficient for on-line implementation.

  9. Impedance Noise Identification for State-of-Health Prognostics

    SciTech Connect

    Jon P. Christophersen; Chester G. Motloch; John L. Morrison; Ian B. Donnellan; William H. Morrison

    2008-07-01

    Impedance Noise Identification is an in-situ method of measuring battery impedance as a function of frequency using a random small signal noise excitation source. Through a series of auto- and cross-correlations and Fast Fourier Transforms, the battery complex impedance as a function of frequency can be determined. The results are similar to those measured under a lab-scale electrochemical impedance spectroscopy measurement. The lab-scale measurements have been shown to correlate well with resistance and power data that are typically used to ascertain the remaining life of a battery. To this end, the Impedance Noise Identification system is designed to acquire the same type of data as an on-board tool. A prototype system is now under development, and results are being compared to standardized measurement techniques such as electrochemical impedance spectroscopy. A brief description of the Impedance Noise Identification hardware system and representative test results are presented.

  10. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Ac[alpha]2-6Gal[beta]1-4GlcNAc human-type influenza receptor

    SciTech Connect

    Kadirvelraj, Renuka; Grant, Oliver C.; Goldstein, Irwin J.; Winter, Harry C.; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J.

    2013-03-07

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Ac{alpha}2-6Gal{beta}. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 {angstrom}) in complex with a trisaccharide, whose sequence (Neu5Ac{alpha}2-6Gal{beta}1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Ac{alpha}2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding.

  11. Microwave impedance imaging on semiconductor memory devices

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  12. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  13. Integrated impedance and guided wave based damage detection

    NASA Astrophysics Data System (ADS)

    An, Yun-Kyu; Sohn, Hoon

    2012-04-01

    Recently, impedance and guided wave based damage detection techniques have been widely used for structural health monitoring (SHM) and Nondestructive testing (NDT) due to their sensitivity to small structural changes. Each of these techniques has its own technical merits, making them complementary to each other. For example, the guided wave technique typically has a larger sensing range than the impedance technique while the latter has better applicability to more complex structures. In this study, a new damage detection technique, which is named as integrated impedance and guided wave (IIG) based damage detection, is developed by utilizing impedance and guided wave signals simultaneously obtained from surface-mounted piezoelectric transducers (PZTs) to enhance the performance and reliability of damage diagnosis especially under varying temperature conditions. The proposed IIG technique first divides the measured impedance signal into two parts: passive impedance only sensitive to temperature variation and active impedance closely related to the mechanical property of the host structure. Then, the temperature effects on the active impedance and guided wave signals are minimized using the passive impedance. Finally, improved damage diagnosis is performed using both impedance and guided wave signals. The applicability of the proposed IIG technique to the detection of (1) bolt loosening in a steel lap joint, (2) a notch in an aluminum specimen with a complex geometry and (3) delamination in a composite wing mock-up specimen with stringers is experimentally investigated under varying temperatures.

  14. Impeded Dark Matter

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-12-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  15. Antenna impedance matching with neural networks.

    PubMed

    Hemminger, Thomas L

    2005-10-01

    Impedance matching between transmission lines and antennas is an important and fundamental concept in electromagnetic theory. One definition of antenna impedance is the resistance and reactance seen at the antenna terminals or the ratio of electric to magnetic fields at the input. The primary intent of this paper is real-time compensation for changes in the driving point impedance of an antenna due to frequency deviations. In general, the driving point impedance of an antenna or antenna array is computed by numerical methods such as the method of moments or similar techniques. Some configurations do lend themselves to analytical solutions, which will be the primary focus of this work. This paper employs a neural control system to match antenna feed lines to two common antennas during frequency sweeps. In practice, impedance matching is performed off-line with Smith charts or relatively complex formulas but they rarely perform optimally over a large bandwidth. There have been very few attempts to compensate for matching errors while the transmission system is in operation and most techniques have been targeted to a relatively small range of frequencies. The approach proposed here employs three small neural networks to perform real-time impedance matching over a broad range of frequencies during transmitter operation. Double stub tuners are being explored in this paper but the approach can certainly be applied to other methodologies. The ultimate purpose of this work is the development of an inexpensive microcontroller-based system.

  16. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  17. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  18. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  19. AC Conductivity Studies in Lithium-Borate Glass Containing Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y.; Anavekar, R. V.

    2011-07-01

    Gold nanoparticles have been synthesized in a base glass with composition 30Li2O-70B2O3 using gold chloride (HAuCl4.3H2O) as a dopant. The samples are characterized using XRD, ESR, SEM and optical absorption in the visible range. AC conductivity studies have been performed at RT over a frequency range 100 to 10 MHz. The dc conductivity is calculated from the complex impedence plot. The dc conductivity is found to be increasing with the increase of dopant concentration. AC conductivity data is fitted with Almond-West law with power exponent `s'. The values of `s' is found to lie in the range of 0.70-0.73.

  20. Impedance spectroscopy for the detection and identification of unknown toxins

    NASA Astrophysics Data System (ADS)

    Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.

    2012-06-01

    Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.

  1. Longitudinal impedance of RHIC

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Mernick, K.

    2015-05-03

    The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2Ω. For the yellow ring Im(Z/n) = 5.4±1Ω.

  2. Recycler short kicker beam impedance

    SciTech Connect

    Crisp, Jim; Fellenz, Brian; /Fermilab

    2009-07-01

    Measured longitudinal and calculated transverse beam impedance is presented for the short kicker magnets being installed in the Fermilab Recycler. Fermi drawing number ME-457159. The longitudinal impedance was measured with a stretched wire and the Panofsky equation was used to estimate the transverse impedance. The impedance of 3319 meters (the Recycler circumference) of stainless vacuum pipe is provided for comparison. Although measurements where done to 3GHz, impedance was negligible above 30MHz. The beam power lost to the kicker impedance is shown for a range of bunch lengths. The measurements are for one kicker assuming a rotation frequency of 90KHz. Seven of these kickers are being installed.

  3. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  4. A new monitoring method for electrochemical aggregates by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kurzweil, P.; Fischle, H.-J.

    A variant of ac impedance spectroscopy is applied to monitor and control electrochemical cells and appliances without need for reference values and knowledge of control points in advance. Electrolyzers, fuels cells, energy stores, sensors and electrochemical reactors are steered to an optimum operating state by continuous evaluation of capacitance and the derivatives thereof. Dry and humid electrode-electrolyte interfaces are distinguished with the aid of the low-frequency impedance. The problem is solved in order to determine electrolyte concentrations unambiguously from electrolyte resistance, although the conductivity of the solution has a maximum and changes nonlinearly with the concentration.

  5. Thermal Boundary Resistance between GaN and Cubic Ice and THz Acoustic Attenuation Spectrum of Cubic Ice from Complex Acoustic Impedance Measurements.

    PubMed

    Mante, Pierre-Adrien; Chen, Chien-Cheng; Wen, Yu-Chieh; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2013-11-27

    A phonon nanoscopy method, based on the picosecond ultrasonics technique, capable of studying the complex acoustic reflection coefficient at frequency up to 1 THz is proposed and demonstrated. By measuring the reflection coefficient at the same surface location at the interface between GaN and air, and between GaN and the material to characterize, we get access to the THz amplitude and phase spectra of the acoustic phonon reflection. The retrieval of both these pieces of information then allows the calculation of the attenuation in a wide range of frequency and gives new insight into the Kapitza anomaly. This method is then applied to cubic ice, and the measurements of the elastic properties, the phonon anharmonic decay spectrum up to 1 THz, as well as the measurements of the thermal phonon lifetime at 150 K are all achieved.

  6. Impedance calculation for ferrite inserts

    SciTech Connect

    Breitzmann, S.C.; Lee, S.Y.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  7. AC conductivity and relaxation mechanism in (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Nath, Susmita; Barik, Subrat Kumar; Choudhary, R. N. P.

    2016-05-01

    In the present study we have synthesized polycrystalline sample of (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramic by a standard high-temperature solid-state reaction technique. Studies of dielectric and electrical properties of the compound have been carried out in a wide range of temperature (RT - 400 °C) and frequency (1kHz - 1MHz) using complex impedance spectroscopic technique. The imaginary vs. real component of the complex impedance plot (Nyquist plot) of the prepared sample exhibits the existence of grain, grain boundary contributions in the complex electrical parameters and negative temperature coefficient of resistance (NTCR) type behavior like semiconductor. Details study of ac conductivity plot reveals that the material obeys universal Jonscher's power law.

  8. Impedance Measurement Box

    SciTech Connect

    Morrison, William

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  9. Gynecologic electrical impedance tomograph

    NASA Astrophysics Data System (ADS)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  10. A multichannel continuously selectable multifrequency electrical impedance spectroscopy measurement system.

    PubMed

    Hartov, A; Mazzarese, R A; Reiss, F R; Kerner, T E; Osterman, K S; Williams, D B; Paulsen, K D

    2000-01-01

    There is increasing evidence that alterations in the electrical property spectrum of tissues below 10 MHz is diagnostic for tissue pathology and/or pathophysiology. Yet, the complexity associated with constructing a high-fidelity multichannel, multifrequency data acquisition instrument has limited widespread development of spectroscopic electrical impedance imaging concepts. To contribute to the relatively sparse experience with multichannel spectroscopy systems this paper reports on the design, realization and evaluation of a prototype 32-channel instrument. The salient features of the system include a continuously selectable driving frequency up to 1 MHz, either voltage or current source modes of operation and simultaneous measurement of both voltage and current on each channel in either of these driving configurations. Comparisons of performance with recently reported fixed-frequency systems is favorable. Volts dc (VDC) signal-to-noise ratios of 75-80 dB are achieved and the noise floor for ac signals is near 100 dB below the signal strength of interest at 10 kHz and 60 dB down at 1 MHz. The added benefit of being able to record multispectral information on source and sense signal amplitudes and phases has also been realized. Phase-sensitive detection schemes and multiperiod undersampling techniques have been deployed to ensure measurement fidelity over the full bandwidth of system operation.

  11. Towards a graphene-based quantum impedance standard

    SciTech Connect

    Kalmbach, C.-C.; Schurr, J. Ahlers, F. J.; Müller, A.; Novikov, S.; Lebedeva, N.; Satrapinski, A.

    2014-08-18

    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10{sup 7}. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about −8 × 10{sup −8}/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance.

  12. A two electrode apparatus for electrical impedance measurements

    NASA Astrophysics Data System (ADS)

    Merriam, J. B.

    2009-12-01

    A two electrode cell for complex impedance measurements on core samples in the range 1 mHz - 0.3 kHz is described. Two electrode cells are more convenient than four electrode cells but some restrictions need to be observed. I will show that the contact impedance between the electrodes and the sample can be controlled and reduced to less than fifty ohms in most cases. The contact impedance is repeatable, with a peak phase near 10 Hz of less than one degree and a maximum change in impedance magnitude of less than fifty ohm. A model for the contact impedance is used to correct impedance measurements, leaving an un-modeled contact impedance of a few ohms. There is typically a drift of about 100 ohm during a measurement sequence due to diffusion between the ceramic frits at the ends of the sample. This is corrected by repeat measurements at 100 Hz. Un-modeled impedance changes due to drift are about ten ohm. The un-modeled impedance changes mean that the relative error on conductive samples is greater than on resistive samples. Repeat measurements on a sandstone sample with conductive pore water (0.14 S/m) yield a mean of 492 ohms with a standard deviation of 20 ohm, or about five percent. Measurements on mineralized core and on cells constructed from mixtures of silica sand and polarizable minerals demonstrate that the two electrode set up can be used even on heavily mineralized samples.

  13. Study of Influence of Electrode Geometry on Impedance Spectroscopy

    SciTech Connect

    Ahmed, Riaz; Reifsnider, Kenneth L

    2011-01-01

    Electrochemical Impedance Spectroscopy (EIS) is a powerful and proven tool for analyzing AC impedance response. A conventional three electrode EIS method was used to perform the investigation in the present study. Saturated potassium chloride solution was used as the electrolyte and three different material rods were used as working electrodes. Different configurations of electrode area were exposed to the electrolyte as an active area to investigate electrode geometry effects. Counter to working electrode distance was also altered while keeping the working electrode effective area constant to explore the AC response dependence on the variation of ion travel distance. Some controlled experiments were done to validate the experimental setup and to provide a control condition for comparison with experimental results. A frequency range of 100 mHz to 1 MHz was used for all experiments. In our analysis, we have found a noteworthy influence of electrode geometry on AC impedance response. For all electrodes, impedance decreases with the increase of effective area of the electrolyte. High frequency impedance is not as dependent on geometry as low frequency response. The observed phase shift angle drops in the high frequency region with increased working electrode area, whereas at low frequency the reverse is true. Resistance and capacitive reactance both decrease with an increase of area, but resistance response is more pronounce than reactance. For lower frequencies, small changes in working area produce very distinctive EIS variations. Electrode material as well as geometry was systematically varied in the present study. From these and other studies, we hope to develop a fundamental foundation for understanding specific changes in local geometry in fuel cell (and other) electrodes as a method of designing local morphology for specific performance.

  14. An Actual Design of AC Filter for Static Var Compensator and Verification Results from the Field Test

    NASA Astrophysics Data System (ADS)

    Tamura, Yuji; Takasaki, Shinji; Irokawa, Shoichi; Takeda, Hideo; Takagi, Kikuo; Noro, Yasuhiro; Ametani, Akihiro

    AC filter design method for SVC and HVDC is commonly known in the relevant CIGRE technical brochure and IEC technical report. However the conventional method requires many iterative calculations of the harmonic voltages and currents until the calculation results become within the regulation levels by changing filter parameters based on the experience. In this respect, a new improved design method is proposed, which enables efficient evaluation on the complex impedance plane to confirm as to whether the proposed filter impedance is in the permissible range. In an actual project of Okuura SVC of Kyusyu Electric Power Co., Inc., the new method was applied to the AC filter design. This paper describes on the actual procedure of the AC filter design with the new method, the actual references of the harmonic performance calculation, and the field test measurement results on Okuura SVC. The calculation results and the filed measurement results are consistent with each other, thus the validity of the new design method is verified on its accuracy and effectiveness.

  15. Module Twelve: Series AC Resistive-Reactive Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…

  16. Microfabricated multi-frequency particle impedance characterization system

    SciTech Connect

    Fuller, C K; Hamilton, J; Ackler, H; Krulevitch, P; Boser, B; Eldredge, A; Becker, F; Yang, J; Gascoyne, P

    2000-03-01

    We have developed a microfabricated flow-through impedance characterization system capable of performing AC, multi-frequency measurements on cells and other particles. The sensor measures both the resistive and reactive impedance of passing particles, at rates of up to 100 particles per second. Its operational bandwidth approaches 10 MHz with a signal-to-noise ratio of approximately 40 dB. Particle impedance is measured at three or more frequencies simultaneously, enabling the derivation of multiple particle parameters. This constitutes an improvement to the well-established technique of DC particle sizing via the Coulter Principle. Human peripheral blood granulocyte radius, membrane capacitance, and cytoplasmic conductivity were measured (r = 4.1 {micro}m, C{sub mem} = 0.9 {micro}F/cm{sup 2}, {sigma}{sub int} = 0.66 S/m) and were found to be consistent with published values.

  17. Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3-P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3-P143 double knockout bacmid.

    PubMed

    Yu, Mei; Carstens, Eric B

    2012-02-01

    Transient replication assays using Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) genes suggested that the interactions between P143, the viral helicase and LEF-3, a ssDNA-binding protein, may represent virus species specificity determinants. P143 and LEF-3 are essential for DNA replication in these assays and together with IE-1, the major immediate-early transcription factor, may be part of the viral replisome. In the current report, a lef-3/p143 double-knockout AcMNPV bacmid was constructed that was defective for viral DNA replication and late gene expression. When the homologous lef-3/p143 CfMNPV genes were introduced into this double-knockout bacmid, DNA replication was restored but the level of replication was lower, budded virus production was delayed, and the yields were reduced from those in an AcMNPV-rescue bacmid. These results suggest that to maximize virus replication, baculovirus replisome assembly and function requires protein-protein interactions between P143 and LEF-3, and other viral proteins.

  18. From crystal structure of α-conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for α3β2 nAChR

    PubMed Central

    Lin, Bo; Xu, Manyu; Zhu, Xiaopeng; Wu, Yong; Liu, Xi; Zhangsun, Dongting; Hu, Yuanyan; Xiang, Shi-Hua; Kasheverov, Igor E.; Tsetlin, Victor I.; Wang, Xinquan; Luo, Sulan

    2016-01-01

    Acetylcholine binding proteins (AChBPs) are unique spatial homologs of the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), and they reproduce some pharmacological properties of nAChRs. X-ray crystal structures of AСhBP in complex with α-conotoxins provide important insights into the interactions of α-conotoxins with distinct nAChR subtypes. Although considerable efforts have been made to understand why α-conotoxin GIC is strongly selective for α3β2 nAChR, this question has not yet been solved. Here we present the structure of α-conotoxin GIC in complex with Aplysia californica AChBP (Ac-AChBP) at a resolution of 2.1 Å. Based on this co-crystal structure complemented with molecular docking data, we suggest the key residues of GIC in determining its high affinity and selectivity for human α3β2 vs α3β4 nAChRs. These suggestions were checked by radioligand and electrophysiology experiments, which confirmed the functional role of detected contacts for GIC interactions with Ac-AChBP and α3β2 nAChR subtypes. While GIC elements responsible for its high affinity binding with Ac-AChBP and α3β2 nAChR were identified, our study also showed the limitations of computer modelling in extending the data from the X-ray structures of the AChBP complexes to all nAChR subtypes. PMID:26925840

  19. "Structure and dynamics in complex chemical systems: Gaining new insights through recent advances in time-resolved spectroscopies.” ACS Division of Physical Chemistry Symposium presented at the Fall National ACS Meeting in Boston, MA, August 2015

    SciTech Connect

    Crawford, Daniel

    2016-09-26

    8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics in complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.

  20. Dissection of the Mechanical Impedance Components of the Outer Hair Cell Using a Chloride-Channel Blocker

    NASA Astrophysics Data System (ADS)

    Harasztosi, Csaba; Gummer, Anthony W.

    2011-11-01

    The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.

  1. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    SciTech Connect

    Kimura, Tomoharu; Yamada, Hirofumi; Kobayashi, Kei

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  2. Scheme for rapid adjustment of network impedance

    DOEpatents

    Vithayathil, John J.

    1991-01-01

    A static controlled reactance device is inserted in series with an AC electric power transmission line to adjust its transfer impedance. An inductor (reactor) is serially connected with two back-to-back connected thyristors which control the conduction period and hence the effective reactance of the inductor. Additional reactive elements are provided in parallel with the thyristor controlled reactor to filter harmonics and to obtain required range of variable reactance. Alternatively, the static controlled reactance device discussed above may be connected to the secondary winding of a series transformer having its primary winding connected in series to the transmission line. In a three phase transmission system, the controlled reactance device may be connected in delta configuration on the secondary side of the series transformer to eliminate triplen harmonics.

  3. Electrical properties of complex tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Padhee, R.; Das, Piyush R.

    2014-09-01

    This paper highlights the electrical properties of two new complex tungsten bronze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Pr2W2Ti4Nb4O30) which were prepared by high temperature mixed oxide method. Variation of impedance parameters with temperature (27-500 °C) and frequency (1 kHz to 5 MHz) shows the grain and grain boundary effects in the samples. The variation of dielectric parameters with frequency is also studied. The ac conductivity variation with temperature clearly exhibits that the materials have thermally activated transport properties of Arrhenius type.

  4. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  5. Optically stimulated differential impedance spectroscopy

    SciTech Connect

    Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P

    2014-02-18

    Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.

  6. Mechanical Impedance of the Human Body in the Horizontal Direction

    NASA Astrophysics Data System (ADS)

    Holmlund, P.; Lundström, R.

    1998-08-01

    The mechanical impedance of the seated human body in horizontal directions (fore-and-aft and lateral) was measured during different experimental conditions, such as vibration level (0·25-1·4 m/s2r.m.s.), frequency (1·13-80 Hz), body weight (54-93 kg), upper body posture (relaxed and erect) and gender. The outcome showed that impedance, normalized by the sitting weight, varies with direction, level, posture and gender. Generally the impedance spectra show one peak for the fore-and-aft (X) direction while two peaks are found in the lateral (Y) direction. Males showed a lower normalized impedance than females. Increasing fore-and-aft vibration decreases the frequency at which maximum impedance occurs but also reduces the overall magnitude. For the lateral direction a more complex pattern was found. The frequency of impedance peaks are constant with increasing vibration level. The magnitude of the second peak decreases when changing posture from erect to relaxed. Males showed a higher impedance magnitude than females and a greater dip between the two peaks. The impedance spectra for the two horizontal directions have different shapes. This supports the idea of treating them differently; such as with respect to risk assessments and development of preventative measures.

  7. Impedance Spectroscopy Analysis of Mg4Nb2O9 Ceramics with Different Additions of V2O5 for Microwave and Radio Frequency Applications

    NASA Astrophysics Data System (ADS)

    Filho, J. M. S.; Rodrigues Junior, C. A.; Sousa, D. G.; Oliveira, R. G. M.; Costa, M. M.; Barroso, G. C.; Sombra, A. S. B.

    2017-03-01

    The complex impedance spectroscopy study of magnesium niobate Mg4Nb2O9 (MN) ceramics with different additions of V2O5 (0%, 2%, 5%) was performed in this present paper. The preparation of MN samples were carried out by using the solid-state reaction method with a high-energy milling machine. Frequency and temperature dependence of the complex impedance, complex modulus analysis, and conductivity were measured and calculated at different temperatures by using a network impedance analyzer. A non-Debye type relaxation was observed showing a decentralization of the semicircles. Cole-Cole formalism was adopted here with the help of a computer program used to fit the experimental data. A typical universal dielectric response in the frequency-dependent conductivity at different temperatures was found. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated. The activation energy was obtained from the Arrhenius fitting by using conductivity and electrical modules data. The results would help to understand deeply the relaxation process in these types of materials.

  8. Monolithically compatible impedance measurement

    DOEpatents

    Ericson, Milton Nance; Holcomb, David Eugene

    2002-01-01

    A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.

  9. On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics.

    PubMed

    Sadeghi, Saman; Ding, Huijiang; Shah, Gaurav J; Chen, Supin; Keng, Pei Yuin; Kim, Chang-Jin; van Dam, R Michael

    2012-02-21

    We demonstrate a new approach to impedance measurement on digital microfluidics chips for the purpose of simple, sensitive, and accurate volume and liquid composition measurement. Adding only a single series resistor to existing AC droplet actuation circuits, the platform is simple to implement and has negligible effect on actuation voltage. To accurately measure the complex voltage across the resistor (and hence current through the device and droplet), the designed system is based on software-implemented lock-in amplification detection of the voltage drop across the resistor which filters out noise, enabling high-resolution and low-limit signal recovery. We observe picoliter sensitivity with linear correlation of voltage to volume extending to the microliter volumes that can be handled by digital microfluidic devices. Due to the minimal hardware, the system is robust and measurements are highly repeatable. The detection technique provides both phase and magnitude information of the real-time current flowing through the droplet for a full impedance measurement. The sensitivity and resolution of this platform enables it to distinguish between various liquids which, as demonstrated in this paper, could potentially be extended to quantify solute concentrations, liquid mixtures, and presence of analytes.

  10. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures

    NASA Astrophysics Data System (ADS)

    Wissenwasser, J.; Vellekoop, M. J.; Kapferer, W.; Lepperdinger, G.; Heer, R.

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  11. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures.

    PubMed

    Wissenwasser, J; Vellekoop, M J; Kapferer, W; Lepperdinger, G; Heer, R

    2011-11-01

    An impedance measurement system with probe signal frequencies up to 50 kHz with AC-probe voltages below 30 mV rms was integrated for wireless and battery-free monitoring of microbiological cell cultures. The here presented modular design and the use of state-of-the-art components greatly eases adoptions to a wide range of biotechnological applications without the need of bulky LCR-meters or potentiostats. The device had a power consumption of less than 2.5 mA at a 3.3 V single power supply and worked trouble-free within the humid environment of a cell culture incubator. Measurements on lumped RC-elements showed an error of less than 1% for absolute values and less than 1° regarding the phase of the complex impedance. The performance of sensor devices with interdigitated electrode structures for the measurement of adherent cell cultures was tested in the presence of phosphate-buffered saline solution in the humid atmosphere of an incubator for biological cell cultures.

  12. Impedance inversion: A valuable tool in geological interpretation

    SciTech Connect

    Buck, P.J. )

    1990-05-01

    Impedance inversion is a newly evolving geophysical technique that offers the explorationist an additional method for understanding and predicting lateral and vertical lithological changes in the subsurface. Its true significance to the interpretation of complex geology and to reservoir delineation is now being realized and the technique is likely to become a vital exploration tool in the 1990s. Using the case study of an oil prospect in the Bredasdorp basin, offshore South Africa, computer-generated high-resolution color impedance inversion plots show lateral lithological changes across an intricate channel complex and reservoir zone. Borehole information from two wells drilled through the reservoir zone are correlated with the impedance inversion data. These combination displays illustrate the importance of conducting impedance inversion programs on prospective targets. The display further illustrates their usefulness when calculating stepout wells or primary well-site positions, especially in wildcat areas where little or no borehole data is available.

  13. Impedance in School Screening Programs.

    ERIC Educational Resources Information Center

    Robarts, John T.

    1985-01-01

    This paper examines the controversy over use of impedance screening in public schools to identify students with hearing problems, including otitis media, a common ear condition in infants and young children. It cites research that questions the value of pure tone screening as a single test and raises critics' objections to the use of impedance,…

  14. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, Thomas E.

    1999-01-01

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  15. Ultra-wideband impedance sensor

    DOEpatents

    McEwan, T.E.

    1999-03-16

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  16. Development on electromagnetic impedance function modeling and its estimation

    SciTech Connect

    Sutarno, D.

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  17. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  18. Enhanced Method for Cavity Impedance Calculations

    SciTech Connect

    Frank Marhauser, Robert Rimmer, Kai Tian, Haipeng Wang

    2009-05-01

    With the proposal of medium to high average current accelerator facilities the demand for cavities with extremely low Higher Order Mode (HOM) impedances is increasing. Modern numerical tools are still under development to more thoroughly predict impedances that need to take into account complex absorbing boundaries and lossy materials. With the usually large problem size it is preferable to utilize massive parallel computing when applicable and available. Apart from such computational issues, we have developed methods using available computer resources to enhance the information that can be extracted from a cavities? wakefield computed in time domain. In particular this is helpful for a careful assessment of the extracted RF power and the mitigation of potential beam break-up or emittance diluting effects, a figure of merit for the cavity performance. The method is described as well as an example of its implementation.

  19. How the Inductive Voltage Adder (IVA) output impedance affects impedance dynamics of a Self-Magnetic Pinch (SMP) diode

    NASA Astrophysics Data System (ADS)

    Renk, Timothy; Simpson, Sean; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark

    2016-10-01

    The SMP diode, fielded on the RITS-6 (3.5-8.5 MV) IVA accelerator at Sandia National Laboratories, produces a focused electron beam (<3mm diameter) onto a high Z metal converter for flash x-ray applications. Experiments have been undertaken with two different magnetically insulated transmission line (MITL) center conductors, of 40 and 80 ohms flow impedance. We have operated in-situ heating and discharge-cleaning hardware in the load region, in order to address the tendency of some shots to undergo premature impedance (Z) collapse, defined as a fall in impedance beyond that due to normal movement of electrode plasmas that reduces the effective A-K gap. The goal of heating/cleaning was to reduce the volume of evolving gases near the A-K gap. Despite clear evidence that the cleaning techniques removed the proton portion of beam current, we observed no consistent increase in diode impedance (ZDIODE). This forced an examination of the role that the IVA flow impedance has on ZDIODE. A preliminary conclusion is that ZDIODE should be at least 1.5 times the flow impedance before ZDIODE is a parameter independent of flow impedance. This has implications for SMP as a load for a IVA, since ZDIODE >100 ohms has not been consistently demonstrated. Data analysis is ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Impedance-estimation methods, modeling methods, articles of manufacture, impedance-modeling devices, and estimated-impedance monitoring systems

    SciTech Connect

    Richardson, John G.

    2009-11-17

    An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.

  1. I/O impedance controller

    DOEpatents

    Ruesch, Rodney; Jenkins, Philip N.; Ma, Nan

    2004-03-09

    There is disclosed apparatus and apparatus for impedance control to provide for controlling the impedance of a communication circuit using an all-digital impedance control circuit wherein one or more control bits are used to tune the output impedance. In one example embodiment, the impedance control circuit is fabricated using circuit components found in a standard macro library of a computer aided design system. According to another example embodiment, there is provided a control for an output driver on an integrated circuit ("IC") device to provide for forming a resistor divider network with the output driver and a resistor off the IC device so that the divider network produces an output voltage, comparing the output voltage of the divider network with a reference voltage, and adjusting the output impedance of the output driver to attempt to match the output voltage of the divider network and the reference voltage. Also disclosed is over-sampling the divider network voltage, storing the results of the over sampling, repeating the over-sampling and storing, averaging the results of multiple over sampling operations, controlling the impedance with a plurality of bits forming a word, and updating the value of the word by only one least significant bit at a time.

  2. GB-R impedances: new approach to impedance simulation

    NASA Astrophysics Data System (ADS)

    Serrano, L.; Carlosena, A.

    1995-04-01

    A new design procedure is presented for obtaining simulated inductors and large capacitors from classical opamp circuits. Such impedances exploit almost all of the available bandwidth of the operational amplifier.

  3. Structural and impedance spectroscopy properties of La0.8Ba0.1Ca0.1Mn1-xRuxO3 perovskites

    NASA Astrophysics Data System (ADS)

    Chebaane, M.; Talbi, N.; Dhahri, A.; Oumezzine, M.; Khirouni, K.

    2017-03-01

    Polycrystalline samples La0.8Ba0.1Ca0.1Mn1-xRuxO3 (x=0 and 0.075) were prepared by sol-gel-based Pechini method. The X ray diffraction study has shown that all the samples exhibit a single phase with rhombohedral structure (space group R 3 ̅c, no. 167). The complex impedance has been investigated in the temperature range 160-320 K and in the frequency range 40 Hz-1 MHz. The imaginary part of the complex impedance (Z‧‧) frequency dependence revealed one relaxation peak. The Cole-Cole plots of the impedance values exhibited a semi -circular arc that can be described by an R1+(R2//ZCPE) electrical equivalent circuit. The conductance spectra have been investigated by the Jonscher universal power law: G(ω)=GDC+Aωn, where ω is the frequency of the ac field, and n is the exponent. The activation energy obtained both from the conductance and from time relaxation analyses are very similar, and hence the relaxation process may be attributed to the same type of charge carriers.

  4. ACS from development to operations

    NASA Astrophysics Data System (ADS)

    Caproni, Alessandro; Colomer, Pau; Jeram, Bogdan; Sommer, Heiko; Chiozzi, Gianluca; Mañas, Miguel M.

    2016-08-01

    The ALMA Common Software (ACS), provides the infrastructure of the distributed software system of ALMA and other projects. ACS, built on top of CORBA and Data Distribution Service (DDS) middleware, is based on a Component- Container paradigm and hides the complexity of the middleware allowing the developer to focus on domain specific issues. The transition of the ALMA observatory from construction to operations brings with it that ACS effort focuses primarily on scalability, stability and robustness rather than on new features. The transition came together with a shorter release cycle and a more extensive testing. For scalability, the most problematic area has been the CORBA notification service, used to implement the publisher subscriber pattern because of the asynchronous nature of the paradigm: a lot of effort has been spent to improve its stability and recovery from run time errors. The original bulk data mechanism, implemented using the CORBA Audio/Video Streaming Service, showed its limitations and has been replaced with a more performant and scalable DDS implementation. Operational needs showed soon the difference between releases cycles for Online software (i.e. used during observations) and Offline software, which requires much more frequent releases. This paper attempts to describe the impact the transition from construction to operations had on ACS, the solution adopted so far and a look into future evolution.

  5. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  6. Electrochemical impedance spectroscopy of tethered bilayer membranes.

    PubMed

    Valincius, Gintaras; Meškauskas, Tadas; Ivanauskas, Feliksas

    2012-01-10

    The electrochemical impedance spectra (EIS) of tethered bilayer membranes (tBLMs) were analyzed, and the analytical solution for the spectral response of membranes containing natural or artificially introduced defects was derived. The analysis carried out in this work shows that the EIS features of an individual membrane defect cannot be modeled by conventional electrical elements. The primary reason for this is the complex nature of impedance of the submembrane ionic reservoir separating the phospholipid layer and the solid support. We demonstrate that its EIS response, in the case of radially symmetric defects, is described by the Hankel functions of a complex variable. Therefore, neither the impedance of the submembrane reservoir nor the total impedance of tBLMs can be modeled using the conventional elements of the equivalent electrical circuits of interfaces. There are, however, some limiting cases in which the complexity of the EIS response of the submembrane space reduces. In the high frequency limit, the EIS response of a submembrane space that surrounds the defect transforms into a response of a constant phase element (CPE) with the exponent (α) value of 0.5. The onset of this transformation is, beside other parameters, dependent on the defect size. Large-sized defects push the frequency limit lower, therefore, the EIS spectra exhibiting CPE behavior with α ≈ 0.5, can serve as a diagnostic criterion for the presence of such defects. In the low frequency limit, the response is dependent on the density of the defects, and it transforms into the capacitive impedance if the area occupied by a defect is finite. The higher the defect density, the higher the frequency edge at which the onset of the capacitive behavior is observed. Consequently, the presented analysis provides practical tools to evaluate the defect density in tBLMs, which could be utilized in tBLM-based biosensor applications. Alternatively, if the parameters of the defects, e.g., ion channels

  7. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  8. Acoustic impedance testing for aeroacoustic applications

    NASA Astrophysics Data System (ADS)

    Schultz, Todd

    Accurate acoustic propagation models are required to characterize and subsequently reduce aircraft engine noise. These models ultimately rely on acoustic impedance measurements of candidate materials used in sound-absorbing liners. The standard two-microphone method (TMM) is widely used to estimate acoustic impedance but is limited in frequency range and does not provide uncertainty estimates, which are essential for data quality assessment and model validation. This dissertation presents a systematic framework to estimate uncertainty and extend the frequency range of acoustic impedance testing. Uncertainty estimation for acoustic impedance data using the TMM is made via two methods. The first employs a standard analytical technique based on linear perturbations and provides useful scaling information. The second uses a Monte Carlo technique that permits the propagation of arbitrarily large uncertainties. Both methods are applied to the TMM for simulated data representative of sound-hard and sound-soft acoustic materials. The results indicate that the analytical technique can lead to false conclusions about the magnitude and importance of specific error sources. Furthermore, the uncertainty in acoustic impedance is strongly dependent on the frequency and the uncertainty in the microphone locations. Next, an increased frequency range of acoustic impedance testing is investigated via two methods. The first method reduces the size of the test specimen (from 25.4 mm square to 8.5 mm square) and uses the standard TMM. This method has issues concerning specimen nonuniformity because the small specimens may not be representative of the material. The second method increases the duct cross section and, hence, the required complexity of the sound field propagation model. A comparison among all three methods is conducted for each of the three specimens: two different ceramic tubular specimens and a single degree-of-freedom liner. The results show good agreement between the

  9. Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges.

    PubMed

    Radhakrishnan, Rajeswaran; Suni, Ian I; Bever, Candace S; Hammock, Bruce D

    2014-07-07

    Due to their all-electrical nature, impedance biosensors have significant potential for use as simple and portable sensors for environmental studies and environmental monitoring. Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/mL for norfluoxetine and BDE-47, respectively. Although impedance biosensors have been widely studied in the academic literature, commercial applications have been hindered by several technical limitations, including possible limitations to small analytes, the complexity of impedance detection, susceptibility to nonspecific adsorption, and stability of biomolecule immobilization. Recent research into methods to overcome these obstacles is briefly reviewed. New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a 30 day trial.

  10. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.

    PubMed

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  11. Manipulating Acoustic Wavefront by Inhomogeneous Impedance and Steerable Extraordinary Reflection

    PubMed Central

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators. PMID:23985717

  12. Impedance Biosensors: Applications to Sustainability and Remaining Technical Challenges

    PubMed Central

    2015-01-01

    Due to their all-electrical nature, impedance biosensors have significant potential for use as simple and portable sensors for environmental studies and environmental monitoring. Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/mL for norfluoxetine and BDE-47, respectively. Although impedance biosensors have been widely studied in the academic literature, commercial applications have been hindered by several technical limitations, including possible limitations to small analytes, the complexity of impedance detection, susceptibility to nonspecific adsorption, and stability of biomolecule immobilization. Recent research into methods to overcome these obstacles is briefly reviewed. New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a 30 day trial. PMID:25068095

  13. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  14. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design.

    PubMed

    Yang, Kai; Wu, Jie

    2008-04-04

    Orthogonal electrodes have been reported to produce high velocity microflows when excited by ac signals, showing potential for micropumping applications. This paper investigates the microflow reversal phenomena in such orthogonal electrode micropumps. Three types of microflow fields were observed by changing the applied electric signals. Three ac electrokinetic processes, capacitive electrode polarization, Faradaic polarization, and the ac electrothermal effect, are proposed to explain the different flow patterns, respectively. The hypotheses were corroborated by impedance analysis, numerical simulations, and velocity measurements. The investigation of microflow reversal can improve the understanding of ac electrokinetics and hence effectively manipulate fluids.

  15. [Monitoring cervical dilatation by impedance].

    PubMed

    Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F

    1992-01-01

    Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method.

  16. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  17. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  18. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  19. Uncertainties in Transfer Impedance Calculations

    NASA Astrophysics Data System (ADS)

    Schippers, H.; Verpoorte, J.

    2016-05-01

    The shielding effectiveness of metal braids of cables is governed by the geometry and the materials of the braid. The shielding effectiveness can be characterised by the transfer impedance of the metal braid. Analytical models for the transfer impedance contain in general two components, one representing diffusion of electromagnetic energy through the metal braid, and a second part representing leakage of magnetic fields through the braid. Possible sources of uncertainties in the modelling are inaccurate input data (for instance, the exact size of the braid diameter or wire diameter are not known) and imperfections in the computational model. The aim of the present paper is to estimate effects of variations of input data on the calculated transfer impedance.

  20. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.

    PubMed

    Ameri, Shideh Kabiri; Singh, Pramod K; Dokmeci, Mehmet R; Khademhosseini, Ali; Xu, Qiaobing; Sonkusale, Sameer R

    2014-04-15

    We present a portable lab-on-chip device for high-throughput trapping and lysis of single cells with in-situ impedance monitoring in an all-electronic approach. The lab-on-chip device consists of microwell arrays between transparent conducting electrodes within a microfluidic channel to deliver and extract cells using alternating current (AC) dielectrophoresis. Cells are lysed with high efficiency using direct current (DC) electric fields between the electrodes. Results are presented for trapping and lysis of human red blood cells. Impedance spectroscopy is used to estimate the percentage of filled wells with cells and to monitor lysis. The results show impedance between electrodes decreases with increase in the percentage of filled wells with cells and drops to a minimum after lysis. Impedance monitoring provides a reasonably accurate measurement of cell trapping and lysis. Utilizing an all-electronic approach eliminates the need for bulky optical components and cameras for monitoring.

  1. Correcting electrode impedance effects in broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry

    2016-04-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference <0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  2. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells. I. Cross Validation of Polarization Measurements by Impedance Spectroscopy and Current-Potential Sweep

    SciTech Connect

    Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.

    2009-12-09

    The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.

  3. Complexity.

    PubMed

    Gómez-Hernández, J Jaime

    2006-01-01

    It is difficult to define complexity in modeling. Complexity is often associated with uncertainty since modeling uncertainty is an intrinsically difficult task. However, modeling uncertainty does not require, necessarily, complex models, in the sense of a model requiring an unmanageable number of degrees of freedom to characterize the aquifer. The relationship between complexity, uncertainty, heterogeneity, and stochastic modeling is not simple. Aquifer models should be able to quantify the uncertainty of their predictions, which can be done using stochastic models that produce heterogeneous realizations of aquifer parameters. This is the type of complexity addressed in this article.

  4. Characteristic impedance of microstrip lines

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Deshpande, M. D.

    1989-01-01

    The dyadic Green's function for a current embedded in a grounded dielectric slab is used to analyze microstrip lines at millimeter wave frequencies. The dyadic Green's function accounts accurately for fringing fields and dielectric cover over the microstrip line. Using Rumsey's reaction concept, an expression for the characteristic impedance is obtained. The numerical results are compared with other reported results.

  5. Acoustic Ground-Impedance Meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  6. Calibration of electrical impedance tomography

    SciTech Connect

    Daily, W; Ramirez, A

    2000-05-01

    Over the past 10 years we have developed methods for imaging the electrical resistivity of soil and rock formations. These technologies have been called electrical resistance tomography of ERT (e.g. Daily and Owen, 1991). Recently we have been striving to extend this capability to include images of electric impedance--with a new nomenclature of electrical impedance tomography or EIT (Ramirez et al., 1999). Electrical impedance is simply a generalization of resistance. Whereas resistance is the zero frequency ratio of voltage and current, impedance includes both the magnitude and phase relationship between voltage and current at frequency. This phase and its frequency behavior is closely related to what in geophysics is called induced polarization or (Sumner, 1976). Why is this phase or IP important? IP is known to be related to many physical phenomena of importance so that image of IP will be maps of such things as mineralization and cation exchange IP (Marshall and Madden, 1959). Also, it is likely that IP, used in conjunction with resistivity, will yield information about the subsurface that can not be obtained by either piece of information separately. In order to define the accuracy of our technologies to image impedance we have constructed a physical model of known impedance that can be used as a calibration standard. It consists of 616 resistors, along with some capacitors to provide the reactive response, arranged in a three dimensional structure as in figure 1. Figure 2 shows the construction of the network and defines the coordinate system used to describe it. This network of components is a bounded and discrete version of the unbounded and continuous medium with which we normally work (the subsurface). The network has several desirable qualities: (1) The impedance values are known (to the accuracy of the component values). (2) The component values and their 3D distribution is easily controlled. (3) Error associated with electrode noise is eliminated. (4

  7. Measuring impedance in congestive heart failure: Current options and clinical applications

    PubMed Central

    Tang, W. H. Wilson; Tong, Wilson

    2011-01-01

    Measurement of impedance is becoming increasingly available in the clinical setting as a tool for assessing hemodynamics and volume status in patients with heart failure. The 2 major categories of impedance assessment are the band electrode method and the implanted device lead method. The exact sources of the impedance signal are complex and can be influenced by physiologic effects such as blood volume, fluid, and positioning. This article provides a critical review of our current understanding and promises of impedance measurements, the techniques that have evolved, as well as the evidence and limitations regarding their clinical applications in the setting of heart failure management. PMID:19249408

  8. A Monte Carlo simulation of range for an invasive impedance respiration monitor.

    PubMed

    Valenta, H L; Fischer, S K

    1990-01-01

    One method of rate responsive pacing utilizes an analog of minute ventilation as the input to the rate control algorithm. A measure of the intravenous impedance along the pacing catheter is a convenient means of determining minute ventilation. Design of the impedance converter requires a knowledge of the range of DC and AC impedance signals. During normal and deep breathing, 116 AC measurements were taken from 34 Electrophysiology (EP) patients and 31 DC measurements were taken from 13 EP patients. The patient data produced skewed distributions with a normal AC mean of 0.45 +/- 0.40 ohms p-p, a deep AC mean of 2.0 +/- 1.6 ohms and a DC mean of 44 +/- 13 ohms. An eight variable static model was derived from prior work. Five of the physiological variables were chosen from established clinical ranges, one geometrical variable was chosen from prior work and two were selected by matching the statistics of a Monte Carlo analysis of the model with the statistics of the patient data. The blood resistivity was obtained from prior work. A simulation of 1000 measurements produced a normal breathing range of 0 to 2.24 ohms, a deep breathing range of 0 to 9.6 ohms and a DC range of 19 to 100 ohms.

  9. Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells

    SciTech Connect

    Krause, Sabine; Hinderlich, Stephan; Amsili, Shira; Horstkorte, Ruediger; Wiendl, Heinz; Argov, Zohar; Mitrani-Rosenbaum, Stella; Lochmueller, Hanns . E-mail: hanns@lmb.uni-muenchen.de

    2005-04-01

    The bifunctional enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) is essential for early embryonic development and catalyzes the rate limiting step in sialic acid biosynthesis. Although epimerase and kinase activities have been attributed to GNE, little is known about the regulation, differential expression, and subcellular localization of GNE in vivo. Mutations in GNE cause a rare inherited muscle disorder in humans called hereditary inclusion body myopathy (HIBM). However, the role of GNE in HIBM pathogenesis has not been defined yet. Here, we show that the GNE protein is expressed in various mammalian cells and tissues with highest levels found in cancer cells and liver. In human skeletal muscle, GNE protein is developmentally regulated: high levels are found in immature myoblasts but low levels in mature skeletal muscle. The GNE protein colocalizes with resident proteins of the Golgi compartment in a variety of human cells including muscle. Drug-induced disruption of the Golgi and subsequent recovery reveals co-distribution of GNE along with Golgi-targeted proteins. This subcellular localization of GNE is in good agreement with its established role as the key enzyme of sialic acid biosynthesis, since the sialylation of glycoconjugates takes place in the Golgi complex. Surprisingly, GNE is also detected in the nucleus. Upon nocodazole treatment, GNE redistributes to the cytoplasm suggesting that GNE may act as a nucleocytoplasmic shuttling protein. A regulatory role for GNE shifting between the nuclear and the Golgi compartment is proposed. Further insight into GNE regulation may promote the understanding of HIBM pathogenesis.

  10. Evaluation for Electrochemical Impedance Measurement of Carbon Nanotube Taste Sensor

    NASA Astrophysics Data System (ADS)

    Takeda, Naoki; Hirata, Takamichi; Akiya, Masahiro

    In our laboratory, a nano-bio taste sensor based on carbon nanotubes has been developed. However, previous technique cannot separate elements such as CNT random network or electrode surface etc., because of sensor impedance change in fixed frequency. Electrochemical impedance spectroscopy (EIS) revealed CNT taste sensor with two R/C parallel circuits. Experimental complex plane plots were reproduced using a computer simulation program based upon the lumped equivalent circuit approach. It was found that the sensor has two relaxation times, and also that these circuits consist of two elements such as electrode surface and CNT random network.

  11. Efficient Simultaneous Reconstruction of Time-Varying Images and Electrode Contact Impedances in Electrical Impedance Tomography

    PubMed Central

    Boverman, Gregory; Isaacson, David; Newell, Jonathan C.; Saulnier, Gary J.; Kao, Tzu-Jen; Amm, Bruce C.; Wang, Xin; Davenport, David M.; Chong, David H.; Sahni, Rakesh; Ashe, Jeffrey M.

    2016-01-01

    In Electrical Impedance Tomography (EIT), we apply patterns of currents on a set of electrodes at the external boundary of an object, measure the resulting potentials at the electrodes, and, given the aggregate data set, reconstruct the complex conductivity and permittivity within the object. It is possible to maximize sensitivity to internal conductivity changes by simultaneously applying currents and measuring potentials on all electrodes but this approach also maximizes sensitivity to changes in impedance at the interface. We have therefore developed algorithms to assess contact impedance changes at the interface as well as to efficiently and simultaneously reconstruct internal conductivity/permittivity changes within the body. We use simple linear algebraic manipulations, the generalized SVD, and a dual-mesh finite-element-based framework to reconstruct images in real time. We are also able to efficiently compute the linearized reconstruction for a wide range of regularization parameters and to compute both the Generalized Cross-Validation (GCV) parameter as well as the L-curve, objective approaches to determining the optimal regularization parameter, in a similarly efficient manner. Results are shown using data from a normal subject and from a clinical ICU patient, both acquired with the GE GENESIS prototype EIT system, demonstrating significantly reduced boundary artifacts due to electrode drift and motion artifact. PMID:27295649

  12. Copper Phthalocyanine Thin Film Morphology Impact on Impedance Spectrum

    NASA Astrophysics Data System (ADS)

    Robinson, Kyle; Gredig, Thomas

    2012-11-01

    Copper phthlacyanine thin films play an important role as the active layer in gas sensors, organic solar cells, and organic field-effect transistors. The surface morphology of such thin films can be controlled via modification of thermal deposition parameters. Thin films were deposited onto platinum interdigitated electrodes for impedance measurements to study the effect of structure on charge transport. The average grain size increases and changes from α- and β-phase for samples deposited in the temperature range of 295-534 K. AC measurements in the temperature range of 295-385 K reveal relaxation peaks in the impedance spectra. From this spectrum, essential properties are retrieved, such as relaxation times and effective capacities, and correlated with the film morphology. Subject to both photo- and 5-day-dark current trials, photodecay rates are extracted via effective impedance circuit analysis using a phenomenological model that includes contributions from the grain boundary and the bulk part of the grain. Results indicate that the resistance contribution of low frequency relaxation peaks decrease while approaching the phase transition temperature, and vice versa for capacitance. We attribute the low-frequency peaks to grain boundaries, which are reduced in high temperature deposited samples. Hyper β-phase deposition temperatures show a sudden rise in resistance and lower capacitance due to increased roughness of samples.

  13. The AC (Alternating Current) Electrical Behavior of Multi-layered Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Budak, Satilmis; Bhattacharjee, Sudip

    2016-11-01

    In this study the ac (alternating current) small-signal electrical data in the frequency range 5 Hz ≤ f ≤ 13 MHz are obtained for the multi-layered thermoelectric (TE) devices to extract underlying operative mechanisms via an equivalent circuit model. This model is developed from the complex plane plots in conjunction with the Bode plot. It is observed that the inductive behavior is prevalent for both unbombarded and bombarded TE devices regardless of the doses as both types are observed as somewhat weak in thermoelectric properties. The bombarded multi-layered devices followed a systematic pattern in ac behavior via semicircular relaxation both in the impedance and admittance planes for the same measured data. This pattern is attributed to the transition from one lumped behavior to two distinct mechanisms. It is observed that the conductive nature of the equivalent circuit model via non-blocking (non-capacitive) elements, attributed to the underlying operative electrical paths between the two opposite electrodes across the multi-layered device exists, satisfying direct current conditions of the equivalent circuit model. The inductive behavior at high frequencies originates from the conductive aspect of the lumped response of the device in addition to the contribution of the electrode leads. Thus, the proposed equivalent circuit model contains external inductance that verifies a meaningful representation of the multi-layered TE device, though weak in thermoelectric properties.

  14. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  15. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  16. Microfluidic impedance cytometry of tumour cells in blood

    PubMed Central

    Spencer, Daniel; Morgan, Hywel

    2014-01-01

    The dielectric properties of tumour cells are known to differ from normal blood cells, and this difference can be exploited for label-free separation of cells. Conventional measurement techniques are slow and cannot identify rare circulating tumour cells (CTCs) in a realistic timeframe. We use high throughput single cell microfluidic impedance cytometry to measure the dielectric properties of the MCF7 tumour cell line (representative of CTCs), both as pure populations and mixed with whole blood. The data show that the MCF7 cells have a large membrane capacitance and size, enabling clear discrimination from all other leukocytes. Impedance analysis is used to follow changes in cell viability when cells are kept in suspension, a process which can be understood from modelling time-dependent changes in the dielectric properties (predominantly membrane conductivity) of the cells. Impedance cytometry is used to enumerate low numbers of MCF7 cells spiked into whole blood. Chemical lysis is commonly used to remove the abundant erythrocytes, and it is shown that this process does not alter the MCF7 cell count or change their dielectric properties. Combining impedance cytometry with magnetic bead based antibody enrichment enables MCF7 cells to be detected down to 100 MCF7 cells in 1 ml whole blood, a log 3.5 enrichment and a mean recovery of 92%. Microfluidic impedance cytometry could be easily integrated within complex cell separation systems for identification and enumeration of specific cell types, providing a fast in-line single cell characterisation method. PMID:25553198

  17. Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa.

    PubMed

    González, César A; Villanueva, Cleva; Othman, Salah; Narváez, Raúl; Sacristán, Emilio

    2003-05-01

    This work evaluates the feasibility of monitoring ischemic injury in the gastrointestinal mucosa by impedance spectroscopy, using a minimally invasive intestinal catheter. The disruption of the intestinal mucosa plays a key role in the evolution of shock and is the 'motor of multiple organ failure'. Different technologies have been developed to monitor mucosal perfusion, oxygenation and/or ischemia, but no practical method exists to assess tissue damage, which may be crucial for preventing multiple organ failure. The experimental protocol of this study relied on an isobaric model of hypovolemic shock in 16 anaesthetized rabbits assigned to three groups: sham (n = 6), ischemia (n = 5) and ischemia + reperfusion (n = 5). Complex impedance spectra were recorded in the range of 0.05 to 300 kHz, with simultaneous measurements of tonometric pHi in the ileum every 30 min for 4 h. Impedance spectra were reproducible, and those of tissue under prolonged ischemia were clearly differentiable from those of normally perfused tissue. The dynamic changes in impedance did not correlate directly with either tissue perfusion or pHi, but instead correlated well with the duration of ischemia. It is concluded that impedance spectroscopy does indeed measure changes in tissue injury, and could be a very useful tool to guide therapy of patients in shock.

  18. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  19. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  20. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  1. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  2. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  3. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  4. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  5. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  6. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  7. 21 CFR 870.2750 - Impedance phlebograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance phlebograph. 870.2750 Section 870.2750...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2750 Impedance phlebograph. (a) Identification. An impedance phlebograph is a device used to provide a visual display of...

  8. 21 CFR 870.2770 - Impedance plethysmograph.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Impedance plethysmograph. 870.2770 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2770 Impedance plethysmograph. (a) Identification. An impedance plethysmograph is a device used to estimate peripheral...

  9. Impedance analysis of acupuncture points and pathways

    NASA Astrophysics Data System (ADS)

    Teplan, Michal; Kukučka, Marek; Ondrejkovičová, Alena

    2011-12-01

    Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.

  10. Tapping mode microwave impedance microscopy

    SciTech Connect

    Lai, K.

    2010-02-24

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results.

  11. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  12. Impedance microflow cytometry for viability studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit

    2011-02-01

    Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.

  13. Role of electro-osmosis in the impedance response of microchannel-nanochannel interfaces

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Yossifon, Gilad

    2012-11-01

    The influence of net fluid flow on the low-frequency ac response of a microchannel-nanochannel interface under dc bias is studied theoretically using a simple 1D model based on the Poisson-Nernst-Planck-Stokes equations. The model describes cross-sectional averaged transport wherein the electro-osmotic flow is controlled by the magnitude of the dc bias and captures essential features of the problem related to the micro-nano interface, specifically geometric focusing effects and nanochannel control of the net fluid flow. This model predicts behavior which differs from that predicted by a purely electrodiffusive formulation. The high-frequency edge of the Warburg branch of the complex impedance plot has a slope which deviates from the π/4 Warburg value, decreasing with increasing bias, and there are corresponding changes in the overall phase as seen in the Bode plots. This can be attributed to a streaming contribution to the capacitive reactance of the device as well an increase in the conductance of the depleted region, both due to net fluid flow. The increase in conductance, corresponding to reduced interfacial depletion, also permits dc currents above the classical electrodiffusive limit.

  14. Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F. (Inventor)

    1994-01-01

    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.

  15. Impedance analysis of K2Pb2X2W2Ti4Nb4O30 (X = Nd, Y) tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Padhee, R.; Das, Piyush R.; Parida, B. N.; Choudhary, R. N. P.

    2014-04-01

    This paper highlights the electrical properties of two new complex tungsten bonze ceramics (K2Pb2Nd2W2Ti4Nb4O30 and K2Pb2Y2W2Ti4Nb4O30) that were prepared by using the high — temperature mixed — oxide method. The variations of impedance parameters with temperature (27-500 °C) and frequency (1-5 MHz) showed the grain and the grain — boundary effects in the samples. The variations of the dielectric parameters with frequency were also studied. The variation of the ac conductivity with temperature clearly showed that the materials exhibited thermally — activated transport properties of an Arrhenius type.

  16. ACS CCDs daily monitor

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco

    2006-07-01

    This program consists of a set of basic tests to monitor, the read noise, thedevelopment of hot pixels and test for any source of noise in ACS CCDdetectors. The files, biases and dark will be used to create referencefiles for science calibration. This programme will be for the entire lifetime of ACS.For cycle 15 the program will cover 18 months 12.1.06->05.31.08and it has been divied into three different proposal each covering six months.The three poroposal are 11041-11042-11043.

  17. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  18. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  19. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  20. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.

  1. ac electroosmosis in rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-01

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Hückel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.

  2. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  3. Potentiodynamic electrochemical impedance spectroscopy of silver on platinum in underpotential and overpotential deposition

    NASA Astrophysics Data System (ADS)

    Ragoisha, Genady A.; Bondarenko, Alexander S.

    2004-09-01

    Simultaneous monitoring of ac and dc responses of the electrode-electrolyte interface with potentiodynamic electrochemical impedance spectroscopy (PDEIS) in silver underpotential and overpotential deposition on platinum has confirmed the role of intrinsic Pt surface changes in the irreversibility of Ag underpotential deposition and disclosed exceptionally high stability of Ag monolayer on Pt. PDEIS has been demonstrated to be a convenient means for wet surface chemistry monitoring.

  4. [Synthesis, characterization and NIR luminescence properties of erbium organic complexes].

    PubMed

    Wang, Huai-shan; Qian, Guo-dong; Wang, Min-quan; Luo, Yong-shi; Lin, Jiu-ling

    2005-03-01

    Several erbium organic complexes, hydrated erbium binary complexes with acetylacetone (AcAc) or dibenzoylmethane (DBM), erbium ternary complexes derived from 1,10-phenanthroline (Phen) with acetylacetone (AcAc), dibenzoylmethane (DBM) or trifluoroacetylacetone (TFA), were synthesized and identified by elemental analysis. The UV-Vis absorption and FTIR spectra measurements have been employed for all the erbium complexes. Near infrared (NIR) photoluminescence properties, such as luminescence intensity and effective bandwidth, of the erbium complexes were also studied. As a result, the erbium ternary complex with AcAc and Phen exhibits the most excellent luminescence properties among those investigated complexes.

  5. Impedance spectroscopy of food mycotoxins

    NASA Astrophysics Data System (ADS)

    Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.

    2012-01-01

    A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.

  6. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  7. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2005-01-17

    This project aimed at developing a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GTI. GTI proposed to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or non-metallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment

  8. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2002-08-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD

  9. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2003-10-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  10. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba

    2004-02-01

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  11. DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION

    SciTech Connect

    Maximillian J. Kieba; Christopher J. Ziolkowski

    2004-06-30

    This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a simple sensor incorporated into the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD equipment. Imaging

  12. Bioelectrical impedance analysis as a laboratory activity: At the interface of physics and the body

    NASA Astrophysics Data System (ADS)

    Mylott, Elliot; Kutschera, Ellynne; Widenhorn, Ralf

    2014-05-01

    We present a novel laboratory activity on RC circuits aimed at introductory physics students in life-science majors. The activity teaches principles of RC circuits by connecting ac-circuit concepts to bioelectrical impedance analysis (BIA) using a custom-designed educational BIA device. The activity shows how a BIA device works and how current, voltage, and impedance measurements relate to bioelectrical characteristics of the human body. From this, useful observations can be made including body water, fat-free mass, and body fat percentage. The laboratory is engaging to pre-health and life-science students, as well as engineering students who are given the opportunity to observe electrical components and construction of a commonly used biomedical device. Electrical concepts investigated include alternating current, electrical potential, resistance, capacitance, impedance, frequency, phase shift, device design, and the use of such topics in biomedical analysis.

  13. Electrochemical impedance spectroscopy of metal alloys in the space transportation system launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz

    1990-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 18 alloys under conditions similar to the Space Transportation System (STS) launch environment. The alloys were: (1) zirconium 702; (2) Hastelloy C-22, C-276, C-4, and B-2; (3) Inconel 600 and 825; (4) Ferralium 255; (5) Inco Alloy G-3; (6) 20Cb-3; (7) SS 904L, 304LN, 316L, 317L, and 304L; (8) ES 2205; and (9) Monel 400. AC impedance data were gathered for each alloy at various immersion times in 3.55 percent NaCl-0.1N HCl. Polarization resistance values were obtained for the Nyguist plots at each immersion time using the EQUIVALENT CIRCUIT software package available with the 388 electrochemical impedance software. Hastelloy C-22 showed the highest overall values for polarization resistance while Monel 400 and Inconel 600 had the lowest overall values. There was good general correlation between the corrosion performance of the alloys at the beach corrosion testing site, and the expected rate of corrosion as predicted based on the polarization resistance values obtained. The data indicate that electrochemical impedance spectroscopy can be used to predict the corrosion performance of metal alloys.

  14. Investigation of the inhibiting action of O-, S- and N-dithiocarbamato(1,4,8,11-tetraazacyclotetradecane)cobalt(III) complexes on the corrosion of iron in HClO 4 acid

    NASA Astrophysics Data System (ADS)

    Babić-Samardžija, K.; Khaled, K. F.; Hackerman, N.

    2005-02-01

    The inhibiting properties of four macrocyclic cobalt(III) complexes of the general formula [Co III(Rdtc)cyclam](ClO 4) 2, where cyclam and Rdtc- refer to 1,4,8,11-tetraazacyclotetradecane and morpholine-, thiomorpholine-, piperazine-, N-methylpiperazine-dithiocarbamates, respectively, has been studied on the corrosion of iron in aerated 0.1 M HClO 4 solutions by potentiodynamic polarization (dc) technique and electrochemical impedance spectroscopy (ac). Inhibitor efficiency for the corrosion of iron is found to be better for cobalt complexes then for related amino-ligands. The impedance increases with inhibitor concentration. Polarization curves indicate that the inhibitors are predominantly mixed-type. Better protection by the complex inhibitors was obtained with longer immersion time. The best fit for inhibitors adsorption is obtained using the Langmuir isotherm model. Molecular modeling calculations were used to correlate structural properties of the complex species and their inhibition efficiency.

  15. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  16. A Computer Aided Broad Band Impedance Matching Technique Using a Comparison Reflectometer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gordy, R. S.

    1972-01-01

    An improved broadband impedance matching technique was developed. The technique is capable of resolving points in the waveguide which generate reflected energy. A version of the comparison reflectometer was developed and fabricated to determine the mean amplitude of the reflection coefficient excited at points in the guide as a function of distance, and the complex reflection coefficient of a specific discontinuity in the guide as a function of frequency. An impedance matching computer program was developed which is capable of impedance matching the characteristics of each disturbance independent of other reflections in the guide. The characteristics of four standard matching elements were compiled, and their associated curves of reflection coefficient and shunt susceptance as a function of frequency are presented. It is concluded that an economical, fast, and reliable impedance matching technique has been established which can provide broadband impedance matches.

  17. Josephson-based full digital bridge for high-accuracy impedance comparisons

    NASA Astrophysics Data System (ADS)

    Overney, Frédéric; Flowers-Jacobs, Nathan E.; Jeanneret, Blaise; Rüfenacht, Alain; Fox, Anna E.; Underwood, Jason M.; Koffman, Andrew D.; Benz, Samuel P.

    2016-08-01

    This paper describes a Josephson-based full digital impedance bridge capable of comparing any two impedances, regardless of type (R-C, R-L, or L-C), over a large frequency range (from 1 kHz to 20 kHz). At the heart of the bridge are two Josephson arbitrary waveform synthesizer systems that offer unprecedented flexibility in high-precision impedance calibration, that is, it can compare impedances with arbitrary ratios and phase angles. Thus this single bridge can fully cover the entire complex plane. In the near future, this type of instrument will considerably simplify the realization and maintenance of the various impedance scales in many National Metrology Institutes around the world. Contribution of the National Institute of Standards and Technology, US Department of Commerce, not subject to copyright in the United States.

  18. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  19. Focused impedance measurement (FIM). A new technique with improved zone localization.

    PubMed

    Rabbani, K S; Sarker, M; Akond, M H; Akter, T

    1999-04-20

    Conventional four-electrode impedance measurements (FEIM) cannot localize a zone of interest in a volume conductor. On the other hand, the recently developed electrical impedance tomography (EIT) system offers an image with reasonable resolution, but is complex and needs many electrodes. By placing two FEIM systems perpendicular to each other over a common zone at the center and combining the two results, it is possible to obtain enhanced sensitivity over this central zone. This is the basis of the proposed new method of focused impedance measurement (FIM). Sensitivity maps in both 2D and 3D show the desired improvement. A comparison of stomach-emptying studies also indicates the improvement achieved. This new method may be useful for impedance measurements of large organs like stomach, heart, and lungs. Being much simpler in comparison to EIT, multifrequency systems can be simply built for FIM. Besides, FIM may have utility in other fields like geology where impedance measurements are performed.

  20. Nested Sphere Model for SQUID-based Impedance Magnetocardiography

    NASA Astrophysics Data System (ADS)

    Vajrala, Vijayanand; Nawarathna, Dharmakeerthi; Claycomb, James; Miller, John

    2004-03-01

    An axisymmetric FEM model is used to predict the SQUID response to changes in tissue conductivity and blood volume during the cardiac cycle. The heart is modeled as a nested sphere inside a cylindrical conducting thorax. The current density and resulting magnetic field is calculated during end systolic, end diastolic and diastolic phases. Modeling results are compared to Impedance Magnetocardiography (IMCG) measurements made using a High-Tc SQUID magnetometer in an unshielded environment .In this measurements, a low amplitude ac current is passed through the body through outer electrodes. Variations in blood flow during the cardiac cycle perturb currents that give rise to time varying magnetic fields amplitudes. Applications to inductive IMCG will be discussed.

  1. Electrical Impedance Tomography of Breast Cancer

    DTIC Science & Technology

    2005-06-01

    SUBJECT TERMS Diagnosis of Metastatic Cancer, Magnetic Resonance Imaging, Electrical Impedance Imaging, Electrical Impedance Scanning, MRI current...1) To develop and optimize the necessary hardware and software for Magnetic Resonance Electrical Impedance Tomography (MREIT) and interface it with...of Magnetic Resonance in Medicine (ISMRM) conference and included in the appendix for reference. 2.2.2. Second Year: A series of new phantom studies

  2. Organic electrochemical transistors for cell-based impedance sensing

    SciTech Connect

    Rivnay, Jonathan E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M. E-mail: owens@emse.fr; Leleux, Pierre

    2015-01-26

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  3. Monitoring solid phase synthesis reactions with electrochemical impedance spectroscopy (EIS).

    PubMed

    Hutton, Roger S; Adams, Joseph P; Trivedi, Harish S

    2003-01-01

    This work describes the use of electrochemical impedance spectroscopy (EIS) as a means to monitor solid phase synthesis on resin beads. EIS was used to track changes during the swelling of beads in various solvents, during three typical reactions and throughout cleavage of the final product from the bead. The impedance response was investigated in a chemical reactor and was found to be faintly sensitive to the resin swelling and solvent flow. The position of the electrode within the reactor was found to be critical as polystyrene based beads float or sink dependent upon the solvent used. However, by choosing electrode position it was possible to monitor reaction progress on beads or within the bulk reactant/product mixture. Of the three typical chemical reactions studied impedance spectroscopy successfully followed two. Fitting of the impedance data to an equivalent electrical circuit provided an estimate as to the relative contribution of capacitive and resistive components to the overall response. Kinetic data from two reactions were also modelled, in both cases complex kinetics was observed, in close agreement with other studies.

  4. Organic electrochemical transistors for cell-based impedance sensing

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.

  5. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  6. Impedance Spectroscopy of Human Blood

    NASA Astrophysics Data System (ADS)

    Mesa, Francisco; Bernal, José J.; Sosa, Modesto A.; Villagómez, Julio C.; Palomares, Pascual

    2004-09-01

    The blood is one of the corporal fluids more used with analytical purposes. When the blood is extracted, immediately it is affected by agents that act on it, producing transformations in its elements. Among the effects of these transformations the hemolysis phenomenon stands out, which consists of the membrane rupture and possible death of the red blood cells. The main purpose of this investigation was the quantification of this phenomenon. A Solartron SI-1260 Impedance Spectrometer was used, which covers a frequency range of work from 1 μHz to 10 MHz, and its accuracy has been tested in the accomplishment of several applications. Measurements were performed on 3 mL human blood samples, from healthy donors. Reactive strips for sugar test of 2 μL, from Bayer, were used as electrodes, which allow gathering a portion of the sample, to be analyzed by the spectrometer. Preliminary results of these measurements are presented.

  7. On Impedance Spectroscopy of Supercapacitors

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.

    2016-10-01

    Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.

  8. Electrical impedance tomography of electrolysis.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations.

  9. Studies of deionization and impedance spectroscopy for blood analyzer

    NASA Astrophysics Data System (ADS)

    Kwong, Charlotte C.; Li, Nan; Ho, Chih-Ming

    2005-11-01

    Blood analysis provides vital information for health conditions. For instance, typical infection response is correlated to an elevated White Blood Cell (WBC) count, while low Red Blood Cell (RBC) count, hemoglobin and hematocrit are caused by anemia or internal bleeding. We are developing two essential modules, deionization (DI) chip and microfluidic cytometer with impedance spectroscopy flow, for enabling the realization of a single platform miniaturized blood analyzer. In the proposed analyzer, blood cells are preliminarily sorted by Dielectrophoretic (DEP) means into sub-groups, differentiated and counted by impedance spectroscopy in a flow cytometer. DEP techniques have been demonstrated to stretch DNA, align Carbon Nanotubes (CNT) and trap cells successfully. However, DEP manipulation does not function in biological media with high conductivity. The DI module is designed to account for this challenge. H Filter will serve as an ion extraction platform in a microchamber. Sample and buffer do not mix well in micro scale allowing the ions being extracted by diffusion without increasing the volume. This can keep the downstream processing time short. Micro scale hydrodynamic focusing is employed to place single cell passing along the central plane of the flow cytometer module. By applying an AC electrical field, suspended cells are polarized, membrane capacitance C m, cytoplasm conductivity σ c, and cytoplasm permittivity ɛ c will vary as functions of frequency. Tracing back the monitored current, the numbers of individual cell species can be evaluated.

  10. Impedance adaptation methods of the piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  11. Studies on electrical and optical properties of PVP:KIO4 complexed polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Ravi, M.; Kiran Kumar, K.; Narasimha Rao, V. V. R.

    2015-02-01

    Solid polymer electrolytes based on poly (vinyl pyrrolidone) (PVP) complexed with potassium periodate (KIO4) salt at different weight percent ratios were prepared using solution- cast technique. X- ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. Electrical conductivity was measured with an AC impedance analyzer in the frequency and temperature range 1 Hz-1 MHz and 303 K-373 K respectively. The maximum ionic conductivity 1.421×10-4Scm-1 was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. Optical absorption studies were performed in the wavelength range 200-600 nm and the absorption edge, direct band gap and indirect band gap values were evaluated.

  12. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  13. Behind the (impedance) baseline in children.

    PubMed

    Salvatore, S; Salvatoni, A; Van Steen, K; Ummarino, D; Hauser, B; Vandenplas, Y

    2014-01-01

    Impedance baseline is a new parameter recently related to esophageal integrity. The aim of this study was to assess the effect of different factors on impedance baseline in pediatric patients. We analyzed the impedance baseline of 800 children with symptoms of gastroesophageal reflux. Mean impedance baseline was automatically calculated throughout 24-hour tracings. The presence of different age groups and of esophagitis was evaluated. Unpaired t-test, Spearman rank correlation, polynomial, and regression plot were used for statistical analysis. Age-related percentile curves were created. We considered a P-value<0.05 as statistically significant. Impedance baseline was significantly (P<0.001) lower in younger compared to older children up to 48 months. The mean increase of baseline per month was much higher in the first 36 months of life (47.5 vs. 2.9 Ohm in Channel 1 and 29.9 vs. 2.3 Ohm in Channel 6, respectively) than in older ages. Patients with esophagitis showed significantly decreased impedance baseline (P<0.05). Infants (especially in the first months of life) and young children present a significantly lower impedance baseline compared to older children both in proximal and distal esophagus. The presence of esophagitis may also determine a decreased impedance baseline regardless of the age of the patients.

  14. Beam impedance of a split cylinder

    SciTech Connect

    Lambertson, G.

    1990-04-01

    A common geometry for position electrodes at moderately low frequencies is the capacitive pickup consisting of a diagonally- divided cylinder that encloses the beam trajectory. For the simplified system here, a relatively direct approach will given the longitudinal and transverse beam impedances (Z{parallel}and Z{perpendicular}) at low frequencies. This paper discusses the determination of this impedance.

  15. Transverse impedance localization using intensity dependent optics

    SciTech Connect

    Calaga,R.; Arduini, G.; Metral, E.; Papotti, G.; Quatraro, D.; Rumolo, G.; Salvant, B.; Tomas, R.

    2009-05-04

    Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.

  16. Possibilities of electrical impedance tomography in gynecology

    NASA Astrophysics Data System (ADS)

    V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.

    2013-04-01

    The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.

  17. LHC Kicker Beam-Impedance Calculation

    SciTech Connect

    Lambertson, G.R.

    1998-10-01

    Longitudinal and transverse beam impedances are calculated for the injection kickers designed for use in the CERN large hadron col- Iider. These combine the contributions of a ceramic beam tube with conducting stripes and a traveling-wave kicker magnet. The results show peak impedances of 1300 ohm longitudinal and 8 Mfl/m trans- verse for four units per ring.

  18. Note: Rapid offset reduction of impedance bridges taking into account instrumental damping and phase shifting.

    PubMed

    van der Wel, C M; Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2013-03-01

    The sensitivity of an imperfectly balanced impedance bridge is limited by the remaining offset voltage. Here, we present a procedure for offset reduction in impedance measurements using a lock-in amplifier, by applying a complex compensating voltage external to the bridge. This procedure takes into account instrumental damping and phase shifting, which generally occur at the high end of the operational frequency range. Measurements demonstrate that the output of the circuit rapidly converges to the instrumentally limited noise at any frequency.

  19. Structural health monitoring using piezoelectric impedance measurements.

    PubMed

    Park, Gyuhae; Inman, Daniel J

    2007-02-15

    This paper presents an overview and recent advances in impedance-based structural health monitoring. The basic principle behind this technique is to apply high-frequency structural excitations (typically greater than 30kHz) through surface-bonded piezoelectric transducers, and measure the impedance of structures by monitoring the current and voltage applied to the piezoelectric transducers. Changes in impedance indicate changes in the structure, which in turn can indicate that damage has occurred. An experimental study is presented to demonstrate how this technique can be used to detect structural damage in real time. Signal processing methods that address damage classifications and data compression issues associated with the use of the impedance methods are also summarized. Finally, a modified frequency-domain autoregressive model with exogenous inputs (ARX) is described. The frequency-domain ARX model, constructed by measured impedance data, is used to diagnose structural damage with levels of statistical confidence.

  20. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    SciTech Connect

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  1. Damage Diagnosis in Semiconductive Materials Using Electrical Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hinton, Yolanda L.

    2008-01-01

    Recent aerospace industry trends have resulted in an increased demand for real-time, effective techniques for in-flight structural health monitoring. A promising technique for damage diagnosis uses electrical impedance measurements of semiconductive materials. By applying a small electrical current into a material specimen and measuring the corresponding voltages at various locations on the specimen, changes in the electrical characteristics due to the presence of damage can be assessed. An artificial neural network uses these changes in electrical properties to provide an inverse solution that estimates the location and magnitude of the damage. The advantage of the electrical impedance method over other damage diagnosis techniques is that it uses the material as the sensor. Simple voltage measurements can be used instead of discrete sensors, resulting in a reduction in weight and system complexity. This research effort extends previous work by employing finite element method models to improve accuracy of complex models with anisotropic conductivities and by enhancing the computational efficiency of the inverse techniques. The paper demonstrates a proof of concept of a damage diagnosis approach using electrical impedance methods and a neural network as an effective tool for in-flight diagnosis of structural damage to aircraft components.

  2. Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform.

    PubMed

    Nwankire, Charles E; Venkatanarayanan, Anita; Glennon, Thomas; Keyes, Tia E; Forster, Robert J; Ducrée, Jens

    2015-06-15

    An electrochemical Lab-on-a-Disc (eLoaD) platform for the automated quantification of ovarian cancer cells (SKOV3) from whole blood is reported. This centrifugal microfluidic system combines complex sample handling, i.e., blood separation and cancer cell extraction from plasma, with specific capture and sensitive detection using label-free electrochemical impedance. Flow control is facilitated using rotationally actuated valving strategies including siphoning, capillary and centrifugo-pneumatic dissolvable-film (DF) valves. For the detection systems, the thiol-containing amino acid, L-Cysteine, was self-assembled onto smooth gold electrodes and functionalized with anti-EpCAM. By adjusting the concentration of buffer electrolyte, the thickness of the electrical double layer was extended so the interfacial electric field interacts with the bound cells. Significant impedance changes were recorded at 117.2 Hz and 46.5 Hz upon cell capture. Applying AC amplitude of 50 mV at 117.2 Hz and open circuit potential, a minimum of 214 captured cells/mm(2) and 87% capture efficiency could be recorded. The eLoaD platform can perform five different assays in parallel with linear dynamic range between 16,400 and (2.6±0.0003)×10(6) cancer cells/mL of blood, i.e. covering nearly three orders of magnitude. Using the electrode area of 15.3 mm(2) and an SKOV3 cell radius of 5 µm, the lower detection limit is equivalent to a fractional surface coverage of approximately 2%, thus making eLoaD a highly sensitive and efficient prognostic tool that can be developed for clinical settings where ease of handling and minimal sample preparation are paramount.

  3. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  4. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  5. AC Optimal Power Flow

    SciTech Connect

    2016-10-04

    In this work, we have implemented and developed the simulation software to implement the mathematical model of an AC Optimal Power Flow (OPF) problem. The objective function is to minimize the total cost of generation subject to constraints of node power balance (both real and reactive) and line power flow limits (MW, MVAr, and MVA). We have currently implemented the polar coordinate version of the problem. In the present work, we have used the optimization solver, Knitro (proprietary and not included in this software) to solve the problem and we have kept option for both the native numerical derivative evaluation (working satisfactorily now) as well as for analytical formulas corresponding to the derivatives being provided to Knitro (currently, in the debugging stage). Since the AC OPF is a highly non-convex optimization problem, we have also kept the option for a multistart solution. All of these can be decided by the user during run-time in an interactive manner. The software has been developed in C++ programming language, running with GCC compiler on a Linux machine. We have tested for satisfactory results against Matpower for the IEEE 14 bus system.

  6. Adaptive microwave impedance memory effect in a ferromagnetic insulator

    NASA Astrophysics Data System (ADS)

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-12-01

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.

  7. Adaptive microwave impedance memory effect in a ferromagnetic insulator.

    PubMed

    Lee, Hanju; Friedman, Barry; Lee, Kiejin

    2016-12-14

    Adaptive electronics, which are often referred to as memristive systems as they often rely on a memristor (memory resistor), are an emerging technology inspired by adaptive biological systems. Dissipative systems may provide a proper platform to implement an adaptive system due to its inherent adaptive property that parameters describing the system are optimized to maximize the entropy production for a given environment. Here, we report that a non-volatile and reversible adaptive microwave impedance memory device can be realized through the adaptive property of the dissipative structure of the driven ferromagnetic system. Like the memristive device, the microwave impedance of the device is modulated as a function of excitation microwave passing through the device. This kind of new device may not only helpful to implement adaptive information processing technologies, but also may be useful to investigate and understand the underlying mechanism of spontaneous formation of complex and ordered structures.

  8. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  9. Method to detect the end-point for PCR DNA amplification using an ionically labeled probe and measuring impedance change

    DOEpatents

    Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.

    2007-01-02

    Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.

  10. Impedance matching at arterial bifurcations.

    PubMed

    Brown, N

    1993-01-01

    Reflections of pulse waves will occur in arterial bifurcations unless the impedance is matched continuously through changing geometric and elastic properties. A theoretical model is presented which minimizes pulse wave reflection through bifurcations. The model accounts for the observed linear changes in area within the bifurcation, generalizes the theory to asymmetrical bifurcations, characterizes changes in elastic properties from parent to daughter arteries, and assesses the effect of branch angle on the mechanical properties of daughter vessels. In contradistinction to previous models, reflections cannot be minimized without changes in elastic properties through bifurcations. The theoretical model predicts that in bifurcations with area ratios (beta) less than 1.0 Young's moduli of daughter vessels may be less than that in the parent vessel if the Womersley parameter alpha in the parent vessel is less than 5. Larger area ratios in bifurcations are accompanied by greater increases in Young's moduli of branches. For an idealized symmetric aortic bifurcation (alpha = 10) with branching angles theta = 30 degrees (opening angle 60 degrees) Young's modulus of common iliac arteries relative to that of the distal abdominal aorta has an increase of 1.05, 1.68 and 2.25 for area ratio of 0.8, 1.0 and 1.15, respectively. These predictions are consistent with the observed increases in Young's moduli of peripheral vessels.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Micro-Horn Arrays for Ultrasonic Impedance Matching

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Palmer, Dean

    2009-01-01

    could be tailored for impedance matching in a specified ultrasonic frequency range. In a design that would be simplest to implement by micromachining, the horns would have constant cross-sectional areas as shown in the upper part of the figure. In this case, the dimensions of the horns could be chosen on the basis of a Mason equivalent-circuit model (a simplified model, well-known in the piezoelectric-transducer art, in which the electrical and mechanical dynamics, including electromechanical couplings, are expressed as electrical circuit elements that can include inductors, capacitors, and lumped-parameter complex impedances.) In a more complex, more nearly optimum design, the cross-sectional area of each horn would be either stepped or made to vary as a continuous function of through-the thickness position, as shown in the lower part of the figure.

  12. Estimates of Acausal Joint Impedance Models

    PubMed Central

    Perreault, Eric J.

    2013-01-01

    Estimates of joint or limb impedance are commonly used in the study of how the nervous system controls posture and movement, and how that control is altered by injury to the neural or musculoskeletal systems. Impedance characterizes the dynamic relationship between an imposed perturbation of joint position and the torques generated in response. While there are many practical reasons for estimating impedance rather than its inverse, admittance, it is an acausal representation of the limb mechanics that can lead to difficulties in interpretation or use. The purpose of this study was to explore the acausal nature of nonparametric estimates of joint impedance representations to determine how they are influenced by common experimental and computational choices. This was accomplished by deriving discrete-time realizations of first-and second-order derivatives to illustrate two key difficulties in the physical interpretation of impedance impulse response functions. These illustrations were provided using both simulated and experimental data. It was found that the shape of the impedance impulse response depends critically on the selected sampling rate, and on the bandwidth and noise characteristics of the position perturbation used during the estimation process. These results provide important guidelines for designing experiments in which nonparametric estimates of impedance will be obtained, especially when those estimates are to be used in a multistep identification process. PMID:22907963

  13. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    NASA Astrophysics Data System (ADS)

    Pliquett, Uwe

    2013-04-01

    . Structures down to sub-micrometer range and complex impedance measurements tools integrated at single chips are now affordable. Moreover, the introduction of alternative signals and data processing algorithms focuses on very fast and parallel electrical characterization which in turn pushes this technique to new applications and markets. Electrical impedance tomography today yields pictures in real time with a resolution that was impossible 10 years ago. The XVth International Conference on Electrical Bio-Impedance in conjunction with the XIVth Electrical Impedance Tomography ICEBI/EIT 2013 organized by the Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany, together with the EIT-group at the University of Göttingen, Germany, brings world leading scientists in these fields together. It is a platform to present the latest developments in instrumentation and signal processing but also points to new applications, especially in the field of biosensors and non-linear phenomena. Two Keynote lectures will extend the view of the participants above the mainstream of bio-impedance measurement. Friederich Kremer (University of Leipzig) delivers the plenary lecture on broad bandwidth dielectric spectroscopy. New achievements in the research of ligand gated ionic channels will be presented by Klaus Benndorf (University of Jena). Leading scientists in the field of bio-impedance measurement, such as, Sverre Grimnes, Orjan Martinsen, Andrea Robitzki, Richard Bayford, Jan Gimsa and Mart Min will give lectures for students but also more experienced scientists in a pre-conference tutorial which is a good opportunity to learn or refresh the basics. List of committees Conference Chair Dr Uwe Pliquett Professor Dieter Beckmann Institut für Bioprozess- und Analysenmesstechnik eV, Rosenhof, Heilbad Heiligenstadt, Germany Technical Program Chair Maik Hiller Conventus Congressmanagement & Marketing GmbH, Carl-Pulfrich-Str. 1 - 07745 Jena Pre

  14. Impedance match for Stirling type cryocoolers

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Luo, Ercang; Wang, Xiaotao; Wu, Zhanghua

    Impedance match in Stirling type cryocoolers is important for the compressor efficiency and available acoustic power. This paper generalizes the basic principles concerning the efficiency and acoustic power output of the linear compressor. Starting from basic governing equations and mainly from the viewpoint of energy balance, the physical mechanisms behind the principles are clearly shown. Specially, this paper focuses on the impedance match for an existing compressor, where the current limit and displacement limit should also be taken into consideration when selecting a suitable impedance. Some case studies based on a commercial compressor are also provided for a deep understanding.

  15. FDTD modeling of thin impedance sheets

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond; Kunz, Karl

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. It is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods. These sheets are characterized by a discontinuity in the tangential magnetic field on either side of the sheet but no discontinuity in tangential electric field. This continuity, or single valued behavior of the electric field, allows the sheet current to be expressed in terms of an impedance multiplying this electric field.

  16. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE.

    SciTech Connect

    HAHN,H.; DAVINO,D.

    2002-06-02

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit.

  17. Linearly tapered slot antenna impedance characteristics

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1995-01-01

    The paper presents for the first time an experimental technique to de-embed the input impedance of a LTSA from the measured reflection coefficient. The results show that the input impedance is dependent on the semi-flare angle and the length of the LTSA. The Re(Z(sub in)) is large when the electrical length of the LTSA is small and is on the order of few thousand ohms. However for an electrically large LTSA the Re(Z(sub in)) is in the range of 55 to 130 ohms. These results have potential applications in the design of broad band impedance matching networks for LTSA.

  18. Wearable impedance monitoring system for dialysis patients.

    PubMed

    Bonnet, S; Bourgerette, A; Gharbi, S; Rubeck, C; Arkouche, W; Massot, B; McAdams, E; Montalibet, A; Jallon, P

    2016-08-01

    This paper describes the development and the validation of a prototype wearable miniaturized impedance monitoring system for remote monitoring in home-based dialysis patients. This device is intended to assess the hydration status of dialysis patients using calf impedance measurements. The system is based on the low-power AD8302 component. The impedance calibration procedure is described together with the Cole parameter estimation and the hydric volume estimation. Results are given on a test cell to validate the design and on preliminary calf measurements showing Cole parameter variations during hemodialysis.

  19. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  20. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  1. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  2. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.

    1998-07-01

    The emerging electro-mechanical impedance technology has high potential for in-situ health monitoring and NDE of structural systems and complex machinery. At first, the fundamental principles of the electro-mechanical impedance method are briefly reviewed and ways for practical implementation are highlighted. The equations of piezo- electric material response are given, and the coupled electro-mechanical impedance of a piezo-electric wafer transducer as affixed to the monitored structure is discussed. Due to the high frequency operation of this NDE method, wave propagation phenomena are identified as the primary coupling method between the structural substrate and the piezo-electric wafer transducer. Attention is then focused on several recent advancements that have extended the electro-mechanical impedance method into new areas of applications and/or have developed its underlying principles. US Army Construction Engineering Research Laboratory used the electro-mechanical impedance method to monitor damage development in composite overlaid civil infrastructure specimens under full-scale static testing. A simplified E/M impedance measuring technique was employed at the Polytechnic University of Madrid, Spain, to detect damage in GFRP composite specimens. The development of miniaturized `bare-bones' impedance analyzer equipment that could be easily packaged into transponder-size dimensions is being studied at the University of South Carolina. US Army Research Laboratory developed novel piezo-composite film transducers for embedment into composite structures. Disbond gauges for monitoring the structural joints of adhesively bonded rotor blades have been studies in the Mechanical Engineering Department at the University of South Carolina. These recent developments accentuate the importance and benefits of using the electro-mechanical impedance method for on-line health monitoring and damage detection in a variety of applications. Further investigation of the electro

  3. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  4. Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetato; hfac = hexafluoroacetylacetonato; x = 0 or 1).

    PubMed

    Towatari, Masaaki; Nishi, Koshiro; Fujinami, Takeshi; Matsumoto, Naohide; Sunatsuki, Yukinari; Kojima, Masaaki; Mochida, Naotaka; Ishida, Takayuki; Re, Nazzareno; Mrozinski, Jerzy

    2013-05-20

    A series of 3d-4f binuclear complexes, [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (x = 0 for M = Cu(II), Zn(II); x = 1 for M = Co(II), Ni(II); Ln = Gd(III), Tb(III), Dy(III), La(III)), have been synthesized and characterized, where 3-MeOsaltn, ac, and hfac denote N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, acetato, and hexafluoroacetylacetonato, respectively. The X-ray analyses demonstrated that all the complexes have an acetato- and diphenolato-bridged M(II)-Ln(III) binuclear structure. The Cu(II)-Ln(III) and Zn(II)-Ln(III) complexes are crystallized in an isomorphous triclinic space group P1, where the Cu(II) or Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of 3-MeOsaltn at the equatorial coordination sites and one oxygen atom of the bridging acetato ion at the axial site. The Co(II)-Ln(III) and Ni(II)-Ln(III) complexes are crystallized in an isomorphous monoclinic space group P2(1)/c, where the Co(II) or Ni(II) ion at the high-spin state has an octahedral coordination environment with N2O2 donor atoms of 3-MeOsaltn at the equatorial sites, and one oxygen atom of the bridged acetato and a methanol oxygen atom at the two axial sites. Each Ln(III) ion for all the complexes is coordinated by four oxygen atoms of two phenolato and two methoxy oxygen atoms of "ligand-complex" M(3-MeOsaltn), four oxygen atoms of two hfac(-), and one oxygen atom of the bridging acetato ion; thus, the coordination number is nine. The temperature dependent magnetic susceptibilities from 1.9 to 300 K and the field-dependent magnetization up to 5 T at 1.9 K were measured. Due to the important orbital contributions of the Ln(III) (Tb(III), Dy(III)) and to a lesser extent the M(II) (Ni(II), Co(II)) components, the magnetic interaction between M(II) and Ln(III) ions were investigated by an empirical approach based on a comparison of the magnetic properties of the M(II)-Ln(III), Zn(II)-Ln(III), and M(II)-La(III) complexes. The differences of χ(M)T and M

  5. Structural and impedance properties of KBa{sub 2}V{sub 5}O{sub 15} ceramics

    SciTech Connect

    Behera, Banarji; Nayak, P.; Choudhary, R.N.P.

    2008-02-05

    The polycrystalline sample of KBa{sub 2}V{sub 5}O{sub 15} ceramics was prepared by a mixed oxide method at low temperature (i.e., at 560 deg. C). The formation of the compound was confirmed using an X-ray diffraction technique at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound as a function of temperature at different frequencies suggest that the compound has a dielectric anomaly of ferroelectric to paraelectric type at 323 deg. C, and exhibits diffuse phase transition. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of both grain (>10{sup 3} Hz) and the grain boundary (<10{sup 3} Hz) effects in the material. Studies of electrical conductivity over a wide temperature range suggest that the compound exhibits the negative temperature coefficient of resistance behavior. The ac conductivity spectrum was found to obey Jonscher's universal power law.

  6. Transverse impedances of cavities and collimators

    SciTech Connect

    Kheifets, S.A.; Bane, K.L.F.; Bizek, H.

    1987-03-01

    Field matching has been used to compute the transverse impedance of simple, cylindrically symmetric, perfectly conducting structures, the subregions of which are separated by radial cuts. The method is briefly described, and some early results are presented. (LEW)

  7. Surface impedance of transversely moving microwave ferrite

    NASA Astrophysics Data System (ADS)

    Mueller, R. S.

    1990-01-01

    A theoretical study was made of the surface impedance Z for an electromagnetic transverse magnetic wave from free space on a magnetized ferrite surface moving normal to the plane of incidence. It was found convenient to decompose the surface impedance into two transfer impedances, Z1 and Z2, which relate the hybrid reflected amplitudes to the amplitude of the incident wave. The surface impedance does not vary much with respect to the angle of incidence, so only the case of normal incidence (θi = 0°) was evaluated. Resonant poles at ƒc, [ƒc(ƒc + ƒm)]1/2, and ƒc + ƒm dominate the frequency characteristics of Z1 and Z2. The frequencies ƒc andƒm are the precessional frequency and magnetization frequency, respectively.

  8. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng; Tirkas, Panayiotis A.

    1993-01-01

    During the period of this research project, a comprehensive study of pyramidal horn antennas was conducted. Full-wave analytical and numerical techniques were developed to analyze horn antennas with or without impedance surfaces. Based on these full-wave analytic techniques, research was conducted on the use of impedance surfaces on the walls of the horn antennas to control the antenna radiation patterns without a substantial loss of antenna gain. It was found that the use of impedance surfaces could modify the antenna radiation patterns. In addition to the analytical and numerical models, experimental models were also constructed and they were used to validate the predictions. Excellent agreement between theoretical predictions and the measured data was obtained for pyramidal horns with perfectly conducting surfaces. Very good comparisons between numerical and experimental models were also obtained for horns with impedance surfaces.

  9. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    SciTech Connect

    Dey, Indranuj Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understanding the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.

  10. Computational Investigation of Experimental Interaction Impedance Obtained by Perturbation for Helical Traveling-Wave Tube Structures

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1997-01-01

    Conventional methods used to measure the cold-test interaction impedance of helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit. It has been shown that the difference in resonant frequency or axial phase shift between the perturbed and unperturbed circuits can be related to the interaction impedance. However, because of the complex configuration of the helical circuit, deriving this relationship involves-several approximations. With the advent of accurate three- dimensional helical circuit models, these standard approximations can be fully investigated. This paper addresses the most prominent approximations made in the analysis for measured interaction impedance by Lagerstrom and investigates their accuracy using the three-dimensional simulation code MAFIA. It is shown that a more accurate value of interaction impedance can be obtained by using three-dimensional computational methods rather than performing costly and time consuming experimental cold-test measurements.

  11. Time-harmonic impedance tomography using the T-matrix method.

    PubMed

    Otto, G P; Chew, W C

    1994-01-01

    A time-harmonic formulation for the electrical impedance tomography (EIT) inverse problem accounting for electrodynamic effects is derived. This work abandons the standard electrostatic impedance model for a full-wave T-matrix model. The advantage of this method is an accurate physical model that includes finite frequency effects, such as diffusion phenomena, and electrode contact impedance effects. This model offers the potential for increased resolution and larger invertible contrast objects than other methods when used on experimental data, because it may represent a more realistic physical model. Also, an accurate gradient matrix is used in the Newton iterative method so the image reconstruction converges in a few iterations. These advantages are realized with no increase in the computational complexity of this algorithm, compared to the static finite element model. A calibration technique is suggested for measurement systems, to test the validity of a theoretical model that includes electrode contact impedance effects.

  12. Computational Investigation of Experimental Interaction Impedance Obtained by Perturbation for Helical Traveling-Wave Tube Structures

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, J. A., Jr.

    1998-01-01

    Conventional methods used to measure the cold-test interaction impedance of helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit. It has been shown that the difference in resonant frequency or axial phase shift between the perturbed and unperturbed circuits can be related to the interaction impedance. However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. With the advent of accurate three-dimensional (3-D) helical circuit models, these standard approximations can be fully investigated. This paper addresses the most prominent approximations made in the analysis for measured interaction impedance by Lagerstrom and investigates their accuracy using the 3-D simulation code MAFIA. It is shown that a more accurate value of interaction impedance can be obtained by using 3-D computational methods rather than performing costly and time consuming experimental cold-test measurements.

  13. Computational Investigation of Experimental Interaction Impedance Obtained by Perturbation for Helical Traveling Wave Tube Structures

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A., Jr.

    1998-01-01

    Conventional methods used to measure the cold- test interaction impedance of helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit It has been shown that the difference in resonant frequency or axial phase shift between the perturbed and unperturbed circuits can be related to the interaction impedance. However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. With the advent of accurate three-dimensional (3-D) helical circuit models, these standard approximations can be fully Investigated. This paper addresses the most prominent approximations made in the analysis for measured interaction impedance by Lagerstrom and investigates their accuracy using the 3-D simulation code MAFIA. It is shown that a more accurate value of interaction impedance can be obtained by using 3-D computational methods rather than performing costly and time consuming experimental cold-test measurements.

  14. Inversion of elastic impedance for unconsolidated sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Elastic properties of gas-hydrate-bearing sediments are important for quantifying gas hydrate amounts as well as discriminating the gas hydrate effect on velocity from free gas or pore pressure. This paper presents an elastic inversion method for estimating elastic properties of gas-hydrate-bearing sediments from angle stacks using sequential inversion of P-wave impedance from the zero-offset stack and S-wave impedance from the far-offset stack without assuming velocity ratio.

  15. CSR Impedance for Non-Ultrarelativistic Beams

    SciTech Connect

    Li, Rui; Tsai, Cheng Y.

    2015-09-01

    For the analysis of the coherent synchrotron radiation (CSR)-induced microbunching gain in the low energy regime, such as when a high-brightness electron beam is transported through a low-energy merger in an energy-recovery linac (ERL) design, it is necessary to extend the CSR impedance expression in the ultrarelativistic limit to the non-ultrarelativistic regime. This paper presents our analysis of CSR impedance for general beam energies.

  16. Acoustic Impedance Measurement for Underground Surfaces.

    NASA Astrophysics Data System (ADS)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  17. Electrical Impedance Tomography of Breast Cancer

    DTIC Science & Technology

    2004-06-01

    Resonance Research Systems, Guildford, UK) that has broadband RF transmit and receive channels. A 16 leg, quadrature, high-pass birdcage coil with 10...metastatic cancer, magnetic resonance imaging, 43 electrical impedance imaging, electrical impedance scanning, MRI 16. PRICE CODE current density imaging...tissue with high spatial resolution, by using it in conjunction with Magnetic Resonance Imaging (MRI) to improve diagnostic accuracy of screening. For

  18. Effect of shear on duct wall impedance.

    NASA Technical Reports Server (NTRS)

    Goldstein, M.; Rice, E.

    1973-01-01

    The solution to the equation governing the propagation of sound in a uniform shear layer is expressed in terms of parabolic cylinder functions. This result is used to develop a closed-form solution for acoustic wall impedance which accounts for both the duct liner and the presence of a boundary layer in the duct. The effective wall impedance can then be used as the boundary condition for the much simpler problem of sound propagation in uniform flow.

  19. Non-invasive measurement of micro-area skin impedance in vivo

    NASA Astrophysics Data System (ADS)

    Li, Dachao; Liang, Wenshuai; Liu, Tongkun; Yu, Haixia; Xu, Kexin

    2011-12-01

    Volume measurement of interstitial fluid transdermally extracted is important in continuous glucose monitoring instrument. The volume of transdermally extracted interstitial fluid could be determined by a skin permeability coefficient. If the skin impedance which is the indicator of skin permeability coefficient can be accurately measured, the volume of interstitial fluid can be calculated based on the relationship between the indicator and the skin permeability coefficient. The possibility of using the skin impedance to indicate the skin permeability coefficient is investigated. A correlation model between the skin impedance and the skin permeability coefficient is developed. A novel non-invasive method for in vivo, real-time, and accurate measurement of skin impedance within a micro skin area is brought forward. The proposed measurement method is based on the theory that organisms saliva and interstitial fluid are equipotential. An electrode is put on the surface of a micro skin area and another one is put in the mouth to be fully contacted with saliva of an animal in the experiments. The electrode in mouth is used to replace the implantable subcutaneous electrode for non-invasive measurement of skin impedance in vivo. A biologically compatible AC current with amplitude of 100mv and frequency of 10Hz is applied to stimulate the micro skin area by the two electrodes. And then the voltage and current between the two electrodes are measured to calculate the skin impedance within a micro skin area. The measurement results by electrode in mouth are compared with the results by subcutaneous electrode in animal experiments and they are consistent so the proposed measurement method is verified well. The effect of moisture and pressure for the measurement is also studied in the paper.

  20. Tunable impedance matching network fundamental limits and practical considerations

    NASA Astrophysics Data System (ADS)

    Allen, Wesley N.

    As wireless devices continue to increase in utility while decreasing in dimension, design of the RF front-end becomes more complex. It is common for a single handheld device to operate on a plethora of frequency bands, utilize multiple antennae, and be subjected to a variety of environments. One complexity in particular which arises from these factors is that of impedance mismatch. Recently, tunable impedance matching networks have begun to be implemented to address this problem. This dissertation presents the first in-depth study on the frequency tuning range of tunable impedance matching networks. Both the fundamental limitations of ideal networks as well as practical considerations for design and implementation are addressed. Specifically, distributed matching networks with a single tuning element are investigated for use with parallel resistor-capacitor and series resistor-inductor loads. Analytical formulas are developed to directly calculate the frequency tuning range TR of ideal topologies. The theoretical limit of TR for these topologies is presented and discussed. Additional formulas are developed which address limitations in transmission line characteristic impedance and varactor range. Equations to predict loss due to varactor quality factor are demonstrated and the ability of parasitics to both increase and decrease TR are shown. Measured results exemplify i) the potential to develop matching networks with a small impact from parasitics, ii) the need for accurate knowledge of parasitics when designing near transition points in optimal parameters, iii) the importance of using a transmission line with the right characteristic impedance, and iv) the ability to achieve extremely low loss at the design frequency with a lossy varactor under the right conditions (measured loss of -0.07 dB). In the area of application, tunable matching networks are designed and measured for mobile handset antennas, demonstrating up to a 3 dB improvement in power delivered to a

  1. Stability Analysis of a Constant Power Load Serviced by a Buck Converter as the Source Impedance Varies

    DTIC Science & Technology

    2012-09-01

    electric ships, being aware of the stability issues associated with direct current (DC)-DC and DC-alternating current (AC) power converters and...problem here is that in MVDC shipboard power systems, the DC-DC converters are used to supply constant power to electrical loads, and these loads have...OF A CONSTANT POWER LOAD SERVICED BY A BUCK CONVERTER AS THE SOURCE IMPEDANCE VARIES by George J. Roth September 2012 Thesis Advisor

  2. Method and device for bio-impedance measurement with hard-tissue applications.

    PubMed

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-06-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.

  3. Phase-sensitive detection of both inductive and non-inductive ac voltages in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Schoen, Martin A.; Boone, Carl T.; Silva, Thomas J.

    2014-03-01

    Spin pumping causes significant damping in ultrathin ferromagnetic/normal metal (NM) multilayers via spin-current generation of both dc and ac character in the NM system. While the nonlinear dc component has been investigated in detail by utilization of the inverse spin Hall effect (iSHE) in NMs, much less is known about the linear ac component that is presumably much larger in the small-excitation limit. We measured generated ac voltages in a wide variety of Permalloy/NM multilayers via vector-network-analyzer ferromagnetic resonance. We employ a custom, impedance-matched, broadband microwave coupler that features a ferromagnetic thin film reference resonator to accurately compare ac voltage amplitudes and phases between varieties of multilayers. By use of the fact that inductive and ac iSHE signals are phase-shifted by π/2, we find that inductive signals are major contributors in all investigated samples. It is only by comparison of the phase and amplitude of the recorded ac voltages between multiple samples that we can extract the non-inductive contributions due to spin-currents. Voltages due to the ac iSHE in Permalloy(10nm)/platinum(5nm) bilayers are weaker than inductive signals, in agreement with calculations based upon recent theoretical predictions. M.W. acknowledges financial support by the German Academic Exchange service (DAAD).

  4. Impedance spectroscopic analysis of nanoparticle functionalized graphene/p-Si Schottky diode sensors

    NASA Astrophysics Data System (ADS)

    Uddin, Md Ahsan; Singh, Amol; Daniels, Kevin; Vogt, Thomas; Chandrashekhar, M. V. S.; Koley, Goutam

    2016-11-01

    Metallic nanoparticle (NP) functionalized graphene/p-Si Schottky diode (chemidiode) sensors have been investigated through dc amperometric and ac impedance spectroscopic (IS) measurements. Four fold sensitivity enhancement for NH3 is demonstrated after Pt nanoparticle functionalization of graphene/p-Si Schottky diode sensor, and the response is also orders of magnitude higher compared to functionalized graphene chemiresistor. Experimentally obtained impedance spectra were modeled utilizing an equivalent circuit for both sensor types, and the junction resistance and capacitance were extracted for various gaseous analytes exposure. Variations in junction resistance, capacitance and 3-dB cut-off frequency plotted in three-dimensional (3D) enables extraction of unique signatures for various analyte gases.

  5. Layoff Handling Still Lags ACS Standards.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    Reviews termination procedures of professional chemists and the compliance of these terminations to the American Chemical Society's (ACS's) Professional Employment Guidelines. Provides the ACS guidelines. (DS)

  6. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  7. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  8. Evaluation of a novel correction procedure to remove electrode impedance effects from broadband SIP measurements

    NASA Astrophysics Data System (ADS)

    Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Treichel, Andrea; Vereecken, Harry

    2016-12-01

    Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements to improve the accuracy of broadband complex electrical resistivity measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference < 0.2 mrad) up to a frequency of 10 kHz after the effect of the different electrode impedances was removed. Finally, SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.

  9. Complex Impedance Studies of Optically Excited Strontium Barium Niobate

    DTIC Science & Technology

    2007-11-02

    has a tetragonal tungsten - bronze structure. The unit cell for this structure, illustrated below in Fig. 2.1, consists of ten oxygen octahedra joined...4 Kittel, pp. 373-374. 5 P. B. Jamieson, et al, “Ferroelectric Tungsten Bronze -Type Crystal Structures. I. Barium Strontium Niobate...Oxford, 1987). 2. C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1986). 3. P. B. Jamieson, et al, “Ferroelectric Tungsten

  10. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  11. Optimally tuned resonant negative capacitance for piezoelectric shunt damping based on measured electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Salloum, Rogério; Heuss, Oliver; Götz, Benedict; Mayer, Dirk

    2015-04-01

    In this paper, a new tuning method for shunt damping with a series resistance, inductance and negative capacitance is proposed and its validity is investigated. It is based on the measured electromechanical impedance of a piezoelectric system, which is represented through an equivalent electrical circuit that takes into account the characteristics of the piezoelectric transducer and the host structure. Afterwards, an additional circuit representing the shunt is connected and the Norton equivalent impedance is obtained at the terminals that represent the mechanical mode of interest. During the tuning process, the optimal shunt parameters are found by minimizing the maximum absolute value of the Norton equivalent impedance over a defined frequency range through a numerical optimization. Taking benefit from the analogy between electrical impedance and mechanical admittance, the minimization of different mechanical responses (displacement, velocity or acceleration) is also proposed and the different optimum shunt parameters obtained are compared. In view of real technical applications, this method allows the integration of a real negative capacitance circuit, i.e., a negative impedance converter, rather than an ideal component. It is thus possible to use the impedance of this circuit and optimize the individual component values. Since this method is based on one simple measurement, it can be applied to arbitrary structures without the need of complex dynamic tests or expensive finite elements calculations. Finally, an experimental analysis is carried out in order to compare the damping performance of the proposed method and the conventional analytical method that minimizes a mechanical frequency response function.

  12. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    PubMed Central

    Sankar, Viswanath; Patrick, Erin; Dieme, Robert; Sanchez, Justin C.; Prasad, Abhishek; Nishida, Toshikazu

    2014-01-01

    Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially. PMID:24847248

  13. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  14. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  15. Tunable microwave impedance matching to a high impedance source using a Josephson metamaterial

    SciTech Connect

    Altimiras, Carles Parlavecchio, Olivier; Joyez, Philippe; Vion, Denis; Roche, Patrice; Esteve, Daniel; Portier, Fabien

    2013-11-18

    We report the efficient coupling of a 50  Ω microwave circuit to a high impedance conductor. We use an impedance transformer consisting of a λ/4 co-planar resonator whose inner conductor contains an array of superconducting quantum interference devices (SQUIDs), providing it with a tunable lineic inductance L∼80 μ{sub 0}, resulting in a characteristic impedance Z{sub C}∼1 kΩ. The impedance matching efficiency is characterized by measuring the shot noise power emitted by a dc biased tunnel junction connected to the resonator. We demonstrate matching to impedances in the 15 to 35 kΩ range with bandwidths above 100 MHz around a resonant frequency tunable between 4 and 6 GHz.

  16. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  17. Direct adaptive impedance control of manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Seraji, H.; Glass, K.

    1991-01-01

    An adaptive scheme for controlling the end-effector impedance of robot manipulators is presented. The proposed control system consists of three subsystems: a simple filter which characterizes the desired dynamic relationship between the end-effector position error and the end-effector/environment contact force, an adaptive controller which produces the Cartesian-space control input required to provide this desired dynamic relationship, and an algorithm for mapping the Cartesian-space control input to a physically realizable joint-space control torque. The controller does not require knowledge of either the structure or the parameter values of the robot dynamics, and it is implemented without calculation of the robot inverse kinematic transformation. As a result, the scheme represents a very general and computationally efficient approach to controlling the impedance of both nonredundant and redundant manipulators. Furthermore, the method can be applied directly to trajectory tracking in free-space motion by removing the impedance filter.

  18. Propagation of waves along an impedance boundary

    NASA Technical Reports Server (NTRS)

    Wenzel, A. R.

    1974-01-01

    A theoretical analysis of the scalar wave field due to a point source above a plane impedance boundary is presented. A surface wave is found to be an essential component of the total wave field. It is shown that, as a result of ducting of energy by the surface wave, the amplitude of the total wave near the boundary can be greater than it would be if the boundary were perfectly reflecting. Asymptotic results, valid near the boundary, are obtained both for the case of finite impedance (the soft-boundary case) and for the limiting case in which the impedance becomes infinite (the hard-boundary case). In the latter, the wave amplitude in the farfield decreases essentially inversely as the horizontal propagation distance; in the former (if the surface-wave term is neglected), it decreases inversely as the square of the horizontal propagation distance.

  19. Wavelet analysis of the impedance cardiogram waveforms

    NASA Astrophysics Data System (ADS)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  20. Impedance properties of circular microstrip antenna

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1983-01-01

    A moment method solution to the input impedance of a circular microstrip antenna excited by either a microstrip feed or a coaxial probe is presented. Using the exact dyadic Green's function and the Fourier transform the problem is formulated in terms of Richmond's reaction integral equation from which the unknown patch current can be solved for. The patch current is expanded in terms of regular surface patch modes and an attachment mode (for probe excited case) which insures continuity of the current at probe/patch junction, proper polarization and p-dependance of patch current in the vicinity of the probe. The input impedance of a circular microstrip antenna is computed and compared with earlier results. Effect of attachment mode on the input impedance is also discussed.

  1. Impedance Scaling for Small Angle Transitions

    SciTech Connect

    Stupakov, G.; Bane, Karl; Zagorodnov, I.; /DESY

    2010-10-27

    Based on the parabolic equation approach to Maxwell's equations we have derived scaling properties of the high frequency impedance/short bunch wakefields of structures. For the special case of small angle transitions we have shown the scaling properties are valid for all frequencies. Using these scaling properties one can greatly reduce the calculation time of the wakefield/impedance of long, small angle, beam pipe transitions, like one often finds in insertion regions of storage rings. We have tested the scaling with wakefield simulations of 2D and 3D models of such transitions, and found that the scaling works well. In modern ring-based light sources one often finds insertion devices having extremely small vertical apertures (on the order of millimeters) to allow for maximal undulator fields reaching the beam. Such insertion devices require that there be beam pipe transitions from these small apertures to the larger cross-sections (normally on the order of centimeters) found in the rest of the ring. The fact that there may be many such transitions, and that these transitions introduce beam pipe discontinuities very close to the beam path, means that their impedance will be large and, in fact, may dominate the impedance budget of the entire ring. To reduce their impact on impedance, the transitions are normally tapered gradually over a long distance. The accurate calculation of the impedance or wakefield of these long transitions, which are typically 3D objects (i.e. they do not have cylindrical symmetry), can be quite a challenging numerical task. In this report we present a method of obtaining the impedance of a long, small angle transition from the calculation of a scaled, shorter one. Normally, the actual calculation is obtained from a time domain simulation of the wakefield in the structure, where the impedance can be obtained by performing a Fourier transform. We shall see that the scaled calculation reduces the computer time and memory requirements

  2. Electrochemical Impedance Spectroscopy Of Metal Alloys

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  3. Protein Aggregation Measurement through Electrical Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affanni, A.; Corazza, A.; Esposito, G.; Fogolari, F.; Polano, M.

    2013-09-01

    The paper presents a novel methodology to measure the fibril formation in protein solutions. We designed a bench consisting of a sensor having interdigitated electrodes, a PDMS hermetic reservoir and an impedance meter automatically driven by calculator. The impedance data are interpolated with a lumped elements model and their change over time can provide information on the aggregation process. Encouraging results have been obtained by testing the methodology on K-casein, a protein of milk, with and without the addition of a drug inhibiting the aggregation. The amount of sample needed to perform this measurement is by far lower than the amount needed by fluorescence analysis.

  4. Hole-Impeded-Doping-Superlattice LWIR Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic detectors of radiation in long-wavelength infrared (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive detector offers advantages of high gain and high impedance; photovoltaic detector offers lower noise and better interface to multiplexer readouts.

  5. Impedance and modulus spectroscopic study of nano hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  6. Analysis of the Impedance Resonance of Piezoelectric Multi-Fiber Composite Stacks

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Djrbashian, A.; Bradford, S C

    2013-01-01

    Multi-Fiber CompositesTM (MFC's) produced by Smart Materials Corp behave essentially like thin planar stacks where each piezoelectric layer is composed of a multitude of fibers. We investigate the suitability of using previously published inversion techniques for the impedance resonances of monolithic co-fired piezoelectric stacks to the MFCTM to determine the complex material constants from the impedance data. The impedance equations examined in this paper are those based on the derivation. The utility of resonance techniques to invert the impedance data to determine the small signal complex material constants are presented for a series of MFC's. The technique was applied to actuators with different geometries and the real coefficients were determined to be similar within changes of the boundary conditions due to change of geometry. The scatter in the imaginary coefficient was found to be larger. The technique was also applied to the same actuator type but manufactured in different batches with some design changes in the non active portion of the actuator and differences in the dielectric and the electromechanical coupling between the two batches were easily measureable. It is interesting to note that strain predicted by small signal impedance analysis is much lower than high field stains. Since the model is based on material properties rather than circuit constants, it could be used for the direct evaluation of specific aging or degradation mechanisms in the actuator as well as batch sorting and adjustment of manufacturing processes.

  7. Effect of Ca2+ substitution on impedance and electrical conduction mechanism of Ba1-xCaxZr0.1Ti0.9O3 (0.00≤x≤0.20) ceramics

    NASA Astrophysics Data System (ADS)

    Mondal, Tanusree; Das, Sayantani; Badapanda, T.; Sinha, T. P.; Sarun, P. M.

    2017-03-01

    The Ca modified Ba1-xCaxZr0.1Ti0.9O3 (BCZT) system for x=0.00-0.20 is synthesized by the high-temperature conventional solid state reaction method. The morphotropic phase boundary (MPB) between the tetragonal and cubic structure is obtained at room temperature for the composition x=0.15. The doping of Ca facilitates the enhancement of the homogeneity of microstructure and growth of the grain size. The phase transition is also confirmed by Raman spectroscopy. In order to explore the effect of Ca concentration variation on the conduction mechanism of BaZr0.1Ti0.9O3 (BZT) ceramic, the frequency dependent ac impedance spectroscopy technique is used at various temperatures. The effect of Ca doping on the electrical properties of BZT is clearly noticeable. The resistance of the grain (bulk) and the grain boundary is increased as a consequence of the increase in the activation energy of Ca substituted BZT samples. The enhanced resistivity of the Ca substituted BZT ceramics is explained in terms of the decrease in the mobility of the charge carriers associated with the lattice distortion. The electric modulus analysis reveals the enhanced capacitance of BCZT ceramics which is in good agreement with the results obtained from complex impedance analysis.

  8. Visual basic for biomedical applications: tissue impedance and power delivery in an ESU system.

    PubMed

    Bek, R

    1996-01-01

    The typical ESU found in most hospitals utilizes a microprocessor. This microprocessor supervises many tasks these include: time keeping, dosage monitoring, and display control. It must also perform complex tissue impedance measurement in real time as well as establishing a communication protocol to and from test hardware. This article will describe a means of displaying this information.

  9. Theoretical and experimental study of the input impedance of the cylindrical cavity-backed rectangular slot antennas

    NASA Technical Reports Server (NTRS)

    Li, Ming-Yi; Hummer, Kenneth A.; Chang, Kai

    1991-01-01

    The authors study the input impedance of a cylindrical cavity-backed slot antenna based on mode matching and the complex Poynting theorem. Two cavity-backed slot antennas were fabricated to verify the theory. The numerical results agree very well with measurements. Two resonant frequencies were found from the input impedance. One resonant frequency is attributed to the rectangular slot and the other is due to the cavity. The slot length controls the first resonant frequency and has a much stronger effect on the input impedance at the antenna operating frequency as compared with the cavity length.

  10. NONLINEAR DIAGNOSTICS USING AC DIPOLES.

    SciTech Connect

    PEGGS,S.

    1999-03-29

    There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].

  11. Electrical Impedance Tomography Technology (EITT) Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Development of a portable, lightweight device providing two-dimensional tomographic imaging of the human body using impedance mapping. This technology can be developed to evaluate health risks and provide appropriate medical care on the ISS, during space travel and on the ground.

  12. High Impedance Comparator for Monitoring Water Resistivity.

    ERIC Educational Resources Information Center

    Holewinski, Paul K.

    1984-01-01

    A high-impedance comparator suitable for monitoring the resistivity of a deionized or distilled water line supplying water in the 50 Kohm/cm-2 Mohm/cm range is described. Includes information on required circuits (with diagrams), sensor probe assembly, and calibration techniques. (JN)

  13. Impedance-matched drilling telemetry system

    DOEpatents

    Normann, Randy A.; Mansure, Arthur J.

    2008-04-22

    A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

  14. Energy-storage of a prescribed impedance

    NASA Technical Reports Server (NTRS)

    Smith, W. E.

    1969-01-01

    General mathematical expression found for energy storage shows that for linear, passive networks there is a minimum possible energy storage corresponding to a prescribed impedance. The electromagnetic energy storage is determined at different excitation frequencies through analysis of the networks terminal and reactance characteristics.

  15. Impedance matching between ventricle and load.

    PubMed

    Piene, H

    1984-01-01

    Impedance matching in the cardiovascular system is discussed in light of two models of ventricle and load: a Thevenin equivalent consisting of a hydromotive pressure source and an internal, source resistance and compliance in parallel; and a time-varying compliance filled from a constant pressure source and ejecting into a load of three components, a central resistor, a compliance, and a peripheral resistance. According to the Thevenin analog, the energy source and the load are matched when the load resistance is T/t times the internal source resistance (T is total cycle length, t is systolic time interval). Both from this model and from the variable compliance model it appears that optimum matching between source and load depends on the compliance of the Windkessel, as low compliance shifts the matching load resistance to a low value. Animal experiments (isolated cat hearts) indicated that both left and right ventricles at normal loads work close to their maxima of output hydraulic power, and, according to experiments in the right ventricle, maximum power output is related to load resistance and compliance as predicted by the above models. From an experimentally determined relationship among instantaneous ventricular pressure and volume (right ventricle of isolated cat hearts), an optimum load impedance was calculated on the basis of the assumption that the ratio between stroke work and static, potential energy developed in the ventricular cavity is maximum. The optimum load impedance found by this procedure closely resembles the normal input impedance of the cat lung vessel bed.

  16. Bioelectrical Impedance and Body Composition Assessment

    ERIC Educational Resources Information Center

    Martino, Mike

    2006-01-01

    This article discusses field tests that can be used in physical education programs. The most common field tests are anthropometric measurements, which include body mass index (BMI), girth measurements, and skinfold testing. Another field test that is gaining popularity is bioelectrical impedance analysis (BIA). Each method has particular strengths…

  17. Electrical impedance spectroscopy and diagnosis of tendinitis.

    PubMed

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook; Lee, Jong Hwa

    2010-02-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment.

  18. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  19. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  20. Landau damping with high frequency impedance

    SciTech Connect

    Blaskiewicz,M.

    2009-05-04

    Coupled bunch longitudinal stability in the presence of high frequency impedances is considered. A frequency domain technique is developed and compared with simulations. The frequency domain technique allows for absolute stability tests and is applied to the problem of longitudinal stability in RHIC with the new 56 MHz RF system.

  1. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  2. A phase field model of electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gathright, William

    One of the fundamental tenets of Material Science is the link between microstructure and material properties. As such, there is a need for a microstructure-sensitive model of electrochemistry. Phase field models have been designed to simulate systems with complex and evolving microstructures such as eutectic solidification and dendrite growth. The goal of this work is to extend phase field models into electrochemistry: with a chemical reaction model and a method of simulating electro-chemical impedance spectroscopy (EIS). The model given in the present work also forms the foundation for a microstructure-sensitive model of electrochemistry. EIS is a widely-used and powerful diagnostic technique in which the frequency-dependant impedance is measured. Though popular, data from EIS can be notoriously difficult to interpret. The present work also presents simulated EIS data, as well as explanations into the origins of common Nyquist plot features. At high-frequency, an analytic expression for the resistances is derived by analogy to Ohm's law. At low-frequency, the value for the resistance can be predicted by a simulated DC experiment. High- frequency capacitance originates in a difference in the current between the electrode and electrolyte. Low-frequency capacitance is defined by an “effective" surface charge, calculated by integrating the current over time rather than the charge density over distance. Depressed semicircle constant-phase element (CPE) behavior is also observed in the simulated data. Simulations with fast reaction kinetics exhibit power-law CPE impedance behavior, while simulations with a slow or no reaction are best explained by a combination of finite-length diffusion and electromigration. The model developed in this work is a tool to simulate, study, and interpret EIS data. Ultimately, it will serve as the foundation for a microstructure-sensitive model of electrochemistry.

  3. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  4. Point source moving above a finite impedance reflecting plane - Experiment and theory

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Liu, C. H.

    1978-01-01

    A widely used experimental version of the acoustic monopole consists of an acoustic driver of restricted opening forced by a discrete frequency oscillator. To investigate the effects of forward motion on this source, it was mounted above an automobile and driven over an asphalt surface at constant speed past a microphone array. The shapes of the received signal were compared to results computed from an analysis of a fluctuating-mass-type point source moving above a finite impedance reflecting plane. Good agreement was found between experiment and theory when a complex normal impedance representative of a fairly hard acoustic surface was used in the analysis.

  5. IMPEDANCE OF ELECTRON BEAM VACUUM CHAMBERS FOR THE NSLS-II STORAGE RING.

    SciTech Connect

    BLEDNYKH,A.; KRINSKY, S.

    2007-06-25

    In this paper we discuss computation of the coupling impedance of the vacuum chambers for the NSLS-II storage ring using the electromagnetic simulator GdfidL [1]. The impedance of the vacuum chambers depends on the geometric dimensions of the cross-section and height of the slot in the chamber wall. Of particular concern is the complex geometry of the infrared extraction chambers to be installed in special large-gap dipole magnets. In this case, wakefields are generated due to tapered transitions and large vertical-aperture ports with mirrors near the electron beam.

  6. VIEW OF PIPES AND RAIL, A/C MECHANICAL EQUIPMENT ROOM, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PIPES AND RAIL, A/C MECHANICAL EQUIPMENT ROOM, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  7. A/C MECHANICAL ROOM, FACING NORTHWEST Cape Canaveral Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A/C MECHANICAL ROOM, FACING NORTHWEST - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  8. DETAIL OF HEATING/COOLING SYSTEM, A/C MECHANICAL EQUIPMENT ROOM, FACING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF HEATING/COOLING SYSTEM, A/C MECHANICAL EQUIPMENT ROOM, FACING NORTHEAST - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  9. Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system.

    PubMed

    Süselbeck, T; Thielecke, H; Köchlin, J; Cho, S; Weinschenk, I; Metz, J; Borggrefe, M; Haase, K K

    2005-09-01

    Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) can characterize biological tissues by measuring the electrical impedance over a frequency range. We tested a newly designed intravascular impedance catheter (IC) by measuring the impedance of different stages of atherosclerosis induced in an animal rabbit model. Six female New Zealand White rabbits were fed for 17 weeks with a 5% cholesterol-enriched diet to induce early forms of atherosclerotic plaques. All aortas were prepared from the aortic arch to the renal arteries and segments of 5-10 mm were marked by ink spots. A balloon catheter system with an integrated polyimide-based microelectrode structure was introduced into the aorta and the impedance was measured at each spot by using an impedance analyzer. The impedance was measured at frequencies of 1 kHz and 10 kHz and compared with the corresponding histomorphometric data of each aortic segment.Forty-four aortic segments without plaques and 48 segments with evolving atherosclerotic lesions could be exactly matched by the histomorphometric analysis. In normal aortic segments (P0) the change of the magnitude of impedance at 1 kHz and at 10 kHz (|Z|(1 kHz) - |Z|(10 kHz), = ICF) was 208.5 +/- 357.6 Omega. In the area of aortic segments with a plaque smaller than that of the aortic wall diameter (PI), the ICF was 137.7 +/- 192.8 Omega. (P 0 vs. P I; p = 0.52), whereas in aortic segments with plaque formations larger than the aortic wall (PII) the ICF was significantly lower -22.2 +/- 259.9 Omega. (P0 vs. PII; p = 0.002). Intravascular EIS could be successfully performed by using a newly designed microelectrode integrated onto a conventional coronary balloon catheter. In this experimental animal model atherosclerotic aortic lesions showed significantly higher ICF in comparison to the normal aortic tissue.

  10. Investigation of straightforward impedance eduction in the presence of shear flow

    NASA Astrophysics Data System (ADS)

    Jing, Xiaodong; Peng, Sen; Wang, Lixun; Sun, Xiaofeng

    2015-01-01

    numbers. Based on the new evaluation of the influence of boundary layer profile, the FEM simulation using the straightforwardly educed impedance as the boundary condition can achieve an excellent agreement with the benchmark data for the complex sound pressure in the flow duct.

  11. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    NASA Astrophysics Data System (ADS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-05-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz-2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.

  12. Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination

    NASA Astrophysics Data System (ADS)

    Proskuryakov, Y. Y.; Durose, K.; Al Turkestani, M. K.; Mora-Seró, I.; Garcia-Belmonte, G.; Fabregat-Santiago, F.; Bisquert, J.; Barrioz, V.; Lamb, D.; Irvine, S. J. C.; Jones, E. W.

    2009-08-01

    The electrical properties of CdTe/CdS solar cells grown by metal organic chemical vapor deposition were investigated by a technique of impedance measurements under varied intensity of AM1.5 illumination. A generalized impedance model was developed and applied to a series of CdTe/CdS cells with variations in structure and doping. The light measurements were compared to the conventional ac measurements in dark under varied dc bias, using the same methodology for equivalent circuit analysis in both cases. Detailed information on the properties of the device structure was obtained, including the properties of the main p-n junction under light, minority carrier lifetime, back contact, as well as the effect of the blocking ZnO layer incorporated between the transparent conductor and CdS layers. In particular, the comparison between samples with different chemical concentrations of As has shown that the total device impedance and the series resistance are strongly increased at lower As densities, resulting in the lower collection current and efficiencies. At the same time the minority carrier lifetime was found to be one order of magnitude larger for the lowest value of As density, when compared to the optimized devices.

  13. Measuring plasma potential with an impedance probe in low density plasma

    NASA Astrophysics Data System (ADS)

    Walker, David; Blackwell, David; Fernsler, Richard; Amatucci, William

    2012-10-01

    A recent rf technique for determining plasma potential, φp , using an impedance probe was shown to be independent of probe geometry, magnetic field, and orientation. However, a problem which arises in low density plasma concerns a magnitude mismatch between typical network analyzer input impedance (Z0 = 50 φ) and the large value of ac resistance (Rac) which is inversely proportional to ne. The method relies on finding a minimum in Re(Zac)footnotetextPhys. Plasmas 17, 113503 (2010).^,footnotetextNRL Memorandum Report 6750-12-9413 (2012). which is difficult if Rac is much larger than Z0. For low density space plasmas (10^4 -10^5 cm-3) values of Rac range to kφ levels. We have developed numerical simulations based on solving the Boltzmann equation in spherical geometry for a given sheath size. These simulations include a presheath and predict values for Zac which are then used to estimate the error as a function of input impedance based on the error associated with a 50 φ load.

  14. Current density distribution in cylindrical Li-Ion cells during impedance measurements

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Noel, A.; Keil, P.; Kindermann, F. M.; Hoster, H.; Jossen, A.

    2016-05-01

    In this work, modified commercial cylindrical lithium-ion cells with multiple separate current tabs are used to analyze the influence of tab pattern, frequency and temperature on electrochemical impedance spectroscopy. In a first step, the effect of different current tab arrangements on the impedance spectra is analyzed and possible electrochemical causes are discussed. In a second step, one terminal is used to apply a sinusoidal current while the other terminals are used to monitor the local potential distribution at different positions along the electrodes of the cell. It is observed that the characteristic decay of the voltage amplitude along the electrode changes non-linearly with frequency, where high-frequent currents experience a stronger attenuation along the current collector than low-frequent currents. In further experiments, the decay characteristic is controlled by the cell temperature, driven by the increasing resistance of the current collector and the enhanced kinetic and transport properties of the active material and electrolyte. Measurements indicate that the ac current distribution depends strongly on the frequency and the temperature. In this context, the challenges for electrochemical impedance spectroscopy as cell diagnostic technique for commercial cells are discussed.

  15. An impedance matching of femoral-popliteal arterial grafts: a theoretical study.

    PubMed

    Hirayama, H; Nishimura, T; Fukuyama, Y

    1997-05-01

    We have proposed a mathematical method to investigate the matching conditions for an arterial graft in the femoral-popliteal region from a mechanical stand-point. Pulsatory blood flow, arterial wall motions, and conservation law are expressed by linear dynamical equations based on strict mechanical and constitutional considerations. To express the physiological blood flow in an actual arterial system, the tethering effects from the surrounding tissue and wall tensions were incorporated. The physiological parameters of arterial wall and tethering were utilized from reported experimental data. By complex analysis, mathematical expressions for the local impedance and reflection coefficient were obtained. They include not only blood properties such as viscosity and density, but also arterial properties including elastic modulus, radius, Poisson ratio, wall thickness, wall tension, frequency, and tethering effects from surrounding tissue. A matching condition was defined for minimizing the local impedance and reflection coefficient. The biophysical background was to reduce any mechanical mismatches, thus minimizing the disturbance of the flow velocity profile and shear stress distribution within the artery. Impedance matching in turn diminishes the negative factors for graft substitution represented by intimal hyperplasia and thrombosis. The calculated impedance and reflection coefficient inversed parabolically to functions of the resistance of the host artery, and there was one host arterial resistance that minimized the impedance and reflection coefficient. The present analysis revealed that for matching host artery with an elevated resistance, the dynamic elastic modulus of the wall of the graft that minimizes the impedance and reflection coefficient was increased. This indicates that for a host artery with a high resistance, an impedance matched stiff wall graft is preferable. For a large radius and a compliant host artery on the other hand, a large compliant graft

  16. Concentric artificial impedance surface for directional sound beamforming

    NASA Astrophysics Data System (ADS)

    Song, Kyungjun; Anzan-Uz-Zaman, Md.; Kwak, Jun-Hyuk; Jung, Joo-Yun; Kim, Jedo; Hur, Shin

    2017-03-01

    Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.

  17. Scattering by a groove in an impedance plane

    NASA Technical Reports Server (NTRS)

    Bindiganavale, Sunil; Volakis, John L.

    1993-01-01

    An analysis of two-dimensional scattering from a narrow groove in an impedance plane is presented. The groove is represented by a impedance surface and the problem reduces to that of scattering from an impedance strip in an otherwise uniform impedance plane. On the basis of this model, appropriate integral equations are constructed using a form of the impedance plane Green's functions involving rapidly convergent integrals. The integral equations are solved by introducing a single basis representation of the equivalent current on the narrow impedance insert. Both transverse electric (TE) and transverse magnetic (TM) polarizations are treated. The resulting solution is validated by comparison with results from the standard boundary integral method (BIM) and a high frequency solution. It is found that the presented solution for narrow impedance inserts can be used in conjunction with the high frequency solution for the characterization of impedance inserts of any given width.

  18. ac electroosmotic pumping induced by noncontact external electrodes.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-09-21

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.

  19. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  20. Two-dimensional SPICE-linked multiresolution impedance method for low-frequency electromagnetic interactions.

    PubMed

    Eberdt, Michael; Brown, Patrick K; Lazzi, Gianluca

    2003-07-01

    A multiresolution impedance method for the solution of low-frequency electromagnetic interaction problems typically encountered in bioelectromagnetics is presented. While the impedance method in its original form is based on the discretization of the scattering objects into equal-sized cells, our formulation decreases the number of unknowns by using an automatic mesh generation method that does not yield equal-sized cells in the modeling space. Results indicate that our multiresolution mesh generation scheme can provide a 50%-80% reduction in cell count, providing new opportunities for the solution of low-frequency bioelectromagnetic problems that require a high level of detail only in specific regions of the modeling space. Furthermore, linking the mesh generator to a circuit simulator such as SPICE permits the addition of arbitrarily complex passive and active circuit elements to the generated impedance network, opening the door to significant advances in the modeling of bioelectromagnetic phenomena.

  1. Correlation between AC and DC transport properties of Mn substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2016-12-01

    The CoFe2-xMnxO4 compound is prepared by following the sol gel technique. The structural analysis through XRD and Rietveld has been confirmed for the single cubic phase having F d 3 ¯ m space group for CoFe2-xMnxO4 and also verified it through Raman spectroscopy measurements. The tetrahedral site observed to be red shifted with increase in Mn concentration in cobalt ferrite. All the XRD patterns have been analyzed by employing the Rietveld refinement technique. The particle size was found to be in the range of 30-40 nm. The electrical properties of polycrystalline CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.2, spinel ferrite was investigated by impedance spectroscopy. The influence of doping, frequency and temperature on the electrical transport properties of the CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.20 were investigated. The magnitude of Z' and Z″ decreases with increase in temperature. Only one semicircle is observed in each Cole Cole plot which reveals that ac conductivity is dominated by grains. The grain resistance and grain boundary resistance both were found to decrease as a function of temperature. Temperature variation of DC electrical conductivity follows the Arrhenius relationship. A detailed analysis of electrical parameters provides assistance in connecting information regarding the conduction mechanism as well as determination of both dielectric and magnetic transition temperatures in the substituted cobalt ferrite. Detailed analysis of ac impedance and DC resistivity measurement reveals that, the magnetic ordering temperature in the Mn substituted cobalt ferrite does not respond to the frequency of ac electrical signal; however, it responds to the DC resistivity. The correlation between ac impedance and DC resistivity has been established.

  2. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  3. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  4. Impedance analysis of the organ of corti with magnetically actuated probes.

    PubMed

    Scherer, Marc P; Gummer, Anthony W

    2004-08-01

    An innovative method is presented to measure the mechanical driving point impedance of biological structures up to at least 40 kHz. The technique employs an atomic force cantilever with a ferromagnetic coating and an external magnetic field to apply a calibrated force to the cantilever. Measurement of the resulting cantilever velocity using a laser Doppler vibrometer yields the impedance. A key feature of the method is that it permits measurements for biological tissue in physiological solutions. The method was applied to measure the point impedance of the organ of Corti in situ, to elucidate the biophysical basis of cochlear amplification. The basilar membrane was mechanically clamped at its tympanic surface and the measurements conducted at different radial positions on the reticular lamina. The tectorial membrane was removed. The impedance was described by a generalized Voigt-Kelvin viscoelastic model, in which the stiffness was real-valued and independent of frequency, but the viscosity was complex-valued with positive real part, which was dependent on frequency and negative imaginary part, which was independent of frequency. There was no evidence for an inertial component. The magnitude of the impedance was greatest at the tunnel of Corti, and decreased monotonically in each of the radial directions. In the absence of inertia, the mechanical load on the outer hair cells causes their electromotile displacement responses to be reduced by only 10-fold over the entire range of auditory frequencies.

  5. Electric impedance imaging of the mammary gland in the case of mastitis

    NASA Astrophysics Data System (ADS)

    Korotkova, M.; Karpov, A.

    2010-04-01

    The electric impedance mammography technique has been applied for several years. The aim of the research in hand is to reveal the peculiarities of the electric impedance imaging in various stages of the inflammatory process in the mammary gland. We have conducted an examination of twenty six patients: five of them in the stage of arterial hyperemia, eight in the stage of infiltration, three of them in the stage of abscess and ten in the stage of cicatrization. The examination was carried out on the "MEIK" (version 5.6) potencial electric impedance computer mammograph. The weighted reciprocal projection method was used to reconstruct the 3-D electric conductivity distribution of the examined organ. Any inflammatory process is phasic and always attended by the complex vascular alterations with exudation of liquid components of plasma, blood cells outwandering and stromal cells proliferation. Pathophysiological and histopathological peculiarities of each stage of the inflammatory process are well reflected in the electric impedance images. This fact enabled the authors of the research to define the electric impedance imaging as the histofunctional scanning.

  6. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    SciTech Connect

    Taer, E.; Awitdrus,; Farma, R.; Deraman, M. Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R.; Kanwal, S.

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  7. The relationship between skin maturation and electrical skin impedance.

    PubMed

    Emery, M M; Hebert, A A; Aguirre Vila-Coro, A; Prager, T C

    1991-09-01

    When performing electrophysiological testing, high electrical impedance values are sometimes found in neonates. Since excessive impedance can invalidate test results, a study was conducted to delineate the relationship between skin maturation and electrical skin impedance. This study investigated the skin impedance in 72 infants ranging from 196 to 640 days of age from conception. Regression analyses demonstrated a significant relationship between impedance and age, with the highest impedance centered around full-term gestation with values falling precipitously at time points on either side. Clinically, impedance values fall to normal levels at approximately four months following full-term gestation. Skin impedance values are low in premature infants, but rapidly increase as the age approaches that of full-term neonates. Low impedance values in premature infants are attributed to greater skin hydration which results from immature skin conditions such as 1) thinner epidermal layers particularly at the transitional and cornified layers; 2) more blood flow to the skin; and 3) higher percentage of water composition. These factors facilitate the diffusion of water vapor through the skin. As the physical barrier to skin water loss matures with gestational age, the skin impedance reaches a maximum value at full term neonatal age. After this peak, a statistically significant inverse relationship exists between electrical skin impedance and age in the first year of life. This drop in skin impedance is attributed to an increase in skin hydration as a result of the greater functional maturity of eccrine sweat glands.

  8. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  9. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  10. Estimating the Transverse Impedance in the Fermilab Recycler

    SciTech Connect

    Ainsworth, Robert; Adamson, Philip; Burov, Alexey; Kourbanis, Ioanis; Yang, Ming-Jen

    2016-06-01

    Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.

  11. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Auditory impedance tester. 874.1090 Section 874...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in...

  12. Valveless impedance micropump with integrated magnetic diaphragm.

    PubMed

    Lee, Chia-Yen; Chen, Zgen-Hui

    2010-04-01

    This study presents a planar valveless impedance-based micropump for biomedical applications comprising a lower glass substrate patterned with a copper micro-coil, a microchannel, an upper glass cover plate, and a PDMS diaphragm with an electroplated magnet on its upper surface. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which in turn produces a net flow. The performance of the micropump is characterized experimentally. The experimental results show that a maximum diaphragm deflection of 30 microm is obtained when the micro-coil is supplied with an input current of 0.5 A. The corresponding flow rate is found to be 1.5 microl/sec when the PDMS membrane is driven by an actuating frequency of 240 Hz.

  13. Evaluating impedances in a Sacherer integral equation

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1994-08-01

    In Sacherer integral equation, the beam line density is expanded on the phase deviation {phi}, generating a Hankel spectrum, rather than on the time, which generates a Fourier spectrum. This is a natural choice to deal with the particle evolution in phase space, it however causes complications whenever the impedance corresponding to the spectrum has to be evaluated. In this article, the line density expansion on {phi} is shown to be equivalent to a beam time modulation under an acceptable condition. Therefore for a Hankel spectrum, a number of sidebands, and the corresponding impedance as well, will be involved. For wideband resonators, it is shown that the original Sacherer solution is adequate. For narrowband resonators, the solution had been compromised, therefore a modification may be needed.

  14. Sound barriers from materials of inhomogeneous impedance.

    PubMed

    Wang, Xu; Mao, Dongxing; Yu, Wuzhou; Jiang, Zaixiu

    2015-06-01

    Sound barriers are extensively used in environmental noise protection. However, when barriers are placed in parallel on opposite sides of a sound source, their performance deteriorates markedly. This paper describes a barrier made from materials of inhomogeneous impedance which lacks this drawback. The nonuniform impedance affects the way sound undergoes multiple reflections, and in the process traps acoustic energy. A proposed realization of the barrier comprises a closely spaced array of progressively tuned hollow narrow tubes which create a phase gradient. The acoustics of the barrier is theoretically examined and its superiority over conventional barriers is calculated using finite element modeling. Structural parameters of the barrier can be changed to achieve the required sound insertion loss, and the barrier has the potential to be widely used in environmental noise control.

  15. Impedance of a beam tube with antechamber

    SciTech Connect

    Barry, W.; Lambertson, G.R.; Voelker, F.

    1986-08-01

    A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance such a geometry would present to the beam, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances.

  16. Are Patents Impeding Medical Care and Innovation?

    PubMed Central

    Gold, E. Richard; Kaplan, Warren; Orbinski, James; Harland-Logan, Sarah; N-Marandi, Sevil

    2010-01-01

    Background to the debate: Pharmaceutical and medical device manufacturers argue that the current patent system is crucial for stimulating research and development (R&D), leading to new products that improve medical care. The financial return on their investments that is afforded by patent protection, they claim, is an incentive toward innovation and reinvestment into further R&D. But this view has been challenged in recent years. Many commentators argue that patents are stifling biomedical research, for example by preventing researchers from accessing patented materials or methods they need for their studies. Patents have also been blamed for impeding medical care by raising prices of essential medicines, such as antiretroviral drugs, in poor countries. This debate examines whether and how patents are impeding health care and innovation. PMID:20052274

  17. FEM electrode refinement for electrical impedance tomography.

    PubMed

    Grychtol, Bartlomiej; Adler, Andy

    2013-01-01

    Electrical Impedance Tomography (EIT) reconstructs images of electrical tissue properties within a body from electrical transfer impedance measurements at surface electrodes. Reconstruction of EIT images requires the solution of an inverse problem in soft field tomography, where a sensitivity matrix, J, of the relationship between internal changes and measurements is calculated, and then a pseudo-inverse of J is used to update the image estimate. It is therefore clear that a precise calculation of J is required for solution accuracy. Since it is generally not possible to use analytic solutions, the finite element method (FEM) is typically used. It has generally been recommended in the EIT literature that FEMs be refined near electrodes, since the electric field and sensitivity is largest there. In this paper we analyze the accuracy requirement for FEM refinement near electrodes in EIT and describe a technique to refine arbitrary FEMs.

  18. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  19. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  20. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  1. Monitoring Polymer Curing Via Electromagnetic Impedance

    NASA Technical Reports Server (NTRS)

    Freeman, William T.; Covington, John C.; Kranbuehl, David E.; Hoff, Melanie; Delos, Susan

    1992-01-01

    New nondestructive in-situ electromagnetic-impedance measurement technique senses cure-processing properties of high-temperature, high-performance thermostat and thermoplastic resins. Continuous frequency-dependent measurement and analysis performed during curing cycle. Monitors and measures molecular properties of polymeric resin in liquid and solid states. Applications include nondestructive means for evaluation of materials, determination of "window" boundaries of curing cycles of thermoplastics and thermoset resins, and for online, closed-loop control of curing cycles.

  2. Superconducting surface impedance under radiofrequency field

    DOE PAGES

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  3. Study of the Electrical Impedance Scanning

    DTIC Science & Technology

    2007-11-02

    exhibit conductive changes that cause an impedance variation between cancerous ant health tissues. Since there are very few commercial devices...contribute somehow in the evaluation of the parameters involved. Keywords – Electrical Transimpedance Scanning, Breast cancer I. INTRODUCTION The...Electrical Transimpedance Scanning (ETS) is a new technique, non-invasive, non-irradiant, used in the diagnosis of breast cancer . Combined with other

  4. Instantaneous characteristics simulation and analysis on three-level brushless AC synchronous generators of aeronautic constant speed and frequency AC power system

    NASA Astrophysics Data System (ADS)

    Ma, Xiaohe; Shen, Songhua

    2006-11-01

    This paper mainly introduces theoretical analysis and experimental results of instantaneous characteristics on a certain three level brushless three-phase AC synchronous generators. The analysis, modeling and simulations with Simplorer software of Ansoft Company are carried out. It establishes three level generator models, gives theoretical relation matrix equation, and simulates some instantaneous characteristics. Design of the system requires reliable simulation tools with comprehensive component libraries capable of dealing with complex system behavior. The simulation results verify that the proposed system model can efficiently simulate the instantaneous characteristics of the real AC generator system. It gives better design experiences and digital methods for aeronautic constant speed and frequency AC power system.

  5. Antenna pattern control using impedance surfaces

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Liu, Kefeng

    1992-01-01

    During this research period, we have effectively transferred existing computer codes from CRAY supercomputer to work station based systems. The work station based version of our code preserved the accuracy of the numerical computations while giving a much better turn-around time than the CRAY supercomputer. Such a task relieved us of the heavy dependence of the supercomputer account budget and made codes developed in this research project more feasible for applications. The analysis of pyramidal horns with impedance surfaces was our major focus during this research period. Three different modeling algorithms in analyzing lossy impedance surfaces were investigated and compared with measured data. Through this investigation, we discovered that a hybrid Fourier transform technique, which uses the eigen mode in the stepped waveguide section and the Fourier transformed field distributions across the stepped discontinuities for lossy impedances coating, gives a better accuracy in analyzing lossy coatings. After a further refinement of the present technique, we will perform an accurate radiation pattern synthesis in the coming reporting period.

  6. Force reflecting teleoperation with adaptive impedance control.

    PubMed

    Love, Lonnie J; Book, Wayne J

    2004-02-01

    Experimentation and a survey of the literature clearly show that contact stability in a force reflecting teleoperation system requires high levels of damping on the master robot. However, excessive damping increases the energy required by an operator for commanding motion. The objective of this paper is to describe a new force reflecting teleoperation methodology that reduces operator energy requirements without sacrificing stability. We begin by describing a new approach to modeling and identifying the remote environment of the teleoperation system. We combine a conventional multi-input, multi-output recursive least squares (MIMO-RLS) system identification, identifying in real-time the remote environment impedance, with a discretized representation of the remote environment. This methodology generates a time-varying, position-dependent representation of the remote environment dynamics. Next, we adapt the target impedance of the master robot with respect to the dynamic model of the remote environment. The environment estimation and impedance adaptation are executed simultaneously and in real time. We demonstrate, through experimentation, that this approach significantly reduces the energy required by an operator to execute remote tasks while simultaneously providing sufficient damping to ensure contact stability.

  7. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  8. Application of impedance spectroscopy to SOFC research

    SciTech Connect

    Hsieh, G.; Mason, T.O.; Pederson, L.R.

    1996-12-31

    With the resurgence of interest in solid oxide fuel cells and other solid state electrochemical devices, techniques originally developed for characterizing aqueous systems are being adapted and applied to solid state systems. One of these techniques, three-electrode impedance spectroscopy, is particularly powerful as it allows characterization of subcomponent and interfacial properties. Obtaining accurate impedance spectra, however, is difficult as reference electrode impedance is usually non-negligible and solid electrolytes typically have much lower conductance than aqueous solutions. Faidi et al and Chechirlian et al have both identified problems associated with low conductivity media. Other sources of error are still being uncovered. Ford et al identified resistive contacts with large time constants as a possibility, while Me et al showed that the small contact capacitance of the reference electrode was at fault. Still others show that instrument limitations play a role. Using the voltage divider concept, a simplified model that demonstrates the interplay of these various factors, predicts the form of possible distortions, and offers means to minimize errors is presented.

  9. Local Signal Impedes the Definition of the Cosmic Infrared Background

    NASA Astrophysics Data System (ADS)

    Kelsall, Thomas

    2010-01-01

    It was noted (ApJ 508, 44, 1998) when developing a COBE/DIRBE-data-based model for the infrared (IR) signal from the interplanetary dust cloud (IPD) that there were clear evidences of unexpected time-variable wavelength-dependent signals in all the ten DIRBE bands (1.2 to 240 μm). The amplitudes of these signals range in magnitude from the order of one-half to a few percent of the respective-wavelength IPD signal. This presentation provides selected details on the nature of these signals as regards their wavelength-dependent periodicities, time-variable amplitudes, and complex spatial configurations. Particular attention is devoted to describing the consequences imposed by these signals which impede the observational determination of and/or the setting of limits on the cosmic IR background.

  10. Fault detection in railway track using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Cremins, M.; Shuai, Qi; Xu, Jiawen; Tang, J.

    2014-04-01

    In this research, piezoelectric transducers are incorporated in an impedance-based damage detection approach for railway track health monitoring. The impedance-based damage detection approach utilizes the direct relationship between the mechanical impedance of the track and electrical impedance of the piezoelectric transducer bonded. The effect of damage is shown in the change of a healthy impedance curve to an altered, damaged curve. Using a normalized relative difference outlier analysis, the occurrences of various damages on the track are determined. Furthermore, the integration of inductive circuitry with the piezoelectric transducer is found to be able to considerably increase overall damage detection sensitivity.

  11. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    PubMed

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  12. The Influence of Segmental Impedance Analysis in Predicting Validity of Consumer Grade Bioelectrical Impedance Analysis Devices

    NASA Astrophysics Data System (ADS)

    Sharp, Andy; Heath, Jennifer; Peterson, Janet

    2008-05-01

    Consumer grade bioelectric impedance analysis (BIA) instruments measure the body's impedance at 50 kHz, and yield a quick estimate of percent body fat. The frequency dependence of the impedance gives more information about the current pathway and the response of different tissues. This study explores the impedance response of human tissue at a range of frequencies from 0.2 - 102 kHz using a four probe method and probe locations standard for segmental BIA research of the arm. The data at 50 kHz, for a 21 year old healthy Caucasian male (resistance of 180φ±10 and reactance of 33φ±2) is in agreement with previously reported values [1]. The frequency dependence is not consistent with simple circuit models commonly used in evaluating BIA data, and repeatability of measurements is problematic. This research will contribute to a better understanding of the inherent difficulties in estimating body fat using consumer grade BIA devices. [1] Chumlea, William C., Richard N. Baumgartner, and Alex F. Roche. ``Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectrical impedance.'' Am J Clin Nutr 48 (1998): 7-15.

  13. Mathematicians, Attributional Complexity, and Gender

    NASA Astrophysics Data System (ADS)

    Stalder, Daniel R.

    Given indirect indications in sex role and soda! psychology research that mathematical-deductive reasoning may negatively relate to social acuity, Study 1 investigated whether mathematicians were less attributionally complex than nonmathematicians. Study 1 administered the Attributional Complexity Scale, a measure of social acuity, to female and male faculty members and graduate students in four Midwestern schools. Atlrihutional complexity (AC) is the ability and motivation to give complex explanations for behavior. Study 1 found a significant interaction between field and gender. Only among women did mathematicians score lower on AC. In addition, an established gender difference in AC (that women score higher than men) was present only among nonmathematicians. Studies 2 and 3 offered some preliminary support for the possibility that it is generally female students who score tow on AC who aspire to he mathematicians and for the underlying view that female students' perceived similarity to mathematicians can influence their vocational choices.

  14. Performance of TES X-ray Microcalorimeters with AC Bias Read-Out at MHz Frequencies

    NASA Astrophysics Data System (ADS)

    Akamatsu, H.; Gottardi, L.; Adams, J.; Bandler, S.; Bruijn, M.; Chervenak, J.; Eckart, M.; Finkbeiner, F.; den Hartog, R.; Hoevers, H.; Kelley, R.; Kilbourne, C.; van der Kuur, J.; van den Linden, A. J.; Porter, F.; Sadleir, J.; Smith, S.; Kiviranta, M.

    2014-08-01

    At SRON we are developing Frequency Domain Multiplexing for the read-out of superconducting transition edge sensor microcalorimeters for future X-ray astrophysical missions. We will report on the performance of Goddard Space Flight Center pixels under AC bias in the MHz frequency range. Superconducting flux transformers are used to improve the impedance matching between the low ohmic TESs and the SQUID. We connected 5 pixels to the LC filters with resonant frequencies ranging between 1 and 5 MHz. For X-ray photons of 6 keV we measured a best X-ray energy resolution of 3.6 eV at 1.4 MHz, consistent with the integrated Noise Equivalent Power. In addition, we improved the electrical circuit by optimizing the coupling ratio of the impedance matching transformer. In addition, we improved electrical circuit for impedance matching; modified transformer coupling ratio. As a result, we got the integrated noise equivalent power resolution of 2.7 eV at 2.5 MHz. A characterization of the detector response as a function of the AC bias voltage, bias frequency and the applied magnetic field is presented.

  15. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    NASA Astrophysics Data System (ADS)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC

  16. Superconducting fault current-limiter with variable shunt impedance

    DOEpatents

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  17. Mechanism of the formation for thoracic impedance change.

    PubMed

    Kuang, Ming-Xing; Xiao, Qiu-Jin; Cui, Chao-Ying; Kuang, Nan-Zhen; Hong, Wen-Qin; Hu, Ai-Rong

    2010-03-01

    The purpose of this study is to investigate the mechanism of the formation for thoracic impedance change. On the basis of Ohm's law and the electrical field distribution in the cylindrical volume conductor, the formula about the thoracic impedance change are deduced, and they are demonstrated with the model experiment. The results indicate that the thoracic impedance change caused by single blood vessel is directly proportional to the ratio of the impedance change to the basal impedance of the blood vessel itself, to the length of the blood vessel appearing between the current electrodes, and to the basal impedance between two detective electrodes on the chest surface, while it is inversely proportional to the distance between the blood vessel and the line joining two detective electrodes. The thoracic impedance change caused by multiple blood vessels together is equal to the algebraic addition of all thoracic impedance changes resulting from the individual blood vessels. That is, the impedance changes obey the principle of adding scalars in the measurement of the electrical impedance graph. The present study can offer the theoretical basis for the waveform reconstruction of Impedance cardiography (ICG).

  18. Three-dimensional electrical impedance tomography of human brain activity.

    PubMed

    Tidswell, T; Gibson, A; Bayford, R H; Holder, D S

    2001-02-01

    Regional cerebral blood flow and blood volume changes that occur during human brain activity will change the local impedance of that cortical area, as blood has a lower impedance than that of brain. Theoretically, such impedance changes could be measured from scalp electrodes and reconstructed into images of the internal impedance of the head. Electrical Impedance Tomography (EIT) is a newly developed technique by which impedance measurements from the surface of an object are reconstructed into impedance images. It is fast, portable, inexpensive, and noninvasive, but has a relatively low spatial resolution. EIT images were recorded with scalp electrodes and an EIT system, specially optimized for recording brain function, in 39 adult human subjects during visual, somatosensory, or motor activity. Reproducible impedance changes of about 0.5% occurred in 51/52 recordings, which lasted from 6 s after the stimulus onset to 41 s after stimulus cessation. When these changes were reconstructed into impedance images, using a novel 3-D reconstruction algorithm, 19 data sets demonstrated significant impedance changes in the appropriate cortical region. This demonstrates, for the first time, that significant impedance changes, which could form the basis for a novel neuroimaging technology, may be recorded in human subjects with scalp electrodes. The final images contained spatial noise and strategies to reduce this in future work are presented.

  19. Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers

    PubMed Central

    Cha, Jung-Joon; Park, Yangkyu; Yun, Joho; Kim, Hyeon Woo; Park, Chang-Ju; Kang, Giseok; Jung, Minhyun; Pak, Boryeong; Jin, Suk-Won

    2016-01-01

    Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells. PMID:27812531

  20. Recursive impedance inversion of ground-penetrating radar data in stochastic media

    NASA Astrophysics Data System (ADS)

    Zeng, Zhao-Fa; Chen, Xiong; Li, Jing; Chen, Ling-Na; Lu, Qi; Liu, Feng-Shan

    2015-12-01

    The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.

  1. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  2. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  3. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes

    DOE PAGES

    Tenhaeff, Wyatt E.; Wang, Yangyang; Sokolov, Alexei P.; ...

    2013-07-24

    Here, the cubic-stabilized garnet solid electrolyte with a nominal composition of Li6.28Al0.24La3Zr2O12 is thoroughly characterized by impedance spectroscopy. By varying the frequency of the applied AC signal over 11 orders of magnitude for characterizations from –100 to +60 °C, the relative contributions of grain and grain boundary conduction are unambiguously resolved.

  4. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  5. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  6. Method for conducting nonlinear electrochemical impedance spectroscopy

    DOEpatents

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  7. Study of corrosion of super martensitic stainless steel under alternating current in artificial seawater with electrochemical impedance spectroscopy

    SciTech Connect

    Reyes, T.; Bhola, S.; Olson, D. L.; Mishra, B.

    2011-06-23

    The assessment of corrosion requires the use of tools able to quantify the corrosion but often times also qualify it. Electrochemical Impedance Spectroscopy (EIS) is a laboratory tool that can provide both qualification and quantification of corrosion. EIS was successfully used to compare the thickness of the corrosion products formed during the application of different alternating current (AC) densities as well as to characterize pitting. When EIS is applied at the open circuit potential, the technique is nondestructive and predicts the corrosion behavior of the electrode. It can also be used at cathodic potentials while still being nondestructive, providing information about the electrode reaction kinetics, diffusion and electrical double layer.

  8. Substituted Phthalimide AC94377 Is a Selective Agonist of the Gibberellin Receptor GID11[OPEN

    PubMed Central

    Otani, Masato; Shimotakahara, Hiroaki; Yoon, Jung-Min; Park, Seung-Hyun; Miyaji, Tomoko; Nakano, Takeshi; Nakamura, Hidemitsu; Nakajima, Masatoshi

    2017-01-01

    Gibberellin (GA) is a major plant hormone that regulates plant growth and development and is widely used as a plant growth regulator in agricultural production. There is an increasing demand for function-limited GA mimics due to the limitations on the agronomical application of GA to crops, including GA’s high cost of producing and its leading to the crops’ lodging. AC94377, a substituted phthalimide, is a chemical that mimics the growth-regulating activity of GAs in various plants, despite its structural difference. Although AC94377 is widely studied in many weeds and crops, its mode of action as a GA mimic is largely unknown. In this study, we confirmed that AC94377 displays GA-like activities in Arabidopsis (Arabidopsis thaliana) and demonstrated that AC94377 binds to the Arabidopsis GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor (AtGID1), forms the AtGID1-AC94377-DELLA complex, and induces the degradation of DELLA protein. Our results also indicated that AC94377 is selective for a specific subtype among three AtGID1s and that the selectivity of AC94377 is attributable to a single residue at the entrance to the hydrophobic pocket of GID1. We conclude that AC94377 is a GID1 agonist with selectivity for a specific subtype of GID1, which could be further developed and used as a function-limited regulator of plant growth in both basic study and agriculture. PMID:27899534

  9. Imaging and characterizing root systems using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Kemna, A.; Weigand, M.; Kelter, M.; Pfeifer, J.; Zimmermann, E.; Walter, A.

    2011-12-01

    Root architecture, growth, and activity play an essential role regarding the nutrient uptake of roots in soils. While in recent years advances could be achieved concerning the modeling of root systems, measurement methods capable of imaging, characterizing, and monitoring root structure and dynamics in a non-destructive manner are still lacking, in particular at the field scale. We here propose electrical impedance tomography (EIT) for the imaging of root systems. The approach takes advantage of the low-frequency capacitive electrical properties of the soil-root interface and the root tissue. These properties are based on the induced migration of ions in an externally applied electric field and give rise to characteristic impedance spectra which can be measured by means of electrical impedance spectroscopy. The latter technique was already successfully applied in the 10 Hz to 1 MHz range by Ozier-Lafontaine and Bajazet (2005) to monitor root growth of tomato. We here apply the method in the 1 mHz to 45 kHz range, requiring four-electrode measurements, and demonstrate its implementation and potential in an imaging framework. Images of real and imaginary components of complex electrical conductivity are computed using a finite-element based inversion algorithm with smoothness-constraint regularization. Results from laboratory measurements on rhizotrons with different root systems (barley, rape) show that images of imaginary conductivity delineate the spatial extent of the root system under investigation, while images of real conductivity show a less clear response. As confirmed by numerical simulations, the latter could be explained by the partly compensating electrical conduction properties of epidermis (resistive) and inner root cells (conductive), indicating the limitations of conventional electrical resistivity tomography. The captured spectral behavior exhibits two distinct relaxation processes with Cole-Cole type signatures, which we interpret as the responses

  10. Method of Adjusting Acoustic Impedances for Impedance-Tunable Acoustic Segments

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H (Inventor); Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Lodding, Kenneth N. (Inventor)

    2012-01-01

    A method is provided for making localized decisions and taking localized actions to achieve a global solution. In an embodiment of the present invention, acoustic impedances for impedance-tunable acoustic segments are adjusted. A first acoustic segment through an N-th acoustic segment are defined. To start the process, the first acoustic segment is designated as a leader and a noise-reducing impedance is determined therefor. This is accomplished using (i) one or more metrics associated with the acoustic wave at the leader, and (ii) the metric(s) associated with the acoustic wave at the N-th acoustic segment. The leader, the N-th acoustic segment, and each of the acoustic segments exclusive of the leader and the N-th acoustic segment, are tuned to the noise-reducing impedance. The current leader is then excluded from subsequent processing steps. The designation of leader is then given one of the remaining acoustic segments, and the process is repeated for each of the acoustic segments through an (N-1)-th one of the acoustic segments.

  11. Impedance Spectroscopy of Potential Sulphide Ion Conductors: Instability of Impedance Arcs

    NASA Astrophysics Data System (ADS)

    Johnson, V. S.; Hellgardt, K.; Dann, S. E.; Whiter, R.

    Very few studies are available which deal with sulphide systems while a large number of different types of oxide ion conducting ceramics are described in the open literature. The research here has focused on oxide ion conducting analogues. Solid solutions of CaNd2S3 and Nd2S3 were characterized using Impedance Spectroscopy (IS), temperature programmed oxidation (TPO) and temperature programmed reduction (TPR). The materials resist oxidation up to a temperature of approximately 680°C and reduction up to 750°C. Instability of impedance arcs at elevated temperatures have been reported previously and are explained in terms of three phase boundary area (TPB). Examples include CaS using gold electrodes and Yttria-Stabilized-Zirconia (YSZ) with platinum electrodes. Only a single impedance arc is observed for the undoped CaNd2S4. Two arcs are observed for the doped material indicating ionic mobility. At low frequencies significant instability is observed as a function of temperature (change of decreasing real component of impedance to increasing real component at approximately 250°C for the undoped and 200°C for the doped material). This may be explained by the formation and subsequent decomposition of Au2S forming at the interface of electrolyte and electrode.

  12. Arts of electrical impedance tomographic sensing

    PubMed Central

    Wang, Mi; Wang, Qiang; Karki, Bishal

    2016-01-01

    This paper reviews governing theorems in electrical impedance sensing for analysing the relationships of boundary voltages obtained from different sensing strategies. It reports that both the boundary voltage values and the associated sensitivity matrix of an alternative sensing strategy can be derived from a set of full independent measurements and sensitivity matrix obtained from other sensing strategy. A new sensing method for regional imaging with limited measurements is reported. It also proves that the sensitivity coefficient back-projection algorithm does not always work for all sensing strategies, unless the diagonal elements of the transformed matrix, ATA, have significant values and can be approximate to a diagonal matrix. Imaging capabilities of few sensing strategies were verified with static set-ups, which suggest the adjacent electrode pair sensing strategy displays better performance compared with the diametrically opposite protocol, with both the back-projection and multi-step image reconstruction methods. An application of electrical impedance tomography for sensing gas in water two-phase flows is demonstrated. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185968

  13. A high frequency electromagnetic impedance imaging system

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systems for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.

  14. Anisotropic impedance surfaces for enhanced antenna isolation

    NASA Astrophysics Data System (ADS)

    Miragliotta, Joseph A.; Shrekenhamer, David; Sievenpiper, Daniel F.

    2015-09-01

    Anisotropic impedance surfaces, which include metasurfaces and high impedance surfaces (HIS), can be designed to control the amplitude and propagation direction of surface electromagnetic waves and are an effective means to enhance the isolation between antennas that share a common ground plane. To date, the majority of metastructures that have been designed for antenna isolation have relied on an isotropic distribution of unit cells that possess a stop band that inhibits the propagation of surface waves between neighboring antennas. A less common approach to isolation has been through the design of a metasurface that enables the re-direction of surface waves away from the location of the antenna structure, which effectively limits the coupling. In this paper, we discuss results from our computational investigation associated with improving antenna isolation through the use of an anisotropic metastructure. Simulated results associated with the isolation performance of two simple, but similar, anisotropic structures are compared to the corresponding results from a broadband magnetic radar absorbing materials (magRAM).

  15. Longitudinal coupling impedance of toroidal beam tube

    SciTech Connect

    Hahn, H.

    1988-01-01

    Coupling impedance estimates for large accelerator/storage rings are usually based on calculations or measurements assuming that the curvature of the beam tube is negligible and that the ring structure can be treated by imposing periodic boundary conditions. It was pointed out by Faltens and Laslett that a smooth, curved beam tube may have high frequency ring-resonances with associated coupling impedance. Recently, the curvature effect was reexamined in the context of SSC by Ng and RHIC by Ruggiero. Although different in detail, their treatments follow the Laslett approach using perfectly toroidal, loss-less beam tubes with losses introduced as perturbation. In this note a different solution is obtained which takes into account the co-presence of curved as well as straight beam tubes and the significant attenuation of the stainless-steel (i.e., high loss) beam tubes in the straight sections. It is the opinion of this author that the problem under consideration represents a case which was addressed by Behringer when stating that ''the solution of the field equations obtained by expansion in terms of sets of orthogonal modes breaks down if the losses become too great.'' 10 refs.

  16. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  17. Plasma Impedance Spectrum Analyzer (PISA): an advanced impedance probe for measuring plasma density and other parameters

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Pfaff, R. F.; Uribe, P.; Burchill, J.

    2006-12-01

    High-accuracy, high-cadence measurements of ionospheric electron density between 100 and a few x 106 / cc and electron temperature from 200 K to a few thousand K are of critical importance for understanding conductivity, Joule heating rates, and instability growth rates. We present results from the development of an impedance probe at NASA GSFC and show its strengths relative to other measurement techniques. Complementary measurement techniques such as Langmuir Probes, while providing extremely high measurement cadence, suffer from uncertainties in calibration, surface contamination effects, and wake/sheath effects. Impedance Probes function by measuring the phase shift between the voltage on a long antenna and the current flowing from the antenna into the plasma as a function of frequency. At frequencies for which the phase shift is zero, a plasma resonance is assumed to exist. These resonances depend on a variety of plasma parameters, including the electron density, electron temperature, and magnetic field strength, as well as the antenna geometry, angle between the antenna and the magnetic field, and sheath / Debye length effects, but do not depend on the surface properties of the antenna. Previous impedance probe designs which "lock" onto the upper hybrid resonance are susceptible to losing lock in low-density environments. Information about other resonances, including the series resonance (which strongly depends on temperature) and other resonances which may occur near the upper hybrid, confounding its identification, are typically not transmitted. The novel features of the GSFC Impedance Probe (PISA) include: 1) A white noise generator that stimulates a wide range of frequencies simultaneously, allowing the instrument to send down the entire impedance frequency spectrum every few milliseconds. This allows identification of all resonance frequencies, including the series resonance which depends on temperature. 2) DC bias voltage stepping to bring the antenna

  18. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  19. Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.

    2013-12-01

    The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.

  20. Transverse impedance measurement in RHIC and the AGS

    SciTech Connect

    Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.

    2014-05-12

    The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.

  1. Validation of a Numerical Method for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-01-01

    This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an absorbing test specimen whose impedance was measured in a conventional normal incidence tube. The method is shown to converge to the normal incident impedance values and thus to be an adequate tool for determining the impedance of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment for a broad range of source frequencies.

  2. Internal impedance of steel-reinforced helically stranded conductors at commercial frequency

    NASA Astrophysics Data System (ADS)

    Merkushev, A. G.; Elagin, I. A.

    2015-04-01

    An original simplified mathematical model is proposed that describes the distribution of a harmonic electromagnetic field at a commercial frequency in steel-reinforced high-voltage cables with helically stranded single-layer winding. In the framework of the idealized physical concepts on which the proposed model is based, stranded conductors are treated as an anisotropic conducting layer. It is shown that taking into account the helical twist of conductors leads to the appearance of an axial magnetic field, the presence of which can significantly influence the level of ac losses. The model has been used to calculate the dependence of the internal impedance on the magnetic permeability of the steel core for commercial AS-70 grade steel-reinforced stranded aluminum cable. The results are compared to those obtained using a hollow cylinder model and full-scale numerical calculations using the finite element method.

  3. Traveling-wave electrokinetic micropumps: velocity, electrical current, and impedance measurements.

    PubMed

    García-Sánchez, P; Ramos, A; Green, N G; Morgan, H

    2008-09-02

    An array of microelectrodes covered in an electrolyte and energized by a traveling-wave potential produces net movement of the fluid. Arrays of platinum microelectrodes of two different characteristic sizes have been studied. For both sizes of arrays, at low voltages (<2 V pp) the electrolyte flow is in qualitative agreement with the linear theory of ac electroosmosis. At voltages above a threshold, the direction of fluid flow is reversed. The electrical impedance of the electrode-electrolyte system was measured after the experiments, and changes in the electrical properties of the electrolyte were observed. Measurements of the electrical current during pumping of the electrolyte are also reported. Transient behaviors in both electrical current and fluid velocity were observed. The Faradaic currents probably generate conductivity gradients in the liquid bulk, which in turn give rise to electrical forces. These effects are discussed in relation to the fluid flow observations.

  4. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    SciTech Connect

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  5. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    NASA Astrophysics Data System (ADS)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  6. A microprocessor-based digital feeder monitor with high-impedance fault detection

    SciTech Connect

    Patterson, R.; Tyska, W.; Russell, B.D.

    1994-12-31

    The high impedance fault detection technology developed at Texas A&M University after more than a decade of research, funded in large part by the Electric Power Research Institute, has been incorporated into a comprehensive monitoring device for overhead distribution feeders. This digital feeder monitor (DFM) uses a high waveform sampling rate for the ac current and voltage inputs in conjunction with a high-performance reduced instruction set (RISC) microprocessor to obtain the frequency response required for arcing fault detection and power quality measurements. Expert system techniques are employed to assure security while maintaining dependability. The DFM is intended to be applied at a distribution substation to monitor one feeder. The DFM is packaged in a non-drawout case which fits the panel cutout for a GE IAC overcurrent relay to facilitate retrofits at the majority of sites were electromechanical overcurrent relays already exist.

  7. Impedance and self-discharge mechanism studies of nickel metal hydride batteries for energy storage applications

    NASA Astrophysics Data System (ADS)

    Zhu, Wenhua; Zhu, Ying; Tatarchuk, Bruce

    2013-04-01

    Nickel metal hydride battery packs have been found wide applications in the HEVs (hybrid electric vehicles) through the on-board rapid energy conservation and efficient storage to decrease the fossil fuel consumption rate and reduce CO2 emissions as well as other harmful exhaust gases. In comparison to the conventional Ni-Cd battery, the Ni-MH battery exhibits a relatively higher self-discharge rate. In general, there are quite a few factors that speed up the self-discharge of the electrodes in the sealed nickel metal hydride batteries. This disadvantage eventually reduces the overall efficiency of the energy conversion and storage system. In this work, ac impedance data were collected from the nickel metal hydride batteries. The self-discharge mechanism and battery capacity degradation were analyzed and discussed for further performance improvement.

  8. Water uptake impedance of glassy organic aerosols

    NASA Astrophysics Data System (ADS)

    Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Marcolli, C.; Koop, T.

    2009-04-01

    Depending on their concentration and composition, aerosols affect various atmospheric properties and processes, such as atmospheric chemistry and Earth's radiative budget. The atmospheric aerosol itself is a complex mixture of various inorganic and organic components, whereas the organic fraction can represent more than 50% of the total aerosol mass. It was recently shown that aerosols high in organics may be present in a glassy state (Zobrist et al., ACP, 8, 5221-5244, 2008). The glassy nature of the aerosols may influence their properties and restrict their functionalities severely, e.g. their water uptake, heterogeneous chemical reactions in their bulk or on their surfaces, as well as ice nucleation and ice crystal growth. Here, we present the first experiments on the water uptake by single levitated glassy aerosol particles using an electrodynamic balance (EDB). Sucrose was chosen as a model substance, which comprises functional groups typical of organic species in the atmosphere. In addition we developed a microphysical model, which enables us to calculate the liquid diffusion inside a glassy particle using water diffusion coefficients in aqueous sucrose particles adapted from the literature. As the diffusion coefficient of water in the particle, D(cH2O), depends on the water concentration cH2O itself, the solution of the diffusion equation presents an interesting non-linear problem. The combined experimental and modelling approach allows describing in detail the water uptake by glassy aerosols at atmospherically relevant temperatures and relative humidities (RH). Hygroscopicity cycles were perfomed in the EDB starting from a crystalline (non-spherical) sucrose particle at 291 K. No water uptake was observed while RH was increased until the particle deliquesces at roughly 85% RH leading to a liquid (spherical) particle. In the subsequent drying cycle, surprisingly no efflorescence was observed when the particle was dried to below 5% and it remained spherical

  9. Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics.

    PubMed

    Chen, Qi; Wang, Dan; Cai, Gaozhe; Xiong, Yonghua; Li, Yuntao; Wang, Maohua; Huo, Huiling; Lin, Jianhan

    2016-12-15

    Early screening of pathogenic bacteria is a key to prevent and control of foodborne diseases. In this study, we developed a fast and sensitive bacteria detection method integrating electrochemical impedance analysis, urease catalysis with microfluidics and using Listeria as model. The Listeria cells, the anti-Listeria monoclonal antibodies modified magnetic nanoparticles (MNPs), and the anti-Listeria polyclonal antibodies and urease modified gold nanoparticles (AuNPs) were incubated in a fluidic separation chip with active mixing to form the MNP-Listeria-AuNP-urease sandwich complexes. The complexes were captured in the separation chip by applying a high gradient magnetic field, and the urea was injected to resuspend the complexes and hydrolyzed under the catalysis of the urease on the complexes into ammonium ions and carbonate ions, which were transported into a microfluidic detection chip with an interdigitated microelectrode for impedance measurement to determine the amount of the Listeria cells. The capture efficiency of the Listeria cells in the separation chip was ∼93% with a shorter time of 30min due to the faster immuno-reaction using the active magnetic mixing. The changes on both impedance magnitude and phase angle were demonstrated to be able to detect the Listeria cells as low as 1.6×10(2)CFU/mL. The detection time was reduced from original ∼2h to current ∼1h. The recoveries of the spiked lettuce samples ranged from 82.1% to 89.6%, indicating the applicability of this proposed biosensor. This microfluidic impedance biosensor has shown the potential for online, automatic and sensitive bacteria separation and detection.

  10. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration

    PubMed Central

    Long, Ying; Cao, Binbin; Yu, Liang; Tukayo, Meks; Feng, Chonglv; Wang, Yinan; Luo, Damin

    2015-01-01

    Although the global spread of the emerging zoonosis, human angiostrongyliasis, has attracted increasing attention, understanding of specific gene function has been impeded by the inaccessibility of genetic manipulation of the pathogen nematode causing this disease, Angiostrongylus cantonensis. Many parasitic proteases play key roles in host-parasite interactions, but those of A. cantonensis are always expressed as the inactive form in prokaryotic expression systems, thereby impeding functional studies. Hence, a lentiviral system that drives secreted expression of target genes fused to a Myc-His tag was used to obtain recombinant Ac-cathB-1 with biological activity. Although this class of proteases was always reported to function in nutrition and immune evasion in parasitic nematodes, recombinant Ac-cathB-1 was capable of hydrolysis of fibronectin and laminin as well as the extracellular matrix of IEC-6 monolayer, so that the intercellular space of the IEC-6 monolayer increased 5.15 times as compared to the control, while the shape of the adherent cells partly rounded up. This suggests a probable role for this protease in intestinal epithelial penetration. The inhibition of Ac-cathB-1 enzymatic activity with antiserum partly suppressed larval penetration ability in the isolated intestine. Thus, an effective system for heterologous expression of parasite proteases is presented for studying gene function in A. cantonensis; and Ac-cathB-1 was related to larval penetration ability in the host small intestine. PMID:26682577

  11. AC electrical transport properties and current-voltage hysteresis behavior of PVA-CNT nanocomposite film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Sinha, Subhojyoti; Meikap, Ajit Kumar

    2015-06-01

    Polyvinyl alcohol (PVA) - Carbon nanotube (CNT) composite has been prepared and its electric modulus, ac conductivity, impedance spectroscopy and current-voltage characteristics have been studied, at and above room temperature, to understand the prevailing charge transport mechanism. Non-Debye type relaxation behavior was observed with activation energy of 1.27 eV whereas correlated barrier hopping was found to be the dominant charge transport mechanism with maximum barrier height of 48.7 meV above room temperature. The sample, under ±80 V applied voltage, exhibits hysteresis behavior in its current - voltage characteristics.

  12. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  13. High-Frequency Acoustic Impedance Imaging of Cancer Cells.

    PubMed

    Fadhel, Muhannad N; Berndl, Elizabeth S L; Strohm, Eric M; Kolios, Michael C

    2015-10-01

    Variations in the acoustic impedance throughout cells and tissue can be used to gain insight into cellular microstructures and the physiologic state of the cell. Ultrasound imaging can be used to create a map of the acoustic impedance, on which fluctuations can be used to help identify the dominant ultrasound scattering source in cells, providing information for ultrasound tissue characterization. The physiologic state of a cell can be inferred from the average acoustic impedance values, as many cellular physiologic changes are linked to an alteration in their mechanical properties. A recently proposed method, acoustic impedance imaging, has been used to measure the acoustic impedance maps of biological tissues, but the method has not been used to characterize individual cells. Using this method to image cells can result in more precise acoustic impedance maps of cells than obtained previously using time-resolved acoustic microscopy. We employed an acoustic microscope using a transducer with a center frequency of 375 MHz to calculate the acoustic impedance of normal (MCF-10 A) and cancerous (MCF-7) breast cells. The generated acoustic impedance maps and simulations suggest that the position of the nucleus with respect to the polystyrene substrate may have an effect on the measured acoustic impedance value of the cell. Fluorescence microscopy and confocal microscopy were used to correlate acoustic impedance images with the position of the nucleus within the cell. The average acoustic impedance statistically differed between normal and cancerous breast cells (1.636 ± 0.010 MRayl vs. 1.612 ± 0.006 MRayl), indicating that acoustic impedance could be used to differentiate between normal and cancerous cells.

  14. Impedance Matched to Vacuum, Invisible Edge, Diffraction Suppressed Mirror

    NASA Technical Reports Server (NTRS)

    Hagopian, John G. (Inventor); Roman, Patrick A. (Inventor); Shiri, Sharham (Inventor); Wollack, Edward J. (Inventor)

    2015-01-01

    Diffraction suppressed mirrors having an invisible edge are disclosed for incident light at both targeted wavelengths and broadband incident light. The mirrors have a first having at least one discontiguous portion having a plurality of nanostructured apertures. The discontiguous mirror portion impedance matches a relatively high impedance portion of the mirror to a relatively low impedance portion of the mirror, thereby reducing the diffraction edge effect otherwise present in a conventional mirror.

  15. Mutual impedance of nonplanar-skew sinusoidal dipoles

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Geary, N. H.

    1975-01-01

    The mutual impedance expressions for parallel dipoles in terms of sine-integrals and cosine-integrals have been published by King (1957). The investigation reported provides analogous expressions for nonparallel dipoles. The expressions presented are most useful when the monopoles are close together. The theory of moment methods shows an approach for employing the mutual impedance of filamentary sinusoidal dipoles to calculate the impedance and scattering properties of straight and bent wires with small but finite diameter.

  16. Dynamic assessment of Amyloid oligomers - cell membrane interaction by advanced impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; David, S.; Polonschii, C.; Bratu, D.; Gheorghiu, E.

    2013-04-01

    The amyloid β (Aβ) peptides are believed to be pivotal in Alzheimer's disease (AD) pathogenesis and onset of vascular dysfunction. Recent studies indicate that Aβ1-42 treatment influences the expression of tight junction protein complexes, stress fibre formation, disruption and aggregation of actin filaments and cellular gap formation. Aiming for functional characterization of model cells upon Aβ1-42 treatment, we deployed an advanced Electric Cell-substrate Impedance Sensing for monitoring cell evolution. A precision Impedance Analyzer with a multiplexing module developed in house was used for recording individual electrode sets in the 40 Hz - 100 KHz frequency range. In a step forward from the classical ECIS assays, we report on a novel data analysis algorithm that enables access to cellular and paracellular electrical parameters and cell surface interaction with fully developed cell monolayers. The evolution of the impedance at selected frequencies provides evidence for a dual effect of Aβ42 exposure, at both paracellular permeability and cell adherence level, with intricate dynamics that open up new perspectives on Aβ1-42 oligomers - cell membrane interaction. Validation of electrical impedance assays of the amyloid fibrils effect on cell membrane structure is achieved by both AFM analysis and Surface Plasmon Resonance studies. The capabilities of this noninvasive, real time platform for cell analysis in a wider applicative context are outlined.

  17. Validation of an Impedance Education Method in Flow

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.

    2004-01-01

    This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature

  18. Impedance generalization for plasmonic waveguides beyond the lumped circuit model

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas; Hasan, Shakeeb Bin; Paul, Thomas; Pertsch, Thomas; Rockstuhl, Carsten

    2013-07-01

    We analytically derive a rigorous expression for the relative impedance ratio between two photonic structures based on their electromagnetic interaction. Our approach generalizes the physical meaning of the impedance to a measure for the reciprocity-based overlap of eigenmodes. The consistency with known cases in the radio-frequency and optical domain is shown. The analysis reveals where the applicability of simple circuit parameters ends and how the impedance can be interpreted beyond this point. We illustrate our approach by successfully describing a Bragg reflector that terminates an insulator-metal-insulator plasmonic waveguide in the near infrared by our impedance concept.

  19. Impedance measurements for detecting pathogens attached to antibodies

    DOEpatents

    Miles, Robin R.; Venkateswaran, Kodumudi S.; Fuller, Christopher K.

    2004-12-28

    The use of impedance measurements to detect the presence of pathogens attached to antibody-coated beads. In a fluidic device antibodies are immobilized on a surface of a patterned interdigitated electrode. Pathogens in a sample fluid streaming past the electrode attach to the immobilized antibodies, which produces a change in impedance between two adjacent electrodes, which impedance change is measured and used to detect the presence of a pathogen. To amplify the signal, beads coated with antibodies are introduced and the beads would stick to the pathogen causing a greater change in impedance between the two adjacent electrodes.

  20. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  1. Multi-gap high impedance plasma opening switch

    DOEpatents

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  2. In vivo impedance spectroscopy of deep brain stimulation electrodes.

    PubMed

    Lempka, Scott F; Miocinovic, Svjetlana; Johnson, Matthew D; Vitek, Jerrold L; McIntyre, Cameron C

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  3. ACS PSF Variations with Temperatures

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash C.; Lallo, Matt; Makidon, Russ

    2007-09-01

    We have used the HST ACS/WFC observations of a Galactic bulge field taken over a continuous interval of 7 days (Prop 9750) to investigate the possible dependence of the ACS focus with the external temperatures. This dataset allows us to investigate possible focus variations over timescales of a few hours to a few days. The engineering data related to the external temperatures for this duration show that the maximum temperature change occurred over the first 1.5 days. Among all the different temperatures recorded, the truss diametric differential and the truss axial temperatures are the only two temperatures which have the same timescale of variation as the PSFwidth variations. The PSF-widths also strongly correlate with these two temperatures during this time interval. We empirically fit the PSF-width variations with these 2 temperature sensor values. This suggests that the focus has a similar dependence, and we recommend that this finding be followed up with the determination of actual focus values to check if the focus values indeed have the same correlation. If so, the temperature data can be useful in estimating the focus values, which can then be used to predict the PSFs to a first order.

  4. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  5. Corrosion Study Using Electrochemical Impedance Spectroscopy

    NASA Technical Reports Server (NTRS)

    Farooq, Muhammad Umar

    2003-01-01

    Corrosion is a common phenomenon. It is the destructive result of chemical reaction between a metal or metal alloy and its environment. Stainless steel tubing is used at Kennedy Space Center for various supply lines which service the orbiter. The launch pads are also made of stainless steel. The environment at the launch site has very high chloride content due to the proximity to the Atlantic Ocean. Also, during a launch, the exhaust products in the solid rocket boosters include concentrated hydrogen chloride. The purpose of this project was to study various alloys by Electrochemical Impedance Spectroscopy in corrosive environments similar to the launch sites. This report includes data and analysis of the measurements for 304L, 254SMO and AL-6XN in primarily neutral 3.55% NaCl. One set of data for 304L in neutral 3.55%NaCl + 0.1N HCl is also included.

  6. Bioelectrical impedance analysis. What does it measure?

    NASA Technical Reports Server (NTRS)

    Schoeller, D. A.

    2000-01-01

    Bioelectrical impedance analysis (BIA) has been proposed for measuring fat-free mass, total body water, percent fat, body cell mass, intracellular water, and extracellular water: a veritable laboratory in a box. Although it is unlikely that BIA is quite this versatile, correlations have been demonstrated between BIA and all of these body compartments. At the same time, it is known that all of the compartments are correlated among themselves. Because of this, it is difficult to determine whether BIA is specific for any or all of these compartments. To investigate this question, we induced acute changes in total body water and its compartments over a 3-h period. Using this approach, we demonstrated that multifrequency BIA, using the Cole-Cole model to calculate the zero frequency and infinite frequency resistance, measures extracellular and intracellular water.

  7. Wave guide impedance matching method and apparatus

    DOEpatents

    Kronberg, James W.

    1990-01-01

    A technique for modifying the end portion of a wave guide, whether hollow or solid, carrying electromagnetic, acoustic or optical energy, to produce a gradual impedance change over the length of the end portion, comprising the cutting of longitudinal, V-shaped grooves that increase in width and depth from beginning of the end portion of the wave guide to the end of the guide so that, at the end of the guide, no guide material remains and no surfaces of the guide as modified are perpendicular to the direction of energy flow. For hollow guides, the grooves are cut beginning on the interior surface; for solid guides, the grooves are cut beginning on the exterior surface. One or more resistive, partially conductive or nonconductive sleeves can be placed over the exterior of the guide and through which the grooves are cut to smooth the transition to free space.

  8. Impedance matched thin metamaterials make metals absorbing

    PubMed Central

    Mattiucci, N.; Bloemer, M. J.; Aközbek, N.; D'Aguanno, G.

    2013-01-01

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin (<1 micron), polarization independent, extremely efficient absorbers (in principle being capable to reach A > 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others. PMID:24220284

  9. Modelling the distance impedance of protest attendance

    NASA Astrophysics Data System (ADS)

    Traag, V. A.; Quax, R.; Sloot, P. M. A.

    2017-02-01

    Protesters are usually young, relatively well educated, middle class people that are politically engaged. But where do protesters come from? We here show, based on mobile phone data, that distance is an important impedance to protest attendance. Most protesters come from nearby regions, suggesting distance forms an obstacle to participation. Although this effect can be partly explained by social network effects, which show similar spatial dependencies, an effect of distance remains. This suggests distance still acts as an obstacle to participation, although it may also be that long-range contacts are less effective for recruitment. Face-to-face contacts seem more important in spreading protests through earlier participants, whereas central recruitment works better by telephone. Our results are important for understanding processes of recruitment.

  10. Sensing Estrogen with Electrochemical Impedance Spectroscopy

    PubMed Central

    Li, Jing; Kim, Byung Kun; Im, Ji-Eun; Choi, Han Nim; Kim, Dong-Hwan; Cho, Seong In

    2016-01-01

    This study demonstrates the application feasibility of electrochemical impedance spectroscopy (EIS) in measuring estrogen (17β-estradiol) in gas phase. The present biosensor gives a linear response (R2 = 0.999) for 17β-estradiol vapor concentration from 3.7 ng/L to 3.7 × 10−4 ng/L with a limit of detection (3.7 × 10−4 ng/L). The results show that the fabricated biosensor demonstrates better detection limit of 17β-estradiol in gas phase than the previous report with GC-MS method. This estrogen biosensor has many potential applications for on-site detection of a variety of endocrine disrupting compounds (EDCs) in the gas phase. PMID:27803838

  11. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  12. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS).

    PubMed

    Witkowski, Matthias; Garcia-Cossio, Eliana; Chander, Bankim S; Braun, Christoph; Birbaumer, Niels; Robinson, Stephen E; Soekadar, Surjo R

    2016-10-15

    Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.

  13. Combined impedance and dielectrophoresis portable device for point-of-care analysis

    NASA Astrophysics Data System (ADS)

    del Moral Zamora, B.; Colomer-Farrarons, J.; Mir-Llorente, M.; Homs-Corbera, A.; Miribel-Català, P.; Samitier-Martí, J.

    2011-05-01

    In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.

  14. Modification of Relaxor and Impedance Spectroscopy Properties of Lead Magnesium Niobate by Bismuth Ferrite

    NASA Astrophysics Data System (ADS)

    Das, S. N.; Pradhan, S.; Bhuyan, S.; Choudhary, R. N. P.; Das, P.

    2017-03-01

    The relaxor and impedance characteristics of classic or traditional lead magnesium niobate (PbMg1/3Nb2/3O3; PMN) ferroelectric relaxor material have been modified by chemically synthesizing with multiferroic bismuth ferrite (BiFeO3; BFO). Detailed studies of structural, morphological and electrical properties of PMN-BFO-prepared solid solutions [((Pb1- x Bi x ) (Mg0.33(1- x)Nb0.66(1- x)Fe x ) O3) with x = 0.1, 0.2, 0.3 and 0.4] reveal some interesting findings on structure-properties relationships. The formation of single phase material of each compound in orthorhombic crystal system is identified from x-ray diffraction. The microstructure analyses reveal that the grain size of PMN-BFO increases for increasing BFO weight percent with PMN. The increase of BFO concentration not only improves the dielectric response of PMN-BFO but also modifies the nature of attained phase transition from a typical relaxor to a normal ferroelectric. The impedance spectroscopy studies exhibit the presence of grain and grain boundary effects, and the existence of a positive temperature coefficient of resistance (PTCR) in the material. The ac conductivity increases with the increase in frequency in the low-temperature region for larger content of BFO in the solid solutions. It is observed that the prepared electronic materials obey the non-Debye-type of conductivity relaxation behavior.

  15. Electrical-Impedance Tomography for Measuring Material Distributions of Multiphase Flows in Conducting Vessels

    NASA Astrophysics Data System (ADS)

    Liter, S. G.; Torczynski, J. R.; Shollenberger, K. A.; Ceccio, S. L.

    2001-11-01

    An implementation of resistive electrical-impedance tomography (EIT) for measuring material distributions of two-phase flows in vessels with electrically conducting walls is presented. A thin nonconducting rod, with N-1 ring electrodes wrapped around its exterior at equally-spaced axial positions, is inserted into the vessel (i.e., into the interior of the flow). The vessel wall is grounded and serves as the N-th electrode. Current is injected from a ring electrode and exits to the vessel wall, and the resulting voltages at all ring electrodes are recorded. Each ring electrode is used in turn for current injection, and the collection of all measured voltages comprises a data set. Multiple data sets are used to numerically reconstruct the time-averaged impedance distribution within the vessel, from which the material distribution is inferred. Design issues, including the size, spacing, and number of the ring electrodes, are considered. An experiment in which the rod is inserted coaxially into a vertical pipe is presented, and bubble-column applications are discussed. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  16. Impedance spectroscopy on ceramic materials at high temperatures, considering stray fields and electromagnetic noise.

    PubMed

    Müller, T M; Meinhardt, J; Raether, F

    2013-01-01

    Impedance spectroscopy of many ceramics is a challenge due to their high electrical resistance. Small disturbances can significantly alter the measuring results. In the present paper, it is shown how impedance measurements can be performed in an electromagnetically noisy ac furnace, using consequent Faraday shielding of the sample and the electrical connections. As example, the conductivity data of alumina was measured between room temperature and 1000 °C and compared to literature data. In addition, a correction method for the calculation of permittivity was developed to consider the stray fields in the sample-electrode setup. The distribution of the electrical field was simulated by finite element (FE) methods for different sample geometries and electrode arrangements. The deviations from the behavior of an ideal plate capacitor follow a linear trend and are in the order of 5% to 20% for an experimentally reasonable range of sample thicknesses. To check the theoretical results experimentally, alumina samples of varying thickness were measured. The customary calculation of permittivity leads to a clear trend with sample thickness, whereas the correction from the FE-simulation produces almost constant values of the relative permittivity.

  17. Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. First section: general concepts and hardware.

    PubMed

    Rigaud, B; Morucci, J P

    1996-01-01

    Measurement accuracy is a key point in impedance imaging and is mainly limited by factors that take place in the acquisition system. This part is a review of hardware solutions developed in acquisition systems for electrical impedance tomography (EIT). The general principles of EIT along with the changes that have taken place in the last decade, in terms of measurement strategy, and a certain number of definitions are introduced. The major hardware error sources that occur in the front end of EIT systems are presented. A review of the various alternatives published in the literature that are used to drive current, including current and voltage approaches, and the main solutions recommended in the literature to overcome the key point drawbacks of voltage measurement systems, including voltage buffers, instrumentation amplifiers, and demodulators, are provided. Some calibration procedures and approaches for the evaluation of the performance of EIT systems are also presented.

  18. Conductivity and Dielectric Characteristics of Planetary Surfaces Measured with Mutual Impedance Probes: From Huygens and Rosetta Lander to Netlanders and Future Missions

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Grard, R.; Laakso, H.; Ney, R.; Schmidt, W.; Simoes, F.; Trautner, R.

    2004-04-01

    probes should be able to detect also the vertical inhomogeneity of the medium (match with a two layer model). After presenting the actual instruments and projects (on HUYGENS, ROSETTA Lander and NETLANDER), we show the particular interest to use a flat system of electrodes laying on the surface at some distance from the spacecraft body that is particularly well suited for the case of a rover. We will show the design of a prototype actually prepared in CETP to be used in common calibrations with the other instruments in selected well-known terrains. 1. PRINCIPLE AND HERITAGE The measurement of the planetary surface complex permittivity (electrical conductivity and dielectric constant) vs. frequency has a twofold interest: i) to contribute with other parameters to the identification of the close sub-surface materials without penetrating the surface; ii) to characterize the electrical properties of the planetary surface which control the boundary conditions for electromagnetic waves and fields, including possible DC atmospheric electric currents. The mutual impedance (MI) probes of today's planetary missions are the heritage of the quadrupolar probes developed in the first half of the XXth century for oil prospecting [1]. The principle is to inject an AC current I in the planar homogeneous ground of relative permittivity eg through a first dipole and to measure the induced potential by this dipole or by a second dipole to obtain respectively the self and mutual impedances.

  19. Impedance function study for cylindrical tanks surrounded by an earthen embankment

    SciTech Connect

    Houston, T.W.; Mertz, G.E.

    1995-12-31

    The Department of Energy (DOE) operates many which are used to store radioactive waste material. The original design of the tanks was often based on criteria which did not meet current seismic codes. As a result DOE is undertaking a comprehensive review of the adequacy of these structures to meet current seismic standards. This comprehensive review includes an evaluation of soil-structure interaction. One method available for performing soil structure interaction analyses of structures couples a discrete model of the structure to a lumped parameter model of the soil. This method requires the knowledge of the expected dynamic stiffness and damping functions of the rigid, massless structure resting on the soil. These are commonly referred to as the impedance functions. Lumped parameter analysis is cost effective for the surface and embedded structure cases where impedance functions are available in the literature. For a complex case with the structure located on the surface surrounded by an embankment, the impedance functions must be established prior to using a lumped parameter model approach. The present paper describes the development of horizontal impedance functions for the structure surrounded by an embankment which are developed using a finite element approach as implemented by SASSI. Impedance functions for vertical, torsional, and rocking degrees of freedom can be developed in a similar manner. These functions are easily incorporated into simple models which provide conceptual and physical insight to the response of structures. These models provide both a check of more sophisticated methods, and, due to their simplicity, permit assessment of a wide range of site and structural parameters that my affect the dynamic response of structural systems.

  20. RTEMIS: Real-time Tumoroid and Environment Monitoring Using Impedance Spectroscopy and pH Sensing

    NASA Astrophysics Data System (ADS)

    Alexander, Frank A., Jr.

    This research utilizes Electrical Impedance Spectroscopy, a technique classically used for electrochemical analysis and material characterization, as the basis for a non-destructive, label-free assay platform for three dimensional (3D) cellular spheroids. In this work, a linear array of microelectrodes is optimized to rapidly respond to changes located within a 3D multicellular model. In addition, this technique is coupled with an on chip micro-pH sensor for monitoring the environment around the cells. Finally, the responses of both impedance and pH are correlated with physical changes within the cellular model. The impedance analysis system realized through this work provides a foundation for the development of high-throughput drug screening systems that utilize multiple parallel sensing modalities including pH and impedance sensing in order to quickly assess the efficacy of specific drug candidates. The slow development of new drugs is mainly attributed to poor predictability of current chemosensitivity and resistivity assays, as well as genetic differences between the animal models used for tests and humans. In addition, monolayer cultures used in early experimentation are fundamentally different from the complex structure of organs in vivo. This requires the study of smaller 3D models (spheroids) that more efficiently replicate the conditions within the body. The main objective of this research was to develop a microfluidic system on a chip that is capable of deducing viability and morphology of 3D tumor spheroids by monitoring both the impedance of the cellular model and the pH of their local environment. This would provide a fast and reliable method for screening pharmaceutical compounds in a high-throughput system.

  1. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    PubMed

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  2. Impedance Matching of Tapered Slot Antenna using a Dielectric Transformer

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Lee, R. Q.

    1998-01-01

    A new impedance matching technique for tapered slot antennas using a dielectric transformer is presented. The technique is demonstrated by measuring the input impedance, Voltage Standing Wave Ratio (VSWR) and the gain of a Vivaldi antenna (VA). Measured results at Ka-Band frequencies are presented and discussed.

  3. An Inexpensive, Very High Impedance Digital Voltmeter for Selective Electrodes.

    ERIC Educational Resources Information Center

    Caceci, Marco S.

    1984-01-01

    Describes a compact, digital voltmeter which exceeds, both in accuracy and input impedance, most commercial pH meters and potentiometers. The instrument consists of two parts: a very high impedance hybrid operational amplifier used as a voltage follower (ICH8500/A, Intersil) and a four and one-half digits LED display panel meter (RP-4500,…

  4. The Impedance Response of Semiconductors: An Electrochemical Engineering Perspective.

    ERIC Educational Resources Information Center

    Orazem, Mark E.

    1990-01-01

    Shows that the principles learned in the study of mass transport, thermodynamics, and kinetics associated with electrochemical systems can be applied to the transport and reaction processes taking place within a semiconductor. Describes impedance techniques and provides several graphs illustrating impedance data for diverse circuit systems. (YP)

  5. An Alternative to Impedance Screening: Unoccluded Frontal Bone Conduction Screening.

    ERIC Educational Resources Information Center

    Square, Regina; And Others

    1985-01-01

    A bone conduction hearing screening test using frontal bone oscillator placement was compared with pure-tone air-conduction screening and impedance audiometry with 114 preschoolers. Unoccluded frontal bone conduction testing produced screening results not significantly different from results obtained by impedance audiometry. (CL)!

  6. Effect of Feeding and Suction on Gastric Impedance Spectroscopy Measurements.

    PubMed

    Beltran, Nohra E; Sánchez-Miranda, Gustavo; Sacristan, Emilio

    2015-01-01

    A specific device and system has been developed and tested for clinical monitoring of gastric mucosal reactance in the critically ill as an early warning of splanchnic hypoperfusion associated with shock and sepsis. This device has been proven effective in clinical trials and is expected to become commercially available next year. The system uses a combination nasogastric tube and impedance spectroscopy probe as a single catheter. Because this device has a double function, the question is: Does enteral feeding or suction affect the gastric reactance measurements? This study was designed to evaluate the effect of feeding and suction on the measurement of gastric impedance spectroscopy in healthy volunteers. Impedance spectra were obtained from the gastric wall epithelia of 18 subjects. The spectra were measured for each of the following conditions: postinsertion of gastric probe, during active suction, postactive suction, and during enteral feeding (236 ml of nutritional supplement). Impedance spectra were reproducible in all volunteers under all conditions tested. There was a slight increase in impedance parameters after suction, and a decrease in impedance after feeding; however, these observed differences were insignificant compared to patient-to-patient variability, and truly negligible compared with previously observed changes associated with splanchnic ischemia in critically ill patients. Our results demonstrate that suction or feeding when using the impedance spectro-metry probe/nasogastric tube does not significantly interfere with gastric impedance spectrometer measurements.

  7. Modifying the acoustic impedance of polyurea-based composites

    NASA Astrophysics Data System (ADS)

    Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia

    2013-04-01

    Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.

  8. Flip-Chip Carrier Would Match Microwave FET Impedances

    NASA Technical Reports Server (NTRS)

    Huang, H. C.

    1982-01-01

    Proposed field-effect transistor consists of three cells which make up one complete FET pellet. Pellet is flip-chip mounted on carrier with source grounded gate and drain posts connected directly to impedance-matching transmission-line segments. Impedance transformers are part of mounting and contact strips.

  9. Constant current load matches impedances of electronic components

    NASA Technical Reports Server (NTRS)

    Alexander, R. M.

    1970-01-01

    Constant current load with negative resistance characteristics actively compensates for impedance variations in circuit components. Through a current-voltage balancing operation the internal impedance of the diodes is maintained at a constant value. This constant current load circuit can be used in simple telemetry systems.

  10. Induced optical metric in the non-impedance-matched media

    NASA Astrophysics Data System (ADS)

    Mousavi, S. A.; Roknizadeh, R.; Sahebdivan, S.

    2016-11-01

    In non-magnetic anisotropic media, the behavior of electromagnetic waves depends on the polarization and direction of the incident light. Therefore, to tame the unwanted wave responses such as polarization dependent reflections, the artificial impedance-matched media are suggested to be used in optical devices like invisibility cloak or super lenses. Nevertheless, developing the impedance-matched media is far from trivial in practice. In this paper, we are comparing the samples of both impedance-matched and non-impedance-matched (non-magnetic) media regarding their electromagnetic response in constructing a well-defined optical metric. In the case of similar anisotropic patterns, we show that the optical metric in an impedance-matched medium for unpolarized light is the same as the optical metric of an electrical birefringent medium when the extraordinary mode is concerned. By comparing the eikonal equation in an empty curved space-time and its counterparts in the medium, we have shown that a non-impedance-matched medium can resemble an optical metric for a particular polarization. As an example of non-impedance-matched materials, we are studying a medium with varying optical axis profile. We show that such a medium can be an alternative to impedance-matched materials in various optical devices.

  11. Impedance study for the PEP-II B-factory

    SciTech Connect

    Heifets, S.; Daly, C.E.; Ko, K.

    1995-06-01

    The paper summarizes results of the impedance studies of the components of the B-factory. The prime goal of this activity was to support the design of the vacuum chamber and, at the same time, to get a reasonable model of the machine impedance, which can be used later for detail studies of collective effects.

  12. Development of impedance matching technologies for ICRF antenna arrays

    SciTech Connect

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array`s input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array.

  13. Electrochemical impedance measurement of a carbon nanotube probe electrode

    NASA Astrophysics Data System (ADS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-12-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1-10 nm in CNT diameter, 80-300 nm in insulator diameter, 0.5-4 μm in exposed CNT length and 1-10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible.

  14. Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors

    DTIC Science & Technology

    2010-11-01

    1 ELECTROKINETICS MODELS FOR MICRO AND NANO FLUIDIC IMPEDANCE SENSORS Yi Wang*, Hongjun Song, Ketan Bhatt, Kapil Pant CFD Research Corporation...analysis, design, and protocol development of novel micro - and nano - fluidics based impedance sensors. 1. INTRODUCTION Exposure to toxic...electrokinetic transport process at the micro - and nano -scale and to interrogate the sensor performance subject to the variations in design

  15. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in...

  16. 21 CFR 874.1090 - Auditory impedance tester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1090 Auditory impedance tester. (a) Identification. An auditory impedance tester is a device that is intended to change the air pressure in the... evaluate the functional condition of the middle ear. The device is used to determine abnormalities in...

  17. Development of impedance matching technologies for ICRF antenna arrays

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.

    1998-08-01

    All high-power ion cyclotron range of frequency (ICRF) heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time dependent on timescales as rapid as 10-4 s, while the radio frequency (RF) generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the RF source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In `lossy passive schemes', reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array.

  18. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies νen throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron

  19. In vivo assessment of the impedance ratio method used in electronic foramen locators

    PubMed Central

    2010-01-01

    Background The results of an in vivo study on the "ratio method" used in electronic foramen locators (EFL) are presented. EFLs are becoming widely used in the determination of the working length (WL) during the root canal treatment. The WL is the distance from a coronal reference point to the point at which canal preparation and filling should terminate. The "ratio method" was assessed by many clinicians with the aim of determining its ability to locate the apical foramen (AF). Nevertheless, in vivo studies to assess the method itself and to explain why the "ratio method" is able to locate the apical foramen and is unable to determine intermediate distances were not published so far. Methods A developed apparatus applies an electrical current signal with constant amplitude of 10 μARMS through the endodontic file within the root canal. The applied current signal is composed by summing six sine waves, from 250 Hz to 8 kHz. Data were acquired with the endodontic file tip at 7 different positions within root canals. In the frequency domain the quotients between the amplitude of a reference frequency and the amplitudes of the other frequencies components were calculated. Twenty one root canals were analyzed in vivo, during the endodontic treatment of twelve teeth of different patients, with age between 20 to 55 years. Results For the range of frequencies used in the commercial EFLs and for distances ranging from -3 mm to -1 mm of the AF, the impedance of the root canal is mainly resistive. However, when the file tip gets closer to AF, the root canal electrical impedance starts to change from a mainly resistive to a complex impedance. This change in the measured root canal impedance starts when the file tip is near -1.0 mm from the AF, getting stronger as the file tip gets closer to the AF. This change in the impedance behavior affects the ratio (quotient) of the impedance measured at different frequencies. Through graphic analysis it is demonstrated why EFLs based on

  20. Method of estimating pulse response using an impedance spectrum

    SciTech Connect

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.