Science.gov

Sample records for ac conductivity dielectric

  1. AC Conductivity and Dielectric Properties of Borotellurite Glass

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Azab, A. A.

    2016-10-01

    Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF- xTeO2 ( x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density ( ρ) was determined by the Archimedes method at room temperature. The density ( ρ) and molar volume ( V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivity ( σ ac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.

  2. AC Conductivity and Dielectric Properties of Borotellurite Glass

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Azab, A. A.

    2016-06-01

    Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF-xTeO2 (x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density (ρ) was determined by the Archimedes method at room temperature. The density (ρ) and molar volume (V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivityac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.

  3. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivityac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  4. Structural, AC conductivity and dielectric properties of Sr-La hexaferrite

    NASA Astrophysics Data System (ADS)

    Singh, A.; Narang, S. B.; Singh, K.; Sharma, P.; Pandey, O. P.

    2006-03-01

    A series of M-type hexaferrite samples with composition Sr{1-x}La{x}Fe{12}O{19} (x = 0.00, 0.05, 0.15 and 0.25) were prepared by standard ceramic technique. AC electrical conductivity measurements were carried out at different frequencies (20 Hz 1 MHz) and at different temperatures. The dielectric constant and dielectric loss tangent were measured in the same range of frequencies. The experimental results indicate that AC electrical conductivity increases on increasing the frequency as well as the temperature, indicating magnetic semiconductor behavior of the samples. The increase in AC electrical conductivity with frequency and temperature has been explained on the basis of Koops Model whereas dielectric constant and dielectric loss tangent has been explained with the Maxwell Wagner type interfacial polarization in agreement with the Koops phenomenological theory.

  5. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  6. Dielectric relaxation analysis and Ac conductivity of polyvinyl alcohol/polyacrylonitrile film

    NASA Astrophysics Data System (ADS)

    Abdel-Baset, T. A.; Hassen, A.

    2016-10-01

    A film of 0.98 polyvinyl alcohol (PVA)/0.02 Polyacrylonitrile (PAN) has been prepared using casting method. The dielectric properties were measured as function of temperature and frequency. The dielectric permittivity of PVA is considerably enhanced by doping with PAN. Different relaxation processes have been recognized within the studied ranges of temperature and frequency. The frequency temperature superposition (FTS) is well verified. Frequency and temperature dependence of Ac conductivity, σac, were studied. The conduction mechanism of pure PVA and PVA doped with PAN are discussed. The activation energy either for relaxation or conduction was calculated. Comparison with similar polymeric materials is discussed.

  7. AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, K. F.; Darwish, A. A. A.; Qashou, Saleem I.; Hanafy, T. A.

    2016-07-01

    The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ɛ', and dielectric loss index, ɛ'', reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ɛ' and ɛ'' reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.

  8. AC conductivity and dielectric behavior of CoAl xFe 2- xO 4

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.; Meaz, T. M.

    2004-01-01

    AC conductivity and dielectric properties have been studied for a series of polycrystalline spinel ferrite with composition CoAl xFe 2- xO 4, as a function of frequency and temperature. The results of AC conductivity were discussed in terms of the quantum mechanical tunneling and small polaron tunneling models. The dispersion of the dielectric constant was discussed in the light of Koops model and hopping conduction mechanism. The dielectric loss tangent tan δ curves exhibits a dielectric relaxation peaks which are attributed to the coincidence of the hopping frequency of the charge carriers with that of the external fields. The AC conductivity, dielectric constant, and dielectric loss tangent were found to increase with increasing the temperature due to the increase of the hopping frequency, while they decrease with increasing Al ion content due to the reduction of iron ions available for the conduction process at the octahedral sites.

  9. Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol-HgSe quantum dot hybrid films

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Chatterjee, Sanat Kumar; Ghosh, Jiten; Meikap, Ajit Kumar

    2014-07-01

    Here we report a comparative study on the dielectric relaxation and ac conductivity behaviour of pure polyvinyl alcohol (PVA) and PVA-mercury selenide (HgSe) quantum dot hybrid films in the temperature range 298 K ⩽ T ⩽ 420 K and in the frequency range 100 Hz ⩽ f ⩽ 1 MHz. The prepared nanocomposite exhibits a larger dielectric constant as compared to the pure PVA. The real and imaginary parts of the dielectric constants were found to fit appreciably with the modified Cole-Cole equation, from which temperature-dependent values of the relaxation times, free charge carrier conductivity and space charge carrier conductivity were calculated. The relaxation time decreases with the quantum dot's inclusion in the PVA matrix and with an increase in temperature, whereas free charge carrier conductivity and space charge carrier conductivity increases with an increase in temperature. An increase in ac conductivity for the nanocomposites has also been observed, while the charge transport mechanism was found to follow the correlated barrier hopping model in both cases. An easy-path model with a suitable electrical equivalent circuit has been employed to analyse the temperature-dependent impedance spectra. The imaginary part of the complex electric modulus spectra exhibit an asymmetric nature and a non-Debye type of behaviour, which has been elucidated considering a generalized susceptibility function. The electric modulus spectra of the nanocomposite demonstrate a smaller amplitude and broader width, as compared to the pure PVA sample.

  10. Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite

    NASA Astrophysics Data System (ADS)

    Shubha, L. N.; Madhusudana Rao, P.

    2016-06-01

    The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.

  11. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  12. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  13. A Comparative Study on AC Conductivity and Dielectric Behavior of Multiwalled Carbon Nanotubes and Polyaniline Coated Multiwalled Carbon Nanotubes Filled High Density Polyethylene-Carbon Black Nanocomposites

    SciTech Connect

    Dinesh, P.; Renukappa, N. M.; Siddaramaiah; Lee, J. H.; Jeevananda, T.

    2010-10-04

    This paper presents an experimental investigation on AC conductivity and dielectric behavior of carbon black reinforced high density polyethylene (HDPE-CB) and HDPE-CB filled with multiwalled carbon nanotubes (MWNTs-CB-HDPE) and Polyaniline (PAni) coated MWNTs-CB-HDPE nanocomposites. The electrical properties such as dielectric constant ({epsilon}'), dissipation factor (tan {delta}) and AC conductivity ({sigma}{sub ac}) of nanocomposites have been measured with reference to the weight fraction (0.5 and 1 wt% MWNTs), frequency (75 KHz-30 MHz), temperature (25-90 deg. C) and sea water ageing. The experimental results showed that the increased AC conductivity and dielectric constant of the nanocomposites were influenced by PAni coated MWNTs in HDPE-CB nanocomposites. The value of dielectric constant and tan {delta} decreased with increasing frequency. Further more, above 5 MHz the AC conductivity increases drastically whereas significant effect on tan {delta} was observed in less than 1 MHz.

  14. Studies of structural, optical, dielectric relaxation and ac conductivity of different alkylbenzenesulfonic acids doped polypyrrole nanofibers

    NASA Astrophysics Data System (ADS)

    Hazarika, J.; Kumar, A.

    2016-01-01

    Polypyrrole (PPy) nanofibers doped with alkylbenzenesulfonic acids (ABSA) have been synthesized using interfacial polymerization method. HRTEM studies confirm the formation of PPy nanofibers with average diameter ranging from 13 nm to 25 nm. Broad X-ray diffraction peak in 2 θ range 20-23.46° reveals amorphous structure of PPy nanofibers. The ordering or crystallinity of polymer chains increases, while their interplanar spacing (d) and interchain separation (R) decreases for short alkyl chain ABSA doped PPy nanofibers. FTIR studies reveal that short alkyl chain ABSA doped PPy nanofibers show higher value of "effective conjugation length". PPy nanofibers doped with short alkyl chain ABSA dopant exhibit smaller optical band gap. TGA studies show enhanced thermal stability of short alkyl chain ABSA doped PPy nanofibers. Decrease in dielectric permittivity ε ‧ (ω) with increasing frequency suggests presence of electrode polarization effects. Linear decrease in dielectric loss ε ″ (ω) with increasing frequency suggests dominant effect of dc conductivity process. Low value of non-exponential exponent β (<1) reveals non-Debye relaxation of charge carriers. Scaling of imaginary modulus (M ″) reveals that the charge carriers follow the same relaxation mechanism. Moreover, the charge carriers in PPy nanofibers follow the correlated barrier hopping (CBH) transport mechanism.

  15. Dielectric Properties and AC Conduction of 5 wt % ZnBO Doped (Ba,Sr)TiO3 Ceramics for Low Temperature Co-fired Ceramics Applications

    NASA Astrophysics Data System (ADS)

    Kim, Se-Ho; Koh, Jung-Hyuk

    2009-04-01

    ZnBO doped (Ba0.5Sr0.5)TiO3 (BST) ceramic was synthesized by conventional mixed oxide method. 5 wt % ZnBO addition to the BST has lowered the sintering temperature of BST from 1350 to 1100 °C. From the X-ray diffraction analysis, we found that the 5 wt % ZnBO doped BST has the perovskite structure, and any pryo phase was not observed. The dielectric properties and ac conductivity have been investigated at temperature range from 30 to 130 °C with various frequencies (1-100 kHz). The real part of relative dielectric permittivity ɛr' was decreased with increasing the temperature and the frequency. The activation energy for conduction process was calculated from the slope of ac conductivity at 1 kHz. The activation energy calculated through the Arrhenius law was 0.42 eV. In this paper, we will discuss the low-frequency dielectric relaxation and ac conductivity of 5 wt % ZnBO doped BST ceramics in relation to the electrical conduction.

  16. Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO2/p-GaAs(110) MIS structures

    NASA Astrophysics Data System (ADS)

    Şafak Asar, Yasemin; Asar, Tarık; Altındal, Şemsettin; Özçelik, Süleyman

    2015-09-01

    In this study, we investigated temperature and voltage dependence of dielectric properties and ac electrical conductivityac) of (AuZn)/TiO2/p-GaAs(110) metal-insulator-semiconductor structures in the temperature range of 80-290 K using the capacitance-voltage ? and conductance-voltage ? measurements at 1 MHz. The intersection/crossing behaviour of C-V plots at sufficiently high forward biases and the increase in σac with increasing temperature was attributed to the lack of sufficient number of enough free charge carriers at low temperatures. The values of the dielectric constant (ε‧), dielectric loss (ε″), loss tangent ?, ac electrical conductivityac), the real and imaginary parts of electric modulus (?) were found to be strong functions of temperature and applied bias voltage. The Cole-Cole plots between ? have shown only one semicircle for each temperature. This indicates one of the relaxation processes was suppressed and this can be attributed to the surface polarization effect. On the other hand, ? plot has a peak for each temperature. The ? plots revealed two linear regions with different slopes for sufficiently high forward biases (0.0, 0.5, and 1.0 V) which correspond to low (80-200 K) and moderate/intermediate (230-290 K) temperatures. Thus, the values of activation energy (Ea) were obtained from the slope of these Arrhenius plots for two linear regions as 87.3 and 3.4 meV, respectively, at 1.0 V. On the other hand, Mott plots have only one linear region except for 260 and 290 K and Mott parameters were determined from these plots at 0.0, 0.5 and 1.0 V.

  17. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  18. Raman, dielectric and AC-conductivity behavior of Dy2O3 contained K0.5Na0.5NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, P.; Pamu, D.

    2016-05-01

    Lead-free piezoelectric (K0.5Na0.5)NbO3+ x wt% Dy2O3 (x = 0 - 1.5) (KNND) ceramics have been prepared by solid state reaction method. The effect of Dy2O3 on the dielectric and electrical conductivity responses of KNN ceramics were investigated in a broad temperature (from 133 K to 673 K) and frequency (106 Hz to 108 Hz) range. Temperature dependent dielectric analysis revealed that the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T) shifted from 199°C to room temperature with enhanced dielectric permittivity (ɛ' = 994) with the addition of Dy2O3. The effect of Dy2O3 on structural properties of KNND ceramics are analyzed interms of changes in the internal modes of NbO6 octahedra by using Raman spectroscopy. Temperature dependent (133 K - 306 K) AC-conductivity follows the variable range hopping mechanism in different temperature regimes.

  19. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  20. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivityac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  1. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures

    NASA Astrophysics Data System (ADS)

    Bilkan, Çiğdem; Azizian-Kalandaragh, Yashar; Altındal, Şemsettin; Shokrani-Havigh, Roya

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε‧, ε″) and electric modulus (M‧ and M″), loss tangent (tanδ), and ac electrical conductivityac) values of Al/Co3O4-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε‧, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σdc and σac, respectively. The M‧ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M‧ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and Nss effects with increasing frequency.

  2. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  3. Effects of Copper Doping on Dielectric and A.C. Conductivity in Layered Sodium Tri-Titanate Ceramic

    NASA Astrophysics Data System (ADS)

    Shripal; Dwivedi, Shailja; Singh, Rakesh; Tandon, R. P.

    2013-09-01

    Electron paramagnetic resonance (EPR) spectra of 0.01, 0.1 and 1.0 molar percentage (mp) of CuO doped derivatives of layered Na2Ti3O7 ceramic have been reported. The results show that copper substitutes as Cu2+ at Ti4+ octahedral sites. From the dependence of loss tangent (tan δ) and the relative permittivity (ɛ‧) on temperature and frequency, it is concluded that all the derivatives are of polar nature. The relaxation peaks at lower temperatures have been attributed to the presence of different types of dipoles, whereas peaks in the higher temperature region indicate possible ferroelectric phase transition. The dependence of conductivity on temperature show that electron hopping (polaron) conduction exists in a wide span of temperature range. However, the associated interlayer ionic conduction exists in a small temperature range. Interlayer alkali ion hopping mechanism of conduction has been proposed toward higher temperatures. The conductivity versus frequency plots reveal that the polaron conduction plays a prominent role toward the lower temperature side that diminishes with the rise in temperature. The most probable relaxation times for 0.01 and 0.1 mp CuO doped derivatives are almost same but it records an increased value for 1.0 mp doped material. This again attributes to the possible change in the symmetry of copper environment.

  4. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  5. Dielectric behavior and ac conductivity in Aurivillius Bi4Ti3O12 doped by antiferromagnetic BiFeO3

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Tian, Z. M.; Yuan, S. L.; Duan, H. N.; Qiu, Y.

    2012-06-01

    Bi5Ti3FeO15 ceramics were synthesized by the solid state reaction. XRD analysis shows a single phase perovskite structure with no impurities identified. Two obvious dielectric anomalies around 1007 and 1090 K were exhibited by this material, indicating that there are two phase transitions. While no peak was found in the tan δ-T curve. In addition, the conduction loss activation energies calculated at 476-639 K, 652-966 K, and 980-1095 K are 0.156, 0.262, and 0.707 eV, respectively. Polarization versus electric field hysteresis loops associated with 2Pr of 6.08 μC/cm2 and 2Ec of 59 kV/cm were obtained.

  6. Structural characterization, thermal, ac conductivity and dielectric properties of (C7H12N2)2[SnCl6]Cl2.1.5H2O

    NASA Astrophysics Data System (ADS)

    Hajji, Rachid; Oueslati, Abderrazek; Hajlaoui, Fadhel; Bulou, Alain; Hlel, Faouzi

    2016-05-01

    (C7H12N2)2[SnCl6]Cl2.1.5H2O is crystallized at room temperature in the monoclinic system (space group P21/n). The isolated molecules form organic and inorganic layers parallel to the (a, b) plane and alternate along the c-axis. The inorganic layer is built up by isolated SnCl6 octahedrons. Besides, the organic layer is formed by 2,4-diammonium toluene cations, between which the spaces are filled with free Cl- ions and water molecules. The crystal packing is governed by means of the ionic N-H...Cl and Ow-H...Cl hydrogen bonds, forming a three-dimensional network. The thermal study of this compound is reported, revealing two phase transitions around 360(±3) and 412(±3) K. The electrical and dielectric measurements were reported, confirming the transition temperatures detected in the differential scanning calorimetry (DSC). The frequency dependence of ac conductivity at different temperatures indicates that the correlated barrier hopping (CBH) model is the probable mechanism for the ac conduction behavior.

  7. Polaron conductivity mechanism in potassium acid phthalate crystal: AC-conductivity investigation

    NASA Astrophysics Data System (ADS)

    Filipič, Cene; Levstik, Iva; Levstik, Adrijan; Hadži, Dušan

    2016-08-01

    The complex dielectric constant, \\varepsilon *(ν ,T), of potassium acid phthalate monocrystal (KAP) was investigated over the broad frequency and temperature range. While the imaginary part of dielectric constant ε‧‧(ν) increases rapidly with increasing temperature in the studied temperature range, the real part of dielectric constant ε‧(ν) increases only at high temperatures; there is almost no change of ε‧(ν) below 200 K. Both values of ε‧ and ε‧‧ are frequency dependent; the values increase with decreasing frequencies. At temperatures below 450 K the ac electrical conductivity and dielectric constant follow simultaneously the universal dielectric response (UDR). The analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for small polarons revealed that this mechanism governs the charge transport in KAP crystal in the studied temperature range.

  8. High thermal conductivity lossy dielectric using a multi layer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  9. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    NASA Astrophysics Data System (ADS)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  10. Structural and AC conductivity study of CdTe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  11. Electrical conductivity and dielectric studies of MnO2 doped V2O5

    NASA Astrophysics Data System (ADS)

    Tan, Foo Khoon; Hassan, Jumiah; Wahab, Zaidan Abd.; Azis, Raba'ah Syahidah

    The investigation on electrical conductivity and dielectric properties of mixed oxide of manganese (Mn) and vanadium (V) was carried out to study the mixed oxides response to different frequencies and different measuring temperatures. The frequency and temperature dependence of AC conductivity, dielectric constant and dielectric loss factor of mixed oxides were studied in the frequency range of 40 Hz-1 MHz and a temperature range of 30-250 °C. Since the mixed oxides are multi phase materials, hence the properties of the pure oxides are also presented in this study to discuss the multi phase behaviour of the mixed oxides. The XRD pattern shows the Mn-V oxide is multiphase and quantitative phase analysis was performed to determine the relative phases. The overall results indicate that with increasing temperature, the AC conductivity, dielectric constant, dielectric loss factor and loss tangent of the Mn-V mixed oxide increases. However, it shows an overlap in the dielectric constant at 225 °C and 250 °C due to the V2O5 phase in the mixed oxide. From the AC activation energy, the mixed oxides underwent conduction mechanism transition from band to hopping in the investigated frequency range. The MnV2O6 has relatively good resistivity, therefore the mixed oxide sintered at 550 °C with the highest composition of MnV2O6 gives the highest dielectric constant of 9845 at 1 kHz, and at 250 °C.

  12. The investigation of dielectric properties and ac conductivity of new ceramic diphosphate Ag0.6Na0.4FeP2O7 using impedance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Nasri, S.; Megdiche, M.; Gargouri, M.

    2016-10-01

    In this paper, Ag0.6Na0.4FeP2O7 has been synthesized by solid state reaction method. The ceramic compound was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrational spectroscopy and impedance measurements. In fact, the investigated sample has shown single phase type monoclinic structure with P21/C space group. The frequency-dependent electrical data are analyzed in the frame-work of conductivity and electric modulus formalisms. The real and imaginary parts of complex impedance are well fitted to equivalent circuit model based on the Z-View-software. Besides, the observed frequency dependence of conductivity is found to obey Jonscher's universal law. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping (CBH). The theoretical fitting between the proposed model and the experimental data showed good agreement. The contribution of single polaron and bipolaron hopping to a.c. conductivity in present compound is also studied. The ionic conductivity is discussed on the basis of the structural characteristics of the sample.

  13. ac conductance in granular insulating Co-ZrO{sub 2} thin films: A universal response

    SciTech Connect

    Konstantinovic, Zorica; Garcia del Muro, Montserrat; Kovylina, Miroslavna; Batlle, Xavier; Labarta, Amilcar

    2009-03-01

    The ac conductance in granular insulating Co-ZrO{sub 2} thin films prepared by pulsed laser deposition is systematically studied as a function of the Co volume content x. An absorption phenomenon at low frequencies that mimics the universal response of disordered dielectric materials is observed in the range of metal content below the Co percolation threshold x{sub p}{approx_equal}0.35 in the so-called dielectric regime. The temperature and frequency dependences of this absorption phenomenon are successfully analyzed in terms of random competing conduction channels between Co particles through thermally assisted tunneling and capacitive conductance. The ac conductance is well correlated with the nanostructure of the samples obtained by the transmission electron microscopy and perfectly matches the calculated ac response for a random resistor-capacitor network. We also show the occurrence of fractional power-law dependences on the frequency of the ac conductance taking place at very low frequencies as compared to the typical ranges at which dispersive behavior is observed in classical-disordered dielectric materials.

  14. Dielectric and AC conductivity studies of Nd substituted 0.8BaTiO3-0.2(Bi0.5(1-x)Nd0.5xK0.5)TiO3 lead free ceramics

    NASA Astrophysics Data System (ADS)

    Ramesh, M. N. V.; Ramesh, K. V.

    2016-05-01

    0.8BaTiO3 - 0.2(Bi0.5(1-x)Nd0.5xK0.5)TiO3 (0.01 ≤ x ≤ 0.06) lead free ceramic materials have been prepared by solid state reaction method and followed by high energy ball milling process. X-ray diffraction studies confirm the tetragonal structure of the materials at room temperature. Lattice parameters and density are decreasing with increase of Nd substitution. Microstructure studies were done by using Scanning electron microscope and it found that grain size is decreasing with increase of Nd substitution. Temperature and frequency dependent dielectric studies reveal relaxor behaviour of the materials. Dielectric constant, dielectric loss and Curie temperature are decreasing with Nd substitution. Maximum Curie temperature of 195°C was observed at 1MHz for x=0.01 Nd substituted sample. Degree of diffuseness was calculated from the modified Curie-Weiss law and it is increasing with Nd substitution. AC conductivity is increasing with increase of Nd substitution and observed maximum activation energy of 0.52 eV for x=0.02 Nd substituted sample.

  15. Thermal conductivity and dielectric constant of silicate materials

    NASA Technical Reports Server (NTRS)

    Simon, I.; Wechsler, A. E.

    1968-01-01

    Report on the thermal conductivity and dielectric constant of nonmetallic materials evaluates the mechanisms of heat transfer in evacuated silicate powders and establishes the complex dielectric constant of these materials. Experimental measurements and results are related to postulated lunar surface materials.

  16. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1992-01-01

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  17. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Astrophysics Data System (ADS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  18. Instabilities across the isotropic conductivity point in a nematic phenyl benzoate under AC driving.

    PubMed

    Kumar, Pramoda; Patil, Shivaram N; Hiremath, Uma S; Krishnamurthy, K S

    2007-08-01

    We characterize the sequence of bifurcations generated by ac fields in a nematic layer held between unidirectionally rubbed ITO electrodes. The material, which possesses a negative dielectric anisotropy epsilona and an inversion temperature for electrical conductivity anisotropy sigmaa, exhibits a monostable tilted alignment near TIN, the isotropic-nematic point. On cooling, an anchoring transition to the homeotropic configuration occurs close to the underlying smectic phase. The field experiments are performed for (i) negative sigmaa and homeotropic alignment, and (ii) weakly positive sigmaa and nearly homeotropic alignment. Under ac driving, the Freedericksz transition is followed by bifurcation into various patterned states. Among them are the striped states that seem to belong to the dielectric regime and localized hybrid instabilities. Very significantly, the patterned instabilities are not excited by dc fields, indicating their possible gradient flexoelectric origin. The Carr-Helfrich mechanism-based theories that take account of flexoelectric terms can explain the observed electroconvective effects only in part. PMID:17616118

  19. The electrostatic field of conducting bodies in multiple dielectric media

    NASA Astrophysics Data System (ADS)

    Rao, S. M.; Sarkar, T. K.; Harrington, R. F.

    1984-11-01

    A method for computing the electrostatic fields and the capacitance matrix for a multiconductor system in a multiple dielectric region is presented. The number of conductors and the number of dielectrics in this analysis are arbitrary. Some of the conductors may be of finite volume and others may be infinitesimally thin. The conductors can be either above a single ground plane or between two parallel ground planes. The formulation is obtained by using a free-space Green's function in conjunction with total charge on the conductor-to-dielectric interfaces and polarization charge on the dielectric-to-dielectric interfaces. The solution is effected by the method of moments using triangular subdomains with piecewise constant expansion functions and point matching for testing. Computed results are given for some finite-length conducting lines, compared to previous results obtained by two-dimensional analysis.

  20. Alternating-current conductivity and dielectric relaxation of bulk iodoargentate

    SciTech Connect

    Duan, Hai-Bao Yu, Shan-Shan; Zhou, Hong

    2015-05-15

    Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-D chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.

  1. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  2. Dielectric function of media based on conductive particles

    SciTech Connect

    Kempa, K.

    2006-07-15

    The general formula for the dielectric function of a medium containing conductive particles of various sizes (e.g., nanoparticles) is derived, and shown that it is exact in spite of electron-electron interactions for a parabolic confinement of electrons in the particles. The derivation method explains the apparent universal applicability of this formula to other systems. It is also shown, how this formula can be used to design composites with desired dielectric properties.

  3. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Nagendra, K.; Babu, G. Satish; Reddy, C. Narayana; Gowda, Veeranna

    2011-07-01

    Glasses in the system xLi2SO4-20Li2O-(80-x) [80P2O5-20V2O5] (5⩾x⩾20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li2SO4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aωs where `s' is the power law exponent. The ac conductivity found to increase with increase of Li2SO4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  4. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1994-01-01

    Electrohydrodynamic sample distortion during continuous flow electrophoresis is an experiment to be conducted during the second International Microgravity Laboratory (IML-2) in July 1994. The specific objective of this experiment is the distortion caused by the difference in dielectric constant between the sample and surrounding buffer. Although the role of sample conductivity in electrohydrodynamic has been the subject of both flight and ground experiments, the separate role of dielectric constant, independent of sample conductivity, has not been measured. This paper describes some of the laboratory research and model development that will support the flight experiment on IML-2.

  5. Interlayer thermal conductivity of rubrene measured by ac-calorimetry

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Brill, J. W.

    2013-07-01

    We have measured the interlayer thermal conductivity of crystals of the organic semiconductor rubrene, using ac-calorimetry. Since ac-calorimetry is most commonly used for measurements of the heat capacity, we include a discussion of its extension for measurements of the transverse thermal conductivity of thin crystals of poor thermal conductors, including the limitations of the technique. For rubrene, we find that the interlayer thermal conductivity, ≈0.7 mW/cm . K, is several times smaller than the (previously measured) in-layer value, but its temperature dependence indicates that the interlayer mean free path is at least a few layers.

  6. Determination of density of states, conduction mechanisms and dielectric properties of nickel disulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jamil, Arifa; Batool, S. S.; Sher, F.; Rafiq, M. A.

    2016-05-01

    Temperature and frequency dependent ac electrical measurements were used to explore density of states, conduction mechanisms and dielectric properties of nickel disulfide (NiS2) nanoparticles. The NiS2 nanoparticles were prepared by conventional one step solid state reaction method at 250 °C. X-ray diffraction (XRD) confirmed cubic phase of prepared nanoparticles. Scanning electron microscope (SEM) images revealed presence of irregular shaped nanoparticles as small as 50 nm. The ac electrical measurements were carried out from 300 K to 413 K. Two depressed semicircular arcs from 20 Hz to 2 MHz showed presence of bulk and grain boundary phases in NiS2 nanoparticles at all temperatures. Small polaron hopping conduction from 300 K to 393 K and correlated barrier hopping conduction mechanism at temperatures higher than 393 K was observed. High value of density of states (of the order of 1024 eV-1cm-3) was calculated from ac conductivity. At low frequencies high values (of the order of 104-107) of real part of dielectric constant (ɛ') were observed at different temperatures. These observations suggest that NiS2 nanoparticles may find applications in electronic devices.

  7. Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite

    SciTech Connect

    Kolekar, Y. D.; Sanchez, L. J.; Ramana, C. V.

    2014-04-14

    Manganese (Mn) substituted cobalt ferrites (CoFe{sub 2-x}Mn{sub x}O{sub 4}, referred to CFMO) have been synthesized by the solid state reaction method and their dielectric properties and ac conductivity have been evaluated as a function of applied frequency and temperature. X-ray diffraction measurements indicate that CFMO crystallize in the inverse cubic spinel phase with a lattice constant ∼8.38 Å. Frequency dependent dielectric measurements at room temperature obey the modified Debye model with relaxation time of 10{sup −4} s and spreading factor of 0.35(±0.05). The frequency (20 Hz–1 MHz) and temperature (T = 300–900 K) dependent dielectric constant analyses indicate that CFMO exhibit two dielectric relaxations at lower frequencies (1–10 kHz), while completely single dielectric relaxation for higher frequencies (100 kHz–1 MHz). The dielectric constant of CFMO is T-independent up to ∼400 K, at which point increasing trend prevails. The dielectric constant increase with T > 400 K is explained through impedance spectroscopy assuming a two-layer model, where low-resistive grains separated from each other by high-resistive grain boundaries. Following this model, the two electrical responses in impedance formalism are attributed to the grain and grain-boundary effects, respectively, which also satisfactorily accounts for the two dielectric relaxations. The capacitance of the bulk of the grain determined from impedance analyses is ∼10 pF, which remains constant with T, while the grain-boundary capacitance increases up to ∼3.5 nF with increasing T. The tan δ (loss tangent)-T also reveals the typical behavior of relaxation losses in CFMO.

  8. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  9. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films.

    PubMed

    Hanafy, Taha A

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ε', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σ(ac), of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La(3+), Gd(3+), and Er(3+) ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into α(a) and α(c). This splitting is due to the segmental motion in the amorphous (α(a)) and crystalline (α(c)) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  10. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  11. Electrical conductivity and discharge in spacecraft thermal control dielectrics

    SciTech Connect

    Passenheim, B.C.; Kitterer, R.; Riddell, J.D.; Van Lint, V.A.J.

    1982-12-01

    Engineering data on the radiation-induced and delayed conductivity in several common spacecraft dielectrics under conditions that approximate space exposure is presented. Direct measurements of discharge propagation velocity on Kapton, Teflon and Mylar is reported. Glass, and occasionally Mylar, exhibited discharges which propagated faster than 2 x 10/sup 8/ cm/s, but persist at approx. =10/sup -7/ s.

  12. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  13. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    SciTech Connect

    Nagendra, K.; Babu, G. Satish; Gowda, Veeranna; Reddy, C. Narayana

    2011-07-15

    Glasses in the system xLi{sub 2}SO{sub 4}-20Li{sub 2}O-(80-x) [80P{sub 2}O{sub 5}-20V{sub 2}O{sub 5}](5{>=}x{>=}20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li{sub 2}SO{sub 4} concentration. The ac conductivities have been fitted to the Almond-West type single power law equation {sigma}({omega}) = {sigma}(0)+A{omega}{sup s} where 's' is the power law exponent. The ac conductivity found to increase with increase of Li{sub 2}SO{sub 4} concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  14. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hemalatha, K. S.; Sriprakash, G.; Ambika Prasad, M. V. N.; Damle, R.; Rukmani, K.

    2015-10-01

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K-423 K) and frequencies (5 Hz-30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz-5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance was observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.

  15. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    SciTech Connect

    Hemalatha, K. S.; Damle, R.; Rukmani, K.; Sriprakash, G.; Ambika Prasad, M. V. N.

    2015-10-21

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance was observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.

  16. AC and DC conductivity of ionic liquid containing polyvinylidene fluoride thin films

    NASA Astrophysics Data System (ADS)

    Frübing, Peter; Wang, Feipeng; Kühle, Till-Friedrich; Gerhard, Reimund

    2016-01-01

    Polarisation processes and charge transport in polyvinylidene fluoride (PVDF) with a small amount (0.01-10 wt%) of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate ({[EMIM]}^+[{NO}_3]^-) are investigated by means of dielectric spectroscopy. The response of PVDF that contains more than 0.01 wt% IL is dominated by a low-frequency relaxation which shows typical signatures of electrode polarisation. Furthermore, the α a relaxation, related to the glass transition, disappears for IL contents of more than 1 wt%, which indicates that the amorphous phase loses its glass-forming properties and undergoes structural changes. The DC conductivity is determined from the low-frequency limit of the AC conductivity and from the dielectric loss peak related to the electrode polarisation. DC conductivities of 10^{-10} to 10^{-2} {S}/{m} are obtained—increasing with IL content and temperature. The dependence of the DC conductivity on the IL content follows a power law with an exponent greater than one, indicating an increase in the ion mobility. The temperature dependence of the DC conductivity shows Vogel-Fulcher-Tammann behaviour, which implies that charge transport is coupled to polymer chain motion. Mobile ion densities and ion mobilities are calculated from the DC conductivity and the dielectric loss related to electrode polarisation, with the results that less than one per cent of the total ion concentration contributes to the conductivity and that the strong increase in conductivity with temperature is mainly caused by a strong increase in ion mobility. This leads to the conclusion that in particular the ion mobility must be reduced in order to decrease the DC conductivity.

  17. Pairing fluctuation ac conductivity of disordered thin films

    NASA Astrophysics Data System (ADS)

    Petković, Aleksandra; Vinokur, Valerii M.

    2013-09-01

    We study temperature T and frequency ω dependence of the in-plane fluctuation conductivity of a disordered superconducting film above the critical temperature. Our calculation is based on the nonlinear sigma model within the Keldysh technique. The fluctuation contributions of different physical origin are found and analyzed in a wide frequency range. In the low-frequency range, ω ≪ T, we reproduce the known leading terms and find additional subleading ones in the Aslamazov-Larkin and the Maki-Thompson contributions to the ac conductivity. We also calculate the density of states ac correction. In the dc case these contributions logarithmically depend on the Ginzburg-Landau rate and are considerably smaller that the leading ones. However, in the ac case an external finite-frequency electromagnetic field strongly suppresses the known Aslamazov-Larkin and Maki-Thompson ac contributions, while the corresponding new terms and the density of states contribution are weakly suppressed and therefore become relevant at finite frequencies.

  18. Combination of distinct conduction and dielectric relaxation processes in LiCoO2

    NASA Astrophysics Data System (ADS)

    Kumar, N. S. K.; Govindaraj, G.

    2016-05-01

    The dielectric loss peaks are rarely seen in highly conducting solids due to conductivity contribution to the dielectric loss of material. LiCoO2 for the temperature range of l48K to 248K show dielectric relaxation at high frequencies with dc conductivity contribution. Conduction and dielectric relaxation of the material is studied with Cole-Cole type combined `pinned dipole' relaxation from hopping charges and `free dipole' relaxation due to host matrix.

  19. Dielectric relaxation and hopping conduction in reduced graphite oxide

    NASA Astrophysics Data System (ADS)

    Wei, Guidan; Yu, Ji; Gu, Min; Tang, Tong B.

    2016-06-01

    Graphite oxide reduced by sodium borohydride was characterised and its electrical conduction investigated with impedance spectroscopy. Thermal dependence of electrical modulus (instead of permittivity, its inverse) was calculated from complex impedance spectra, an approach that prevents any peak in dielectric loss (imaginary component) from being swarmed by large dc conductivity. Two loss peaks appeared at each tested frequency, in a sample of either degree of reduction. The set of weaker peak should arise from the relaxation of some polar bonds, as proposed earlier by us. The stronger loss peaks may correspond to the hopping of conduction electrons; variable range hopping is also consistent with the observed thermal dependence of conductivity. However, nearer ambient temperature there is a change in mechanism, to band transport, with an activation energy of fairly similar values as derived from both loss peaks and conductivity.

  20. Conductivity and Dielectric Dispersion of Gram-Positive Bacterial Cells

    PubMed

    van der Wal A; Minor; Norde; Zehnder; Lyklema

    1997-02-01

    The conductivity of bacterial cell suspensions has been studied over a wide range of ionic strengths and is interpreted in terms of their cell wall properties. The experimental data have been analyzed after improving the high kappaa double-layer theory of Fixman, by accounting for ionic mobility in the hydrodynamically stagnant layer, i.e., in the bacterial wall. Static conductivity and dielectric dispersion measurements both show that the counterions in the porous gel-like cell wall give rise to a considerable surface conductance. From a comparison of the mobile charge with the total cell wall charge it is inferred that the mobilities of the ions in the bacterial wall are of the same order but somewhat lower than those in the bulk electrolyte solution. The occurrence of surface conductance reduces the electrophoretic mobility in electrophoresis studies. If this effect is not taken into account, the zeta-potential will be underestimated, especially at low electrolyte concentrations.

  1. Conductivity and Dielectric Dispersion of Gram-Positive Bacterial Cells

    PubMed

    van der Wal A; Minor; Norde; Zehnder; Lyklema

    1997-02-01

    The conductivity of bacterial cell suspensions has been studied over a wide range of ionic strengths and is interpreted in terms of their cell wall properties. The experimental data have been analyzed after improving the high kappaa double-layer theory of Fixman, by accounting for ionic mobility in the hydrodynamically stagnant layer, i.e., in the bacterial wall. Static conductivity and dielectric dispersion measurements both show that the counterions in the porous gel-like cell wall give rise to a considerable surface conductance. From a comparison of the mobile charge with the total cell wall charge it is inferred that the mobilities of the ions in the bacterial wall are of the same order but somewhat lower than those in the bulk electrolyte solution. The occurrence of surface conductance reduces the electrophoretic mobility in electrophoresis studies. If this effect is not taken into account, the zeta-potential will be underestimated, especially at low electrolyte concentrations. PMID:9056304

  2. Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO{sub 3}

    SciTech Connect

    Kumari, Shalini; Ortega, N.; Pavunny, S. P.; Katiyar, Ram S.; Kumar, A.; Hubbard, J. W.; Rinaldi, C.; Srinivasan, G.; Scott, J. F.

    2015-03-21

    We describe systematic studies on Nd and Mn co-doped BiFeO{sub 3}, i.e., (Bi{sub 0.95}Nd{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3} (BNFM) polycrystalline electroceramics. Raman spectra and X-ray diffraction patterns revealed the formation of rhombohedral crystal structure at room temperature, and ruled out structural changes in BiFeO{sub 3} (BFO) after low percentage chemical substitution. Strong dielectric dispersion and a sharp anomaly around 620 K observed near the Néel temperature (T{sub N} ∼ 643 K of BFO) support strong magneto-dielectric coupling, verified by the exothermic peak in differential thermal data. Impedance spectroscopy disclosed the appearance of grain boundary contributions in the dielectric data in the region, and their disappearance just near the Néel temperature suggests magnetically active grain boundaries. The resistive grain boundary components of the BNFM are mainly responsible for magneto-dielectric coupling. Capacitive grain boundaries are not observed in the modulus spectra and the dielectric behavior deviates from the ideal Debye-type. The ac conduction studies illustrate short-range order with ionic translations assisted by both large and small polaron hopping. Magnetic studies indicate that the weak antiferromagnetic phase of BNFM ceramics is dominated by a strong paramagnetic response (unsaturated magnetization even at applied magnetic field of 7 T). The bulk BNFM sample shows a good in-plane magnetoelectric coupling (ME) coefficient.

  3. High thermal conductivity lossy dielectric using co-densified multilayer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-06-17

    Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.

  4. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad; Gupta, Inder J.

    1989-01-01

    A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.

  5. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  6. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  7. Irradiation effect on dielectric properties and electrical conductivity of Au/SiO 2/ n-Si (MOS) structures

    NASA Astrophysics Data System (ADS)

    Tataroğlu, A.; Altındal, Ş.; Bölükdemir, M. H.; Tanır, G.

    2007-11-01

    The Au/SiO2/n-Si (MOS) structures were exposed to beta-ray irradiation to a total dose of 30 kGy at room temperature. Irradiation effect on dielectric properties of MOS structures were investigated using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics. The C-V and G/ω-V measurements carried out in the frequency range from 1 kHz to 10 MHz and at various radiation doses, while the dc voltage was swept from positive bias to negative bias for MOS structures. The dielectric constant (ε‧), dielectric loss (ε″), loss factor (tan δ) and ac electrical conductivityac) were calculated from the C-V and G/ω-V measurements and plotted as a function of frequency at various radiation doses. A decrease in the ε‧ and ε″ were observed when the irradiation dose increased. The decrease in the ε‧ and ε″ of irradiated MOS structures in magnitude is explained on the basis of Maxwell-Wagner interfacial polarization. Also, the σac is found to decrease with increasing radiation dose. In addition, the values of the tan δ decrease with increasing radiation dose and give a peak. From the experimental results, it is confirmed that the peak of loss tangent is due to the interaction between majority carriers and interface states which induced by radiation.

  8. Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics

    NASA Astrophysics Data System (ADS)

    Mahato, Dev K.; Sinha, T. P.

    2016-08-01

    Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance (Z″) and the normalized imaginary part of modulus (M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.

  9. Conduction mechanism and dielectric properties of a Se80Ge20- x Cd x ( x = 0, 6 and 12 at.wt%) films

    NASA Astrophysics Data System (ADS)

    Shakra, A. M.; Farid, A. S.; Hegab, N. A.; Afifi, M. A.; Alrebati, A. M.

    2016-09-01

    AC conductivity and dielectric properties of Se80Ge20- x Cd x (0 ≤ x ≤ 12 at.wt%) in thin film forms are reported in this paper. Thin films were deposited from the prepared compositions by thermal evaporation technique at 10-5 Torr. The films were well characterized by X-ray diffraction, differential thermal analysis and energy-dispersive X-ray spectroscopy. The AC conductivity and dielectric properties have been investigated for the studied films in the temperature range 293-393 K and over a frequency range of 102-105 Hz. The experimental results indicate that both AC conductivity σ AC( ω) and dielectric constants depend on temperature, frequency and Cd content. The frequency exponent s was calculated, and its value lies very close to unity and is temperature independent. This behavior can be explained in terms of the correlated barrier hopping between centers forming intimate valence alternation pairs. The density of localized states N( E F) at the Fermi level is estimated. The activation energy Δ E( ω) was found to decrease with increasing frequency. The maximum barrier height W m for the studied films was calculated from an analysis of the dielectric loss ɛ 2 according to the Guintini equation. Its values agree with that proposed by the theory of hopping of charge carriers over potential barrier as suggested by Elliott for chalcogenide glasses. The variation of the studied properties with Cd content was also investigated.

  10. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Zahoor Ahmad, Bhat; Bhat, Bilal Hamid

    2014-09-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz-3 MHz and 290-570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω-1 m-1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects.

  11. Relationship between Oxide-Ion Conduction and Dielectric Properties of Gd2Zr2O7 Having a Fluorite-Type Structure

    NASA Astrophysics Data System (ADS)

    Yamamura, Hiroshi; Nishino, Hanako; Kakinuma, Katsuyoshi

    2008-07-01

    The relationship between electrical conduction and dielectric properties was investigated for the oxide-ion conductor Gd2Zr2O7 having a fluorite-type structure. Computer simulation clarified that the anomalously large dielectric constant (ɛr') was successfully explained by the superposition of the Debye-type polarization and the electrolyte-electrode interfacial polarization. Two Debye-type relaxations were observed at 673 K and above. The lower-frequency relaxation was ascribed to the dopant-vacancy associate, (GdCe'-VO••-GdCe'), and the higher one to the long range migration of oxide ions on the basis of the discussions of both the activation energies and the relaxation frequencies. The frequency dependences of both the ac conductivityac) and the loss tangent (tan δ) were also successfully explained using the dielectric parameters of the Debye-type dopant-vacancy associates.

  12. The electrical conduction and dielectric strength of SU-8

    NASA Astrophysics Data System (ADS)

    Melai, Joost; Salm, Cora; Smits, Sander; Visschers, Jan; Schmitz, Jurriaan

    2009-06-01

    This paper presents a study on the dielectric behavior of SU-8 photoresist. We present measurements on the leakage current levels through SU-8 layers of varying thickness. The leakage current is dominated by thermionic emission. We have further determined the dielectric strength of SU-8 to be 4.4 MV cm-1. The remarkably high dielectric strength allows the material to be used for high-voltage applications.

  13. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  14. RG flow of AC conductivity in soft wall model of QCD

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Neha; Siwach, Sanjay

    2016-03-01

    We study the Renormalization Group (RG) flow of AC conductivity in soft wall model of holographic QCD. We consider the charged black hole metric and the explicit form of AC conductivity is obtained at the cutoff surface. We plot the numerical solution of conductivity flow as a function of radial coordinate. The equation of gauge field is also considered and the numerical solution is obtained for AC conductivity as a function of frequency. The results for AC conductivity are also obtained for different values of chemical potential and Gauss-Bonnet couplings.

  15. AC conductivity and its scaling behavior in MgO-Li2O-B2O3-Bi2O3 glasses

    NASA Astrophysics Data System (ADS)

    Purnima, M.; Bale, Shashidhar; Samee, M. A.; Ahmmad, Shaik Kareem; Rahman, Syed

    2013-02-01

    In the present work, the compositional dependence of density, refractive index and glass transition temperature of xMgO-(25-x)Li2O-50B2O3-25Bi2O3 glasses is studied. Impedance spectroscopy technique is employed on these samples and the data are analyzed using Cole-Cole type impedance response function. The AC conductivity behavior of the present glasses has been investigated in the frequency range from 100 Hz to 1 MHz and as a function of temperature the measured AC data are analyzed using the Jonscher’s universal power law to explain the observed dispersive behavior of the electrical conductivity. The temperature and composition dependence scaling behavior in the AC conductivity are satisfactorily explained by scaling the AC conductivity σ‧(ω) by hopping frequency ωp. The frequency response of dielectric constant ɛ‧ and dielectric loss tanδ as a function of temperature were studied. The tanδ peak shifts to higher frequency with increasing temperature, indicating dipolar relaxation character of dielectric loss in the present glasses.

  16. Broadband AC Conductivity of XUV Excited Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Tsui, Y.; Toleikis, S.; Hering, P.; Brown, S.; Curry, C.; Tanikawa, T.; Hoeppner, H.; Levy, M.; Goede, S.; Ziaja-Motyka, B.; Rethfeld, B.; Recoules, Vanina; Ng, A.; Glenzer, S.

    2015-11-01

    The properties of ultrafast laser excited warm dense gold have been extensively studied in the past decade. In those studies, a 400nm ultrashort laser pulse was used to excite the 5 d electrons in gold to 6s/p state. Here we will present our recent study of warm dense gold with 245eV, 70fs pulses to selectively excite 4 f electrons using the XUV-FEL at FLASH. The AC conductivity of the warm dense gold was measured at different wavelengths (485nm, 520nm, 585nm, 640nm and 720nm) to cover the range from 5 d-6 s / p interband transitions to 6 s/ p intraband transitions. Preliminary result suggests that the onset of 5 d-6 s / p band transition shifts from 2.3eV to ~ 2eV, which is in agreement with the study of 400nm laser pulse excited warm dense gold. More detailed analysis of our data will also be presented.

  17. Dielectric and electric conductivity studies of PVA (Mowiol 10-98) doped with MWCNTs and WO3 nanocomposites films

    NASA Astrophysics Data System (ADS)

    Rithin Kumar, N. B.; Crasta, Vincent; Praveen, B. M.

    2016-05-01

    In this article, we report the doping of MWCNTs and WO3 nanoparticles into the PVA matrix for fabricating a novel class of PVA nanocomposite using solvent casting method. The behavioral effect of these embedded nanoparticles in PVA matrix for different doping concentrations on microstructural, dielectric and electric properties are analyzed for possible device applications. The formation of nanocomposites and their microstructural variations for different doping concentration were inspected by x-ray diffraction studies. As the doping concentration increases from x = 0 to 7.5 wt%, the DC conductivity rises from 1.0528 × 10-11 to 3.7764 × 10-9 S cm-1 and beyond the dopant concentration x > 7.5 wt% the DC conductivity was found to decrease. The frequency dependent dielectric constant decreases with an increase in dopant concentration. The values of electric modulus, AC conductivity and polarization relaxation time extracted from dielectric data spectacles an enhancement behavior in conducting property of PVA nanocomposites with increasing concentration up to x = 7.5 wt% and above x > 7.5 wt% the values found decreasing. The information regarding the surface morphology and chemical configuration of the nanocomposites are determined by using atomic force microscope (AFM), scanning electron microscope (SEM) and energy dispersive analysis of x-rays (EDS) techniques.

  18. Investigation of conduction and dielectric behaviors of a-Pb9Se71Ge20-xSnx (8≤x≤12) chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Modgil, Vivek; Rangra, V. S.

    2014-07-01

    The Pb9Se71Ge20-xSnx (8≤x≤12) glassy alloys are prepared by melt quenching technique. The dielectric parameters and conductivity behavior of pallets has been studied in the frequency range 500 Hz to 1 MHz with varying temperature well below glass transition temperature. The ac conductivity is found to obey the power law ωs, where s approaches unity at room temperature and decreases as temperature rises. The conductivity behavior, dielectric constant and loss show the frequency and temperature dependence. The results obtained are discussed in terms of correlated barrier hopping model proposed by Elliot. Correlation between conductive and dielectric behavior of glassy alloy has been observed.

  19. Universal dielectric response of variously doped CeO{sub 2} ionically conducting ceramics

    SciTech Connect

    Nowick, A.S.; Vaysleyb, A.V.; Kuskovsky, I.

    1998-10-01

    The Jonscher power law, or {open_quotes}universal dielectric response{close_quotes} (UDR) behavior was studied for a range of CeO{sub 2} solid solutions with Y{sup 3+} and Gd{sup 3+} dopants, with particular emphasis on dilute systems which possess relatively simple defect structures. The results show power-law frequency dependence of the ac conductivity, with exponent s=0.61{plus_minus}0.03, independent of temperature and concentration. The conductivity data also show scaling behavior in terms of a time constant {tau}, whose activation energy is very close to that of the dc conductivity. For 1{percent} Y and 1{percent} Gd samples, an additional Debye-type relaxation is observed due to dopant{endash}oxygen-vacancy pairs. Such samples are clearly in the association range (stage III). These results contradict the assumption by Almond and West that {tau}{sup {minus}1} is the hopping frequency of the carrier defects. At very low concentrations ({approximately}0.01{percent}), UDR behavior virtually disappears. The present results are then compared to the principal theories that describe UDR behavior. It is found that, while each theory suffers from some drawbacks, the more phenomenological theories fare better. {copyright} {ital 1998} {ital The American Physical Society}

  20. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    PubMed

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.

  1. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    NASA Astrophysics Data System (ADS)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-03-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3‧-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC[*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε‧) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole-Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole-Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  2. AC conductivity of a niobium thin film in a swept magnetic field.

    PubMed

    Tsindlekht, M I; Genkin, V M; Gazi, S; Chromik, S

    2013-02-27

    We report results of measurements of the ac conductivity of a Nb superconducting thin film in a swept dc magnetic field. In the mixed state the swept dc field creates vortices at the film surface which pass through the film and form the observed ac conductivity. Vortex rate generation does not depend on the value of the dc field and there is a large plateau-like region of dc magnetic fields where the dissipation is approximately constant. A proposed phenomenological model describes quite well the main features of the ac response in these fields, including its dependency on the sweep rate, ac amplitude, frequency, and value of the second and third harmonics.

  3. Analysis of conductivity and dielectric spectra of Mn0.5Zn0.5Fe2O4 with coupled Cole-Cole type anomalous relaxations

    NASA Astrophysics Data System (ADS)

    Kumar, N. S. K.; Shahid, T. S.; Govindaraj, G.

    2016-05-01

    Most of the crystalline materials seldom show a well-defined dielectric loss peak due to domination of dc conductivity contribution, but effects of loss peaks are seen at high frequencies. Ac electrical data of nano-crystalline Mn0.5Zn0.5Fe2O4 synthesised by chemical co-precipitation method show such behaviour. Properly combined and formulated conduction and dielectric relaxation functions are required for such materials. Cole-Cole type relaxation function in the combined conduction and dielectric process is formulated for complex resistivity ρ*(ω), complex permittivity ε*(ω), complex conductivity σ*(ω) and complex electric modulus M*(ω). Conduction and dielectric relaxation are linked to Jonscher's idea of 'pinned dipole' and 'free dipole' to understand the relaxation dynamics. The physical parameters of 'pinned dipole' and 'free dipole' formalism are unique for all representations like ρ*(ω), ε*(ω), σ*(ω) and M*(ω). 'Pinned dipole' relaxation time τc related to conduction process and 'free dipole' relaxation time τd related to dielectric process show Arrhenius behaviour with the same activation energy. Correlation of dc conductivity σc with τc and τd indicates the coupled dynamics of 'pinned dipole' and 'free dipole'. Time-temperature scaling of conduction and dielectric relaxation reveals that the mechanism of coupled dynamics of 'pinned dipole' and 'free dipole' is temperature independent. Hopping of charge carriers with dynamics of disordered cation distribution of host matrix generates a coupled conduction and dielectric relaxation in Mn0.5Zn0.5Fe2O4.

  4. Morphological, dielectric and electrical conductivity characteristics of clay-containing nanohybrids of poly(N-vinyl carbazole) and polypyrrole.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda; Ray, Suprakas Sinha

    2012-10-01

    Poly(N-vinyl carbazole) (PNVC) and polypyrrole (PPY)-montmorillonite (MMT) clay hybrids were prepared by mechanical grinding of the respective monomers with MMT followed by subsequent standard processing methods. Fourier transform infrared spectroscopic studies confirmed the inclusion of the polymers in the composites. The morphologies of the hybrids were investigated by transmission electron microscopic techniques, which suggested the formation of intercalated structures. X-ray diffraction analyses indicated the enhancement of 'd001' values in MMT implying intercalation of the polymers into the nano-interlamellar spaces of MMT. The dielectric constants of PNVC-MMT hybrids were improved (60-180) relative to the homopolymer (3-6) in the frequency range 0.1-25 kHz. PPY-MMT hybrid also showed significantly higher values of dielectric constant (2000-4000) relative to the corresponding base polymers. These variations were dependent on the MMT/polymer feed ratio in the frequency range (1-25 kHz). This feature could manifest from the characteristic differences in the interfaces between the grains and grain boundaries of the composites, which control the dielectric properties of the system. Relaxation behavior for the composites was explained by considering the Maxwell-Wagner two-layered dielectric models. The ac conductivity was found to be dependent on frequency in the entire frequency range of study (100 Hz to 25 kHz), which indicated that the composites had few free charges for conduction, and frequency dependent conductivity was due to trapped charges in the grain boundary.

  5. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  6. Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2016-07-01

    The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.

  7. Dielectric and conductivity measurements as proxy method to monitor contamination in sandstone.

    PubMed

    Saltas, V; Vallianatos, F; Soupios, P; Makris, J P; Triantis, D

    2007-04-01

    The present work investigates whether dielectric spectroscopy can be used to detect contamination, which may leach in a natural porous material, due to the spreading of contaminants. For this purpose, dielectric and conductivity measurements, in the frequency range from 10 mHz to 1 MHz, were carried out in sandstone samples, partially filled or saturated with solutions of leachates, at different concentrations. The experimental results suggest the dominant role of free water to the measured electrical conductivity and dielectric permittivity in contaminated samples with high water content. On the other hand, various relaxation mechanisms were observed in dried samples at different leachate concentrations. Experimental data were fitted using the Havriliak-Negami dielectric relaxation function, superimposed with a conductivity term. The determined parameters of the fitting function may serve to distinguish between different amounts of leachate in sandstone samples.

  8. Effects of bulk and surface conductivity on the potential developed by dielectrics exposed to electron beams

    NASA Technical Reports Server (NTRS)

    Rotenberg, M.; Mandell, M. J.; Parks, D. E.

    1979-01-01

    The charging and discharging of a dielectric material which has bulk and surface conductivities is discussed. Two model problems are solved. In the first problem, a semi-infinite dielectric plane, attached to an infinite grounded conducting substrate and exposed to a monoenergetic electron beam, is analyzed. Bulk and surface conductivities and secondary emission characteristics are taken into account as parameters. In the second problem the dielectric is charged but the electron beam is shut off so only the bulk and surface conductivities enter the calculation. The principal result of the latter calculation is to show that steep tangential gradients develop in the presence of a surface conductivity during decay, and that for asymptotic times the temporal behavior, for a fixed position, is proportional to the square root of t rather than exponential, as expected in the presence of a bulk conductivity.

  9. Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al∕SiO(2)∕p-Si metal-insulator-semiconductor Schottky diodes.

    PubMed

    Yıldız, D E; Dökme, I

    2011-07-01

    The dielectric properties and electrical conductivity of Al∕SiO(2)∕p-Si (MIS) Schottky diodes (SDs) in the frequency range of 10 kHz to 10 MHz and the gate voltage range of -2 to 6 V have been investigated in detail using experimental C-V and G∕w-V measurements. Experimental results indicated that the voltage dependence of the real part of the dielectric constant (ɛ') and loss tangent (tan δ) characteristics have a peak at each frequency. The values of ɛ' increase with decreasing frequency and tend to be frequency independent in the negative voltage region. However, the values of the dielectric loss (ɛ″) increase with decreasing frequency at each voltage. In contrast, ɛ' and ɛ″ are almost found to decrease, and the ac electrical conductivity (σ(ac)) and the real part of the electric modulus (M') increase, with increasing frequency. In addition, the imaginary part of the electric modulus (M″) showed a peak that shifts to a higher frequency with increasing applied voltage. It can be concluded that interfacial polarization can more easily occur at low frequencies, and consequently the majority of interface states at the Si-SiO(2) interface contribute to the deviation of the dielectric properties of Al∕SiO(2)∕p-Si (MIS) SDs.

  10. Near- and far-field scattering resonance frequency shift in dielectric and perfect electric conducting cylinders.

    PubMed

    Yuffa, Alex J; Gutierrez, Yael; Sanz, Juan M; Alcaraz de la Osa, Rodrigo; Saiz, José M; González, Francisco; Moreno, Fernando; Videen, Gorden

    2016-03-01

    The ability to infer near-field scattering properties from far-field measurements is of paramount importance in nano-optics. Recently we derived an approximate formula for predicting the frequency shift between near- and far-field intensity peaks in the case of a dielectric sphere. In this work we demonstrate that almost an identical formula can be used to predict the resonance shift of a dielectric cylinder and a perfectly conducting cylinder. We find the redshift of the resonance peak of the perfect electric conducting cylinder to be approximately 2 orders of magnitude greater than for the dielectric cylinder. The errors in our approximate analytic formula for predicting the redshift are approximately only twice as great. Furthermore, we apply the redshift formula to a silicon cylinder and discuss its magneto-dielectric properties, which may be of interest in design of metamaterials. PMID:26974908

  11. Conducting polymers. VI. Effect of doping with iodine on the dielectrical and electrical conduction properties of polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    El-Ghamaz, N. A.; Diab, M. A.; Zoromba, M. Sh.; El-Sonbati, A. Z.; El-Shahat, O.

    2013-10-01

    The effect of doping of polyacrylonitrile (PAN) with iodine on the dielectical properties and ac conductivity as a function of temperature and frequency is investigated. Thermogravimetric analysis, TGA, and FTIR measurements show that PAN undergoes degradation starting at 523 K. Doping PAN with I2 enhances the ac electrical conductivity σac in the temperature range under investigation due to oligomerization of the nitrile groups giving a conjugated polyimine. The thermal activation energy, ΔE, is calculated for PAN and PAN/I2 and found to be in the range 0.16-1.16 eV at 0.1 kHz. The correlated barrier hopping (CBH) conduction mechanism is found to be the dominant conduction mechanism for PAN and PAN/I2 samples.

  12. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.

    PubMed

    Fan, Shih-Kang; Hsieh, Tsung-Han; Lin, Di-Yu

    2009-05-01

    A general digital (droplet-based) microfluidic platform based on the study of dielectric droplet manipulation by dielectrophoresis (DEP) and the integration of DEP and electrowetting-on-dielectric (EWOD) is reported. Transporting, splitting, and merging dielectric droplets are achieved by DEP in a parallel-plate device, which expands the fluids of digital microfluidics from merely being conductive and aqueous to being non-conductive. In this work, decane, hexadecane, and silicone oil droplets were successfully transported in a 150 microm-high gap between two parallel plates by applying a DC voltage above threshold voltages. Non-volatile silicone oil droplets with viscosities of 20 and 50 cSt were studied in more detail in parallel-plate geometries with spacings of 75 microm, 150 microm, and 225 microm. The threshold voltages and the required driving voltages to achieve droplet velocities up to 4 mm/s in the different circumstances were measured. By adding a dielectric layer on the driving electrodes of the tested parallel-plate device, a general digital microfluidic platform capable of manipulating both dielectric and conductive droplets was demonstrated. DEP and EWOD, selectively generated by applying different signals on the same dielectric-covered electrodes, were used to drive silicone oil and water droplets, respectively. Concurrent transporting silicone oil and water droplets along an electrode loop, merging water and oil droplets, and transporting and separating the merged water-in-oil droplet were performed.

  13. Thermal interface conductance across metal alloy-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Freedman, Justin P.; Yu, Xiaoxiao; Davis, Robert F.; Gellman, Andrew J.; Malen, Jonathan A.

    2016-01-01

    We present measurements of thermal interface conductance as a function of metal alloy composition. Composition spread alloy films of A uxC u1 -x and A uxP d1 -x solid solutions were deposited on single crystal sapphire substrates via dual electron-beam evaporation. High throughput measurements of thermal interface conductance across the (metal alloy)-sapphire interfaces were made by positional scanning of frequency domain thermoreflectance measurements to sample a continuum of Au atomic fractions (x ˜0 →1 ) . At a temperature of 300 K, the thermal interface conductance at the A uxC u1 -x -sapphire interfaces monotonically decreased from 197 ±39 MW m-2K-1 to 74 ±11 MW m-2K-1 for x =0 →0.95 ±0.02 and at the A uxP d1 -x -sapphire interfaces from 167 ±35 MW m-2K-1 to 60 ±10 MW m-2K-1 for x =0.03 →0.97 ±0.02 . To shed light on the phonon physics at the interface, a Diffuse Mismatch Model for thermal interface conductance with alloys is presented and agrees reasonably with the thermal interface conductance data.

  14. The physics of gridded and conductive coated dielectrics for spacecraft

    NASA Technical Reports Server (NTRS)

    Okress, E. C.

    1977-01-01

    Theoretical aspects of electrostatic control and design of gridded and conductive film bonded polymers, for spacecraft Thermo-optical blankets are considered. Brief commentaries relative to the salient features of the primarily developed facility for and characterization of said polymers is also considered.

  15. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2013-06-01

    Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

  16. Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Plyushch, Artyom; Macutkevic, Jan; Kuzhir, Polina P.; Banys, Juras; Fierro, Vanessa; Celzard, Alain

    2016-03-01

    Results of broadband dielectric spectroscopy of flat micronic graphite (FMG)/polyurethane (PU) resin composites are presented in a wide temperature range (25-450 K). The electrical percolation threshold was found to lie between 1 and 2 vol. % of FMG. Above the percolation threshold, the composites demonstrated a huge hysteresis of properties on heating and cooling from room temperature up to 450 K, along with extremely high values of dielectric permittivity and electrical conductivity. Annealing proved to be a very simple but powerful tool for significantly improving the electrical properties of FMG-based composites. In order to explain this effect, the distributions of relaxation times were calculated by the complex impedance formalism. Below room temperature, both dielectric permittivity and electrical conductivity exhibited a very low temperature dependence, mainly caused by the different thermal properties of FMG and pure PU matrix.

  17. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Sukhnandan Singh, Surinder Singh, Lakhwant; Lochab, S. P.

    2014-04-24

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 {sup 0}C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  18. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  19. Inorganic backbone ionomers: Design and dielectric response of single-ion conducting polymers

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua

    Ion-conducting polymers were studied primarily through the use of dielectric spectroscopy. The conclusions drawn from ion conduction models of the dielectric data are corroborated by additional independent experiments, including x-ray scattering, calorimetry, prism coupling, and DFT calculations. The broad concern of this dissertation is to understand and clarify a path forward in ion conducting polymer research. This is achieved by considering low-Tg ionomers and the advantages imparted by siloxane and phosphazene backbones. The most successful dielectric spectroscopy model for the materials studied is the electrode polarization model (EP), whereas other models, such as the Dyre random barrier model, fail to describe the experimental results. Seven nonionic ether oxygen (EO) containing polymers were studied in order to observe the effect that backbone chemistry has on dipole motion. Conventional carboncarbon backbone EO-containing polymers show no distinct advantage over similar EO-pendant polysiloxane or polyphosphazene systems. The mobility and effective backbone Tg imparted by the inorganic backbones are comparable. A short EO pendant results in a lower static dielectric constant due to restricted motion of dipoles close to the chain. The flexibility and chemical versatility of inorganic backbone polymers motivates further study of two ionomer systems. A polypohosphazene iodide conducting system was characterized by dielectric spectroscopy and x-ray scattering. Two end "tail" functionalization of the ammonium ion were used, a tail with two EOs and an alkyl tail of six carbons. This functional group plays an important role in ion dynamics and can wrap around the ion and self-solvate when EOs are present. The iodide-ammonium ionomers are observed to have unusually large high-frequency dielectric constants due to atomic polarization of ions. The strength of the atomic polarization scales with ion content. The aggregation state of ions is able to be determined from

  20. An Investigation of the Dependence of Ionic Conduction on the Dielectric Properties of Porin

    NASA Astrophysics Data System (ADS)

    Aboud, S. J.; Marreiro, D.; Saraniti, M.

    A previously validated P3M force-field scheme, self-consistently coupled to a BD kernel, is used to investigate the influence of the protein dielectric constant on ion channel permeation in OmpF porin. The channel conductivity is 0.24nS for a protein dielectric constant of 4, and is in agreement with experimental measurements. Increased cation selectivity at low ionic concentrations is also observed in the simulations and appears to be dependent on the rings of aspartic acid residues around the mouths of the porin.

  1. Conductance of a single electron transistor with a retarded dielectric layer in the gate capacitor

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Chtchelkatchev, N. M.; Fedorov, S. A.; Beloborodov, I. S.

    2015-11-01

    We study the conductance of a single electron transistor (SET) with a ferroelectric (or dielectric) layer placed in the gate capacitor. We assume that the ferroelectric (FE) has a retarded response with arbitrary relaxation time. We show that in the case of "fast" but still retarded response of the FE (dielectric) layer an additional contribution to the Coulomb blockade effect appears leading to the suppression of the SET conductance. We take into account fluctuations of the FE (dielectric) polarization using Monte Carlo simulations. For "fast" FE, these fluctuations partially suppress the additional Coulomb blockade effect. Using Monte Carlo simulations, we study the transition from "fast" to "slow" FE. For high temperatures, the peak value of the SET conductance is almost independent of the FE relaxation time. For temperatures close to the FE Curie temperature, the conductance peak value nonmonotonically depends on the FE relaxation time. A maximum appears when the FE relaxation time is of the order of the SET discharging time. Below the Curie point the conductance peak value decreases with increasing the FE relaxation time. The conductance shows the hysteresis behavior for any FE relaxation time at temperatures below the FE transition point. We show that conductance hysteresis is robust against FE internal fluctuations.

  2. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  3. AC Conductivity Studies in Lithium-Borate Glass Containing Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y.; Anavekar, R. V.

    2011-07-01

    Gold nanoparticles have been synthesized in a base glass with composition 30Li2O-70B2O3 using gold chloride (HAuCl4.3H2O) as a dopant. The samples are characterized using XRD, ESR, SEM and optical absorption in the visible range. AC conductivity studies have been performed at RT over a frequency range 100 to 10 MHz. The dc conductivity is calculated from the complex impedence plot. The dc conductivity is found to be increasing with the increase of dopant concentration. AC conductivity data is fitted with Almond-West law with power exponent `s'. The values of `s' is found to lie in the range of 0.70-0.73.

  4. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  5. Conductive and dielectric defects, and anisotropic and isotropic turbulence in liquid crystals: Electric power fluctuation measurements

    NASA Astrophysics Data System (ADS)

    Tóth-Katona, Tibor; Gleeson, James T.

    2004-01-01

    Fluctuations of the injected electric power during electroconvection (EHC) of liquid crystals are reported in both the conductive and the dielectric regime of convection. The amplitude and the frequency of the fluctuations, as well as the probability density functions have been compared in these two regimes and substantial differences have been found both in defect turbulence of EHC and at the DSM1→DSM2 transition.

  6. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    NASA Astrophysics Data System (ADS)

    Fong, S. W.; Sood, A.; Chen, L.; Kumari, N.; Asheghi, M.; Goodson, K. E.; Gibson, G. A.; Wong, H.-S. P.

    2016-07-01

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO2/Al2O3 and SiO2/Si3N4. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100-500 K), show that amorphous thin-film multilayer SiO2/Si3N4 and SiO2/Al2O3 exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO2/Al2O3, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 1028 m-3 for SiO2 and 10.2 → 8.27 × 1028 m-3 for Al2O3) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m2 K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  7. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  8. Ion-pair formation in aqueous strontium chloride and strontium hydroxide solutions under hydrothermal conditions by AC conductivity measurements.

    PubMed

    Arcis, H; Zimmerman, G H; Tremaine, P R

    2014-09-01

    Frequency-dependent electrical conductivities of solutions of aqueous strontium hydroxide and strontium chloride have been measured from T = 295 K to T = 625 K at p = 20 MPa, over a very wide range of ionic strength (3 × 10(-5) to 0.2 mol kg(-1)), using a high-precision flow AC conductivity instrument. Experimental values for the concentration-dependent equivalent conductivity, Λ, of the two electrolytes were fitted with the Turq-Blum-Bernard-Kunz ("TBBK") ionic conductivity model, to determine ionic association constants, K(A,m). The TBBK fits yielded statistically significant formation constants for the species SrOH(+) and SrCl(+) at all temperatures, and for Sr(OH)2(0) and SrCl2(0) at temperatures above 446 K. The first and second stepwise association constants for the ion pairs followed the order K(A1)(SrOH(+)) > K(A1)(SrCl(+)) > K(A2)[Sr(OH)2(0)] > K(A2)[SrCl2(0)], consistent with long-range solvent polarization effects associated with the lower static dielectric constant and high compressibility of water at elevated temperatures. The stepwise association constants to form SrCl(+) agree with previously reported values for CaCl(+) to within the combined experimental error at high temperatures and, at temperatures below ∼375 K, the values of log10 KA1 for strontium are lower than those for calcium by up to ∼0.3-0.4 units. The association constants for the species SrOH(+) and Sr(OH)2(0) are the first accurate values to be reported for hydroxide ion pairs with any divalent cation under these conditions.

  9. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-05-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.

  10. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  11. Dielectric and conductivity characteristics of CuCl2 doped poly(N-vinyl carbazole) and its hybrid nanocomposite with Fe3O4.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda

    2014-08-01

    Copper(II) chloride (CuCl2) doped poly(N-vinyl carbazole) (PNVC)-ferric oxide (Fe3O4) hybrid composites have been prepared and characterized by Fourier transform infrared spectroscopic studies, UV-Vis spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction analyses and evaluated in regard to dielectric response and ac/dc conductivity characteristics. HRTEM images for CuCl2-(PNVC-Fe3O4) composite indicate the co-existence of both the CuCl2 and Fe3O4 nanoparticles in the composite and characteristic lattice fringes are clearly observed which endorse the formation of thin layer interfaces between Fe3O4 and CuCl2 nanoparticles. The dielectric constants of the CuCl2 doped PNVC and PNVC-Fe3O4 composites increase substantially relative to the corresponding values of the polymer and the polymer composite respectively. Likewise, the conductivities (ac and dc) are also improved substantially after doping with CuCl2. The dependence of these functional properties on the extent of metal salt loading has been evaluated and a quantitative estimation of the contribution of the grain boundary and resistance parameters has been attempted in terms of Maxwell-Wagner two-layered model. PMID:25936001

  12. On the dielectric relaxation of biological cell suspensions: the effect of the membrane electrical conductivity.

    PubMed

    Di Biasio, A; Cametti, C

    2011-06-01

    Due to the mismatch of the electrical parameters (the permittivity ϵ' and the electrical conductivity σ) of the membrane of a biological cell with the ones of the cytosol and the extracellular medium, biological cell suspensions are the site, under the influence of an external electric field, of large dielectric relaxations in the radiowave frequency range. However, a point still remains controversial, i.e., whether or not the value of membrane conductivity σ(s) might be extracted from the de-convolution of the dielectric spectra or otherwise if it would be more reasonable to assign to the membrane conductivity a value equal to zero. This point is not to be considered with superficiality since it concerns an a priori choice which ultimately influences the values of the electrical parameters deduced from this technique. As far as this point is concerned, the opinion of the researchers in this field diverges. We believe that, at least within certain limits, the membrane conductivity can be deduced from the shape of the relaxation spectra. We substantiate this thesis with two different examples concerning the first a suspension of human normal erythrocyte cells and the second a suspension of human lymphocyte cells. In both cases, by means of an accurate fitting procedure based on the Levenberg-Marquardt method for complex functions, we can evaluate the membrane conductivity σ(s) with its associated uncertainty. The knowledge of the membrane electrical conductivity will favor the investigation of different ion transport mechanisms across the cell membrane.

  13. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  14. Scattering from perfectly conducting and resistive strips on a grounded dielectric slab

    NASA Technical Reports Server (NTRS)

    Shively, David

    1994-01-01

    The scattering properties of perfectly conducting and resistive strips are predicted for strips which are located on a dielectric slab backed by a perfectly conducting ground plane. The spectral domain Green's function is used to relate the currents and fields on the strip, and the resulting integral equation is solved using the method of moments. Both TE and TM strips are examined using piecewise linear and pulse subdomain basis functions, respectively, to model the current on the strip. Calculated results are compared with results measured at the NASA Langley Research Center.

  15. Dielectric dispersion of Y-type hexaferrites at low frequencies

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.

    2003-02-01

    A series of polycrystalline Y-type hexaferrites with composition Ba 2Ni 2- xZn xFe 12O 22 (where 0.0⩽ x⩽2.0) were prepared by the standard ceramic method to study the effect of the frequency, temperature and composition on their AC electrical conductivity σ' AC, and dielectric properties. It was found that, the AC conductivity shows dispersion at high frequencies. This dispersion was attributed to the interfacial polarization arising from the inhomogeneous structure of the material. At low frequencies the dielectric constant, ɛ', is abnormally high and decreases rapidly with increasing frequency. Dielectric relaxation peaks were observed on the tan δ( F) curves. The results of the dielectric constant and dielectric loss were explained on the basis of the assumption that the mechanism of dielectric polarization is similar to that of the conduction process.

  16. Scattering of Bessel beam by a conducting spheroidal particle with dielectric coating

    NASA Astrophysics Data System (ADS)

    Chen, Zhuyang; Han, Yiping; Cui, Zhiwei; Shi, Xiaowei

    2014-11-01

    Based on the generalized Lorenz-Mie theory, an analytic solution to the scattering of an on-axis incident Bessel beam by a conducting spheroidal particle with dielectric coating is presented by expanding the incident beam, scattered fields and the fields in the dielectric coating in terms of spheroidal vector wave functions. In particular, the incident beam is represented using the vector expressions of zero-order Bessel beam that well satisfy Maxwell's equations. The unknown expansion coefficients for the scattered fields are determined by a system of linear equations derived from the appropriate boundary conditions. Numerical results of the differential scattering cross section are evaluated, and the scattering characteristics are discussed in detail.

  17. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  18. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing.

    PubMed

    Orloff, Nathan D; Long, Christian J; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P; McMichael, Robert D; Pasquali, Matteo; Stranick, Stephan J; Liddle, J Alexander

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  19. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  20. Random free energy barrier hopping model for ac conduction in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Murti, Ram; Tripathi, S. K.; Goyal, Navdeep; Prakash, Satya

    2016-03-01

    The random free energy barrier hopping model is proposed to explain the ac conductivityac) of chalcogenide glasses. The Coulomb correlation is consistently accounted for in the polarizability and defect distribution functions and the relaxation time is augmented to include the overlapping of hopping particle wave functions. It is observed that ac and dc conduction in chalcogenides are due to same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature dependence of hopping barriers. The exponential parameter s is calculated and it is found that s is subjected to sample preparation and measurement conditions and its value can be less than or greater than one. The calculated results for a - Se, As2S3, As2Se3 and As2Te3 are found in close agreement with the experimental data. The bipolaron and single polaron hopping contributions dominates at lower and higher temperatures respectively and in addition to high energy optical phonons, low energy optical and high energy acoustic phonons also contribute to the hopping process. The variations of hopping distance with temperature is also studied. The estimated defect number density and static barrier heights are compared with other existing calculations.

  1. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    NASA Astrophysics Data System (ADS)

    Rabbi, Fazle

    Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such membranes. The dielectric behavior of a material can be an indicator for MIEC performance and can be incorporated into computational models of MIEC membranes in order to optimize the composition, microstructure, and ultimately predict long term membrane performance. The dielectric behavior of the MIECs can also be an indicator of the transport mechanisms and the parameters they are dependent upon. For this study we chose a dual phase MIEC oxygen separation membrane consisting of an ionic conducting phase: gadolinium doped ceria-Ce0.8 Gd0.2O2 (GDC) and an electronic conductive phase: cobalt ferrite-CoFe2O4 (CFO). The membranes were fabricated from mixtures of Nano-powder of each of the phases for different volume percentages, sintered with various temperatures and sintering time to form systematic micro-structural variations, and characterized by structural analysis (XRD), and micro-structural analysis (SEM-EDS). Performance of the membranes was tested for variable partial pressures of oxygen across the membrane at temperatures from 850°C-1060°C using a Gas Chromatography (GC) system. Permeated oxygen did not directly correlate with change in percent mixture. An intermediate mixture 60%GDC-40%CFO had the highest flux compared to the 50%GDC

  2. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    NASA Astrophysics Data System (ADS)

    Xia, Xiaodong; Wang, Yang; Zhong, Zheng; Weng, George J.

    2016-08-01

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-void composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.

  3. Differences between direct current and alternating current capacitance nonlinearities in high-k dielectrics and their relation to hopping conduction

    SciTech Connect

    Khaldi, O.; Kassmi, M.; Gonon, P. Vallée, C.; Mannequin, C.; Sylvestre, A.; Jomni, F.

    2014-08-28

    Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearities are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.

  4. Conductivity (ac and dc) in III-V amorphous semiconductors and chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Hauser, J. J.

    1985-02-01

    Variable-range hopping, as evidenced by a resistivity proportional to exp(T-1/4), has been induced in many III-V amorphous semiconductors (InSb, AlSb, and GaAs) and even in chalcogenide glasses (As2Te3, As2Te3-xSex, and GeTe) by depositing films at 77 K. It is therefore remarkable that the same procedure failed to generate variable-range hopping in GaSb, which is one of the less ionic III-V semiconductors. Besides differences in the dc conductivity, there are also different behaviors in the ac conductivity of amorphous semiconductors. The low-temperature ac conductivity of all amorphous semiconductors is proportional to ωsTn with s~=1 and n<1, which is consistent with a model of correlated barrier hopping of electron pairs between paired and random defects. However, in the case of a-SiO2 and a-GeSe2 one finds, in addition, that the capacitance obeys the scaling relation C=A ln(Tω-1), which would suggest a conduction mechanism by tunneling relaxation. Furthermore, this scaling relation cannot be fitted to the data for a-As2Te3, a-InSb, and a-GaSb although the functional dependence of C on T and ω are similar.

  5. Enhancement of Thermal Conductance at Metal-Dielectric Interfaces Using Subnanometer Metal Adhesion Layers

    NASA Astrophysics Data System (ADS)

    Jeong, Minyoung; Freedman, Justin P.; Liang, Hongliang Joe; Chow, Cheng-Ming; Sokalski, Vincent M.; Bain, James A.; Malen, Jonathan A.

    2016-01-01

    We show that the use of subnanometer adhesion layers significantly enhances the thermal interface conductance at metal-dielectric interfaces. A metal-dielectric interface between Au and sapphire (Al2O3) is considered using Cu (low optical loss) and Cr (high optical loss) as adhesion layers. To enable high throughput measurements, each adhesion layer is deposited as a wedge such that a continuous range of thicknesses could be sampled. Our measurements of thermal interface conductance at the metal-Al2O3 interface made using frequency-domain thermoreflectance show that a 1-nm-thick adhesion layer of Cu or Cr is sufficient to enhance the thermal interface conductance by more than a factor of 2 or 4, respectively, relative to the pure Au/Al2O3 interface. The enhancement agrees with the diffuse-mismatch-model-based predictions of accumulated thermal conductance versus adhesion-layer thickness assuming that it contributes phonons with wavelengths less than its thickness, while those with longer wavelengths transmit directly from the Au.

  6. Calibration of a helical resonator for microwave dielectric and conductivity measurements of metals

    NASA Astrophysics Data System (ADS)

    Song, K. J.; Castner, T. G.

    2001-03-01

    The helical resonator (HR) is a useful resonant structure for the measurement of the microwave conductivity and dielectric response, but must be calibrated to obtain absolute values of these quantities. This has been accomplished by the measurement of frequency shifts and Q changes of thin disk samples of the metals Cu, Al, and Au and high purity Si and the use of the formula for (f-f0)/f due to Bethe and Schwinger. The measurements were made at 293, 77, and 50 K for the HR modes n=1-7(124 MHz-1.44 GHz). The results demonstrate the largest uncertain in the calculated values of Δf/f result from the z-axis variation of the E and H fields because of the helix short leading to large uncertainties in the stored energy U. The large dielectric response of the metals with their large values of dielectric "constant" -(ωpτeff)2 larger than 104 allows neglect of the Ez component contribution to Δf/f. However, uncertainties in the value of the T-independent τeff in the skin depth regime require the absolute calibration with high purity Si with ɛ˜11.7 at T=77 K. The calibration is accurate to ±15%.

  7. On the nonlinear variation of dc conductivity with dielectric relaxation time

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove

    2006-09-01

    The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.

  8. Correlation between field dependent electrical conduction and dielectric breakdown in a SiCOH based low-k (k = 2.0) dielectric

    NASA Astrophysics Data System (ADS)

    Wu, C.; Li, Y.; Barbarin, Y.; Ciofi, I.; Croes, K.; Bömmels, J.; De Wolf, I.; Tőkei, Zs.

    2013-07-01

    The electrical conduction of a SiCOH based ultralow-k (k = 2.0) dielectric is investigated over an electric field range from 1.0 MV/cm to breakdown. Below 4.0 MV/cm, space-charge-limited current dominates the leakage. Above 5.0 MV/cm, a transition is found from trap-assisted Fowler-Nordheim (F-N) tunneling to F-N tunneling. It is hypothesized that under F-N tunneling stress, intrinsic material degradation causes positively charged defects generated in the dielectric. Moreover, this change of the dominant conduction path has a significant impact on the time dependent dielectric breakdown lifetime behavior.

  9. Electroconvection in nematic liquid crystals with positive dielectric and negative conductivity anisotropy.

    PubMed

    Buka, A; Dressel, B; Otowski, W; Camara, K; Toth-Katona, T; Kramer, L; Lindau, J; Pelzl, G; Pesch, W

    2002-11-01

    Electroconvection in an unusual nematic compound with strongly positive dielectric anisotropy and negative anisotropy of the conductivity is investigated. For homeotropic alignment, where one has a direct transition to rolls or squares depending on the frequency of the applied voltage, we present a quantitative theory. From the comparison we infer values for some viscosities, which are rather unusual, but not unreasonable in view of the vicinity of the nematic-smectic transition. For planar alignment, electroconvection sets in above a splay Freedericksz transition with "parallel rolls," which is also captured by the theory.

  10. Analysis of dielectric and conductive dispersion above Tg in glass-forming molecular liquids.

    PubMed

    Macdonald, J Ross

    2008-11-01

    Dynamics of the nonassociated supercooled liquids N-methyl-epsilon-caprolactam (NMEC) and glycerol in the frequency domain are investigated using full complex-nonlinear-least-squares fitting of immittance spectroscopy data for appreciable temperature ranges above the glass transition. Such fitting, not previously used for these materials, helps to identify physical processes responsible for the data and elements of their common behavior. Several different fitting models were applied to find a physically plausible best-fitting one to distinguish quantitatively between the dielectric effects of dipoles and the conductive effects of mobile ions. The utility of many composite fitting models was investigated, and although a pure conductive-system dispersive (CSD) fitting model led to good but physically unrealistic fits of all data sets, the dielectric-system dispersive (DSD) Davidson-Cole model best fitted the alpha-dispersion part of the responses. Nevertheless, the series combination of such a DSD model and a separate CSD model (one not associated with electrode effects) was found to yield much better fitting of the data for both materials. Although the CSD model plays somewhat the role of the conventional parallel DSD Johari-Goldstein beta-response, it is here in series and arises from mobile impurity-ion effects rather than from dipolar ones. Previous analyses of data of the present and other molecular materials have often involved two DSD models in parallel, but fitting with such a composite model led here to less physically plausible parameter values and ones with appreciably more uncertainties. Surprisingly, the series DSD and CSD composite-model fits led to comparable estimated values of the NMEC and glycerol dielectric strength parameters, as well as to the nearly equal small thermal activation energies of these parameters.

  11. Characteristics of ac capillary discharge produced in electrically conductive water solution

    NASA Astrophysics Data System (ADS)

    DeBaerdemaeker, F.; Simek, M.; Schmidt, J.; Leys, C.

    2007-05-01

    Basic electrical, optical and calorimetric characteristics of an ac (50 Hz) driven capillary discharge produced in a water solution were studied for initial water solution conductivity in the range 50-1000 µS cm-1. Typical current and voltage waveforms and emission intensities produced by several electronically excited species were recorded with high time resolution. The evolution of the electrical current, power and capillary resistance was inspected during positive ac half-cycle for various operational regimes. A fast relaxation of the discharge following a breakdown event was observed. Optical measurements indicate that radiative species are mostly generated during the first few hundreds of nanoseconds of plasma generation and that the average duration of plasma emission induced by a discharge pulse is of the order of a few microseconds. Results of calorimetric measurements are in good agreement with average electrical measurements and support the assumption that the discharge is a constant source of heat delivered to the liquid. Assuming that only a fraction of the heat released inside the capillary can be transported by conduction through the capillary wall and via its orifices, the processes of bubble formation, expulsion and re-filling the capillary with 'fresh' water must play a key role in maintaining a thermal balance during long-time steady-state operation of the device. Furthermore, a simplified numerical model and a first order energy deposition calculation prove the plausibility of the bubble breakdown mechanism.

  12. AC-Conductivity Measure from Heat Production of Free Fermions in Disordered Media

    NASA Astrophysics Data System (ADS)

    Bru, J.-B.; de Siqueira Pedra, W.; Hertling, C.

    2016-05-01

    We extend (Bru et al. in J Math Phys 56:051901-1-51, 2015) in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field that is time- and space-dependent. We obtain the notion of a macroscopic AC-conductivity measure which only results from the second principle of thermodynamics. The latter corresponds here to the positivity of the heat production for cyclic processes on equilibrium states. Its Fourier transform is a continuous bounded function which is naturally called (macroscopic) conductivity. We additionally derive Green-Kubo relations involving time-correlations of bosonic fields coming from current fluctuations in the system. This is reminiscent of non-commutative central limit theorems.

  13. Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics

    NASA Astrophysics Data System (ADS)

    Rehman, Fida; Li, Jing-Bo; Zhang, Jia-Song; Rizwan, Muhammad; Niu, Changlei; Jin, Hai-Bo

    2015-12-01

    Dielectric relaxation behaviors of Aurivillius Bi5Ti3FeO15 ceramics were investigated in a wide range of frequency and temperature via dielectric and impedance spectroscopies. We distinguished two dielectric relaxations using the combination of impedance and modulus analysis. Resistance of the grain boundary was found to be much larger than grains, whereas capacitance was at the same level. The kinetic analysis of dielectric data was carried out to evaluate the contributions of microstructure and defects to the relaxation and conduction. The possible relaxation-conduction mechanism in the ceramics was discussed. The results enable deep understanding of microstructure-defect-relaxation behaviors in Bi5Ti3FeO15 ceramics.

  14. Sensing performance of electrically conductive fabrics and dielectric electro active polymers for parachutes

    NASA Astrophysics Data System (ADS)

    Favini, Eric; Niezrecki, Christopher; Manohar, Sanjeev K.; Willis, David; Chen, Julie; Niemi, Eugene; Desabrais, Kenneth; Charette, Christine

    2011-04-01

    This paper quantifies the sensing capabilities of novel smart materials in an effort to improve the performance, better understand the physics, and enhance the safety of parachutes. Based upon a recent review of actuation technologies for parachute applications, it was surmised that the actuators reviewed could not be used to effectively alter the drag or lift (i.e. geometry, porosity, or air vent openings) of a parachute during flight. However, several materials showed potential for sensing applications within a parachute, specifically electrically conductive fabrics and dielectric electro-active polymers. This paper introduces several new conductive fabrics and provides an evaluation of the sensing performance of these smart materials based upon test results using mechanical testing and digital image correlation for comparison.

  15. AC conductivity and relaxation mechanism in (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Nath, Susmita; Barik, Subrat Kumar; Choudhary, R. N. P.

    2016-05-01

    In the present study we have synthesized polycrystalline sample of (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramic by a standard high-temperature solid-state reaction technique. Studies of dielectric and electrical properties of the compound have been carried out in a wide range of temperature (RT - 400 °C) and frequency (1kHz - 1MHz) using complex impedance spectroscopic technique. The imaginary vs. real component of the complex impedance plot (Nyquist plot) of the prepared sample exhibits the existence of grain, grain boundary contributions in the complex electrical parameters and negative temperature coefficient of resistance (NTCR) type behavior like semiconductor. Details study of ac conductivity plot reveals that the material obeys universal Jonscher's power law.

  16. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  17. The Dependence of Ionic Conduction on the Dielectric Properties of Ion Channels

    NASA Astrophysics Data System (ADS)

    Saraniti, Marco; Marreiro, David; Aboud, Shela

    2006-03-01

    The ion channel OmpF porin is a water filled trimer found in the outer membrane of Escherichia coli. Each monomer is a hollow barrel structure with a physical constriction near the center that reduces the width of the pore to approximately 6 å. Highly charged residues line the inside of the pore constriction, generating an intense electric field that facilitates the dynamics of ions through the channel. The cost of simulating these systems for long times is an oversimplification of key physical features of the ion channel system, most notably, the polarization effects related to the solvent (water) and the protein are poorly represented by a stepwise constant dielectric constant. While the use of this model for the aqueous solution inside the permeation pore is arguably suitable because the ionic hydration shell remains intact (at least away from the central constriction), its validity is questionable when used to describe the polarization response of the protein. In this work, a previously validated P^3M force-field scheme, self-consistently coupled to a Brownian Dynamics kernel, is used to investigate the influence of the protein dielectric constant on permeation in OmpF porin. The computed channel conductivity is in agreement with experimental measurements. Increased cation selectivity at low ionic concentrations is also observed in the simulations and appears to be dependent on the rings of aspartic acid residues around the mouths of the porin.

  18. Ac conductance and capacitance of carbon black polymer composites during thermal cycling and isothermal annealing

    NASA Astrophysics Data System (ADS)

    Jäger, K.-M.; McQueen, D. H.; Vilcáková, J.

    2002-05-01

    The ac electrical properties of acetylene black composites mixed into ethylene butylacrylate copolymer (EBA) and into poly (methyl methacrylate) (PMMA) have been measured in thermal cycling and isothermal annealing experiments. The results show that changes in electrical properties are due to rearrangement of gaps between the carbon black aggregates. This has been concluded using an exponent z that relates the critical frequency ωc denoting the crossover of the conductivity from the dc-plateau to its frequency-dependent part to the dc conductivity, σdc, according to ωc ∝σdcz. Below the melting range of EBA and the glass transition of PMMA z is about one corresponding to strong variation of the conductivity and weak dependence of the permittivity on the gaps. Above the melting range of EBA z is about 1.5, indicating strong dependence of both the conductivity and the permittivity on the gaps, as predicted by percolation theory. This was not found in the PMMA composites above the glass transition. We conclude that the polymer matrix affects the nature of the gaps between carbon black aggregates, either allowing their size to vary continuously (z about 1) or letting them open and close (z about 1.5).

  19. Waveguide Characterization of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

    NASA Astrophysics Data System (ADS)

    Vitiello, Antonino; Moccia, Massimo; Papari, Gian Paolo; D'Alterio, Giuliana; Vitiello, Roberto; Galdi, Vincenzo; Andreone, Antonello

    2016-01-01

    We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering.

  20. Waveguide Characterization of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

    PubMed Central

    Vitiello, Antonino; Moccia, Massimo; Papari, Gian Paolo; D’Alterio, Giuliana; Vitiello, Roberto; Galdi, Vincenzo; Andreone, Antonello

    2016-01-01

    We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering. PMID:26803985

  1. Dielectric Properties of Lead Monoxide Filled Unsaturated Polyester Based Polymer Composites

    NASA Astrophysics Data System (ADS)

    Harish, V.; Kumar, H. G. Harish; Nagaiah, N.

    2011-07-01

    Lead monoxide filled isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the dielectric properties of the composites. The present study showed that the dielectric constant (ɛ'), dielectric loss (ɛ″) and ac conductivityac) of isopthalate based unsaturated polyester resin increases with the increase in wt% PbO filler in polymer matrix.

  2. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Lombard, J.; Detcheverry, F.; Merabia, S.

    2015-01-01

    Thermal boundary conductance at a metal-dielectric interface is a quantity of prime importance for heat management at the nanoscale. While the boundary conductance is usually ascribed to the coupling between metal phonons and dielectric phonons, in this work we examine the influence of a direct coupling between the metal electrons and the dielectric phonons. The effect of electron-phonon processes is generally believed to be resistive and tends to decrease the overall thermal boundary conductance as compared to the phonon-phonon conductance σp. Here, we find that the effect of a direct electron-phonon interfacial coupling σe is to enhance the effective thermal conductance between the metal and the dielectric. Resistive effects turn out to be important only for thin films of metals that have a low electron-phonon coupling strength. Two approaches are explored to reach these conclusions. First, we present an analytical solution of the two-temperature model to compute the effective conductance which accounts for all the relevant energy channels, as a function of σe, σp and the electron-phonon coupling factor G. Second, we use numerical resolution to examine the influence of σe on two realistic cases: a gold film on silicon or silica substrates. We point out the implications for the interpretation of time-resolved thermoreflectance experiments.

  3. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.

    PubMed

    Lombard, J; Detcheverry, F; Merabia, S

    2015-01-14

    Thermal boundary conductance at a metal-dielectric interface is a quantity of prime importance for heat management at the nanoscale. While the boundary conductance is usually ascribed to the coupling between metal phonons and dielectric phonons, in this work we examine the influence of a direct coupling between the metal electrons and the dielectric phonons. The effect of electron-phonon processes is generally believed to be resistive and tends to decrease the overall thermal boundary conductance as compared to the phonon-phonon conductance σ(p). Here, we find that the effect of a direct electron-phonon interfacial coupling σ(e) is to enhance the effective thermal conductance between the metal and the dielectric. Resistive effects turn out to be important only for thin films of metals that have a low electron-phonon coupling strength. Two approaches are explored to reach these conclusions. First, we present an analytical solution of the two-temperature model to compute the effective conductance which accounts for all the relevant energy channels, as a function of σ(e), σ(p) and the electron-phonon coupling factor G. Second, we use numerical resolution to examine the influence of σ(e) on two realistic cases: a gold film on silicon or silica substrates. We point out the implications for the interpretation of time-resolved thermoreflectance experiments.

  4. Structural, electrical conductivity and dielectric behavior of Na2SO4-LDT composite solid electrolyte.

    PubMed

    Iqbal, Mohd Z; Rafiuddin

    2016-01-01

    A series of composite materials of general molecular formula (1 - x) Na2SO4 - (x) LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) respectively. Differential thermal analysis (DTA) revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10(-4) S cm(-1) at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573-773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend. PMID:26843979

  5. Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.

    Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (<1 MHz) capacitive sensors, are designed for permittivity characterization in their respective frequency regimes. In the first part of this work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method

  6. The study of electrical conduction mechanisms. [dielectric response of lunar fines

    NASA Technical Reports Server (NTRS)

    Morrison, H. F.

    1974-01-01

    The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.

  7. Ionic ac and dc conductivities of NaCrP2O7 compound

    NASA Astrophysics Data System (ADS)

    Sassi, M.; Oueslati, A.; Gargouri, M.

    2015-05-01

    The NaCrP2O7 compound was prepared by the solid-state reaction method. The formation of a single-phase material was confirmed by the X-ray diffraction studies and found to be a monoclinic system. The electrical properties of this compound have been measured in the temperature range from 523 to 673 K and the frequency range from 209 Hz to 5 MHz. The Nyquist plots are well fitted to an equivalent circuit consisting of a series of combination of grains and grain boundary elements. The ac conductivity of NaCrP2O7 has been analyzed as a function of temperature and frequency. The scaling behavior of the imaginary part of the complex modulus suggests that the relaxation describes the same mechanism at various temperatures. The conductivity and modulus formalisms provide nearly the same activation energies for electrical relaxation of mobile ions suggesting that the ion transport is probably due to a hopping mechanism dominated by the motion of the monovalent ions Na+ along tunnels presented in the structure of the investigated material.

  8. Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Sui, Xuezhen; Zhou, Wenying; Dong, Lina; Wang, Zijun; Wu, Peng; Zuo, Jing; Cai, Huiwu; Liu, Xiangrong

    2016-08-01

    Three kinds of hybrid aluminum (Al) particles with binary particle size distribution, i.e., [2 μm/50 μm], [2 μm/18 μm] and [18 μm/50 μm], were added in epoxy (EP) to prepare hybrid Al/EP composites with enhanced dielectric properties and thermal conductivity for embedded capacitor applications. The dielectric permittivity, dissipation factor, and thermal conductivity of three types of hybrid Al/EP composites were investigated as a function of relative volume fraction of smaller-size Al of hybrid Al particles (V s) at a total filler content of 60 wt.%, respectively. The results indicate that dielectric permittivity and thermal conductivity of the hybrid Al/EP mainly depend on two factors, such as the type of hybrid filler and the V s. The maximum dielectric permittivity of 48 appears at V s = V 18μm/V (18μm+50μm) = 35%. While, the above two factors have a negligible influence on the dissipation factor, which is as low as 0.022. The highest thermal conductivity of 1.28 W/m K is obtained at V s = V 18μm/V (18μm+50μm) = 50%. The maximum thermal conductivity for three hybrid systems shifts towards lower V s with decreasing the size ratio of a larger Al to a smaller one.

  9. Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Sui, Xuezhen; Zhou, Wenying; Dong, Lina; Wang, Zijun; Wu, Peng; Zuo, Jing; Cai, Huiwu; Liu, Xiangrong

    2016-11-01

    Three kinds of hybrid aluminum (Al) particles with binary particle size distribution, i.e., [2 μm/50 μm], [2 μm/18 μm] and [18 μm/50 μm], were added in epoxy (EP) to prepare hybrid Al/EP composites with enhanced dielectric properties and thermal conductivity for embedded capacitor applications. The dielectric permittivity, dissipation factor, and thermal conductivity of three types of hybrid Al/EP composites were investigated as a function of relative volume fraction of smaller-size Al of hybrid Al particles ( V s) at a total filler content of 60 wt.%, respectively. The results indicate that dielectric permittivity and thermal conductivity of the hybrid Al/EP mainly depend on two factors, such as the type of hybrid filler and the V s. The maximum dielectric permittivity of 48 appears at V s = V 18 μm/ V (18 μm+50 μm) = 35%. While, the above two factors have a negligible influence on the dissipation factor, which is as low as 0.022. The highest thermal conductivity of 1.28 W/m K is obtained at V s = V 18 μm/ V (18 μm+50 μm) = 50%. The maximum thermal conductivity for three hybrid systems shifts towards lower V s with decreasing the size ratio of a larger Al to a smaller one.

  10. Effect of an AC electric field on the conductance of single-wall semiconductor-type carbon nanotubes

    SciTech Connect

    Belonenko, M. B.; Glazov, S. Yu.; Mescheryakova, N. E.

    2010-09-15

    The effect of an ac electric field on the conductance of a system of single-wall semiconductor-type carbon nanotubes placed in a dc electric field is considered. The strength vectors of dc and ac electric fields are directed along the nanotube axis. The electronic system of carbon nanotubes is considered in the context of the Boltzmann kinetic equation in the relaxation-time approximation. The dependence of the current density in the system on the characteristics of applied fields is studied. The effect of absolute negative conductance is detected.

  11. Origin of DC and AC conductivity anisotropy in iron-based superconductors: Scattering rate versus spectral weight effects

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Schmalian, Jörg; Fernandes, Rafael M.

    2016-08-01

    To shed light on the transport properties of electronic nematic phases, we investigate the anisotropic properties of the AC and DC conductivities. Based on the analytical properties of the former, we show that the anisotropy of the effective scattering rate behaves differently than the actual scattering rate anisotropy and even changes sign as a function of temperature. Similarly, the effective spectral weight acquires an anisotropy even when the plasma frequency is isotropic. These results are illustrated by an explicit calculation of the AC conductivity due to the interaction between electrons and spin fluctuations in the nematic phase of the iron-based superconductors and shown to be in agreement with recent experiments.

  12. Fast and non-invasive conductivity determination by the dielectric response of reduced graphene oxide: an electrostatic force microscopy study.

    PubMed

    Gómez-Navarro, Cristina; Guzmán-Vázquez, Francisco J; Gómez-Herrero, Julio; Saenz, Juan J; Sacha, G M

    2012-11-21

    The high dispersion found in the literature for the conductivity of Reduced Graphene Oxide (RGO) layers makes it highly desirable to develop fast and non-invasive methods for their characterization. Here we show that Electrostatic Force Microscopy (EFM) is an in situ, fast, and contactless technique to evaluate the conductivity of chemically derived graphene layers. The dielectric response of RGO flakes is observed to depend on their conductivity in the range of 0-3 S m(-1). Interestingly, we also find that for electrostatic purposes, a graphene layer is equivalent to an extremely thin dielectric layer with an effective permittivity (ε(eff)) that depends on the conductivity of the layers and spans from 5 for the insulating layers, to 2000 for the more conductive ones. We discuss how these high values of ε(eff) are a consequence of the incomplete screening of electric fields through graphene layers.

  13. Quasiparticle energies, excitonic effects, and dielectric screening in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Schleife, André

    Using the power of high-performance super computers, computational materials scientists nowadays employ highly accurate quantum-mechanical approaches to reliably predict materials properties. In particular, many-body perturbation theory is an excellent framework for performing theoretical spectroscopy on novel materials including transparent conducting oxides, since this framework accurately describes quasiparticle and excitonic effects.We recently used hybrid exchange-correlation functionals and an efficient implementation of the Bethe-Salpeter approach to investigate several important transparent conducting oxides. Despite their exceptional potential for applications in photovoltaics and optoelectronics their optical properties oftentimes remain poorly understood: Our calculations explain the optical spectrum of bixbyite indium oxide over a very large photon energy range, which allows us to discuss the importance of quasiparticle and excitonic effects at low photon energies around the absorption onset, but also for excitations up to 40 eV. We show that in this regime the energy dependence of the electronic self energy cannot be neglected. Furthermore, we investigated the influence of excitonic effects on optical absorption for lanthanum-aluminum oxide and hafnium oxide. Their complicated conduction band structures require an accurate description of quasiparticle energies and we find that for these strongly polar materials, a contribution of the lattice polarizability to dielectric screening needs to be taken into account. We discuss how this affects the electron-hole interaction and find a strong influence on excitonic effects.The deep understanding of electronic excitations that can be obtained using these modern first-principles techniques, eventually will allow for computational materials design, e.g. of band gaps, densities of states, and optical properties of transparent conducting oxides and other materials with societally important applications.

  14. The impact of the thermal conductivity of a dielectric layer on the self-heating effect of a graphene transistor.

    PubMed

    Pan, T S; Gao, M; Huang, Z L; Zhang, Y; Feng, Xue; Lin, Y

    2015-08-28

    The self-heating effect of a graphene transistor on the transport properties was studied. Different dielectric layers, SiO2 and AlN, which have different thermal conductivities, were used to tune the thermal dissipation of the graphene transistor. An obvious change in channel resistance and a shift of charge neutrality point were observed during the operation of the transistor with SiO2, while the change is slight when AlN is the dielectric layer. This observation is considered to be related to the temperature determined desorption rate of p-type dopants in graphene.

  15. Conducting grain boundaries in the high-dielectric-constant ceramic CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Chen, K.; Li, G. L.; Gao, F.; Liu, J.; Liu, J. M.; Zhu, J. S.

    2007-04-01

    To clarify the electrical property of grain boundaries, the fine-grained ceramics CaCu3Ti4O12 have been treated with the hydrofluoric acid to remove the parts of grain boundaries. The dielectric response difference between the etched samples and the pristine ones indicates that the ceramic CaCu3Ti4O12 consists of insulating or semiconducting grains with conducting grain boundaries. Therefore, the giant dielectric phenomenon is supposed not to derive from the grain boundary barrier layer capacitance effect. The possible mechanism is discussed.

  16. Crystal structure and AC conductivity mechanism of [N(C3H7)4]2CoCl4 compound

    NASA Astrophysics Data System (ADS)

    Moutia, N.; Oueslati, A.; Ben Gzaiel, M.; Khirouni, K.

    2016-09-01

    We found that the new organic-inorganic compound [N(C3H7)4]2 CoCl4, crystallizes at room temperature in the centrosymmetric monoclinic system with P21/c space group. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers parallel to the (001) plan. Indeed, the differential scanning calorimetry (DSC) studies indicate a presence of three order-disorder phase transitions located at 332, 376 and 441 K. Furthermore, the conductivity was measured in the frequency range from 200 MHz to 5 MHz and temperatures between 318 K and 428 K using impedance spectroscopy. Analysis of the AC conductivity experimental data obtained, and the frequency exponent s with theoretical models reveals that the correlated barrier hopping (CBH) model is the appropriate mechanism for conduction in the title compound. The analysis of the dielectric constants ε ‧ and ε ″ versus temperature, at several frequencies, shows a distribution of relaxation times. This relaxation is probably due to the reorientational dynamics of [N(C3H7)4]+ cations.

  17. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared–visible–ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon–phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls–Boltzmann transport equation. The photon–phonon and electron–photon interaction intrinsically induce the infrared and visible–ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  18. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  19. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  20. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    NASA Astrophysics Data System (ADS)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  1. Effect of methyl red dye on dielectric and conductivity properties of PEO/CdCl2 electrolytes

    NASA Astrophysics Data System (ADS)

    Kamath, Archana; Devendrappa, H.

    2016-05-01

    In this report the conductivity and dielectric properties of polyethylene oxide-cadmium chloride (PEO/CdCl2) polymer electrolyte films doped with an azo dye methyl red (MR) are discussed. The films were prepared by solution casting technique at different concentrations of the dye in PEO/CdCl2 electrolyte. The thermal behavior, chemical interaction of the dye with the electrolyte and surface morphology were studied by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) respectively. The conductivity and dielectric properties were measured as a function of composition and temperature using complex impedance spectroscopy. The temperature dependent electrical conductivity of the films exhibited Arrhenius type behavior. Conductivity and dielectric results also signify the enhancement in the amorphous phase of the polymer electrolyte dye systems. The value of highest conductivity observed is 1.21x10-4 at 343K and the conductivity of the film was enhanced by a three orders of magnitude.

  2. Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Mei-Juan; Dang, Zhi-Min; Bozlar, Michael; Miomandre, Fabien; Bai, Jinbo

    2009-10-01

    Broad-frequency dielectric behaviors of multiwalled carbon nanotubes (MWCNTs) embedded in room temperature vulcanization silicone rubber (RT-SR) matrix were studied by analyzing alternating current (ac) impedance spectra, which would make a remarkable contribution for understanding some fundamental electrical properties in the MWCNT/RT-SR nanocomposites. Equivalent circuits of the MWCNT/RT-SR nanocomposites were built, and the law of polarization and mechanism of electric conductance under the ac field were acquired. Two parallel RC circuits in series are the equivalent circuits of the MWCNT/RT-SR composites. At different frequency ranges, dielectric parameters including conductivity, dielectric permittivity, dielectric loss, impedance phase, and magnitude present different behaviors.

  3. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz.

    PubMed

    Wang, Jian; Olsen, Robert G; Tang, Juming; Tang, Zhongwei

    2008-01-01

    Experiments and computer simulations were conducted to systematically investigate the influence of mashed potato dielectric properties and circulating water electric conductivity on electromagnetic field distribution, heating rate, and heating pattern in packaged food during radio frequency (RF) heating processes in a 6 kW, 27 MHz laboratory scale RF heating system. Both experimental and simulation results indicated that for the selected food (mashed potato) in this study, the heating rate decreased with an increase of electric conductivity of circulating water and food salt content. Simplified analytical calculations were carried out to verify the simulation results, which further indicated that the electric field distribution in the mashed potato samples was also influenced by their dielectric properties and the electric conductivity of the surrounding circulating water. Knowing the influence of water electric conductivity and mashed potato dielectric properties on the heating rate and heating pattern is helpful in optimizing the radio frequency heating process by properly adjusting these factors. The results demonstrate that computer simulation has the ability to demonstrate influence on RF heat pattern caused by the variation of material physical properties and the potential to aid the improvement on construction and modification of RF heating systems.

  4. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz.

    PubMed

    Wang, Jian; Olsen, Robert G; Tang, Juming; Tang, Zhongwei

    2008-01-01

    Experiments and computer simulations were conducted to systematically investigate the influence of mashed potato dielectric properties and circulating water electric conductivity on electromagnetic field distribution, heating rate, and heating pattern in packaged food during radio frequency (RF) heating processes in a 6 kW, 27 MHz laboratory scale RF heating system. Both experimental and simulation results indicated that for the selected food (mashed potato) in this study, the heating rate decreased with an increase of electric conductivity of circulating water and food salt content. Simplified analytical calculations were carried out to verify the simulation results, which further indicated that the electric field distribution in the mashed potato samples was also influenced by their dielectric properties and the electric conductivity of the surrounding circulating water. Knowing the influence of water electric conductivity and mashed potato dielectric properties on the heating rate and heating pattern is helpful in optimizing the radio frequency heating process by properly adjusting these factors. The results demonstrate that computer simulation has the ability to demonstrate influence on RF heat pattern caused by the variation of material physical properties and the potential to aid the improvement on construction and modification of RF heating systems. PMID:19227075

  5. AC Conductance of a multi-probe conductor and the Generalized Fluctuations

    NASA Astrophysics Data System (ADS)

    Fekete, Paula; Gumbs, Godfrey

    2004-03-01

    We extend the work of Baranger and Stone^1 as well as Stone and Safer^2 by expressing the total current Im through lead m in terms of the AC voltages Vn applied to the leads of a phase coherent multi-probe conductor in an arbitrary static magnetic field and an alternating electric field of frequency ω . Using linear response theory, we obtain the non-local response function σ ( x, x'; ω ) in terms of the eigenfunctions of the unperturbed system as well as the retarded and advanced Green's functions. With the use of perturbation theory to perform impurity averaging, the conductance fluctuations (CF) in mesoscopic systems are evaluated at finite frequency. It is shown that the CF decrease monotonically as ω increases. Also, the frequency scale over which this decrease occurs is given in terms of the diffusion time for an electron to diffuse across the sample. We show that the universality of the CF at zero frequency is not preserved at finite frequency. We present numerical results for six leads attached to the faces of a 3D rectangular prism as well as four leads connected to a 2D sample. It is also shown that at finite frequency, the sample-to-sample CF have the same size as the fluctuations of a given sample as a function of frequency. H.U. Baranger and A.D. Stone, Phys. Rev. B, 40, 8169 (1989) A.D. Stone andA. Safer, IBM Journal of Research and Development, 32, 384 (1988) .

  6. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  7. Microstructure and dielectric properties of BaTiO{sub 3} ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application

    SciTech Connect

    Wang, Min-Jia; Yang, Hui; Zhang, Qi-Long; Lin, Zhi-Sheng; Zhang, Zi-Shan; Yu, Dan; Hu, Liang

    2014-12-15

    Graphical abstract: Core–shell structure can be obtained in BaTiO{sub 3} ceramics co-doped with Y–Mg-Ga-Si. Y-Mg-Ga-Si co-dopant can obviously reduce dielectric loss, improve AC breakdown voltage and flatten temperature dependence of capacitance curve. - Highlights: • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics with core-shell structure were prepared. • Y{sup 3+}, Mg{sup 2+}, and Ga{sup 3+} dissolved in the lattice BaTiO{sub 3} replacing Ba{sup 2+} site or Ti{sup 4+} site. • Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries as a shell maker. • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics show high AC breakdown voltage and low tanδ. - Abstract: The microstructures and dielectric properties of Y-Mg-Ga-Si co-doped barium titanate ceramics were investigated. Y{sup 3+} dissolved in the lattice of BaTiO{sub 3} replacing both Ba{sup 2+} site and Ti{sup 4+} site, and Mg{sup 2+} replaced Ti{sup 4+} site. The replacements of Y{sup 3+} and Mg{sup 2+} inhibit the grain growth, cause tetragonal-to-pseudocubic phase transition, reduce the dielectric loss, and flatten the temperature dependence of capacitance curve. The incorporation of Ga{sup 3+} can improve sintering and increase permittivity. Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries, and play an important role as a shell maker in the formation of the core–shell structure in the co-doped BaTiO{sub 3} ceramics. Excellent dielectric properties: ϵ{sub r} = ∼2487, tanδ = ∼0.7% (at 1 kHz), ΔC/C{sub 25} < ∼6.56% (from −55 °C to 125 °C) and alternating current breakdown voltage E < ∼4.02 kV/mm can be achieved in the BaTiO{sub 3}–0.02Y{sub 2}O{sub 3}–0.03MgO–0.01Ga{sub 2}O{sub 3}–0.005SiO{sub 2} ceramics sintered at 1380 °C. This material has a potential application in alternating current multilayer ceramic capacitor.

  8. Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI

    NASA Astrophysics Data System (ADS)

    Wen, Han

    2003-06-01

    In this paper I show with phantom and animal experiments a non-invasive and quantitative method for measuring the conductivity and dielectric distributions based on high field magnetic resonance imaging. High field MRI is accompanied by significant RF wave propagation effects. They are observed as phase and magnitude variations of the image that cannot be removed by optimizing the static field homogeneity, or by improving the RF coils. These variations reflect the RF field distribution in the sample, and in fact obey a modified Helmholtz equation. By mapping both the phase and magnitude of the field with MRI techniques, both the conductivity and the dielectric constant are determined non-invasively. In phantom experiments at 1.5 tesla, conductivity values were measured at 4 mm resolution to 0.5 S/m accuracy. At 4.7 tesla, the accuracy was improved to 0.2 S/m, and the dielectric constant was measured to an accuracy of 5 (relative to vacuum) for 2cm regions.

  9. Impact of the spacer dielectric constant on parasitic RC and design guidelines to optimize DC/AC performance in 10-nm-node Si-nanowire FETs

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Ho; Lee, Sang-Hyun; Kim, Ye-Ram; Jeong, Eui-Young; Yoon, Jun-Sik; Lee, Jeong-Soo; Baek, Rock-Hyun; Jeong, Yoon-Ha

    2015-04-01

    In this paper, we propose an optimized design for Si-nanowire FETs in terms of spacer dielectric constant (κsp), extension length (LEXT), nanowire diameter (Dnw), and operation voltage (VDD) for the sub-10 nm technology node. Using well-calibrated TCAD simulations and analytic RC models, we have quantitatively evaluated geometry-dependent parasitic series resistances (RSD) and capacitances (Cpara). Compared with low-κ spacers, high-κ spacers exhibit a higher on/off-current ratio with a lower RSD, but show severe degradation in their AC performance owing to a higher Cpara. Considering the trade-off between RSD and Cpara, optimal geometry-dependent κsp values at various supply voltages (VDD) are determined using gate delay (CV/I) and current-gain cutoff frequency (fT). We found that as LEXT and VDD decrease and Dnw increases, the optimal κsp value shifts from the high-κ to low-κ regime.

  10. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids

    NASA Astrophysics Data System (ADS)

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł

    2016-08-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  11. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.

    PubMed

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł

    2016-12-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  12. Dielectric and conductivity relaxation in AgI doped silver selenite superionic glasses

    SciTech Connect

    Deb, B.; Ghosh, A.

    2010-10-15

    Non-Debye relaxation in superionic AgI-Ag{sub 2}O-SeO{sub 2} glasses has been investigated as a function of frequency and temperature. The experimental data have been analyzed in the framework of complex dielectric permittivity and complex electric modulus formalisms. The dielectric permittivity data have been well interpreted using the Havriliak-Negami function. The electric modulus data have been analyzed by invoking Kohlrausch-Williams-Watts function and various parameters describing the relaxation mechanism have been obtained. The temperature and compositional variation in relaxation times and the activation energy, obtained from dielectric permittivity as well as from electric modulus data, have been compared. The low value of stretched exponential parameter implies a highly nonexponential nature of relaxation and is attributed to the correlated ionic motion. The values of the stretched exponential parameter are observed to be independent of temperature as well as composition. Different scaling formalisms have been applied to understand the temperature and compositional dependence of the relaxation mechanism. The scaling of dielectric loss spectra and electric modulus spectra results in master curves, which signifies that the relaxation mechanism is independent of temperature as well as composition.

  13. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    SciTech Connect

    Das, S.; Ghosh, A.

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  14. Excellent thermal conductivity and dielectric properties of polyimide composites filled with silica coated self-passivated aluminum fibers and nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Yongcun; Bai, Yuanyuan; Yu, Ke; Kang, Yan; Wang, Hong

    2013-06-01

    A polymer based composite was prepared by using modified aluminum fibers and aluminum nanoparticles as fillers in polyimide matrix that resulted in the high thermal conductivity and low relative permittivity. It was found that silica coated aluminum fibers with the multilayer coating structures can significantly reduce the relative permittivity (about 19.6 at 1 MHz) of the composite while keeping lower dielectric loss (0.024 at 1 MHz). The thermal conductivity of composites was significantly increased to 15.2 W/m K. This work shows a useful way to choose proper modifier fillers to improve the composite properties for electronic packaging composite materials.

  15. Measurement of the dielectric, conductance, and pyroelectric properties of MWCNT:PVDF nanocomposite thin films for application in infrared technologies

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew; Guggilla, Padmaja; Corda, John; Egarievwe, Stephen

    2013-09-01

    In this work, we have determined the dielectric and conductance properties of multi-wall carbon nano-tubes (MWCNT) in polyvinylidene fluoride (PVDF) nanocomposite thin films as a function of temperature and frequency. Samples, ranging from 15 - 280 microns in thickness, were measured in the temperature range from 21 to 90°C and in frequencies from 50Hz to 110MHz. The samples were prepared by the solution casting technique. Measures indicate that at constant temperatures, the real dielectric constant decreases at lower frequencies, stays steady at low frequencies but rise at higher frequencies over towards the strong resonance. The dielectric loss, a particular concern as it is inversely related to the conductance, decreases also at lower frequencies but rise at higher frequencies with a steeper slope in each case. Additionally, we have measured the pyroelectric coefficient in the same temperature range, compared the pyroelectric coefficient results with previous measures made on silver nanoparticle in PVDF thin films and provided preliminary evidence of the causative microscopic response mechanism. Our MWCNT:PVDF thin films yield higher figures of merit than that indicated by pure PVDF thin films and results indicate a usage of MWCNT:PVDF thin films in infrared uncooled sensors and vidicon technology.

  16. Gas sensing properties of magnesium doped SnO{sub 2} thin films in relation to AC conduction

    SciTech Connect

    Deepa, S.; Skariah, Benoy Thomas, Boben; Joseph, Anisha

    2014-01-28

    Conducting magnesium doped (0 to 1.5 wt %) tin oxide thin films prepared by Spray Pyrolysis technique achieved detection of 1000 ppm of LPG. The films deposited at 304 °C exhibit an enhanced response at an operating temperature of 350 °C. The microstructural properties are studied by means of X-ray diffraction. AC conductivity measurements are carried out using precision LCR meter to analyze the parameters that affect the variation in sensing. The results are correlated with compositional parameters and the subsequent modification in the charge transport mechanism facilitating an enhanced LPG sensing action.

  17. Ionic conductivity and dielectric relaxation in Y doped La2Mo2O9 oxide-ion conductors

    NASA Astrophysics Data System (ADS)

    Paul, T.; Ghosh, A.

    2014-10-01

    In this work, we have studied electrical conductivity and dielectric properties of polycrystalline La2-xYxMo2O9 (0.05 ≤ x ≤ 0.3) compounds in the temperature range from 358 K to 1088 K and the frequency range from 10 Hz to 3 GHz. The bulk and grain boundary contributions to the overall conductivity of these compounds show Arrhenius type behavior at low temperatures. The random free-energy barrier model has been used to analyze the frequency dependence of the conductivity. The charge carrier relaxation time and its activation energy have been determined from the analysis of the conductivity spectra using this model. The results obtained from the random free-energy barrier model satisfy Barton-Nakajima-Namikawa relation. The conduction mechanism has been also predicted using random free-energy barrier model and the scaling formalism. We have observed that the dielectric relaxation peaks arise from the diffusion of oxygen ions via vacancies.

  18. Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations

    NASA Astrophysics Data System (ADS)

    Riba, Jordi-Roger

    2015-09-01

    This paper analyzes the skin and proximity effects in different conductive nonmagnetic straight conductor configurations subjected to applied alternating currents and voltages. These effects have important consequences, including a rise of the ac resistance, which in turn increases power loss, thus limiting the rating for the conductor. Alternating current (ac) resistance is important in power conductors and bus bars for line frequency applications, as well as in smaller conductors for high frequency applications. Despite the importance of this topic, it is not usually analyzed in detail in undergraduate and even in graduate studies. To address this, this paper compares the results provided by available exact formulas for simple geometries with those obtained by means of two-dimensional finite element method (FEM) simulations and experimental results. The paper also shows that FEM results are very accurate and more general than those provided by the formulas, since FEM models can be applied in a wide range of electrical frequencies and configurations.

  19. Development of the Exams Data Analysis Spreadsheet as a Tool to Help Instructors Conduct Customizable Analyses of Student ACS Exam Data

    ERIC Educational Resources Information Center

    Brandriet, Alexandra; Holme, Thomas

    2015-01-01

    The American Chemical Society Examinations Institute (ACS-EI) has recently developed the Exams Data Analysis Spread (EDAS) as a tool to help instructors conduct customizable analyses of their student data from ACS exams. The EDAS calculations allow instructors to analyze their students' performances both at the total score and individual item…

  20. AC impedance spectroscopy studies on solid-state sintered zinc aluminum oxide (ZnAl2O4) ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2012-07-01

    In the present investigation Zinc Aluminum Oxide (ZnAl2O4) is prepared by solid-state reaction technique. Dielectric constant (ɛ'), dielectric loss(tan δ), ac conductivityac) as a function of temperature are studied by varying frequencies from 100 Hz to 1MHz using an impedance analyzer. The dielectric constant and dielectric loss increases gradually with an increase of temperature, but it decreases with increase of frequency. The ac conductivityac) also increases with increases of frequency. The transition peaks for ZnAl2O4 are observed at 490°C, 510°C, 520°C for the frequencies 1 KHz, 10 KHz and 100 KHz. No transition peaks are found for the frequency 100 Hz and 1 MHz because of high conductive loss.

  1. The effect of surface conductivity and adhesivity on the electrostatic manipulation condition for dielectric microparticles using a single probe

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ryo; Hemthavy, Pasomphone; Takahashi, Kunio; Saito, Shigeki

    2016-05-01

    By clarifying the effect of surface conductivity and adhesivity on the electrostatic manipulation condition, a dielectric particle made of any material can be manipulated with surface conductivity. The manipulation system consists of three elements: a conductive probe as a manipulator, a conductive plate as a substrate, and a dielectric particle as the target object for manipulation. The particle can be successfully picked up/placed if a rectangular pulse voltage is applied between the probe and the plate. Four kinds of particle materials are used in the experiment: silica, soda-lime glass, polymethyl methacrylate coated by conductive polymer, and polystyrene coated by surfactant. The radius of each particle is 15 μm. A first-order resistor-capacitor (RC) circuit model is adopted to describe the effect of surface conductivity and adhesivity on the manipulation condition. The manipulation system is modeled as a series circuit consisting of a resistor and a capacitor by considering the surface conductivity. A detachment voltage is defined as the capacitance voltage to detach the particle adhered to the plate or probe. Parameters of the RC model, surface resistance, surface capacitance and detachment voltage are identified by a simulation and measurements. To verify the RC model, the particle’s behavior is observed by a high-speed camera, and the electrical current is measured by an electrometer. A manipulation experiment is demonstrated to show the effectiveness of the model. The particle reaction is observed for each duration and magnitude of the pulse voltage for the manipulation. The optimum pulse voltage for successful manipulation is determined by the parameters of the RC model as the standard. This knowledge is expected to expand the possibility of micro-fabrication technology.

  2. Combined DC Resistivity Survey and Electric Conductivity- Dielectric Permittivity Measurement at Sag Pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Srigutomo, Wahyu; Bijaksana, Satria; Setiawan, Tedy

    2016-08-01

    Lembang Fault is a normal fault situated at the southern flank of Tangkuban Parahu Volcano in West Java Indonesia. The fault's movement may have caused the formation of sag pond in the vicinity of its which is characterized by the soil layers of the sag pond. The characteristics of the soil can be examined based on its electrical properties such as conductivity (the inverse of resistivity) and dielectric permittivity. Direct field measurement was conducted using DC-resistivity Wenner-Schlumberger method on the sag pond as well as laboratory resistivity measurement of cores taken from the sag pond. Two resistivity crosssections were obtained after performing 2D inversion of the data which reveal that the resistivity distribution consist of a resistive layer (40-60 ohm.m) overlying a medium resistive layer (30-35 ohm.m). The third layer has relatively low resistivity of 16-25 ohm.m. At the intersection of these two lines we took coring samples down to depth of 5 m below surface and measured the electrical conductivity and dielectric permittivity for each 1 cm of sample using EM-50 data logger. Results from both field and laboratory measurement were analysed to get a better understanding of the sag pond.

  3. Study on AC-DC Electrical Conductivities in Warm Dense Matter Generated by Pulsed-power Discharge with Isochoric Vessel

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2016-03-01

    To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.

  4. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    PubMed

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms.

  5. Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature

    NASA Astrophysics Data System (ADS)

    Juma, Albert; Acik, Ilona Oja; Mere, Arvo; Krunks, Malle

    2016-04-01

    The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal-oxide-semiconductor (MOS) configuration using current-voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current-voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child's law dominated for bias voltages above 0.12 V.

  6. Anomalous Hall effect for the phonon heat conductivity in paramagnetic dielectrics.

    PubMed

    Kagan, Yu; Maksimov, L A

    2008-04-11

    The theory of the anomalous Hall effect for the heat transfer in a parmagnetic dielectric, discovered by Strohm, Rikken, and Wyder [Phys. Rev. Lett. 95, 155901 (2005)]10.1103/PhysRevLett.95.155901, is developed. The appearance of the phonon heat flux normal to both the temperature gradient and the magnetic field is connected with the interaction of magnetic ions with the crystal field oscillations. In crystals with an arbitrary phonon spectrum this interaction creates the elliptical polarization of phonons. The kinetics related to phonon scattering induced by the spin-phonon interaction determines an origin of the off-diagonal phonon density matrix. The combination of both factors is decisive for the phenomenon under consideration.

  7. Conductivity and Dielectric Characteristics of Planetary Surfaces Measured with Mutual Impedance Probes: From Huygens and Rosetta Lander to Netlanders and Future Missions

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Grard, R.; Laakso, H.; Ney, R.; Schmidt, W.; Simoes, F.; Trautner, R.

    2004-04-01

    probes should be able to detect also the vertical inhomogeneity of the medium (match with a two layer model). After presenting the actual instruments and projects (on HUYGENS, ROSETTA Lander and NETLANDER), we show the particular interest to use a flat system of electrodes laying on the surface at some distance from the spacecraft body that is particularly well suited for the case of a rover. We will show the design of a prototype actually prepared in CETP to be used in common calibrations with the other instruments in selected well-known terrains. 1. PRINCIPLE AND HERITAGE The measurement of the planetary surface complex permittivity (electrical conductivity and dielectric constant) vs. frequency has a twofold interest: i) to contribute with other parameters to the identification of the close sub-surface materials without penetrating the surface; ii) to characterize the electrical properties of the planetary surface which control the boundary conditions for electromagnetic waves and fields, including possible DC atmospheric electric currents. The mutual impedance (MI) probes of today's planetary missions are the heritage of the quadrupolar probes developed in the first half of the XXth century for oil prospecting [1]. The principle is to inject an AC current I in the planar homogeneous ground of relative permittivity eg through a first dipole and to measure the induced potential by this dipole or by a second dipole to obtain respectively the self and mutual impedances.

  8. Dielectric studies on struvite urinary crystals, a gateway to the new treatment modality for urolithiasis.

    PubMed

    Rajan, Reshma; Raj, N Arunai Nambi; Madeswaran, S; Babu, D Rajan

    2015-09-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAPH) are biological crystals, found in the kidney, which are formed due to the infection caused by urea splitting bacteria in the urinary tract. The struvite crystals observe different morphologies and were developed using single diffusion gel growth technique. The crystalline nature and its composition were studied from different characterization techniques like X-ray Diffraction (XRD) and FTIR. The dielectric behavior of the developed crystal was studied by varying temperature and at different frequencies. The parameters like dielectric constant, dielectric loss, ac conductivity, ac resistivity, impedance and admittance of the struvite crystals were calculated. The studies proved that the dielectric loss or dissipation heat is high in lower frequencies at normal body temperature, which develops a plasma state in the stones and in turn leads to the disintegration of urinary stones. The dielectric nature of the stones leads to the dielectric therapy, which will be a gateway for future treatment modality for urolithiasis.

  9. Measurement of the thermal conductivity of dielectric thin solid films with a thermal comparator

    SciTech Connect

    Amsden, C.A.; Gilman, S.E.; Jacobs, S.D.; Torok, J.S.

    1988-04-01

    Low thermal conductivity has important implications for electric and optical applications, where heat deposited in a thin layer must be dissipated to prevent damage. Models which account for thermal transport in thin film structures may have no predictive value if they employ bulk conductivity data. Most techniques utilized to measure the thermal conductivity of thin solid films are difficult and time consuming. The method we have developed is relatively rapid, nondestructive, and is capable of evaluating the samples in a conventional film on substrate geometry. Our thermal conductivity apparatus consists of a control and readout module, signal processing equipment, and an environmentally isolated sample chamber enclosing a sample stage. The commercial unit was converted into a high precision device by temperature controlling both the samples and the sample stage, and by performing averaging of the output signal. The thermal conductivity values obtained are below those of bulk solids. In addition, the conductivities seem to increase with increasing film thickness. Titania seems to have a higher thermal conductivity when deposited by ion-beam sputtering rather than electron-beam evaporation. Some of the electron-beam films were crazed, indicating high levels of stress. The effect of stress and crazing on thermal conductivity is not readily apparent. 11 refs., 1 fig., 1 tab.

  10. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  11. Measurements of the temperature dependence of radiation induced conductivity in polymeric dielectrics

    NASA Astrophysics Data System (ADS)

    Gillespie, Jodie

    This study measures Radiation Induced Conductivity (RIC) in five insulating polymeric materials over temperatures ranging from ~110 K to ~350 K: polyimide (PI or Kapton HN(TM) and Kapton E(TM)), polytetraflouroethylene (PTFE or Teflon(TM)), ethylene-tetraflouroethylene (ETFE or Tefzel(TM)), and Low Density Polyethylene (LDPE). RIC occurs when incident ionizing radiation deposits energy and excites electrons into the conduction band of insulators. Conductivity was measured when a voltage was applied across vacuum-baked, thin film polymer samples in a parallel plate geometry. RIC was calculated as the difference in sample conductivity under no incident radiation and under an incident ~4 MeV electron beam at low incident dose rates of 0.01 rad/sec to 10 rad/sec. The steady-state RIC was found to agree well with the standard power law relation, sigmaRIC(D˙) = kRIC(T) D˙Delta(T) between conductivity, sigmaRIC and adsorbed dose rate, D˙. Both the proportionality constant, kRIC, and the power, Delta, were found to be temperature-dependent above ~250 K, with behavior consistent with photoconductivity models developed for localized trap states in disordered semiconductors. Below ~250 K, kRIC and Delta exhibited little change in any of the materials.

  12. Ionic conductivity and dielectric relaxation in {gamma}-irradiated TlGaTe{sub 2} crystals

    SciTech Connect

    Sardarli, R. M. Samedov, O. A.; Abdullayev, A. P.; Huseynov, E. K.; Salmanov, F. T.; Alieva, N. A.; Agaeva, R. Sh.

    2013-05-15

    The switching effect, field and temperature dependences of the permittivity and conductivity of TlGaTe{sub 2} crystals subjected to various {gamma}-irradiation doses are studied. Under rather low electric fields, the phenomenon of threshold switching with an S-shaped current-voltage characteristic containing a portion with negative differential resistance is observed in the crystals. In the region of critical voltages, current and voltage oscillations and imposed modulation are observed. Possible mechanisms of switching, ionic conductivity, disorder, and electrical instability in TlGaTe{sub 2} crystals are discussed.

  13. Structural, electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte

    PubMed Central

    Iqbal, Mohd Z.; Rafiuddin

    2015-01-01

    A series of composite materials of general molecular formula (1 − x) Na2SO4 − (x) LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) respectively. Differential thermal analysis (DTA) revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10−4 S cm−1 at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573–773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend. PMID:26843979

  14. Scattering of Gaussian Beam by a Conducting Spheroidal Particle with Confocal Dielectric Coating

    NASA Astrophysics Data System (ADS)

    Sun, Xianming; Wang, Haihua; Zhang, Huayong

    2010-09-01

    An analytic solution to the scattering by a coated spheroidal particle, for arbitrary incidence of a Gaussian beam, is constructed by expanding the incident and scattered electromagnetic fields in terms of spheroidal vector wave functions. The unknown expansion coefficients are determined by a system of linear equations derived from the appropriate boundary conditions. Numerical results of the normalized differential scattering cross section of the conducting and coated spheroidal particle are evaluated, and the scattering characteristics are discussed concisely.

  15. Harnessing Quantum Interference in Molecular Dielectric Materials.

    PubMed

    Bergfield, Justin P; Heitzer, Henry M; Van Dyck, Colin; Marks, Tobin J; Ratner, Mark A

    2015-06-23

    We investigate the relationship between dielectric response and charge transport in molecule-based materials operating in the quantum coherent regime. We find that quantum interference affects these observables differently, for instance, allowing current passing through certain materials to be reduced by orders of magnitude without affecting dielectric behavior (or band gap). As an example, we utilize ab initio electronic structure theory to calculate conductance and dielectric constants of cross-conjugated anthraquinone (AQ)-based and linearly conjugated anthracene (AC)-based materials. In spite of having nearly equal fundamental gaps, electrode bonding configurations, and molecular dimensions, we find a ∼1.7 order of magnitude (∼50-fold) reduction in the conductance of the AQ-based material relative to the AC-based material, a value in close agreement with recent measurements, while the calculated dielectric constants of both materials are nearly identical. From these findings, we propose two molecular materials in which quantum interference is used to reduce leakage currents across a ∼25 Å monolayer gap with dielectric constants larger than 4.5.

  16. A single-shot spatial chirp method for measuring initial AC conductivity evolution of femtosecond laser pulse excited warm dense matter

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Hering, P.; Brown, S. B.; Curry, C.; Tsui, Y. Y.; Glenzer, S. H.

    2016-11-01

    To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Temporal evolution of AC conductivity in laser excited warm dense gold was also measured.

  17. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices

    PubMed Central

    Feng, Ping; Du, Peifu; Wan, Changjin; Shi, Yi; Wan, Qing

    2016-01-01

    New-concept devices featuring the characteristics of ultralow operation voltages and low fabrication cost have received increasing attention recently because they can supplement traditional Si-based electronics. Also, organic/inorganic composite systems can offer an attractive strategy to combine the merits of organic and inorganic materials into promising electronic devices. In this report, solution-processed graphene oxide/chitosan composite film was found to be an excellent proton conducting electrolyte with a high specific capacitance of ~3.2 μF/cm2 at 1.0 Hz, and it was used to fabricate multi-gate electric double layer transistors. Dual-gate AND logic operation and two-terminal diode operation were realized in a single device. A two-terminal synaptic device was proposed, and some important synaptic behaviors were emulated, which is interesting for neuromorphic systems. PMID:27688042

  18. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices

    NASA Astrophysics Data System (ADS)

    Feng, Ping; Du, Peifu; Wan, Changjin; Shi, Yi; Wan, Qing

    2016-09-01

    New-concept devices featuring the characteristics of ultralow operation voltages and low fabrication cost have received increasing attention recently because they can supplement traditional Si-based electronics. Also, organic/inorganic composite systems can offer an attractive strategy to combine the merits of organic and inorganic materials into promising electronic devices. In this report, solution-processed graphene oxide/chitosan composite film was found to be an excellent proton conducting electrolyte with a high specific capacitance of ~3.2 μF/cm2 at 1.0 Hz, and it was used to fabricate multi-gate electric double layer transistors. Dual-gate AND logic operation and two-terminal diode operation were realized in a single device. A two-terminal synaptic device was proposed, and some important synaptic behaviors were emulated, which is interesting for neuromorphic systems.

  19. Dielectric characteristics of fast Li ion conducting garnet-type Li5+2xLa3Nb2-xYxO12 (x = 0.25, 0.5 and 0.75).

    PubMed

    Narayanan, Sumaletha; Baral, Ashok Kumar; Thangadurai, Venkataraman

    2016-06-01

    Here, we report the dielectric characteristics of Li-stuffed garnet-type Li5+2xLa3Nb2-xYxO12 (x = 0.25, 0.5 and 0.75) in the temperature range about -53 to 50 °C using AC impedance spectroscopy. All the investigated Li-stuffed garnet compounds were prepared, under the same condition, using conventional solid-state reaction at elevated temperature in air. The Nyquist plots show mainly bulk contribution to the total Li(+) ion conductivity for Li5.5La3Nb1.75Y0.25O12 (Li5.5-Nb) and Li6La3Nb1.5Y0.5O12 (Li6-Nb), while both bulk and grain-boundary effects are visible in the case of Li6.5La3Nb1.25Y0.75O12 (Li6.5-Nb) phase at ∼-22 °C. Non-Debye relaxation process was observed in the modulus AC impedance plots. The dielectric loss tangent of Li5+2xLa3Nb2-xYxO12 are compared with that of the corresponding Ta analogue, Li5+2xLa3Ta2-xYxO12 and showed a decrease in peak intensity for the Nb-based garnet samples which may be attributed to a slight increase in their Li(+) ion conductivity. The relative dielectric constant values were also found to be higher for the Ta member (>60 for Li5+2xLa3Ta2-xYxO12) than that of the corresponding Nb analogue (∼50 for Li5+2xLa3Nb2-xYxO12) at below room temperature. A long-range order Li(+) ion migration pathway with relaxation time (τ0) 10(-18)-10(-15) s and an activation energy of 0.59-0.40 eV was observed for the investigated Li5+2xLa3Nb2-xYxO12 garnets and is comparable to that of the corresponding Ta-based Li5+2xLa3Ta2-xYxO12 garnets.

  20. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    NASA Astrophysics Data System (ADS)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2–SiO2, Au–Au, SiO2–Au and Au–Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  1. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    NASA Astrophysics Data System (ADS)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  2. Effect of conductive BaPbO3 electrode on the structural and dielectric properties of (Pb,Ba)ZrO3 films

    NASA Astrophysics Data System (ADS)

    Wu, Lin-Jung; Wu, Jenn-Ming

    2007-08-01

    Highly (1 1 1)-oriented (Pb,Ba)ZrO3 (PBZ) thin films were deposited on BaPbO3(BPO) electrode at different deposition temperatures and different thicknesses. As the deposition temperature increased, the dielectric constant and tunability increased from 150 and 4% to 500 and 56%, respectively. A current transient peak observed prior to dielectric degradation can be related to oxygen vacancy migration (redistribution) with space-charge-limited current transient or modulation of the electric conductivity. We infer that an interfacial layer lying between the PBZ and BPO effectively increases the oxygen vacancy (density ~1020 cm-3) mobility by Pb4+ diffusing into the PBZ films.

  3. Transport ac losses of a second-generation HTS tape with a ferromagnetic substrate and conducting stabilizer

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Chen, Du-Xing; Fang, Jin

    2015-12-01

    The current-voltage curve and transport ac loss of a second-generation HTS tape with a ferromagnetic NiW substrate and brass stabilizer are measured. It is found that the ac loss is up to two orders of magnitude larger than what is expected by the power-law E(J) determined by the current-voltage curve and increases with increasing frequency. Modeling results show that the overly large ac loss is contributed by the ac loss in the HTS strip enhanced by the NiW substrate and the magnetic hysteresis loss in the substrate, and the frequency-dependent loss occurs in the brass layer covering the substrate but not in the ferromagnetic substrate itself as assumed previously. The ac loss in the brass layer is associated with transport currents but not eddy currents, and it has some features similar to ordinary eddy-current loss with significant differences.

  4. Dielectric behaviour of Zn substituted Cu nano-ferrites

    NASA Astrophysics Data System (ADS)

    Parashar, Jyoti; Saxena, V. K.; Jyoti; Bhatnagar, Deepak; Sharma, K. B.

    2015-11-01

    Herein, the dielectric properties such as permittivity (real part ε‧ and imaginary part ε‧‧) and dielectric loss tangent (tan δ) are reported for Zn substituted Cu ferrites (Cu1-xZnxFe2O4; 0≤x≤1) composite using the sol-gel auto-combustion method. The variations of real and imaginary part of dielectric constant, tan δ and AC conductivityac) are studied at room temperature in the frequency range of 100 Hz-120 MHz. The real part of dielectric constant decrease with increasing frequency and the imaginary part (ε‧‧) varies with frequency showing the characteristic peak for each sample. The relation of tan δ with frequency shows relaxation spectra. Further, the σac tended to increase with increase in frequency. The variation in dielectric constant may be explained on the basis of space charge polarization, according to Maxwell and Wagner two-layer model. The dielectric constant and tan δ as a function of temperature are also studied with different temperatures ranging from 323 K to 583 K.

  5. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    PubMed

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf

    2010-01-01

    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture.

  6. Low temperature dielectric and conductivity relaxation studies on magnetoelectric Pb(Fe2/3W1/3)O3

    NASA Astrophysics Data System (ADS)

    Matteppanavar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Angadi, Basavaraj

    2016-05-01

    The single phase perovskite Pb(Fe2/3W1/3)O3 [PFW] was synthesized by modified low - temperature (sintering at 850°C) solid-state reaction. Rietveld refinement ofroom temperature (RT) X-ray diffraction (XRD) and neutron diffraction (ND) patterns of the samples confirm the single phase formation with cubic structure (Pm-3m). Surface morphology of the compounds was studied by Scanning electron microscope (SEM) and average grain size was estimated to be ˜2 µm. The RT dielectric properties of PFW ceramic are studied as a function of frequency from 100 - 1MHz. The temperature dependent (120 - 293K) dielectric properties were studied at few selected frequencies. We found the frequency dependent dielectric constant shows increasing trend with increase in temperature from 120 - 293K, with minimum dielectric loss. The frequency dependence of dielectric loss shows a maximum in between 10 Hz and 1 kHz, confirms the extrinsic phenomena like interfacial polarization due to space charge accumulation at grain boundaries. Impedance spectroscopy is used to study the electrical behaviour of PFW in the frequency range from 100 to 1MHz and in the temperature range from 120 - 293 K. The frequency-dependent electrical data are analysed by impedance formalisms and shows the relaxation (conduction) mechanism in the sample. We suggest this low temperature sintered PFW is a suitable candidate for the multilayer ceramic capacitorsandrelated negative temperature coefficient of resistance type (NTCR) behavior like that of semiconductors.

  7. Transverse wavevector dependent and frequency dependent dielectric function, magnetic permittivity and generalized conductivity of interaction site fluids: MD calculations for the TIP4P water

    NASA Astrophysics Data System (ADS)

    Omelyan, Igor P.

    The dielectric properties of interaction site models of polar fluids may be investigated in a computer experiment using not only the charge fluctuations but also correlations corresponding to a current of moving charges. This current may be associated with a generalized dynamical polarization or separated into electric and magnetic components. The first approach deals with the dielectric permittivity related to a generalized conductivity, whereas the second leads to the functions describing polarization and magnetization fluctuations separately. The latter functions are only the source for calculating the magnetic susceptibility for a system of interaction sites. The transverse wavevector dependent and frequency dependent dielectric functions and magnetic susceptibility are evaluated for the TIP4P water model over a very wide scale of wavelengths and frequencies using molecular dynamics simulations. The transverse part of the dielectric functions may differ drastically from their longitudinal component. A relationship between the two approaches is discussed and the limiting transition to the static dielectric constant in the infinite-wavelength regime is analysed. The propagation of transverse electromagnetic waves in TIP4P water is considered.

  8. Dielectric study of Al3+ substituted Fe3O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, N.; Kumar, Vinod; Singh, S. K.

    2014-07-01

    Al3+ substituted nanoparticles i.e., FeAlxFe2-xO4(x = 0.2, 0.4, 0.6) have been synthesized by the chemical co precipitation method. Crystalline phase of synthesized particles was confirmed by XRD pattern. Particle size of as obtained samples was found in the range of 24-34 nm. Dielectric loss (tan δ, dielectric permittivity (ɛ‧) and ac conductivityac) were evaluated as a function of frequency, composition and temperature using impedance analyzer in the frequency range of (1000 Hz-5 MHz) and temperature range of (300-473 K). AC conductivityac) was found to decrease with increase in Al3+ doping which has been explained on the basis of hopping mechanism. The variation of dielectric loss (tan δ, dielectric permittivity (ɛ‧), ac conductivityac) with temperature and frequency can be explained on the basis of Maxwell-Wagner type of interfacial polarization and hopping mechanism between ferrous and ferric ions at the octahedral site. DC electrical resistivity was found to decrease with increasing temperature indicating that the substituted ferrites have semiconductor like behavior. Activation energy was found to increase with increasing Al3+ ion content.

  9. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Ulutas, K.; Deger, D.; Yakut, S.

    2013-03-01

    Sb2Te3 thin films of different thickness (23 - 350 nm) were prepared by thermal evaporation technique. The thickness dependence of the ac conductivity and dielectric properties of the Sb2Te3 films have been investigated in the frequency range 10 Hz- 100 kHz and within the temperature range 293-373K. Both the dielectric constant epsilon1 and dielectric loss factor epsilon2 were found to depend on frequency, temperature and film thickness. The frequency and temperature dependence of ac conductivityac(ω)) has also been determined. The ac conductivity of our samples satisfies the well known ac power law; i.e., σac(ω) propto ωs where s<1 and independent of the film thickness. The temperature dependence of ac conductivity and parameter s is reasonably well interpreted by the correlated barrier hopping (CBH) model. The activation energies were evaluated for various thicknesses. The temperature coefficient of the capacitance (TCC) and permitivity (TCP) were determined as a function of the film thickness. The microstructure of the samples were analyzed using X-ray diffraction (XRD). This results are discussed on the base of the differences in their morphologies and thicknesses. The tendency for amorphization of the crystalline phases becomes evident as the film thickness increases.

  10. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ˜5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  11. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ∼5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density–voltage and frequency dependent (7 kHz–5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole–Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  12. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    SciTech Connect

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai . E-mail: huirutai@sglab.org

    2006-05-26

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy.

  13. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    NASA Astrophysics Data System (ADS)

    Abd-El Kader, F. H.; Osman, W. H.; Hafez, R. S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  14. Dual electron-phonon coupling model for gigantic photoenhancement of the dielectric constant and electronic conductivity in SrTi O3

    NASA Astrophysics Data System (ADS)

    Qiu, Y.; Wu, C. Q.; Nasu, K.

    2005-12-01

    In connection with the recent experimental discovery on photoenhancements of the electronic conductivity and the quasi-static electric susceptibility in SrTiO3 , we theoretically study a photogeneration mechanism of charged and conductive ferroelectric domains in this perovskite type quantum dielectric. The photo-generated electron, being quite itinerant in the 3d band of Ti4+ , is assumed to couple weakly but quadratically with soft-anharmonic T1u phonons in this quantum dielectric, in view of the parity of this lattice vibration. The photo-generated electron is also assumed to couple strongly but linearly with the breathing type high energy phonons. Using a tight-binding model for electrons, we will show that this dual electron-phonon coupling results in two types of polarons, a “super-para-electric (SPE) large polaron” with a quasi-globle parity violation, and an “off-center type self-trapped polaron” with only a local parity violation. This SPE large polaron is shown to be equal to a singly charged (e-) and conductive ferroelectric domain with a quasi-macroscopic range. Two of such large polarons are shown to aggregate and form an SPE large bipolaron, which is still conductive. Various other bipolaron clusters are also shown to be formed in this electron-phonon coupled system. These large polarons have a high mobility and an enhanced quasi-static dielectric susceptibility. Effect of adulteration is also discussed.

  15. Effects of Ni{sup 3+} substitution on structural and temperature dependent dielectrical properties of NdFeO{sub 3}

    SciTech Connect

    Kaur, Pawanpreet Pandit, Rabia Sharma, K. K.; Kumar, Ravi

    2014-04-24

    The polycrystalline samples of NdFe{sub 1−x}Ni{sub x}O{sub 3} (x=0.0, 0.2) were prepared by solid state reaction route, the single phase of powdered samples were ensured by Rietveld refinement of their X-ray diffraction (XRD) data. We have also studied the variation of dielectric constant (ε′), tangent loss (tan δ) and AC conductivity (σ{sub ac}) as a function of frequency and temperature for both the compositions. It is noticed that both the increase in temperature and Ni{sup 3+} ion substitution results in enhancement of dielectric constant, tangent loss and AC conductivity.

  16. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe{sub 2} (bda = 1,4-butanediamine)

    SciTech Connect

    Du, Ke-Zhao; Hu, Wan-Biao; Hu, Bing; Guan, Xiang-Feng; Huang, Xiao-Ying

    2011-11-15

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe{sub 2}, which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: {yields} The title compound is the first example of organic-containing one-dimensional indium selenide. {yields} The anomalous dielectric peak is attributed to water molecules in crystal boundary. {yields} The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe{sub 2} (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe{sub 2}]{sub n}{sup n-} with monoprotonated [bdaH]{sup +} as charge compensating cation. The organic [bdaH]{sup +} cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 {sup o}C, which could be attributed to water molecules in the crystal boundary.

  17. Doping of a dielectric layer as a new alternative for increasing sensitivity of the contactless conductivity detection in microchips.

    PubMed

    Lima, Renato Sousa; Segato, Thiago Pinotti; Gobbi, Angelo Luiz; Coltro, Wendell Karlos Tomazelli; Carrilho, Emanuel

    2011-12-21

    This communication describes a new procedure to increase the sensitivity of C(4)D in PDMS/glass microchips. The method consists in doping the insulating layer (PDMS) over the electrodes with nanoparticles of TiO(2), increasing thus its dielectric constant. The experimental protocol is simple, inexpensive, and fast.

  18. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.

    PubMed

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł

    2016-12-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed. PMID:27558494

  19. HfO{sub 2} dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima

    SciTech Connect

    Zhang, Cheng; Xie, Dan Xu, Jian-Long; Sun, Yi-Lin; Dai, Rui-Xuan; Li, Xian; Li, Xin-Ming; Zhu, Hong-Wei

    2015-10-14

    We investigate the electrical properties in back-gated graphene field effect transistors (GFETs) with SiO{sub 2} dielectric and different thickness of high-k HfO{sub 2} dielectric. The results show that transform characteristic (I{sub ds}–V{sub gs}) curves of GFETs are uniquely W-shaped with two charge neutrality point (left and right) in both SiO{sub 2} and HfO{sub 2} dielectric (SiO{sub 2}-GFETs and HfO{sub 2}-GFETs). The gate voltage reduces drastically in HfO{sub 2}-GFETs compared with that in SiO{sub 2}-GFETs, and it becomes much smaller with the decline of HfO{sub 2} thickness. The left charge neutrality point in I{sub d}–V{sub g} curves of all HfO{sub 2}-GFETs is negative, compared to the positive ones in SiO{sub 2}-GFETs, which means that there exists n-doping in graphene with HfO{sub 2} as bottom dielectric. We speculate that this n-doping comes from the HfO{sub 2} layer, which brings fixed charged impurities in close proximity to graphene. The carrier mobility is also researched, demonstrating a decreasing trend of hole mobility in HfO{sub 2}-GFETs contrast to that in SiO{sub 2}-GFETs. In a series of HfO{sub 2}-GFETs with different HfO{sub 2} dielectric thickness, the hole mobility shows a tendency of rise when the thickness decreases to 7 nm. The possible reason might be due to the introduced impurities into HfO{sub 2} film from atomic layer deposition process, the concentration of which varies from the thickness of HfO{sub 2} layer.

  20. HfO2 dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xie, Dan; Xu, Jian-Long; Li, Xin-Ming; Sun, Yi-Lin; Dai, Rui-Xuan; Li, Xian; Zhu, Hong-Wei

    2015-10-01

    We investigate the electrical properties in back-gated graphene field effect transistors (GFETs) with SiO2 dielectric and different thickness of high-k HfO2 dielectric. The results show that transform characteristic (Ids-Vgs) curves of GFETs are uniquely W-shaped with two charge neutrality point (left and right) in both SiO2 and HfO2 dielectric (SiO2-GFETs and HfO2-GFETs). The gate voltage reduces drastically in HfO2-GFETs compared with that in SiO2-GFETs, and it becomes much smaller with the decline of HfO2 thickness. The left charge neutrality point in Id-Vg curves of all HfO2-GFETs is negative, compared to the positive ones in SiO2-GFETs, which means that there exists n-doping in graphene with HfO2 as bottom dielectric. We speculate that this n-doping comes from the HfO2 layer, which brings fixed charged impurities in close proximity to graphene. The carrier mobility is also researched, demonstrating a decreasing trend of hole mobility in HfO2-GFETs contrast to that in SiO2-GFETs. In a series of HfO2-GFETs with different HfO2 dielectric thickness, the hole mobility shows a tendency of rise when the thickness decreases to 7 nm. The possible reason might be due to the introduced impurities into HfO2 film from atomic layer deposition process, the concentration of which varies from the thickness of HfO2 layer.

  1. Semicrystalline Structure-Dielectric Property Relationship and Electrical Conduction in a Biaxially Oriented Poly(vinylidene fluoride) Film under High Electric Fields and High Temperatures.

    PubMed

    Yang, Lianyun; Ho, Janet; Allahyarov, Elshad; Mu, Richard; Zhu, Lei

    2015-09-16

    Poly(vinylidene fluoride) (PVDF)-based homopolymers and copolymers are attractive for a broad range of electroactive applications because of their high dielectric constants. Especially, biaxially oriented PVDF (BOPVDF) films exhibit a DC breakdown strength as high as that for biaxially oriented polypropylene films. In this work, we revealed the molecular origin of the high dielectric constant via study of a commercial BOPVDF film. By determination of the dielectric constant for the amorphous phase in BOPVDF, a high value of ca. 21-22 at 25 °C was obtained, and a three-phase (i.e., lamellar crystal/oriented interphase/amorphous region) semicrystalline model was proposed to explain this result. Meanwhile, electronic conduction mechanisms in BOPVDF under high electric fields and elevated temperatures were investigated by thermally stimulated depolarization current (TSDC) spectroscopy and leakage current studies. Space charge injection from metal electrodes was identified as a major factor for electronic conduction when BOPVDF was poled above 75 °C and 20 MV/m. In addition, when silver or aluminum were used as electrodes, new ions were generated from electrochemical reactions under high fields. Due to the electrochemical reactions between PVDF and the metal electrode, a question is raised for practical electrical applications using PVDF and its copolymers under high-field and high-temperature conditions. A potential method to prevent electrochemical degradation of PVDF is proposed in this study. PMID:26120953

  2. Semicrystalline Structure-Dielectric Property Relationship and Electrical Conduction in a Biaxially Oriented Poly(vinylidene fluoride) Film under High Electric Fields and High Temperatures.

    PubMed

    Yang, Lianyun; Ho, Janet; Allahyarov, Elshad; Mu, Richard; Zhu, Lei

    2015-09-16

    Poly(vinylidene fluoride) (PVDF)-based homopolymers and copolymers are attractive for a broad range of electroactive applications because of their high dielectric constants. Especially, biaxially oriented PVDF (BOPVDF) films exhibit a DC breakdown strength as high as that for biaxially oriented polypropylene films. In this work, we revealed the molecular origin of the high dielectric constant via study of a commercial BOPVDF film. By determination of the dielectric constant for the amorphous phase in BOPVDF, a high value of ca. 21-22 at 25 °C was obtained, and a three-phase (i.e., lamellar crystal/oriented interphase/amorphous region) semicrystalline model was proposed to explain this result. Meanwhile, electronic conduction mechanisms in BOPVDF under high electric fields and elevated temperatures were investigated by thermally stimulated depolarization current (TSDC) spectroscopy and leakage current studies. Space charge injection from metal electrodes was identified as a major factor for electronic conduction when BOPVDF was poled above 75 °C and 20 MV/m. In addition, when silver or aluminum were used as electrodes, new ions were generated from electrochemical reactions under high fields. Due to the electrochemical reactions between PVDF and the metal electrode, a question is raised for practical electrical applications using PVDF and its copolymers under high-field and high-temperature conditions. A potential method to prevent electrochemical degradation of PVDF is proposed in this study.

  3. Dielectric properties of Li2O-CaF2-P2O5 glass ceramic system doped with NiO

    NASA Astrophysics Data System (ADS)

    Krishna, G. Murali; Venkateswararao, G.; Srikumar, T.; Sambasiva Rao, K.; Ram Prasad, Ch

    2009-07-01

    Studies on various physical properties viz., dielectric properties (dielectric constant, loss tan δ, a.c conductivity σ) over a wide range of frequency and temperature, of Li2O-CaF2-P2O5: NiO glass ceramics have been reported. The dielectric constant and loss variation with the concentration of NiO have been explained on the basis of space charge polarization mechanism. The dielectric relaxation effects exhibited by these samples have been analyzed by a graphical method and the spreading of dielectric relaxation has been established. The a.c conductivity in the high temperature region seems to be connected both with electronic transfer and ionic movements.

  4. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni0.7Mg0.3Fe2-xAlxO4 (0.0≤x≤0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivityac), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Ni2+ and Ni3+ ions at B-sites. The dielectric loss tangent (tan δ) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  5. Cole-cole analysis and electrical conduction mechanism of N{sup +} implanted polycarbonate

    SciTech Connect

    Chawla, Mahak; Shekhawat, Nidhi; Aggarwal, Sanjeev Sharma, Annu; Nair, K. G. M.

    2014-05-14

    In this paper, we present the analysis of the dielectric (dielectric constant, dielectric loss, a.c. conductivity) and electrical properties (I–V characteristics) of pristine and nitrogen ion implanted polycarbonate. The samples of polycarbonate were implanted with 100 keV N{sup +} ions with fluence ranging from 1 × 10{sup 15} to 1 × 10{sup 17} ions cm{sup −2}. The dielectric measurements of these samples were performed in the frequency range of 100 kHz to 100 MHz. It has been observed that dielectric constant decreases whereas dielectric loss and a.c. conductivity increases with increasing ion fluence. An analysis of real and imaginary parts of dielectric permittivity has been elucidated using Cole-Cole plot of the complex permittivity. With the help of Cole-Cole plot, we determined the values of static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}), and molecular relaxation time (τ). The I–V characteristics were studied using Keithley (6517) electrometer. The electrical conduction behaviour of pristine and implanted polycarbonate specimens has been explained using various models of conduction.

  6. Investigation on dielectric properties of atomic layer deposited Al{sub 2}O{sub 3} dielectric films

    SciTech Connect

    Yıldız, Dilber Esra; Yıldırım, Mert; Gökçen, Muharrem

    2014-05-15

    Al/Al{sub 2}O{sub 3}/p-Si Schottky barrier diodes (SBDs) were fabricated using atomic layer deposition technique in order to investigate dielectric properties of SBDs. For this purpose, admittance measurements were conducted at room temperature between −1 V and 3 V in the frequency range of 10 kHz and 1 MHz. In addition to the investigation of Al{sub 2}O{sub 3} morphology using atomic force microscope, dielectric parameters; such as dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tan δ), and real and imaginary parts of dielectric modulus (M′ and M″, respectively), were calculated and effect of frequency on these parameters of Al/Al{sub 2}O{sub 3}/p-Si SBDs was discussed. Variations in these parameters at low frequencies were associated with the effect of interface states in low frequency region. Besides dielectric parameters, ac electrical conductivity of these SBDs was also investigated.

  7. Investigations on spectral and dielectric properties of semi-organic single crystal – morpholinium nitrate

    SciTech Connect

    Arul, H.; Babu, D. Rajan Vizhi, R. Ezhil

    2015-06-24

    Semi organic nonlinear optical crystal Morpholinium nitrate (MN) was synthesized and subsequently grown from the solution by slow evaporation method. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The crystal belongs to the monoclinic system with a space group P2{sub 1}/C. Carbon NMR analysis confirms the presence of carbon in the structure of the title compound. Dielectric studies have been carried out on the grown crystal as a function of frequencies at different temperatures. Dielectric constant, dielectric loss and AC conductivity were also calculated.

  8. Anisotropies in the Optical ac and dc Conductivities in Lightly Doped La2−xSrxCuO4: The Role of Deep and Shallow Acceptor States

    SciTech Connect

    Gozar, A.; Silva Neto, M.B.; Blumberg, G.; Komiya, S.; Ando, Y.

    2011-06-01

    We investigate the origin of the optical ac and dc conductivity anisotropies observed in the low temperature orthorhombic phase of lightly doped, untwinned La{sub 2-x}Sr{sub x}NiO{sub 4} single crystals. We show that these anisotropies can be naturally ascribed to the emergence of two odd parity, rotational-symmetry-broken, localized impurity acceptor states, one deeper and one shallower, resulting from the trapping of doped holes by the Coulomb potential provided by the Sr ions. These two lowest-energy, p-wave-like states are split by orthorhombicity and are partially filled with holes. This leaves a unique imprint in the optical ac conductivity, which shows two distinct far-infrared continuum absorption energies corresponding to the photoionization of the deep and shallow acceptor states. Furthermore, we argue that the existence of two independent and orthogonal channels for hopping conductivity, directly associated with the two orthorhombic directions, also quantitatively explains the observed low temperature anisotropies in the dc conductivity.

  9. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  10. Conduction and material transport phenomena of degradation in electrically stressed ultra low-k dielectric before breakdown

    NASA Astrophysics Data System (ADS)

    Breuer, T.; Kerst, U.; Boit, C.; Langer, E.; Ruelke, H.; Fissel, A.

    2012-12-01

    The electrical degradation of ultra low-k SiCOH dielectric before breakdown is investigated. A new technique to obtain information before breakdown has been developed to define stress conditions and observe degradation patterns before total destruction occurs. Electrical measurements and physical inspection in specifically designed test structures have been made to focus on intrinsic properties. A typical leakage current characteristic, voiding and tantalum transport have been observed. These observations have been interpreted by quantitatively adapting physical effects. This investigation provides a model that describes the observed phenomena in a qualitatively manner.

  11. High field conduction and dielectric breakdown in nominally pure and nickel-doped MgO crystals at high temperatures

    SciTech Connect

    Tsang, K.L.; Chen, Y.; O'Dwyer, J.J.

    1982-12-15

    The phenomenon of dielectric (or more aptly, electrothermal) breakdown of nominally pure and nickle-doped MgO crystals at 1473 K is studied with the use of a field of 1500 V cm/sup -1/. The current transients induced by constant and alternating fields as well as by field reversals, and open- and short-circuit conditions are investigated. Activation energies, obtained from the temperature dependence of current parameters, are also obtained. It is concluded that the mechanism leading to the breakdown involves the buildup of space charge caused by the injection of carriers from the electrodes and drift of ions.

  12. A novel Graphene Oxide film: Synthesis and Dielectric properties

    NASA Astrophysics Data System (ADS)

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with S<1. The electrical properties of GO showed changes depending on both frequency and temperature. We observed GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  13. Temperature dependence anomalous dielectric relaxation in Co doped ZnO nanoparticles

    SciTech Connect

    Ansari, Sajid Ali; Nisar, Ambreen; Fatma, Bushara; Khan, Wasi; Chaman, M.; Azam, Ameer; Naqvi, A.H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► We prepared Co doped ZnO by facile gel-combustion method. ► Studied temperature dependent dielectric properties in detail. ► Relaxation time shifts toward the higher temperature as increase in Co content. ► SEM analysis shows formation and agglomeration of nanoparticles. ► Dielectric constants, loss and ac conductivity increases with rise in temperature. ► The dielectric constant, loss and ac conductivity decreases as Co ion increases. -- Abstract: We have reported temperature and frequency dependence of dielectric behavior of nanocrystalline Zn{sub 1−x}Co{sub x}O (x = 0.0, 0.01, 0.05 and 0.1) samples prepared by gel-combustion method. The synthesized samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and LCR-meter, respectively. The XRD analysis reveals that ZnO has a hexagonal (wurtzite) crystal structure. The morphology and size of the nanoparticles (∼10–25 nm) were observed by SEM for 5% Co doped ZnO sample. In dielectric properties, complex permittivity (ε{sup *} = ε′ − jε″), loss tangent (tan δ) and ac conductivity (σ{sub ac}) in the frequency range 75 kHz to 5 MHz were analyzed with temperature range 150–400 °C. The experimental results indicate that ε′, ε″, tan δ and σ{sub ac} decreases with increase in frequency and temperature. The transition temperature as obtained in dispersion curve of dielectric constant shifts toward higher temperature with increase Co content.

  14. Dielectric properties and alternating current conductivity of sol-gel made La0.8Ca0.2FeO3 compound

    NASA Astrophysics Data System (ADS)

    Benali, A.; Souissi, A.; Bejar, M.; Dhahri, E.; Graça, M. F. P.; Valente, M. A.

    2015-09-01

    In this work, single phase La0.8Ca0.2FeO3 nanomaterial has been synthesized by the sol-gel method using the citric acid route. By employing impedance spectroscopy, ac electrical properties have been measured over a temperature range from 300 to 673 K at various frequencies. With the analysis based on Debye's theory and a series of Arrhenius relations, the relaxation was argued to be associated with the hopping motions of charge carriers between Fe ions. The relaxation in the La0.8Ca0.2FeO3 compound was ascribed to be a polaronic relaxation. The ac electrical conduction was studied and associated to the non-overlapping small polaron tunneling (NSPT) model.

  15. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  16. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  17. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    NASA Astrophysics Data System (ADS)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  18. Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn-Mn ferrites

    SciTech Connect

    Hankare, P.P.; Patil, R.P.; Garadkar, K.M.; Sasikala, R.; Chougule, B.K.

    2011-03-15

    Graphical abstract: Variation of dielectric constant with frequency. Research highlights: {yields} Sol-gel route synthesized spherical crystalline nanoparticles of ZnMn{sub 1-x}Cr{sub x}FeO{sub 4}. {yields} XRD, DTA, FTIR, SEM, dielectric and impedance study. {yields} The ferrites show concentration dependence of ac electrical conductivity. {yields} Impedance response is dominated by grain boundary behavior. -- Abstract: Nanocrystalline ZnMn{sub 1-x}Cr{sub x}FeO{sub 4} (1.0 {>=} x {>=} 0) ferrites were synthesized by sol-gel technique. X-ray diffraction (XRD) confirmed the formation of single phasic cubic spinel lattice for all the compositions studied. Lattice parameter shows a decreasing trend with an increase in Cr content in the compositions. Formation of spherical nanoparticles was revealed by scanning electron microscopy (SEM) analysis. Infrared spectroscopic studies revealed two main absorption bands in the range 400-800 cm{sup -1} arising due to tetrahedral (A) and octahedral (B) site vibrations. Dielectric constant, dielectric loss tangent, ac conductivity and complex impedance were measured as a function of frequency in the range 20 Hz to 1 MHz. Frequency dependence of dielectric constant shows dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. The role of chromium in modifying structural and dielectric properties of these ferrites has been explained.

  19. Study of low weight percentage filler on dielectric properties of MCWNT-epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Trihotri, Manindra; Dwivedi, U. K.; Malik, M. M.; Khan, Fozia Haque; Qureshi, M. S.

    2016-09-01

    An attempt is made to study the effect of low weight percentage multiwall carbon nanotube (MWCNT) powder on dielectric properties of MWCNT reinforced epoxy composites. For that MWCNT (of different low weight percentage) reinforced epoxy composite was prepared by dispersing the MWCNT in resin. Samples were prepared by solution casting process and characterized for their dielectric properties such as dielectric constant (ɛ‧), dielectric dissipation factor (tan δ) and AC conductivityac). The main objective is the investigation of the dielectric properties of the prepared samples at the low weight percentage of the filler at different temperatures and frequencies. From the two mechanisms of electrical conduction, first the leakage current obtained by the formation of a percolation network in the matrix and the other by tunneling of electrons formed among conductors nearby (tunneling current); here we are getting conduction by the second mechanism. Generally, leakage current makes more contribution to conductivity than tunneling current. Dielectric dissipation factor at 250Hz frequency is greater than all other frequencies and starts increasing from 60∘C. The peak height of the transition temperature decreases with increasing frequency. This study shows that the addition of a low weight percentage of MWCNT can modify considerably the electrical behavior of epoxy nanocomposites without chemical functionalization of filler.

  20. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Osman, Z.; Mohd Ghazali, M. I.; Othman, L.; Md Isa, K. B.

    2012-01-01

    Polymethylmethacrylate (PMMA)-based gel polymer electrolytes comprising ethylene carbonate-propylene carbonate (EC/PC) mixed solvent plasticizer and various concentrations of lithium tetrafluoroborate (LiBF4) salt are prepared using a solvent casting technique. Electrical conductivity and transference number measurements were carried out to investigate conductivity and charge transport in the gel polymer electrolytes. The conductivity results show that the ionic conductivity of the samples increases when the amount of salt is increased, however decreases after reaching the optimum value. This result is consistent with the transference number measurements. The conductivity-frequency dependence plots show two distinct regions; i.e. at lower frequencies the conductivity increases with increasing frequency and the frequency independent plateau region at higher frequencies. The temperature-dependence conductivity of the films seems to obey the Arrhenius rule.

  1. Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels.

    PubMed

    Yalçın, O; Coşkun, R; Okutan, M; Öztürk, M

    2013-08-01

    The dielectric properties of methylene blue (MB)-doped hydrogels were investigated by impedance spectroscopy. The real part (ε') and the imaginary part (ε") of the complex dielectric constant and the energy loss tangent/dissipation factor (tan δ) were measured in the frequency range of 10 Hz to 100 MHz at room temperature for pH 5.5 value. Frequency variations of the resistance, the reactance, and the impedance of the samples have also been investigated. The dielectric permittivity of the MB-doped hydrogels is sensitive to ionic conduction and electrode polarization in low frequency. Furthermore, the dielectric behavior in high-frequency parts was attributed to the Brownian motion of the hydrogen bonds. The ionic conduction for MB-doped samples was prevented for Cole-Cole plots, while the Cole-Cole plots for pure sample show equivalent electrical circuit. The alternative current (ac) conductivity increases with the increasing MB concentration and the frequency.

  2. Dielectric behavior of manganese titanate in the paraelectric phase

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2015-11-01

    Rhombohedral MnTiO3 powder has been synthesized by a high-temperature solid-state reaction method. The formation of single-phase compound is confirmed through XRD, Rietveld refinement and FTIR analysis. The optical band in MnTiO3 obtained from the UV-Vis absorption spectrum has been analyzed. The study of SEM micrographs suggested that the prepared material has good sinter ability and high density with homogeneous grain distribution on the surface and in the bulk. From the impedance and dielectric measurements, the electrical parameters were obtained. It was found that the magnitude of relative dielectric constant ( ɛ r) was relatively high with low dielectric loss. The study of frequency dependence of AC conductivity suggests that the material obeys Jonscher's universal power law. The variation of DC conductivity with inverse of absolute temperature follows the Arrhenius relation.

  3. A study of thermal, dielectric and magnetic properties of strontium malonate crystals

    NASA Astrophysics Data System (ADS)

    Mathew, Varghese; Jacob, Sabu; Mahadevan, C. K.; Abraham, K. E.

    2012-01-01

    Crystals of strontium malonate (SrC 3H 2O 4) were grown in silica gel by the single diffusion technique. The thermo gravimetric (TG), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies were carried out to investigate the thermal stability of the crystal. The dielectric behavior of the title compound crystal was investigated by measuring the dielectric parameters - dielectric constant, dielectric loss and AC conductivity as a function of four frequencies -1 kHz, 10 kHz, 100 kHz and 1 MHz at temperatures ranging from 50 to 170 °C. Results indicate that the title compound is thermally stable up to about 409 °C and is a promising low εr-value dielectric material. The magnetic behavior of the crystal was also explored using a vibrating sample magnetometer.

  4. Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Zia, Amir; Ahmed, S.; Shah, N. A.; Anis-ur-Rehman, M.; Khan, E. U.; Basit, M.

    2015-09-01

    The critical role of cobalt dopant in ZnO nanostructures with different cobalt concentrations has been explored on the basis of structural, optical and dielectric mechanisms. X-ray diffraction (XRD) analysis shows that the Co+2 ions replace Zn+2 ions in the ZnO matrix, producing lattice strain. Diffused Reflectance Spectroscopy (DRS) shows a red shift in optical energy band gap with increase in cobalt content, along with the presence of transitions in high spin states due to tetrahedrally coordinated cobalt ions. The dielectric characterization explains the disparity in dynamic dielectric parameters like capacitance, dielectric constant, tangent loss, AC conductivity and impedance as a function of frequency. Capacitance and both static and dynamic dielectric constants found to be decreasing with cobalt addition. The anomaly in these pronounced parameters can address the key problems of the material at higher frequencies device operation.

  5. Role of aluminum ions on the dielectric and conducting properties of multiferroic Tb1-xAlxMnO3: Study at high temperatures

    NASA Astrophysics Data System (ADS)

    Izquierdo, J. L.; Forero, A.; Bolaños, G.; Zapata, V. H.; Morán, O.

    2014-12-01

    Dielectric and conducting properties of Tb1-xAlxMnO3 (x = 0, 0.05) synthesized by the solid-state reaction method have been investigated. The Al ion has the same valence as substituted Tb but is nonmagnetic and its small size gives rise to microstructural strain which affects the multiferroic properties of the parent compound. Samples were characterized by means of complex impedance spectroscopy (CIS) in the frequency range from 40 Hz to 5 MHz, at temperatures above room temperature. The conductivity curves for the two samples are well fitted by the Jonscher law σ(ω) = σdc + Aωn. Results of the fitting procedure indicate that for the studied samples, the hopping motion involves localized hopping without the species leaving the neighbors. Frequency dependence of the dielectric constant (ɛ″) and tangent loss (tan δ) display a dispersive behavior at low frequencies that can be explained on the basis of the Maxwell-Wagner model and Koop's theory. The relaxation dynamics of charge carriers has been studied by means of the electric modulus formalism. In turn, the variation of the imaginary part of the complex impedance, Z″, shows a peak at a relaxation angular frequency (ωr) related to the relaxation time (τ) by τ = 1/ωr. The complex impedance spectra (Nyquist plots) show well-defined semicircles which are strongly dependent on the Al-doping level and temperature. The complex impedance data have been modeled using electrical equivalent circuits.

  6. The role of conduction electrons in the formation of thermal boundary resistance of the metal-dielectric interface and resistivity of metal films, at low temperatures (Review Article)

    NASA Astrophysics Data System (ADS)

    Bezuglyj, A. I.; Shklovskij, V. A.

    2016-08-01

    This review article is a discussion of the role played by conduction electrons in the formation of an effective acoustic transparency at the interface between narrow metal films and dielectric substrates with high thermal conductivity, within the framework of the acoustic mismatch between solids. We consider both steady and transient regimes of phonon radiation from metal films heated by electric current or short laser pulses, at low temperatures. We discuss in detail how the electron-phonon energy relaxation τe and the average exit time of the phonons from the films τes can be found using the experiment. A theoretical analysis of these problems is carried out using kinetic equations for the phonon and electron distribution functions. We examine the steady modes of relaxation and diffusion heat removal from the moving plane phase transition front in the film geometry. In most cases, we discuss the relationship between the theoretical results of the review authors and the existing experimental situation.

  7. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivityac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  8. AC-conductance and capacitance measurements for ethanol vapor detection using carbon nanotube-polyvinyl alcohol composite based devices.

    PubMed

    Greenshields, Márcia W C C; Meruvia, Michelle S; Hümmelgen, Ivo A; Coville, Neil J; Mhlanga, Sabelo D; Ceragioli, Helder J; Quispe, Jose C Rojas; Baranauskas, Vitor

    2011-03-01

    We report the preparation of inexpensive ethanol sensor devices using multiwalled carbon nanotube-polyvinyl alcohol composite films deposited onto interdigitated electrodes patterned on phenolite substrates. We investigate the frequency dependent response of the device conductance and capacitance showing that higher sensitivity is obtained at higher frequency if the conductance is used as sensing parameter. In the case of capacitance measurements, higher sensitivity is obtained at low frequency. Ethanol detection at a concentration of 300 ppm in air is demonstrated. More than 80% of the sensor conductance and capacitance variation response occurs in less than 20 s.

  9. On the variation in the electrical properties and ac conductivity of through-thickness nano-porous anodic alumina with temperature

    NASA Astrophysics Data System (ADS)

    Tahir, Mahmood; Mehmood, Mazhar; Nadeem, Muhammad; Waheed, Abdul; Tanvir, Muhammad Tauseef

    2013-09-01

    The electrical response of self-organized through-thickness anodic alumina with hexagonal arrangement of cylindrical pores has been studied as a function of temperature. Mechanically stable thick porous anodic alumina was prepared, by through-thickness anodic oxidation of aluminum sheet in sulfuric acid, with extremely high aspect ratio pores exhibiting fairly uniform diameter and interpore distance. It was observed that the electrical properties of through-thickness anodic alumina are very sensitive to minute changes in temperature and the role of surface conductivity in governing its electrical response cannot be overlooked. At high frequencies, intrinsic dielectric response of anodic alumina was dominant. The frequency-dependent conductivity behavior at low and intermediate frequencies was explained on the basis of correlated barrier hopping (CBH) and quantum mechanical tunneling (QMT) models, respectively. Experimental data was modeled using an equivalent circuit consisting of Debye circuit, for bulk alumina, parallel to surface conduction path. The surface conduction was primarily based on two circuits in series, each with a parallel arrangement of a resistor and a constant phase element. This suggested heterogeneity in alumina pore surface, possibly related with islands of physisorbed water separated by the regions of chemisorbed water. Temperature dependence of some circuit elements has been analyzed to express different charge migration phenomena occurring in nano-porous anodic alumina.

  10. Electrical conductivity of polyvinyl alcohol-multiwall carbon nanotubes composites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2013-06-01

    The dc and ac conductivity of polyvinyl alcohol (PVA)-multiwalled carbon nanotube (MWNT) nanocomposites prepared by solution casting were investigated by employing dielectric relaxation spectroscopy in broad frequency range (0.1 Hz-10 MHz) at room temperature as a function of the conductive weight fraction (p) ranging from 0 to 2wt.%. The frequency dependence of the measured conductivity obeys the universal dynamic response (UDR); a dc plateau followed, by the power law above a critical frequency (fc).

  11. Analytic approach to the a.c. conductance method for rapid characterization of interface states in MOS structures

    NASA Astrophysics Data System (ADS)

    Yadava, R. D. S.

    1990-01-01

    Nicollian and Goetzberger's well known integral expression for the equivalent parallel conductance due to interface states Gp/ ω has been given a simple analytical representation which is valid under the condition that interface potential fluctuation parameter σ > 1.5. Previous methods of conductance analysis based upon numerical and/or graphical construction are provided with alternative analytic relations. The earlier parametric numerical relations like ξ p, fw, fD and ln( ξ+/ ξ-) vsσ are described very well by analytic expressions in this paper. A new relation is presented to determine interface state time constant from the width of conductance peak. A new method is presented to determine dependence of σ on interface band bending from Gp/ ω vs bias measurements at just two frequencies. The expedient method of Nicollian, Goetzberger and Lopez utilises the same two curves to determine distribution of interface state density Nss and capture cross section σ p across the band gap. Therefore using the present new method for σ determination and other analytical relations for N ss and σ p determination, the expediency of their method is greatly enhanced. Complete conductance analysis for rapid characterization of the interface is shown to become now a simple straight forward affair, and the amount of data required is also substantially reduced.

  12. Electrical conduction, dielectric behavior and magnetoelectric effect in (x)BaTiO{sub 3} + (1 - x)Ni{sub 0.94}Co{sub 0.01}Mn{sub 0.05}Fe{sub 2}O{sub 4} ME composites

    SciTech Connect

    Lokare, S.A.; Patil, D.R.; Devan, R.S.; Chougule, S.S.; Kolekar, Y.D.; Chougule, B.K.

    2008-02-05

    Electrical and magnetoelectric properties of magnetoelectric (ME) composites containing barium titanate as electrical component and a mixed Ni-Co-Mn ferrite as the magnetic component are reported. The ME composites with a general formula (x)BaTiO{sub 3} + (1 - x)Ni{sub 0.94}Co{sub 0.01}Mn{sub 0.05}Fe{sub 2}O{sub 4} where x varies as 0, 0.55, 0.70, 0.85 and 1 were prepared by standard double sintering ceramic method. The presence of both the phases was confirmed by X-ray diffraction technique. The dc resistivity was measured as a function of temperature. The variation of dielectric constant ({epsilon}) and loss tangent (tan {delta}) with frequency (100 Hz-1 MHz) and with temperature was studied. The conduction is explained on the basis of small polaron model based on ac conductivity measurements. The static value of ME conversion factor i.e. dc (ME){sub H} was studied as function of intensity of magnetic field. The changes were observed in dielectric properties as well as ME effect as the molar ratio of the components was varied. A maximum value of ME conversion factor of 610 {mu}V/cm Oe was observed in the case of a composite containing 15 mol% ferrite phase.

  13. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  14. Synthesis, crystal structure, NMR study and AC conductivity of [(C3H7)4N]2Cd2ClF5 compound

    NASA Astrophysics Data System (ADS)

    Hajji, Rachid; Oueslati, Abderrazak; Body, Monique; Hlel, Faouzi

    2015-08-01

    The [(C3H7)4N]2Cd2ClF5 compound was crystallized in the triclinic system with space group P1. The crystal structure consists of organic-inorganic layers, stacked along direction. The organic part consists of two cations types. The inorganic layer is made up of Cd2ClF5 dimmers composed of two in-equivalent irregular tetrahedra sharing one edge (Cl-F). The MAS NMR spectra showed two, three and five isotropic resonances relative to 111Cd, 13C and 19F nuclei, respectively. DSC measurement disclosed a phase transition at around 380 K. The impedance spectroscopy and AC electrical conductivity measurements of our compound were taken from 209 Hz to 5 MHz over the temperature range of 350-381 K. Nyquist plots ( Z″ vs Z') show semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance ( R), capacitance ( C) and fractal capacitance (CPE). The conductivity σ p follows the Arrhenius relation. The near value of activation energies obtained from the conductivity data and circuit equivalent confirms that the transport is through hopping mechanism. The analysis of the experimental data shows that the reorientation motion of [N(C3H7)4]+ cations and/or [Cd2ClF5]2- anions is probably responsible for the observed conductivity.

  15. Dielectric and impedance behavior of neodymium substituted strontium hexaferrite

    NASA Astrophysics Data System (ADS)

    Bhat, Bilal Hamid; Samad, Rubiya; Want, Basharat

    2016-09-01

    In this study, dielectric behavior and complex impedance of neodymium (Nd) substituted strontium hexaferrite system: Sr1- x Nd x Fe12O19 ( x = 0.0, 0.05, 0.1, 0.15, 0. 20), synthesized by citrate precursor technique, have been evaluated as a function of applied frequency and temperature. Variation of dielectric constant and dielectric loss with frequency shows the identical behavior for all the compositions. The value of dielectric constant increases with Nd doping. Relaxation process is observed in the composition x = 0.20, and the peaks in this composition shift toward the higher-frequency region as the temperature increases. The dielectric constants show temperature-independent behavior at low temperature, whereas at higher temperatures it increases for all the frequencies. The AC conductivity follows Jonscher's power law, showing that conduction mechanism is due to polaron hopping. Complex impedance as a function of composition and temperature is used to examine the role of grain and grain boundary in the prepared material. Cole-cole plot shows only one semicircle up to x = 0.15, while as for x = 0.20 two semicircles are observed. The conduction mechanism is explained on the basis of both grain and grain boundary.

  16. Structure and dielectric behavior of TlSbS2

    NASA Astrophysics Data System (ADS)

    Parto, M.; Deger, D.; Ulutas, K.; Yakut, Ş.

    2013-09-01

    A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400-4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger-Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ɛ 1 and dielectric loss ɛ 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz-10 KHz and in the temperature range 273-433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ɛ 1=1.8-6 and the dielectric loss of TlSbS2 thin films is ɛ 2=0.5-3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s ( s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.

  17. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  18. Effect of Co doping on the structural and dielectric properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram, Mast; Bala, Kanchan; Sharma, Hakikat; Negi, N. S.

    2016-05-01

    This paper reports on the synthesis of Co doped Zn1-xCoxO (x= 0.0, 0.01, 0.02, 0.03 and 0.05) nanoparticles by solution combustion method using urea as a fuel. The Structural and dielectric properties of the samples were studied. Crystallite sizes were obtained from X-ray diffraction (XRD) patterns whose values decreased with increase in Co concentration. The XRD study reveals that Co2+ ions substitute the Zn2+ ion without changing the wurtzite structure of pristine ZnO up to Co concentrations of 5%. The dielectric constants, dielectric loss (tanδ) and ac conductivityac) were studied as the function of frequency and composition, which have been explained by Maxwell-Wagner type interfacial polarization and discussed Koops phenomenological theory.

  19. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  20. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    PubMed

    Gao, Han; Lian, Keryn

    2014-01-01

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  1. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  2. Effect of Sintering Temperature on the Structural and Dielectric Properties of Zinc Cadmium Ferrites Prepared by Egg-White Technique

    NASA Astrophysics Data System (ADS)

    Dar, M. Abdullah; Siddiqui, W. A.; Alam, M.

    The effect of cadmium substitution and sintering temperature on the microstructure and dielectric properties of nano ZnCdxFe2-xO4 ferrites (x=0.0, 0.05, 0.1, 0.2, 0.3 and 0.5) has been investigated and prepared by egg-white technique. Electrical conductivity and dielectric measurements have been analysed in the frequency range from 100 Hz to 10 MHz. The variation of the real (ɛ‧) and imaginary (ɛ″) part of dielectric constant, AC conductivityAC) and loss tangent (tan δ) with frequency has been studied. It follows the Maxwell-Wagner model based on the interfacial polarization in consonance with the Koop's phenomenological theory. It is found that the permittivity of ZnCdxFe2-xO4 ferrites improved and shows a maximum value (~9 × 103) at 100 Hz for the x=0.1 sample.

  3. Dielectric spectra of Li 2O-CaF 2-P 2O 5 glasses doped by silver ions

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, K.; Srinivasa Reddy, M.; Ravi Kumar, V.; Veeraiah, N.

    2007-06-01

    Dielectric constant ε‧, loss tan δ and a.c. conductivity σ( ω) Li 2O-CaF 2-P 2O 5 glasses doped with small concentrations of Ag 2O (ranging from 0 to 1.0 mol%) are studied as a function of frequency and temperature over moderately wide ranges. The variation of dielectric loss with temperature for these glasses has exhibited dielectric relaxation effects. The relaxation effects have been analyzed by a pseudo Cole-Cole plot method and the spreading of relaxation times has been established. The variation of a.c. conductivity with the concentration of Ag 2O pass through a minimum at 0.6 mol% Ag 2O. In the high-temperature region, the a.c. conduction seems to be connected with the mixed conduction, viz., electronic and ionic conduction. The low-temperature part of the a.c. conductivity which is observed to be nearly temperature independent has been explained on the basis of quantum mechanical-tunneling (QMT) model. The results have been further analyzed in detail with the aid of the data on optical absorption, IR and Raman spectral studies.

  4. High temperature electrical conductivity and thermal decomposition of phenolic- and silicon-based dielectrics for fireset housings

    SciTech Connect

    Johnson, R.T. Jr.; Biefeld, R.M.

    1981-08-01

    The temperature dependence of the electrical conductivity and thermal decomposition characteristics of several phenolic- and silicone-based materials of interest for fireset case housings have been measured to 600 to 700/sup 0/C. The materials are phenolic or silicone resins reinforced with glass chopped fabric or cloth. The conductivity temperature dependence was measured during decomposition in a nitrogen atmosphere at a heating rate of approx. 10/sup 0/C/minute. Applied electric fields were from 4 x 10/sup 2/ to 4 x 10/sup 3/ volts/cm. Thermal decomposition characteristics were investigated by mass spectroscopy in vacuum and thermal gravimetric analysis in nitrogen and air. Nearly ohmic voltage-current characteristics were obtained, except where decomposition and/or outgassing was pronounced.

  5. Cavity perturbation techniques for measurement of the microwave conductivity and dielectric constant of a bulk semiconductor material.

    NASA Technical Reports Server (NTRS)

    Eldumiati, I. I.; Haddad, G. I.

    1972-01-01

    Cavity perturbation techniques offer a very sensitive and highly versatile means for studying the complex microwave conductivity of a bulk material. A knowledge of the cavity coupling factor in the absence of perturbation, together with the change in the reflected power and the cavity resonance frequency shift, are adequate for the determination of the material properties. This eliminates the need to determine the Q-factor change with perturbation which may lead to appreciable error, especially in the presence of mismatch loss. The measurement accuracy can also be improved by a proper choice of the cavity coupling factor prior to the perturbation.

  6. The Dielectric Loss Characteristic of Ice by Dielectric Heating Method for The Thawing of Foods or Biomaterials

    NASA Astrophysics Data System (ADS)

    Bai, Xianglan; Shirakashi, Ryo; Nishio, Shigefumi

    The thawing of ice crystal is very important for thawing of frozen foods and cryopreserved biomaterials. It was found that an alternative current (AC) electric field may effect the thawing process of frozen foods and cryopreserved biomaterials. In the present study, the spectrum of dielectric loss of ice crystal (50Hz~1.8GHz) was measured at various temperatures(-60°C to -2°C). The experiments of heating ice crystal using electric field were done to investigate the absorption of AC electric energy, which changes with the frequency of electric field. In order to evaluate the rapidness and the uniformity of thawing quantitatively, a numerical simulation of one-dimensional heat transfer was also conducted based on the measured spectrum of the dielectric loss of ice. The results showed that AC electric field have the uniform heating effect, only when the value of the frequency multiplied by dielectric loss (fε") decreases as the temperature increases. One of the optimum frequencies for a rapid and uniform thawing was found to be at around 3MHz.

  7. Electrical and Dielectric Properties of Exfoliated Graphite/Polyimide Composite Films with Low Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Yu, Li; Zhang, Yi-He; Shang, Jiwu; Ke, Shan-Ming; Tong, Wang-shu; Shen, Bo; Huang, Hai-Tao

    2012-09-01

    Exfoliated graphite/polyimide composite films were synthesized by in situ polymerization. The electrical and dielectric properties of composite films with different volume fraction of exfoliated graphite were investigated over the frequency range from 103 Hz to 3 × 106 Hz. The dielectric behavior of the composite films was investigated by percolation theory and a microcapacitor model. A low percolation threshold f c ≈ 3.1 vol.% was obtained due to the high aspect ratio of the exfoliated graphite. Both the dielectric constant and alternating-current (AC) conductivity showed an abrupt increase in the vicinity of the percolation threshold. The ultralarge enhancement of the dielectric constant near and beyond the percolation threshold was due to Maxwell-Wagner-Sillars (MWS) interfacial polarization between the exfoliated graphite and polyimide and interface polarization between the composite film and electrode.

  8. Synthesis and dielectric properties of Zn doped GdFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Sai Vandana, C.; Guravamma, J.; Hemalatha Rudramadevi, B.

    2016-09-01

    GdFeO3 and GdZn0.3Fe0.7O3 ceramics were prepared by standard Solid State Reaction method at 1200°C. The structural changes and crystallite sizes of the undoped and Zn doped ceramics were studied using the XRD data. Microstructural features and elemental composition of GdFeO3 and GdZn0.3Fe0.7O3 ceramics were determined from SEM and EDS analysis. Room temperature dielectric measurements such as dielectric constant (ɛ´), tangent loss (tan5) and AC conductivity (oac) were carried out in the frequency range (100Hz to 1MHz). Improved dielectric properties of GdZn0.3Fe0.7O3 over GdFeO3 ceramics with low values of dielectric loss render them as potential materials in the areas of microwave communication systems, information storage, spintronics, sensors, etc.

  9. Synthesis and dielectric studies of poly (vinyl pyrrolidone) / titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Vasudevan, Prathibha; Thomas, Sunil; V, Arunkumar K.; S, Karthika; V, Unnikrishnan N.

    2015-02-01

    In this paper, we present the synthesis of poly vinyl pyrrolidone (PVP) / titanium dioxide nanocomposites via sol- gel technique. The structural and dielectric properties of the samples were also analysed in this work. PVP doped with varying concentrations of TiO2 are prepared by the sol-gel route. The prepared composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and impedance spectroscopy. XRD and TEM confirm the presence of TiO2 nanoparticles in the composites. The dielectric response and the AC electrical conductivity of the samples are investigated for the frequency range 1 kHz-2MHz at room temperature. The dielectric studies show low values for dielectric constant and loss at high frequencies.

  10. Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers

    NASA Astrophysics Data System (ADS)

    Maceiras, A.; Costa, C. M.; Lopes, A. C.; San Sebastián, M.; Laza, J. M.; Vilas, J. L.; Ribelles, J. L. Gómez; Sabater i Serra, R.; Andrio Balado, A.; Lanceros-Méndez, S.; León, L. M.

    2015-08-01

    Polyimide copolymers have been prepared based on different diamines as comonomers: a diamine without CN groups and a novel synthesized diamine with two CN groups prepared by polycondensation reaction followed by thermal cyclodehydration. Dielectric spectroscopy measurements were performed, and the dielectric complex function, ac conductivity and electric modulus of the copolymers were investigated as a function of CN group content in the frequency range from 0.1 to 107 Hz at temperatures from 25 to 260 °C. For all samples and temperatures above 150 °C, the dielectric constant increases with increasing temperature due to increasing conductivity. The α-relaxation is just detected for the sample without CN groups, being this relaxation overlapped by the electrical conductivity contributions in the remaining samples. For the copolymer samples and the polymer with CN groups, an important Maxwell-Wagner-Sillars contribution is detected. The mechanisms responsible for the dielectric relaxation, conduction process and electric modulus response have been discussed as a function of the CN group content present in the samples.

  11. Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: Drops less conductive than the suspending fluid

    NASA Astrophysics Data System (ADS)

    Fernández, Arturo

    2008-04-01

    Direct numerical simulations of the effects of an electric field on an emulsion of drops are presented. A simple shear flow configuration is adopted where the electric field is applied perpendicular to the sliding plates. Both the drops and the suspending fluid are assumed to behave as leaky dielectric fluids. Here, drops less conductive than the suspending fluid with an electrical conductivity ratio smaller than the dielectric permittivity ratio are considered. This combination of electrical properties leads to a viscous fluid motion from the poles to the equator. The response of an emulsion is governed by the competition between the electrical forces, the fluid shear, and the capillary forces. The Mason number [Mn=(3λ+2)μγ˙/6(λ+1)ɛ0β2E∞2] and the electric capillary number [Ce=ɛ0β2E∞2a/γ] are used to describe the response of the systems. As previously observed in experiments at low shear rates, Mn <0.2, the drops aggregate in chains that tilt under a shear. The competition between the electrical forces and the fluid shear results in shorter chains at intermediate shear rates, 0.22.0, the chains of drops break up. The rheological properties mainly depend on the emulsion microstructure. The effective viscosity exhibits a strong shear-thinning response because the chains of drops, which appear at low shear rates, increase the resistance of the system to shear. As the chains shorten and break up, the effective viscosity decreases. The elastic properties of the emulsion are also affected by the presence of the electric field. Normal stress differences arise as a consequence of the deformation of the drops and the surface tension acting on the interface between the fluids. The shape of the drops is determined by the deformation caused by the viscous forces and the deformation due to the electric stresses. At low shear rates, the electric effects are predominant and the

  12. Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films

    NASA Astrophysics Data System (ADS)

    H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan

    2016-07-01

    The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.

  13. Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films

    NASA Astrophysics Data System (ADS)

    H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan

    2016-07-01

    The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz-5 MHz and the temperature range of 290-443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.

  14. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    NASA Astrophysics Data System (ADS)

    Lux, Helge; Siemroth, Peter; Sgarlata, Anna; Prosposito, Paolo; Schubert, Markus Andreas; Casalboni, Mauro; Schrader, Sigurd

    2015-05-01

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 103 Ω◻ whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm2. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  15. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    SciTech Connect

    Lux, Helge Schrader, Sigurd; Siemroth, Peter; Sgarlata, Anna; Prosposito, Paolo; Casalboni, Mauro; Schubert, Markus Andreas

    2015-05-21

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 10{sup 3} Ω{sub ◻} whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm{sup 2}. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  16. Comment on ``Electrical and dielectric propertiesof the Bi4Sr3Ca3Cu4Ox (4:3:3:4) glassy semiconductor''

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    1997-01-01

    A recent paper from Som and Chaudhuri [Phys. Rev. B 41, 1581 (1990)], regarding the electrical and dielectric properties of Bi4Sr3Ca3Cu4Ox glass is reanalyzed. It is shown that the theoretical analysis for the ac conductivity and its frequency exponent performed by the authors is incorrect.

  17. Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film

    SciTech Connect

    Larbi, T.; Ouni, B.; Boukhachem, A.; Boubaker, K. Amlouk, M.

    2014-12-15

    Hausmannite Mn{sub 3}O{sub 4} thin film have been synthesized using spray pyrolysis method. These films are characterized using X-ray diffraction (XRD), atomic force microscope AFM, UV–vis–NIR spectroscopy and impedance spectroscopy. XRD study confirms the tetragonal structure of the as-deposited films with lattice parameters, a = 5.1822 Å and c = 9.4563 Å and a grain size of about 56 nm. UV–vis–NIR spectroscopy was further used to estimate optical constants such as extinction coefficient, refractive index, band gap and Urbach energy. Moreover, impedance spectroscopy analysis was employed to estimate electrical and dielectrical properties of the sprayed thin films. The activation energy values deduced from DC conductivity and relaxation frequency were almost the same, revealing that the transport phenomena is thermally activated by hopping between localized states. The AC conductivity is found to be proportional to ω{sup s}. The temperature dependence of the AC conductivity and the frequency exponent, s was reasonably well interpreted in terms of the correlated barrier-hopping CBH model. The dielectric properties were sensitive to temperature and frequency. The study of the electrical modulus indicated that the charge carrier was localized. Experimental results concerning optical constants as Urbach energy, dielectric constant, electric modulus and AC and DC conductivity were discussed in terms of the hopping model as suggested by Elliott.

  18. Effect of magnetic spins flipping process on the dielectric properties of α-Fe1.6Ga0.4O3 system

    NASA Astrophysics Data System (ADS)

    Lone, Abdul Gaffar; Bhowmik, R. N.

    2015-04-01

    The α-Fe1.6Ga0.4O3 (Ga doped α-Fe2O3) sample has been stabilized in rhombohedral structure. The sample is a canted ferromagnet at 300 K and above. The spins structure starts flipping from in-plane direction to out of plane direction of the rhombohedral structure to exhibit an antiferromagnetic order below a typical temperature ˜ 215 K, known as Morin transition. The magnetic and dielectric properties of α-Fe1.6Ga0.4O3 system have been discussed in the temperature range 123 K to 350 K to examine the effect of magnetic spins flipping process on dielectric properties. The dielectric constant has shown an anomalous peak at ˜ 310 K, followed by a rapidly decrease of dielectric constant with temperature and becomes weakly temperature dependent below Morin transition. The temperature dependent dielectric constant is accompanied with the changes in electrical conductivity, dielectric loss and phase shift of the current with respect to applied ac voltage across the material. The magnetization and dielectric constant showed a linear relation over a wide range of temperature across the Morin transition. The dielectric constant at room temperature decreases under magnetic field, which indicates magneto-dielectric effect in the system. The signature of magneto-dielectric effect reveals a coupling between spins degrees of freedom (magnetic order) and charge degrees of freedom (electric polarization) in corundum structured non-traditional ferroelectric systems.

  19. Dielectrical properties of PANI/TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chaturmukha, V. S.; Naveen, C. S.; Rajeeva, M. P.; Avinash, B. S.; Jayanna, H. S.; Lamani, Ashok R.

    2016-05-01

    Conducting polyaniline/titanium dioxide (PANI/TiO2) composites have been succesfully synthesized by insitu polymerization technique. The PANI/TiO2 nanocomposites of different compositions were prepared by varying weight percentage of TiO2 nanoparticles such as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% into the fixed amount of the aniline monomer. The prepared powder samples were characterized by X-ray diffractometer (XRD) and Scanning electron microscope (SEM). The intensity of diffraction peaks for PANI/TiO2 composites is lower than that for TiO2. SEM pictures show that the nanocomposite were prepared in the form of long PANi chains decorated with TiO2 nanoparticles. The dielectric properties and AC conductivity were studied in the frequency range1K Hz-10M Hz. At higher frequencies, the composites exhibit almost zero dielectric loss and maximum value of σac is found for a concentration of 20 wt% TiO2 in polyaniline. The interface between polyaniline and TiO2 plays an important role in yielding a large dielectric constant in nanocomposites.

  20. Dielectric properties and electrical conductivity of the hybrid organic-inorganic polyvanadates (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}

    SciTech Connect

    Nefzi, H.; Sediri, F.; Hamzaoui, H.; Gharbi, N.

    2012-06-15

    Plate-like crystals of the polyvanadate (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] have been synthesized via an hydrothermal treatment. X-ray powder diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, electron spin resonance and complex impedance spectroscopy were used to analyze the hybrid material. The frequency dependence of AC conductivity at different temperatures indicates that the CBH model is the probable mechanism for the AC conduction behavior. The conductivity was measured by complex impedance spectroscopy which is equal to 31.10{sup -3} {Omega}{sup -1} m{sup -1} at 443 K. The Arrhenius diagram is not linear, it presents a rupture situated at 357 K and the activation energies' average values are 0.22 eV and 0.14 eV, deduced from the Arrhenius relation. - Graphical abstract: At high temperature {epsilon} Double-Prime increases more rapidly which is due to the increasing conduction loss which rises with the increment in the DC conductivity. Highlights: Black-Right-Pointing-Pointer Rectangular plate-like crystals (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] were synthesized. Black-Right-Pointing-Pointer frequency and temperature dependence of AC conductivity indicate CBH model. Black-Right-Pointing-Pointer The temperature dependence of DC conductivity exhibits two conduction mechanisms.

  1. Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids

    NASA Astrophysics Data System (ADS)

    Guo, Qikai; Xue, Qingzhong; Sun, Jin; Dong, Mingdong; Xia, Fujun; Zhang, Zhongyang

    2015-02-01

    Novel core/shell structured multi-walled carbon nanotube/amorphous carbon (MWCNT@AC) nanohybrids were successfully prepared using a simple and novel method. Subsequently, the MWCNT@AC nanohybrids were used as fillers to enhance the dielectric properties of poly(vinylidene fluoride) (PVDF) based composites. It is found that the dielectric constant of the MWCNT@AC/PVDF composites can reach 5910 (the dielectric loss is ~2), which is considerably better than that of MWCNT/PVDF composites. The uniform amorphous carbon shell provides an insulative layer between adjacent MWCNTs in the polymer matrix, which not only prevents the direct contact of MWCNTs but also improves the dispersibility of the MWCNTs. Therefore, a surprising number of microcapacitors could be formed in the composites before the formation of a conductive network, leading to a gigantic enhancement in the dielectric properties. Our strategy provides a new approach to fabricate excellent dielectric materials for energy storage capacitors. In addition, the design concept used in this work can be extended to other carbon materials.

  2. Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids.

    PubMed

    Guo, Qikai; Xue, Qingzhong; Sun, Jin; Dong, Mingdong; Xia, Fujun; Zhang, Zhongyang

    2015-02-28

    Novel core/shell structured multi-walled carbon nanotube/amorphous carbon (MWCNT@AC) nanohybrids were successfully prepared using a simple and novel method. Subsequently, the MWCNT@AC nanohybrids were used as fillers to enhance the dielectric properties of poly(vinylidene fluoride) (PVDF) based composites. It is found that the dielectric constant of the MWCNT@AC/PVDF composites can reach 5910 (the dielectric loss is ∼2), which is considerably better than that of MWCNT/PVDF composites. The uniform amorphous carbon shell provides an insulative layer between adjacent MWCNTs in the polymer matrix, which not only prevents the direct contact of MWCNTs but also improves the dispersibility of the MWCNTs. Therefore, a surprising number of microcapacitors could be formed in the composites before the formation of a conductive network, leading to a gigantic enhancement in the dielectric properties. Our strategy provides a new approach to fabricate excellent dielectric materials for energy storage capacitors. In addition, the design concept used in this work can be extended to other carbon materials.

  3. Structural and dielectric properties of Cr-doped Ni-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Nasir, S.; Anis-ur-Rehman, M.; Malik, Muhammad Ali

    2011-02-01

    Cr-doped Ni-Zn ferrite nanoparticles having the general formula Ni0.5Zn0.5CrxFe2-xO4 (x=0.1, 0.3, 0.5) were prepared by the simplified sol-gel method. The structural and dielectric properties of the samples sintered at 750±5 °C were studied. X-ray diffraction (XRD) patterns confirm the single-phase spinel structure of the prepared samples. The crystallite size calculated from the most intense peak (3 1 1) using the Debye-Scherrer formula was 29-34 nm. Scanning electron microscope images showed that the particle size of the samples lies in the nanometer regime. The dielectric constant (ɛr), dielectric loss tangent (tan δ) and ac electrical conductivityac) of nanocrystalline Cr-Ni-Zn ferrites were investigated as a function of frequency and Cr concentration. The dependence of ɛr, tan δ and σac on the frequency of alternating applied electric field is in accordance with the Maxwell-Wagner model. The effect of Cr doping on the dielectric and electric properties was explained on the basis of cations distribution in the crystal structure.

  4. Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Manda, R.; Dasari, V.; Sathyanarayana, P.; Rasna, M. V.; Paik, P.; Dhara, Surajit

    2013-09-01

    We report on the preparation and physical characterization of the colloidal suspension of conducting polyaniline (PANI) nanofibres and a nematic liquid crystal (5CB). The ac electrical conductivity anisotropy increases significantly and the rotational viscosity decreases with increasing wt. % of PANI nanofibres, while other physical properties such as birefringence, dielectric anisotropy, splay, and bend elastic constants are changed moderately. The high conductivity anisotropy of liquid crystal nano-composites is very useful for magnetically steered liquid crystal-nanofibre switch.

  5. Boron Nitride Nanotube Mat as a Low- k Dielectric Material with Relative Dielectric Constant Ranging from 1.0 to 1.1

    NASA Astrophysics Data System (ADS)

    Hong, Xinghua; Wang, Daojun; Chung, D. D. L.

    2016-01-01

    This paper reports that a boron nitride nanotube (BNNT) mat containing air and 1.4 vol.% BNNTs is a low- k dielectric material for microelectronic packaging, exhibiting relative dielectric constant of 1.0 to 1.1 (50 Hz to 2 MHz) and elastic modulus of 10 MPa. The mat is prepared by compacting BNNTs at 5.8 kPa. This paper also presents measurements of the dielectric properties of BNNTs (mostly multiwalled). The relative dielectric constant of the BNNT solid in the mat decreases with increasing frequency, with attractively low values ranging from 3.0 to 6.2; the alternating-current (AC) electrical conductivity increases with increasing frequency, with attractively low values ranging from 10-10 S/m to 10-6 S/m and an approximately linear relationship between log conductivity and log frequency. The specific contact capacitance of the interface between BNNTs and the electrical contact decreases with increasing frequency, with attractively high values ranging from 1.6 μF/m2 to 2.3 μF/m2. The AC electrical resistivity of the BNNT-contact interface decreases with increasing frequency, with high values ranging from 0.14 MΩ cm2 to 440 MΩ cm2.

  6. Structural and dielectric properties of yttrium substituted nickel ferrites

    SciTech Connect

    Ognjanovic, Stevan M.; Tokic, Ivan; Cvejic, Zeljka; Rakic, Srdjan; Srdic, Vladimir V.

    2014-01-01

    Graphical abstract: - Highlights: • Dense NiFe{sub 2−x}Y{sub x}O{sub 4} ceramics (with 0 ≤ x ≤ 0.3) were prepared. • Pure spinels were obtained for x ≤ 0.07 while for x ≥ 0.15 samples had secondary phases. • With addition of yttrium, ac conductivity slightly increased. • We suggest several effects that can explain the observed changes in ac conduction. • With addition of yttrium, dielectric constant increased while the tg δ decreased. - Abstract: The influence of Y{sup 3+} ions on structural and dielectric properties of nickel ferrites (NiFe{sub 2−x}Y{sub x}O{sub 4}, where 0 ≤ x ≤ 0.3) has been studied. The as-synthesized samples, prepared by the co-precipitation method, were analyzed by XRD and FTIR which suggested that Y{sup 3+} ions were incorporated into the crystal lattice for all the samples. However, the XRD analysis of the sintered samples showed that secondary phases appear in the samples with x > 0.07. The samples have densities greater than 90% TD and the SEM images showed that the grain size decreases with the addition of yttrium. Dielectric properties measured from 150 to 25 °C in the frequency range of 100 Hz–1 MHz showed that the addition of yttrium slightly increases the ac conductivity and decreases the tg δ therefore making the materials better suited for the use in microwave devices.

  7. Dielectric siphons.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.; Melcher, J. R.

    1971-01-01

    The normally weak polarization force density, exerted on insulating dielectric liquids by a nonuniform electric field, is enhanced if high pressures are used. The nonuniform electric field acts as an elastic ?wall' to contain and guide the dielectric fluid. A general theory for these electrohydrodynamic (EHD) conduits has been developed. An illustrative example of the EHD conduits is the dielectric siphon consisting of two U-shaped electrodes held adjacent to each other by insulating nylon screws.

  8. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    SciTech Connect

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  9. Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties

    SciTech Connect

    Nefzi, H.; Sediri, F.

    2013-05-01

    Vanadium oxide nanotubes (VOx-NTs) have been synthesized via one-step hydrothermal treatment. The compounds were analyzed through X-ray powder diffraction; scanning electron microscope, UV–Visible spectroscopy, X-ray photoelectron spectroscopy (XPS) and complex impedance spectroscopy. The electrical and dielectric properties dependence on temperature (302–523 K) and on frequency (5 Hz to 13 MHz) of VOx-NTs have been reported. The complex impedance plots exhibits the presence of grain and grain boundaries. Dielectric data were analyzed using complex permittivity and complex electrical modulus for the sample at various temperatures. The presence of non-Debye type of relaxation has been confirmed by the complex modulus analysis. AC conductivity exhibits two conduction mechanisms: at high temperature, a translational motion with a sudden hopping and at low temperature, a localized hopping with a small hopping or reorientational motion. DC conductivity indicated, negative temperature coefficient of resistance (NTCR) type behavior. - Graphical abstract: The imaginary part of dielectric constant decreases with the increase in frequency at all temperatures and the values of ε´´ exhibit considerable frequency dispersion in the lower frequency range . Highlights: •Vanadium oxide nanotubes (VOx-NTs) were synthesized. •Non-debye type of relaxation has been confirmed. •AC conductivity exhibits two conduction mechanisms. •DC conductivity indicated negative temperature coefficient of resistance type behavior.

  10. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  11. Dielectric breakdown model for composite materials.

    PubMed

    Peruani, F; Solovey, G; Irurzun, I M; Mola, E E; Marzocca, A; Vicente, J L

    2003-06-01

    This paper addresses the problem of dielectric breakdown in composite materials. The dielectric breakdown model was generalized to describe dielectric breakdown patterns in conductor-loaded composites. Conducting particles are distributed at random in the insulating matrix, and the dielectric breakdown propagates according to new rules to take into account electrical properties and particle size. Dielectric breakdown patterns are characterized by their fractal dimension D and the parameters of the Weibull distribution. Studies are carried out as a function of the fraction of conducting inhomogeneities, p. The fractal dimension D of electrical trees approaches the fractal dimension of a percolation cluster when the fraction of conducting particles approximates the percolation limit. PMID:16241318

  12. Influence of Cr2O3 ions on dielectric properties of lead gallium phosphate glass system

    NASA Astrophysics Data System (ADS)

    Little Flower, G.; Sahaya Baskaran, G.; Gandhi, Y.; Srinivasa Rao, Ch

    2009-07-01

    PbO-Ga2O3-P2O5 glasses containing different concentrations of Cr2O3 ranging from 0 to 1.0 mol % were prepared. The differential thermal analysis and dielectric properties (viz., constant epsilon', loss tan δ, a.c. conductivity σac over a wide range of frequency and temperature) have been studied as a function of the concentration of chromium ions. An anomaly has been observed in the dielectric properties of these glasses when the concentration of Cr2O3 is about 0.4 mol %. This anomaly has been explained in the light of different oxidation states of chromium ions in these glasses.

  13. Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites

    NASA Astrophysics Data System (ADS)

    Choudhary, Shobhna; Sengwa, R. J.

    2016-05-01

    Complex dielectric function, electric modulus, ac conductivity and impedance spectra of PVA-SiO2 nanocomposite films have been investigated in the frequency range of 20 Hz to 1 MHz and temperature range from 30 °C to 60 °C. Real part of dielectric function of the nanocomposites slowly decreases with increase of frequency and it shows a non-linear increase with the increase of temperature. An anomalous variation is observed in dielectric and electrical functions with increase of SiO2 concentrations in the PVA matrix. The ac conductivity of these materials increases whereas impedance values decrease linearly by five orders of magnitude with increase of frequency from 20 Hz to 1 MHz. Dielectric loss values of these films are found minimum at intermediate frequency region, and it increases at low and high frequency regions confirming the presence of multiple relaxation processes. The contributions of interfacial polarization effect and dipolar ordering in dielectric properties of these materials have been explored, and their technological applications as nanodielectrics have been discussed. The XRD patterns reveal that the interactions between PVA and SiO2 disturb the dipolar ordering resulting decrease of crystallinity of the PVA in the nanocomposites.

  14. Dielectric, electrical transport and magnetic properties of Er3+substituted nanocrystalline cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kakade, S. G.; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.

    2016-11-01

    Erbium substituted cobalt ferrite (CoFe2-xErxO4; x=0.0-0.2, referred to CFEO) materials were synthesized by sol-gel auto-combustion method. The effect of erbium (Er3+) substitution on the crystal structure, dielectric, electrical transport and magnetic properties of cobalt ferrite is evaluated. CoFe2-xErxO4 ceramics exhibit the spinel cubic structure without any impurity phase for x≤0.10 whereas formation of the ErFeO3 orthoferrite secondary phase was observed for x≥0.15. All the CFEO samples demonstrate the typical hysteresis (M-H) behavior with a decrease in magnetization as a function of Er content due to weak superexchange interaction. The frequency (f) dependent dielectric constant (ε‧) revealed the usual dielectric dispersion. The ε‧-f dispersion (f=20 Hz to 1 MHz) fits to the modified Debye's function with more than one ion contributing to the relaxation. The relaxation time and spread factor derived are ∼10-4 s and ∼0.61(±0.04), respectively. Electrical and dielectric studies indicate that ε‧ increases and the dc electrical resistivity decreases as a function of Er content (x≤0.15). Complex impedance analyses confirm only the grain interior contribution to the conduction process. Temperature dependent electrical transport and room temperature ac conductivityac) analyses indicate the semiconducting nature and small polaron hopping.

  15. The roles of the dielectric constant and the relative level of conduction band of high-k composite with Si in improving the memory performance of charge-trapping memory devices

    SciTech Connect

    Lu, Jianxin; Gong, Changjie; Ou, Xin; Lu, Wei; Yin, Jiang; Xu, Bo; Xia, Yidong; Liu, Zhiguo; Li, Aidong

    2014-11-15

    The memory structures Pt/Al{sub 2}O{sub 3}/(TiO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1−x}/Al{sub 2}O{sub 3}/p-Si(nominal composition x = 0.05, 0.50 and 0.70) were fabricated by using rf-magnetron sputtering and atomic layer deposition techniques, in which the dielectric constant and the bottom of the conduction band of the high-k composite (TiO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} were adjusted by controlling the partial composition of Al{sub 2}O{sub 3}. With the largest dielectric constant and the lowest deviation from the bottom of the conduction band of Si, (TiO{sub 2}){sub 0.7}(Al{sub 2}O{sub 3}){sub 0.3} memory devices show the largest memory window of 7.54 V, the fast programming/erasing speed and excellent endurance and retention characteristics, which were ascribed to the special structural design, proper combination of dielectric constant and band alignment in the high-k composite (TiO{sub 2}){sub 0.7}(Al{sub 2}O{sub 3}){sub 0.3}.

  16. [Experimental research and analysis on dielectric properties of blood in anemia mice].

    PubMed

    Shen, Ben; Liang, Quiyan; Gao, Weiqi; You, Chu; Hong, Mengqi; Ma, Qing

    2013-12-01

    The conductivity and permittivity of blood in mice were measured by the AC electrical impedance method at frequency range of 0.1-100MHz, and then the changes of the Cole-Cole parameters of dielectric spectra of blood from phenylhydrazine-induced anemia mice were observed by numerical calculation and curve fitting residual analysis of the Cole-Cole equation. The results showed that hematocrit (Hct) of the mice with phenylhydrazine injection was significantly reduced; the permittivity(epsilon) spectroscopy of blood moved to the low insulating region and its permittivity decreased; conductivity (kappa) spectrum curve of blood moved to the high conductivity zone and conductivity increased; the 2nd characteristic frequency was lower than that in the normal group. There was phenylhydrazine dose dependent in the changes of the Cole-Cole parameters of dielectric spectra of blood.

  17. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  18. Effect of gamma irradiation on dielectric properties of manganese zinc nanoferrites

    SciTech Connect

    Angadi, V. Jagadeesha Rudraswamy, B.; Melagiriyappa, E.; Somashekarappa, H. M.; Nagabhushana, H.

    2014-04-24

    Naocrystalline ferrites Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.00, 0.25, 0.50, 0.75 and 1.00) were prepared by combustion method. The samples were characterized by XRD technique. The dielectric measurements were carried out in the frequency range 40 Hz to 100 MHz at room temperature. All the measurements were performed before and after gamma {sup 60}Co irradiation. The X-ray diffraction patterns revealed the formation of nanocrystalline and single-phase spinel structure. The lattice parameter decrease with zinc ion concentration and increased after the irradiation due to ferric ions of smaller radius converted to ferrous ions of larger radius. The dielectric behavior is attributed to the Maxwell-Wagner type interfacial polarization. The dielctric contant, dielectric loss and AC conductivity enhanced after the irradiation.

  19. New silicone dielectric elastomers with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Liwu; Fan, Jiumin; Yu, Kai; Liu, Yanju; Shi, Liang; Leng, Jinsong

    2008-03-01

    Dielectric elastomers (Des) are a type of EAPs with unique electrical properties and mechanical properties: high actuation strains and stresses, fast response times, high efficiency, stability, reliability and durability. The excellent figures of merit possessed by dielectric elastomers make them the most performing materials which can be applied in many domains: biomimetics, aerospace, mechanics, medicals, etc. In this paper, we present a kind of electroactive polymer composites based on silicone Dielectric elastomers with a high dielectric constant. Novel high DEs could be realized by means of a composite approach. By filling an ordinary elastomer (e.g. silicone) with a component of functional ceramic filler having a greater dielectric permittivity, it is possible to obtain a resulting composite showing the fruitful combination of the matrix's advantageous elasticity and the filler's high permittivity. Here we add the ferroelectric relaxor ceramics (mainly BaTiO3) which has high dielectric constant (>3000) to the conventional silicone Dielectric elastomers, to get the dielectric elastomer which can exhibit high elastic energy densities induced by an electric field of about 15 MV/m. Tests of the physical and chemical properties of the dielectric elastomers are conducted, which verify our supposes and offer the experimental data supporting further researches.

  20. Investigation of high-k yttrium copper titanate thin films as alternative gate dielectrics

    NASA Astrophysics Data System (ADS)

    Grazia Monteduro, Anna; Ameer, Zoobia; Rizzato, Silvia; Martino, Maurizio; Caricato, Anna Paola; Tasco, Vittorianna; Chaitanya Lekshmi, Indira; Hazarika, Abhijit; Choudhury, Debraj; Sarma, D. D.; Maruccio, Giuseppe

    2016-10-01

    Nearly amorphous high-k yttrium copper titanate thin films deposited by laser ablation were investigated in both metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) junctions in order to assess the potentialities of this material as a gate oxide. The trend of dielectric parameters with film deposition shows a wide tunability for the dielectric constant and AC conductivity, with a remarkably high dielectric constant value of up to 95 for the thick films and conductivity as low as 6  ×  10-10 S cm-1 for the thin films deposited at high oxygen pressure. The AC conductivity analysis points out a decrease in the conductivity, indicating the formation of a blocking interface layer, probably due to partial oxidation of the thin films during cool-down in an oxygen atmosphere. Topography and surface potential characterizations highlight differences in the thin film microstructure as a function of the deposition conditions; these differences seem to affect their electrical properties.

  1. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Bai, Jinbo

    2015-11-01

    High dielectric composites were prepared based on polyvinylidene fluoride (PVDF) and hybrids BaTiO3-carbon nanotubes (H-BT-CNTs) with a special structure. The hybrids that BT was a core and CNTs grew outside were fabricated by chemical vapor deposition. Due to the special structure, composite’s dielectric permittivity reached 1777 at 100 Hz and 80 at 1 MHz, while loss tangent maintained as 6 at 100 Hz and 0.56 at 1 MHz, respectively. Moreover, dielectric permittivity and ac conductivity of composite were further enhanced after annealing process at moderate temperature. These improved properties were originated from the reformation of conductive network and BT-CNTs structure inside PVDF matrix.

  2. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-10-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I- V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  3. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-06-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I-V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  4. Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy.

    PubMed

    Asami, Koji

    2016-04-01

    We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field.

  5. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  6. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    SciTech Connect

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni{sub 0.7}Mg{sub 0.3}Fe{sub 2-x}Al{sub x}O{sub 4}(0.0{<=}x{<=}0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivity ({sigma}{sub ac}), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe{sup 2+} and Fe{sup 3+} as well as between Ni{sup 2+} and Ni{sup 3+} ions at B-sites. The dielectric loss tangent (tan {delta}) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  7. Effect of LiCl doping on dielectric behavior of copper-zinc ferrite system

    NASA Astrophysics Data System (ADS)

    Lipare, A. Y.; Vasambekar, P. N.; Vaingankar, A. S.

    2004-08-01

    Polycrystalline soft ferrite samples were prepared with chemical formula, Zn xCu 1- xFe 2O 4 ( x=0.30,0.50,0.70,0.80 and 0.90) doped with controlled amount of lithium chloride (LiCl) by standard ceramic technique. The samples were characterized by XRD, IR absorption techniques. X-ray diffraction studies of the compositions reveal formation of single-phase cubic structure. The values of lattice constant decrease as doping percentage of LiCl is increased from 0.01% to 0.10%. The presence of chlorine ions is confirmed by IR absorption peak in spectrum near 650 cm-1 for all the samples. The investigation on dielectric constant ( ɛ'), dielectric loss tangent ( tan δ) and AC resistivity ( ρAC) was carried out in the applied field frequency range 100 Hz- 1 MHz, at room temperature. Dielectric constant and loss tangent were found to decrease as the frequency increases. This is attributed to the Maxwell-Wagner polarization. Temperature-dependent DC resistivity was carried out in the temperature range from 300 to 800 K. From the compositional study, it was found that the dielectric constant shows decreasing trend with increasing both zinc concentration as well as doping percentage of lithium chloride. Conduction mechanism in these ferrites is discussed on the basis of electron exchange between Fe 2+ and Fe 3+ ions on the octahedral B-sites.

  8. Effects of adding HfO2 on the microstructure and dielectric properties of giant dielectric constant ceramic CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Yuan, W. X.; Hark, S. K.

    2010-03-01

    CaCu3Ti4O12 (CCTO), an unusual perovskite-like ceramic, is known for its extraordinarily high (˜10^4) and relatively frequency independent dielectric constant. It has drawn a lot of attention recently because of its potential applications in microelectronics and microwave devices. In this investigation, HfO2 powder was added to a pre-reacted CCTO powder, which was synthesized by a conventional solid-state reaction, at different concentrations from 1 to 70 wt% and the mixture was sintered into disc-shaped ceramic samples. The effects of adding HfO2 on the microstructure and dielectric properties of CCTO ceramics were investigated. In general, we found that the dielectric constant tends to increase with HfO2 addition up to 8 wt% and then decrease with further addition. Moreover, the dielectric loss was also influenced by the addition of HfO2, and a low loss tangent of ˜0.035 was obtained. The ac conductivity, impedance, complex dielectric permittivity and electric modulus graphs were used to analyze the data. These observations were explained on the basis of the internal-barrier-layer capacitor model with Maxwell-Wagner relaxations.

  9. Effects of Heat-Treatment Time on the Structural, Dielectric, Electrical, and Magnetic Properties of BaM Hexaferrite

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2013-07-01

    M-type hexaferrite (BaFe12O19) powders have been synthesized by means of the sol-gel autocombustion technique and is heat treated at 1000 °C for different times ( t = 1, 2, 3, and 4 h). Differential scanning calorimetry and thermogravimetric analyses are carried out to observe the weight loss and transformation of different phases during heat treatment. X-Ray diffraction patterns of the sample heat treated for 4 h confirms the formation of single phase M-type hexaferrite. The dielectric parameters and ac conductivityac) are measured in the high frequency range 1 MHz-3 GHz. The dielectric properties and ac conductivity are based on the space charge polarization according to the Maxwell-Wagner two-layer model and the Koop's phenomenological theory. The dielectric constant (ɛ') and dielectric loss (tan δ) decrease, while ac conductivity enhances with the increase of frequency. The room temperature DC electrical resistivity of the sample heat treated for 2 h enhances up to 2.93 × 109 (Ω-cm) and attributed to the migration of Fe2+ ions to the neighboring tetrahedral sites and lowering the Fe3+ contents on the octahedral sites. The temperature-dependent DC resistivity of samples shows a normal semiconducting behavior. The saturation magnetization, magnetic moment, and coercivity of the samples are observed to enhance with the increase of heat-treatment time. Owing to these qualities, the synthesized materials may be considered useful for high frequency applications, recording media, and permanent magnets.

  10. Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite

    NASA Astrophysics Data System (ADS)

    Auwal, I. A.; Erdemi, H.; Sözeri, H.; Güngüneş, H.; Baykal, A.

    2016-08-01

    In the present study, SrBixFe12-xO19 (0.0≤x≤1.0) nanomaterials were successfully synthesized by using chemical co-precipitation method. Products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating sample magnetometer (VSM), Mössbauer spectroscopy, AC conductivity and dielectric measurements. The crystal structural information studied by X-ray diffraction (XRD) indicated the formation of single phase pure hexagonal structure, while electron-dispersive X-ray spectroscopy (EDX) revealed the stoichiometric ratio among Bi, Sr, Fe elements. The crystallite sizes of the products were in the range of 65-82 nm. VSM analysis showed a tendency in saturation magnetization as Bi2O3 concentration raises, which can be ascribed to preferential site occupied by Bi3+ ions. The frequency-dependent ac conductivity plots exhibited similar trends for all samples. A significant temperature-dependent behavior was only observed at low and medium frequencies. The replacement of non-magnetic Bi3+ ions by Fe3+ ones having magnetic moment of 5 μB decrease the magnetic moment of 4f1 site. The AC conductivity increases with frequency as hopping of the charge carriers increases between Fe2+and Fe3+. The DC conductivity exhibited an improvement with increasing temperature and Bi content, and the highest conductivity was measured as 2.84×10-9 S cm-1 for x=0.8 at 120 °C. The variation of dielectric constant, dielectric loss and tangent loss was observed with the frequency and temperature due to change of electrical conductivity as x changes.

  11. Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites

    SciTech Connect

    Elena Ciomaga, Cristina; Maria Neagu, Alexandra; Valentin Pop, Mihai; Mitoseriu, Liliana; Airimioaei, Mirela; Tascu, Sorin; Schileo, Giorgio; Galassi, Carmen

    2013-02-21

    Particulate composites of ferrite and ferroelectric phases with xNiFe{sub 2}O{sub 4} (NF) and (1 - x)Pb{sub 0.988}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.976}Nb{sub 0.024}O{sub 3} (where x = 2, 10, 20, 30, 50, 70, and 100 wt. %) were prepared in situ by sol-gel method. The presence of a diphase composition was confirmed by X-ray diffraction while the microstructure of the composites was studied by scanning electron microscopy revealing a good mixing of the two phases and a good densification of the bulk ceramics. The dielectric permittivity shows usual dielectric dispersion behavior with increasing frequency due to Maxwell-Wagner interfacial polarization. AC conductivity measurements made in frequency range 1 Hz-1 MHz suggest that the conduction process is due to mixed polaron hopping. The effect of NF phase concentration on the P-E and M-H hysteresis behavior and dielectric properties of the composites was investigated. At low NF concentration a sharp ferro-paraelectric transition peak can be observed at around 360 Degree-Sign C while for higher NF concentrations a trend to a diffuse phase transition occurs. All the composite samples exhibit typical ferromagnetic hysteresis loops, indicating the presence of ordered magnetic structure.

  12. Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites

    NASA Astrophysics Data System (ADS)

    Elena Ciomaga, Cristina; Maria Neagu, Alexandra; Valentin Pop, Mihai; Airimioaei, Mirela; Tascu, Sorin; Schileo, Giorgio; Galassi, Carmen; Mitoseriu, Liliana

    2013-02-01

    Particulate composites of ferrite and ferroelectric phases with xNiFe2O4 (NF) and (1 - x)Pb0.988(Zr0.52Ti0.48)0.976Nb0.024O3 (where x = 2, 10, 20, 30, 50, 70, and 100 wt. %) were prepared in situ by sol-gel method. The presence of a diphase composition was confirmed by X-ray diffraction while the microstructure of the composites was studied by scanning electron microscopy revealing a good mixing of the two phases and a good densification of the bulk ceramics. The dielectric permittivity shows usual dielectric dispersion behavior with increasing frequency due to Maxwell-Wagner interfacial polarization. AC conductivity measurements made in frequency range 1 Hz-1 MHz suggest that the conduction process is due to mixed polaron hopping. The effect of NF phase concentration on the P-E and M-H hysteresis behavior and dielectric properties of the composites was investigated. At low NF concentration a sharp ferro-paraelectric transition peak can be observed at around 360 °C while for higher NF concentrations a trend to a diffuse phase transition occurs. All the composite samples exhibit typical ferromagnetic hysteresis loops, indicating the presence of ordered magnetic structure.

  13. Numeric description of space charge in polyethylene under ac electric fields

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Xu, Z.; Chen, G.; Lewin, P. L.

    2010-12-01

    Space charge in polyethylene-based insulation materials and its effect on the local electric field under a dc environment have been extensively examined over the last few decades while the behavior of space charge under ac stress has received less attention. Space charge phenomenon under ac electric fields becomes an important issue with increased operating field strength in many applications, such as next generation high voltage cables. In this paper, a bipolar charge transport model has been developed to simulate space charge in polymers under ac electric fields. Obtained simulation results show that there is a small quantity of phase-dependent bipolar charge accumulation in the vicinity of the electrodes that does not move into the bulk under ac stress. This causes a slight distortion of the local field in the bulk. However, at lower frequencies less than 1 Hz, there is increased charge accumulation and penetration. Comparison with available experimental data suggests that the model is capable of describing the underlying physics of charge behavior when a dielectric material is subjected to ac electric fields. Due to the weak charge movement in the bulk, the conduction current density is small and hence the displacement component dominates the total current density and this increases linearly with ac frequency.

  14. Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan

    NASA Astrophysics Data System (ADS)

    Compañ, Vincente; Smith Sørensen, Torben; Diaz-Calleja, Ricardo; Riande, Evaristo

    1996-01-01

    The dielectric dispersion measurements of Furukawa et al. are treated in the light of a previously proposed model of Trukhan. The latter describes the influence of mobile ions on the dielectric dispersion in a slab of material placed between polarizable electrodes. It is shown that the so-called ``constant phase element'' is just a crude approximation to the predictions of the theory of Trukhan, an approximation not valid at very low frequencies. At low frequencies macropolarizations appear analogous to the ones observed in asymmetric cellulose acetate membranes by Malmgren-Hansen et al. The polarizations are much larger in the present case, and this indicates that there are no microheterogeneities in the polymeric film of Furukawa et al. The diffusion coefficient of the most rapidly diffusing ion (presumably H+) may be found as a function of temperature within some uncertainty. The Arrhenius plot shows clearly the change in activation energy around the glass transition temperature (182 °C). Below the glass transition the activation energy for diffusion is much larger (˜50000 K) than above. The diffusion coefficients increase from ˜10-17 m2/s at 170 °C to ˜5.10-16 m2/s at 195 °C. The concentration of electrolyte present in the polymer increases from ˜15 to ˜200 mol m-3 in the same temperature interval.

  15. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  16. Temperature switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-06-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  17. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields

    NASA Astrophysics Data System (ADS)

    Low, Jonathan; Hogan, S. John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T)≠-E(t+T/2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity σa>0 and dielectric anisotorpy γa<0 ) and nonstandard (σa<0) material parameters. We make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q and p can be varied. Our results show that there is a qualitative difference between the boundary conditions used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  18. Structural characterization and AC conductivity of bis tetrapropylammonium hexachlorado-dicadmate, [N(C{sub 3}H{sub 7}){sub 4}]{sub 2}Cd{sub 2}Cl{sub 6}

    SciTech Connect

    Hannachi, N.; Guidara, K.; Bulou, A.; Hlel, F.

    2010-11-15

    Synthesis, crystal structure, vibrational study, {sup 13}C, {sup 111}Cd CP-MAS-NMR analysis and electrical properties of the compound [N(C{sub 3}H{sub 7}){sub 4}]{sub 2}Cd{sub 2}Cl{sub 6}, are reported. The latter crystallizes in the triclinic system (space group P1-bar, Z = 2) with the following unit cell dimensions: a = 9.530(1) A, b = 11.744(1) A, c = 17.433(1) A, {alpha} = 79.31(1){sup o}, {beta} = 84.00(1){sup o} and {gamma} = 80.32(1){sup o}. Besides, its structure was solved using 6445 independent reflections down to R = 0.037. The atomic arrangement can be described by alternating organic and inorganic layers parallel to the (11-bar 0) plan, made up of tetrapropylammonium groups and Cd{sub 2}Cl{sub 6} dimers, respectively. In crystal structure, the inorganic layer, built up by Cd{sub 2}Cl{sub 6} dimers, is connected to the organic ones through van der Waals interaction in order to build cation-anion-cation cohesion. Impedance spectroscopy study, reported in the sample, reveals that the conduction in the material is due to a hopping process. The temperature and frequency dependence of dielectric constants of the single crystal sample has been investigated to determine some related parameters to the dielectric relaxation.

  19. Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Lakshmi, Ch. S.; Sridhar, Ch. S. L. N.; Govindraj, G.; Bangarraju, S.; Potukuchi, D. M.

    2015-02-01

    Nanocrystalline Ni-Zn-Sb ferrites synthesized by hydrothermal method are reported. Influence of Sb5+ ions on structural, magnetic and dielectric properties of ferrites is studied. Phase identification, lattice parameter and crystallite size studies are carried out using by X-ray diffraction (XRD). Addition of dopant resulted for decrease in lattice parameter. Crystallite size gets reduced from 62 nm to 38 nm with doping of Antimony. Crystallite size and porosity exhibit similar trends with doping. Morphological study is carried out by Field Emission Scanning Electron Microscopy (FESEM). Strong FTIR absorption bands at 400-600 cm-1 confirm the formation of ferrite structure. Increase of porosity is attributed to the grain size. Doping with Antimony results for decrease in saturation magnetization and increase in coercivity. An initial increase of saturation magnetization for x=0.1 is attributed to the unusually high density. Reversed trend of coercivity with crystallite size are observed. Higher value of dielectric constant ε‧(ω) is attributed to the formation of excess of Fe2+ ions caused by aliovalent doping of Sb5+ ions. Variation of dielectric constant infers hopping type of conductivity mechanism. The dielectric loss factor tanδ attains lower values of ~10-2. High ac resistivity ρ(ω) of 108 Ω cm is witnessed for antimony doped ferrites. Higher saturation magnetization and enhanced dielectric response directs for a possible utility as microwave oscillators and switches.

  20. Dynamic Properties of Dielectric Susceptibility in Ferroelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Cui, Lian; Cui, Haiying; Wu, Chunmei; Yang, Guihua; He, Zelong; Wang, Yuling; Che, Jixin

    2016-02-01

    In this paper, frequency, temperature, film thickness, surface effects, and various parameters dependence of dielectric susceptibility is investigated theoretically for ferroelectric thin films by the modified Landau theory under an AC applied field. The dielectric susceptibility versus AC applied field shows butterfly-shaped behavior, and depends strongly on the frequency and amplitude of the field and temperature. Our study shows that the existence of the surface transition layer can depress the dielectric susceptibility of a ferroelectric thin film. These results are well consistent with the phenomena reported in experiments.

  1. Structural and optical characterization of Cr{sub 2}O{sub 3} nanostructures: Evaluation of its dielectric properties

    SciTech Connect

    Abdullah, M. M.; Rajab, Fahd M.; Al-Abbas, Saleh M.

    2014-02-15

    The structural, optical and dielectric properties of as-grown Cr{sub 2}O{sub 3} nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Å; c = 13.578 Å, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr–O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr{sub 2}O{sub 3} nanostructures attest the potential candidature of the material as an efficient dielectric medium.

  2. Comparative study of the temperature-dependent dielectric properties of Au/PPy/n-Si (MPS)-type Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Gümüş, Ahmet; Ersöz, Gülçin; Yücedağ, İbrahim; Bayrakdar, Sümeyye; Altindal, Şemsettin

    2015-09-01

    The dielectric properties of Au/PPy/n-Si metal-polymer-semiconductor (MPS)-type Schottky barrier diodes (SBDs) were investigated by using capacitance-voltage ( C-V) and conductancevoltage ( G/ω-V) measurements at various temperatures and voltages at frequencies of 100 kHz and 500 kHz. Both the real and the imaginary parts of the complex dielectric constant and dielectric loss ( ɛ', ɛ″) and of the electric modulus ( M', M″), as well as the conductivityac ), were found to depend strongly on the temperature and the voltage. Both the C and G/ω values increased with increasing applied voltage and had inversion, depletion, and accumulation regions as with a metal-insulator-semiconductor (MIS) type behavior. Both the dielectric constant ( ɛ') and the dielectric loss ( ɛ″) increased with increasing temperature and decreased with increasing frequency. The loss tangent (tan δ) vs. temperature curve had a peak at about 200 K for both frequencies. The M' and the M″ values decreased with increasing temperature and became independent of the frequency at high temperatures. The series resistance ( R s ) of the diode decreased with increasing temperature for the two frequencies while the σ ac increased. Such behaviors of the dielectric properties with temperature were attributed to the restructuring and reordering of charges at interface states/traps due to the varying temperature, the interfacial polarization, and the interfacial polymer layer. ln(σ ac ) vs. q/kT plots had two distinct linear regions with different slopes for the two frequencies. Such behaviors of these plots confirmed the existence of two different conduction mechanisms corresponding to low and high temperatures. The values of the activation energy ( E a ) were obtained from the slopes of these plots, and its value at low temperatures was considerably lower than that at high temperatures.

  3. Interfaces: nanometric dielectrics

    NASA Astrophysics Data System (ADS)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  4. Dielectric ridge waveguide gas laser apparatus

    SciTech Connect

    DeMaria, A.J.; Bridges, W.

    1989-03-14

    A dielectric ridged waveguide flowing gas laser apparatus is described, comprising in combination; a dielectric substrate having a predetermined number of the grooves formed theron, the grooves extending along the longitudinal axis of the dielectric substrate, an electrically conductive member in parallel alignment with the grooved side of the dielectric substrate such that an air gasp is formed therebetween the air gap containing an active laser gas medium, electrically conductive strips disposed on the outside of the dielectric substrate forming electrodes, the conductive strips being aligned with the grooves and having the same length and width as the grooves, and an excitation source connected between the conductive member and the conductive strips, to provide lasing in the ridged waveguide.

  5. Dielectric properties of mammalian breast milk at radiofrequencies.

    PubMed

    Laogun, A A

    1986-05-01

    The relative permittivity and AC conductivity of breast milk have been investigated in four different mammalian species, human, cow, goat and sheep, in the frequency range 0.1-100 MHz and at a room temperature of 26.5 +/- 0.5 degrees C. The results showed that the sheep milk exhibited the largest dielectric dispersion, followed in decreasing order by milks from the goat, cow and human. The dielectric data were fitted to the Debye and Cole-Cole structural equations and the fitted parameters have been presented for the different species. The curve-fitting analysis has shown that for all the milk samples the Cole-Cole model gave a better fit to the dielectric data than the Debye model, thus suggesting heterogeneity of structure in milk. On the basis of the Cole-Cole model, the relaxation times in the mammalian milks were found to be distributed about the mean values of 162 +/- 10, 171 +/- 9, 177 +/- 14 and 192 +/- 12 ns for human, cow, goat and sheep milks, respectively.

  6. Comprehensive Analysis of Human Cells Motion under an Irrotational AC Electric Field in an Electro-Microfluidic Chip

    PubMed Central

    Kermarrec, Frédérique; Gidrol, Xavier; Peyrade, David

    2014-01-01

    AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics remain unclear over a large frequency spectrum as illustrated by the self-rotation effect observed recently. We here report and analyze human cells behaviors in different conditions of medium conductivity, electric field frequency and magnitude. We also observe the self-rotation of human cells, in the absence of a rotational electric field. Based on an analytical competitive model of electrokinetic forces, we propose an explanation of the cell self-rotation. These experimental results, coupled with our model, lead to the exploitation of the cell behaviors to measure the intrinsic dielectric properties of JURKAT, HEK and PC3 human cell lines. PMID:24736275

  7. Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Bobby, A.; Shiwakoti, N.; Verma, S.; Asokan, K.; Antony, B. K.

    2016-05-01

    The Ni/n-GaAs Schottky barrier diode having thin interfacial oxide layer was subjected to 25 MeV C4+ ion irradiation at selected fluences. The in-situ capacitance and dielectric properties were investigated in the 1 KHz to 5 MHz frequency range. The results show a decrease in capacitance with increase in ion fluence at low frequencies. Interestingly, a negative capacitance effect was also observed in this frequency range in all the samples. As a consequence, changes were observed in parameters like series resistance, conductance, dielectric loss, dielectric constant, loss tangent and ac electrical conductivity. At high frequencies, the capacitance reaches the geometric value 'C0'. The results were interpreted in terms of the generation of irradiation induced traps, carrier capture and emission from deep and shallow states and its frequency dependent saturation effects.

  8. Fabrication of SrFe12- x Ni x O19 nanoparticles and investigation on their structural, magnetic and dielectric properties

    NASA Astrophysics Data System (ADS)

    Mousavi Ghahfarokhi, S. E.; Hosseini, S.; Zargar Shoushtari, M.

    2015-08-01

    SrFe12- x Ni x O19 nanoparticles ( x = 0-1) were synthesized by a combustion sol-gel method. Their structure, dielectric and magnetic properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), an LCR metry, and vibrating sample magnetometry (VSM).The results reveal that all samples of Ni doped compounds (SrFe12- x Ni x O19) with x < 0.2 are single phase. It appears that the Fe3+ ions are substituted by Ni2+ ions on the crystallographic sites of the SrFe12O19 structure; however, for x ≥ 0.2, the secondary Ni phase ferrite (NiFe2O3) appears, which reduces the saturation magnetization and coercivity. In addition, Ni doping reduces the dielectric constant, dielectric loss, and alternating current (ac) electrical conductivity of the samples. The variation in ac conductivity ( σ ac) with frequency shows that the electrical conductivity in these ferrites is mainly attributed to the electron hopping mechanism.Therefore; all the single-phase Ni doped samples are suitable for use in magnetic recording media and microwave devices.

  9. Ionic conductivity studies in crystalline PVA/NaAlg polymer blend electrolyte doped with alkali salt KCl

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish

    2014-04-01

    Potassium Chloride (KCl) doped poly(vinyl alcohol) (PVA)/sodium alginate (NaAlg) in 60:40 wt% polymer blend electrolytes were prepared by solution casting method. The complexation of KCl with host PVA/NaAlg blend is confirmed by FTIR and UV-Vis spectra. The XRD studies show that the crystallinity of the prepared blends increases with increase in doping. The dc conductivity increases with increase in dopant concentration. Temperature dependent dc conductivity shows an Arrhenius behavior. The dielectric properties show that both the dielectric constant and dielectric loss increases with increase in KCl doping concentration and decreases with frequency. The cole-cole plots show a decrease in bulk resistance, indicates the increase in ac conductivity, due to increase in charge carrier mobility. The doping of KCl enhances the mechanical properties of PVA/NaAlg, such as Young's modulus, tensile strength, stiffness.

  10. Weak ferromagnetism and temperature dependent dielectric properties of Zn{sub 0.9}Ni{sub 0.1}O diluted magnetic semiconductor

    SciTech Connect

    Ahmed, Raju; Moslehuddin, A.S.M.; Mahmood, Zahid Hasan; Hossain, A.K.M. Akther

    2015-03-15

    Highlights: • Single phase wurtzite structure was confirmed from XRD analysis. • Weak ferromagnetic behaviour at room temperature. • Pure semiconducting properties confirmed from temperature dependent conductivity. • Smaller dielectric properties at higher frequency. • Possible potential application in high frequency spintronic devices. - Abstract: In this study the room temperature ferromagnetic behaviour and dielectric properties of ZnO based diluted magnetic semiconductor (DMS) have been investigated using nominal chemical composition Zn{sub 0.9}Ni{sub 0.1}O. The X-ray diffraction analysis confirmed formation of single phase hexagonal wurtzite structure. An increase in grain size with increasing sintering temperature was observed from scanning electron microscopy. Field dependent DC magnetization values indicated dominant paramagnetic ordering along with a slight ferromagnetic behaviour at room temperature. Frequency dependent complex initial permeability showed some positive values around 12 at room temperature. In dielectric measurement, an increasing trend of complex permittivity, loss tangent and ac conductivity with increasing temperature were observed. The temperature dependent dispersion curves of dielectric properties revealed clear relaxation at higher temperature. Frequency dependent ac conductivity was found to increase with frequency whereas complex permittivity and loss tangent showed an opposite trend.

  11. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  12. Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong

    2016-01-01

    Electrical breakdown of dielectric elastomer actuators (DEA) is very localized; a spark and a pinhole (puncture) in dielectric ends up with short-circuit. This letter shows that prevention of electrothermal breakdown helps defer failure of DEAs even with conductive-grease electrodes. Dielectric gel encapsulation or coating (Dow Corning 3-4170) helps protect acrylic elastomer (VHB 4905), making it thermally more stable and delaying its thermal oxidation (burn) from 218 °C to 300 °C. Dielectric-gel-coated acrylic DEAs can withstand higher local leak-induced heating and thus achieve higher dielectric strengths than non-coated DEAs do.

  13. Thermo-switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-11-01

    We are interested in utilizing the thermo-switchable properties of precursor poly(p-phenylene vinylene) (PPV) polymers to develop capacitor dielectrics that will fail at specific temperatures due to the material irreversibly switching from an insulator to a conducting polymer. By utilizing different leaving groups on the polymer main chain, the temperature at which the polymer transforms into a conductor can be varied over a range of temperatures. Electrical characterization of thin-film capacitors prepared from several precursor PPV polymers indicates that these materials have good dielectric properties until they reach elevated temperatures, at which point conjugation of the polymer backbone effectively disables the device. Here, we present the synthesis, dielectric processing, and electrical characterization of a new thermo-switchable polymer dielectric.

  14. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  15. Dielectric Properties Of Nanoferrites

    SciTech Connect

    Jankov, Stevan B.; Cvejic, Zeljka N.; Rakic, Srdjan; Srdic, Vladimir

    2007-04-23

    Dielectric properties: permittivity, loss factor, tan delta and ionic conductivity of nanostructured ferrites have been measured. Samples used were nickel, zinc and yttrium doped ferrites mixed in various ratios. The synthesis has been performed using precipitation method and obtained powders were pressed in pellets under varying pressure. X-ray diffractography approach for the refinement of structure and microstructural analysis has been performed. All parameters have been measured in 1 Hz to 100 kHz frequency range and 30 deg. C to 80 deg. C temperature range. Significant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed.

  16. Investigation of dielectric properties of La0.33NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mondal, Tanusree; Sarun, P. M.; Das, Sayantani; Sinha, T. P.

    2015-06-01

    La0.33NbO3 ceramics was prepared via conventional solid-state reaction method. Structural analysis show the existence of single phase of La0.33NbO3 has been synthesized with an average particle size of 2 µm - 4 µm estimated from FESEM image. Detailed investigation on the dielectric properties and AC conductivity of the La0.33NbO3 ceramics in a wide range of frequency (800 Hz - 5 MHz) and temperatures (30 °C - 300 °C) revealed that these properties are strongly temperature and frequency dependent.

  17. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  18. Characterization of the dielectric properties and alternating current conductivity of the SrBi5-xLaxTi4FeO18 (x=0, 0.2) compound

    NASA Astrophysics Data System (ADS)

    Almodovar, N. S.; Portelles, J.; Raymond, O.; Heiras, J.; Siqueiros, J. M.

    2007-12-01

    Lanthanum-doped bismuth layer-structured ferroelectric ceramics SrBi5-xLaxTi4FeO18 (x =0,0.2) were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that single phases were formed. Hysteresis loops at room temperature (20 °C) show that the La-doped ceramic presents a slightly lower spontaneous polarization than the undoped compound. Measurements of relative permittivity and dielectric loss versus temperature were performed from room temperature to 700 °C in the 100 Hz-1 MHz frequency range. Three anomalies were observed in the thermal behavior of the relative permittivity in both samples. Anomalies around the temperatures of 465 and 430 °C have been identified as the ferroelectric-paraelectric transition temperatures for the x =0 and 0.2 compounds, respectively. The sizable shift of the transition temperatures toward lower temperatures with the La doping is interpreted as a manifestation of the La ion incorporation into the crystal structure. From the conductivity studies, the activation energies as functions of frequency for three different temperature zones are obtained. It is found that activation energies are strongly frequency dependent, particularly in the low-frequency region. The frequency dependence of the conductivity at different temperatures was analyzed using Jonscher's power law and the Almond-West conductivity formalism.

  19. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    SciTech Connect

    P, Sharmila P; Tharayil, Nisha J.

    2014-10-15

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of both AC and DC conductivity are studied and activation energy calculated.

  20. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    NASA Astrophysics Data System (ADS)

    P, Sharmila P.; Tharayil, Nisha J.

    2014-10-01

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of both AC and DC conductivity are studied and activation energy calculated.

  1. Dielectric and relaxation properties of poly(o-anisidine)/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2016-05-01

    Poly(o-anisidine)/graphene (POA/GR) nanocomposite was synthesized via chemical oxidative polymerization of o-anisidine in the presence of graphene sheets in acidic medium. The electrical properties of the nanocomposite are studied using AC impedance spectroscopic technique. It has been found that the room temperature electrical conductivity value enhanced from 1.28 × 10-6 S cm-1 to 4.47 × 10-4 S cm-1 on addition of 10 wt % of graphene into the polymer. An analysis of real and imaginary parts of dielectric permittivity reveals that both ɛ` and ɛ״ increases with the decrease of frequency at all temperature levels. Frequency dependence of dielectric loss (tan δ) spectrum indicates that hopping frequency increases with temperature and the relaxation time decreases from 2.67 × 10-5 to 7.28 × 10-6 sec.

  2. Dielectric properties and electric modulus of Au/PPy/n-Si (MPS) type Schottky barrier diodes (SBDS) as a function of frequency and applied bias voltage

    NASA Astrophysics Data System (ADS)

    Yücedağ, Ibrahim; Ersöz, Gülçin; Gümüş, Ahmet; Altındal, Şemsettin

    2015-03-01

    Au/PPy/n-Si Schottky barrier diodes (SBDs) were fabricated by forming polypyrrole (PPy) organic layer on n-Si using the spin coating technique. Frequency-dependent dielectric constant (ɛ‧), dielectric loss (ɛ″), loss tangent (tan δ), real and imaginary parts of electrical modulus (M‧ and M″) and AC electrical conductivityac) parameters of the structure were investigated in the frequency range of 10-500 kHz. It was found that the values of the ɛ‧, ɛ″ and tan δ, in general, decrease with increasing frequency while an increase is observed in σac, M‧ and M″. The tanδ and M″ also exhibit a peak at about zero-bias voltage, while peak intensity weakens with increasing frequency. The values of ɛ‧ and M‧ decrease with increasing voltage while an increase is observed in ɛ″, tan δ, σac and M″. These changes in ɛ‧, ɛ″, tan δ, M‧, M″ and σac values was attributed to surface charge polarization and the particular density distribution of surface states localized at PPy/n-Si interface.

  3. 47 CFR 15.107 - Conducted limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC... device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band...

  4. Effects of high-energy electron radiation on polypropylene dielectric

    SciTech Connect

    Hammoud, A.N.

    1988-01-01

    Polypropylene, a polymeric materials widely used as the main dielectric in many high-voltage components such as capacitors and cables, was exposed to electron irradiation in air at room temperature. The 25.4-{mu}m-thick dry polypropylene films were irradiated to different doses up to 10{sup 8} rads with electron beam having energies of 0.5, 1.0, and 1.5 MeV. Monoisopropyl biphenyl (MIPB)-impregnated polypropylene films were also exposed to 1-MeV electron beam to doses up to 10{sup 8} rads and the post-irradiation effects on the electrical, mechanical, and morphological and chemical properties of the films were evaluated. The electrical properties included the AC, DC and pulsed breakdown strengths, dielectric constant, dissipation factor, conductivity, and pulsed life-endurance. The mechanical properties comprised the Young's modulus, elongation-at-break, tensile strength, complex modulus, and mechanical loss. Finally, the morphological and chemical diagnoses carried out included surface morphology, elemental analysis, crystallinity changes, and identification of newly formed bonds and degree of oxidation. The results obtained indicate that the dry polypropylene films started to exhibit degradation at doses as low as 10{sup 6} rads. The properties that were mostly affected included the film's tensile properties, pulsed life, dissipation factor, and electrical conductivity.

  5. Dielectric relaxation of PrFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Saha, Sujoy; Chanda, Sadhan; Dutta, Alo; Sinha, T. P.

    2016-08-01

    PrFeO3 (PFO) nanoceramic is synthesized by a sol-gel reaction technique. Thermogravimetric study of the as prepared gel is performed to get the lowest possible calcination temperature of PFO nanoparticles. The Rietveld refinement of the powder X-ray diffraction (XRD) pattern shows that the sample crystallizes in the orthorhombic (Pnma) phase at room temperature. The particle size of the sample is determined by scanning electron microscopy. The vibrational properties of the samples are studied by Raman spectroscopy at an excitation wavelength of 488 nm to substantiate the XRD results. Group-theoretical study is performed to assign the different vibrational modes of the sample in accordance with structural symmetry. Dielectric spectroscopy is applied to investigate the ac electrical properties of PFO at various temperatures between 313 and 473 K and in a frequency range of 42 Hz-1.1 MHz. The modified Cole-Cole equation is used to describe the experimental dielectric spectra. The frequency-dependent conductivity spectra are found to follow the power law. The temperature dependent dc conductivity is found to obey the Arrhenius law with an activation energy of 0.280 eV. An analysis of the real and imaginary parts of impedance is performed, assuming a distribution of relaxation times as confirmed by Cole-Cole plot.

  6. Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p—Si and Al/Bi4Ti3O12/p—Si structures by using the admittance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Mert, Yıldırım; Perihan, Durmuş; Şemsettin, Altındal

    2013-10-01

    In this study, Al/p—Si and Al/Bi4Ti3O12/p—Si structures are fabricated and their interface states (Nss), the values of series resistance (Rs), and AC electrical conductivityac) are obtained each as a function of temperature using admittance spectroscopy method which includes capacitance—voltage (C—V) and conductance—voltage (G—V) measurements. In addition, the effect of interfacial Bi4Ti3O12 (BTO) layer on the performance of the structure is investigated. The voltage-dependent profiles of Nss and Rs are obtained from the high-low frequency capacitance method and the Nicollian method, respectively. Experimental results show that Nss and Rs, as strong functions of temperature and applied bias voltage, each exhibit a peak, whose position shifts towards the reverse bias region, in the depletion region. Such a peak behavior is attributed to the particular distribution of Nss and the reordering and restructuring of Nss under the effect of temperature. The values of activation energy (Ea), obtained from the slope of the Arrhenius plot, of both structures are obtained to be bias voltage-independent, and the Ea of the metal-ferroelectric-semiconductor (MFS) structure is found to be half that of the metal—semiconductor (MS) structure. Furthermore, other main electrical parameters, such as carrier concentration of acceptor atoms (NA), built-in potential (Vbi), Fermi energy (EF), image force barrier lowering (Δ Φb), and barrier height (Φb), are extracted using reverse bias C-2—V characteristics as a function of temperature.

  7. Thermal conductivity and dielectric properties of a TiO2-based electrical insulator for use with high temperature superconductor-based magnets

    NASA Astrophysics Data System (ADS)

    Ishmael, S. A.; Slomski, M.; Luo, H.; White, M.; Hunt, A.; Mandzy, N.; Muth, J. F.; Nesbit, R.; Paskova, T.; Straka, W.; Schwartz, J.

    2014-09-01

    Quench protection is a remaining challenge impeding the implementation of high temperature superconductor (HTS)-based magnet applications. This is due primarily to the slow normal zone propagation velocity (NZPV) observed in Bi2Sr2CaCu2OX (Bi2212) and (RE)Ba2Cu3O7 - x (REBCO) systems. Recent computational and experimental findings reveal significant improvements in turn-to-turn NZPV, resulting in a magnet that is more stable and easier to protect through three-dimensional normal zone growth (Phillips M 2009; Ishmael S et al 2013 IEEE Trans. Appl. Supercond. 23 7201311). These improvements are achieved by replacing conventional insulation materials, such as Kapton and mullite braid, with a thin, thermally conducting, electrically-insulating ceramic oxide coating. This paper reports on the temperature-dependent thermal properties, electrical breakdown limits and microstructural characteristics of a titanium oxide (TiO2) insulation and a doped-TiO2-based proprietary insulation (doped-TiO2) shown previously to enhance quench behavior (Ishmael S et al 2013 IEEE Trans. Appl. Supercond. 23 7201311). Breakdown voltages at 77 K ranging from ˜1.5 kV to over 5 kV are reported. At 4.2 K, the TiO2 increases the thermal conductivity of polyimide by about a factor of 10. With the addition of a dopant, thermal conductivity is increased by an additional 13%, and a high temperature heat treatment increases it by nearly an additional 100%. Similar increases are observed at 77 K and room temperature. These results are understood in the context of the various microstructures observed.

  8. The effects of Bi4Ti3O12 interfacial ferroelectric layer on the dielectric properties of Au/n-Si structures

    NASA Astrophysics Data System (ADS)

    Gökçen, Muharrem; Yıldırım, Mert

    2015-06-01

    Au/n-Si metal-semiconductor (MS) and Au/Bi4Ti3O12/n-Si metal-ferroelectric-semiconductor (MFS) structures were fabricated and admittance measurements were held between 5 kHz and 1 MHz at room temperature so that dielectric properties of these structures could be investigated. The ferroelectric interfacial layer Bi4Ti3O12 decreased the polarization voltage by providing permanent dipoles at metal/semiconductor interface. Depending on different mechanisms, dispersion behavior was observed in dielectric constant, dielectric loss and loss tangent versus bias voltage plots of both MS and MFS structures. The real and imaginary parts of complex modulus of MFS structure take smaller values than those of MS structure, because permanent dipoles in ferroelectric layer cause a large spontaneous polarization mechanism. While the dispersion in AC conductivity versus frequency plots of MS structure was observed at high frequencies, for MFS structure it was observed at lower frequencies.

  9. Magnetic, dielectric and magnetodielectric properties of PVDF-La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polymer nanocomposite film

    SciTech Connect

    Thirmal, Ch.; Nayek, Chiranjib; Murugavel, P. Subramanian, V.

    2013-11-15

    We have investigated the structure, magnetic and dielectric properties of PVDF-La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polymer nanocomposite thick film fabricated by dip coating technique along with the magnetodielectric effect. The structure and dielectric properties show the enhanced β phase in the composite compared to the PVDF film. The coupling between the ferroelectric and magnetic phases in the composite is revealed in the form of dielectric anomaly at the ferromagnetic Curie temperature. We observed 1.9% magnetodielectric effect at 300 K with the possibility of enhanced effect near the transition temperature. In addition, the analysis of the electric modulus indicates that the composite exhibits interfacial related relaxation and it follows Arrhenius Law. Our study suggests that the ac conductivity of the PVDF-La{sub 0.7}Sr{sub 0.3}MnO{sub 3} composite could be explained by correlated barrier hopping mechanism.

  10. Effect of gamma irradiation on opto-structural, dielectric, and thermoluminescence properties of natural phlogopite mica

    SciTech Connect

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant; Lochab, S. P.

    2013-09-07

    Gamma ray induced modifications in natural phlogopite mica have been studied in the dose range of 1–2000 kGy. These modifications were monitored using different techniques viz: ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy, dielectric measurements, X-ray diffraction, and thermoluminescence dosimeter. The analysis of the results reveals that the dose of 100 kGy produces significant change in the natural phlogopite mica as compared to pristine and other exposed samples. Ultraviolet-visible analysis provides the value of optical indirect, direct band gap, and Urbach energy. Cody model was used to calculate structural disorder from Urbach energy. Different dielectric parameters such as dielectric constant, dielectric loss, ac conductivity, and real and imaginary parts of electric modulus were calculated for pristine and irradiated samples at room temperature. Williamson Hall analysis was employed to calculate crystallite size and micro-strain of pristine and irradiated sheets. No appreciable changes in characteristic bands were observed after irradiation, indicating that natural phlogopite mica is chemically stable. The natural phlogopite mica may be recommended as a thermoluminescent dosimeter for gamma dose within 1 kGy–300 kGy.

  11. Optical, Dielectric Characterization and Impedance Spectroscopy of Ni-Substituted MgTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Gogoi, Pallabi; Srinivas, P.; Sharma, Pramod; Pamu, D.

    2016-02-01

    We report the effects of oxygen mixing percentage (OMP) and annealing temperature on surface morphology, optical, dielectric and electrical properties of (Mg0.95Ni0.05)TiO3 (MNT) thin films deposited onto amorphous SiO2 and platinized silicon (Pt/TiO2/SiO2/Si) substrates by radio frequency (RF) magnetron sputtering. The annealed films exhibited the highest refractive index, 2.05, at 600 nm with an optical bandgap value of 4.33 eV. The metal-insulator-metal (MIM) capacitors of the MNT thin films were fabricated under different OMPs and the dielectric properties were analyzed by using Maxwell-Wagner two-layer theory and Koop's phenomenological theory. MNT films prepared under 50% OMP displayed the highest dielectric constant (11.21) and minimum loss tangent (0.0114) at 1 MHz. The impedance spectroscopy of the films deposited under 50% OMP has been studied. The Nyquist plots of MNT films revealed two semi-circular arcs and is explained on the basis of an equivalent circuit model. The frequency-dependent alternative current (AC) conductivity followed the Jonscher's power law. The activation energies are calculated using the Arrhenius relationship. The hopping frequency of the charged species was calculated, and the correlation between AC and direct current (DC) conduction mechanisms established in accordance with the Barton-Nakajima-Namikawa (BNN) relationship.

  12. Influence of Conductivity and Dielectric Constant of Water–Dioxane Mixtures on the Electrical Response of SiNW-Based FETs

    PubMed Central

    Mescher, Marleen; Brinkman, Aldo G.M.; Bosma, Duco; Klootwijk, Johan H.; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    In this study, we report on the electrical response of top-down, p-type silicon nanowire field-effect transistors exposed to water and mixtures of water and dioxane. First, the capacitive coupling of the back gate and the liquid gate via an Ag/AgCl electrode were compared in water. It was found that for liquid gating smaller potentials are needed to obtain similar responses of the nanowire compared to back gating. In the case of back gating, the applied potential couples through the buried oxide layer, indicating that the associated capacitance dominates all other capacitances involved during this mode of operation. Next, the devices were exposed to mixtures of water and dioxane to study the effect of these mixtures on the device characteristics, including the threshold voltage (VT). The VT dependency on the mixture composition was found to be related to the decreased dissociation of the surface silanol groups and the conductivity of the mixture used. This latter was confirmed by experiments with constant conductivity and varying water–dioxane mixtures. PMID:24481233

  13. Influence of conductivity and dielectric constant of water-dioxane mixtures on the electrical response of SiNW-based FETs.

    PubMed

    Mescher, Marleen; Brinkman, Aldo G M; Bosma, Duco; Klootwijk, Johan H; Sudhölter, Ernst J R; de Smet, Louis C P M

    2014-01-01

    In this study, we report on the electrical response of top-down, p-type silicon nanowire field-effect transistors exposed to water and mixtures of water and dioxane. First, the capacitive coupling of the back gate and the liquid gate via an Ag/AgCl electrode were compared in water. It was found that for liquid gating smaller potentials are needed to obtain similar responses of the nanowire compared to back gating. In the case of back gating, the applied potential couples through the buried oxide layer, indicating that the associated capacitance dominates all other capacitances involved during this mode of operation. Next, the devices were exposed to mixtures of water and dioxane to study the effect of these mixtures on the device characteristics, including the threshold voltage (V(T)). The V(T) dependency on the mixture composition was found to be related to the decreased dissociation of the surface silanol groups and the conductivity of the mixture used. This latter was confirmed by experiments with constant conductivity and varying water-dioxane mixtures.

  14. Dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Valentine, Jason

    While plasmonics metasurfaces have seen much development over the past several years, they still face throughput limitations due to ohmic losses. On the other hand, dielectric resonators and associated metasurfaces can eliminate the issue of ohmic loss while still providing the freedom to engineer the optical properties of the composite. In this talk, I will present our recent efforts to harness this freedom using metasurfaces formed from silicon and fabricated using CMOS-compatible techniques. Operating in the telecommunications band, I will discuss how we have used this platform to realize a number of novel functionalities including wavefront control, near-perfect reflection, and high quality factor resonances. In many cases the optical performance of these silicon-based metasurfaces can surpass their plasmonic counterparts. Furthermore, for some cases the surfaces are more amenable to large-area fabrication techniques.

  15. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT–PZT–PC and Cu–PZT–PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu–PZT–PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT–PZT–PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu–PZT–PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT–PZT–PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  16. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  17. Transport and dielectric properties of dense ionized matter from the average-atom RESEOS model

    NASA Astrophysics Data System (ADS)

    Ovechkin, A. A.; Loboda, P. A.; Falkov, A. L.

    2016-09-01

    Electron transport properties of warm and hot dense matter are calculated using two versions of the average-atom approach: Liberman's model and the neutral Wigner-Seitz-sphere model. Electrical conductivity calculations employed the extended Ziman formula, the relaxation-time approximation, the Zubarev method, and the Kubo-Greenwood formula. Thermal conductivities were evaluated in the relaxation-time approximation. The results obtained are in good agreement with experimental data and ab initio calculations. The origin of nonphysical features appearing in the DC electrical and thermal conductivities calculated with the relaxation-time approximation and the Zubarev method is analyzed. AC conductivity and dielectric properties of dense ionized matter are obtained from the radiative opacity data calculated using the RESEOS model.

  18. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  19. Structural, Optical and AC Electrical Properties of Ce3+-Doped TiO2-SiO2 Matrices

    NASA Astrophysics Data System (ADS)

    Vidyadharan, Viji; Vasudevan, Prathibha; Karthika, S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2015-08-01

    We report the structural, photoluminescence and alternating current (AC) electrical properties of Ce3+-doped titanosilicate matrices prepared by nonhydrolytic sol-gel method, with different annealing temperatures. The structural characterization of the prepared samples was done by x-ray diffraction, energy dispersive spectrum and Fourier transform infrared spectroscopy measurements. The thermal stability of the prepared matrices was studied by the differential scanning calorimetric analysis. The photoluminescence spectrum shows two luminescence bands centered at 360 nm and 464 nm corresponding to the transitions 2D3/2 to 2F7/2 and 2F5/2, respectively. The dielectric responses of the samples were investigated for the frequency range 1 kHz-3 MHz at room temperature. The variation of AC conductivity, real part of dielectric constant ɛ' and imaginary part of dielectric constant ɛ″ with frequency were also studied. The Cole-Cole parameters were calculated and the semicircles observed in the plots indicate a single relaxation process which can be modelled by an equivalent parallel resistor-capacitor circuit.

  20. Local electrical and dielectric properties of nanocrystalline solid oxide fuel cell electrolytes

    NASA Astrophysics Data System (ADS)

    Perry, Nicola Helen

    Reducing the operating temperature of solid oxide fuel cells (SOFCs), to improve durability and lower cost, requires an increase in the low temperature oxygen-ion conductivity of the electrolyte. This work investigates whether the electrolyte conductivity could be increased by decreasing the grain size into the nanoscale. Bulk electrolytes - cubic yttria-stabilized zirconia (YSZ, with 8mol% Y2O3), tetragonal zirconia polycrystal (TZP, with 3mol% Y2O3), and Sr- and Mg- co-doped LaGaO3 (LSGM) - were fabricated with grain sizes ranging from 10nm to 3mum, using commercial or sol-gel-derived nanopowders and various sintering techniques. Local grain boundary and grain core conductivities and dielectric constants were analyzed over a range of temperatures and atmospheres using AC-impedance spectroscopy and our novel nano-Grain Composite Model, and interpreted in terms of grain-size dependent defect chemistry (e.g. space charge models, local thermodynamics, and impurity/ acceptor segregation). All three oxides exhibited qualitatively similar electrical/ dielectric behavior. Their single crystal/ grain core dielectric constants exhibited an upturn with temperature, which was attributed to the onset of dipolar relaxation. Grain boundary dielectric constants were consistently higher than grain core dielectric constants at the nanoscale. n-GCM-derived electrical grain boundary half-widths agreed well with measured acceptor dopant segregation widths at grain boundaries. The local grain boundary conductivity was consistently increased in nanocrystalline vs. microcrystalline samples, although the mechanisms responsible for this behavior differed in each material. Grain core conductivity did not change with grain size in each case. Despite the increase in local grain boundary conductivity at the nanoscale, the total conductivity decreased monotonically with decreasing grain size in all three electrolytes; the grain boundaries remain barriers to transport (relative to grain cores

  1. Spectroscopic Investigations of Amorphous Complex Dielectric Materials.

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad

    1989-03-01

    Available from UMI in association with The British Library. A discussion of general properties of three systems of dielectric films i.e. MoO_3 and the mixed oxide systems MoO_3/In _2O_3 and MoO_3/SiO is presented. Composition, film thickness, substrate deposition temperature and annealing, all have a substantial effect on the structure and various properties of the films. General properties of these three systems of dielectric films include analysis by X-ray photoelectron spectroscopy, U.V/VIS and infra-red spectroscopy including the Fourier transform technique, electrical properties both D.C and A.C at both low and high fields, and electron paramagnetic resonance. A comprehensive comparison of all the results is carried out in a correlated manner and some new ideas are presented on an established semiconducting/dielectric material. (Abstract shortened by UMI.).

  2. Electrical properties of AC{sub 3}B{sub 4}O{sub 12}-type perovskite ceramics with different cation vacancies

    SciTech Connect

    Li, Guizhong; Chen, Zhi; Sun, Xiaojun; Liu, Laijun; Fang, Liang; Elouadi, Brahim

    2015-05-15

    Highlights: • AC{sub 3}B{sub 4}O{sub 12} perovskite with different concentration cation vacancies were prepared. • Cell parameter decreases with the increase of concentration of cation vacancies. • PTCO and CTO remain high dielectric permittivity but depress loss greatly. • Dielectric loss associates with cation vacancies and motion of oxygen vacancies. - Abstract: AC{sub 3}B{sub 4}O{sub 12}-type perovskite CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO), □{sub 0.34}Pr{sub 0.67}Cu{sub 3}Ti{sub 4}O{sub 12} (PCTO), □{sub 1}Cu{sub 3}Ta{sub 2}Ti{sub 2}O{sub 12} (CTTO), □{sub 2}Cu{sub 2}Ta{sub 4}O{sub 12} (CTO) ceramics with different concentration cation vacancies were prepared through traditional solid state reaction method. X-ray diffraction analysis indicated that CCTO and PCTO are perovskite cubic with space group Im-3 (no. 204) while CTTO and CTO are Pm-3 (no. 200). Cell parameter of the samples dramatically increases with the increase of cation vacancies. Dielectric permittivity of them maintains very high value of ∼10{sup 4} from room temperature to 550 K but the dielectric loss is depressed with the increase of cation vacancies in the same space group. The dielectric properties and conductivity behavior were described by the Debye relaxation and the universal dielectric response, respectively. The effect mechanism of cation vacancy and crystal structure on carrier transposition were discussed.

  3. Aluminum nanoparticle/acrylate copolymer nanocomposites for dielectric elastomers with high dielectric constants

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhang, Suki N.; Niu, Xiaofan; Liu, Chao; Pei, Qibing

    2014-03-01

    Dielectric elastomers are useful for large-strain actuation and energy harvesting. Their application has been limited by their low dielectric constants and consequently high driving voltage. Various fillers with high dielectric constants have been incorporated into different elastomer systems to improve the actuation strain, force output and energy density of the compliant actuators and generators. However, agglomeration may happen in these nanocomposites, resulting in a decrease of dielectric strength, an increase of leakage current, and in many instances the degree of enhancement of the dielectric constant. In this work, we investigated aluminum nanoparticles as nanofillers for acrylate copolymers. This metallic nanoparticle was chosen because the availability of free electrons could potentially provide an infinite value of dielectric constant as opposed to dielectric materials including ferroelectric nanocrystals. Moreover, aluminum nanoparticles have a self-passivated oxide shell effectively preventing the formation of conductive path. The surfaces of the aluminum nanoparticles were functionalized with methacrylate groups to assist the uniform dispersion in organic solutions and additionally enable copolymerization with acrylate copolymer matrix during bulk polymerization, and thus to suppress large range drifting of the nanoparticles. The resulting Al nanoparticle-acrylate copolymer nanocomposites were found to exhibit higher dielectric constant and increased stiffness. The leakage current under high electric fields were significantly lower than nanocomposites synthesized without proper nanoparticle surface modification. The dielectric strengths of the composites were comparable with the pristine polymers. In dielectric actuation evaluation, the actuation force output and energy specific work density were enhanced in the nanocomposites compared to the pristine copolymer.

  4. The conduction mechanism of Cu-Ge ferrite

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; El Taher, A. M.

    2010-09-01

    The electric conductivity, σ (DC and AC), drift mobility and dielectric properties of germanium-substituted copper ferrite, with the chemical formula CuGeFeO (where x=0.0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3), have been studied. Plots of lnσT versus 104/T (K) are linear and showed two sloping regions for all values of x except for the values 0.0 and 0.05, which showed one slope only. The two activation energies around a kink point called Tk were calculated. The electrical conduction in these ferrites is explained on the basis of the hopping mechanism. The values of the charge carrier mobility have been calculated from the experimental values of electrical conductivity which increased exponentially with increasing temperature. Dielectric properties such as dielectric loss tangent tanδ were measured at elevated temperature in the frequency range from 10 2 to 10 6 Hz. The variation of these parameters with temperature is explained qualitatively. An attempt is made to explain the possible mechanism.

  5. Optical properties and dielectric relaxation of polyvinylidene fluoride thin films doped with gadolinium chloride

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia

    2014-12-01

    In this study, the properties of pure and GdCl3-doped polyvinylidene fluoride (PVDF) films were investigated. X-ray diffraction revealed that the PVDF was composed of mixed α and β phases. Adding GdCl3 to PVDF decreased the crystallinity of the polymer matrix. At room temperature, in the ultraviolet-visible range both the absorbance (a) and extinction coefficient (k) of PVDF decreased with GdCl3 content, demonstrating that the optical response of the doped films improved because of increasing optical energy gap (Eg). We also measured the dielectric loss (ɛ″), electric modulus (M″), and ac conductivityac) at 300-450 K and 0.1-3000 kHz. The pure and doped PVDF exhibited different relaxation processes. The activation energy (Ea) of the αc relaxation decreased with increasing GdCl3 content, following an Arrhenius relationship. The behavior of the ac conductivity revealed that the conduction mechanism for studied films followed correlated barrier hopping model. The hopping distance (R) was calculated at different temperatures for all investigated samples.

  6. Study of dielectric and impedance properties of Mn ferrites

    NASA Astrophysics Data System (ADS)

    Mujasam Batoo, Khalid

    2011-02-01

    The paper reports on the effect of Al substitution on the structural and electrical properties of bulk ferrite series of basic composition MnFe 2-2 xAl 2 xO 4 (0.0≤ x≤0.5) synthesized using solid state reaction method. XRD analysis confirms that all the samples exhibit single phase cubic spinel structure excluding presence of any secondary phase. The dielectric constant shows a normal behaviour with frequency, whereas the loss tangent exhibits an anomalous behaviour with frequency for all compositions. Variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Fe +2 and Fe +3 as well as between Mn +2 and Mn +3 ions at octahedral sites. The complex impedance plane spectra shows the presence of two semicircles up to x=0.2, and only one semicircle for the higher values of x. The analysis of the data shows that the resistive and capacitive properties of the Mn ferrite are mainly due to processes associated with grain and grain boundaries.

  7. Correlation between ionic radii of metal azodye complexes and electrical conductivity.

    PubMed

    El-Ghamaz, N A; El-Sonbati, A Z; Diab, M A; El-Bindary, A A; Mohamed, G G; Morgan, Sh M

    2015-08-01

    5-(2,3-Dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) and its metal complexes with copper(II) (1), cobalt(II) (2) and nickel(II) (3) are synthesized and characterized by physico-chemical techniques. The thermal properties of the ligand (HL) and its metal complexes (1-3) are discussed. The thermal activation energies of decomposition (Ea) of HL and its metal complexes with Cu(II), Co(II) and Ni(II) are found to be 48.76, 36.83, 30.59 and 40.45 kJ/mol, respectively. The frequency and temperature dependence of ac conductivity, dielectric constants for HL and its complexes (1-3) are investigated in the temperature range 300-356 K and frequency range 0.1-100 kHz. Both of the ac conductivity and the values of the thermal activation energy for conduction, as well as the dielectric properties of the complexes of HL are found to depend on the nature of the metallic ions. The values of the thermal activation energies of electrical conductivity decrease with increasing the value of test frequency. The small polarons tunneling (SPT) is the dominant conduction mechanism for the ligand (HL), while for complex (2) the overlapping large tunneling model (OLPT) is the dominant conduction mechanism. The correlated barrier hopping (CBH) is the dominant conduction mechanism for both of the complexes (1) and (3).

  8. Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO3

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Mall, Ashish Kumar; Gupta, Rajeev

    2016-05-01

    Polycrystalline GaFeO3 (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO3 ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc21n symmetry over a wide range of temperature 300K to 600K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz-5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and ac conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.

  9. Optical and dielectrical properties of 2-hydroxy-1-naphthylideneaniline and its derivatives

    NASA Astrophysics Data System (ADS)

    El-Ghamaz, N. A.; Shoair, A. F.; El-Shobaky, A. R.; Abo-Yassin, H. R.

    2016-08-01

    The optical and electrical properties of 2-Hydroxy-1-naphthylideneaniline and its derivatives (HLn) have been investigated. The spectral distribution of absorption (α) coefficient for the ligands HL1 and HL4 showed five absorption peaks and shoulders which are assigned as π-π* and n-π* transitions. The optical energy gap (Eg) for HL1 and HL4 is investigated and found to be in the range of 2.09-2.27 eV depending on the function group and the type of electronic transition. The ac conductivity measurements showed a semiconductor behavior. The electrical conduction mechanism was also investigated and found to be correlated barrier-hopping (CBH) and quantum mechanical tunneling (QMT) mechanisms depending on the function group. The effect of adsorbed NH3 gas on the electrical conductivity and dielectric constants of ligand HL3 was also investigated.

  10. Dielectric properties of portland cement paste as a function of time since mixing

    NASA Astrophysics Data System (ADS)

    Camp, Paul R.; Bilotta, Stephen

    1989-12-01

    The dielectric properties of portland cement paste and mortar have been measured in the frequency range 100 Hz-7 MHz as a function of time since mixing. Over much of the spectrum, the ac conductance of the samples appears directly related to the amount of unbound water remaining in the sample and ionic conduction predominates. In addition, interesting structure was found in both the conductance and capacitance data at high frequencies as the free water content was reduced. We conclude that relatively simple measurements of this kind can be a useful tool in concrete research and may provide the basis for simple, in situ, nondestructive measurement of the degree of curing of concrete or for monitoring water migration in concrete structures. Measurements on sealed samples of partially or fully cured concrete reveal also the water-cement ratio of the original mix.

  11. Rietveld refinement and dielectric studies of Bi0.8Ba0.2FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Kaswan, Kavita; Agarwal, Ashish; Sanghi, Sujata; Rangi, Manisha; Jangra, Sandhaya; Singh, Ompal

    2016-05-01

    Polycrystalline Bi0.8Ba0.2FeO3 ceramic has been synthesized via conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c). With increase in temperature, the values of dielectric constant (ɛ') and dielectric loss (tan δ) are found to be increase at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. Further the ac conductivity data is analyzed by using Jonscher's universal power law. The values of frequency exponent `s' lies in the range 0.2 ≤ s ≤ 0.7 and decreases with increase in temperature which can be explained on the basis of CBH (Correlated Barrier Height) model.

  12. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  13. Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air

    SciTech Connect

    Cho, J. H.; Koo, I. G.; Choi, M. Y.; Lee, W. M.

    2008-03-10

    This study is aimed at demonstrating plasma-chemical ozone production based on low temperature atmospheric pressure glow discharge through nanoporous dielectric barriers. The 20 kHz ac driven discharge is formed in air or oxygen gas flowing in the axial direction of the cylindrical plasma reactor containing four parallel aluminum rods covered with nanoporous alumina films. The discharge utilizing nanoporous dielectric barrier is more uniform and more energy efficient in ozone generation than the discharge through smooth-surface dielectric barriers.

  14. Capacitance and conductance characterization of nano-ZnGa{sub 2}Te{sub 4}/n-Si diode

    SciTech Connect

    Fouad, S.S.; Sakr, G.B.; Yahia, I.S.; Abdel-Basset, D.M.; Yakuphanoglu, F.

    2014-01-01

    Graphical abstract: - Highlights: • XRD and DTA micrographs were used to study the structure of ZnGa{sub 2}Te{sub 4}. • C–V, G–V and R{sub s}–V of the diode characteristics have been analyzed for the first time. • Dielectric constant, dielectric loss, loss tangent and ac conductivity were determined. • The interfaces states were determined using conductance–voltage technique. • ZnGa{sub 2}Te{sub 4} is a good candidate for electronic device applications. - Abstract: Capacitance–voltage (C–V) and conductance–voltage (G–V) characteristics of p-ZnGa{sub 2}Te{sub 4}/n-Si HJD were studied over a wide frequency and temperature. Both the interface states density N{sub ss} and series resistance R{sub s} were strongly frequency and temperature dependent. The interface states density N{sub ss} is decreased with increasing frequency and increase with increasing temperature. The values of the built-in potential (V{sub bi}) were calculated and found to increase with increasing temperature and frequency. The values of capacitance C, conductance G, series resistance R{sub s}, corrected capacitance C{sub ADJ}, corrected conductance G{sub ADJ}, dielectric constant (ε′), dielectric loss (ε″), loss tangent (tan δ) and the AC conductivity (σ{sub ac}) are strongly dependent on the applied frequency, voltage and temperature. The obtained results show that the locations of N{sub ss} and R{sub s} have a significant effect on the electrical characteristics of the studied diode.

  15. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  16. Plasmonics without negative dielectrics

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2016-05-01

    Plasmonic phenomena are exhibited in light-matter interaction involving materials whose real parts of permittivity functions attain negative values at operating wavelengths. However, such materials usually suffer from dissipative losses, thus limiting the performance of plasmon-based optical devices. Here, we utilize an alternative methodology that mimics a variety of plasmonic phenomena by exploiting the well-known structural dispersion of electromagnetic modes in bounded guided-wave structures filled with only materials with positive permittivity. A key issue in the design of such structures is prevention of mode coupling, which can be achieved by implementing thin metallic wires at proper interfaces. This method, which is more suitable for lower frequencies, allows designers to employ conventional dielectrics and highly conductive metals for which the loss is low at these frequencies, while achieving plasmonic features. We demonstrate, numerically and analytically, that this platform can provide surface plasmon polaritons, local plasmonic resonance, plasmonic cloaking, and epsilon-near-zero-based tunneling using conventional positive-dielectric materials.

  17. Effect of tetra ionic substitution on the dielectric properties of Cu-ferrite

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; Zaki, H. M.

    2003-09-01

    X-ray diffraction (XRD), of the two systems of mixed ferrites Cu1+xTixFe2-2xO4 (where x = 0.0, 0.1, 0.2, 0.3, and 0.4); indicates that the samples of x = 0 (CuFe2O4) and x = 0.1 of the Cu-Ti system were formed in tetragonal structure and all other samples of the two system were formed in the cubic system.The ac conductivity , dielectric constant , dielectric loss and the loss tangent tan δ were determined against frequency at room temperature for Cu-Ge and Cu-Ti ferrites. The measurements of and tan δ were performed over a wide range of frequency and temperature.The Maxwell-Wagner model was applied to analyze the dielectric properties of the investigated systems, according to which the dielectric parameters such as the relaxation time . A value of 1 = 5 × 10-7 s was found for Cu-Ge ferrite and 2 = 1.85 × 10-6 s for Cu-Ti ferrites. The hopping rate (g) was found to be 2 × 106 s-1 and 5.4 × 105 s-1 for the two systems Cu-Ge and Cu-Ti ferrites, respectively.The conduction of the two-ferrite systems was discussed on the basis of the hopping mechanism. The activation energy for conduction was calculated and found in the range of 0.27-0.39 eV for Cu-Ge ferrite and 0.21-0.30 eV for Cu-Ti ferrite. (

  18. Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Shahnawaze Ansari, M.; Alimuddin

    2013-12-01

    Nanoparticles of basic composition Sn1-xCoxO2 (x=0.00, 0.01, 0.03, 0.05 and 0.1) were synthesized through the citrate-gel method and were characterized for structural properties using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the powder samples sintered at 500 °C for 12 h showed single phase rutile type tetragonal structure and the crystallite size decreased as the cobalt content was increased. FT-IR spectrum displayed various bands that came due to fundamental overtones and combination of O-H, Sn-O and Sn-O-Sn entities. The effect of Co doping on the electrical and magnetic properties was studied using dielectric spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The dielectric parameters (ε, tan δ and σac) show their maximum value for 10% Co doping. The dielectric loss shows anomalous behavior with frequency where it exhibits the Debye relaxation. The variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Sn2+ and Sn4+ as well as between Co2+ and Co3+ ions. The complex impedance analysis was used to separate the grain and grain boundary contributions in the system which shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. Hysteresis loops were observed clearly in M-H curves from 0.01 to 0.1% Co doped SnO2 samples. The saturation magnetization of the doped samples increased slightly with increase of Co concentration. However pure SnO2 displayed paramagnetism which vanished at higher values of magnetic field.

  19. Structural features of MoO3 doped sodium sulpho borophosphate glasses by means of spectroscopic and dielectric dispersion studies

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, A. V.; Srinivasa Rao, Ch.; Murali Krishna, G.; Ravi Kumar, V.; Veeraiah, N.

    2012-05-01

    Na2SO4-B2O3-P2O5 glasses doped with different concentrations of MoO3 (ranging from 0 to 10.0 mol%) were prepared. The valence states of molybdenum ions and their coordination in the glass network have been investigated using optical absorption, ESR, and IR spectroscopy. The analysis of the spectroscopic results has indicated that the molybdenum ions exist in both Mo6+ (occupy octahedral and tetrahedral positions) and Mo5+ (occupy octahedral positions) local coordination sites and the redox ratio increases with the concentration of MoO3. Dielectric properties have been studied over a frequency range (102-105 Hz) and within the temperature range from 30 to 250 °C. The ac conductivity is observed to increase, whereas the activation energy for the conductivity exhibited decreasing trend, with the concentration of MoO3. In the low temperature region, the ac conductivity is nearly temperature independent and is varied linearly with frequency. Such behaviour is explained based on quantum mechanical tunneling (QMT) model. The dispersion of real part of dielectric constant ɛ'(ω), and loss, tan δ, with temperature have been analyzed on the basis of space charge and orientation polarization models.

  20. A modified field model of waveguide reflection dielectric resonator for microwave measurements of dielectric properties

    NASA Astrophysics Data System (ADS)

    Sheen, Jyh

    2008-02-01

    A modified electromagnetic field model of a waveguide reflection dielectric resonator is suggested for measurements of dielectric properties of the homogeneous and isotropic medium in the microwave frequencies. Reflection signal is measured for the calculations of dielectric properties. A dielectric rod sample is put inside of a rectangular cavity made by a microwave waveguide. The sample's dielectric constant and loss tangent are computed from the unloaded quality factor and the resonant frequency of the TE01δ mode as well as the structure dimensions. For first time, this waveguide reflection dielectric resonator is applied on dielectric constant measurement. A modified field model of the waveguide reflection resonator is developed from the Itoh-Rudokas model [IEEE Trans. Microwave Theory Tech. MTT-25, 52 (1977)] of the parallel-plate dielectric resonator. This modification is justified by the dramatic improvement in the accuracy of dielectric constant measurements. The main merit of this field model is that it provides very simple electromagnetic field expressions of this TE01δ field mode. In addition, accuracies of various methods for calculating the power factor and conducting loss, which have never been given before, will be investigated in this article.

  1. Effect of exceeding the concentration limit of solubility of silver in perovskites on the dielectric and electric properties of half doped lanthanum-calcium manganite

    NASA Astrophysics Data System (ADS)

    Rahmouni, H.; Cherif, B.; Smari, M.; Dhahri, E.; Moutia, N.; Khirouni, K.

    2015-09-01

    Dielectric and electric properties of La0.5Ca0.2Ag0.3MnO3 (LCMO-Ag) manganite have been investigated using admittance spectroscopy technique. AC conductivity analysis shows that the conductivity verifies the Jonscher universal power law. The deduced exponent 's' values prove that hopping model is the dominating mechanism in the material. From dc-electrical resistivity study, conduction process is found to be dominated by thermally activated small polaron hopping (SPH) mechanism. Complex impedance analysis (CIA) indicates the presence of relaxation phenomenon and allows to modelize the sample in terms of an electrical equivalent circuit. Also, impedance study confirms the contribution of grain boundary in the electrical properties. Dielectric studies indicate that the La0.5Ca0.2Ag0.3MnO3 compound has a Debye-like relaxation. The temperature dependence of permittivity is well fitted by the modified Curie-Weiss law. It is found that dielectric permittivity behavior and the estimated relaxation parameter value (γ≈2), support the evidence of the relaxor nature of La0.5Ca0.2Ag0.3MnO3 material. The high dielectric constant and the low loss tangent indicate the material is promising for tunable capacitor applications.

  2. Enhancement of electroactive β phase crystallization and dielectric constant of PVDF by incorporating GeO2 and SiO2 nanoparticles.

    PubMed

    Kar, Epsita; Bose, Navonil; Das, Sukhen; Mukherjee, Nillohit; Mukherjee, Sampad

    2015-09-21

    Poly(vinylidene fluoride) (PVDF) nanocomposites are recently gaining importance due to their unique dielectric and electroactive responses. In this study, GeO2 nanoparticles/PVDF and SiO2 nanoparticles/PVDF nanocomposite films were prepared by a simple solution casting technique. The surface morphology and structural properties of the as-prepared films were studied by X-ray diffraction, scanning electron microscopy, and FT-IR spectroscopy techniques. The studies reveal that the incorporation of GeO2 or SiO2 nanoparticles leads to an enhancement in the electroactive β phase fraction of PVDF due to the strong interactions between the negatively charged nanoparticle surface and polymer. Analysis of the thermal properties of the as-prepared samples also supports the increment of the β phase fraction in PVDF. Variation of dielectric constant, dielectric loss, and ac conductivity with frequency and loading fraction of the nanoparticles were also studied for all the as-prepared films. Dielectric constant of the nanocomposite films increases with increasing nanofiller concentration in PVDF. 15 mass% SiO2-loaded PVDF film shows the highest dielectric constant, which can be attributed to the smaller size of SiO2 nanoparticles and the homogeneous and discrete dispersion of SiO2 nanoparticles in PVDF matrix. PMID:26260070

  3. Dielectric and structural properties of diffuse ferroelectric phase transition in Pb1.85K1.15Li0.15Nb5O15 ceramic

    NASA Astrophysics Data System (ADS)

    Choukri, E.; Gagou, Y.; Mezzane, D.; Abkhar, Z.; El Moznine, R.; Luk'yanchuk, I.; Saint-Grégoire, P.; Kavokin, A. V.

    2011-02-01

    We studied the structural and dielectric properties of new Tetragonal Tungsten Bronze (TTB) ceramics Pb1.85K1.15Li0.15Nb5O15 that was synthesized by solid-state reaction. We pay a special attention to the diffuse phase transition (DPT) that occurs close to 425 °C. Using dielectric measurements in a frequency range of 10 Hz-1 MHz and in the temperature range 30-560 °C, we have shown that the real permittivity close to DPT is well described by Santos-Eiras phenomenological model. Space-charge polarization, relaxation phenomena and free charges conductivity have been analyzed using dielectric spectroscopy impedance and modulus characterization. Cole-Cole plots show a non-Debye (polydispersive) type relaxation. In paraelectric phase the Arrhenius activation energy was determined as Eτ = 0.72 eV. We demonstrated that frequency dependence of ac conductivity at different temperatures obeys the Jonscher's universal law: σac = σdc + A(ω)n.

  4. Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method

    NASA Astrophysics Data System (ADS)

    Odeh, I.; El Ghanem, H. M.; Mahmood, S. H.; Azzam, S.; Bsoul, I.; Lehlooh, A.-F.

    2016-08-01

    This work describes the synthesis, structural, dielectric, and magnetic properties of Y-type Ba2Co2-xZnxFe12O22 hexaferrites prepared by the sol-gel n method. X-ray diffraction (XRD) results revealed a structure of the Zn-substituted samples consistent with the standard patterns for Y-type hexaferrites. The saturation magnetization at room temperature increased with Zn-substitution. Further, the coercive field for the sample with x=2.0 was found to have the lowest value. The results of the dielectric measurements indicated that all samples are insulators, and that the ac conductivity decreased with increasing zinc content. However, the ac conductivity increased with increasing dc bias. The effect of the dc bias was more pronounced on samples with low zinc content. The real part of the dielectric constant decreased markedly with increasing frequency at constant applied bias voltage. Further, the activation energy for the prepared samples depends strongly on the Zn concentration.

  5. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  6. Dielectric Relaxation Behavior of Exfoliated Graphite Nanoplatelet-Filled EPDM Vulcanizates

    NASA Astrophysics Data System (ADS)

    Dash, Bikash Kumar; Achary, P. Ganga Raju; Nayak, Nimai C.; Choudhary, R. N. P.

    2016-09-01

    The present study investigates the dielectric relaxation and mechanical behavior of exfoliated graphite nanoplatelet (XgnP)-filled ethylene-propylene-diene terpolymer (EPDM) vulcanizates with variation in frequency, temperature and xGnP loading. The samples were prepared by a solution-cast method using toluene as the solvent followed by compression molding. The enhanced permittivity and ac conductivity which sharply changes above 20 wt.% of xGnP loading shows the conducting behavior of the composites. The real parts of the impedance for the vulcanizates were continuously decreased up to 40 wt.% whereas the complex part shows an increasing tendency at the same loading expressing the increase in the conductivity of the vulcanizates. The percolation threshold of the xGnP-loaded EPDM vulcanizates was at 25 wt.% of xGnP loading. A more prominent effect of temperature on dielectric loss tangent is observed at 85°C, and 100°C. The ac conductivity increases with the rise in temperature. The Nyquist plots of xGnP-reinforced EPDM show the small intercepts on the Z' axis at 85°C, and 100°C for the 40 wt.% loading. The experimental complex impedance plots were in good agreement with the model-fitted plots. The tensile strength of 15 wt.% xGnP-filled vulcanizate increases up to 12 times more than the unfilled EPDM whereas the elongation at break (%) increases up to 700% at the same loading of xGnP. Young's modulus has been doubled and quadrupled for the vulcanizates with 20 and 40 wt.% of xGnPs, respectively, compared to the pure EPDM samples. The results indicate that the xGnP-EPDM conductive composite can find applications in the area of antistatic material, electrostatic discharge gaskets, etc.

  7. Structural evolution of nanoporous ultra-low k dielectrics under voltage stress

    NASA Astrophysics Data System (ADS)

    Raja, Archana; Shaw, Thomas; Grill, Alfred; Laibowitz, Robert; Heinz, Tony

    2013-03-01

    High speed interconnects in advanced integrated circuits require ultra-low-k dielectrics. Reduction of the dielectric constant is achieved via incorporation of nanopores in structures containing silicon, carbon, oxygen and hydrogen (SiCOH). We study nanoporous SiCOH films of k=2.5 and thicknesses of 40 - 400 nm. Leakage currents develop in the films under long-term voltage stress, eventually leading to breakdown and chip failure. Previous work* has shown the build-up of trap states as dielectric breakdown progresses. Using FTIR spectroscopy we have tracked the reorganization of the bonds in the SiCOH networks induced by voltage stress. Our results indicate that the cleavage of the Si-C and SiC-O bonds contribute toward increase in the density of bulk trapping states as breakdown is approached. AC conductance and capacitance measurements have also been carried out to describe interfacial and bulk traps and mechanisms. Comparison of breakdown properties of films with differing carbon content will also be presented to further delineate the role of carbon. *Atkin, J.M.; Shaw, T.M.; Liniger, E.; Laibowitz, R.B.; Heinz, T.F. Reliability Physics Symposium (IRPS), 2012 IEEE International Supported by the Semiconductor Research Corporation

  8. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  9. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  10. Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites

    NASA Astrophysics Data System (ADS)

    Ashima; Sanghi, Sujata; Agarwal, Ashish; Reetu; Ahlawat, Neetu; Monica

    2012-07-01

    M-type hexaferrites with compositions BaFe12O19 (BFO), SrFe12O19 (SFO), Ba0.5Sr0.5Fe12O19 (BSFO), and Ba0.5Pb0.5Fe12O19 (BPFO) were synthesized by commercial solid state reaction method. The Rietveld refinement of x-ray powder diffraction revealed a single hexagonal phase with space group P63/mmc for BFO, SFO, and BSFO samples, whereas BPFO sample contains hematite (α-Fe2O3) phase with space group R3c along with the M-type main phase. All the samples show dispersion in dielectric constant (ɛ') and dielectric loss (tan δ) values with frequency. The values of ɛ' and tan δ increase with increase in temperature due to increase in the number of charge carriers and their mobilities, which are thermally activated. The reciprocal temperature dependence of conductivityac) and the most probable relaxation time (τM″) satisfies the Arrhenius relation. A perfect overlapping of the normalized plots of modulus isotherms on a single "super curve" for all the studied temperatures reveals a temperature independence of dynamic processes involved in conduction and for relaxation. Further, the complex plots of M* (M″ vs M') indicate that dc conductivity dominates in the region below the M″max point. Above M″max, the variations follow Jonscher power law (σ = Aωs) implying that ac conductivity is dominating in this region. Among the prepared samples, SFO hexaferrite has lowest values of σac, ɛ', and tan δ making it suitable for use in microwave devices.

  11. Achieving all-dielectric left-handed metamaterials via single-sized dielectric resonators

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xu, Zhuo; Du, Bai; Xia, Song; Wang, Jiafu; Ma, Hua; Qu, Shaobo

    2012-02-01

    We demonstrate that using single-sized dielectric resonators, all-dielectric left-handed metamaterial (LHM) can be achieved in the C-band microwave regime. The single-sized rectangular resonator, operating under higher-order resonant modes, possesses electric and magnetic responses simultaneously, leading to the double-negative resonance behavior. We find that the electric/magnetic resonance can be enhanced by elongating the size of the rectangular resonators along the electric field direction. It is shown that polarization currents in dielectric resonators are the same as conduction currents in cut-wire pairs. Experiments were carried out to verify the designed all-dielectric LHM. The proposed method provides a convenient route to all-dielectric LHMs.

  12. Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of Ba{sub 4}Nd{sub 2}Fe{sub 2}Nb{sub 8}O{sub 30} ceramics

    SciTech Connect

    Fei Liu, Shu; Jun Wu, Yong; Li, Juan; Ming Chen, Xiang

    2014-02-24

    Effects of oxygen vacancies on the dielectric, electrical, and ferroelectric properties of Ba{sub 4}Nd{sub 2}Fe{sub 2}Nb{sub 8}O{sub 30} ceramics were investigated. A dielectric relaxation above T{sub c} can be ascribed to the trap-controlled ac conduction around doubly ionized oxygen vacancies. The dc conductivity of the N{sub 2}-annealed and O{sub 2}-annealed samples is attributed to the long-range motion of the V{sub o}{sup ⋅⋅}, and that of the as-sintered sample is considered to be governed by the electronic and oxygen-vacancy ionic mixed conduction mechanism. Low concentration and random distributed oxygen vacancies are propitious to the domain switching, while high concentration and allied oxygen defects hinder the domain-wall movement.

  13. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  14. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  15. Study of the dielectric properties of weathered granite, basalt and quartzite by means of broadband dielectric spectroscopy over a wide range of frequency and temperature.

    NASA Astrophysics Data System (ADS)

    Araujo, Steven; Delbreilh, Laurent; Antoine, Raphael; Dargent, Eric; Fauchard, Cyrille

    2016-04-01

    Broadband Dielectric Spectroscopy (BDS) allows the measurement of the complex impedance of various materials over a wide range of frequency (0.1 Hz to 2 MHz) and temperature (-150 to 400°C). Other properties can be assessed from this measurement such as permittivity and conductivity. In this study, the BDS is presented to figure out the complex behaviour of several rock parameters as a function of the temperature and frequency. Indeed, multiple processes might occur such as interfacial polarization, AC and DC conductivity. The measurements of a weathered granite, basalt and quartzite were performed. The activation energy associated to each process involved during the measurement can be calculated by following the relaxation time as a function of the temperature, taking into account the Havriliak-Négami model. The principle of the technique and the whole study is presented here and several hypothesis are advanced to explain the dielectric behaviour of rocks. Finally, as the range of frequency and temperature of the BDS method is common to several electromagnetic and electrical techniques applied in subsurface geophysics, some perspectives are proposed to better understand geophysical measurements in hydrothermal systems.

  16. Preparation and characterisation of crystalline tris(acetylacetonato)Fe(III) films grown on p-Si substrate for dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2007-02-01

    Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.

  17. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  18. Magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15)

    SciTech Connect

    Zuo, X. Z.; Yang, J. Yuan, B.; Tang, X. W.; Zhang, K. J.; Zhu, X. B.; Song, W. H.; Dai, J. M.; Song, D. P.; Sun, Y. P.

    2015-03-21

    We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ε{sub r}, complex impedance Z″, the dc conductivity σ{sub dc}, and hopping frequency f{sub H} manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450–750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively. The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature T{sub c} decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ E{sub a} ≤ 2.72 eV)

  19. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  20. Structural investigation of vanadium ions doped Li2Osbnd PbOsbnd B2O3sbnd P2O5 glasses by means of spectroscopic and dielectric studies

    NASA Astrophysics Data System (ADS)

    Yusub, S.; Narendrudu, T.; Suresh, S.; Krishna Rao, D.

    2014-11-01

    In the present investigation we report the synthesis of a series of transparent glasses of composition 20Li2Osbnd 20PbOsbnd 45B2O3sbnd (15-x) P2O5: xV2O5 with eight values of x ranging from 0 to 2.5 mol%, and their characterization. X-ray diffraction (XRD) spectra reflected the amorphous nature of the glasses. Optical absorption, electron paramagnetic resonance (EPR) spectra and FTIR study of vanadyl ions in the present glass network have been analyzed. The optical absorption and EPR investigations have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio (V4+/V5+) is observed to increase with the increase in concentration of V2O5. Dielectric properties viz., dielectric constant ε‧(ω), loss tan δ, electrical moduli M‧(ω), M″(ω), a.c. conductivity σac over an extensive scale of frequency and temperature have been investigated as a function of V2O5 concentration. The dispersion of dielectric constant ε‧(ω) with temperature has been interpreted by space charge polarization model. The dielectric loss and electrical moduli variation with frequency and temperature exhibited relaxation effects. These effects are ascribed to V4+ ions. The a.c. conductivity of the prepared glasses is perceived to escalate with the hike in V2O5 concentration whereas the activation energy for conduction exhibits a reverse trend. The conductivity mechanism is explained on the basis of polaronic transfer between V4+ and V5+ ions. The low temperature a.c. conductivity mechanism is elucidated by the quantum mechanical tunneling model. The growth in the values of dielectric parameters with raise in the concentration of V2O5 is due to V4+ ions which act as modifiers. The investigation of these results has indicated that at higher concentrations of V2O5, the VO2+ ions in the glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry.

  1. Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2014-02-01

    M-type hexaferrite BaCr x Ga x Fe12-2 x O19 ( x = 0.2) powders have been synthesized by use of a sol-gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 109 Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz-3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell-Wagner two-layer model and Koop's phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves.

  2. Characterisation of Proton Conducting Polymer Electrolyte Based on Pan

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Selvasekarapandian, S.; Rajeswari, N.; Sikkanthar, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    The polymer electrolytes composed of polyacrylonitrile (PAN) with various concentration of ammonium nitrare (NH4NO3) salt have been prepared by solution casting method, using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by Xray diffraction analysis. The complex formation between polymer and dissociated salt has been confirmed by Fourier transform infrared spectroscopy. From the Ac impedance spectroscopic analysis, the ionic conductivity of 20 mol% NH4NO3 doped polymer complex has been found to be 2.742 × 10-6 S cm-1 at room temperature. The conductivity has been increased when the temperature is increased. The activation energy of 20 mol% NH4NO3 doped polymer electrolyte was calculated using Arrhenius plot and it has been found to be 0.58 eV. The dielectric permitivitty (ɛ*) and electric modulus (m*) have been discussed.

  3. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  4. Atomic layer deposition of ZrO2 as gate dielectrics for AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon

    NASA Astrophysics Data System (ADS)

    Ye, G.; Wang, H.; Arulkumaran, S.; Ng, G. I.; Hofstetter, R.; Li, Y.; Anand, M. J.; Ang, K. S.; Maung, Y. K. T.; Foo, S. C.

    2013-09-01

    In this Letter, the device performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) on silicon substrate using 10-nm-thick atomic-layer-deposited ZrO2 as gate dielectrics is reported. The ZrO2 AlGaN/GaN MISHEMTs showed improved maximum drain current density (Idmax) with high peak transconductance (gmmax) as comparison to Schottky-barrier-gate HEMTs (SB-HEMTs). Also compared to SB-HEMTs, reverse gate leakage current was four orders of magnitude lower and forward gate bias extended to +7.4 V. At energy from -0.29 eV to -0.36 eV, low interface trap state density evaluated by AC conductance and "Hi-Lo frequency" methods indicates good quality of atomic-layer-deposited ZrO2 dielectric layer.

  5. The electrical characteristics of the dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf

    2016-06-01

    The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

  6. The dielectric behavior of Zn1-xNixO/NiO two-phase composites

    NASA Astrophysics Data System (ADS)

    Joshi, D. C.; Thota, S.; Nayak, S.; Harish, D. D.; Mahesh, P.; Kumar, A.; Pamu, D.; Qureshi, Md

    2014-10-01

    The effect of nickel content on the dielectric permittivity ‘ɛr’ and the ac-electrical conductivity of Zn1-xNixO/NiO (0 ≤ x ≤ 0.55) two-phase composites were investigated. The antiferro to the paramagnetic Néel temperature TN (~ 523 K) of the NiO associated with the structural phase transition from the rhombohedral to the cubic phase has been exploited to realize a dielectric anomaly across 523-541 K in the Zn1-xNixO/NiO composite system. Also, a giant dielectric peak across 410 °C in pure NiO was observed together with an anomaly across TN. The formation of tiny polar clusters due to the compositional heterogeneity for the samples with x ≥ 0.16 drove the system to exhibit a weakly coupled relaxor-like behavior with a locally varying maximum temperature of T* (~ 530 K at 106 Hz), obeying the Vogel-Fulcher law and the Uchino-Nomura criteria. The values of the diffuseness-exponent ‘γ’ (1.91) and the shape-parameter ‘δ’ (88 °C) were determined by using the empirical scaling relation (ɛA/ɛr = 1 + 0.5 (T - TA)2/ δ2), which is often used to describe relaxor-like behavior. Our results provide strong evidence for the variable-range-hopping of charge carriers between the localized states. The effects of non-ohmic sample-electrode contact impedance and negative-capacitance on the global dielectric behavior of a Zn1-xNixO/NiO composite system are discussed.

  7. Dielectric and electrical characteristics of La0.5Na0.5Ga0.5V0.5O3

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2016-07-01

    La0.5Na0.5Ga0.5V0.5O3 (LNGVO) ceramic was prepared using a high-temperature solid-state reaction method. The structural phase, microstructure, dielectric, ferroelectric and optical properties of the material were systematically investigated. The preliminary structural analysis using x-ray diffraction (XRD) data shows the formation of the material in an orthorhombic crystal structure at room temperature. Detailed studies of dielectric and electrical properties have been carried out over a wide range of frequency (1 kHz-1 MHz) and temperature (25-450 °C) in order to elucidate the basic mechanism of the conduction and relaxation process. The dielectric characteristics show that the ceramic is a relaxor with strong diffuse phase transition and frequency dispersion. The nature of the variation of ac conductivity as a function of frequency obeys the universal power law, and confirms the existence of a hopping conduction mechanism in the material. The material also exhibits ferroelectricity at room temperature with a very low value of remnant polarization. The ionic conductivity and transport number of the ferroelectric ionic conductor were obtained with the standard experiment and calculation respectively. The material shows NTCR behavior similar to that of a semi-conductor. Similar behavior has also been observed in the study of I-V characteristics of the material.

  8. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  9. Dielectric properties of aerogels

    SciTech Connect

    Hrubesh, L.W.; Keene, L.E.; Latorre, V.R. )

    1993-07-01

    We have measured the real (dielectric constant) and imaginary (loss factor) components of the complex relative permittivity at 298 [degree]K using microwave frequencies (2, 10, and 18--40 GHz), for bulk SiO[sub 2]-aerogels and for two types of organic aerogels, resorcinol-formaldehyde (RF) and melamine-formaldehyde (MF). Measured dielectric constants are found to vary linearly between values of 1.0 and 2.0 for aerogel densities from 10 to 500 kg/m[sup 3]. For the same range of densities, the measured loss tangents vary linearly between values of 2[times]10[sup [minus]4] and 7[times]10[sup [minus]2]. The observed linearity of the dielectric properties with density in aerogels at microwave frequencies shows that their dielectric behavior is more gas-like than solid-like. The dielectric properties of aerogels are shown to be significantly affected by the adsorbed water internal to the bulk material. For example, water accounts for 7% of the dielectric constant and 70% of the loss at microwave frequencies for silica aerogels. Because of their very high porosity, even with the water content, the aerogels are among the few materials exhibiting such low dielectric properties. Our measurements show that aerogels with greater than 99% porosity have dielectric constants less than 1.03; these are the lowest values ever reported for a bulk solid material.

  10. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  11. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-03-14

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  12. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  13. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    NASA Astrophysics Data System (ADS)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  14. Dielectric Characterization of Costal Cartilage Chondrocytes

    PubMed Central

    Stacey, Michael W.; Sabuncu, Ahmet Can; Beskok, Ali

    2013-01-01

    Background Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enables the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy. Methods Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes. Results The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance. Conclusions We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues General significance and interest The studydescribes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders. PMID:24016606

  15. Dielectric breakdown studies of Teflon perfluoroalkoxy at high temperature

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Teflon perfluoroalkoxy (PFA) was evaluated for use as a dielectric material in high-temperature high-voltage capacitors for space applications. The properties that were characterized included the dc dielectric strength at temperatures up to 250 C and the permittivity and dielectric loss as a function of frequency, temperature and voltage. To understand the breakdown mechanism taking place at high temperatures, the pre-breakdown discharge and conduction currents, and the dependence of dielectric strength on thickness of the film were determined. Confocal laser microscopy was performed to diagnose for microimperfections within the film structure. The results obtained show a significant decrease in the dielectric strength and an increase in dielectric loss with an increase in temperature, suggesting that impulse thermal breakdown could be a responsible mechanism in PFA film at temperatures above 150 C.

  16. Temperature and frequency-dependent dielectric properties of Zn substituted Li-Mg ferrites

    NASA Astrophysics Data System (ADS)

    Shaikh, A. M.; Bellad, S. S.; Chougule, B. K.

    1999-05-01

    The DC and AC resistivity ( ρ DC, ρ AC), dielectric constant ( ɛ') and dielectric loss tangent (tan δ) of Zn substituted Li-Mg ferrites having the general formula Li xMg 0.4 Zn 0.6-2 xFe 2+ xO 4 (where x=0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3) have been investigated as a function of composition, temperature and frequency. The compositional variation of DC resistivity and dielectric constant show the inverse trend with each other. The sample with x=0.15 (Zn=0.3) shows lowest DC resistivity and highest dielectric constant. The dielectric constant increases slowly with temperature in the beginning and then abruptly at about 473 K and above. The AC resistivity and dielectric constant of all the samples decrease with increase in frequency exhibiting normal ferrimagnetic behaviour. The variation of dielectric loss tangent with frequency showed maxima in the 2-40 kHz frequency range. These maxima are also found to shift towards low-frequency region as the content of Zn increases. All the variations are explained on the basis of Fe 2+ and Fe 3+ concentrations on octahedral sites and electronic hopping frequency between Fe 2+ and Fe 3+ ions.

  17. Photoelectric charging of partially sunlit dielectric surfaces in space

    NASA Technical Reports Server (NTRS)

    De, B. R.; Criswell, D. R.

    1977-01-01

    Sunlight-shadow effects may substantially alter the charging situation for a dielectric surface. The sunlight-shadow boundary tends to be the site of intense multipole electric fields. Charges on a sunlit dielectric surface have a finite effective mobility. The charge distribution tends to resemble that on a conducting surface. A boundary between a conducting and a dielectric surface may not represent a conductivity discontinuity when this boundary is sunlit; charges may migrate at a nontrivial rate across the boundary. A contracting or expanding sunlit area may experience a supercharging.

  18. Dielectric decrement effects in electrokinetics

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen; Moran, Jeffrey

    2015-11-01

    Understanding the nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces is a key issue in electrokinetics. In recent studies, Nakayama and Andelman [J. Chem. Physics 2015] Hatlo et al. [EPL 2012], and Zhao and Zhai [JFM 2013] demonstrated that dielectric decrement significantly influences the ionic concentration in the electric double layer (EDL) at high zeta potential, leading to the formation of a condensed layer near the particle's surface. In this presentation, we apply the dielectric decrement model to study two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles. Our aim is to rely on numerical simulations to incorporate nonlinear effects including crowding effects due to the finite size of ions, dielectric decrement in the EDL, surface conduction, concentration polarization and advection in the bulk solution. In parallel, we derive a simplified composite layer model that enables us to obtain analytical estimates of the physical quantities involved in the physical description of the problem.

  19. Cation mass dependence of the nearly constant dielectric loss in alkali triborate glasses.

    PubMed

    Rivera, A; León, C; Varsamis, C P E; Chryssikos, G D; Ngai, K L; Roland, C M; Buckley, L J

    2002-03-25

    Electrical ac conductivity measurements on alkali triborate glasses ( M2O x 3B2O3, M = Li, Na, K, and Rb) were performed at temperatures down to 8 K and frequencies up to 1 GHz. All samples show a nearly constant dielectric loss (NCL), at the limit of high frequencies and/or low temperatures. The magnitude of the NCL is found to decrease as m(-1/3) with increasing alkali ion mass m. This quantitative result for the NCL, closely related to the mean-square displacement of ions, indicates that the origin of the NCL might be related to vibrational relaxation of the ions in the anharmonic potentials that cage them, and the cage is decaying very slowly with time. PMID:11909481

  20. Synthesis, crystal structure, spectroscopic, thermal and dielectric properties of a novel semi-organic pentachloroantimonate (III)

    NASA Astrophysics Data System (ADS)

    Lahbib, Ikram; Rzaigui, Mohamed; Smirani, Wajda

    2016-09-01

    A new organic-inorganic hybrid material of formula (C10H15N2F)5(SbCl5)5.2H2O was synthesized and characterized by X-Ray diffraction analysis. It crystallizes in the monoclinic space group P21/c with the following unit cell parameters a = 15.819(4) Å, b = 17.685(3) Å, c = 30.529(4) Å, Z = 4 and V = 8540(3) Å3. The examination of the structure shows that the three-dimensional frameworks are produced by Nsbnd H⋯Cl, Nsbnd H⋯O, Csbnd H⋯Cl and Nsbnd H⋯F, Csbnd H⋯F hydrogen bonding and Cl⋯Cl interactions. IR, Raman and UV-Visible spectroscopies were also used to characterize this compound. In addition, the fluorescent properties of this compound have been investigated in the liquid state at room temperature. Differential scanning calorimetry (DSC) has revealed a structural phase transition of the order-disorder type around 370 K. Dielectric investigations revealed a step-wise change of the electric permittivity at Ttr characteristic of the crystal in the high-temperature phase. The evolution of dielectric constant as a function of temperature of the sample has been investigated in order to determine some related parameters. Measurements of AC conductivity as a function of frequency at different temperatures indicated a hopping conduction mechanism and/or reorientational motion.

  1. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  2. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  3. 47 CFR 15.207 - Conducted limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz... for operation and which do not operate from the AC power lines or contain provisions for...

  4. Dielectric cure monitoring: Preliminary studies

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Semmel, M. L.

    1984-01-01

    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

  5. Effects of Low Temperature on Charging of Spacecraft Dielectrics

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Schneider, Todd A.; Vaughn, Jason A.

    2008-01-01

    Spacecraft dielectric charging, sometimes called deep-dielectric-charging or bulk-charging, occurs when high energy electrons imbed themselves in dielectric materials, and the charge density builds up, sometimes to breakdown levels. Charges usually bleed off slowly due to material conductivity. At very low (cryogenic) temperatures, the dielectric conductivity decreases until charges may remain and build up over weeks, months, or years. In those cases, the guidelines given in NASA and industry documents for when dielectric charging may become important are misleading. Arcing tests of spacecraft cables at liquid nitrogen temperatures and very low flux levels have been done at NASA MSFC for the JWST Project. In this paper, we describe the results of those tests and analyze their important implications for cryogenic spacecraft cable design and construction.

  6. Studies on structural, dielectric, and transport properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}

    SciTech Connect

    Pradhan, Dhiren K.; Misra, Pankaj; Sahoo, Satyaprakash; Katiyar, Ram S.; Puli, Venkata S.; Pradhan, Dillip K.

    2014-06-28

    We report the crystal structure, dielectric, transport, and magnetic properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}. Rietveld refinement results of X-ray diffraction patterns confirm the phase formation of the material with cubic crystal structure (Fd3{sup ¯}m). The frequency dependent ac conductivity behavior obeys the Jonscher's power law and is explained using the jump relaxation model. The observed behavior of temperature dependent bulk conductivity is attributed to the variable-range hopping of localized polarons. The correlation of polaron conduction and high permittivity behavior of NZFO is established on the basis of long range and short range conduction mechanisms. The complex impedance spectra clearly show the contribution of both grain and grain boundary effect on the electrical properties.

  7. Electrical, dielectric, photoluminescence and magnetic properties of ZnO nanoparticles co-doped with Co and Cu

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Muthukumaran, S.

    2015-01-01

    X-ray diffraction spectra of Zn0.96-xCu0.04CoxO (0≤x≤0.04) nanoparticles synthesized by co-precipitation method confirmed the hexagonal wurtzite structure without any secondary phase formation. The dielectric dispersion was high at lower frequencies and almost frequency independent at higher frequencies. The observed higher dielectric constant, dielectric loss and ac conductivity in Co=2% doped Zn0.96Cu0.04O samples was explained in terms of average crystalline size and number of nano-dipoles. Photoluminescence spectra of undoped and Co-doped Zn0.96Cu0.04O samples showed four distinct bands, (i) ultra violet emission bands around 382-391 nm, (ii) violet emission band centered at 417 nm, (iii) blue emission bands centered at 478 nm and (iv) green emission bands centered at 523 nm. The observed minimum of Igreen/Iblue revealed that Co=1% doped Zn0.96Cu0.04O sample had minimum defects sites and vacancies and it saturated after Co=3% doping. Undoped Zn0.96Cu0.04O sample had higher magnetization and it was suppressed by Co-doping due to the enhanced antiferromagnetic interaction between neighbouring Cu-Cu ion.

  8. Growth, thermal, dielectric and mechanical properties of L-phenylalanine-benzoic acid: A nonlinear optical single crystal

    NASA Astrophysics Data System (ADS)

    Tamilselvan, S.; Vimalan, M.; Vetha Potheher, I.; Rajasekar, S.; Jeyasekaran, R.; Antony Arockiaraj, M.; Madhavan, J.

    2013-10-01

    An efficient amino acid family nonlinear optical single crystal L-phenylalanine-benzoic acid (LPB) was conveniently grown by slow evaporation technique at room temperature. The crystal system and the lattice parameters were analyzed by single crystal X-ray diffraction studies. The grown crystal has excellent transmission in the entire visible region and its lower cut-off wavelength was found to be 248 nm. The SHG efficiency of the grown crystal was found to be 1.6 times higher than that of KDP crystal. The Laser damage threshold value of LPB has been found to be 6.5 GW/cm2. The sample was thermally stable up to 134 °C. Microhardness, dielectric and AC/DC conductivity measurements were made along (0 0 1) plane and reported for the first time. Microhardness studies revealed that the sample belongs to hard nature. Frequency dependent dielectric constant was measured for different temperatures and found maximum dielectric constant of 14 for 363 K. Photoconductivity studies of LPB divulged its negative photoconducting nature.

  9. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  10. Permittivity of dielectric composite materials comprising graphene nanoribbons. The effect of nanostructure.

    PubMed

    Dimiev, Ayrat; Zakhidov, Dante; Genorio, Bostjan; Oladimeji, Korede; Crowgey, Benjamin; Kempel, Leo; Rothwell, Edward J; Tour, James M

    2013-08-14

    New lightweight, flexible dielectric composite materials were fabricated by the incorporation of several new carbon nanostructures into a dielectric host matrix. Both the permittivity and loss tangent values of the resulting composites were widely altered by varying the type and content of the conductive filler. The dielectric constant was tuned from moderate to very high values, while the corresponding loss tangent changed from ultralow to extremely high. The data exemplify that nanoscale changes in the structure of the conductive filler result in dramatic changes in the dielectric properties of composites. A microcapacitor model most explains the behavior of the dielectric composites.

  11. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  12. Broadband dielectric spectroscopy of BPDA/ODA polyimide films

    NASA Astrophysics Data System (ADS)

    Khazaka, R.; Locatelli, M. L.; Diaham, S.; Bidan, P.; Dupuy, L.; Grosset, G.

    2013-02-01

    Dielectric spectroscopy of a high-temperature photosensitive polyimide was investigated in wide temperature and frequency ranges during heating and cooling cycles (from -150 to 370 °C and from 0.1 to 1 MHz). During the heating phase measurements two sub-glass relaxation processes were observed, noted as γ and β relaxations. The γ relaxation appears at a low temperature (around -60 °C at 1 kHz) with an activation energy of 0.44 eV during the heating phase and disappears during the cooling one, indicating that the peak is initially related to the presence of water in the polyimide films. The β relaxation appears at higher temperatures (around 180 °C at 1 kHz) with a higher activation energy of about 1.5 eV. The β peak location and intensity for low temperatures (between 100 °C and 120 °C) change slightly on comparing the heating and cooling spectra, indicating also the effect of water molecules, which may act as a plasticizer. However, for higher temperatures, the β peak does not show any significant effect of the thermal cycle, and the relaxation is mainly attributed to the non-cooperative relaxation of the polyimide molecules. The ac conductivity (σ‧) values show that the electronic hopping process is influenced by the dynamics of the segmental and macromolecular chains of the polyimide in the γ and β relaxation regions. At high temperatures (>250 °C) a plateau region appears in the ac conductivity allowing the extraction of the dc conductivity values, which are not affected between the heating and cooling measurements. This leads us to conclude that there are no significant morphological or chemical changes in the polyimide even for temperatures higher than its glass transition one under N2 for short periods. For temperatures above 300 °C an increase in the values of relative permittivity is observed and referred to the Maxwell-Wagner-Sillars or to the electrode polarization phenomena. In this range the activation energy of the polarization peak

  13. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  14. Alternate film dielectric materials

    SciTech Connect

    Foster, J.C. . Neutron Devices Dept.); Harris, J.O.; Martinez, J.I. )

    1990-01-01

    This paper presents data on polymeric dielectric films evaluated to support the design of high-energy-density capacitors. Evaluated materials include polycarbonate (two sources), polyphenylene sulfide, polyvinylidene fluoride, polyethermide (three sources), polyimide (four sources), polyethersulfone, and polyetherether ketone. A polyester was evaluated as the control material since many of our prior designs utilized this dielectric. The film evaluations were based on dielectric constant and dissipation factor variation as a function of temperature from {minus}55{degree}C to 300{degree}C, as well as dielectric breakdown strength. Additionally, film/foil capacitors in a dry, wrap-and-fill configuration were fabricated and tested to determine insulation resistance, breakdown voltage, and radiation hardness. Results will be presented for all the evaluations based on the several criteria. 7 refs., 4 figs., 4 tabs.

  15. Isolation of sequences flanking Ac insertion sites by Ac casting.

    PubMed

    Wang, Dafang; Peterson, Thomas

    2013-01-01

    Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.

  16. Chain Dynamics in Solid Polymers and Polymerizing Systems as Revealed by Broadband Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Graham

    2008-08-01

    A number of techniques are used to study the chain-dynamics of solid polymers, including those of dielectric relaxation [1-4], dynamic mechanical thermal analysis (DMTA) [1, 5], multinuclear NMR relaxations [6], quasi-elastic dynamic light scattering [7] and neutron scattering [8] (QELS & QENS) and transient fluorescence depolarization (TFD) [9]. Each technique has its own particular probe of the dynamics in a material. e.g. dielectric relaxation gives information on the angular motions of molecular chain-dipoles (for dipole relaxation) and the translational motions of ions (for f-dependent electrical conduction); NMR relaxations relate to the angular motions of chemical bonds; QELS relates to fluctuations in local refractive index; QENS to the time-dependent van Hove correlation function (suitably-defined) for proton-containing groups; TFD to the angular motions of fluorescent groups in a chain. Due to its relevance to practical applications of materials, DMTA is pre-eminent among the many physical techniques applied to solid polymers, but interpretations of behaviour in terms of molecular properties remain difficult since the direct link between an applied macroscopic stress and the molecular response of polymer chains in a bulk material remains an unsolved problem. Of the above techniques, Broadband Dielectric Spectroscopy (BDS) offers several advantages. (a) Materials may be studied in the frequency range 10-6 to 1010 Hz, over wide ranges of temperature and applied pressure, using commercially-available instrumentation. (b) Since the electrical capacitance of a film is inversely proportional its thickness, free-standing and supported films may be studied down to nm-thicknesses, giving e.g. information on the behaviour of the dynamic Tg as sample thickness approaches molecular dimensions. (c) Theoretical interpretations of dielectric relaxation and a.c. conduction are well-established in terms of Fourier transforms of molecular time correlation functions (TCFs

  17. Dielectric cavity relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. A.

    2010-02-01

    An alteration in the structure of the A6 relativistic magnetron is proposed, which introduces an extra degree of freedom to its design and enhances many of its quality factors. This modification involves the partial filling of the cavities of the device with a low-loss dielectric material. The operation of a dielectric-filled A6 is simulated; the results indicate single-mode operation at the desired π mode and a substantially cleaner rf spectrum.

  18. Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics

    SciTech Connect

    Garten, L. M. Trolier-McKinstry, S.; Lam, P.; Harris, D.; Maria, J.-P.

    2014-07-28

    Loss reduction is critical to develop Ba{sub 1−x}Sr{sub x}TiO{sub 3} thin film tunable microwave dielectric components and dielectric energy storage devices. The presence of ferroelectricity, and hence the domain wall contributions to dielectric loss, will degrade the tunable performance in the microwave region. In this work, residual ferroelectricity—a persistent ferroelectric response above the global phase transition temperature—was characterized in tunable dielectrics using Rayleigh analysis. Chemical solution deposited Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films, with relative tunabilities of 86% over 250 kV/cm at 100 kHz, demonstrated residual ferroelectricity 65 °C above the ostensible paraelectric transition temperature. Frequency dispersion observed in the dielectric temperature response was consistent with the presence of nanopolar regions as one source of residual ferroelectricity. The application of AC electric field for the Rayleigh analysis of these samples led to a doubling of the dielectric loss for fields over 10 kV/cm at room temperature.

  19. Electrical stability study of metal/dielectric systems

    NASA Astrophysics Data System (ADS)

    Ou, Ya

    The primary focus of this research work is to study the fundamental electrical properties of the metal/dielectric system subjected to thermal and electrical stresses. Metal ions tend to drift into the dielectric under a sufficiently strong electric field at elevated temperatures. The existence of metal ions can modify the dielectric properties of the surrounding insulator. In this thesis, the metal ion penetration process, including the mechanisms of the generation of metal ions and the kinetics of the diffusion/drift process of ions into the dielectric are presented. A diffusion/drift model has been adopted to provide insight into the movement of metal ions in the dielectric matrix. The effect of trapped metal ions on the electrical properties of the dielectric is also explored. Bias temperature stressing method combined with capacitance-voltage measurement is utilized to study the metal ion penetration process. Metals with higher oxidation tendency drift more readily into porous dielectrics, such as porous methyl silsesquioxane and porous SiCOH. Interfacial oxides, especially sub-oxides are not thermodynamically robust and therefore may break down under electric field and consequently release free metal ions to drift into the underneath dielectric materials. However, the formation of a robust and continuous thin layer of metal oxide such as stoichiometric aluminum oxide at the Al/dense SiO2 interface has shown its ability to dramatically reduce the penetration of metal ions. The effects of trapped metal ions on the electrical property of the dielectric are investigated by using a current-voltage ramping method. High temperature conduction mechanisms of Ta/porous SiCOH/Si structure have been found to transit from the Schottky emission regime to the Poole-Frenkel emission regime as more metal ions drift into the dielectrics. Metal ions in the dielectric act as electron traps that consequently enhance the transport of electrons through the dielectric under external

  20. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  1. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  2. Method for producing high dielectric strength microvalves

    DOEpatents

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  3. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  4. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  5. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  6. Evaluation of high temperature capacitor dielectrics

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  7. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  8. Effect of Gd3+ doping on structural, optical and frequency-dependent dielectric response properties of pseudo-cubic BaTiO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Borah, Manjit; Mohanta, Dambarudhar

    2014-06-01

    We report on the structural, optical and dielectric characterization of solid state derived, pseudo-cubic nanoscale barium titanates (BTs) with gadolinium (Gd3+) as substitutional dopant. Referring to X-ray diffractograms, apart from the BT peaks related to perovskite structure, the non-existence of any additional peaks due to byproducts has revealed that Gd3+ has undergone substitutional doping into the BT host lattice. The well-separated BT nanoparticles of typical size ˜10-15 nm were observed through electron microscopy studies. Following a direct, allowed type carrier transition ( n=1/2), a reduction in the optical band gap value (from 3.28 to 3.255 eV) was observed when the Gd-doping level was varied within 0-7 %. Conversely, the Urbach energy followed an increasing trend, from a value of 0.741 to 1.879 eV. Furthermore, the dielectric constant showed a decreasing tendency with doping content and with increasing frequency. However, in the low-frequency region, the loss tangent (tan δ), which is the combined result of orientational polarization and electrical conduction, was found to be quite high in the doped samples as compared to their un-doped counterpart. The frequency-dependent electrical data were also analyzed in the framework of conductivity and impedance formalisms. In particular, the ac conductivity which varies as ˜ ω s approaches ideal Debye behavior ( s→1) for a low Gd level and a higher doping concentration did not show improved dielectric feature of the host. The incorporation of rare-earth (Gd3+) ions into the BT host system could greatly manifest dielectric relaxation and carrier conduction mechanisms, in a given frequency range, and thus can find immense scope in miniaturized nanoelectronic elements including ceramic capacitors and transducers.

  9. AC plasma anemometer—characteristics and design

    NASA Astrophysics Data System (ADS)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2015-08-01

    The characteristics and design of a high-bandwidth flow sensor that uses an AC glow discharge (plasma) as the sensing element is presented. The plasma forms in the air gap between two protruding low profile electrodes attached to a probe body. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean and fluctuating velocity components. The anemometer circuitry includes resistance and capacitance elements that simulate a dielectric-barrier to maintain a diffuse plasma, and a constant-current feedback control that maintains operation within the desired glow discharge regime over an extended range of air velocities. Mean velocity calibrations are demonstrated over a range from 0 to 140 m s-1. Over this velocity range, the mean output voltage varied linearly with air velocity, providing a constant static sensitivity. The effect of the electrode gap and input AC carrier frequency on the anemometer static sensitivity and dynamic response are investigated. Experiments are performed to compare measurements obtained with a plasma sensor operating at two AC carrier frequencies against that of a constant-temperature hot-wire. All three sensors were calibrated against the same known velocity reference. An uncertainty based on the standard deviation of the velocity calibration fit was applied to the mean and fluctuating velocity measurements of the three sensors. The motivation is not to replace hot-wires as a general measurement tool, but rather as an alternative to hot-wires in harsh environments or at high Mach numbers where they either have difficulty in surviving or lack the necessary frequency response.

  10. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  11. Dielectric properties of FeNbO4 ceramics prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Devesa, S.; Graça, M. P.; Henry, F.; Costa, L. C.

    2016-11-01

    In this work, FeNbO4 powders were prepared using the sol-gel method. The fine powder particles were pressed into pellets and sintered at temperatures between 500 and 1200 °C. The powder was studied by X-ray diffraction and Raman spectroscopy. The morphology of the grains was investigated by scanning electron microscopy. Heat-treatment of the particles results in higher crystallinity, larger grains, and a decrease in the porosity of the material. The dielectric properties were measured in the frequency range of 102-106 Hz, in function of temperature (200-370 K). In all samples the real (ε‧) and imaginary (ε″) parts of the complex permittivity increase with increasing annealing temperature. The sample heat treated at 1200 °C shows the highest ε‧, > 104 at 300 K. All samples show a dielectric relaxation phenomenon, analysed using the modulus formalism. The evolution of the ac conduction activation energy and of the activation energy associated with the relaxation mechanism, is directly related with the changes promoted by the heat treatment in the structure and in the morphology of the base powders.

  12. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.

    PubMed

    Han, Shu-Jen; Reddy, Dharmendar; Carpenter, Gary D; Franklin, Aaron D; Jenkins, Keith A

    2012-06-26

    Recently, graphene field-effect transistors (FET) with cutoff frequencies (f(T)) between 100 and 300 GHz have been reported; however, the devices showed very weak drain current saturation, leading to an undesirably high output conductance (g(ds)= dI(ds)/dV(ds)). A crucial figure-of-merit for analog/RF transistors is the intrinsic voltage gain (g(m)/g(ds)) which requires both high g(m) (primary component of f(T)) and low g(ds). Obtaining current saturation has become one of the key challenges in graphene device design. In this work, we study theoretically the influence of the dielectric thickness on the output characteristics of graphene FETs by using a surface-potential-based device model. We also experimentally demonstrate that by employing a very thin gate dielectric (equivalent oxide thickness less than 2 nm), full drain current saturation can be obtained for large-scale chemical vapor deposition graphene FETs with short channels. In addition to showing intrinsic voltage gain (as high as 34) that is comparable to commercial semiconductor FETs with bandgaps, we also demonstrate high frequency AC voltage gain and S21 power gain from s-parameter measurements.

  13. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field. PMID:25314449

  14. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    NASA Astrophysics Data System (ADS)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2016-10-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' } ) and imaginary (ɛ ^' ' } ) parts of the complex permittivity (ɛ ^* ) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  15. Low temperature dielectric properties of YMn0.95Ru0.05O3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Okram, G. S.; Kaurav, N.; Gaur, N. K.

    2013-02-01

    The single phase hexagonal YMn0.95Ru0.05O3 compound has been synthesized via solid state reaction method at sintering temperature 1280°C with space group P63cm (25-1079). The detailed dielectric properties were evaluated over broad temperature and frequency ranges. An obvious dielectric relaxation was observed near the antiferromagnetic (AFM) transition temperature. The temperature dependence of the ac resistivity at low frequency infers the semiconducting behavior and favored the variable range hopping conduction model. The obtained experimental data in the temperature range of our study can be described by the equation ρ(T) = ρ0exp[(T*/T)1/4]. The fitting results are used for the calculation of the temperature scale T* ˜ 0.8 × 104 K and finally the density of state at Fermi level N(EF). The activation energy Ea ˜ 0.0314 eV is calculated from the plot, peak temperature of the loss tangent near the magnetic transition region versus frequency using Arrhenius law.

  16. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  17. Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor

    NASA Astrophysics Data System (ADS)

    Barış, Behzad

    2013-12-01

    Al/rubrene/p-Si Schottky diode has been fabricated by forming a rubrene layer on p type Si by using the spin coating method. The frequency and voltage dependent dielectric constant (ε‧), dielectric loss (ε″), tangent loss (tanδ), electrical modulus (M‧ and M″), and ac electrical conductivity (σ) properties of Al/rubrene/p-Si Schottky diodes have been investigated in the frequency range of 1 kHz-1 MHz at room temperature. It is found that the values of the ε‧, ε″ and tanδ decrease with increasing frequency while an increase is observed in σ and the real component (M‧) of the electrical modulus. The values of ε‧, ε″, and tanδ were found as 5.01, 2.55, and 0.51 for 1 kHz and 2.46, 0.069, and 0.028 for 1 MHz at zero bias, respectively. Furthermore, the imaginary component (M″) of the electric modulus showed a peak that shifts to a higher voltage with decreasing frequency.

  18. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  19. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  20. AC-3 audio coder

    NASA Astrophysics Data System (ADS)

    Todd, Craig

    1995-12-01

    AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.

  1. Possible mechanism of charge transport and dielectric relaxation in SrO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    SciTech Connect

    Majhi, Koushik; Varma, K. B. R.; Rao, K. J.

    2009-10-15

    Transparent SrBi{sub 2}B{sub 2}O{sub 7} glasses were prepared via melt-quenching technique and characterized using differential scanning calorimetry and x-ray powder diffraction. The ac conductivities of the glasses were studied as a function of frequency (100 Hz-10 MHz) at different temperatures. The frequency dependence of conductivity has been analyzed using Almond-West expression. The exponent n was nearly unaffected by temperature. Impedance and modulus spectroscopies were employed to further examine the electrical data. Dielectric relaxation exhibited a stretched exponential behavior with a stretching exponent beta independent of temperature. From conductivity analysis we have proposed that the charge transport occurs through the participation of nonbridging oxygen (NBO), which switches positions in a facile manner. The stretched exponential behavior appears to be a direct consequence of the NBO switching mechanism of charge transport.

  2. Possible mechanism of charge transport and dielectric relaxation in SrO-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Majhi, Koushik; Varma, K. B. R.; Rao, K. J.

    2009-10-01

    Transparent SrBi2B2O7 glasses were prepared via melt-quenching technique and characterized using differential scanning calorimetry and x-ray powder diffraction. The ac conductivities of the glasses were studied as a function of frequency (100 Hz-10 MHz) at different temperatures. The frequency dependence of conductivity has been analyzed using Almond-West expression. The exponent n was nearly unaffected by temperature. Impedance and modulus spectroscopies were employed to further examine the electrical data. Dielectric relaxation exhibited a stretched exponential behavior with a stretching exponent β independent of temperature. From conductivity analysis we have proposed that the charge transport occurs through the participation of nonbridging oxygen (NBO), which switches positions in a facile manner. The stretched exponential behavior appears to be a direct consequence of the NBO switching mechanism of charge transport.

  3. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  4. Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization.

    PubMed Central

    Asami, K; Hanai, T; Koizumi, N

    1980-01-01

    Dielectric measurements of Escherichia coli suspensions were carried out over a frequency range from 10 kHz to 100 MHz, and marked dielectric dispersions having characteristic frequency of approximately 1 MHz were observed. On the basis of the cell model that a spheroid is covered with two confocal shells, a dielectric theory was developed to determine accurately four electrical parameters for E. coli cells such as the conductivity of the cell wall, the dielectric constant of the cell membrane, and the dielectric constant and the conductivity of the protoplasm. The observed data were analyzed by means of the procedure based on the dielectric theory to yield a set of plausible electrical parameters for the cells. By taking account of the size distribution of the cells and a dielectric relaxation of the protoplasm, the observed dispersion curves were successfully reconstituted by the present theory. PMID:7020783

  5. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    NASA Astrophysics Data System (ADS)

    Song, Jian; Tang, Jingfeng; Wang, Youyin; Wei, Liqiu; Ren, Chunsheng; Yu, Daren

    2015-05-01

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  6. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  7. Influence of Eu impurity on the dielectric properties of Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6} crystals

    SciTech Connect

    Malyshkina, O. V. Pedko, B. B.; Lisitsin, V. S.

    2015-03-15

    The dielectric characteristics of barium-strontium niobate crystals with Eu impurities of 2000, 4000, 8000, and 16 000 ppm are presented. The dielectric hysteresis loops observed during heating and exposure to an electric field at room temperature are compared. It is shown that the evolution of the loops in time occurs as a result of sample heating under an ac electric field.

  8. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  9. High dielectric constant polymer nanocomposites for embedded capacitor applications

    NASA Astrophysics Data System (ADS)

    Lu, Jiongxin

    Driven by ever growing demands of miniaturization, increased functionality, high performance and low cost for microelectronic products and packaging, embedded passives will be one of the key emerging techniques for realizing the system integration which offer various advantages over traditional discrete components. Novel materials for embedded capacitor applications are in great demand, for which a high dielectric constant ( k), low dielectric loss and process compatibility with printed circuit boards are the most important prerequisites. To date, no available material satisfies all these prerequisites and research is needed to develop materials for embedded capacitor applications. Conductive filler/polymer composites are likely candidate material because they show a dramatic increase in their dielectric constant close to the percolation threshold. One of the major hurdles for this type of high-k composites is the high dielectric loss inherent in these systems. In this research, material and process innovations were explored to design and develop conductive filler/polymer nanocomposites based on nanoparticles with controlled parameters to fulfill the balance between sufficiently high-k and low dielectric loss, which satisfied the requirements for embedded capacitor applications. This work involved the synthesis of the metal nanoparticles with different parameters including size, size distribution, aggregation and surface properties, and an investigation on how these varied parameters impact the dielectric properties of the high-k nanocomposites incorporated with these metal nanoparticles. The dielectric behaviors of the nanocomposites were studied systematically over a range of frequencies to determine the dependence of dielectric constant, dielectric loss tangent and dielectric strength on these parameters.

  10. Rietveld refinement and dielectric studies of Bi{sub 0.8}Ba{sub 0.2}Fe{sub 0.95}V{sub 0.05}O{sub 3} ceramic

    SciTech Connect

    Priyanka, Agarwal, A. Ahlawat, N. Sanghi, S. Rani, S.

    2014-04-24

    Polycrystalline Bi{sub 0.8}Ba{sub 0.2}Fe{sub 0.95}V{sub 0.05}O{sub 3} ceramic has been prepared by the conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c) with average particle size of 29 nm. The values of dielectric constant (ε′) and dielectric loss (tan δ) increases with increasing temperature at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. The Jonscher’s universal power law used to analyze the ac conductivity. In the measured temperature range, the values of frequency exponent ‘s’ are less than one and shows a continous decrease which is attributed to the short range translational hopping assisted by large polaron hopping mechanisms.

  11. Superdirective dielectric nanoantennas

    NASA Astrophysics Data System (ADS)

    Krasnok, Alexander E.; Simovski, Constantin R.; Belov, Pavel A.; Kivshar, Yuri S.

    2014-06-01

    We introduce the novel concept of superdirective nanoantennas based on the excitation of higher-order magnetic multipole moments in subwavelength dielectric nanoparticles. Our superdirective nanoantenna is a small Si nanosphere containing a notch, and is excited by a dipole located within the notch. In addition to extraordinary directivity, this nanoantenna demonstrates efficient radiation steering at the nanoscale, resulting from the subwavelength sensitivity of the beam radiation direction to variation of the source position inside the notch. We compare our dielectric nanoantenna with a plasmonic nanoantenna of similar geometry, and reveal that the nanoantenna's high directivity in the regime of transmission is not associated with strong localization of near fields in the regime of reception. Likewise, the absence of hot spots inside the nanoantenna leads to low dissipation in the radiation regime, so that our dielectric nanoantenna has significantly smaller losses and high radiation efficiency of up to 70%.

  12. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  13. The Influence of Dielectric Decrement on Electrokinetics.

    PubMed

    Zhao, Hui; Zhai, Shengjie

    2013-06-01

    We treat the dielectric decrement induced by excess ion polarization as a source of ion specificity and explore its impact on electrokinetics. We employ a modified Poisson-Nernst-Planck (PNP) equations accounting for the dielectric decrement. The dielectric decrement is determined by the excess ion polarization parameter α and when α = 0 the standard PNP model is recovered. Our model shows that ions saturate at large zeta potentials (ζ). Because of ion saturation, a condensed counterion layer forms adjacent to the charged surface, introducing a new length scale, the thickness of the condensed layer (lc ). For the electro-osmotic mobility, the dielectric decrement weakens the electro-osmotic flow owing to the decrease of the dielectric permittivity. At large ζ, when α ≠ 0, the electro-osmotic mobility is found to be proportional to ζ/2, in contrast to ζ predicted by the standard PNP model. This is attributed to ion saturation at large ζ. In terms of the electrophoretic mobility Me , we carry out both an asymptotic analysis in the thin-double-layer limit and solve the full modified PNP model to compute Me . Our analysis reveals that the impact of the dielectric decrement is intriguing. At small and moderate ζ, the dielectric decrement decreases Me with an increasing α. At large ζ, it is well known that the surface conduction becomes significant and plays an important role in determining Me . It is observed that the dielectric decrement effectively reduces the surface conduction. Hence in stark contrast, Me increases as α increases. Our predictions of the contrast dependence of the mobility on α at different zeta potentials qualitatively agree with experimental results on the dependence of the mobility among ions and provide a possible explanation for such ion specificity. Finally, the comparisons between the thin-double-layer asymptotic analysis and the full simulations of the modified PNP model suggest that at large ζ the validity of the thin

  14. Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Murugesan, C.; Sathyamoorthy, B.; Chandrasekaran, G.

    2015-08-01

    Gd3+ ion-substituted manganese ferrite nanoparticles with the chemical formula MnGdxFe2-xO4 (x = 0.0, 0.05, and 0.1) were synthesized by sol-gel auto combustion method. Thermal stability of the as-prepared sample was analyzed using thermo gravimetric and differential thermal analysis (TG-DTA) and the result reveals that the prepared sample is thermally stable above 300 °C. Structural and morphology studies were performed using powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Indexed PXRD patterns confirm the formation of pure cubic spinel structure. The average crystallite sizes calculated using Sherrer’s formula decreased from 47 nm to 32 nm and lattice constant was enhanced from 8.407 Å to 8.432 Å. The FTIR spectrum of manganese ferrite shows a high frequency vibrational band at 564 cm-1 assigned to tetrahedral site and a low frequency vibrational band at 450 cm-1 assigned to octahedral site which are shifted to 556 cm-1 and 439 cm-1 for Gd3+ substitution and confirm the incorporation of Gd3+ into manganese ferrite. SEM analysis shows the presence of agglomerated spherical shaped particles at the surface. Room temperature dielectric and magnetic properties were studied using broadband dielectric spectroscopy (BDS) and vibrating sample magnetometry (VSM). Frequency dependent dielectric constant, ac conductivity and tan delta were found to increase with Gd3+ ion substitution. The measured values of saturation magnetization decrease from 46.6 emu g-1 to 41 emu g-1 with increase in Gd3+ concentration and coercivity decreases from 179.5 Oe to 143 Oe.

  15. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  16. Dielectric Monitoring of Curing Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Semmel, Marie L.

    1987-01-01

    Report describes preliminary attempts at dielectric monitoring of curing of graphite/epoxy and carbon/phenolic composites. Objective is to develop dielectric monitoring for optimizing curing process and reduce incidence of failures of produced composite structures.

  17. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  18. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  19. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  20. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  1. Note: optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems.

    PubMed

    Moscicki, J K; Sokolowska, D; Kwiatkowski, L; Dziob, D; Nowak, J

    2014-02-01

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  2. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    SciTech Connect

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J.; Kwiatkowski, L.

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  3. Optimization of structural and dielectric properties of CdSe loaded poly(diallyl dimethyl ammonium chloride) polymer in a desired frequency and temperature window

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-01-01

    In the present paper, investigations of CdSe loaded poly(diallyl dimethyl ammonium chloride) (PDADMAC) nanocomposites and pure PDADMAC synthesized by wet chemical technique have been carried out. Fourier transform infrared and X-ray diffraction analysis have been performed to reveal the structural details of pure polymer and polymer nanocomposite (PNC). The dielectric behavior of pure polymer and PNC has been recorded, which results in higher value of the real and imaginary part of dielectric constant for PNC, as compared with pure PDADMAC. The increase is attributed to the addition of CdSe quantum dots to the pure polymer. The contribution of ionic and electronic polarization has been observed at higher frequency. The theoretical fitting of Cole-Cole function to the experimental data of dielectric constant of PNC and pure PDADMAC results in the determination of relaxation time and conductivity of space charge carriers. The CdSe loaded polymer nanocomposite has been used as an electrolyte in the battery fabrication with configuration Al/PNC/Ag2O. The ac conductivity measurements have been carried out for both samples in a frequency window of 1 kHz-5 MHz and at different temperatures varying from 298 K to 523 K. Activation energy (Ea) has been determined for pure polymer as well as PNC and is found to be less for PNC, as compared with pure polymer. Further, impedance measurement at different temperatures results in two frequency ranges corresponding to ionic conduction and blocking electrode effect. The value of bulk resistance for pure polymer and PNC has been found to be 3660 Ω and 442 Ω, respectively, at 298 K temperature. Electric modulus has been determined and is observed to support the dielectric constant data; it further reveals the deviation from Debye behavior at a higher frequency.

  4. Instrument sequentially samples ac signals from several accelerometers

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.

    1967-01-01

    Scanner circuit sequentially samples the ac signals from accelerometers used in conducting noise vibration tests, and provides a time-averaged output signal. The scanner is used in conjunction with other devices for random noise vibration tests.

  5. Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Ghodake, U. R.; Chaudhari, N. D.; Kambale, R. C.; Patil, J. Y.; Suryavanshi, S. S.

    2016-06-01

    In this work, Mn substituted Mg-Zn spinel ferrites having general formula Zno.4Mg0.6-xMnxFe2O4 (0≤x≤0.30) have been synthesized by oxalate precursor chemical method and investigated their structural, magnetic and electric properties. X-ray diffraction (XRD) is used to study the crystal structure of synthesized materials. XRD study reveals the formation of polycrystalline cubic spinel lattice structure without any impurity phase having crystallite size in the range from 39.97 nm to 45.62 nm. Scanning electron micrographs revealed, increase in grain size (D) with increase in Mn2+ content up to x=0.10; then it decreases for x>0.10. Energy dispersive x-ray analysis (EDAX) confirms the presence of Mg2+, Mn2+, Fe3+, Zn2+ and O2- ions as per the stoichiometry. The magnetic moment (nB), with Mn2+ substitution is found to increase initially up to x=0.10 and then it deceases with further Mn2+ substitution. The observed variation in the magnetic moment (nB) is explained by considering the variation of saturation magnetization, anisotropy constant, density values and exchange interaction. The d.c. electrical resistivity decreased with increase in temperature in accordance with semiconducting behavior. Furthermore, the conductivity was found to obey the Arrhenius relation with a change in slope at critical temperature (i.e. the Curie temperature). The increase in d.c. resistivity is attributed to the hindering of Verwey mechanism between Fe2+⇔Fe3+ ions and Mn2+⇔Mn3+. The dielectric constant (ε‧) measurement revealed the dielectric dispersion behavior in accordance with the Maxwell-Wagner model and Koops phenomenological theory, which is responsible for conduction and polarization. The dielectric characteristics (ε‧, ε″ and tan δ) exhibit dispersion due to Maxwell-Wagner type interfacial polarization. The values of dielectric constant (ε‧) and a.c. resistivity (ρac) exhibit highest magnitude at x=0.10 and decreases further with Mn2+ substitution.

  6. Dielectric spectroscopy of monatomic alcohols

    NASA Astrophysics Data System (ADS)

    Baida, A. A.; Rudakov, A. V.; Agaev, S. G.

    2013-04-01

    The frequency dependences of permittivity ɛ( f) and dielectric loss tanδ( f) of monatomic alcohols are measured in range of frequencies f from 0.025 to 1000 kHz. Dielectric relaxation is observed in the investigated frequency range. Empirical correlation equations describing the relationships between the dielectric characteristics and physicochemical properties of monatomic alcohols are obtained.

  7. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models

    NASA Astrophysics Data System (ADS)

    Clerc, J. P.; Giraud, G.; Laugier, J. M.; Luck, J. M.

    1990-05-01

    We review theoretical and experimental studies of the AC dielectric response of inhomogeneous materials, modelled as bond percolation networks, with a binary (conductor-dielectric) distribution of bond conductances. We first summarize the key results of percolation theory, concerning mostly geometrical and static (DC) transport properties, with emphasis on the scaling properties of the critical region around the percolation threshold. The frequency-dependent (AC) response of a general binary model is then studied by means of various approaches, including the effective-medium approximation, a scaling theory of the critical region, numerical computations using the transfer-matrix algorithm, and several exactly solvable deterministic fractal models. Transient regimes, related to singularities in the complex-frequency plane, are also investigated. Theoretical predictions are made more explicit in two specific cases, namely R-C and RL-C networks, and compared with a broad variety of experimental results, concerning, for example, granular composites, thin films, powders, microemulsions, cermets, porous ceramics and the viscoelastic properties of gels.

  8. Measurement of electric fields and estimation of dielectric susceptibility

    NASA Astrophysics Data System (ADS)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  9. The effects of vacuum ultraviolet radiation on low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Sinha, H.; Ren, H.; Nichols, M. T.; Lauer, J. L.; Tomoyasu, M.; Russell, N. M.; Jiang, G.; Antonelli, G. A.; Fuller, N. C.; Engelmann, S. U.; Lin, Q.; Ryan, V.; Nishi, Y.; Shohet, J. L.

    2012-12-01

    Plasmas, known to emit high levels of vacuum ultraviolet (VUV) radiation, are used in the semiconductor industry for processing of low-k organosilicate glass (SiCOH) dielectric device structures. VUV irradiation induces photoconduction, photoemission, and photoinjection. These effects generate trapped charges within the dielectric film, which can degrade electrical properties of the dielectric. The amount of charge accumulation in low-k dielectrics depends on factors that affect photoconduction, photoemission, and photoinjection. Changes in the photo and intrinsic conductivities of SiCOH are also ascribed to the changes in the numbers of charged traps generated during VUV irradiation. The dielectric-substrate interface controls charge trapping by affecting photoinjection of charged carriers into the dielectric from the substrate. The number of trapped charges increases with increasing porosity of SiCOH because of charge trapping sites in the nanopores. Modifications to these three parameters, i.e., (1) VUV induced charge generation, (2) dielectric-substrate interface, and (3) porosity of dielectrics, can be used to reduce trapped-charge accumulation during processing of low-κ SiCOH dielectrics. Photons from the plasma are responsible for trapped-charge accumulation within the dielectric, while ions stick primarily to the surface of the dielectrics. In addition, as the dielectric constant was decreased by adding porosity, the defect concentrations increased.

  10. Dielectric properties of human colostrum at microwave frequencies.

    PubMed

    Lonappan, Anil; Rajasekharan, Chadrasekharan; Thomas, Vinu; Bindu, Gopinathan; Mathew, Kattackal Thomas

    2007-01-01

    This article communicates the study of both the dielectric properties of human colostrums and breast milk at microwave frequencies. The colostrum samples were taken immediately after child birth and breast milk samples were collected at weekly intervals following the delivery. Rectangular cavity perturbation technique is used for the measurements of dielectric properties at the S-band of microwave frequency. The dielectric constants of the colostrums samples and breast milk samples are found to increase as weeks elapse, which is attributed to the reduced fat content and increased lactose concentration. The conductivity of these samples is similarly found to increase due to the increased dilution.

  11. Electric and dielectric properties of pure and doped CaCu 3Ti 4O 12 perovskite materials

    NASA Astrophysics Data System (ADS)

    Chiodelli, G.; Massarotti, V.; Capsoni, D.; Bini, M.; Azzoni, C. B.; Mozzati, M. C.; Lupotto, P.

    2004-10-01

    AC impedance spectroscopy (IS) measurements were performed in the 15-700 K temperature range on pure and Ni, Fe and Co doped CaCu 3Ti 4O 12 (CCTO) materials. Capacitance values were also confirmed by direct current measurements at room temperature. Thermoelectric power measurements showed that the electrons are involved in the conduction process of the semiconducting bulk region. The IS results evidenced a dielectric behaviour in the grain boundary region, giving a permittivity of about 3400 for the pure sample, so CCTO can be considered an internal barrier layer capacitance (IBLC) material. The giant permittivity of CCTO can be strongly increased to values of ˜150 000 by Co doping on Ti site. The IBLC behaviour, together with the giant permittivity and the opportunity to combine capacitance and resistance values in an R//C circuit, evidence the applicability of this material as an integrated resonant element for the electronic industry.

  12. Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Khan, Javed Alam; Qasim, Mohd; Singh, Braj Raj; Singh, Sneha; Shoeb, Mohd; Khan, Wasi; Das, Dibakar; Naqvi, Alim H.

    2013-05-01

    In this study we have synthesized polyaniline/CoFe2O4 nanocomposites (PANI@CFs) by in situ polymerization method with different amounts of the CoFe2O4 nanoparticles NPs (CF-NPs) (0.5 g and 1.0 g). The structural optical, thermal and dielectric properties of the as synthesized PANI@CFs were studied. The XRD analysis ensures that CF-NPs have a single phase spinel structure. The XRD and EDAX results confirmed that the CF-NPs were successfully incorporated in the PANI matrix. The crystalline size analysis revealed that the size increased with increasing CF-NPs amount in the PANI@CFs, because of the aggregation effect. TGA exhibited an enhanced thermal stability of the PANI@CFs as compare with PANI owing to the strong interaction between the CF-NPs and polymer matrix. The energy band gaps as calculated through the Tauc relation were found to be gradually higher with the increasing the amount of CF-NPs in PANI@CFs. The dielectric constants (ɛ', ɛ″), dielectric loss (tan δ) and AC conductivityac) were studied as the function of frequency and composition, which have been explained by 'Maxwell Wagner Model'. The high dielectric constant and ac conductivity were observed of PANI@CFs than PANI. Moreover, PANI@CF 1:2 exhibited the promising photocatalytic activity for the photo-decoloration of the methyl orange (MO) dye under UV light irradiation. Results also showed protection of photo-decoloration of the MO dye by the disodium ethylenediaminetetraacetate dehydrate (EDTA-Na2; C10H14N2Na2O8ṡ2H2O) (hole scavenger) and tert-butyl alcohol (C4H10O) (radical scavenger) clearly suggested the implication of reactive oxygen species (ROS) in the photocatalytic activity of PANI@CF 1:2. It is encouraging to conclude that PANI@CF bears the potential of its applications in photocatalysis.

  13. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  14. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  15. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  16. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  17. Ionic, XRD, dielectric and cyclic voltammetry studies on PVdF-co-HFP / MMT clay intercalated LiN(C2F5SO2)2 based composite electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Vickraman, P.; Purushothaman, K.; SankaraSubramanian, N.

    2014-04-01

    The composition dependence of plasticizer, (EC/DMC)(70-x(wt%)) and LiBETIx(wt%) salt for fixed contents on PVdF-co-HFP(25wt%)/surface modified(SM)-octadecylamine MMT(ODA-MMT) nanoclay(5wt%) host matrix by varying its compositions x=1.5, 3.0, 4.5, 6.0 wt% prepared via solution casting technique has been investigated by A.C. Impedance, Dielectric, XRD, and cyclic voltammetry(CV) studies. The enhanced conductivity 2.1×10-5 S/cm at 300C is observed for (EC/DMC)(70-6)wt%/LiBETI(x=6)wt%. The XRD at 2θ=20.9° confirms β-phase formation, and CV studies on membranes show cyclability and reversibility. The dielectric studies show increase in dielectric constant and dielectric loss with decrease in frequency is attributed to high contribution of charge accumulation at the electrode-electrolyte interface.

  18. Giotto-spacecraft charging due to impact generated plasma in the presence of dielectric materials

    NASA Technical Reports Server (NTRS)

    Thiemann, H.; Schunk, R. W.; Singh, N.; Grard, R.

    1987-01-01

    The charging effects of a conducting/dielectric model spacecraft in the impact induced plasma environment are contrasted. The results of dynamic model calculations indicate larger charging times and higher positive spacecraft potentials for a conducting/dielectric spacecraft. The potential and particle distributions around the spacecraft differ quantitatively and qualitatively in both cases.

  19. Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Rasoulifard, M. H.; Hosseini, H.

    2016-02-01

    In this study, the dielectric breakdown strength of magnetic nanofluids based on transformer mineral oil for use in power systems is reviewed. Nano oil samples are obtained from dispersion of the magnetic nanofluid within uninhibited transformer mineral oil NYTRO LIBRA as the base fluid. AC dielectric breakdown voltage measurement was carried out according to IEC 60156 standard and the lightning impulse breakdown voltage was obtained by using the sphere-sphere electrodes in an experimental setup for nano oil in volume concentration of 0.1-0.6%. Results indicate improved AC and lightning impulse breakdown voltage of nano oil compared to the base oil. AC test was performed again after applying impulse current and result showed that nano oil unlike the base oil retains its dielectric properties. Increase the dielectric strength of the nano oil is mainly due to dielectric and magnetic properties of Fe3O4 nanoparticles that act as free electrons snapper, and reduce the rate of free electrons in the ionization process.

  20. Dielectric measurements of selected ceramics at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, J. N.; Templeton, C. K.

    1994-01-01

    Dielectric measurements of strontium titanate and lead titanate zirconate ceramics are conducted at microwave frequencies using a cylindrical resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shift and Q-changes of the cavity signal. Slater's perturbation equations are used to calculate e' and e" of the dielectric constant as a function of temperature and frequency.