Science.gov

Sample records for ac conductivity dielectric

  1. AC Conductivity and Dielectric Properties of Borotellurite Glass

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Azab, A. A.

    2016-06-01

    Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF-xTeO2 (x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density (ρ) was determined by the Archimedes method at room temperature. The density (ρ) and molar volume (V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivityac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.

  2. ac conductivity and dielectric constant of conductor-insulator composites

    NASA Astrophysics Data System (ADS)

    Murtanto, Tan Benny; Natori, Satoshi; Nakamura, Jun; Natori, Akiko

    2006-09-01

    We study the complex admittance (ac conductivity and dielectric constant) of conductor-insulator composite material, based on a two-dimensional square network consisting of randomly placed conductors and capacitors. We derived some exact analytical relations between the complex admittances of high and low frequencies and of complementary conductor concentrations. We calculate the complex admittance by applying a transfer-matrix method to a square network and study the dependence on both the frequency and the conductor concentration. The numerical results are compared with an effective-medium theory, and the range of applicability and limitation of the effective-medium theory are clarified.

  3. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivityac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  4. Structural, AC conductivity and dielectric properties of Sr-La hexaferrite

    NASA Astrophysics Data System (ADS)

    Singh, A.; Narang, S. B.; Singh, K.; Sharma, P.; Pandey, O. P.

    2006-03-01

    A series of M-type hexaferrite samples with composition Sr{1-x}La{x}Fe{12}O{19} (x = 0.00, 0.05, 0.15 and 0.25) were prepared by standard ceramic technique. AC electrical conductivity measurements were carried out at different frequencies (20 Hz 1 MHz) and at different temperatures. The dielectric constant and dielectric loss tangent were measured in the same range of frequencies. The experimental results indicate that AC electrical conductivity increases on increasing the frequency as well as the temperature, indicating magnetic semiconductor behavior of the samples. The increase in AC electrical conductivity with frequency and temperature has been explained on the basis of Koops Model whereas dielectric constant and dielectric loss tangent has been explained with the Maxwell Wagner type interfacial polarization in agreement with the Koops phenomenological theory.

  5. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  6. Structural, dielectric and AC conductivity properties of Co2+ doped mixed alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Madhu, B. J.; Banu, Syed Asma; Harshitha, G. A.; Shilpa, T. M.; Shruthi, B.

    2013-02-01

    The Co2+ doped 19.9ZnO+5Li2CO3+25Na2CO3+50B2O3 (ZLNB) mixed alkali zinc borate glasses have been prepared by a conventional melt quenching method. The structural (XRD & FT-IR), dielectric and a.c. conductivityac) properties have been investigated. Amorphous nature of these glasses has been confirmed from their XRD pattern. The dielectric properties and electrical conductivityac) of these glasses have been studied from 100Hz to 5MHz at the room temperature. Based on the observed trends in the a.c. conductivities, the present glass samples are found to exhibit a non-Debye behavior.

  7. AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, K. F.; Darwish, A. A. A.; Qashou, Saleem I.; Hanafy, T. A.

    2016-04-01

    The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ɛ', and dielectric loss index, ɛ'', reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ɛ' and ɛ'' reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.

  8. AC Conductivity and Dielectric Relaxation Behavior of Sb2S3 Bulk Material

    NASA Astrophysics Data System (ADS)

    Abd El-Rahman, K. F.; Darwish, A. A. A.; Qashou, Saleem I.; Hanafy, T. A.

    2016-07-01

    The Sb2S3 bulk material was used for next-generation anode for lithium-ion batteries. Alternative current (AC) conductivity, dielectric properties and electric modulus of Sb2S3 have been investigated. The measurements were carried out in the frequency range from 40 Hz to 5 MHz and temperature range from 293 K to 453 K. The direct current (DC) conductivity, σ DC, shows an activated behavior and the calculated activation energy is 0.50 eV. The AC conductivity, σ AC, was found to increase with the increase of temperature and frequency. The conduction mechanism of σ AC was controlled by the correlated barrier hopping model. The behavior of the dielectric constant, ɛ', and dielectric loss index, ɛ'', reveal that the polarization process of Sb2S3 is dipolar in nature. The behavior of both ɛ' and ɛ'' reveals that bulk Sb2S3 has no ferroelectric or piezoelectric phase transition. The dielectric modulus, M, gives a simple method for evaluating the activation energy of the dielectric relaxation. The calculated activation energy from M is 0.045 eV.

  9. AC conductivity and dielectric behavior of CoAl xFe 2- xO 4

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.; Meaz, T. M.

    2004-01-01

    AC conductivity and dielectric properties have been studied for a series of polycrystalline spinel ferrite with composition CoAl xFe 2- xO 4, as a function of frequency and temperature. The results of AC conductivity were discussed in terms of the quantum mechanical tunneling and small polaron tunneling models. The dispersion of the dielectric constant was discussed in the light of Koops model and hopping conduction mechanism. The dielectric loss tangent tan δ curves exhibits a dielectric relaxation peaks which are attributed to the coincidence of the hopping frequency of the charge carriers with that of the external fields. The AC conductivity, dielectric constant, and dielectric loss tangent were found to increase with increasing the temperature due to the increase of the hopping frequency, while they decrease with increasing Al ion content due to the reduction of iron ions available for the conduction process at the octahedral sites.

  10. AC conductivity and dielectric measurements of metal-free phthalocyanine thin films dispersed in polycarbonate

    NASA Astrophysics Data System (ADS)

    Riad, A. S.; Korayem, M. T.; Abdel-Malik, T. G.

    1999-10-01

    The dielectric constant and the dielectric loss of thin films of metal-free phthalocyanine dispersed in polycarbonate using ohmic gold electrodes are investigated in the frequency range 20-10 5 Hz and within the temperature range 300-388 K. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The Cole-Cole diagrams have been used to determine the molecular relaxation time, τ, The temperature dependence of τ is expressed by thermally activated process. The AC conductivity σ AC (ω) is found to vary as ωs with the index s⩽1, indicating a dominant hopping process at low temperatures. From the temperature dependence of AC conductivity, free carrier conduction with mean activation energy of 0.33 eV is observed at higher temperatures. Capacitance and loss tangent are found to decrease with increasing frequency and increase with increasing temperature. Such characteristics are found to be in good qualitative agreement with existing equivalent circuit model assuming ohmic contacts.

  11. Low frequency ac conduction and dielectric relaxation in pristine poly(3-octylthiophene) films

    NASA Astrophysics Data System (ADS)

    Singh, Ramadhar; Kumar, Jitendra; Singh, Rajiv K.; Rastogi, Ramesh C.; Kumar, Vikram

    2007-02-01

    The ac conductivity σ(ω)m, dielectric constant ɛ'(ω) and loss ɛ''(ω) of pristine poly(3-octylthiophene) (P3OT) films (thickness ~ 20 μm) have been measured in wide temperature (77 350 K) and frequency (100 Hz 10 MHz) ranges. At low temperatures, σ(ω)m can be described by the relation σ(ω)m = Aωs, where s is ~ 0.61 at 77 K and decreases with increasing temperature. A clear Debye-type loss peak is observed by subtracting the contribution of σdc from σ(ω)m. The frequency dependence of conductivity indicates that there is a distribution of relaxation times. This is confirmed by measurement of the dielectric constant as a function of frequency and temperature. Reasonable estimates of various electrical parameters such as effective dielectric constant (ɛp), phonon frequency (νph), Debye temperature (θD), polaron radius (rp), small-polaron coupling constant (\\Upsilon ), effective polaron mass (mp), the density of states at the Fermi level N(EF), average hopping distance (R) and average hopping energy (W) from dc conductivity measurements suggest the applicability of Mott's variable range hopping model in this system.

  12. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  13. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  14. Studies of structural, optical, dielectric relaxation and ac conductivity of different alkylbenzenesulfonic acids doped polypyrrole nanofibers

    NASA Astrophysics Data System (ADS)

    Hazarika, J.; Kumar, A.

    2016-01-01

    Polypyrrole (PPy) nanofibers doped with alkylbenzenesulfonic acids (ABSA) have been synthesized using interfacial polymerization method. HRTEM studies confirm the formation of PPy nanofibers with average diameter ranging from 13 nm to 25 nm. Broad X-ray diffraction peak in 2 θ range 20-23.46° reveals amorphous structure of PPy nanofibers. The ordering or crystallinity of polymer chains increases, while their interplanar spacing (d) and interchain separation (R) decreases for short alkyl chain ABSA doped PPy nanofibers. FTIR studies reveal that short alkyl chain ABSA doped PPy nanofibers show higher value of "effective conjugation length". PPy nanofibers doped with short alkyl chain ABSA dopant exhibit smaller optical band gap. TGA studies show enhanced thermal stability of short alkyl chain ABSA doped PPy nanofibers. Decrease in dielectric permittivity ε ‧ (ω) with increasing frequency suggests presence of electrode polarization effects. Linear decrease in dielectric loss ε ″ (ω) with increasing frequency suggests dominant effect of dc conductivity process. Low value of non-exponential exponent β (<1) reveals non-Debye relaxation of charge carriers. Scaling of imaginary modulus (M ″) reveals that the charge carriers follow the same relaxation mechanism. Moreover, the charge carriers in PPy nanofibers follow the correlated barrier hopping (CBH) transport mechanism.

  15. Dielectric behavior and ac conductivity study of NiO /Al2O3 nanocomposites in humid atmosphere

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.; Makhlouf, Salah A.; Khalil, Kamal M. S.

    2006-11-01

    Humidity sensing characteristics of NiO /Al2O3 nanocomposites, prepared by sol-gel method, are studied by impedance spectroscopy. Modeling of the obtained impedance spectra with an appropriate equivalent circuit enables us to separate the electrical responses of the tightly bound chemisorbed water molecules on the grain surfaces and the loosely associated physisorbed water layers. Dependence of the dielectric properties and ac conductivity of the nanocomposites on relative humidity (RH) were studied as a function of the frequency of the applied ac signal in the frequency range of 0.1-105Hz. The electrical relaxation behavior of the investigated materials is presented in the conductivity formalism, where the conductivity spectra at different RHs are analyzed by the Almond-West formalism [D. P. Almond et al., Solid State Ionics 8, 159 (1983)]. The dc conductivity and the hopping rate of charge carriers, determined from this analysis, show similar dependences on RH, indicating that the concentration of mobile ions is independent of RH and is primarily determined by the chemisorption process of water molecules. Finally, the results are discussed in view of a percolation-type conduction mechanism, where mobile ions are provided by the chemisorbed water molecules and the percolation network is formed by the physisorbed water layers.

  16. AC conductivity and dielectric relaxation of tris(N,N-dimethylanilinium) hexabromidostannate(IV) bromide: (C8H12N)3SnBr6.Br

    NASA Astrophysics Data System (ADS)

    Chouaib, H.; Kamoun, S.

    2015-10-01

    The X-ray powder analysis, thermogravimetric analysis, differential scanning calorimetry analysis and complex impedance spectroscopic data have been carried out on (C8H12N)3SnBr6.Br compound. The results show that this compound exhibits a phase transition at (T=365±2 K) which has been characterized by differential scanning calorimetry (DSC), AC conductivity and dielectric measurements. The AC conductivity, the modulus analysis, the dielectric constants and the polarizability have been studied using impedance in the temperature range from 334 K to 383 K and in the frequency range between 20 Hz and 2 MHz. The temperature dependence of DC conductivity follows the Arrhenius law. Moreover, the frequency dependence of conductivity follows Jonscher's dynamical law with the relation: σ(ω , T) =σDC + B(T)ω s(T) . Relaxation peaks can be observed in the complex modulus analysis and after a transformation of the complex permittivity ε* to the complex polarizability α*.

  17. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  18. Raman, dielectric and AC-conductivity behavior of Dy2O3 contained K0.5Na0.5NbO3 ceramics

    NASA Astrophysics Data System (ADS)

    Mahesh, P.; Pamu, D.

    2016-05-01

    Lead-free piezoelectric (K0.5Na0.5)NbO3+ x wt% Dy2O3 (x = 0 - 1.5) (KNND) ceramics have been prepared by solid state reaction method. The effect of Dy2O3 on the dielectric and electrical conductivity responses of KNN ceramics were investigated in a broad temperature (from 133 K to 673 K) and frequency (106 Hz to 108 Hz) range. Temperature dependent dielectric analysis revealed that the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T) shifted from 199°C to room temperature with enhanced dielectric permittivity (ɛ' = 994) with the addition of Dy2O3. The effect of Dy2O3 on structural properties of KNND ceramics are analyzed interms of changes in the internal modes of NbO6 octahedra by using Raman spectroscopy. Temperature dependent (133 K - 306 K) AC-conductivity follows the variable range hopping mechanism in different temperature regimes.

  19. Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis(4-acetylanilinium) tetrachlorocuprate(II) compound

    NASA Astrophysics Data System (ADS)

    Abkari, A.; Chaabane, I.; Guidara, K.

    2016-09-01

    In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420-520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338-413 K) and frequency range (200 Hz-5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358-373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 Kac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+Aωs. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound. Complex impedance spectra of [C8H10NO]2CuCl4 at different temperatures.

  20. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    NASA Astrophysics Data System (ADS)

    Demirezen, S.; Kaya, A.; Yerişkin, S. A.; Balbaşı, M.; Uslu, İ.

    In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε‧, ε‧, tanδ, electric modulus (M‧ and M″) and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε‧, ε‧, tanδ, M‧, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε‧, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε‧ and ε″ values at low frequencies may be attributed to the Maxwell-Wagner and space charge polarization. The high values of ε‧ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M‧ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M‧ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε‧, ε″, tanδ, M‧, M″ and ac electric conductivityac) is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization.

  1. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  2. Modeling of ac dielectric barrier discharge

    SciTech Connect

    Shang, J. S.; Huang, P. G.

    2010-06-15

    The qualitative electrodynamic field of the dielectric barrier discharge in air is studied by a three-component, drift-diffusion plasma model including the Poisson equation of plasmadynamics. The critical media interface boundary conditions independent of the detailed mechanisms of surface absorption, diffusion, recombination, and charge accumulation on electrode or dielectrics are developed from the theory of electromagnetics. The computational simulation duplicates the self-limiting feature of dielectric barrier discharge for preventing corona-to-spark transition, and the numerical results of the breakdown voltage are compared very well with data. According to the present modeling, the periodic electrodynamic force due to charge separation over the electrodes also exerts on alternative directions from the exposed to encapsulated electrodes over a complete ac cycle as experimental observations.

  3. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  4. Dielectric properties of conductive ionomers

    NASA Astrophysics Data System (ADS)

    Klein, Robert James

    Ion and polymer dynamics of ion-containing polymers were investigated, with the majority of results obtained from application of a physical model of electrode polarization (EP) to dielectric spectroscopy data. The physical model of MacDonald, further developed by Coelho, was extended for application to tan delta (the ratio of dielectric loss to dielectric constant) as a function of frequency. The validity of this approach was confirmed by plotting the characteristic EP time as a function of thickness and comparing the actual and predicted unrelaxed dielectric constant for a poly(ethylene oxide) (PEO)-based ionomer neutralized by lithium, sodium, and cesium. Results were obtained for ion mobility and mobile ion concentration for a neat PEO-based ionomer, two (methoxyethoxy-ethoxy phosphazene) (MEEP) -based ionomers, two MEEP-based salt-doped polymers, sulfonated polystyrene (SPS) neutralized by sodium with a high sulfonation fraction, and SPS neutralized by zinc with a low sulfonation fraction. Additionally, the conductivity parameters of six plasticized forms of a neat PEO-based ionomer were characterized, but the method apparently failed to correctly evaluate bulk ionic behavior. In all cases except the SPS ionomers ion mobility follows a Vogel-Fulcher-Tammann (VFT) temperature dependence. In all cases, mobile ion concentration follows an Arrhenius temperature dependence. Fitting parameters from these two relationships yielded direct information about the state of ionic diffusion and ion pairing in each system. Combination of these two functionalities predicts a relationship for conductivity that is significantly different than the VFT relation typically used in the literature to fit conductivity. The most outstanding result was the extremely small fraction of ions found to be mobile. For ionomers it can be concluded that the primary reason for low conductivities arises from the low fraction of mobile ions. The local and segmental dynamics of the neat and

  5. Dielectric behavior and ac conductivity in Aurivillius Bi4Ti3O12 doped by antiferromagnetic BiFeO3

    NASA Astrophysics Data System (ADS)

    Wu, M. S.; Tian, Z. M.; Yuan, S. L.; Duan, H. N.; Qiu, Y.

    2012-06-01

    Bi5Ti3FeO15 ceramics were synthesized by the solid state reaction. XRD analysis shows a single phase perovskite structure with no impurities identified. Two obvious dielectric anomalies around 1007 and 1090 K were exhibited by this material, indicating that there are two phase transitions. While no peak was found in the tan δ-T curve. In addition, the conduction loss activation energies calculated at 476-639 K, 652-966 K, and 980-1095 K are 0.156, 0.262, and 0.707 eV, respectively. Polarization versus electric field hysteresis loops associated with 2Pr of 6.08 μC/cm2 and 2Ec of 59 kV/cm were obtained.

  6. Structural characterization, thermal, ac conductivity and dielectric properties of (C7H12N2)2[SnCl6]Cl2.1.5H2O

    NASA Astrophysics Data System (ADS)

    Hajji, Rachid; Oueslati, Abderrazek; Hajlaoui, Fadhel; Bulou, Alain; Hlel, Faouzi

    2016-05-01

    (C7H12N2)2[SnCl6]Cl2.1.5H2O is crystallized at room temperature in the monoclinic system (space group P21/n). The isolated molecules form organic and inorganic layers parallel to the (a, b) plane and alternate along the c-axis. The inorganic layer is built up by isolated SnCl6 octahedrons. Besides, the organic layer is formed by 2,4-diammonium toluene cations, between which the spaces are filled with free Cl- ions and water molecules. The crystal packing is governed by means of the ionic N-H...Cl and Ow-H...Cl hydrogen bonds, forming a three-dimensional network. The thermal study of this compound is reported, revealing two phase transitions around 360(±3) and 412(±3) K. The electrical and dielectric measurements were reported, confirming the transition temperatures detected in the differential scanning calorimetry (DSC). The frequency dependence of ac conductivity at different temperatures indicates that the correlated barrier hopping (CBH) model is the probable mechanism for the ac conduction behavior.

  7. Polaron conductivity mechanism in potassium acid phthalate crystal: AC-conductivity investigation

    NASA Astrophysics Data System (ADS)

    Filipič, Cene; Levstik, Iva; Levstik, Adrijan; Hadži, Dušan

    2016-08-01

    The complex dielectric constant, \\varepsilon *(ν ,T), of potassium acid phthalate monocrystal (KAP) was investigated over the broad frequency and temperature range. While the imaginary part of dielectric constant ε‧‧(ν) increases rapidly with increasing temperature in the studied temperature range, the real part of dielectric constant ε‧(ν) increases only at high temperatures; there is almost no change of ε‧(ν) below 200 K. Both values of ε‧ and ε‧‧ are frequency dependent; the values increase with decreasing frequencies. At temperatures below 450 K the ac electrical conductivity and dielectric constant follow simultaneously the universal dielectric response (UDR). The analysis of the temperature dependence of the UDR parameter s in terms of the theoretical model for small polarons revealed that this mechanism governs the charge transport in KAP crystal in the studied temperature range.

  8. Novel dielectric reduces corona breakdown in ac capacitors

    NASA Technical Reports Server (NTRS)

    Loehner, J. L.

    1972-01-01

    Dielectric system was developed which consists of two layers of 25-gage paper separated by one layer of 50-gage polypropylene to reduce corona breakdown in ac capacitors. System can be used in any alternating current application where constant voltage does not exceed 400 V rms. With a little research it could probably be increased to 700 to 800 V rms.

  9. High thermal conductivity lossy dielectric using a multi layer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  10. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    NASA Astrophysics Data System (ADS)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  11. Investigation Of Dispersive Conductivity And Dielectric Losses In Barium Bismuth Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Ahlawat, Neetu; Sanghi, Sujata; Agarwal, Ashish; Ahlawat, Navneet; Aghamkar, Praveen; Monica

    2011-12-01

    Barium bismuth silicate glasses (BBS glasses) with composition were prepared by normal melt quench technique. The dispersive conductivity and dielectric losses in these glasses were investigated by impedance spectroscopy. The analyses of ac conductivity spectra show a crossover from ion hopping conductivity to nearly constant loss (NCL) contribution in all the glasses. The variations in dielectric constant ɛ*(ω) = ɛ'(ω)-íɛ″(ω) with frequency and temperature indicate an increase in electrode polarization, which reduces the dipolar relaxation effects in these glasses. The increased concentration of BaO in the glass composition reduces the dielectric losses in the present glasses.

  12. Structural and AC conductivity study of CdTe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  13. Thermal conductivity and dielectric constant of silicate materials

    NASA Technical Reports Server (NTRS)

    Simon, I.; Wechsler, A. E.

    1968-01-01

    Report on the thermal conductivity and dielectric constant of nonmetallic materials evaluates the mechanisms of heat transfer in evacuated silicate powders and establishes the complex dielectric constant of these materials. Experimental measurements and results are related to postulated lunar surface materials.

  14. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1992-01-01

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  15. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Astrophysics Data System (ADS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  16. Study of AC electrical conduction mechanisms in an epoxy polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  17. Alternating-current conductivity and dielectric relaxation of bulk iodoargentate

    SciTech Connect

    Duan, Hai-Bao Yu, Shan-Shan; Zhou, Hong

    2015-05-15

    Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-D chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.

  18. Instabilities across the isotropic conductivity point in a nematic phenyl benzoate under AC driving.

    PubMed

    Kumar, Pramoda; Patil, Shivaram N; Hiremath, Uma S; Krishnamurthy, K S

    2007-08-01

    We characterize the sequence of bifurcations generated by ac fields in a nematic layer held between unidirectionally rubbed ITO electrodes. The material, which possesses a negative dielectric anisotropy epsilona and an inversion temperature for electrical conductivity anisotropy sigmaa, exhibits a monostable tilted alignment near TIN, the isotropic-nematic point. On cooling, an anchoring transition to the homeotropic configuration occurs close to the underlying smectic phase. The field experiments are performed for (i) negative sigmaa and homeotropic alignment, and (ii) weakly positive sigmaa and nearly homeotropic alignment. Under ac driving, the Freedericksz transition is followed by bifurcation into various patterned states. Among them are the striped states that seem to belong to the dielectric regime and localized hybrid instabilities. Very significantly, the patterned instabilities are not excited by dc fields, indicating their possible gradient flexoelectric origin. The Carr-Helfrich mechanism-based theories that take account of flexoelectric terms can explain the observed electroconvective effects only in part. PMID:17616118

  19. Dielectric function of media based on conductive particles

    SciTech Connect

    Kempa, K.

    2006-07-15

    The general formula for the dielectric function of a medium containing conductive particles of various sizes (e.g., nanoparticles) is derived, and shown that it is exact in spite of electron-electron interactions for a parabolic confinement of electrons in the particles. The derivation method explains the apparent universal applicability of this formula to other systems. It is also shown, how this formula can be used to design composites with desired dielectric properties.

  20. Determination of density of states, conduction mechanisms and dielectric properties of nickel disulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jamil, Arifa; Batool, S. S.; Sher, F.; Rafiq, M. A.

    2016-05-01

    Temperature and frequency dependent ac electrical measurements were used to explore density of states, conduction mechanisms and dielectric properties of nickel disulfide (NiS2) nanoparticles. The NiS2 nanoparticles were prepared by conventional one step solid state reaction method at 250 °C. X-ray diffraction (XRD) confirmed cubic phase of prepared nanoparticles. Scanning electron microscope (SEM) images revealed presence of irregular shaped nanoparticles as small as 50 nm. The ac electrical measurements were carried out from 300 K to 413 K. Two depressed semicircular arcs from 20 Hz to 2 MHz showed presence of bulk and grain boundary phases in NiS2 nanoparticles at all temperatures. Small polaron hopping conduction from 300 K to 393 K and correlated barrier hopping conduction mechanism at temperatures higher than 393 K was observed. High value of density of states (of the order of 1024 eV-1cm-3) was calculated from ac conductivity. At low frequencies high values (of the order of 104-107) of real part of dielectric constant (ɛ') were observed at different temperatures. These observations suggest that NiS2 nanoparticles may find applications in electronic devices.

  1. Dielectric and conducting behavior of gadolinium-terbium fumarate heptahydrate crystals

    NASA Astrophysics Data System (ADS)

    Shah, M. D.; Want, B.

    2015-07-01

    Gadolinium-terbium fumarate heptahydrate crystals were grown in silica gel by using single gel diffusion technique. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction results showed that the grown material is purely crystalline in nature. Elemental analyses suggested the chemical formula of the compound to be Gd Tb (C4H2O4)3ṡ7H2O. Energy dispersive X-ray analysis confirmed the presence of Gd and Tb in the title compound. The dielectric and conductivity studies of the grown compound were carried as function of frequency of applied field and the temperature. The grown material showed a dielectric anomaly which was correlated with its thermal behavior. The ac conductivity of the material showed Jonscher's power law behavior: σ(ω)=σo+Aωs, with a temperature-dependent power exponent s(<1). The conductivity was found to be a function of temperature and frequency.

  2. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  3. Electrical conductivity and dielectric property of fly ash geopolymer pastes

    NASA Astrophysics Data System (ADS)

    Hanjitsuwan, Sakonwan; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2011-02-01

    The electrical conductivity and dielectric property of fly ash geopolymer pastes in a frequency range of 100 Hz-10 MHz were studied. The effects of the liquid alkali solution to ash ratios (L/A) were analyzed. The mineralogical compositions and microstructures of fly ash geopolymer materials were also investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The 10 mol sodium hydroxide solution and sodium silicate solution at a sodium silicate-to-sodium hydroxide ratio of 1.0 were used in making geopolymer pastes. The pastes were cured at 40°C. It is found that the electrical conductivity and dielectric constant are dependent on the frequency range and L/A ratios. The conductivity increases but the dielectric constant decreases with increasing frequency.

  4. ac conductance of surface layer in lithium tetraborate single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Park, Jong-Ho; Moon, Byung Kee; Seo, Hyo-Jin; Choi, Byung-Chun; Hwang, Yoon-Hwae; Kim, Hyung Kook; Kim, Jung Nam

    2003-12-01

    ac conductance for the electrode effect in Li2B4O7 single crystal was investigated by use of a coplanar electrode applied on the surface of a (001) plate. A coplanar electrode in this material more clearly shows conduction of the electrode effect than a conventional parallel planar electrode. The electrode effect in ac conductance is likely to be controlled by the surface layer, which is a poorly conductive depletion layer possibly filled with vacancies of lithium ions. We found that the surface layer is not locally distributed near the electrodes, but, rather, on the broad area of the surface (001) plane of the material. So we conclude that the electrode effect in ac conduction of Li2B4O7 single crystal is mainly due to the poor conductive surface layer distributed over the whole surface of the (001) plane and is not a secondary phase formed by reaction with the electrode material.

  5. Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite

    SciTech Connect

    Kolekar, Y. D.; Sanchez, L. J.; Ramana, C. V.

    2014-04-14

    Manganese (Mn) substituted cobalt ferrites (CoFe{sub 2-x}Mn{sub x}O{sub 4}, referred to CFMO) have been synthesized by the solid state reaction method and their dielectric properties and ac conductivity have been evaluated as a function of applied frequency and temperature. X-ray diffraction measurements indicate that CFMO crystallize in the inverse cubic spinel phase with a lattice constant ∼8.38 Å. Frequency dependent dielectric measurements at room temperature obey the modified Debye model with relaxation time of 10{sup −4} s and spreading factor of 0.35(±0.05). The frequency (20 Hz–1 MHz) and temperature (T = 300–900 K) dependent dielectric constant analyses indicate that CFMO exhibit two dielectric relaxations at lower frequencies (1–10 kHz), while completely single dielectric relaxation for higher frequencies (100 kHz–1 MHz). The dielectric constant of CFMO is T-independent up to ∼400 K, at which point increasing trend prevails. The dielectric constant increase with T > 400 K is explained through impedance spectroscopy assuming a two-layer model, where low-resistive grains separated from each other by high-resistive grain boundaries. Following this model, the two electrical responses in impedance formalism are attributed to the grain and grain-boundary effects, respectively, which also satisfactorily accounts for the two dielectric relaxations. The capacitance of the bulk of the grain determined from impedance analyses is ∼10 pF, which remains constant with T, while the grain-boundary capacitance increases up to ∼3.5 nF with increasing T. The tan δ (loss tangent)-T also reveals the typical behavior of relaxation losses in CFMO.

  6. Dielectric relaxation and alternating current conductivity of lanthanum, gadolinium, and erbium-polyvinyl alcohol doped films

    NASA Astrophysics Data System (ADS)

    Hanafy, Taha A.

    2012-08-01

    Fourier transform infrared (FTIR) spectrum dielectric constant, ɛ', loss tangent, tan(δ), electric modulus, M*, and ac conductivity, σac, of pure polyvinyl alcohol (PVA) as well as La-, Gd-, and Er-PVA doped samples have been carried out. The dielectric properties have been studied in the temperature and frequency ranges; 300-450 K and 1 kHz-4 MHz, respectively. FTIR measurements reveal that La3+, Gd3+, and Er3+ ions form complex configuration within PVA structure. Two relaxation processes, namely, ρ and α were observed in pure PVA sample. The first process is due to the interfacial or Maxwell-Wagner-Sillers polarization. The second one is related to the micro-Brownian motion of the main chains. For doped PVA samples, α-relaxation process splits into αa and αc. This splitting is due to the segmental motion in the amorphous (αa) and crystalline (αc) phases of PVA matrix. Electric modulus analysis was discussed to understand the mechanism of the electrical transport process. The behavior of ac conductivity for all PVA samples indicates that the conduction mechanism is correlated barrier hopping.

  7. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Nagendra, K.; Babu, G. Satish; Reddy, C. Narayana; Gowda, Veeranna

    2011-07-01

    Glasses in the system xLi2SO4-20Li2O-(80-x) [80P2O5-20V2O5] (5⩾x⩾20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li2SO4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aωs where `s' is the power law exponent. The ac conductivity found to increase with increase of Li2SO4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  8. AC-electronic and dielectric properties of semiconducting phthalocyanine compounds: a comparative study

    NASA Astrophysics Data System (ADS)

    Hraibat, Safa'a. M.; M-L. Kitaneh, Rushdi; Abu-Samreh, Mohammad M.; Saleh, Abdelkarim M.

    2013-11-01

    The AC-electronic and dielectric properties of different phthalocyanine films (ZnPc, CuPc, FePc, and H2Pc) were investigated over a wide range of temperature. Both real and imaginary parts of the dielectric constant (ɛ = ɛ1 - iɛ2) were found to be influenced by temperature and frequency. Qualitatively the behavior was the same for those compounds; however, the central atom, film thickness, and the electrode type play an important role in the variation of their values. The relaxation time, τ, was strongly frequency-dependent at all temperatures and low frequencies, while a weak dependency is observed at higher frequencies. The relaxation activation energy was derived from the slopes of the fitted lines of ln τ and the reciprocal of the temperature (1/T). The values of the activation energy were accounted for the hopping process at low temperatures, while a thermally activated conduction process was dominant at higher temperatures. The maximum barrier height, Wm, was found to be temperature and frequency dependent for all phthalocyanine compounds. The value Wm depends greatly on the nature of the central atom and electrode material type. The correlated barrier hopping model was found to be the appropriate mechanism to describe the charge carrier's transport in phthalocyanine films.

  9. Critical behaviors of the conductivity and dielectric constant of Ti3SiC2/Al2O3 hybrids

    NASA Astrophysics Data System (ADS)

    Wu, Rui-Fen; Pan, Wei; Shi, Sui-Lin; Han, Ruo-Bing

    2007-09-01

    Ti3SiC2/Al2O3 hybrids were prepared by a spark plasma sintering process. The effective dc conductivity of the hybrids was measured at room temperature, which agrees with the percolation theory and follows the power law around the percolation threshold. The ac conductivity and dielectric constants of the hybrids were also characterized and follow the power law when the concentration of the conductive phase is close to the percolation threshold; meanwhile, the dielectric constant could increase over three orders of magnitude compared with Al2O3.

  10. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  11. Radiation induced conductivity in space dielectric materials

    NASA Astrophysics Data System (ADS)

    Hanna, R.; Paulmier, T.; Molinie, P.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon® FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon® FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  12. Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Kumari, Shalini; Ortega, N.; Kumar, A.; Pavunny, S. P.; Hubbard, J. W.; Rinaldi, C.; Srinivasan, G.; Scott, J. F.; Katiyar, Ram S.

    2015-03-01

    We describe systematic studies on Nd and Mn co-doped BiFeO3, i.e., (Bi0.95Nd0.05)(Fe0.97Mn0.03)O3 (BNFM) polycrystalline electroceramics. Raman spectra and X-ray diffraction patterns revealed the formation of rhombohedral crystal structure at room temperature, and ruled out structural changes in BiFeO3 (BFO) after low percentage chemical substitution. Strong dielectric dispersion and a sharp anomaly around 620 K observed near the Néel temperature ( TN ˜ 643 K of BFO) support strong magneto-dielectric coupling, verified by the exothermic peak in differential thermal data. Impedance spectroscopy disclosed the appearance of grain boundary contributions in the dielectric data in the region, and their disappearance just near the Néel temperature suggests magnetically active grain boundaries. The resistive grain boundary components of the BNFM are mainly responsible for magneto-dielectric coupling. Capacitive grain boundaries are not observed in the modulus spectra and the dielectric behavior deviates from the ideal Debye-type. The ac conduction studies illustrate short-range order with ionic translations assisted by both large and small polaron hopping. Magnetic studies indicate that the weak antiferromagnetic phase of BNFM ceramics is dominated by a strong paramagnetic response (unsaturated magnetization even at applied magnetic field of 7 T). The bulk BNFM sample shows a good in-plane magnetoelectric coupling (ME) coefficient.

  13. Dynamic conductivity of ac-dc-driven graphene superlattice

    NASA Astrophysics Data System (ADS)

    Kukhar', E. I.; Kryuchkov, S. V.; Ionkina, E. S.

    2016-06-01

    The dynamic conductivity of graphene superlattice in the presence of ac electric field and dc electric field with longitudinal and transversal components with respect to superlattice axis was calculated. In the case of strong transversal component of dc field conductivity of graphene superlattice was shown to be such as if the electrons had got the effective mass. In the case of weak transversal component of dc field conductivity was shown to change its sign if the frequency of ac field was an integer multiple of half of Bloch frequency.

  14. (Tenth international conference on conduction and breakdown in dielectric liquids)

    SciTech Connect

    Christophorou, L.G.

    1990-10-05

    The traveler attended the 10th International Conference on Conduction and Breakdown in dielectric Liquids held in Grenoble, France, September 10--14, 1990. He chaired the opening session of the conference, presented one paper, co-authored a second paper presented at the meeting, participated in the discussions during the formal sessions, and had informal discussions with many of the participants.

  15. Effect of nanosilica on optical, electric modulus and AC conductivity of polyvinyl alcohol/polyaniline films

    NASA Astrophysics Data System (ADS)

    El-Sayed, Somyia; Abel-Baset, Tarob; Elfadl, Azza Abou; Hassen, Arafa

    2015-05-01

    Nanosilica (NS) was synthesized by a sol-gel method and mixed with 0.98 polyvinyl alcohol (PVA)/0.02 polyaniline (PANI) in different amounts to produce nanocomposite films. High-resolution transmission electron microscopy (HR-TEM) revealed the average particle size of the NS to be ca. 15 nm. Scanning electron microscopy (SEM) showed that the NS was well-dispersed on the surface of the PVA/PNAI films. The Fourier transform infrared (FTIR) spectra of the samples showed a significant change in the intensity of the characteristic peak of the functional groups in the composite films with the amount of NS added. The absorbance and refractive index (n) of the composites were studied in the UV-vis range, and the optical energy band gap, Eg, and different optical parameters were calculated. The dielectric loss modulus, M″ and ac conductivity, σac, of the samples were studied within 300-425 K and 0.1 kHz-5 MHz, respectively. Two relaxation peaks were observed in the frequency dependence of the dielectric loss modulus, M″. The behavior of σac(f) for the composite films indicated that the conduction mechanism was correlated barrier hopping (CBH). The results of this work are discussed and compared with those of previous studies of similar composites.

  16. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    PubMed Central

    Makled, M.H.; Sheha, E.; Shanap, T.S.; El-Mansy, M.K.

    2012-01-01

    PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54–1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33–0.87 eV. A significant value of hopping distance in the range 3.4–1.2 nm is estimated in agreement with the value of Bohr radius of the exciton. PMID:25685462

  17. A Conductivity and Dielectric Constant of Systems Near the Percolation Threshold.

    NASA Astrophysics Data System (ADS)

    Song, Yi.

    The ac conductivity and dielectric constant of macroscopically inhomogeneous systems near the percolation threshold vary as a power of the frequency, with (sigma) (PROPORTIONAL) (omega)('x), and (epsilon) (PROPORTIONAL) (omega)('-y). The two critical exponents x and y should satisfy a general scaling relation x + y = 1, if (sigma) and (epsilon) both obey scaling forms that have a single characteristic time scale. Two different percolation systems were studied experi- mentally in order to find the critical exponents x and y. The ac con- ductance and capacitance of these two systems were measured in the frequency range from 10 Hz to 13 MHz. The ac conductivity exponent x and ac dielectric constant exponent y from a three dimensional randomly mixed carbon-teflon system were found to be 0.86 (+OR-) 0.06 and 0.12 (+OR-) 0.04, respectively. The same critical exponents x and y were obtained on a planar chromium film system. Their values were x = 0.98 (+OR-) 0.09 and y = 0.08 (+OR-) 0.04. In order to complete the study, the dc conductivity exponent t and dc dielectric constant exponent s of these systems were also measured. They were in good agreement with well-established values. Two important mechanisms are responsible for the power law dependence of the ac conductivity and dielectric constant of systems near the percolation threshold. They are the interaction between percolation clusters and the fractal nature of these clus- ters. Two independent models based on these two mechanisms separately, namely the intercluster polarization (IP) model and the anomalous diffusion (AD) model, both predict power law behavior for (sigma) and (epsilon). The IP model predicts x (DBLTURN) 0.72 and y (DBLTURN) 0.28 for three dimensional (3D) systems and x = y = 0.5 for two dimensional (2D) systems; while the AD model predicts x (DBLTURN) 0.58 and y (DBLTURN) 0.42 for 3D systems and x (DBLTURN) 0.33 and y (DBLTURN) 0.67 for 2D systems. The experimental results of the ac conductivity

  18. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    SciTech Connect

    Hemalatha, K. S.; Damle, R.; Rukmani, K.; Sriprakash, G.; Ambika Prasad, M. V. N.

    2015-10-21

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance was observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.

  19. Dielectric and Conductivity Mapping of Few-Layer Metal Chalcogenides

    NASA Astrophysics Data System (ADS)

    Lai, Keji; Wu, Di; Liu, Yingnan; Ren, Yuan; Lin, Min; Peng, Hailin; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney

    2014-03-01

    A novel microwave impedance microscope was used to spatially map the local dielectric constant and conductivity of few-layered metal chalcogenides without the need of contact electrodes. For phase-change In2Se3 nanoplates grown on mica substrates, our results showed a sudden drop of permittivity from the bulk value for thicknesses below 5 layers and strong dielectric inhomogeneity around 4 and 5 layers. For CVD-grown MoS2 flakes on SiO2/Si wafers, we observed highly conductive localized regions within monolayer islands. These regions, which can be imaged by scanning electron microscopy and atomic force microscopy, show enhanced Raman signals and PL signal quenching. Continued imaging effort is expected to shed some light on the growth mechanism and electron physics of these quasi-2D chalcogenides.

  20. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  1. AC and DC conductivity of ionic liquid containing polyvinylidene fluoride thin films

    NASA Astrophysics Data System (ADS)

    Frübing, Peter; Wang, Feipeng; Kühle, Till-Friedrich; Gerhard, Reimund

    2016-01-01

    Polarisation processes and charge transport in polyvinylidene fluoride (PVDF) with a small amount (0.01-10 wt%) of the ionic liquid (IL) 1-ethyl-3-methylimidazolium nitrate ({[EMIM]}^+[{NO}_3]^-) are investigated by means of dielectric spectroscopy. The response of PVDF that contains more than 0.01 wt% IL is dominated by a low-frequency relaxation which shows typical signatures of electrode polarisation. Furthermore, the α a relaxation, related to the glass transition, disappears for IL contents of more than 1 wt%, which indicates that the amorphous phase loses its glass-forming properties and undergoes structural changes. The DC conductivity is determined from the low-frequency limit of the AC conductivity and from the dielectric loss peak related to the electrode polarisation. DC conductivities of 10^{-10} to 10^{-2} {S}/{m} are obtained—increasing with IL content and temperature. The dependence of the DC conductivity on the IL content follows a power law with an exponent greater than one, indicating an increase in the ion mobility. The temperature dependence of the DC conductivity shows Vogel-Fulcher-Tammann behaviour, which implies that charge transport is coupled to polymer chain motion. Mobile ion densities and ion mobilities are calculated from the DC conductivity and the dielectric loss related to electrode polarisation, with the results that less than one per cent of the total ion concentration contributes to the conductivity and that the strong increase in conductivity with temperature is mainly caused by a strong increase in ion mobility. This leads to the conclusion that in particular the ion mobility must be reduced in order to decrease the DC conductivity.

  2. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    SciTech Connect

    Nagendra, K.; Babu, G. Satish; Gowda, Veeranna; Reddy, C. Narayana

    2011-07-15

    Glasses in the system xLi{sub 2}SO{sub 4}-20Li{sub 2}O-(80-x) [80P{sub 2}O{sub 5}-20V{sub 2}O{sub 5}](5{>=}x{>=}20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li{sub 2}SO{sub 4} concentration. The ac conductivities have been fitted to the Almond-West type single power law equation {sigma}({omega}) = {sigma}(0)+A{omega}{sup s} where 's' is the power law exponent. The ac conductivity found to increase with increase of Li{sub 2}SO{sub 4} concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  3. Dielectric relaxation and hopping conduction in reduced graphite oxide

    NASA Astrophysics Data System (ADS)

    Wei, Guidan; Yu, Ji; Gu, Min; Tang, Tong B.

    2016-06-01

    Graphite oxide reduced by sodium borohydride was characterised and its electrical conduction investigated with impedance spectroscopy. Thermal dependence of electrical modulus (instead of permittivity, its inverse) was calculated from complex impedance spectra, an approach that prevents any peak in dielectric loss (imaginary component) from being swarmed by large dc conductivity. Two loss peaks appeared at each tested frequency, in a sample of either degree of reduction. The set of weaker peak should arise from the relaxation of some polar bonds, as proposed earlier by us. The stronger loss peaks may correspond to the hopping of conduction electrons; variable range hopping is also consistent with the observed thermal dependence of conductivity. However, nearer ambient temperature there is a change in mechanism, to band transport, with an activation energy of fairly similar values as derived from both loss peaks and conductivity.

  4. Conductivity and Dielectric Dispersion of Gram-Positive Bacterial Cells

    PubMed

    van der Wal A; Minor; Norde; Zehnder; Lyklema

    1997-02-01

    The conductivity of bacterial cell suspensions has been studied over a wide range of ionic strengths and is interpreted in terms of their cell wall properties. The experimental data have been analyzed after improving the high kappaa double-layer theory of Fixman, by accounting for ionic mobility in the hydrodynamically stagnant layer, i.e., in the bacterial wall. Static conductivity and dielectric dispersion measurements both show that the counterions in the porous gel-like cell wall give rise to a considerable surface conductance. From a comparison of the mobile charge with the total cell wall charge it is inferred that the mobilities of the ions in the bacterial wall are of the same order but somewhat lower than those in the bulk electrolyte solution. The occurrence of surface conductance reduces the electrophoretic mobility in electrophoresis studies. If this effect is not taken into account, the zeta-potential will be underestimated, especially at low electrolyte concentrations. PMID:9056304

  5. Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO{sub 3}

    SciTech Connect

    Kumari, Shalini; Ortega, N.; Pavunny, S. P.; Katiyar, Ram S.; Kumar, A.; Hubbard, J. W.; Rinaldi, C.; Srinivasan, G.; Scott, J. F.

    2015-03-21

    We describe systematic studies on Nd and Mn co-doped BiFeO{sub 3}, i.e., (Bi{sub 0.95}Nd{sub 0.05})(Fe{sub 0.97}Mn{sub 0.03})O{sub 3} (BNFM) polycrystalline electroceramics. Raman spectra and X-ray diffraction patterns revealed the formation of rhombohedral crystal structure at room temperature, and ruled out structural changes in BiFeO{sub 3} (BFO) after low percentage chemical substitution. Strong dielectric dispersion and a sharp anomaly around 620 K observed near the Néel temperature (T{sub N} ∼ 643 K of BFO) support strong magneto-dielectric coupling, verified by the exothermic peak in differential thermal data. Impedance spectroscopy disclosed the appearance of grain boundary contributions in the dielectric data in the region, and their disappearance just near the Néel temperature suggests magnetically active grain boundaries. The resistive grain boundary components of the BNFM are mainly responsible for magneto-dielectric coupling. Capacitive grain boundaries are not observed in the modulus spectra and the dielectric behavior deviates from the ideal Debye-type. The ac conduction studies illustrate short-range order with ionic translations assisted by both large and small polaron hopping. Magnetic studies indicate that the weak antiferromagnetic phase of BNFM ceramics is dominated by a strong paramagnetic response (unsaturated magnetization even at applied magnetic field of 7 T). The bulk BNFM sample shows a good in-plane magnetoelectric coupling (ME) coefficient.

  6. High thermal conductivity lossy dielectric using co-densified multilayer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-06-17

    Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.

  7. Scattering from thin dielectric straps surrounding a perfectly conducting structure

    NASA Technical Reports Server (NTRS)

    Al-Hekail, Zeyad; Gupta, Inder J.

    1989-01-01

    A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.

  8. Irradiation effect on dielectric properties and electrical conductivity of Au/SiO 2/ n-Si (MOS) structures

    NASA Astrophysics Data System (ADS)

    Tataroğlu, A.; Altındal, Ş.; Bölükdemir, M. H.; Tanır, G.

    2007-11-01

    The Au/SiO2/n-Si (MOS) structures were exposed to beta-ray irradiation to a total dose of 30 kGy at room temperature. Irradiation effect on dielectric properties of MOS structures were investigated using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics. The C-V and G/ω-V measurements carried out in the frequency range from 1 kHz to 10 MHz and at various radiation doses, while the dc voltage was swept from positive bias to negative bias for MOS structures. The dielectric constant (ε‧), dielectric loss (ε″), loss factor (tan δ) and ac electrical conductivityac) were calculated from the C-V and G/ω-V measurements and plotted as a function of frequency at various radiation doses. A decrease in the ε‧ and ε″ were observed when the irradiation dose increased. The decrease in the ε‧ and ε″ of irradiated MOS structures in magnitude is explained on the basis of Maxwell-Wagner interfacial polarization. Also, the σac is found to decrease with increasing radiation dose. In addition, the values of the tan δ decrease with increasing radiation dose and give a peak. From the experimental results, it is confirmed that the peak of loss tangent is due to the interaction between majority carriers and interface states which induced by radiation.

  9. Accelerated life ac conductivity measurements of CRT oxide cathodes

    NASA Astrophysics Data System (ADS)

    Hashim, A. A.; Barratt, D. S.; Hassan, A. K.; Nabok, A.

    2006-07-01

    The ac conductivity measurements have been carried out for the activated Ba/SrO cathode with additional 5% Ni powder for every 100 h acceleration life time at the temperature around 1125 K. The ac conductivity was studied as a function of temperature in the range 300-1200 K after conversion and activation of the cathode at 1200 K for 1 h in two cathodes face to face closed configuration. The experimental results prove that the hopping conductivity dominate in the temperature range 625-770 K through the traps of the WO 3 associate with activation energy Ea = 0.87 eV, whereas from 500-625 K it is most likely to be through the traps of the Al 2O 3 with activation energy of Ea = 1.05 eV. The hopping conductivity at the low temperature range 300-500 K is based on Ni powder link with some Ba contaminants in the oxide layer stricture which indicates very low activation energy Ea = 0.06 eV.

  10. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  11. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  12. Microwave ac Conductivity Spectrum of a Coulomb Glass

    SciTech Connect

    Lee, Mark; Stutzmann, M. L.

    2001-07-30

    We report the first observation of the transition between interacting and noninteracting behavior in the ac conductivity spectrum {sigma}({omega}) of a doped semiconductor in its Coulomb glass state near T=0 K . The transition manifests itself as a crossover from approximately linear frequency dependence below {approx}10 GHz , to quadratic dependence above {approx}15 GHz . The sharpness of the transition and the magnitude of the crossover frequency strongly suggest that the transition is driven by photon-induced excitations across the Coulomb gap, in contrast to existing theoretical descriptions.

  13. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes

    NASA Astrophysics Data System (ADS)

    El-Ghamaz, N. A.; Diab, M. A.; El-Bindary, A. A.; El-Sonbati, A. Z.; Nozha, S. G.

    2015-05-01

    A novel series of (5-(4‧-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n = 1, p-OCH3; n = 2, R = H; and n = 3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivityac) and conduction mechanism are investigated in the frequency range 0.1-100 kHz and temperature range 293-568 K for AQL1-3 and 318-693 K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated.

  14. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Zahoor Ahmad, Bhat; Bhat, Bilal Hamid

    2014-09-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz-3 MHz and 290-570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω-1 m-1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects.

  15. Relationship between Oxide-Ion Conduction and Dielectric Properties of Gd2Zr2O7 Having a Fluorite-Type Structure

    NASA Astrophysics Data System (ADS)

    Yamamura, Hiroshi; Nishino, Hanako; Kakinuma, Katsuyoshi

    2008-07-01

    The relationship between electrical conduction and dielectric properties was investigated for the oxide-ion conductor Gd2Zr2O7 having a fluorite-type structure. Computer simulation clarified that the anomalously large dielectric constant (ɛr') was successfully explained by the superposition of the Debye-type polarization and the electrolyte-electrode interfacial polarization. Two Debye-type relaxations were observed at 673 K and above. The lower-frequency relaxation was ascribed to the dopant-vacancy associate, (GdCe'-VO••-GdCe'), and the higher one to the long range migration of oxide ions on the basis of the discussions of both the activation energies and the relaxation frequencies. The frequency dependences of both the ac conductivityac) and the loss tangent (tan δ) were also successfully explained using the dielectric parameters of the Debye-type dopant-vacancy associates.

  16. The electrical conduction and dielectric strength of SU-8

    NASA Astrophysics Data System (ADS)

    Melai, Joost; Salm, Cora; Smits, Sander; Visschers, Jan; Schmitz, Jurriaan

    2009-06-01

    This paper presents a study on the dielectric behavior of SU-8 photoresist. We present measurements on the leakage current levels through SU-8 layers of varying thickness. The leakage current is dominated by thermionic emission. We have further determined the dielectric strength of SU-8 to be 4.4 MV cm-1. The remarkably high dielectric strength allows the material to be used for high-voltage applications.

  17. dc piezoresistance and ac conductance of niobium dioxide

    SciTech Connect

    Guerra Vela, C.

    1984-01-01

    The resistance, R, of monocrystalline n-type NbO/sub 2/ in the semiconducting, distorted rutile-structured phase was measured at temperatures from 196 to 410 K and hydrostatic pressures, P, from one to 6000 atm. R/T increases exponentially with 1/T, and ..delta..R/R increases linearly with P/T at different rates along the a- and c-axes. Conduction is apparently due to adiabatic hopping of small polarons; values were obtained for phonon, electron transfer, and polaron binding energies, the pressure dependences of these energies, and of the small polaron activation energy. An electronic phase diagram is presented also. The complex ac conductivity was also measured using frequencies from 5 to 92 kHz between 1.5 and 300 K along the a- and c-axes of NbO/sub 2/. Above 200 K the real part of the conductivity sigma/sub a/ and sigma/sub c/ were independent of frequency, f, and strongly activated like the dc conductivity. Below 200 K, sigma/sub a/ decreased ever less rapidly until 120 K where a weakly activated regime began in which sigma/sub a/ varied about like f/sup 0.5/ implying transitions of polarons between centers with a characteristic energy difference.

  18. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  19. Alternating current conductivity and dielectric relaxation of PANI:PVDF composites

    NASA Astrophysics Data System (ADS)

    Saïdi, Sami; Mannaî, Aymen; Bouzitoun, Mouna; Belhadj Mohamed, Abdellatif

    2014-04-01

    In this work, PANI:PVDF composites films were prepared with different PANI contents (p = 1, 2, 3, 4 and 5%). The resulting films were dried at various temperatures such as 30, 90 and 120 °C. The alternating current mechanisms and dielectric relaxation and of PANI:PVDF films were studied using complex impedance spectroscopy over a wide range of temperature (303-453 K) and a frequency range (1 kHz to 1 MHz). We found that the ac conductivity in PANI:PVDF composite is governed by correlated barrier hopping (CBH) model. In dielectric loss modulus study, two relaxation processes were identified. The first peak was associated to Maxwell Wagner-Sillas (MWS) relaxation whereas the second one which obtained at higher frequency was attributed to the αc relaxation. For PANI:PVDF film which dried at 30 °C, the MWS relaxation appears only at higher temperature. The temperature dependence of αc relaxation was suitably fitted according to Vogel Flucher Temman model whereas MWS relaxation follows Arrhenius type behavior. The effect of drying temperature on microstructure and phase crystallization of PVDF in the composites was carried out using atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. These results were used to find a reasonable correlation between microstructure and electrical properties.

  20. Ac conduction in conducting poly pyrrole-poly vinyl methyl ether polymer composite materials

    SciTech Connect

    Saha, S.K.; Mandal, T.K.; Mandal, B.M.; Chakravorty, D.

    1997-03-01

    Composite materials containing conducting polypyrrole and insulating poly (vinyl methyl ether) (PVME) have been synthesized by oxidative polymerization of pyrrole in ethanol using FeCl{sub 3} oxidant in the presence of PVME. The ac conductivity measurements have been carried out in the frequency range of 100 Hz to 10 MHz and in the temperature range of 110 to 350 K. The frequency dependent conductivity has been explained on the basis of a small polaron tunnelling mechanism. {copyright} {ital 1997 American Institute of Physics.}

  1. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  2. AC losses in prototype multistrand conductors for warm dielectric cable designs

    SciTech Connect

    Willis, J. O.; Maley, M. P.; Boening, H. J.; Coletta, G.; Mele, R.; Nassi, M.

    2002-01-01

    We report on multiphase ac losses in four-layer prototype multi-strand conductors (PMCs) wound from EITS tape provided by American Superconductor Corporation. These conductors are prototypes warm dielectric cable designs, such as for the US Dept. of Energy's Superconductivity Partnership Initiative Project at Detroit Edison, We report on single phase 'two phaset'(no current in Ihe PMC but with an external ac magnetic field generated by the two normal Conductors arranged at the remaining corners of an equilateral triangle forming a three-phase configuration) ,and balanced three phase losses. Losses were also measured using a set of saddle coils to apply an ac magnetic field to the PMC. The losses were measured as a function of temperature, frequency, and current. We compare the losses for three PMCs, one (4LA) wound conventionally with equal pitch angles for all layers and the two others (4LB and 4LC) wound to achieve equal current distribution (UCD) among the layers, and thus lower singlephase losses in the operating region. In addition, 4LC was wound with a newer gcneration tape having a higher critical current. The PMC 4LC was found to have the lowest single, twophase, and three-phase losses.

  3. RG flow of AC conductivity in soft wall model of QCD

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Neha; Siwach, Sanjay

    2016-03-01

    We study the Renormalization Group (RG) flow of AC conductivity in soft wall model of holographic QCD. We consider the charged black hole metric and the explicit form of AC conductivity is obtained at the cutoff surface. We plot the numerical solution of conductivity flow as a function of radial coordinate. The equation of gauge field is also considered and the numerical solution is obtained for AC conductivity as a function of frequency. The results for AC conductivity are also obtained for different values of chemical potential and Gauss-Bonnet couplings.

  4. Universal dielectric response of variously doped CeO{sub 2} ionically conducting ceramics

    SciTech Connect

    Nowick, A.S.; Vaysleyb, A.V.; Kuskovsky, I.

    1998-10-01

    The Jonscher power law, or {open_quotes}universal dielectric response{close_quotes} (UDR) behavior was studied for a range of CeO{sub 2} solid solutions with Y{sup 3+} and Gd{sup 3+} dopants, with particular emphasis on dilute systems which possess relatively simple defect structures. The results show power-law frequency dependence of the ac conductivity, with exponent s=0.61{plus_minus}0.03, independent of temperature and concentration. The conductivity data also show scaling behavior in terms of a time constant {tau}, whose activation energy is very close to that of the dc conductivity. For 1{percent} Y and 1{percent} Gd samples, an additional Debye-type relaxation is observed due to dopant{endash}oxygen-vacancy pairs. Such samples are clearly in the association range (stage III). These results contradict the assumption by Almond and West that {tau}{sup {minus}1} is the hopping frequency of the carrier defects. At very low concentrations ({approximately}0.01{percent}), UDR behavior virtually disappears. The present results are then compared to the principal theories that describe UDR behavior. It is found that, while each theory suffers from some drawbacks, the more phenomenological theories fare better. {copyright} {ital 1998} {ital The American Physical Society}

  5. Dielectric and electric conductivity studies of PVA (Mowiol 10-98) doped with MWCNTs and WO3 nanocomposites films

    NASA Astrophysics Data System (ADS)

    Rithin Kumar, N. B.; Crasta, Vincent; Praveen, B. M.

    2016-05-01

    In this article, we report the doping of MWCNTs and WO3 nanoparticles into the PVA matrix for fabricating a novel class of PVA nanocomposite using solvent casting method. The behavioral effect of these embedded nanoparticles in PVA matrix for different doping concentrations on microstructural, dielectric and electric properties are analyzed for possible device applications. The formation of nanocomposites and their microstructural variations for different doping concentration were inspected by x-ray diffraction studies. As the doping concentration increases from x = 0 to 7.5 wt%, the DC conductivity rises from 1.0528 × 10‑11 to 3.7764 × 10‑9 S cm‑1 and beyond the dopant concentration x > 7.5 wt% the DC conductivity was found to decrease. The frequency dependent dielectric constant decreases with an increase in dopant concentration. The values of electric modulus, AC conductivity and polarization relaxation time extracted from dielectric data spectacles an enhancement behavior in conducting property of PVA nanocomposites with increasing concentration up to x = 7.5 wt% and above x > 7.5 wt% the values found decreasing. The information regarding the surface morphology and chemical configuration of the nanocomposites are determined by using atomic force microscope (AFM), scanning electron microscope (SEM) and energy dispersive analysis of x-rays (EDS) techniques.

  6. Investigation of conduction and dielectric behaviors of a-Pb9Se71Ge20-xSnx (8≤x≤12) chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Modgil, Vivek; Rangra, V. S.

    2014-07-01

    The Pb9Se71Ge20-xSnx (8≤x≤12) glassy alloys are prepared by melt quenching technique. The dielectric parameters and conductivity behavior of pallets has been studied in the frequency range 500 Hz to 1 MHz with varying temperature well below glass transition temperature. The ac conductivity is found to obey the power law ωs, where s approaches unity at room temperature and decreases as temperature rises. The conductivity behavior, dielectric constant and loss show the frequency and temperature dependence. The results obtained are discussed in terms of correlated barrier hopping model proposed by Elliot. Correlation between conductive and dielectric behavior of glassy alloy has been observed.

  7. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    NASA Astrophysics Data System (ADS)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-03-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3‧-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC[*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε‧) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole-Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole-Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  8. Broadband AC Conductivity of XUV Excited Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Tsui, Y.; Toleikis, S.; Hering, P.; Brown, S.; Curry, C.; Tanikawa, T.; Hoeppner, H.; Levy, M.; Goede, S.; Ziaja-Motyka, B.; Rethfeld, B.; Recoules, Vanina; Ng, A.; Glenzer, S.

    2015-11-01

    The properties of ultrafast laser excited warm dense gold have been extensively studied in the past decade. In those studies, a 400nm ultrashort laser pulse was used to excite the 5 d electrons in gold to 6s/p state. Here we will present our recent study of warm dense gold with 245eV, 70fs pulses to selectively excite 4 f electrons using the XUV-FEL at FLASH. The AC conductivity of the warm dense gold was measured at different wavelengths (485nm, 520nm, 585nm, 640nm and 720nm) to cover the range from 5 d-6 s / p interband transitions to 6 s/ p intraband transitions. Preliminary result suggests that the onset of 5 d-6 s / p band transition shifts from 2.3eV to ~ 2eV, which is in agreement with the study of 400nm laser pulse excited warm dense gold. More detailed analysis of our data will also be presented.

  9. Double dielectric relaxations in SnO2 nanoparticles dispersed in conducting polymer

    NASA Astrophysics Data System (ADS)

    Dutta, Kousik; De, S. K.

    2007-10-01

    The tetragonal phase of SnO2 and the conducting form of polyaniline are characterized by x-ray diffraction and Fourier transform infrared spectroscopy. The electrical conductivity and the dielectric properties of tin dioxide (SnO2)-polyaniline hybrid nanocomposites have been investigated as a function of temperature and frequency for different concentrations of polyaniline. Electrical conductivity has been derived from the simple equivalent circuit pertaining to inhomogeneous polycrystalline materials. Grain and grain boundary conductivities follow an Arrhenius type of electrical conduction. The nanocomposites possess an extraordinarily high dielectric constant of about 103. Different conductivities of the grain and grain boundary give rise to a large dielectric constant in nanocomposites. The dielectric loss spectra reveal two peaks in the measured frequency interval for the maximum concentration of the SnO2 nanoparticles. The peaks are ascribed to interfacial polarization and the intrinsic oxygen defects in nanosized SnO2.

  10. Analysis of conductivity and dielectric spectra of Mn0.5Zn0.5Fe2O4 with coupled Cole-Cole type anomalous relaxations

    NASA Astrophysics Data System (ADS)

    Kumar, N. S. K.; Shahid, T. S.; Govindaraj, G.

    2016-05-01

    Most of the crystalline materials seldom show a well-defined dielectric loss peak due to domination of dc conductivity contribution, but effects of loss peaks are seen at high frequencies. Ac electrical data of nano-crystalline Mn0.5Zn0.5Fe2O4 synthesised by chemical co-precipitation method show such behaviour. Properly combined and formulated conduction and dielectric relaxation functions are required for such materials. Cole-Cole type relaxation function in the combined conduction and dielectric process is formulated for complex resistivity ρ*(ω), complex permittivity ε*(ω), complex conductivity σ*(ω) and complex electric modulus M*(ω). Conduction and dielectric relaxation are linked to Jonscher's idea of 'pinned dipole' and 'free dipole' to understand the relaxation dynamics. The physical parameters of 'pinned dipole' and 'free dipole' formalism are unique for all representations like ρ*(ω), ε*(ω), σ*(ω) and M*(ω). 'Pinned dipole' relaxation time τc related to conduction process and 'free dipole' relaxation time τd related to dielectric process show Arrhenius behaviour with the same activation energy. Correlation of dc conductivity σc with τc and τd indicates the coupled dynamics of 'pinned dipole' and 'free dipole'. Time-temperature scaling of conduction and dielectric relaxation reveals that the mechanism of coupled dynamics of 'pinned dipole' and 'free dipole' is temperature independent. Hopping of charge carriers with dynamics of disordered cation distribution of host matrix generates a coupled conduction and dielectric relaxation in Mn0.5Zn0.5Fe2O4.

  11. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    PubMed

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third. PMID:23858874

  12. Revisiting the percolation phenomena in dielectric composites with conducting fillers

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Bass, Patrick; Cheng, Z.-Y.

    2014-07-01

    The composition (φ) dependence of the effective dielectric constant (ɛeff) on conductor-dielectric composites is widely described as ɛeff∝(φc-φ)-s. This relationship has been extensively used to fit experimental results for determining the percolation behavior (percolation threshold φc and power constant s). The equation was checked using experimental results from two 0-3 nanocomposite systems with uniform microstructures. It is found that the equation can be used to fit the experimental results, but the fitting constants (φc and s) do not reflect the percolation behavior: the values of both fitting constants are dependent on the frequency (f) and temperature selected. It is also found that the fitting constant φc increases with increasing frequency selected and it is believed that this arises from the critical phenomenon, ɛeff∝fγ-1, for composites close to the φc.

  13. Morphological, dielectric and electrical conductivity characteristics of clay-containing nanohybrids of poly(N-vinyl carbazole) and polypyrrole.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda; Ray, Suprakas Sinha

    2012-10-01

    Poly(N-vinyl carbazole) (PNVC) and polypyrrole (PPY)-montmorillonite (MMT) clay hybrids were prepared by mechanical grinding of the respective monomers with MMT followed by subsequent standard processing methods. Fourier transform infrared spectroscopic studies confirmed the inclusion of the polymers in the composites. The morphologies of the hybrids were investigated by transmission electron microscopic techniques, which suggested the formation of intercalated structures. X-ray diffraction analyses indicated the enhancement of 'd001' values in MMT implying intercalation of the polymers into the nano-interlamellar spaces of MMT. The dielectric constants of PNVC-MMT hybrids were improved (60-180) relative to the homopolymer (3-6) in the frequency range 0.1-25 kHz. PPY-MMT hybrid also showed significantly higher values of dielectric constant (2000-4000) relative to the corresponding base polymers. These variations were dependent on the MMT/polymer feed ratio in the frequency range (1-25 kHz). This feature could manifest from the characteristic differences in the interfaces between the grains and grain boundaries of the composites, which control the dielectric properties of the system. Relaxation behavior for the composites was explained by considering the Maxwell-Wagner two-layered dielectric models. The ac conductivity was found to be dependent on frequency in the entire frequency range of study (100 Hz to 25 kHz), which indicated that the composites had few free charges for conduction, and frequency dependent conductivity was due to trapped charges in the grain boundary. PMID:23421146

  14. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  15. Phonon-Induced Electron-Hole Excitation and ac Conductance in Molecular Junction

    NASA Astrophysics Data System (ADS)

    Ueda, Akiko; Utsumi, Yasuhiro; Imamura, Hiroshi; Tokura, Yasuhiro

    2016-04-01

    We investigate the linear ac conductance of molecular junctions under a fixed dc bias voltage in the presence of an interaction between a transporting electron and a single local phonon in a molecule with energy ω0. The electron-phonon interaction is treated by the perturbation expansion. The ac conductance as a function of the ac frequency ωac decreases or increases compared with the noninteracting case depending on the magnitude of the dc bias voltage. Furthermore, a dip emerges at ωac ˜ 2ω0. The dip originates from the modification of electron-hole excitation by the ac field, which cannot be obtained by treating the phonon in the linear regime of a classical forced oscillation.

  16. Determining the static dielectric permittivity of ion conducting materials when obscured by electrode polarization

    NASA Astrophysics Data System (ADS)

    Grâsjö, Johan; Welch, Ken; Strømme, Maria

    2008-09-01

    A method is derived for the determination of the static dielectric permittivity of ion conducting materials when this parameter is obscured by electrode polarization in as-recorded low frequency dielectric spectra. The method requires permittivity measurements at two different electrode separations, and is applicable when the electric fields created by charge separation near the electrode surfaces do not induce nonlinear effects in the frequency region where electrode polarization begins to affect the dielectric response. The performance of the method is illustrated by the analysis of an ion conducting cellulose gel biosynthesized by the Acetobacter. xylinum bacterium. The method opens up possibilities to obtain more detailed information about dynamic processes in ion conducting materials from dielectric spectroscopy.

  17. The conductivity and dielectric behavior of solutions of bitumen in toluene

    SciTech Connect

    Chow, R.S.; Tse, D.L.; Takamura, K.

    1988-06-01

    Previous work on the conductivity and dielectric behavior of residual oil (the fraction remaining in the distillation tower) has suggested that the asphaltene fraction (pentane insolubles) was responsible for the conductivity behavior of solutions of this oil in organic solvents. In this work it is shown that the asphaltenes in heavy crude oils determine the conductivity behavior of solutions of the bulk oil in toluene, while the dielectric behavior is influenced by each component of the oil. The strong dependence of the conductivity on the asphaltene fraction makes it possible to determine the asphaltene content of a heavy crude oil by a conductimetric technique. The conductivity and dielectric behavior of crude oils and fractions of the crude oils, as well as the technique for determining the asphaltene content by conductivity will be presented.

  18. Numerical investigation of conduction pumping of dielectric liquid film using flush-mounted electrodes

    NASA Astrophysics Data System (ADS)

    Gharraei, Reza; Esmaeilzadeh, Esmaeil; Heirani Nobari, Mohammad Reza

    2014-02-01

    Electrohydrodynamic conduction pumping of dielectric liquid films using flush-mounted electrodes is investigated numerically. Two major factors consisting of the ion mobility difference and electrodes' configuration can affect the conduction pumps. The relative importance of these factors on the hydrodynamic behavior has been studied at different configurations of flush-mounted electrodes for conduction pumping of various dielectric liquids with different electrical properties. Furthermore, the effect of heterocharge layer structure on the hydrodynamic behavior of conduction pump has been studied. The electrical behavior and flow patterns of dielectric liquids with real measured mobilities are compared with the experimental results, and new features of conduction pumping are found. The numerical results indicate that in the various operating conditions, the flow direction is dictated by the dominant factor.

  19. Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2016-07-01

    The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.

  20. Conduction mechanism and dielectric relaxation in high dielectric KxTiyNi1-x-yO

    NASA Astrophysics Data System (ADS)

    Jana, Pradip Kumar; Sarkar, Sudipta; Karmakar, Shilpi; Chaudhuri, B. K.

    2007-10-01

    Complex impedance spectroscopic study has been made to elucidate the conductivity mechanism and dielectric relaxations in a low loss giant dielectric (ɛ'˜104) KxTiyNi1-x-yO (KTNO) system with x =0.05-0.30 and y =0.02 over a wide temperature range (200-400K). Below ambient temperature (300K), dc conductivity follows variable range hopping mechanism. The estimated activation energy for dielectric relaxation is found to be higher than the corresponding polaron hopping energy, which is attributed to the combined effect of K-doped grains and highly disordered grain boundary (GB) contributions in KTNO. Observed sharp fall of ɛ' below ˜270K is ascribed to the freezing of charge carriers. Comparatively lower value of relaxation time distribution parameter β of KTNO than that of the CaCu3Ti4O12 (CCTO) system reveals more disorder in KTNO. It is also found that KTNO is structurally more stable compared to the CCTO system, both having giant ɛ' value.

  1. AC motor controller with 180 degree conductive switches

    NASA Technical Reports Server (NTRS)

    Oximberg, Carol A. (Inventor)

    1995-01-01

    An ac motor controller is operated by a modified time-switching scheme where the switches of the inverter are on for electrical-phase-and-rotation intervals of 180.degree. as opposed to the conventional 120.degree.. The motor is provided with three-phase drive windings, a power inverter for power supplied from a dc power source consisting of six switches, and a motor controller which controls the current controlled switches in voltage-fed mode. During full power, each switch is gated continuously for three successive intervals of 60.degree. and modulated for only one of said intervals. Thus, during each 60.degree. interval, the two switches with like signs are on continuously and the switch with the opposite sign is modulated.

  2. The physics of gridded and conductive coated dielectrics for spacecraft

    NASA Technical Reports Server (NTRS)

    Okress, E. C.

    1977-01-01

    Theoretical aspects of electrostatic control and design of gridded and conductive film bonded polymers, for spacecraft Thermo-optical blankets are considered. Brief commentaries relative to the salient features of the primarily developed facility for and characterization of said polymers is also considered.

  3. Electromagnetic diffraction by two perfectly conducting wedges with dented edges loaded with a dielectric cylinder

    NASA Astrophysics Data System (ADS)

    Elsherbeni, A. Z.; Auda, H. A.

    1989-06-01

    A rigorous field analysis of the problem of two identical perfectly conducting parallel wedges with dented edges loaded with a dielectric cylinder, and excited by an electric or magnetic line current in the upper sector, is given in this paper. The dielectric medium is assumed to be linear, homogeneous, isotropic and free from losses, whereas the mediums of the upper and lower sectors are free space. A field equivalence theorem is used to derive, for each excitation, a system of coupled integral equations for the equivalent magnetic currents on the dielectric interfaces, which is later solved using Galerkin's method. The fields and powers transmitted into the lower sector, hence the transmission coefficients, for both polarizations are subsequently determined in terms of the equivalent magnetic currents on the lower dielectric interface. The analysis is then specialized to the problem of a slit loaded with a dielectric cylinder, as well as to the case of plane wave excitation. Sample numerical results for the dielectric-loaded double dented wedge and slit problems in the case of plane wave excitation are also given.

  4. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2013-06-01

    Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

  5. Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Plyushch, Artyom; Macutkevic, Jan; Kuzhir, Polina P.; Banys, Juras; Fierro, Vanessa; Celzard, Alain

    2016-03-01

    Results of broadband dielectric spectroscopy of flat micronic graphite (FMG)/polyurethane (PU) resin composites are presented in a wide temperature range (25-450 K). The electrical percolation threshold was found to lie between 1 and 2 vol. % of FMG. Above the percolation threshold, the composites demonstrated a huge hysteresis of properties on heating and cooling from room temperature up to 450 K, along with extremely high values of dielectric permittivity and electrical conductivity. Annealing proved to be a very simple but powerful tool for significantly improving the electrical properties of FMG-based composites. In order to explain this effect, the distributions of relaxation times were calculated by the complex impedance formalism. Below room temperature, both dielectric permittivity and electrical conductivity exhibited a very low temperature dependence, mainly caused by the different thermal properties of FMG and pure PU matrix.

  6. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Sukhnandan Singh, Surinder Singh, Lakhwant; Lochab, S. P.

    2014-04-24

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 {sup 0}C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  7. Dielectric behavior, conduction and EPR active centres in BiVO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Venkatesan, Rajalingam; Velumani, Subramaniam; Tabellout, Mohamed; Errien, Nicolas; Kassiba, Abdelhadi

    2013-12-01

    Bismuth vanadate (BiVO4) nanomaterials were synthesized by mechano-chemical ball milling method and complementary investigations were devoted to their structures, nanoparticle morphologies and electronic active centres. The dielectric and conductivity behaviour were analysed systematically in wide temperature and frequency ranges to correlate such physical responses with the peculiarities of the samples. Large interfacial polarisations favoured by high specific surfaces of nanoparticles account for a drastic enhancement of the dielectric function in the quasi-static regime. Exhaustive analyses of the dielectric experiments were achieved and account for the main features of dielectric functions and their related relaxation mechanisms. The electrical conductivity is thermally activated with energies in the range 0.1-0.6 eV depending on the sample features. DC conductivity up to 10-3 S/cm was obtained in well crystallized nanoparticles. Vanadium ions reduction was revealed by EPR spectroscopy with higher concentrations of the active centres (V4+) in more agglomerated and amorphous nanopowders. The EPR spectral parameters of V4+ were determined and correlated with the local environments of reduced vanadium ions and the characteristics of their electronic configurations. An insight is also made on the role of active electronic centres (V4+) on the conduction mechanism in nanostructured BiVO4.

  8. Inorganic backbone ionomers: Design and dielectric response of single-ion conducting polymers

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua

    Ion-conducting polymers were studied primarily through the use of dielectric spectroscopy. The conclusions drawn from ion conduction models of the dielectric data are corroborated by additional independent experiments, including x-ray scattering, calorimetry, prism coupling, and DFT calculations. The broad concern of this dissertation is to understand and clarify a path forward in ion conducting polymer research. This is achieved by considering low-Tg ionomers and the advantages imparted by siloxane and phosphazene backbones. The most successful dielectric spectroscopy model for the materials studied is the electrode polarization model (EP), whereas other models, such as the Dyre random barrier model, fail to describe the experimental results. Seven nonionic ether oxygen (EO) containing polymers were studied in order to observe the effect that backbone chemistry has on dipole motion. Conventional carboncarbon backbone EO-containing polymers show no distinct advantage over similar EO-pendant polysiloxane or polyphosphazene systems. The mobility and effective backbone Tg imparted by the inorganic backbones are comparable. A short EO pendant results in a lower static dielectric constant due to restricted motion of dipoles close to the chain. The flexibility and chemical versatility of inorganic backbone polymers motivates further study of two ionomer systems. A polypohosphazene iodide conducting system was characterized by dielectric spectroscopy and x-ray scattering. Two end "tail" functionalization of the ammonium ion were used, a tail with two EOs and an alkyl tail of six carbons. This functional group plays an important role in ion dynamics and can wrap around the ion and self-solvate when EOs are present. The iodide-ammonium ionomers are observed to have unusually large high-frequency dielectric constants due to atomic polarization of ions. The strength of the atomic polarization scales with ion content. The aggregation state of ions is able to be determined from

  9. Conductance of a single electron transistor with a retarded dielectric layer in the gate capacitor

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Chtchelkatchev, N. M.; Fedorov, S. A.; Beloborodov, I. S.

    2015-11-01

    We study the conductance of a single electron transistor (SET) with a ferroelectric (or dielectric) layer placed in the gate capacitor. We assume that the ferroelectric (FE) has a retarded response with arbitrary relaxation time. We show that in the case of "fast" but still retarded response of the FE (dielectric) layer an additional contribution to the Coulomb blockade effect appears leading to the suppression of the SET conductance. We take into account fluctuations of the FE (dielectric) polarization using Monte Carlo simulations. For "fast" FE, these fluctuations partially suppress the additional Coulomb blockade effect. Using Monte Carlo simulations, we study the transition from "fast" to "slow" FE. For high temperatures, the peak value of the SET conductance is almost independent of the FE relaxation time. For temperatures close to the FE Curie temperature, the conductance peak value nonmonotonically depends on the FE relaxation time. A maximum appears when the FE relaxation time is of the order of the SET discharging time. Below the Curie point the conductance peak value decreases with increasing the FE relaxation time. The conductance shows the hysteresis behavior for any FE relaxation time at temperatures below the FE transition point. We show that conductance hysteresis is robust against FE internal fluctuations.

  10. Impedance and AC conductivity study of nano crystalline, fine grained multiferroic bismuth ferrite (BiFeO3), synthesized by microwave sintering

    NASA Astrophysics Data System (ADS)

    Kolte, Jayant; Salame, Paresh H.; Daryapurkar, A. S.; Gopalan, P.

    2015-09-01

    In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO) ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ¯ ≈ 10 n m ). Microwave sintering resulted in reducing the sintering time substantially (by 1h), and has resulted in submicron sized grains and high resistivity ˜1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher's power law behavior, suggesting correlated barrier hopping (CBH) mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (˜180 °C) indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS) we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC) leading to high dielectric constant in microwave sintered BFO.

  11. Effects of conductive particles on the actuating behavior of dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Yanju; Leng, Jinsong

    2010-04-01

    Dielectric elastomers (DEs) are one particular type of electroactive polymers. Dielectric elastomers work as a variable capacitor. The effects of conductive particles on the actuating behavior of silicone rubber-based dielectric elastomer are studied in this work. Two different materials, which are carbon nanotube and carbon black, respectively, are used to increase the overall permittivity of the composites. Although the addition of these conductive particles increases the permittivity of the composite, they also produce a highly inhomogeneous electric field and reduced breakdown strength of the composite. This reduction in breakdown strength could be a serious drawback of nanocomposite approach. The main challenge, therefore, becomes how to enhance the permittivity of the composite while maintaining its high breakdown strength. These composites are characterized by dielectric spectroscopy, tensile mechanical analysis, and electromechanical transduction tests. The effect of variation in filler loadings on the complex and real parts of permittivity are distinctly visible, which has been explained on the basis of interfacial polarization of fillers in a heterogeneous medium. The phenomenon of percolation was discussed based on the measured changes in permittivity and morphology of composites at different concentrations of these particles.

  12. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  13. Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.

  14. Communication: Solvation and dielectric response in ionic liquids--conductivity extension of the continuum model.

    PubMed

    Zhang, X-X; Schröder, C; Ernsting, N P

    2013-03-21

    The solvation response of a polarity probe in a conducting liquid is analyzed based on simple continuum theory. A multi-exponential description of the dynamics is inverted to give an effective dc conductivity and a generalized permittivity spectrum in terms of Debye modes. For Coumarin 153 in ionic liquids the conductivity is found to be reduced systematically from the bulk value, whereas the permittivity from GHz-THz bulk absorption measurements is well reproduced by the solvation experiment. Thus, by using a dye as molecular antenna, the dielectric dispersion of the microscopic environment can be obtained. PMID:23534620

  15. AC Conductivity Studies in Lithium-Borate Glass Containing Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shivaprakash, Y.; Anavekar, R. V.

    2011-07-01

    Gold nanoparticles have been synthesized in a base glass with composition 30Li2O-70B2O3 using gold chloride (HAuCl4.3H2O) as a dopant. The samples are characterized using XRD, ESR, SEM and optical absorption in the visible range. AC conductivity studies have been performed at RT over a frequency range 100 to 10 MHz. The dc conductivity is calculated from the complex impedence plot. The dc conductivity is found to be increasing with the increase of dopant concentration. AC conductivity data is fitted with Almond-West law with power exponent `s'. The values of `s' is found to lie in the range of 0.70-0.73.

  16. Conductive and dielectric defects, and anisotropic and isotropic turbulence in liquid crystals: Electric power fluctuation measurements

    NASA Astrophysics Data System (ADS)

    Tóth-Katona, Tibor; Gleeson, James T.

    2004-01-01

    Fluctuations of the injected electric power during electroconvection (EHC) of liquid crystals are reported in both the conductive and the dielectric regime of convection. The amplitude and the frequency of the fluctuations, as well as the probability density functions have been compared in these two regimes and substantial differences have been found both in defect turbulence of EHC and at the DSM1→DSM2 transition.

  17. Electrostatic manipulation of a dielectric microparticle considering surface conductivity using a single probe

    NASA Astrophysics Data System (ADS)

    Yamashima, Atsushi; Saito, Shigeki

    2009-12-01

    In this study, we have developed the technique of electrostatic manipulation of a dielectric microparticle by a single probe. The manipulation system consists of three objects: a conductive probe as a manipulating tool, a conductive plate as a substrate, and a dielectric particle that dubs as a microparticle. In manipulating 60 μm in diameter particles of polystyrene, when a constant probe-substrate voltage was applied, we observed the phenomenon of the particle repeatedly moving up and down between the substrate and the probe tip, similarly to a "micro-dribble." In order to understand the mechanism of the phenomenon, we have proposed a model with a resistor-capacitor circuit in consideration of the surface conductivity of the dielectric particle such that the model can explain the micro-dribble phenomenon in terms of the time constant of the circuit. By a single-pulse voltage the duration of which was designed (selected) on the basis of the frequency of the observed micro-dribble, we experimentally demonstrated the electrostatic micromanipulation by picking up/placing the polystyrene particle using the single probe. Although the success rate of 42% requires further improvement, the experimental result indicates the feasibility of the technique, which can be applied to future technology for microdevice packaging or assembly.

  18. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    NASA Astrophysics Data System (ADS)

    Fong, S. W.; Sood, A.; Chen, L.; Kumari, N.; Asheghi, M.; Goodson, K. E.; Gibson, G. A.; Wong, H.-S. P.

    2016-07-01

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO2/Al2O3 and SiO2/Si3N4. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100-500 K), show that amorphous thin-film multilayer SiO2/Si3N4 and SiO2/Al2O3 exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO2/Al2O3, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 1028 m-3 for SiO2 and 10.2 → 8.27 × 1028 m-3 for Al2O3) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m2 K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  19. Dielectric Investigation of Parylene D Thin Films: Relaxation and Conduction Mechanisms.

    PubMed

    Mokni, M; Kahouli, A; Jomni, F; Garden, J-L; André, E; Sylvestre, A

    2015-09-01

    Parylene is a generic name indicating a family of polymers with the basic chemical structure of poly-p-xylylene. Parylene N and Parylene C are the most popular for applications. Curiously, Parylene D (poly( dichloro-p-xylylene), (C8H6Cl2)) was forgotten for applications. This report is the consequence of a later availability of a commercial dimer of Parylene D and also to the recent advent of fluorinated Parylenes allowing extending applications at higher temperatures. In our work, from a dielectric analysis, we present the potentialities of Parylene D for applications particularly interesting for integration in organic field-effect transistors. Dielectric and electrical properties, macromolecular structures, and dynamics interaction with electric field as a function of frequency and temperature are studied in 5.8 μm thick Parylene D grown by chemical vapor deposition. More exactly, the dielectric permittivity, the dissipation factor, the electrical conductivity, and the electric modulus of Parylene D were investigated in a wide temperature and frequency ranges from -140 to +350 °C and from 0.1 Hz to 1 MHz, respectively. According to the temperature dependence of the dielectric permittivity, Parylene D has two different dielectric responses. It is retained as a nonpolar material at very low temperature (like Parylene N) and as a polar material at high temperature (like parylene C). The dissipation factor shows the manifestation of two relaxations mechanisms: γ and β at very low and high temperatures, respectively. The γ relaxation is assigned to the local motions of the C-H end of the chains when the cryogenic temperature range is approached. A broad peak in tan δ is assigned to the β relaxation. It corresponds to rotational motion of some polar C-Cl groups. For temperature above 260 °C a mechanism of Maxwell-Wagner-Sillars polarization at the amorphous/crystalline interfaces was identified with two activation energies of Ea1 = 2.12 eV and Ea2 = 3.8 e

  20. Dielectric and conductivity characteristics of CuCl2 doped poly(N-vinyl carbazole) and its hybrid nanocomposite with Fe3O4.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda

    2014-08-01

    Copper(II) chloride (CuCl2) doped poly(N-vinyl carbazole) (PNVC)-ferric oxide (Fe3O4) hybrid composites have been prepared and characterized by Fourier transform infrared spectroscopic studies, UV-Vis spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction analyses and evaluated in regard to dielectric response and ac/dc conductivity characteristics. HRTEM images for CuCl2-(PNVC-Fe3O4) composite indicate the co-existence of both the CuCl2 and Fe3O4 nanoparticles in the composite and characteristic lattice fringes are clearly observed which endorse the formation of thin layer interfaces between Fe3O4 and CuCl2 nanoparticles. The dielectric constants of the CuCl2 doped PNVC and PNVC-Fe3O4 composites increase substantially relative to the corresponding values of the polymer and the polymer composite respectively. Likewise, the conductivities (ac and dc) are also improved substantially after doping with CuCl2. The dependence of these functional properties on the extent of metal salt loading has been evaluated and a quantitative estimation of the contribution of the grain boundary and resistance parameters has been attempted in terms of Maxwell-Wagner two-layered model. PMID:25936001

  1. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  2. Characterization of intrinsic and induced lateral conduction in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-02-14

    Characterization of lateral charge carrier conduction in space dielectrics is of high importance for the prediction of charging behavior and electrostatic discharges on satellites. In the present paper, a new experimental approach for the analysis of surface conduction, which is not well understood and characterized in the literature, is established and discussed. Though this method, based on the use of two Kelvin probes, we have been able to discriminate between lateral and bulk charge transports and to reveal the presence of an intrinsic lateral conductivity on Teflon{sup ®} FEP irradiated with low energy electron beam. We demonstrated that lateral intrinsic conductivity is enhanced when incident current density increases and when approaching the sample surface. The experimental results are analyzed through trapping/detrapping and hopping models. Depending on radiation configuration mode, we have revealed as well the presence of a lateral conductivity that is enhanced by radiation ionization processes, and explained as well with a trapping/recombination model.

  3. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  4. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing.

    PubMed

    Orloff, Nathan D; Long, Christian J; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P; McMichael, Robert D; Pasquali, Matteo; Stranick, Stephan J; Liddle, J Alexander

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  5. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  6. Dielectric dispersion of Y-type hexaferrites at low frequencies

    NASA Astrophysics Data System (ADS)

    Abo El Ata, A. M.; Attia, S. M.

    2003-02-01

    A series of polycrystalline Y-type hexaferrites with composition Ba 2Ni 2- xZn xFe 12O 22 (where 0.0⩽ x⩽2.0) were prepared by the standard ceramic method to study the effect of the frequency, temperature and composition on their AC electrical conductivity σ' AC, and dielectric properties. It was found that, the AC conductivity shows dispersion at high frequencies. This dispersion was attributed to the interfacial polarization arising from the inhomogeneous structure of the material. At low frequencies the dielectric constant, ɛ', is abnormally high and decreases rapidly with increasing frequency. Dielectric relaxation peaks were observed on the tan δ( F) curves. The results of the dielectric constant and dielectric loss were explained on the basis of the assumption that the mechanism of dielectric polarization is similar to that of the conduction process.

  7. Oxygen flux and dielectric response study of Mixed Ionic-Electronic Conducting (MIEC) heterogeneous functional materials

    NASA Astrophysics Data System (ADS)

    Rabbi, Fazle

    Dense mixed ionic-electronic conducting (MIEC) membranes consisting of ionic conductive perovskite-type and/or fluorite-type oxides and high electronic conductive spinel type oxides, at elevated temperature can play a useful role in a number of energy conversion related systems including the solid oxide fuel cell (SOFC), oxygen separation and permeation membranes, partial oxidization membrane reactors for natural gas processing, high temperature electrolysis cells, and others. This study will investigate the impact of different heterogeneous characteristics of dual phase ionic and electronic conductive oxygen separation membranes on their transport mechanisms, in an attempt to develop a foundation for the rational design of such membranes. The dielectric behavior of a material can be an indicator for MIEC performance and can be incorporated into computational models of MIEC membranes in order to optimize the composition, microstructure, and ultimately predict long term membrane performance. The dielectric behavior of the MIECs can also be an indicator of the transport mechanisms and the parameters they are dependent upon. For this study we chose a dual phase MIEC oxygen separation membrane consisting of an ionic conducting phase: gadolinium doped ceria-Ce0.8 Gd0.2O2 (GDC) and an electronic conductive phase: cobalt ferrite-CoFe2O4 (CFO). The membranes were fabricated from mixtures of Nano-powder of each of the phases for different volume percentages, sintered with various temperatures and sintering time to form systematic micro-structural variations, and characterized by structural analysis (XRD), and micro-structural analysis (SEM-EDS). Performance of the membranes was tested for variable partial pressures of oxygen across the membrane at temperatures from 850°C-1060°C using a Gas Chromatography (GC) system. Permeated oxygen did not directly correlate with change in percent mixture. An intermediate mixture 60%GDC-40%CFO had the highest flux compared to the 50%GDC

  8. Differences between direct current and alternating current capacitance nonlinearities in high-k dielectrics and their relation to hopping conduction

    NASA Astrophysics Data System (ADS)

    Khaldi, O.; Gonon, P.; Vallée, C.; Mannequin, C.; Kassmi, M.; Sylvestre, A.; Jomni, F.

    2014-08-01

    Capacitance nonlinearities were studied in atomic layer deposited HfO2 films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearities are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.

  9. Differences between direct current and alternating current capacitance nonlinearities in high-k dielectrics and their relation to hopping conduction

    SciTech Connect

    Khaldi, O.; Kassmi, M.; Gonon, P. Vallée, C.; Mannequin, C.; Sylvestre, A.; Jomni, F.

    2014-08-28

    Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearities are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.

  10. On the nonlinear variation of dc conductivity with dielectric relaxation time

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove

    2006-09-01

    The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.

  11. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  12. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-05-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.

  13. Microwave a.c. conductivity of domain walls in ferroelectric thin films.

    PubMed

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R; Martin, Lane W; Kalinin, Sergei V; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  14. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    PubMed Central

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  15. Random free energy barrier hopping model for ac conduction in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Murti, Ram; Tripathi, S. K.; Goyal, Navdeep; Prakash, Satya

    2016-03-01

    The random free energy barrier hopping model is proposed to explain the ac conductivityac) of chalcogenide glasses. The Coulomb correlation is consistently accounted for in the polarizability and defect distribution functions and the relaxation time is augmented to include the overlapping of hopping particle wave functions. It is observed that ac and dc conduction in chalcogenides are due to same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature dependence of hopping barriers. The exponential parameter s is calculated and it is found that s is subjected to sample preparation and measurement conditions and its value can be less than or greater than one. The calculated results for a - Se, As2S3, As2Se3 and As2Te3 are found in close agreement with the experimental data. The bipolaron and single polaron hopping contributions dominates at lower and higher temperatures respectively and in addition to high energy optical phonons, low energy optical and high energy acoustic phonons also contribute to the hopping process. The variations of hopping distance with temperature is also studied. The estimated defect number density and static barrier heights are compared with other existing calculations.

  16. Conductivity (ac and dc) in III-V amorphous semiconductors and chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Hauser, J. J.

    1985-02-01

    Variable-range hopping, as evidenced by a resistivity proportional to exp(T-1/4), has been induced in many III-V amorphous semiconductors (InSb, AlSb, and GaAs) and even in chalcogenide glasses (As2Te3, As2Te3-xSex, and GeTe) by depositing films at 77 K. It is therefore remarkable that the same procedure failed to generate variable-range hopping in GaSb, which is one of the less ionic III-V semiconductors. Besides differences in the dc conductivity, there are also different behaviors in the ac conductivity of amorphous semiconductors. The low-temperature ac conductivity of all amorphous semiconductors is proportional to ωsTn with s~=1 and n<1, which is consistent with a model of correlated barrier hopping of electron pairs between paired and random defects. However, in the case of a-SiO2 and a-GeSe2 one finds, in addition, that the capacitance obeys the scaling relation C=A ln(Tω-1), which would suggest a conduction mechanism by tunneling relaxation. Furthermore, this scaling relation cannot be fitted to the data for a-As2Te3, a-InSb, and a-GaSb although the functional dependence of C on T and ω are similar.

  17. Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics

    NASA Astrophysics Data System (ADS)

    Rehman, Fida; Li, Jing-Bo; Zhang, Jia-Song; Rizwan, Muhammad; Niu, Changlei; Jin, Hai-Bo

    2015-12-01

    Dielectric relaxation behaviors of Aurivillius Bi5Ti3FeO15 ceramics were investigated in a wide range of frequency and temperature via dielectric and impedance spectroscopies. We distinguished two dielectric relaxations using the combination of impedance and modulus analysis. Resistance of the grain boundary was found to be much larger than grains, whereas capacitance was at the same level. The kinetic analysis of dielectric data was carried out to evaluate the contributions of microstructure and defects to the relaxation and conduction. The possible relaxation-conduction mechanism in the ceramics was discussed. The results enable deep understanding of microstructure-defect-relaxation behaviors in Bi5Ti3FeO15 ceramics.

  18. Waveguide Characterization of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

    PubMed Central

    Vitiello, Antonino; Moccia, Massimo; Papari, Gian Paolo; D’Alterio, Giuliana; Vitiello, Roberto; Galdi, Vincenzo; Andreone, Antonello

    2016-01-01

    We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering. PMID:26803985

  19. Waveguide Characterization of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

    NASA Astrophysics Data System (ADS)

    Vitiello, Antonino; Moccia, Massimo; Papari, Gian Paolo; D'Alterio, Giuliana; Vitiello, Roberto; Galdi, Vincenzo; Andreone, Antonello

    2016-01-01

    We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering.

  20. AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors

    NASA Astrophysics Data System (ADS)

    Mariappan, C. R.

    2014-05-01

    AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li-Al-Ti-P-O (LATP) glass-ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer-Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the exp ( {{{ - (EAt - EAg )} {{{ - (EAt - EAg )} {kT}}} ) factor along with Summerfield scaling factors on the frequency axis, where EAt and EAg are the activation energies of total and grain conductivities, respectively.

  1. AC conductivity and relaxation mechanism in (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramics

    NASA Astrophysics Data System (ADS)

    Nath, Susmita; Barik, Subrat Kumar; Choudhary, R. N. P.

    2016-05-01

    In the present study we have synthesized polycrystalline sample of (Nd1/2Li1/2)(Fe1/2V1/2)O3 ceramic by a standard high-temperature solid-state reaction technique. Studies of dielectric and electrical properties of the compound have been carried out in a wide range of temperature (RT - 400 °C) and frequency (1kHz - 1MHz) using complex impedance spectroscopic technique. The imaginary vs. real component of the complex impedance plot (Nyquist plot) of the prepared sample exhibits the existence of grain, grain boundary contributions in the complex electrical parameters and negative temperature coefficient of resistance (NTCR) type behavior like semiconductor. Details study of ac conductivity plot reveals that the material obeys universal Jonscher's power law.

  2. Dielectric behaviour of polycarbonate

    NASA Astrophysics Data System (ADS)

    El-Shabasy, M.; Riad, A. S.

    1996-05-01

    The dielectric constant and the dielectric loss of polycarbonate are investigated in the frequency range 30-10 5 Hz and at temperature from 297 to 365 K. The frequency dependence of the impedance spectra plotted in the complex plane shows semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with a parallel surface resistance-capacitance combination. The Cole-Cole diagrams have been used to determine the molecular relaxation time τ. The temperature dependence of τ is expressed by a thermally activated process. Analysis of the AC conductivity reveals semiconducting features based predominantly on a hopping mechanism.

  3. AC-Conductivity Measure from Heat Production of Free Fermions in Disordered Media

    NASA Astrophysics Data System (ADS)

    Bru, J.-B.; de Siqueira Pedra, W.; Hertling, C.

    2016-05-01

    We extend (Bru et al. in J Math Phys 56:051901-1-51, 2015) in order to study the linear response of free fermions on the lattice within a (independently and identically distributed) random potential to a macroscopic electric field that is time- and space-dependent. We obtain the notion of a macroscopic AC-conductivity measure which only results from the second principle of thermodynamics. The latter corresponds here to the positivity of the heat production for cyclic processes on equilibrium states. Its Fourier transform is a continuous bounded function which is naturally called (macroscopic) conductivity. We additionally derive Green-Kubo relations involving time-correlations of bosonic fields coming from current fluctuations in the system. This is reminiscent of non-commutative central limit theorems.

  4. Dielectric Properties of Lead Monoxide Filled Unsaturated Polyester Based Polymer Composites

    NASA Astrophysics Data System (ADS)

    Harish, V.; Kumar, H. G. Harish; Nagaiah, N.

    2011-07-01

    Lead monoxide filled isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the dielectric properties of the composites. The present study showed that the dielectric constant (ɛ'), dielectric loss (ɛ″) and ac conductivityac) of isopthalate based unsaturated polyester resin increases with the increase in wt% PbO filler in polymer matrix.

  5. Observation of irreversible current path in polymer dielectric using conductive atomic force microscope

    NASA Astrophysics Data System (ADS)

    Jung, Ji-Hoon; Kim, Woo Young; Kim, Do-Kyung; Kwon, Jin-Hyuk; Lee, Hee Chul; Bae, Jin-Hyuk

    2015-03-01

    During the measurement of the electrical properties of a metal-polymer-metal capacitor, it was found that the capacitor exhibited write-once-read-many-times (WORM) memory behavior, even though it was made of the dielectric polymer, polystyrene. The initial low conductance state changed to a high conductance state when a threshold voltage was applied, but this final state never reverted to the initial state. This phenomenon only appeared in sub-100-nm-thick films. To understand this phenomenon, conductive atomic force microscopy (CAFM) was used. The current distribution measured with CAFM showed an irreversible current path had formed near particles in the polymer film. For reproducibility, particles were intentionally inserted into the polymer film during the fabrication of metal-polymer-metal capacitors, and the same current mechanism was found. From these results, it is concluded that the purification and cleaning process of organic devices severely affects the device characteristics. In addition, particle-insertion appears to be a promising method for fabrication low-cost and air-stable WORM type memory for various applications. [Figure not available: see fulltext.

  6. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  7. Study of dielectric properties of Ca doped barium titanate ceramics

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Kumar, Amit; Sinha, A. N.; Kour, P.

    2016-05-01

    Ba1-xCax Zr0.52Ti0.48 O3 ceramics was prepared by sol gel method. The crystallite size was in nano scale range. The dielectric constant was increased with increase in Ca2+ concentration in the sample. The dielectric loss was decreased with increase in ca concentration in the sample. The ac conductivity of the sample was increased with increase in Ca2+ concentration in the sample. The ac conductivity of the sample follows Johnscher power law. AC conductivity analysis shows that the interactions between neighbouring dipoles were decreased with the increase in Ca2+ concentration in the sample.

  8. Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media

    NASA Astrophysics Data System (ADS)

    Sheldon, Robert T.

    Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (<1 MHz) capacitive sensors, are designed for permittivity characterization in their respective frequency regimes. In the first part of this work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method

  9. The study of electrical conduction mechanisms. [dielectric response of lunar fines

    NASA Technical Reports Server (NTRS)

    Morrison, H. F.

    1974-01-01

    The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.

  10. Epoxy Composites with Added Aluminum with Binary Particle Size Distribution for Enhanced Dielectric Properties and Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Sui, Xuezhen; Zhou, Wenying; Dong, Lina; Wang, Zijun; Wu, Peng; Zuo, Jing; Cai, Huiwu; Liu, Xiangrong

    2016-08-01

    Three kinds of hybrid aluminum (Al) particles with binary particle size distribution, i.e., [2 μm/50 μm], [2 μm/18 μm] and [18 μm/50 μm], were added in epoxy (EP) to prepare hybrid Al/EP composites with enhanced dielectric properties and thermal conductivity for embedded capacitor applications. The dielectric permittivity, dissipation factor, and thermal conductivity of three types of hybrid Al/EP composites were investigated as a function of relative volume fraction of smaller-size Al of hybrid Al particles (V s) at a total filler content of 60 wt.%, respectively. The results indicate that dielectric permittivity and thermal conductivity of the hybrid Al/EP mainly depend on two factors, such as the type of hybrid filler and the V s. The maximum dielectric permittivity of 48 appears at V s = V 18μm/V (18μm+50μm) = 35%. While, the above two factors have a negligible influence on the dissipation factor, which is as low as 0.022. The highest thermal conductivity of 1.28 W/m K is obtained at V s = V 18μm/V (18μm+50μm) = 50%. The maximum thermal conductivity for three hybrid systems shifts towards lower V s with decreasing the size ratio of a larger Al to a smaller one.

  11. AC conductivity and structural properties of Mg-doped ZnO ceramic

    NASA Astrophysics Data System (ADS)

    Othman, Zayani Jaafar; Hafef, Olfa; Matoussi, Adel; Rossi, Francesca; Salviati, Giancarlo

    2015-11-01

    Undoped ZnO and Zn1- x Mg x O ceramic pellets were synthesized by the standard sintering method at the temperature of 1200 °C. The influence of Mg doping on the morphological, structural and electrical properties was studied. The scanning electron microscopy images revealed rough surface textured by grain boundaries and compacted grains having different shapes and sizes. Indeed, the X-ray diffraction reveals the alloying of hexagonal ZnMgO phase and the segregation of cubic MgO phase. The crystallite size, strain and stress were studied using Williamson-Hall (W-H) method. The results of mean particle size of Zn1- x Mg x O composites showed an inter-correlation with W-H analysis and Sherrer method. The electrical conductivity of the films was measured from 173 to 373 K in the frequency range of 0.1 Hz-1 MHz to identify the dominant conductivity mechanism. The DC conductivity is thermally activated by electron traps having activation energy of about 0.09 to 0.8 eV. The mechanisms of AC conductivity are controlled by the correlated barrier hopping model for the ZnO sample and the small polaron tunneling (SPT) model for Zn0.64Mg0.36O and Zn0.60Mg0.40O composites.

  12. Quasiparticle energies, excitonic effects, and dielectric screening in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Schleife, André

    Using the power of high-performance super computers, computational materials scientists nowadays employ highly accurate quantum-mechanical approaches to reliably predict materials properties. In particular, many-body perturbation theory is an excellent framework for performing theoretical spectroscopy on novel materials including transparent conducting oxides, since this framework accurately describes quasiparticle and excitonic effects.We recently used hybrid exchange-correlation functionals and an efficient implementation of the Bethe-Salpeter approach to investigate several important transparent conducting oxides. Despite their exceptional potential for applications in photovoltaics and optoelectronics their optical properties oftentimes remain poorly understood: Our calculations explain the optical spectrum of bixbyite indium oxide over a very large photon energy range, which allows us to discuss the importance of quasiparticle and excitonic effects at low photon energies around the absorption onset, but also for excitations up to 40 eV. We show that in this regime the energy dependence of the electronic self energy cannot be neglected. Furthermore, we investigated the influence of excitonic effects on optical absorption for lanthanum-aluminum oxide and hafnium oxide. Their complicated conduction band structures require an accurate description of quasiparticle energies and we find that for these strongly polar materials, a contribution of the lattice polarizability to dielectric screening needs to be taken into account. We discuss how this affects the electron-hole interaction and find a strong influence on excitonic effects.The deep understanding of electronic excitations that can be obtained using these modern first-principles techniques, eventually will allow for computational materials design, e.g. of band gaps, densities of states, and optical properties of transparent conducting oxides and other materials with societally important applications.

  13. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Gaafar, M.

    2001-05-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σDC. At the early stage of irradiation, σDC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation.

  14. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared–visible–ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon–phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls–Boltzmann transport equation. The photon–phonon and electron–photon interaction intrinsically induce the infrared and visible–ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  15. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    NASA Astrophysics Data System (ADS)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  16. Low-temperature thermal conductances of amorphous dielectric microbridges in the diffusive to ballistic transition

    NASA Astrophysics Data System (ADS)

    Withington, S.; Goldie, D. J.; Velichko, A. V.

    2011-05-01

    Through a lossy acoustic-wave model we explore the effect of inelastic scattering on the low-temperature thermal conductances of amorphous dielectric microbridges in the diffusive to ballistic transition. The model gives not only the thermal flux as a function of geometry and temperature, but also the temperature distribution of the internal degrees of freedom that constitute the loss, which in turn can be used for calculating noise. The approach leads to powerful conceptual insights and provides a numerical framework for analyzing experimental data. SixNy tends to behave ballistically at low frequencies and diffusively at high frequencies, and when integrated over all frequency, the diffusive to ballistic transition becomes apparent at lengths of around a few hundred microns. It is possible to include flux-dependent acoustic loss, which leads to counterintuitive thermal behavior. A sample can behave diffusively when measured using a small temperature difference, but ballistically when measured using a large temperature difference. There is compelling circumstantial evidence that the effects of acoustic saturation have been seen, but not explicitly recognized, on many occasions.

  17. Effect of methyl red dye on dielectric and conductivity properties of PEO/CdCl2 electrolytes

    NASA Astrophysics Data System (ADS)

    Kamath, Archana; Devendrappa, H.

    2016-05-01

    In this report the conductivity and dielectric properties of polyethylene oxide-cadmium chloride (PEO/CdCl2) polymer electrolyte films doped with an azo dye methyl red (MR) are discussed. The films were prepared by solution casting technique at different concentrations of the dye in PEO/CdCl2 electrolyte. The thermal behavior, chemical interaction of the dye with the electrolyte and surface morphology were studied by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) respectively. The conductivity and dielectric properties were measured as a function of composition and temperature using complex impedance spectroscopy. The temperature dependent electrical conductivity of the films exhibited Arrhenius type behavior. Conductivity and dielectric results also signify the enhancement in the amorphous phase of the polymer electrolyte dye systems. The value of highest conductivity observed is 1.21x10-4 at 343K and the conductivity of the film was enhanced by a three orders of magnitude.

  18. Origin of DC and AC conductivity anisotropy in iron-based superconductors: Scattering rate versus spectral weight effects

    NASA Astrophysics Data System (ADS)

    Schütt, Michael; Schmalian, Jörg; Fernandes, Rafael M.

    2016-08-01

    To shed light on the transport properties of electronic nematic phases, we investigate the anisotropic properties of the AC and DC conductivities. Based on the analytical properties of the former, we show that the anisotropy of the effective scattering rate behaves differently than the actual scattering rate anisotropy and even changes sign as a function of temperature. Similarly, the effective spectral weight acquires an anisotropy even when the plasma frequency is isotropic. These results are illustrated by an explicit calculation of the AC conductivity due to the interaction between electrons and spin fluctuations in the nematic phase of the iron-based superconductors and shown to be in agreement with recent experiments.

  19. Valence and conduction band offsets at amorphous hexagonal boron nitride interfaces with silicon network dielectrics

    SciTech Connect

    King, Sean W. Brockman, Justin; Bielefeld, Jeff; French, Marc; Kuhn, Markus; Paquette, Michelle M.; Otto, Joseph W.; Caruso, A. N.; French, Benjamin

    2014-03-10

    To facilitate the design of heterostructure devices employing hexagonal/sp{sup 2} boron nitride, x-ray photoelectron spectroscopy has been utilized in conjunction with prior reflection electron energy loss spectroscopy measurements to determine the valence and conduction band offsets (VBOs and CBOs) present at interfaces formed between amorphous hydrogenated sp{sup 2} boron nitride (a-BN:H) and various low- and high-dielectric-constant (k) amorphous hydrogenated silicon network dielectric materials (a-SiX:H, X = O, N, C). For a-BN:H interfaces formed with wide-band-gap a-SiO{sub 2} and low-k a-SiOC:H materials (E{sub g} ≅ 8.2−8.8 eV), a type I band alignment was observed where the a-BN:H band gap (E{sub g} = 5.5 ± 0.2 eV) was bracketed by a relatively large VBO and CBO of ∼1.9 and 1.2 eV, respectively. Similarly, a type I alignment was observed between a-BN:H and high-k a-SiC:H where the a-SiC:H band gap (E{sub g} = 2.6 ± 0.2 eV) was bracketed by a-BN:H with VBO and CBO of 1.0 ± 0.1 and 1.9 ± 0.2 eV, respectively. The addition of O or N to a-SiC:H was observed to decrease the VBO and increase the CBO with a-BN:H. For high-k a-SiN:H (E{sub g} = 3.3 ± 0.2 eV) interfaces with a-BN:H, a slightly staggered type II band alignment was observed with VBO and CBO of 0.1 ± 0.1 and −2.3 ± 0.2 eV, respectively. The measured a-BN:H VBOs were found to be consistent with those deduced via application of the commutative and transitive rules to VBOs reported for a-BN:H, a-SiC:H, a-SiN:H, and a-SiO{sub 2} interfaces with Si (100)

  20. Broad-frequency dielectric behaviors in multiwalled carbon nanotube/rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Jiang, Mei-Juan; Dang, Zhi-Min; Bozlar, Michael; Miomandre, Fabien; Bai, Jinbo

    2009-10-01

    Broad-frequency dielectric behaviors of multiwalled carbon nanotubes (MWCNTs) embedded in room temperature vulcanization silicone rubber (RT-SR) matrix were studied by analyzing alternating current (ac) impedance spectra, which would make a remarkable contribution for understanding some fundamental electrical properties in the MWCNT/RT-SR nanocomposites. Equivalent circuits of the MWCNT/RT-SR nanocomposites were built, and the law of polarization and mechanism of electric conductance under the ac field were acquired. Two parallel RC circuits in series are the equivalent circuits of the MWCNT/RT-SR composites. At different frequency ranges, dielectric parameters including conductivity, dielectric permittivity, dielectric loss, impedance phase, and magnitude present different behaviors.

  1. Influence of mashed potato dielectric properties and circulating water electric conductivity on radio frequency heating at 27 MHz.

    PubMed

    Wang, Jian; Olsen, Robert G; Tang, Juming; Tang, Zhongwei

    2008-01-01

    Experiments and computer simulations were conducted to systematically investigate the influence of mashed potato dielectric properties and circulating water electric conductivity on electromagnetic field distribution, heating rate, and heating pattern in packaged food during radio frequency (RF) heating processes in a 6 kW, 27 MHz laboratory scale RF heating system. Both experimental and simulation results indicated that for the selected food (mashed potato) in this study, the heating rate decreased with an increase of electric conductivity of circulating water and food salt content. Simplified analytical calculations were carried out to verify the simulation results, which further indicated that the electric field distribution in the mashed potato samples was also influenced by their dielectric properties and the electric conductivity of the surrounding circulating water. Knowing the influence of water electric conductivity and mashed potato dielectric properties on the heating rate and heating pattern is helpful in optimizing the radio frequency heating process by properly adjusting these factors. The results demonstrate that computer simulation has the ability to demonstrate influence on RF heat pattern caused by the variation of material physical properties and the potential to aid the improvement on construction and modification of RF heating systems. PMID:19227075

  2. Crystal structure and AC conductivity mechanism of [N(C3H7)4]2CoCl4 compound

    NASA Astrophysics Data System (ADS)

    Moutia, N.; Oueslati, A.; Ben Gzaiel, M.; Khirouni, K.

    2016-09-01

    We found that the new organic-inorganic compound [N(C3H7)4]2 CoCl4, crystallizes at room temperature in the centrosymmetric monoclinic system with P21/c space group. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers parallel to the (001) plan. Indeed, the differential scanning calorimetry (DSC) studies indicate a presence of three order-disorder phase transitions located at 332, 376 and 441 K. Furthermore, the conductivity was measured in the frequency range from 200 MHz to 5 MHz and temperatures between 318 K and 428 K using impedance spectroscopy. Analysis of the AC conductivity experimental data obtained, and the frequency exponent s with theoretical models reveals that the correlated barrier hopping (CBH) model is the appropriate mechanism for conduction in the title compound. The analysis of the dielectric constants ε ‧ and ε ″ versus temperature, at several frequencies, shows a distribution of relaxation times. This relaxation is probably due to the reorientational dynamics of [N(C3H7)4]+ cations.

  3. Relationship between anisotropies of permeability, electrical conductivity, and dielectric permittivity, with application to the Ellenburger dolomite reservoir analog

    NASA Astrophysics Data System (ADS)

    Kutemi, Titilope F.

    The steady-state flow technique was employed to measure the flow rate of clean dry air through thirty core plugs (approximately 1" diameter) of the Ellenburger dolomite, drilled normal and parallel to the dominant fractures. Porosity was estimated by the method of imbibition. Electrical parameters (electrical conductivity and dielectric permittivity) were calculated from electrical resistance and capacitance measured as a function of frequency (100 Hz, 120 Hz, 1 KHz, and 10 KHz) and saturation (dry/ambient and brine saturated conditions). Another set of permeability data obtained by the method of pressure decay on similar samples was used for correlation. Anisotropies of permeability and electromagnetic parameters were established. Empirical relations between porosity (phi), permeability (k), electrical conductivity (sigma), and dielectric permittivity (epsilon) were defined via cross-plots and linear regressions. Prediction of k from sigma and epsilon was attempted; k from sigma was modeled from a combination of the Archie's relation and the Carman-Kozeny relation. Anisotropic EM responses are sensitive to saturation. Anisotropies of conductivity and permeability were observed to be controlled by the pore micro-structure. Although the rock is fractured, the fracture density appears insufficient to dominate the effects of primary structures in these samples of the Ellenburger dolomite. Model-based prediction of permeability from conductivity is generally unreliable, and is attributed to the underlying assumptions of the models, which are not consistent with the properties of the samples used for this study. Permeability was not predictable from dielectric permittivity.

  4. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  5. Temperature-dependent dielectric properties of a thermoplastic gelatin

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Neitzert, Heinz C.; Sorrentino, Andrea

    2016-05-01

    The frequency and the temperature dependence of the dielectric properties of a thermoplastic gelatin based bio-material have been investigated. At lower frequencies the dielectric response is strongly affected by charge carrier accumulation at the electrodes which modifies the dominating hopping conduction mechanism. The variation of the ac conductivity with frequency obeys a Jonscher type power law except for a small deviation in the low frequency range due to the electrode polarization effect. The master curve of the ac conductivity data shows that the conductivity relaxation of the gelatin is temperature independent.

  6. Dielectric response and anhydrous proton conductivity in a chiral framework containing a non-polar molecular rotor.

    PubMed

    Yu, Shan-Shan; Liu, Shao-Xian; Duan, Hai-Bao

    2015-12-28

    Herein, we report a chiral 3D framework with the formula [Co(HPO3)2][H2DABCO] (DABCO = 1,4-diazabicyclo[2.2.2]octane). This compound exhibits two distinct dielectric anomalies, one attributed to the transfer of protons between non-polar DABCO and the inorganic framework, and the other to the in-plane oscillatory fluctuation of the DABCO molecule. It also exhibits proton conductivity under high-temperature anhydrous conditions. PMID:26584424

  7. Noninvasive quantitative mapping of conductivity and dielectric distributions using RF wave propagation effects in high-field MRI

    NASA Astrophysics Data System (ADS)

    Wen, Han

    2003-06-01

    In this paper I show with phantom and animal experiments a non-invasive and quantitative method for measuring the conductivity and dielectric distributions based on high field magnetic resonance imaging. High field MRI is accompanied by significant RF wave propagation effects. They are observed as phase and magnitude variations of the image that cannot be removed by optimizing the static field homogeneity, or by improving the RF coils. These variations reflect the RF field distribution in the sample, and in fact obey a modified Helmholtz equation. By mapping both the phase and magnitude of the field with MRI techniques, both the conductivity and the dielectric constant are determined non-invasively. In phantom experiments at 1.5 tesla, conductivity values were measured at 4 mm resolution to 0.5 S/m accuracy. At 4.7 tesla, the accuracy was improved to 0.2 S/m, and the dielectric constant was measured to an accuracy of 5 (relative to vacuum) for 2cm regions.

  8. Transport properties of random and nonrandom substitutionally disordered alloys. I. Exact numerical calculation of the ac conductivity

    NASA Astrophysics Data System (ADS)

    Hwang, M.; Gonis, A.; Freeman, A. J.

    1987-06-01

    Results of exact computer simulations for the zero-temperature ac conductivity of one-dimensional substitutionally disordered alloys are reported. These results are obtained by (i) solving for the eigenvalues and eigenvectors of a Hamiltonian associated with a specific configuration of 500 atoms on a linear chain, (ii) evaluating the ac conductivity of this configuration by using the Kubo-Greenwood formula, and (iii) averaging the resulting conductivities over 20 to 50 different configurations (the number of configurations depends on the type of disorder). In all cases convergence (i.e., a stable result) was obtained and confirmed by another independent approach (the recursive method). For not too weak disorder (defined precisely in the text), these results exhibit a great deal of fine structure that includes high peaks and gaps where the conductivity vanishes. These features are reminiscent of, and are correlated with, the similar kind of behavior of the densities of states of one-dimensional substitutionally disordered alloys. Thus we find that the fine structure in the ac-conductivity spectra of one-dimensional systems provides a rigorous testing ground for judging the validity of analytic theories for calculating the transport properties of substitutionally disordered systems.

  9. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    SciTech Connect

    Das, S.; Ghosh, A.

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  10. Dielectric Relaxation, Modulus Behaviour and Conduction Mechanism in NdAlO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2015-10-01

    The dielectric property of neodymium aluminate, NdAlO3 ceramic, synthesized by the solid state reaction method is investigated. The Rietveld refinement of the room temperature x-ray diffraction pattern suggests the rhombohedral crystal structure with R-3c space symmetry of the system. The dielectric relaxation is observed in the temperature range from 313 K to 523 K and in the frequency range from 580 Hz to 1.1 MHz as a gradual decrease in the real part ( ɛ') of the dielectric constant and as a broad peak in the imaginary part ( ɛ″) of the dielectric constant. The complex impedance plane plot confirms the existence of both the grain and grain-boundary contributions to the relaxation and is analysed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The temperature dependence of both the grain and grain-boundary resistances follow the Arrhenius law with activation energy of 0.3 eV and 0.34 eV, respectively. The room temperature Raman spectrum confirms the rhombohedral phase of the system. Photoluminescence measurements show a red band at around 682 nm due to the transition from the 4I9/2 ground state to the 4F9/2 excited state.

  11. Dielectric and conductivity relaxation in AgI doped silver selenite superionic glasses

    SciTech Connect

    Deb, B.; Ghosh, A.

    2010-10-15

    Non-Debye relaxation in superionic AgI-Ag{sub 2}O-SeO{sub 2} glasses has been investigated as a function of frequency and temperature. The experimental data have been analyzed in the framework of complex dielectric permittivity and complex electric modulus formalisms. The dielectric permittivity data have been well interpreted using the Havriliak-Negami function. The electric modulus data have been analyzed by invoking Kohlrausch-Williams-Watts function and various parameters describing the relaxation mechanism have been obtained. The temperature and compositional variation in relaxation times and the activation energy, obtained from dielectric permittivity as well as from electric modulus data, have been compared. The low value of stretched exponential parameter implies a highly nonexponential nature of relaxation and is attributed to the correlated ionic motion. The values of the stretched exponential parameter are observed to be independent of temperature as well as composition. Different scaling formalisms have been applied to understand the temperature and compositional dependence of the relaxation mechanism. The scaling of dielectric loss spectra and electric modulus spectra results in master curves, which signifies that the relaxation mechanism is independent of temperature as well as composition.

  12. Microstructure and dielectric properties of BaTiO{sub 3} ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application

    SciTech Connect

    Wang, Min-Jia; Yang, Hui; Zhang, Qi-Long; Lin, Zhi-Sheng; Zhang, Zi-Shan; Yu, Dan; Hu, Liang

    2014-12-15

    Graphical abstract: Core–shell structure can be obtained in BaTiO{sub 3} ceramics co-doped with Y–Mg-Ga-Si. Y-Mg-Ga-Si co-dopant can obviously reduce dielectric loss, improve AC breakdown voltage and flatten temperature dependence of capacitance curve. - Highlights: • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics with core-shell structure were prepared. • Y{sup 3+}, Mg{sup 2+}, and Ga{sup 3+} dissolved in the lattice BaTiO{sub 3} replacing Ba{sup 2+} site or Ti{sup 4+} site. • Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries as a shell maker. • Y-Mg-Ga-Si co-doped BaTiO{sub 3} ceramics show high AC breakdown voltage and low tanδ. - Abstract: The microstructures and dielectric properties of Y-Mg-Ga-Si co-doped barium titanate ceramics were investigated. Y{sup 3+} dissolved in the lattice of BaTiO{sub 3} replacing both Ba{sup 2+} site and Ti{sup 4+} site, and Mg{sup 2+} replaced Ti{sup 4+} site. The replacements of Y{sup 3+} and Mg{sup 2+} inhibit the grain growth, cause tetragonal-to-pseudocubic phase transition, reduce the dielectric loss, and flatten the temperature dependence of capacitance curve. The incorporation of Ga{sup 3+} can improve sintering and increase permittivity. Y{sup 3+} and Ga{sup 3+} tended to remain close to the grain boundaries, and play an important role as a shell maker in the formation of the core–shell structure in the co-doped BaTiO{sub 3} ceramics. Excellent dielectric properties: ϵ{sub r} = ∼2487, tanδ = ∼0.7% (at 1 kHz), ΔC/C{sub 25} < ∼6.56% (from −55 °C to 125 °C) and alternating current breakdown voltage E < ∼4.02 kV/mm can be achieved in the BaTiO{sub 3}–0.02Y{sub 2}O{sub 3}–0.03MgO–0.01Ga{sub 2}O{sub 3}–0.005SiO{sub 2} ceramics sintered at 1380 °C. This material has a potential application in alternating current multilayer ceramic capacitor.

  13. Ionic conductivity and dielectric relaxation in Y doped La2Mo2O9 oxide-ion conductors

    NASA Astrophysics Data System (ADS)

    Paul, T.; Ghosh, A.

    2014-10-01

    In this work, we have studied electrical conductivity and dielectric properties of polycrystalline La2-xYxMo2O9 (0.05 ≤ x ≤ 0.3) compounds in the temperature range from 358 K to 1088 K and the frequency range from 10 Hz to 3 GHz. The bulk and grain boundary contributions to the overall conductivity of these compounds show Arrhenius type behavior at low temperatures. The random free-energy barrier model has been used to analyze the frequency dependence of the conductivity. The charge carrier relaxation time and its activation energy have been determined from the analysis of the conductivity spectra using this model. The results obtained from the random free-energy barrier model satisfy Barton-Nakajima-Namikawa relation. The conduction mechanism has been also predicted using random free-energy barrier model and the scaling formalism. We have observed that the dielectric relaxation peaks arise from the diffusion of oxygen ions via vacancies.

  14. Impact of the spacer dielectric constant on parasitic RC and design guidelines to optimize DC/AC performance in 10-nm-node Si-nanowire FETs

    NASA Astrophysics Data System (ADS)

    Hong, Jae-Ho; Lee, Sang-Hyun; Kim, Ye-Ram; Jeong, Eui-Young; Yoon, Jun-Sik; Lee, Jeong-Soo; Baek, Rock-Hyun; Jeong, Yoon-Ha

    2015-04-01

    In this paper, we propose an optimized design for Si-nanowire FETs in terms of spacer dielectric constant (κsp), extension length (LEXT), nanowire diameter (Dnw), and operation voltage (VDD) for the sub-10 nm technology node. Using well-calibrated TCAD simulations and analytic RC models, we have quantitatively evaluated geometry-dependent parasitic series resistances (RSD) and capacitances (Cpara). Compared with low-κ spacers, high-κ spacers exhibit a higher on/off-current ratio with a lower RSD, but show severe degradation in their AC performance owing to a higher Cpara. Considering the trade-off between RSD and Cpara, optimal geometry-dependent κsp values at various supply voltages (VDD) are determined using gate delay (CV/I) and current-gain cutoff frequency (fT). We found that as LEXT and VDD decrease and Dnw increases, the optimal κsp value shifts from the high-κ to low-κ regime.

  15. Confinement-induced differences between dielectric normal modes and segmental modes of an ion-conducting polymer.

    PubMed

    Kojio, K; Jeon, S; Granick, S

    2002-05-01

    Dielectric measurement in the range 0.1 Hz to 1 MHz were used to study the motions of polymers and ions in an ion-conducting polymer, polypropylene oxide containing small quantities (on the order of 1%) of lithium ions (LiClO(4)), confined as a sandwich of uniform thickness between parallel insulating mica surfaces. In the dielectric loss spectrum, we observed three peaks; they originated from the normal mode of the polymer, segmental mode of the polymer, and ion motions. With decreasing film thickness, the peak frequencies corresponding to the normal mode and ion motion shifted to lower frequencies, indicating retardation due to confinement above 30 nm. This was accompanied by diminished intensity of the dielectric normal-mode relaxation, suggesting that confinement diminished the fluctuations of the end-to-end vector of the chain dipole in the direction between the confining surfaces. On the contrary, the segmental mode was not affected at that thickness. Finally, significant retardation of the segmental mode was observed only for the thinnest film (14 nm). The different dynamical modes of the polymer (segmental and slowest normal modes) respond with different thickness and temperature dependence to confinement. PMID:15010966

  16. A rigorous theoretical model of guided waves excitation in a plane dielectric layer under electromagnetic diffraction by a conducting strip

    NASA Astrophysics Data System (ADS)

    Serdyuk, Vladimir M.; Titovitsky, Joseph A.

    2014-06-01

    An exact solution of two-dimensional problem of plane electromagnetic wave scattering by a perfectly conducting strip in the presence of a parallel plane dielectric layer is presented. The given solution is constructed using the mode-matching technique in the form of diffraction integrals over propagation parameter, i.e. in the form of superposition of a large number of homogeneous and inhomogeneous plane waves with continuous spectrum of spatial frequencies. These integrals have poles, which are caused by the presence of a transparent dielectric layer and correspond to its waveguide modes. Because of this, diffraction integrals need the procedure of regularization with explicit extraction of pole terms and smoothing of integrands, whereupon the residual diffraction integrals are computed using simple numerical methods. They describe usual scattered field of a bounded obstacle, which is determined by regularized diffraction integrals and decreases in all directions from an obstacle. Besides, the total diffraction field contains a discrete finite sum of waveguide fields of guided modes of a plane dielectric layer, which correspond to the extracted pole terms of initial diffraction integrals. These fields correspond to pairs of guided waves, which move apart from the region of their excitation near a strip, propagating parallel to the boundaries of a layer and conserving finite amplitude at infinity.

  17. The effect of surface conductivity and adhesivity on the electrostatic manipulation condition for dielectric microparticles using a single probe

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ryo; Hemthavy, Pasomphone; Takahashi, Kunio; Saito, Shigeki

    2016-05-01

    By clarifying the effect of surface conductivity and adhesivity on the electrostatic manipulation condition, a dielectric particle made of any material can be manipulated with surface conductivity. The manipulation system consists of three elements: a conductive probe as a manipulator, a conductive plate as a substrate, and a dielectric particle as the target object for manipulation. The particle can be successfully picked up/placed if a rectangular pulse voltage is applied between the probe and the plate. Four kinds of particle materials are used in the experiment: silica, soda-lime glass, polymethyl methacrylate coated by conductive polymer, and polystyrene coated by surfactant. The radius of each particle is 15 μm. A first-order resistor-capacitor (RC) circuit model is adopted to describe the effect of surface conductivity and adhesivity on the manipulation condition. The manipulation system is modeled as a series circuit consisting of a resistor and a capacitor by considering the surface conductivity. A detachment voltage is defined as the capacitance voltage to detach the particle adhered to the plate or probe. Parameters of the RC model, surface resistance, surface capacitance and detachment voltage are identified by a simulation and measurements. To verify the RC model, the particle’s behavior is observed by a high-speed camera, and the electrical current is measured by an electrometer. A manipulation experiment is demonstrated to show the effectiveness of the model. The particle reaction is observed for each duration and magnitude of the pulse voltage for the manipulation. The optimum pulse voltage for successful manipulation is determined by the parameters of the RC model as the standard. This knowledge is expected to expand the possibility of micro-fabrication technology.

  18. Gas sensing properties of magnesium doped SnO{sub 2} thin films in relation to AC conduction

    SciTech Connect

    Deepa, S.; Skariah, Benoy Thomas, Boben; Joseph, Anisha

    2014-01-28

    Conducting magnesium doped (0 to 1.5 wt %) tin oxide thin films prepared by Spray Pyrolysis technique achieved detection of 1000 ppm of LPG. The films deposited at 304 °C exhibit an enhanced response at an operating temperature of 350 °C. The microstructural properties are studied by means of X-ray diffraction. AC conductivity measurements are carried out using precision LCR meter to analyze the parameters that affect the variation in sensing. The results are correlated with compositional parameters and the subsequent modification in the charge transport mechanism facilitating an enhanced LPG sensing action.

  19. Complex AC impedance, transference number and vibrational spectroscopy studies of proton conducting PVAc-NH 4SCN polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Selvasekarapandian, S.; Baskaran, R.; Hema, M.

    2005-03-01

    The polymer electrolytes composed of poly (vinyl acetate) (PVAc) with various stoichiometric ratios of ammonium thiocyanate (NH 4SCN) salt have been prepared by solution casting method. The polymer-salt complex formation and the polymer-proton interactions have been analysed by FT-IR spectroscopy. The conductivity and dielectric measurements are carried out on these films as a function of frequency at various temperatures. The complex impedance spectroscopy results reveal that the high-frequency semicircle is due to the bulk effect of the material. The conductivity is found to increase in the order of 10 -8-10 -4 S cm -1 at 303 K with the increase in salt concentration. The ionic transference number of mobile ions has been estimated by Wagner's polarization method and the results reveal that the conducting species are predominantly due to ions. The transient ionic current (TIC) measurement technique has been used to detect the type of mobile species and to evaluate their mobilities. The dielectric spectra show the low-frequency dispersion, which is due to the space charge effects arising from the electrodes.

  20. Calculation of the ac to dc resistance ratio of conductive nonmagnetic straight conductors by applying FEM simulations

    NASA Astrophysics Data System (ADS)

    Riba, Jordi-Roger

    2015-09-01

    This paper analyzes the skin and proximity effects in different conductive nonmagnetic straight conductor configurations subjected to applied alternating currents and voltages. These effects have important consequences, including a rise of the ac resistance, which in turn increases power loss, thus limiting the rating for the conductor. Alternating current (ac) resistance is important in power conductors and bus bars for line frequency applications, as well as in smaller conductors for high frequency applications. Despite the importance of this topic, it is not usually analyzed in detail in undergraduate and even in graduate studies. To address this, this paper compares the results provided by available exact formulas for simple geometries with those obtained by means of two-dimensional finite element method (FEM) simulations and experimental results. The paper also shows that FEM results are very accurate and more general than those provided by the formulas, since FEM models can be applied in a wide range of electrical frequencies and configurations.

  1. Development of the Exams Data Analysis Spreadsheet as a Tool to Help Instructors Conduct Customizable Analyses of Student ACS Exam Data

    ERIC Educational Resources Information Center

    Brandriet, Alexandra; Holme, Thomas

    2015-01-01

    The American Chemical Society Examinations Institute (ACS-EI) has recently developed the Exams Data Analysis Spread (EDAS) as a tool to help instructors conduct customizable analyses of their student data from ACS exams. The EDAS calculations allow instructors to analyze their students' performances both at the total score and individual item…

  2. Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature

    NASA Astrophysics Data System (ADS)

    Juma, Albert; Acik, Ilona Oja; Mere, Arvo; Krunks, Malle

    2016-04-01

    The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal-oxide-semiconductor (MOS) configuration using current-voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current-voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child's law dominated for bias voltages above 0.12 V.

  3. Study on AC-DC Electrical Conductivities in Warm Dense Matter Generated by Pulsed-power Discharge with Isochoric Vessel

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2016-03-01

    To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.

  4. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    PubMed

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms. PMID:27172452

  5. Influence of oxygen annealing conditions on the electronic structure, dielectric function, and charge conduction of gallium-ferrite thin films

    NASA Astrophysics Data System (ADS)

    Shin, Ran Hee; Oh, Seol Hee; Lee, Ji Hye; Jo, William; Jang, Seunghun; Han, Moonsup; Choi, Sukgeun

    2013-12-01

    Gallium-ferrite thin films were studied to investigate the effects of the oxygen annealing conditions on the electrical properties. Ga0.8Fe1.2O3- δ thin films were prepared by using a sol-gel method under different oxygen partial pressures. The structural properties of the films were studied by using X-ray diffraction. X-ray photoemission spectra of the core-levels of Ga, Fe, and O in the films were examined. The dielectric functions of the films were measured at energies from 0.73 to 6.45 eV by using spectroscopic ellipsometry. The Fe valence was changed by the oxygen vacancies, which are dominantly responsible for the dielectric function and the charge conduction. Remarkably, the leakage current of the films annealed under intermediate oxygen atmospheric conditions showed the lowest values. In the film, the oxygen vacancies, were indirectly estimated by using the ratio of Fe2+ to Fe3+, are important to reduce the leakage current, which can be explained by using a space-charge-limited model with shallow traps.

  6. Appearance of a conductive carbonaceous coating in a CO2 dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency

    NASA Astrophysics Data System (ADS)

    Belov, Igor; Paulussen, Sabine; Bogaerts, Annemie

    2016-02-01

    This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metal-dielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and

  7. Dielectric studies on struvite urinary crystals, a gateway to the new treatment modality for urolithiasis

    NASA Astrophysics Data System (ADS)

    Rajan, Reshma; Raj, N. Arunai Nambi; Madeswaran, S.; Babu, D. Rajan

    2015-09-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAPH) are biological crystals, found in the kidney, which are formed due to the infection caused by urea splitting bacteria in the urinary tract. The struvite crystals observe different morphologies and were developed using single diffusion gel growth technique. The crystalline nature and its composition were studied from different characterization techniques like X-ray Diffraction (XRD) and FTIR. The dielectric behavior of the developed crystal was studied by varying temperature and at different frequencies. The parameters like dielectric constant, dielectric loss, ac conductivity, ac resistivity, impedance and admittance of the struvite crystals were calculated. The studies proved that the dielectric loss or dissipation heat is high in lower frequencies at normal body temperature, which develops a plasma state in the stones and in turn leads to the disintegration of urinary stones. The dielectric nature of the stones leads to the dielectric therapy, which will be a gateway for future treatment modality for urolithiasis.

  8. Dielectric studies on struvite urinary crystals, a gateway to the new treatment modality for urolithiasis.

    PubMed

    Rajan, Reshma; Raj, N Arunai Nambi; Madeswaran, S; Babu, D Rajan

    2015-09-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAPH) are biological crystals, found in the kidney, which are formed due to the infection caused by urea splitting bacteria in the urinary tract. The struvite crystals observe different morphologies and were developed using single diffusion gel growth technique. The crystalline nature and its composition were studied from different characterization techniques like X-ray Diffraction (XRD) and FTIR. The dielectric behavior of the developed crystal was studied by varying temperature and at different frequencies. The parameters like dielectric constant, dielectric loss, ac conductivity, ac resistivity, impedance and admittance of the struvite crystals were calculated. The studies proved that the dielectric loss or dissipation heat is high in lower frequencies at normal body temperature, which develops a plasma state in the stones and in turn leads to the disintegration of urinary stones. The dielectric nature of the stones leads to the dielectric therapy, which will be a gateway for future treatment modality for urolithiasis. PMID:25909901

  9. Measurement of the thermal conductivity of dielectric thin solid films with a thermal comparator

    SciTech Connect

    Amsden, C.A.; Gilman, S.E.; Jacobs, S.D.; Torok, J.S.

    1988-04-01

    Low thermal conductivity has important implications for electric and optical applications, where heat deposited in a thin layer must be dissipated to prevent damage. Models which account for thermal transport in thin film structures may have no predictive value if they employ bulk conductivity data. Most techniques utilized to measure the thermal conductivity of thin solid films are difficult and time consuming. The method we have developed is relatively rapid, nondestructive, and is capable of evaluating the samples in a conventional film on substrate geometry. Our thermal conductivity apparatus consists of a control and readout module, signal processing equipment, and an environmentally isolated sample chamber enclosing a sample stage. The commercial unit was converted into a high precision device by temperature controlling both the samples and the sample stage, and by performing averaging of the output signal. The thermal conductivity values obtained are below those of bulk solids. In addition, the conductivities seem to increase with increasing film thickness. Titania seems to have a higher thermal conductivity when deposited by ion-beam sputtering rather than electron-beam evaporation. Some of the electron-beam films were crazed, indicating high levels of stress. The effect of stress and crazing on thermal conductivity is not readily apparent. 11 refs., 1 fig., 1 tab.

  10. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers. PMID:23963202

  11. AC Conduction and Time-Temperature Superposition Scaling in a Reduced Graphene Oxide-Zinc Sulfide Nanocomposite.

    PubMed

    Chakraborty, Koushik; Das, Poulomi; Chakrabarty, Sankalpita; Pal, Tanusri; Ghosh, Surajit

    2016-05-18

    We report, herein, the results of an in depth study and concomitant analysis of the AC conduction [σ'(ω): f=20 Hz to 2 MHz] mechanism in a reduced graphene oxide-zinc sulfide (RGO-ZnS) composite. The magnitude of the real part of the complex impedance decreases with increase in both frequency and temperature, whereas the imaginary part shows an asymptotic maximum that shifts to higher frequencies with increasing temperature. On the other hand, the conductivity isotherm reveals a frequency-independent conductivity at lower frequencies subsequent to a dispersive conductivity at higher frequencies, which follows a power law [σ'(ω)∝ω(s) ] within a temperature range of 297 to 393 K. Temperature-independent frequency exponent 's' indicates the occurrence of phonon-assisted simple quantum tunnelling of electrons between the defects present in RGO. Finally, this sample follows the "time-temperature superposition principle", as confirmed from the universal scaling of conductivity isotherms. These outcomes not only pave the way for increasing our elemental understanding of the transport mechanism in the RGO system, but will also motivate the investigation of the transport mechanism in other order-disorder systems. PMID:26864678

  12. Structural, electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte

    PubMed Central

    Iqbal, Mohd Z.; Rafiuddin

    2015-01-01

    A series of composite materials of general molecular formula (1 − x) Na2SO4 − (x) LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) respectively. Differential thermal analysis (DTA) revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10−4 S cm−1 at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573–773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend. PMID:26843979

  13. AC conductivity and electrochemical studies of PVA/PEG based polymer blend electrolyte films

    NASA Astrophysics Data System (ADS)

    Polu, Anji Reddy; Kumar, Ranveer; Dehariya, Harsha

    2012-06-01

    Polymer blend electrolyte films based on Polyvinyl alcohol(PVA)/Poly(ethylene glycol)(PEG) and magnesium nitrate (Mg(NO3)2) were prepared by solution casting technique. Conductivity in the temperature range 303-373 K and transference number measurements have been employed to investigate the charge transport in this polymer blend electrolyte system. The highest conductivity is found to be 9.63 × 10-5 S/cm at 30°C for sample with 30 weight percent of Mg(NO3)2 in PVA/PEG blend matrix. Transport number data shows that the charge transport in this polymer electrolyte system is predominantly due to ions. Using this electrolyte, an electrochemical cell with configuration Mg/(PVA+PEG+Mg(NO3)2)/(I2+C+electrolyte) was fabricated and its discharge characteristics profile has been studied.

  14. Finding the asymmetric parasitic source and drain resistances from the a.c. conductances of a single MOS transistor

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, A.; Deen, M. J.; King, M. I. H.; Kolk, J.

    1996-06-01

    Layout asymmetry, processing, or hot-carrier stressing can give rise to unequal source and drain parasitic resistances in a MOSFET. In these cases, it is necessary to extract these resistances separately without the aid of other transistors. In this paper, we present a simple method to extract the source and drain parasitic resistances separately. This method, unlike earlier ones that depend on the measurements of the d.c. resistances of several MOSFETs, is based on accurate formulations and measurements of the a.c. conductances with respect to the gate and drain terminals of a single transistor. This allows us to get reasonably accurate estimates of these resistances in a more straightforward manner. We also discuss the main error terms in detail.

  15. Effect of surface moisture on dielectric behavior of ultrafine BaTiO3 particulates.

    NASA Technical Reports Server (NTRS)

    Mountvala, A. J.

    1971-01-01

    The effects of adsorbed H2O on the dielectric properties of ultrafine BaTiO3 particulates of varying particle size and environmental history were determined. The dielectric behavior depends strongly on surface hydration. No particle size dependence of dielectric constant was found for dehydroxylated surfaces in ultrafine particulate (unsintered) BaTiO3 materials. For equivalent particle sizes, the ac conductivity is sensitive to surface morphology. Reactions with H2O vapor appear to account for the variations in dielectric properties. Surface dehydration was effectively accomplished by washing as-received powders in isopropanol.

  16. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  17. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps.

    PubMed

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification. PMID:26950244

  18. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    NASA Astrophysics Data System (ADS)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2–SiO2, Au–Au, SiO2–Au and Au–Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  19. Electromagnetic fields and currents excited by dipoles normal to the conducting surface of dielectric loaded bodies of revolution

    NASA Astrophysics Data System (ADS)

    Ozzaim, Cengiz

    1999-12-01

    A modulated laser beam incident upon a conducting surface can cause electrons to be emitted in such a way that the resulting electromagnetic radiation is closely approximated by that from a distribution of electric dipoles normal to the surface. A major goal of this research has been to develop an understanding of the coupling of electromagnetic energy from the modulated laser light to objects and to the medium surrounding the object. Specific attention is focused upon coupling of the laser-induced electromagnetic field to structures which exhibit some of the characteristics of symmetric antennas. A method is presented for computing the signal caused by a modulated laser beam at a load impedance terminating a coaxial waveguide whose center conductor protrudes into a thin-wall cylindrical tube. The tube is open at one end and, on the other, it has a planar bottom through which the coax center conductor protrudes. Two case are treated: one in which the cavity is empty (free space) and a second in which it is partially filled with a dielectric insert. The excitation is the signal radiated by electrons emitted from the conducting surface by an impinging laser beam, modulated in such a way that the electrons at the surface oscillate harmonically in time. The computations are based on a procedure involving the formulation and numerical solution of integral equations plus utilization of the reciprocity theorem. A model was fabricated and experimental data were obtained to corroborate the results obtained from theory and numerical analysis. A similar analysis was conducted to determine the axial electric field at the focal point of the common parabolic reflector antenna illuminated by the laser-induced dipoles, but no experiments were performed in this case. It has been found that for the dipole excitation, penetration and coupling results are markedly different from those expected for more traditional excitations.

  20. Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}

    SciTech Connect

    Nefzi, H.; Sediri, F.; Hamzaoui, H.; Gharbi, N.

    2013-05-15

    Highlights: ► Plate-like crystals (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] were synthesized. ► Frequency and temperature dependence of AC conductivity indicate CBH model. ► The temperature dependence of DC conductivity exhibits two conduction mechanisms. - Abstract: Layered hybrid compound (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] has been synthesized via hydrothermal method. Techniques X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy have been used to characterize the hybrid material. Electrical and dielectric properties dependence on both temperature and frequency of the compound have been reported. The direct current conductivity process is thermally activated and it is found to be 12.67 × 10{sup −4} Ω{sup −1} m{sup −1} at 523 K. The spectra follow the Arrhenius law with two activation energy 0.25 eV for T < 455 K and 0.5 eV for T > 455 K.

  1. Low temperature dielectric and conductivity relaxation studies on magnetoelectric Pb(Fe2/3W1/3)O3

    NASA Astrophysics Data System (ADS)

    Matteppanavar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Angadi, Basavaraj

    2016-05-01

    The single phase perovskite Pb(Fe2/3W1/3)O3 [PFW] was synthesized by modified low - temperature (sintering at 850°C) solid-state reaction. Rietveld refinement ofroom temperature (RT) X-ray diffraction (XRD) and neutron diffraction (ND) patterns of the samples confirm the single phase formation with cubic structure (Pm-3m). Surface morphology of the compounds was studied by Scanning electron microscope (SEM) and average grain size was estimated to be ˜2 µm. The RT dielectric properties of PFW ceramic are studied as a function of frequency from 100 - 1MHz. The temperature dependent (120 - 293K) dielectric properties were studied at few selected frequencies. We found the frequency dependent dielectric constant shows increasing trend with increase in temperature from 120 - 293K, with minimum dielectric loss. The frequency dependence of dielectric loss shows a maximum in between 10 Hz and 1 kHz, confirms the extrinsic phenomena like interfacial polarization due to space charge accumulation at grain boundaries. Impedance spectroscopy is used to study the electrical behaviour of PFW in the frequency range from 100 to 1MHz and in the temperature range from 120 - 293 K. The frequency-dependent electrical data are analysed by impedance formalisms and shows the relaxation (conduction) mechanism in the sample. We suggest this low temperature sintered PFW is a suitable candidate for the multilayer ceramic capacitorsandrelated negative temperature coefficient of resistance type (NTCR) behavior like that of semiconductors.

  2. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    PubMed

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf

    2010-01-01

    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. PMID:20730773

  3. Effects of a resistively coated dielectric strip on the TM-polarized resonant backscatter behavior of a slotted conducting rectangular shell

    NASA Astrophysics Data System (ADS)

    Wu, Lin-Kun; Lu, Cheng-Hung

    1993-06-01

    The performance of a resistively coated dielectric strip used to suppress the first TM-type resonant backscatter associated with a 2D slotted conducting rectangular shell is analyzed in this paper using the moment method technique. Results obtained indicate that almost perfect resonance damping performances are attained when a finite-dimensioned resistively coated dielectric strip with dielectric constant epsilon(r) = 4 - j(0.4) and film resistance R(s) = 188.5 ohms is placed: (1) at the slot (which directly faces the normally incident TM-polarized plane wave), (2) on the interior perimeter of the shell adjacent to the slot, or (3) at the center of the back wall of the shell. Poorer damping performances are observed, however, when the resistively coated dielectric strip is placed at other positions and/or with the same or higher film resistance. Finally, it is also shown that in general the knowledge of the waveguide theory can be used advantageously in the placement of the resistively coated dielectric strip for achieving best resonance damping performance.

  4. Dielectric behaviour of Zn substituted Cu nano-ferrites

    NASA Astrophysics Data System (ADS)

    Parashar, Jyoti; Saxena, V. K.; Jyoti; Bhatnagar, Deepak; Sharma, K. B.

    2015-11-01

    Herein, the dielectric properties such as permittivity (real part ε‧ and imaginary part ε‧‧) and dielectric loss tangent (tan δ) are reported for Zn substituted Cu ferrites (Cu1-xZnxFe2O4; 0≤x≤1) composite using the sol-gel auto-combustion method. The variations of real and imaginary part of dielectric constant, tan δ and AC conductivityac) are studied at room temperature in the frequency range of 100 Hz-120 MHz. The real part of dielectric constant decrease with increasing frequency and the imaginary part (ε‧‧) varies with frequency showing the characteristic peak for each sample. The relation of tan δ with frequency shows relaxation spectra. Further, the σac tended to increase with increase in frequency. The variation in dielectric constant may be explained on the basis of space charge polarization, according to Maxwell and Wagner two-layer model. The dielectric constant and tan δ as a function of temperature are also studied with different temperatures ranging from 323 K to 583 K.

  5. Dielectric study of Al3+ substituted Fe3O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, N.; Kumar, Vinod; Singh, S. K.

    2014-07-01

    Al3+ substituted nanoparticles i.e., FeAlxFe2-xO4(x = 0.2, 0.4, 0.6) have been synthesized by the chemical co precipitation method. Crystalline phase of synthesized particles was confirmed by XRD pattern. Particle size of as obtained samples was found in the range of 24-34 nm. Dielectric loss (tan δ, dielectric permittivity (ɛ‧) and ac conductivityac) were evaluated as a function of frequency, composition and temperature using impedance analyzer in the frequency range of (1000 Hz-5 MHz) and temperature range of (300-473 K). AC conductivityac) was found to decrease with increase in Al3+ doping which has been explained on the basis of hopping mechanism. The variation of dielectric loss (tan δ, dielectric permittivity (ɛ‧), ac conductivityac) with temperature and frequency can be explained on the basis of Maxwell-Wagner type of interfacial polarization and hopping mechanism between ferrous and ferric ions at the octahedral site. DC electrical resistivity was found to decrease with increasing temperature indicating that the substituted ferrites have semiconductor like behavior. Activation energy was found to increase with increasing Al3+ ion content.

  6. Thickness dependence of the dielectric properties of thermally evaporated Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Ulutas, K.; Deger, D.; Yakut, S.

    2013-03-01

    Sb2Te3 thin films of different thickness (23 - 350 nm) were prepared by thermal evaporation technique. The thickness dependence of the ac conductivity and dielectric properties of the Sb2Te3 films have been investigated in the frequency range 10 Hz- 100 kHz and within the temperature range 293-373K. Both the dielectric constant epsilon1 and dielectric loss factor epsilon2 were found to depend on frequency, temperature and film thickness. The frequency and temperature dependence of ac conductivityac(ω)) has also been determined. The ac conductivity of our samples satisfies the well known ac power law; i.e., σac(ω) propto ωs where s<1 and independent of the film thickness. The temperature dependence of ac conductivity and parameter s is reasonably well interpreted by the correlated barrier hopping (CBH) model. The activation energies were evaluated for various thicknesses. The temperature coefficient of the capacitance (TCC) and permitivity (TCP) were determined as a function of the film thickness. The microstructure of the samples were analyzed using X-ray diffraction (XRD). This results are discussed on the base of the differences in their morphologies and thicknesses. The tendency for amorphization of the crystalline phases becomes evident as the film thickness increases.

  7. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ∼5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density–voltage and frequency dependent (7 kHz–5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole–Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  8. Transport ac losses of a second-generation HTS tape with a ferromagnetic substrate and conducting stabilizer

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Chen, Du-Xing; Fang, Jin

    2015-12-01

    The current-voltage curve and transport ac loss of a second-generation HTS tape with a ferromagnetic NiW substrate and brass stabilizer are measured. It is found that the ac loss is up to two orders of magnitude larger than what is expected by the power-law E(J) determined by the current-voltage curve and increases with increasing frequency. Modeling results show that the overly large ac loss is contributed by the ac loss in the HTS strip enhanced by the NiW substrate and the magnetic hysteresis loss in the substrate, and the frequency-dependent loss occurs in the brass layer covering the substrate but not in the ferromagnetic substrate itself as assumed previously. The ac loss in the brass layer is associated with transport currents but not eddy currents, and it has some features similar to ordinary eddy-current loss with significant differences.

  9. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band

    NASA Astrophysics Data System (ADS)

    Song, Wei-Li; Cao, Mao-Sheng; Hou, Zhi-Ling; Fang, Xiao-Yong; Shi, Xiao-Ling; Yuan, Jie

    2009-06-01

    The dielectric properties of multiwalled carbon nanotubes/silica (MWNTs/SiO2) nanocomposite with 10 wt % MWNTs are investigated in the temperature range of 373-873 K at frequencies between 8.2 and 12.4 GHz (X-band). MWNTs/SiO2 exhibits a high dielectric loss and a positive temperature coefficient (PTC) of dielectric effect that complex permittivity increases monotonically with increasing temperature. The PTC effect on the dielectric constant is ascribed to the decreased relaxation time of interface charge polarization, and the PTC effect on the dielectric loss is mainly attributed to the increasing electrical conductivity. The loss tangent strongly supports the dominating contribution of conductance to the dielectric loss.

  10. Dual electron-phonon coupling model for gigantic photoenhancement of the dielectric constant and electronic conductivity in SrTi O3

    NASA Astrophysics Data System (ADS)

    Qiu, Y.; Wu, C. Q.; Nasu, K.

    2005-12-01

    In connection with the recent experimental discovery on photoenhancements of the electronic conductivity and the quasi-static electric susceptibility in SrTiO3 , we theoretically study a photogeneration mechanism of charged and conductive ferroelectric domains in this perovskite type quantum dielectric. The photo-generated electron, being quite itinerant in the 3d band of Ti4+ , is assumed to couple weakly but quadratically with soft-anharmonic T1u phonons in this quantum dielectric, in view of the parity of this lattice vibration. The photo-generated electron is also assumed to couple strongly but linearly with the breathing type high energy phonons. Using a tight-binding model for electrons, we will show that this dual electron-phonon coupling results in two types of polarons, a “super-para-electric (SPE) large polaron” with a quasi-globle parity violation, and an “off-center type self-trapped polaron” with only a local parity violation. This SPE large polaron is shown to be equal to a singly charged (e-) and conductive ferroelectric domain with a quasi-macroscopic range. Two of such large polarons are shown to aggregate and form an SPE large bipolaron, which is still conductive. Various other bipolaron clusters are also shown to be formed in this electron-phonon coupled system. These large polarons have a high mobility and an enhanced quasi-static dielectric susceptibility. Effect of adulteration is also discussed.

  11. Effects of Ni{sup 3+} substitution on structural and temperature dependent dielectrical properties of NdFeO{sub 3}

    SciTech Connect

    Kaur, Pawanpreet Pandit, Rabia Sharma, K. K.; Kumar, Ravi

    2014-04-24

    The polycrystalline samples of NdFe{sub 1−x}Ni{sub x}O{sub 3} (x=0.0, 0.2) were prepared by solid state reaction route, the single phase of powdered samples were ensured by Rietveld refinement of their X-ray diffraction (XRD) data. We have also studied the variation of dielectric constant (ε′), tangent loss (tan δ) and AC conductivity (σ{sub ac}) as a function of frequency and temperature for both the compositions. It is noticed that both the increase in temperature and Ni{sup 3+} ion substitution results in enhancement of dielectric constant, tangent loss and AC conductivity.

  12. Effect of growth induced (non)stoichiometry on the thermal conductivity, permittivity, and dielectric loss of LaAlO3 films

    NASA Astrophysics Data System (ADS)

    Breckenfeld, E.; Wilson, R. B.; Martin, L. W.

    2013-08-01

    The effect of growth-induced non-stoichiometry on the thermal and dielectric properties of pulsed-laser deposited LaAlO3 thin films is explored. The composition of the LaAlO3 films was characterized via X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry and it is revealed that small deviations in laser fluence result in deviations of cation stoichiometry as large as a few atomic percent. The thermal conductivity is also found to be especially sensitive to non-stoichiometry, with 3%-5% La-excess and La-deficiency resulting in 60%-80% reduction in thermal conductivity. The dielectric constant decreases and the loss tangent increases with increasing non-stoichiometry with differences between La-excess and La-deficiency.

  13. Ground penetrating radar inversion in 1-D: an approach for the estimation of electrical conductivity, dielectric permittivity and magnetic permeability1

    NASA Astrophysics Data System (ADS)

    Lázaro-Mancilla, O.; Gómez-Treviño, E.

    2000-03-01

    This paper presents a method for inverting ground penetrating radargrams in terms of one-dimensional profiles. We resort to a special type of linearization of the damped E-field wave equation to solve the inverse problem. The numerical algorithm for the inversion is iterative and requires the solution of several forward problems, which we evaluate using the matrix propagation approach. Analytical expressions for the derivatives with respect to physical properties are obtained using the self-adjoint Green's function method. We consider three physical properties of materials; namely dielectrical permittivity, magnetic permeability and electrical conductivity. The inverse problem is solved minimizing the quadratic norm of the residuals using quadratic programming optimization. In the iterative process to speed up convergence we use the Levenberg-Mardquardt method. The special type of linearization is based on an integral equation that involves derivatives of the electric field with respect to magnetic permeability, electrical conductivity and dielectric permittivity; this equation is the result of analyzing the implication of the scaling properties of the electromagnetic field. The ground is modeled using thin horizontal layers to approximate general variations of the physical properties. We show that standard synthetic radargrams due to dielectric permittivity contrasts can be matched using electrical conductivity or magnetic permeability variations. The results indicate that it is impossible to differentiate one property from the other using GPR data.

  14. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    SciTech Connect

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai . E-mail: huirutai@sglab.org

    2006-05-26

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy.

  15. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe{sub 2} (bda = 1,4-butanediamine)

    SciTech Connect

    Du, Ke-Zhao; Hu, Wan-Biao; Hu, Bing; Guan, Xiang-Feng; Huang, Xiao-Ying

    2011-11-15

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe{sub 2}, which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: {yields} The title compound is the first example of organic-containing one-dimensional indium selenide. {yields} The anomalous dielectric peak is attributed to water molecules in crystal boundary. {yields} The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe{sub 2} (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe{sub 2}]{sub n}{sup n-} with monoprotonated [bdaH]{sup +} as charge compensating cation. The organic [bdaH]{sup +} cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 {sup o}C, which could be attributed to water molecules in the crystal boundary.

  16. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.

    PubMed

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł

    2016-12-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed. PMID:27558494

  17. HfO{sub 2} dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima

    SciTech Connect

    Zhang, Cheng; Xie, Dan Xu, Jian-Long; Sun, Yi-Lin; Dai, Rui-Xuan; Li, Xian; Li, Xin-Ming; Zhu, Hong-Wei

    2015-10-14

    We investigate the electrical properties in back-gated graphene field effect transistors (GFETs) with SiO{sub 2} dielectric and different thickness of high-k HfO{sub 2} dielectric. The results show that transform characteristic (I{sub ds}–V{sub gs}) curves of GFETs are uniquely W-shaped with two charge neutrality point (left and right) in both SiO{sub 2} and HfO{sub 2} dielectric (SiO{sub 2}-GFETs and HfO{sub 2}-GFETs). The gate voltage reduces drastically in HfO{sub 2}-GFETs compared with that in SiO{sub 2}-GFETs, and it becomes much smaller with the decline of HfO{sub 2} thickness. The left charge neutrality point in I{sub d}–V{sub g} curves of all HfO{sub 2}-GFETs is negative, compared to the positive ones in SiO{sub 2}-GFETs, which means that there exists n-doping in graphene with HfO{sub 2} as bottom dielectric. We speculate that this n-doping comes from the HfO{sub 2} layer, which brings fixed charged impurities in close proximity to graphene. The carrier mobility is also researched, demonstrating a decreasing trend of hole mobility in HfO{sub 2}-GFETs contrast to that in SiO{sub 2}-GFETs. In a series of HfO{sub 2}-GFETs with different HfO{sub 2} dielectric thickness, the hole mobility shows a tendency of rise when the thickness decreases to 7 nm. The possible reason might be due to the introduced impurities into HfO{sub 2} film from atomic layer deposition process, the concentration of which varies from the thickness of HfO{sub 2} layer.

  18. Semicrystalline Structure-Dielectric Property Relationship and Electrical Conduction in a Biaxially Oriented Poly(vinylidene fluoride) Film under High Electric Fields and High Temperatures.

    PubMed

    Yang, Lianyun; Ho, Janet; Allahyarov, Elshad; Mu, Richard; Zhu, Lei

    2015-09-16

    Poly(vinylidene fluoride) (PVDF)-based homopolymers and copolymers are attractive for a broad range of electroactive applications because of their high dielectric constants. Especially, biaxially oriented PVDF (BOPVDF) films exhibit a DC breakdown strength as high as that for biaxially oriented polypropylene films. In this work, we revealed the molecular origin of the high dielectric constant via study of a commercial BOPVDF film. By determination of the dielectric constant for the amorphous phase in BOPVDF, a high value of ca. 21-22 at 25 °C was obtained, and a three-phase (i.e., lamellar crystal/oriented interphase/amorphous region) semicrystalline model was proposed to explain this result. Meanwhile, electronic conduction mechanisms in BOPVDF under high electric fields and elevated temperatures were investigated by thermally stimulated depolarization current (TSDC) spectroscopy and leakage current studies. Space charge injection from metal electrodes was identified as a major factor for electronic conduction when BOPVDF was poled above 75 °C and 20 MV/m. In addition, when silver or aluminum were used as electrodes, new ions were generated from electrochemical reactions under high fields. Due to the electrochemical reactions between PVDF and the metal electrode, a question is raised for practical electrical applications using PVDF and its copolymers under high-field and high-temperature conditions. A potential method to prevent electrochemical degradation of PVDF is proposed in this study. PMID:26120953

  19. Estimation of charge-carrier concentration and ac conductivity scaling properties near the V-I phase transition of polycrystalline Na2 S O4

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohamad M.

    2005-11-01

    The conductivity spectra of polycrystalline Na2SO4 have been investigated in the frequency range 42Hz-1MHz at different temperatures below and above the V-I phase transition temperature. The conductivity data have been analyzed using Almond-West formalism. The dc conductivity, the hopping frequency of the charge carriers, and their respective activation energies have been obtained from the analysis of the ac conductivity data, and the concentration of charge carriers was calculated at different temperatures. The power-law exponent n of the conductivity spectra has average values of 0.43 and 0.61 in phases V and I , respectively, which indicates different conduction properties in the two phases. Moreover, scaling of the conductivity spectra at the low- and high-temperature phases was performed in accord with Ghosh’s scaling approach. It is found that the scaling properties depend on the structure of the investigated material.

  20. Dynamic electrical response of thin dielectric films measured by Electrostatic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Williams, Clayton; Klein, Levente

    2002-03-01

    Electrostatic Force Microscopy measurements have been performed on thin dielectric films on conducting substrates. Cantilever oscillation amplitude versus distance curves are measured as a function of the frequency of the voltage applied between tip and sample. When a DC voltage is applied, the oscillation amplitude versus distance curve is significantly different from that when a low frequency (500 Hz) AC voltage is applied (cantilever resonance at 125 kHz). The frequency dependence of the AC force response for different dielectric films (SiO2 and Al_2O_3) are studied. The frequency dependence is accounted for by the movement of charge near the sample surface with a finite response time.

  1. Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Abbassi, Hina; Amir, Shahid

    2015-03-01

    High aspect ratio graphene nanosheets (GNS), prepared via liquid exfoliation, are homogeneously dispersed in thermoplastic polyurethane (TPU). Dielectric spectroscopy results are reported for these nanocomposites (up to 0.55 vol. % GNS) in the frequency range of 100 Hz to 5 MHz. The as-prepared GNS increased the AC conductivity 10-1000 times across the given frequency range. The dielectric constant is increased 5-6 times at 100 Hz for the maximum loading of GNS when compared with the pristine TPU, with subsequently high dielectric loss making them a suitable candidate for high energy dissipation applications such as EMI shielding. The temperature effects on the dielectric characteristics of 0.55 vol. % GNS/TPU nanocomposites beyond 400 K are more pronounced due to the interfacial and orientation polarization. Mechanical characteristics evaluation of GNS/TPU composites shows a marked increase in the ultimate tensile strength without compromising their ductility and stiffness. [Figure not available: see fulltext.

  2. Dielectric properties of Li2O-CaF2-P2O5 glass ceramic system doped with NiO

    NASA Astrophysics Data System (ADS)

    Krishna, G. Murali; Venkateswararao, G.; Srikumar, T.; Sambasiva Rao, K.; Ram Prasad, Ch

    2009-07-01

    Studies on various physical properties viz., dielectric properties (dielectric constant, loss tan δ, a.c conductivity σ) over a wide range of frequency and temperature, of Li2O-CaF2-P2O5: NiO glass ceramics have been reported. The dielectric constant and loss variation with the concentration of NiO have been explained on the basis of space charge polarization mechanism. The dielectric relaxation effects exhibited by these samples have been analyzed by a graphical method and the spreading of dielectric relaxation has been established. The a.c conductivity in the high temperature region seems to be connected both with electronic transfer and ionic movements.

  3. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni0.7Mg0.3Fe2-xAlxO4 (0.0≤x≤0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivityac), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe2+ and Fe3+ as well as between Ni2+ and Ni3+ ions at B-sites. The dielectric loss tangent (tan δ) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  4. Cole-cole analysis and electrical conduction mechanism of N{sup +} implanted polycarbonate

    SciTech Connect

    Chawla, Mahak; Shekhawat, Nidhi; Aggarwal, Sanjeev Sharma, Annu; Nair, K. G. M.

    2014-05-14

    In this paper, we present the analysis of the dielectric (dielectric constant, dielectric loss, a.c. conductivity) and electrical properties (I–V characteristics) of pristine and nitrogen ion implanted polycarbonate. The samples of polycarbonate were implanted with 100 keV N{sup +} ions with fluence ranging from 1 × 10{sup 15} to 1 × 10{sup 17} ions cm{sup −2}. The dielectric measurements of these samples were performed in the frequency range of 100 kHz to 100 MHz. It has been observed that dielectric constant decreases whereas dielectric loss and a.c. conductivity increases with increasing ion fluence. An analysis of real and imaginary parts of dielectric permittivity has been elucidated using Cole-Cole plot of the complex permittivity. With the help of Cole-Cole plot, we determined the values of static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}), and molecular relaxation time (τ). The I–V characteristics were studied using Keithley (6517) electrometer. The electrical conduction behaviour of pristine and implanted polycarbonate specimens has been explained using various models of conduction.

  5. Dielectric properties of nickel doped bismuth lithium borate glasses

    NASA Astrophysics Data System (ADS)

    Dalal, Seema; Dahiya, Sunita; Ashima, Khasa, S.

    2016-05-01

    Glasses with composition xBi2O3•(30-x)Li2O•70B2O3 (x = 0, 2, 5, 7 and 10 mol% with codes BLBN1-5 respectively) containing 2 mol% of NiO were prepared via melt-quenching technique and dielectric properties are discussed. The dielectric properties have been studied using impedance spectroscopy. The frequency dependent conductivity investigations for prepared compositions have been carried out using impedance spectroscopy over a frequency range of 1 KHz to 5 MHz and in the temperature range of 300K-523K. The complex impedance data have been analyzed by using both the conductivity and the electric modulus formalisms. Standard dielectric behavior is observed in prepared samples. The ac conductivity variations satisfy the Arrhenius relation. The study of the equivalent circuit analysis up to a temperature of 473K shows a significant change in the equivalent circuit with change in temperature and composition.

  6. Investigation on dielectric properties of atomic layer deposited Al{sub 2}O{sub 3} dielectric films

    SciTech Connect

    Yıldız, Dilber Esra; Yıldırım, Mert; Gökçen, Muharrem

    2014-05-15

    Al/Al{sub 2}O{sub 3}/p-Si Schottky barrier diodes (SBDs) were fabricated using atomic layer deposition technique in order to investigate dielectric properties of SBDs. For this purpose, admittance measurements were conducted at room temperature between −1 V and 3 V in the frequency range of 10 kHz and 1 MHz. In addition to the investigation of Al{sub 2}O{sub 3} morphology using atomic force microscope, dielectric parameters; such as dielectric constant (ε′), dielectric loss (ε″), dielectric loss tangent (tan δ), and real and imaginary parts of dielectric modulus (M′ and M″, respectively), were calculated and effect of frequency on these parameters of Al/Al{sub 2}O{sub 3}/p-Si SBDs was discussed. Variations in these parameters at low frequencies were associated with the effect of interface states in low frequency region. Besides dielectric parameters, ac electrical conductivity of these SBDs was also investigated.

  7. Investigations on spectral and dielectric properties of semi-organic single crystal – morpholinium nitrate

    SciTech Connect

    Arul, H.; Babu, D. Rajan Vizhi, R. Ezhil

    2015-06-24

    Semi organic nonlinear optical crystal Morpholinium nitrate (MN) was synthesized and subsequently grown from the solution by slow evaporation method. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The crystal belongs to the monoclinic system with a space group P2{sub 1}/C. Carbon NMR analysis confirms the presence of carbon in the structure of the title compound. Dielectric studies have been carried out on the grown crystal as a function of frequencies at different temperatures. Dielectric constant, dielectric loss and AC conductivity were also calculated.

  8. Investigations on spectral and dielectric properties of semi-organic single crystal - morpholinium nitrate

    NASA Astrophysics Data System (ADS)

    Arul, H.; Babu, D. Rajan; Vizhi, R. Ezhil

    2015-06-01

    Semi organic nonlinear optical crystal Morpholinium nitrate (MN) was synthesized and subsequently grown from the solution by slow evaporation method. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The crystal belongs to the monoclinic system with a space group P21/C. Carbon NMR analysis confirms the presence of carbon in the structure of the title compound. Dielectric studies have been carried out on the grown crystal as a function of frequencies at different temperatures. Dielectric constant, dielectric loss and AC conductivity were also calculated.

  9. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  10. TM surface wave diffraction by a truncated dielectric slab recessed in a perfectly conducting surface. [considering flush mounted space shuttle antenna

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Kouyoumjian, R. G.

    1974-01-01

    The diffraction of a TM sub o surface wave by a terminated dielectric slab which is flush mounted in a perfectly conducting surface is studied. The incident surface wave gives rise to waves reflected and diffracted by the termination; these reflected and diffracted fields may be expressed in terms of the geometrical theory of diffraction by introducing surface wave reflection and diffraction coefficients which are associated with the termination. In this investigation, the surface wave reflection and diffraction coefficients have been deduced from a formally exact solution to this canonical problem. The solution is obtained by a combination of the generalized scattering matrix technique and function theoretic methods.

  11. Dielectric properties and alternating current conductivity of sol-gel made La0.8Ca0.2FeO3 compound

    NASA Astrophysics Data System (ADS)

    Benali, A.; Souissi, A.; Bejar, M.; Dhahri, E.; Graça, M. F. P.; Valente, M. A.

    2015-09-01

    In this work, single phase La0.8Ca0.2FeO3 nanomaterial has been synthesized by the sol-gel method using the citric acid route. By employing impedance spectroscopy, ac electrical properties have been measured over a temperature range from 300 to 673 K at various frequencies. With the analysis based on Debye's theory and a series of Arrhenius relations, the relaxation was argued to be associated with the hopping motions of charge carriers between Fe ions. The relaxation in the La0.8Ca0.2FeO3 compound was ascribed to be a polaronic relaxation. The ac electrical conduction was studied and associated to the non-overlapping small polaron tunneling (NSPT) model.

  12. Temperature dependence anomalous dielectric relaxation in Co doped ZnO nanoparticles

    SciTech Connect

    Ansari, Sajid Ali; Nisar, Ambreen; Fatma, Bushara; Khan, Wasi; Chaman, M.; Azam, Ameer; Naqvi, A.H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► We prepared Co doped ZnO by facile gel-combustion method. ► Studied temperature dependent dielectric properties in detail. ► Relaxation time shifts toward the higher temperature as increase in Co content. ► SEM analysis shows formation and agglomeration of nanoparticles. ► Dielectric constants, loss and ac conductivity increases with rise in temperature. ► The dielectric constant, loss and ac conductivity decreases as Co ion increases. -- Abstract: We have reported temperature and frequency dependence of dielectric behavior of nanocrystalline Zn{sub 1−x}Co{sub x}O (x = 0.0, 0.01, 0.05 and 0.1) samples prepared by gel-combustion method. The synthesized samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and LCR-meter, respectively. The XRD analysis reveals that ZnO has a hexagonal (wurtzite) crystal structure. The morphology and size of the nanoparticles (∼10–25 nm) were observed by SEM for 5% Co doped ZnO sample. In dielectric properties, complex permittivity (ε{sup *} = ε′ − jε″), loss tangent (tan δ) and ac conductivity (σ{sub ac}) in the frequency range 75 kHz to 5 MHz were analyzed with temperature range 150–400 °C. The experimental results indicate that ε′, ε″, tan δ and σ{sub ac} decreases with increase in frequency and temperature. The transition temperature as obtained in dispersion curve of dielectric constant shifts toward higher temperature with increase Co content.

  13. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  14. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  15. Polyaniline coated cellulose fiber / polyvinyl alcohol composites with high dielectric permittivity and low percolation threshold

    NASA Astrophysics Data System (ADS)

    Anju, V. P.; Narayanankutty, Sunil K.

    2016-01-01

    Cost effective, high performance dielectric composites based on polyvinyl alcohol, cellulose fibers and polyaniline were prepared and the dielectric properties were studied as a function of fiber content, fiber dimensions and polyaniline content over a frequency range of 40 Hz to 30 MHz. The short cellulose fibers were size-reduced to micro and nano levels prior to coating with polyaniline. Fiber surface was coated with Polyaniline (PANI) by an in situ polymerization technique in aqueous medium. The composites were then prepared by solution casting method. Short cellulose fiber composites showed a dielectric constant (DEC) of 2.3 x 105 at 40 Hz. For the micro- and nano- cellulose fiber composites the DEC was increased to 4.5 x 105 and 1.3 x 108, respectively. To gain insight into the inflection point of the dielectric data polynomial regression analysis was carried out. The loss tangent of all the composites remained at less than 1.5. Further, AC conductivity, real and imaginary electric moduli of all the composites were evaluated. PVA nanocomposite attained an AC conductivity of 3 S/m. These showed that by controlling the size of the fiber used, it was possible to tune the permittivity and dielectric loss to desired values over a wide range. These novel nanocomposites, combining high dielectric constant and low dielectric loss, can be effectively used in applications such as high-charge storage capacitors.

  16. Dielectric relaxation and electrical conductivity in Bi 5NbO 10 oxygen ion conductors prepared by a modified sol-gel process

    NASA Astrophysics Data System (ADS)

    Hou, Jungang; Vaish, Rahul; Qu, Yuanfang; Krsmanovic, Dalibor; Varma, K. B. R.; Kumar, R. V.

    Crystalline Bi 5NbO 10 nanoparticles have been achieved through a modified sol-gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi 5NbO 10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5-60 nm Bi 5NbO 10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi 5NbO 10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200-350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi 5NbO 10 solid solutions at 700 °C is 2.86 Ω -1 m -1 which is in same order of magnitude for Y 2O 3-stabilized ZrO 2 ceramics at same temperature. These results suggest that Bi 5NbO 10 is a promising material for an oxygen ion conductor.

  17. Dielectric behavior of manganese titanate in the paraelectric phase

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2015-11-01

    Rhombohedral MnTiO3 powder has been synthesized by a high-temperature solid-state reaction method. The formation of single-phase compound is confirmed through XRD, Rietveld refinement and FTIR analysis. The optical band in MnTiO3 obtained from the UV-Vis absorption spectrum has been analyzed. The study of SEM micrographs suggested that the prepared material has good sinter ability and high density with homogeneous grain distribution on the surface and in the bulk. From the impedance and dielectric measurements, the electrical parameters were obtained. It was found that the magnitude of relative dielectric constant ( ɛ r) was relatively high with low dielectric loss. The study of frequency dependence of AC conductivity suggests that the material obeys Jonscher's universal power law. The variation of DC conductivity with inverse of absolute temperature follows the Arrhenius relation.

  18. Role of aluminum ions on the dielectric and conducting properties of multiferroic Tb1-xAlxMnO3: Study at high temperatures

    NASA Astrophysics Data System (ADS)

    Izquierdo, J. L.; Forero, A.; Bolaños, G.; Zapata, V. H.; Morán, O.

    2014-12-01

    Dielectric and conducting properties of Tb1-xAlxMnO3 (x = 0, 0.05) synthesized by the solid-state reaction method have been investigated. The Al ion has the same valence as substituted Tb but is nonmagnetic and its small size gives rise to microstructural strain which affects the multiferroic properties of the parent compound. Samples were characterized by means of complex impedance spectroscopy (CIS) in the frequency range from 40 Hz to 5 MHz, at temperatures above room temperature. The conductivity curves for the two samples are well fitted by the Jonscher law σ(ω) = σdc + Aωn. Results of the fitting procedure indicate that for the studied samples, the hopping motion involves localized hopping without the species leaving the neighbors. Frequency dependence of the dielectric constant (ɛ″) and tangent loss (tan δ) display a dispersive behavior at low frequencies that can be explained on the basis of the Maxwell-Wagner model and Koop's theory. The relaxation dynamics of charge carriers has been studied by means of the electric modulus formalism. In turn, the variation of the imaginary part of the complex impedance, Z″, shows a peak at a relaxation angular frequency (ωr) related to the relaxation time (τ) by τ = 1/ωr. The complex impedance spectra (Nyquist plots) show well-defined semicircles which are strongly dependent on the Al-doping level and temperature. The complex impedance data have been modeled using electrical equivalent circuits.

  19. Consequence of cobalt on structural, optical and dielectric properties in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Zia, Amir; Ahmed, S.; Shah, N. A.; Anis-ur-Rehman, M.; Khan, E. U.; Basit, M.

    2015-09-01

    The critical role of cobalt dopant in ZnO nanostructures with different cobalt concentrations has been explored on the basis of structural, optical and dielectric mechanisms. X-ray diffraction (XRD) analysis shows that the Co+2 ions replace Zn+2 ions in the ZnO matrix, producing lattice strain. Diffused Reflectance Spectroscopy (DRS) shows a red shift in optical energy band gap with increase in cobalt content, along with the presence of transitions in high spin states due to tetrahedrally coordinated cobalt ions. The dielectric characterization explains the disparity in dynamic dielectric parameters like capacitance, dielectric constant, tangent loss, AC conductivity and impedance as a function of frequency. Capacitance and both static and dynamic dielectric constants found to be decreasing with cobalt addition. The anomaly in these pronounced parameters can address the key problems of the material at higher frequencies device operation.

  20. Dielectric properties of the low dimensional vanadium oxides Ba 2V 3O 9 and Sr 2V 3O 9

    NASA Astrophysics Data System (ADS)

    Bobnar, V.; Lunkenheimer, P.; Loidl, A.; Kaul, E. E.; Geibel, C.

    2002-06-01

    The dielectric response of the low-dimensional vanadium oxides Ba 2V 3O 9 and Sr 2V 3O 9 has been investigated in the frequency range of 20 Hz-1 MHz. At low frequencies the dielectric response is governed by strong relaxation-like features, which we attribute to Maxwell-Wagner type contact contributions. The analysis of the complex dielectric spectra in terms of an equivalent circuit revealed the intrinsic dielectric constant and dc conductivity of these systems. The frequency-dependent ac conductivity in both systems follows the universal dielectric response behaviour, clearly indicating that hopping of localised charge carriers is the dominating charge-transport process. Also, a newly observed dielectric relaxation process in both systems is reported and we find evidence for a phase transition close to 455 K in both materials.

  1. Impedance and dielectric properties of mercury cuprate at nonsuperconducting state

    NASA Astrophysics Data System (ADS)

    Özdemir, Z. Güven; Çataltepe, Ö. Aslan; Onbaşlı, Ü.

    2015-10-01

    In this paper, impedance and dielectric properties of nonsuperconducting state of the mercury-based cuprate have been investigated by impedance measurements within the frequency interval of 10 Hz-10 MHz for the first time. The dielectric loss factor (tgδ) and ac conductivityac) parameters have also been calculated for non-superconducting state. According to impedance spectroscopy analysis, the equivalent circuit of the mercury cuprate system manifests itself as a semicircle in the Nyquist plot that corresponds to parallel connected resistance-capacitance circuit. The oscillation frequency of the circuit has been determined as approximately 45 kHz which coincides with the low frequency radio waves. Moreover, it has been revealed that the mercury-based cuprate investigated has high dielectric constants and hence it may be utilized in microelectronic industry such as capacitors, memory devices etc., at room temperature. In addition, negative capacitance (NC) effect has been observed for the mercury cuprate regardless of the operating temperatures at nonsuperconducting state. Referring to dispersions in dielectric properties, the main contribution to dielectric response of the system has been suggested as dipolar and interfacial polarization mechanisms.

  2. Electric-field-induced metastable state of electrical conductivity in polyaniline nanoparticles polymerized in nanopores of a MIL-101 dielectric matrix

    NASA Astrophysics Data System (ADS)

    Romanenko, A. I.; Dybtsev, D. N.; Fedin, V. P.; Aliev, S. B.; Limaev, K. M.

    2015-01-01

    Conducting polyaniline PANI has been obtained inside dielectric nanoporous coordination polymer MIL-101. The application of an electric field transforms both bulk PANI and nanocomposite PANI@MIL to a metastable high-conductive state. After a decrease in the applied electric field, PANI and PANI@MIL relax toward a state low-conductive stable by the law ln[σ( t)/σ(τ)] = -( t/τ) n , which is typical of disordered systems with the characteristic time τ of about six hours for PANI and with three times larger time for composite PANI@MIL. The temperature dependences of the electrical conductivity σ( T) of the samples in both high- and low-ohmic states are described by the fluctuation-induced conductivity model. Significant changes in relaxation processes and in the parameters of the fluctuation-induced tunneling conduction in nanocomposite PANI@MIL are due to a decrease in the sizes of polyaniline particles in the MIL-101 matrix to nanometers.

  3. Magnetic and dielectric studies of nanocrystalline zinc substituted Cu-Mn ferrites

    NASA Astrophysics Data System (ADS)

    Hankare, P. P.; Sankpal, U. B.; Patil, R. P.; Jadhav, , A. V.; Garadkar, K. M.; Chougule, B. K.

    2011-03-01

    Ferrites with the general formula Cu 1- xZn xFeMnO 4 (where 0≤ x≤1) were prepared through a citrate gel auto-combustion route. Structural characterizations carried out by X-ray diffraction reveal that the lattice constant increases with increase in zinc content. Transmission electron microscopic measurements confirm the nanoscale nature of the particles. Room temperature saturation magnetization was measured as a function of zinc concentration. The saturation magnetization increases up to x=0.25 and then decreases as zinc concentration increases. Dielectric permittivity, dielectric loss tangent, ac conductivity and complex dielectric impedance were studied in the frequency range 20 Hz-1 MHz. The results indicated a usual dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. Dielectric loss showed similar behavior as dielectric permittivity. The ac conductivity increased linearly with frequency. Complex impedance spectroscopic studies confirmed that conduction in the samples is via grain boundaries. In general, substitution of zinc plays an important role in changing the structural, electrical and magnetic properties of these ferrites.

  4. Electrical conduction, dielectric behavior and magnetoelectric effect in (x)BaTiO{sub 3} + (1 - x)Ni{sub 0.94}Co{sub 0.01}Mn{sub 0.05}Fe{sub 2}O{sub 4} ME composites

    SciTech Connect

    Lokare, S.A.; Patil, D.R.; Devan, R.S.; Chougule, S.S.; Kolekar, Y.D.; Chougule, B.K.

    2008-02-05

    Electrical and magnetoelectric properties of magnetoelectric (ME) composites containing barium titanate as electrical component and a mixed Ni-Co-Mn ferrite as the magnetic component are reported. The ME composites with a general formula (x)BaTiO{sub 3} + (1 - x)Ni{sub 0.94}Co{sub 0.01}Mn{sub 0.05}Fe{sub 2}O{sub 4} where x varies as 0, 0.55, 0.70, 0.85 and 1 were prepared by standard double sintering ceramic method. The presence of both the phases was confirmed by X-ray diffraction technique. The dc resistivity was measured as a function of temperature. The variation of dielectric constant ({epsilon}) and loss tangent (tan {delta}) with frequency (100 Hz-1 MHz) and with temperature was studied. The conduction is explained on the basis of small polaron model based on ac conductivity measurements. The static value of ME conversion factor i.e. dc (ME){sub H} was studied as function of intensity of magnetic field. The changes were observed in dielectric properties as well as ME effect as the molar ratio of the components was varied. A maximum value of ME conversion factor of 610 {mu}V/cm Oe was observed in the case of a composite containing 15 mol% ferrite phase.

  5. Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan

    Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).

  6. An extension to the dynamic plane source technique for measuring thermal conductivity, thermal diffusivity, and specific heat of dielectric solids

    NASA Astrophysics Data System (ADS)

    Karawacki, Ernest; Suleiman, Bashir M.; ul-Haq, Izhar; Nhi, Bui-Thi

    1992-10-01

    The recently developed dynamic plane source (DPS) technique for simultaneous determination of the thermal properties of fast thermally conducting materials with thermal conductivities between 200 and 2 W/mK has now been extended for studying relatively slow conducting materials with thermal conductivities equal or below 2 W/mK. The method is self-checking since the thermal conductivity, thermal diffusivity specific heat, and effusivity of the material are obtained independently from each other. The theory of the technique and the experimental arrangement are given in detail. The data evaluation procedure is simple and makes it possible to reveal the distortions due to the nonideal experimental conditions. The extension to the DPS technique has been implemented at room temperature to study the samples of cordierite-based ceramic Cecorite 130P (thermal conductivity equal to 1.48 W/mK), rubber (0.403 W/mK), and polycarbonate (0.245 W/mK). The accuracy of the method is within ±5%.

  7. Structure and dielectric behavior of TlSbS2

    NASA Astrophysics Data System (ADS)

    Parto, M.; Deger, D.; Ulutas, K.; Yakut, Ş.

    2013-09-01

    A comparison of structure and dielectric properties of TlSbS2 thin films, deposited in different thicknesses (400-4100 Å) by thermal evaporation of TlSbS2 crystals that were grown by the Stockbarger-Bridgman technique and the bulk material properties of TlSbS2 are presented. Dielectric constant ɛ 1 and dielectric loss ɛ 2 have been calculated by measuring capacitance and dielectric loss factor in the frequency range 20 Hz-10 KHz and in the temperature range 273-433 K. It is observed that at 1 kHz frequency and 293 K temperature the dielectric constant of TlSbS2 thin films is ɛ 1=1.8-6 and the dielectric loss of TlSbS2 thin films is ɛ 2=0.5-3 depending on film thickness. In the given intervals, both of dielectric constant and dielectric loss decrease with frequency, but increase with temperature. The maximum barrier height W m is calculated from the dielectric measurements. The values of W m for TlSbS2 films and bulk are obtained as 0.56 eV and 0.62 eV at room temperature, respectively. The obtained values agree with those proposed by the theory of hopping over the potential barrier. The temperature variation of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model since it obeys the ω s law with a temperature dependent s ( s<1) and going down as the temperature is increased. The temperature coefficient of capacitance (TCC) and permittivity (TCP) are evaluated for both thin films and bulk material of TlSbS2.

  8. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  9. Effect of Co doping on the structural and dielectric properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Ram, Mast; Bala, Kanchan; Sharma, Hakikat; Negi, N. S.

    2016-05-01

    This paper reports on the synthesis of Co doped Zn1-xCoxO (x= 0.0, 0.01, 0.02, 0.03 and 0.05) nanoparticles by solution combustion method using urea as a fuel. The Structural and dielectric properties of the samples were studied. Crystallite sizes were obtained from X-ray diffraction (XRD) patterns whose values decreased with increase in Co concentration. The XRD study reveals that Co2+ ions substitute the Zn2+ ion without changing the wurtzite structure of pristine ZnO up to Co concentrations of 5%. The dielectric constants, dielectric loss (tanδ) and ac conductivityac) were studied as the function of frequency and composition, which have been explained by Maxwell-Wagner type interfacial polarization and discussed Koops phenomenological theory.

  10. High temperature electrical conductivity and thermal decomposition of phenolic- and silicon-based dielectrics for fireset housings

    SciTech Connect

    Johnson, R.T. Jr.; Biefeld, R.M.

    1981-08-01

    The temperature dependence of the electrical conductivity and thermal decomposition characteristics of several phenolic- and silicone-based materials of interest for fireset case housings have been measured to 600 to 700/sup 0/C. The materials are phenolic or silicone resins reinforced with glass chopped fabric or cloth. The conductivity temperature dependence was measured during decomposition in a nitrogen atmosphere at a heating rate of approx. 10/sup 0/C/minute. Applied electric fields were from 4 x 10/sup 2/ to 4 x 10/sup 3/ volts/cm. Thermal decomposition characteristics were investigated by mass spectroscopy in vacuum and thermal gravimetric analysis in nitrogen and air. Nearly ohmic voltage-current characteristics were obtained, except where decomposition and/or outgassing was pronounced.

  11. Dielectric spectra of Li 2O-CaF 2-P 2O 5 glasses doped by silver ions

    NASA Astrophysics Data System (ADS)

    Sambasiva Rao, K.; Srinivasa Reddy, M.; Ravi Kumar, V.; Veeraiah, N.

    2007-06-01

    Dielectric constant ε‧, loss tan δ and a.c. conductivity σ( ω) Li 2O-CaF 2-P 2O 5 glasses doped with small concentrations of Ag 2O (ranging from 0 to 1.0 mol%) are studied as a function of frequency and temperature over moderately wide ranges. The variation of dielectric loss with temperature for these glasses has exhibited dielectric relaxation effects. The relaxation effects have been analyzed by a pseudo Cole-Cole plot method and the spreading of relaxation times has been established. The variation of a.c. conductivity with the concentration of Ag 2O pass through a minimum at 0.6 mol% Ag 2O. In the high-temperature region, the a.c. conduction seems to be connected with the mixed conduction, viz., electronic and ionic conduction. The low-temperature part of the a.c. conductivity which is observed to be nearly temperature independent has been explained on the basis of quantum mechanical-tunneling (QMT) model. The results have been further analyzed in detail with the aid of the data on optical absorption, IR and Raman spectral studies.

  12. AC impedance analysis of ionic and electronic conductivities in electrode mixture layers for an all-solid-state lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu

    2016-06-01

    The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.

  13. Dielectric behavior of nano-structured and bulk Li Ni Zn ferrite samples

    NASA Astrophysics Data System (ADS)

    Saafan, S. A.; Assar, S. T.

    2012-09-01

    The ac conductivity and dielectric properties of spinel ferrite nanoparticles of Li0.1(Ni1-xZnx)0.8Fe2.1O4 (x=0.0-1.0) prepared by the chemical co-precipitation method were investigated as functions of frequency and temperature by using a complex impedance technique. Parts of the precipitated powders were pressed into a disk-shape and were sintered at 1473 K for 2 h to increase the particle size to the bulk scale (dimensions >100 nm). The ac conductivity of the samples increases with increasing temperature, ensuring the semiconducting behavior of both nano and bulk samples, in agreement with the Koops model to describe heterogeneous structures. The significant decrease in ac conductivity σ‧ac, dielectric constant, and dielectric loss of the as-prepared nanosamples compared to their bulk counterparts is correlated to the small size of the grain compared to the grain boundary size. This might be useful for many applications requiring the reduction of eddy current effects.

  14. Preparation, characterization and conductivity studies of chlorinated natural rubber

    NASA Astrophysics Data System (ADS)

    M, Subburaj; Ramesan, M. T.; Pradyumnan, P. P.

    2014-10-01

    Chlorinated natural rubber (CNR) was prepared by alkaline hydrolysis of chloroform using phase transfer catalyst. The chlorination in CNR was monitored by FTIR and UV spectroscopy and these studies indicated the formation of dichloro cyclopropyl ring to the double bond of natural rubber (NR). XRD and SEM analysis revealed the extent of chlorination in natural rubber. Electrical properties such as AC conductivity, dielectric constant and dielectric loss of CNR was higher than that of NR. Conductivity of NR increased with the increase in the concentration of chlorine percentage. LOI values indicated that the chemical modification imparts better flame resistant to NR.

  15. Electrical, dielectric and electrochemical measurements of bulk aluminum phthalocyanine chloride (AlPcCl)

    NASA Astrophysics Data System (ADS)

    Soliman, I. M.; El-Nahass, M. M.; Mansour, Y.

    2016-01-01

    AC conductivity and the related dielectric properties of bulk aluminum phthalocyanine chloride (AlPcCl) have been studied over a temperature range (303-403 K) and frequency range (42-106 Hz). The universal power law σac (ω)=Aωs has been used to investigate dependence of AC conductivity on frequency. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms; the predominant conduction mechanism was found to be the correlated barrier hopping (CBH) model. The barrier height was calculated by using (CBH) model, it was found to be 1.41 eV. Dependence of σac (ω) on temperature refers to a linear increase with increasing temperature at different frequencies. The density of states N (EF) was calculated to be equal 4.11×1019 cm-3 using Elliott model. It has been found that AC activation energy decreases with increasing frequency. Dielectric values were analyzed using complex permittivity and complex electric modulus for bulk AlPcCl at different temperatures. The obtained value of HOMO-LUMO energy gap was found to be 1.48 eV.

  16. The Dielectric Loss Characteristic of Ice by Dielectric Heating Method for The Thawing of Foods or Biomaterials

    NASA Astrophysics Data System (ADS)

    Bai, Xianglan; Shirakashi, Ryo; Nishio, Shigefumi

    The thawing of ice crystal is very important for thawing of frozen foods and cryopreserved biomaterials. It was found that an alternative current (AC) electric field may effect the thawing process of frozen foods and cryopreserved biomaterials. In the present study, the spectrum of dielectric loss of ice crystal (50Hz~1.8GHz) was measured at various temperatures(-60°C to -2°C). The experiments of heating ice crystal using electric field were done to investigate the absorption of AC electric energy, which changes with the frequency of electric field. In order to evaluate the rapidness and the uniformity of thawing quantitatively, a numerical simulation of one-dimensional heat transfer was also conducted based on the measured spectrum of the dielectric loss of ice. The results showed that AC electric field have the uniform heating effect, only when the value of the frequency multiplied by dielectric loss (fε") decreases as the temperature increases. One of the optimum frequencies for a rapid and uniform thawing was found to be at around 3MHz.

  17. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Alamgir, Khan, Wasi; Ahmad, Shabbir; Ahammed, Nashiruddin; Naqvi, A. H.

    2015-05-01

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO2 synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO2 NPs. The average crystallite size of both samples was calculated from the Scherrer's formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ɛ'), dielectric loss (tanδ) and ac conductivityac) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ɛ') of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO2.

  18. Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: Drops more conductive than the suspending fluid

    NASA Astrophysics Data System (ADS)

    Fernández, Arturo

    2008-04-01

    Direct numerical simulation is used to examine the rheological properties of an emulsion of leaky dielectric fluids when an electric field is applied to the system. The emulsion consisting of neutrally buoyant drops is immersed in a simple shear flow where an electric potential difference is applied between the plates. It is assumed that drops are more conductive than the suspending fluid and that the electrical conductivity ratio between the drops and the suspending fluid, R =σi/σo, is larger than the dielectric permittivity ratio, S =ɛo/ɛi. If a single leaky dielectric drop is immersed in an electric field, this combination of properties leads to a viscous fluid motion from the equator to the poles. The response of an emulsion depends on the competition between the electrical forces and the fluid shear. This relation is quantified by the Mason number, Mn =(3λ+2)μγ˙/6(λ+1)ɛ0β2E∞2. The significance of drop deformability is measured through the electric capillary number, Ce=ɛ0β2E∞2a/γ. The microstructure and properties of an emulsion depend mainly on Mn, Ce, and R. An emulsion immersed in an electric field exhibits three different regimes for increasing Mn. When the electrical forces are substantially larger than the fluid shear, Mn <0.02, the drops aggregate in structures oriented parallel to the electric field that dictate the response of the system. At intermediate shear rates, 0.020.2, the aggregated structures are broken up, and the effect of the electrical interaction weakens. The application of an electric field leads electrorheological emulsions to exhibit an increase in their effective viscosity for the range of properties examined here, 0.001

  19. Dielectric properties and electrical conductivity of MgO synthesized by chemical precipitation and sol-gel method

    NASA Astrophysics Data System (ADS)

    Mbarki, Rabeh; Hichem Hamzaoui, Ahmed; Mnif, Adel

    2015-01-01

    MgO Powders were synthesized via simple chemical precipitation (SPC) and sol-gel process (SG). The electrical behavior of these powders was determined by complex impedance spectroscopy using an alternative current conductivity at various temperatures and frequencies. For MgO elaborated by SG, the activation energy is 1.49 eV while MgO prepared by SPC, this energy is equal to 0.39 and 4.13 eV. The structural properties of MgO powders were analyzed by X-ray diffraction and FT-IR spectroscopy. The results show that the cristallites size was 28.4 nm for MgO SPC and 42.5 nm for MgO SG. Others methods such DTA, TGA, BET and SEM were used to characterized MgO materials.

  20. Synthesis and characterization of cancrinite-type zeolite, and its ionic conductivity study by AC impedance analysis

    NASA Astrophysics Data System (ADS)

    Kriaa, A.; Ben Saad, K.; Hamzaoui, A. H.

    2012-12-01

    The synthesis of cancrinite in the system NaOH-SiO2-Al2O3-NaHCO3-H2O was performed, according to methods described in the literature, in an autoclave under hydrothermal conditions at T = 473 K. The electrical properties of cancrinite-type zeolite pellets were investigated by complex impedance spectroscopy in the temperature range 465-800°C. The effect of temperature on impedance parameters was studied using an impedance analyzer in a wide frequency range (1 Hz to 13 MHz). The real and imaginary parts of complex impedance trace semicircles in the complex plane are plotted. The bulk resistance of the material decreases with rise in temperature. This exhibits a typical negative temperature coefficient of resistance (NTCR) behavior of the material. The results of bulk electrical conductivity and its activation energy are presented. The modulus analysis suggests that the electrical transport processes in the material are very likely to be of electronic nature. Relaxation frequencies follow an Arrhenius behavior with activation energy values not comparable to those found for the electrical conductivity.

  1. Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Karuppusamy, S.; Dinesh Babu, K.; Nirmal Kumar, V.; Gopalakrishnan, R.

    2016-05-01

    The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

  2. Effect of substitution group on dielectric properties of 4H-pyrano [3, 2-c] quinoline derivatives thin films

    NASA Astrophysics Data System (ADS)

    H, M. Zeyada; F, M. El-Taweel; M, M. El-Nahass; M, M. El-Shabaan

    2016-07-01

    The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile (Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile (Ch-HPQ) thin films were determined in the frequency range of 0.5 kHz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping (CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.

  3. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    NASA Astrophysics Data System (ADS)

    Lux, Helge; Siemroth, Peter; Sgarlata, Anna; Prosposito, Paolo; Schubert, Markus Andreas; Casalboni, Mauro; Schrader, Sigurd

    2015-05-01

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 103 Ω◻ whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm2. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  4. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    SciTech Connect

    Lux, Helge Schrader, Sigurd; Siemroth, Peter; Sgarlata, Anna; Prosposito, Paolo; Casalboni, Mauro; Schubert, Markus Andreas

    2015-05-21

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 10{sup 3} Ω{sub ◻} whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm{sup 2}. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  5. Effects of swift heavy ion irradiation on dielectric relaxation and conduction mechanism in Ba0.90Sr0.10TiO3

    NASA Astrophysics Data System (ADS)

    Mohan, C. R. K.; Dey, Ranajit; Patel, Shiv P.; Pandey, R. K.; Sharma, M. P.; Bajpai, P. K.

    2016-04-01

    The effects of 100 MeV O8+ ion beam irradiation on the structural and dielectric behavior of Ba0.90Sr0.10TiO3 ceramics have been analyzed. Ion irradiation does not change the crystalline structure, however the tetragonal distortion increases. The low frequency dielectric dispersion especially at high temperatures increases significantly after ion irradiation. The dielectric relaxation phenomenon has been probed through complex impedance and electric modulus approaches. The observed dielectric relaxation has distributed relaxation times and is a thermally activated process. Ion irradiation enhances the cationic disordering. The contributions of grains and grains boundaries towards impedance have been separated. It is inferred that the grain boundaries become more resistive due to ion irradiation and is associated to oxygen vacancies annihilation. Ion irradiation also decreases the bulk ferroelectric polarization demonstrating that the surface or near surface modifications may tune the bulk properties in polar dielectrics.

  6. Experimental and theoretical study of AC electrical conduction mechanisms of Organic-inorganic hybrid compound Bis (4-acetylanilinium) tetrachlorocadmiate (II)

    NASA Astrophysics Data System (ADS)

    Jellibi, A.; Chaabane, I.; Guidara, K.

    2016-06-01

    A new organic-inorganic bis (4-acetylaniline) tetrachlorocadmate [C8H10NO]2[CdCl4] can be obtained by slow evaporation at room temperature and characterized by X-ray powder diffraction. It crystallized in an orthorhombic system (Cmca space group). The material electrical properties were characterized by impedance spectroscopy technique in the frequency range from 209 Hz-5 MHz and temperature 413 to 460 K. Besides, the impedance plots show semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to interpret the impedance results. The circuits consist of the parallel combination of a resistance (R), capacitance (C) and fractal capacitance (CPE). The variation of the exponent s as a function of temperature suggested that the conduction mechanism in Bis (4-acetylanilinium) tetrachlorocadmiate compound is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model below 443 K and the small polaron tunneling (SPT) model above 443 K.

  7. Comment on ``Electrical and dielectric propertiesof the Bi4Sr3Ca3Cu4Ox (4:3:3:4) glassy semiconductor''

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    1997-01-01

    A recent paper from Som and Chaudhuri [Phys. Rev. B 41, 1581 (1990)], regarding the electrical and dielectric properties of Bi4Sr3Ca3Cu4Ox glass is reanalyzed. It is shown that the theoretical analysis for the ac conductivity and its frequency exponent performed by the authors is incorrect.

  8. X-ray diffraction, dielectric, conduction and Raman studies in Na{sub 0.925}Bi{sub 0.075}Nb{sub 0.925}Mn{sub 0.075}O{sub 3} ceramic

    SciTech Connect

    Chaker, Chiheb; Gagou, Y.; Dellis, J.-L.; El Marssi, M.; Abdelmoula, N.; Khemakhem, H.; Masquelier, C.

    2012-02-15

    Ceramic with composition Na{sub 0.925}Bi{sub 0.075}Nb{sub 0.925}Mn{sub 0.075}O{sub 3} (NNBM0075) was synthesized by high temperature solid state reaction technique. It was studied using X-ray diffraction (XRD), dielectric measurements and Raman spectroscopy. The sample crystallizes in orthorhombic perovskite structure with space group Pbma at room temperature. Dielectric properties of the ceramic was investigated in a broad range of temperatures (-150 to 450 deg. C) and frequencies (0.1-10{sup 3} kHz), and show two different anomalies connected to the symmetry change and electrical conductivity. Dielectric frequency dispersion phenomena in the NNBM0075 ceramic was analyzed by impedance spectroscopy in the temperature range from 55 to 425 deg. C. The Cole-Cole analysis based on electrical circuit and least square method was used to characterize the conduction phenomenon. A separation of the grain and grain boundary properties was achieved using an equivalent circuit model. The different parameters of this circuit were determined using impedance studies. Four conduction ranges, with different activation energies, were determined using the Arrhenius model. Raman spectra were studied as a function of temperatures and confirmed the X-ray and dielectric results. This composition is of interest for applications due to his physical properties and environmentally friendly character.

  9. Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.

    2016-04-01

    Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.

  10. Investigation of structural, optical, electrical and dielectric properties of catalytic sprayed hausmannite thin film

    SciTech Connect

    Larbi, T.; Ouni, B.; Boukhachem, A.; Boubaker, K. Amlouk, M.

    2014-12-15

    Hausmannite Mn{sub 3}O{sub 4} thin film have been synthesized using spray pyrolysis method. These films are characterized using X-ray diffraction (XRD), atomic force microscope AFM, UV–vis–NIR spectroscopy and impedance spectroscopy. XRD study confirms the tetragonal structure of the as-deposited films with lattice parameters, a = 5.1822 Å and c = 9.4563 Å and a grain size of about 56 nm. UV–vis–NIR spectroscopy was further used to estimate optical constants such as extinction coefficient, refractive index, band gap and Urbach energy. Moreover, impedance spectroscopy analysis was employed to estimate electrical and dielectrical properties of the sprayed thin films. The activation energy values deduced from DC conductivity and relaxation frequency were almost the same, revealing that the transport phenomena is thermally activated by hopping between localized states. The AC conductivity is found to be proportional to ω{sup s}. The temperature dependence of the AC conductivity and the frequency exponent, s was reasonably well interpreted in terms of the correlated barrier-hopping CBH model. The dielectric properties were sensitive to temperature and frequency. The study of the electrical modulus indicated that the charge carrier was localized. Experimental results concerning optical constants as Urbach energy, dielectric constant, electric modulus and AC and DC conductivity were discussed in terms of the hopping model as suggested by Elliott.

  11. Dielectrical properties of PANI/TiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chaturmukha, V. S.; Naveen, C. S.; Rajeeva, M. P.; Avinash, B. S.; Jayanna, H. S.; Lamani, Ashok R.

    2016-05-01

    Conducting polyaniline/titanium dioxide (PANI/TiO2) composites have been succesfully synthesized by insitu polymerization technique. The PANI/TiO2 nanocomposites of different compositions were prepared by varying weight percentage of TiO2 nanoparticles such as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% into the fixed amount of the aniline monomer. The prepared powder samples were characterized by X-ray diffractometer (XRD) and Scanning electron microscope (SEM). The intensity of diffraction peaks for PANI/TiO2 composites is lower than that for TiO2. SEM pictures show that the nanocomposite were prepared in the form of long PANi chains decorated with TiO2 nanoparticles. The dielectric properties and AC conductivity were studied in the frequency range1K Hz-10M Hz. At higher frequencies, the composites exhibit almost zero dielectric loss and maximum value of σac is found for a concentration of 20 wt% TiO2 in polyaniline. The interface between polyaniline and TiO2 plays an important role in yielding a large dielectric constant in nanocomposites.

  12. Dielectric properties and electrical conductivity of the hybrid organic-inorganic polyvanadates (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}

    SciTech Connect

    Nefzi, H.; Sediri, F.; Hamzaoui, H.; Gharbi, N.

    2012-06-15

    Plate-like crystals of the polyvanadate (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] have been synthesized via an hydrothermal treatment. X-ray powder diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, electron spin resonance and complex impedance spectroscopy were used to analyze the hybrid material. The frequency dependence of AC conductivity at different temperatures indicates that the CBH model is the probable mechanism for the AC conduction behavior. The conductivity was measured by complex impedance spectroscopy which is equal to 31.10{sup -3} {Omega}{sup -1} m{sup -1} at 443 K. The Arrhenius diagram is not linear, it presents a rupture situated at 357 K and the activation energies' average values are 0.22 eV and 0.14 eV, deduced from the Arrhenius relation. - Graphical abstract: At high temperature {epsilon} Double-Prime increases more rapidly which is due to the increasing conduction loss which rises with the increment in the DC conductivity. Highlights: Black-Right-Pointing-Pointer Rectangular plate-like crystals (H{sub 3}N(CH{sub 2}){sub 4}NH{sub 3})[V{sub 6}O{sub 14}] were synthesized. Black-Right-Pointing-Pointer frequency and temperature dependence of AC conductivity indicate CBH model. Black-Right-Pointing-Pointer The temperature dependence of DC conductivity exhibits two conduction mechanisms.

  13. Possible enhancement of physical properties of nematic liquid crystals by doping of conducting polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Manda, R.; Dasari, V.; Sathyanarayana, P.; Rasna, M. V.; Paik, P.; Dhara, Surajit

    2013-09-01

    We report on the preparation and physical characterization of the colloidal suspension of conducting polyaniline (PANI) nanofibres and a nematic liquid crystal (5CB). The ac electrical conductivity anisotropy increases significantly and the rotational viscosity decreases with increasing wt. % of PANI nanofibres, while other physical properties such as birefringence, dielectric anisotropy, splay, and bend elastic constants are changed moderately. The high conductivity anisotropy of liquid crystal nano-composites is very useful for magnetically steered liquid crystal-nanofibre switch.

  14. Structural and dielectric properties of Cr-doped Ni-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Nasir, S.; Anis-ur-Rehman, M.; Malik, Muhammad Ali

    2011-02-01

    Cr-doped Ni-Zn ferrite nanoparticles having the general formula Ni0.5Zn0.5CrxFe2-xO4 (x=0.1, 0.3, 0.5) were prepared by the simplified sol-gel method. The structural and dielectric properties of the samples sintered at 750±5 °C were studied. X-ray diffraction (XRD) patterns confirm the single-phase spinel structure of the prepared samples. The crystallite size calculated from the most intense peak (3 1 1) using the Debye-Scherrer formula was 29-34 nm. Scanning electron microscope images showed that the particle size of the samples lies in the nanometer regime. The dielectric constant (ɛr), dielectric loss tangent (tan δ) and ac electrical conductivityac) of nanocrystalline Cr-Ni-Zn ferrites were investigated as a function of frequency and Cr concentration. The dependence of ɛr, tan δ and σac on the frequency of alternating applied electric field is in accordance with the Maxwell-Wagner model. The effect of Cr doping on the dielectric and electric properties was explained on the basis of cations distribution in the crystal structure.

  15. Structural, magnetic and dielectric properties of NiZnFe2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Datt, Gopal; Abhyankar, A. C.

    2016-04-01

    In this paper we report the structural, magnetic and dielectric properties of hydrothermally synthesised NiZnFe2O4 nanocrystals. The Rietveld refinement of XRD data reveals that nanoparticles are crystallized in spinel structure with Fd-3m space group and the lattice parameter is found to be 8.413 (2) Ȧ. The FESEM microstructures reveal that the particles are in the spherical shape with a size lying between 20-25 nm. The magnetic data analysis shows that the coercivity of the nanoparticles is almost zero at room temperature and the magnetization value is Ms = 45 emu/g. The dielectric relaxation of the NiZnFe2O4 nanocrystals obeys the modified Debye model which considers the more than one ion contributing to the relaxation. The ac-conductivity of these nanocrystals is governed by the universal dielectric response (UDR) model, where the variable-range hopping of localized polarons is responsible for conduction.

  16. Reduction of Common-Mode Conducted Noise Emissions in PWM Inverter-fed AC Motor Drive Systems using Optimized Passive EMI Filter

    NASA Astrophysics Data System (ADS)

    Jettanasen, C.; Ngaopitakkul, A.

    2010-10-01

    Conducted electromagnetic interference (EMI) generated by PWM inverter-fed induction motor drive systems, which are currently widely used in many industrial and/or avionic applications, causes severe parasitic current problems, especially at high frequencies (HF). These restrict power electronic drive's evolution. In order to reduce or minimize these EMI problems, several techniques can be applied. In this paper, insertion of an optimized passive EMI filter is proposed. This filter is optimized by taking into account real impedances of each part of a considered AC motor drive system contrarily to commercial EMI filters designed by considering internal impedance of disturbance source and load, equal to 50Ω. Employing the latter EMI filter would make EMI minimization less effective. The proposed EMI filter optimization is mainly dedicated to minimize common mode (CM) currents due to its most dominant effects in this kind of system. The efficiency of the proposed optimization method using two-port network approach is deduced by comparing the minimized CM current spectra to an applied normative level (ex. DO-160D in aeronautics).

  17. Boron Nitride Nanotube Mat as a Low- k Dielectric Material with Relative Dielectric Constant Ranging from 1.0 to 1.1

    NASA Astrophysics Data System (ADS)

    Hong, Xinghua; Wang, Daojun; Chung, D. D. L.

    2016-01-01

    This paper reports that a boron nitride nanotube (BNNT) mat containing air and 1.4 vol.% BNNTs is a low- k dielectric material for microelectronic packaging, exhibiting relative dielectric constant of 1.0 to 1.1 (50 Hz to 2 MHz) and elastic modulus of 10 MPa. The mat is prepared by compacting BNNTs at 5.8 kPa. This paper also presents measurements of the dielectric properties of BNNTs (mostly multiwalled). The relative dielectric constant of the BNNT solid in the mat decreases with increasing frequency, with attractively low values ranging from 3.0 to 6.2; the alternating-current (AC) electrical conductivity increases with increasing frequency, with attractively low values ranging from 10-10 S/m to 10-6 S/m and an approximately linear relationship between log conductivity and log frequency. The specific contact capacitance of the interface between BNNTs and the electrical contact decreases with increasing frequency, with attractively high values ranging from 1.6 μF/m2 to 2.3 μF/m2. The AC electrical resistivity of the BNNT-contact interface decreases with increasing frequency, with high values ranging from 0.14 MΩ cm2 to 440 MΩ cm2.

  18. Structural and dielectric properties of yttrium substituted nickel ferrites

    SciTech Connect

    Ognjanovic, Stevan M.; Tokic, Ivan; Cvejic, Zeljka; Rakic, Srdjan; Srdic, Vladimir V.

    2014-01-01

    Graphical abstract: - Highlights: • Dense NiFe{sub 2−x}Y{sub x}O{sub 4} ceramics (with 0 ≤ x ≤ 0.3) were prepared. • Pure spinels were obtained for x ≤ 0.07 while for x ≥ 0.15 samples had secondary phases. • With addition of yttrium, ac conductivity slightly increased. • We suggest several effects that can explain the observed changes in ac conduction. • With addition of yttrium, dielectric constant increased while the tg δ decreased. - Abstract: The influence of Y{sup 3+} ions on structural and dielectric properties of nickel ferrites (NiFe{sub 2−x}Y{sub x}O{sub 4}, where 0 ≤ x ≤ 0.3) has been studied. The as-synthesized samples, prepared by the co-precipitation method, were analyzed by XRD and FTIR which suggested that Y{sup 3+} ions were incorporated into the crystal lattice for all the samples. However, the XRD analysis of the sintered samples showed that secondary phases appear in the samples with x > 0.07. The samples have densities greater than 90% TD and the SEM images showed that the grain size decreases with the addition of yttrium. Dielectric properties measured from 150 to 25 °C in the frequency range of 100 Hz–1 MHz showed that the addition of yttrium slightly increases the ac conductivity and decreases the tg δ therefore making the materials better suited for the use in microwave devices.

  19. Dielectric abnormities in BaTi{sub 0.9}(Ni{sub 1/2}W{sub 1/2}){sub 0.1}O{sub 3} giant dielectric constant ceramics

    SciTech Connect

    Zhao Fei; Yue Zhenxing; Pei Jing; Yang Donghai; Gui Zhilun; Li Longtu

    2007-07-30

    BaTi{sub 0.9}(Ni{sub 1/2}W{sub 1/2}){sub 0.1}O{sub 3} ceramics were fabricated and their dielectric properties were investigated. With the sintering temperature increasing from 1250 to 1280 deg. C, the grain size abruptly increases from 1-2 to 20-40 {mu}m, accompanying significant changes in dielectric response. The samples with larger grains exhibit giant dielectric constant characteristics, which are considered to be mainly attributed to the domain boundary effect. The activation energies of the dielectric relaxation E{sub relax}=0.325 eV reveal the existence of microdomains in larger grains. The ac conductivity results also give the evidence of the domain boundary effect in the present ceramics.

  20. Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties

    SciTech Connect

    Nefzi, H.; Sediri, F.

    2013-05-01

    Vanadium oxide nanotubes (VOx-NTs) have been synthesized via one-step hydrothermal treatment. The compounds were analyzed through X-ray powder diffraction; scanning electron microscope, UV–Visible spectroscopy, X-ray photoelectron spectroscopy (XPS) and complex impedance spectroscopy. The electrical and dielectric properties dependence on temperature (302–523 K) and on frequency (5 Hz to 13 MHz) of VOx-NTs have been reported. The complex impedance plots exhibits the presence of grain and grain boundaries. Dielectric data were analyzed using complex permittivity and complex electrical modulus for the sample at various temperatures. The presence of non-Debye type of relaxation has been confirmed by the complex modulus analysis. AC conductivity exhibits two conduction mechanisms: at high temperature, a translational motion with a sudden hopping and at low temperature, a localized hopping with a small hopping or reorientational motion. DC conductivity indicated, negative temperature coefficient of resistance (NTCR) type behavior. - Graphical abstract: The imaginary part of dielectric constant decreases with the increase in frequency at all temperatures and the values of ε´´ exhibit considerable frequency dispersion in the lower frequency range . Highlights: •Vanadium oxide nanotubes (VOx-NTs) were synthesized. •Non-debye type of relaxation has been confirmed. •AC conductivity exhibits two conduction mechanisms. •DC conductivity indicated negative temperature coefficient of resistance type behavior.

  1. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    SciTech Connect

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  2. Low-frequency dielectric properties of intrinsic and Al-doped rutile TiO2 thin films grown by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kassmi, M.; Pointet, J.; Gonon, P.; Bsiesy, A.; Vallée, C.; Jomni, F.

    2016-06-01

    Dielectric spectroscopy is carried out for intrinsic and aluminum-doped TiO2 rutile films which are deposited on RuO2 by the atomic layer deposition technique. Capacitance and conductance are measured in the 0.1 Hz-100 kHz range, for ac electric fields up to 1 MVrms/cm. Intrinsic films have a much lower dielectric constant than rutile crystals. This is ascribed to the presence of oxygen vacancies which depress polarizability. When Al is substituted for Ti, the dielectric constant further decreases. By considering Al-induced modification of polarizability, a theoretical relationship between the dielectric constant and the Al concentration is proposed. Al doping drastically decreases the loss in the very low frequency part of the spectrum. However, Al doping has almost no effect on the loss at high frequencies. The effect of Al doping on loss is discussed through models of hopping transport implying intrinsic oxygen vacancies and Al related centers. When increasing the ac electric field in the MVrms/cm range, strong voltage non-linearities are evidenced in undoped films. The conductance increases exponentially with the ac field and the capacitance displays negative values (inductive behavior). Hopping barrier lowering is proposed to explain high-field effects. Finally, it is shown that Al doping strongly improves the high-field dielectric behavior.

  3. Impedance and thermal conductivity properties of epoxy/polyhedral oligomeric silsequioxane nanocomposites

    NASA Astrophysics Data System (ADS)

    Eed, H.; Ramadin, Y.; Zihlif, A. M.; Elimat, Ziad; Ragosta, Giuseppe

    2014-03-01

    The impedance and thermal conductivity properties of prepared organic epoxy/polyhedral oligomeric silsequioxane (POSS) nanocomposites were studied. The measurements of the impedance were carried out using the impedance technique as a function of applied field frequency range from 20 kHz to 1 MHz, temperature range from 20°C-110°C, and POSS filler concentrations 5, 10, and 20 wt%. The AC conductivity and dielectric properties were determined from the impedance data. It was found that the AC conductivity and dielectric constant are increased by increasing the POSS content in the nanocomposites. The calculated activation energy varies with the filler content, temperature, and applied frequency. The observed electrical results fit approximately the reported equations concerning the AC conductivity of the prepared nanocomposites. The dielectric behavior was explained on the basis of the interfacial polarization, dipolar polarization, and decrease in the hindrance produced by the polymer matrix. The thermal conductivity of the prepared nanocomposite was studied as a function of temperature, and POSS concentration. It was found that the thermal conductivity is enhanced by the addition of the POSS content and temperature. During the heating process, the phonons are activated and electrons hopp to higher localized energy states producing enhancement in the thermal conductivity. Furthermore, correlations between the observed physical properties as thermal conductivity, storage modulus, and glass transition temperature of the nanocomposites are presented.

  4. Anomalous dielectric behaviour of poly(vinyl alcohol)-silicon dioxide (PVA-SiO2) nanocomposites

    NASA Astrophysics Data System (ADS)

    Choudhary, Shobhna; Sengwa, R. J.

    2016-05-01

    Complex dielectric function, electric modulus, ac conductivity and impedance spectra of PVA-SiO2 nanocomposite films have been investigated in the frequency range of 20 Hz to 1 MHz and temperature range from 30 °C to 60 °C. Real part of dielectric function of the nanocomposites slowly decreases with increase of frequency and it shows a non-linear increase with the increase of temperature. An anomalous variation is observed in dielectric and electrical functions with increase of SiO2 concentrations in the PVA matrix. The ac conductivity of these materials increases whereas impedance values decrease linearly by five orders of magnitude with increase of frequency from 20 Hz to 1 MHz. Dielectric loss values of these films are found minimum at intermediate frequency region, and it increases at low and high frequency regions confirming the presence of multiple relaxation processes. The contributions of interfacial polarization effect and dipolar ordering in dielectric properties of these materials have been explored, and their technological applications as nanodielectrics have been discussed. The XRD patterns reveal that the interactions between PVA and SiO2 disturb the dipolar ordering resulting decrease of crystallinity of the PVA in the nanocomposites.

  5. The roles of the dielectric constant and the relative level of conduction band of high-k composite with Si in improving the memory performance of charge-trapping memory devices

    SciTech Connect

    Lu, Jianxin; Gong, Changjie; Ou, Xin; Lu, Wei; Yin, Jiang; Xu, Bo; Xia, Yidong; Liu, Zhiguo; Li, Aidong

    2014-11-15

    The memory structures Pt/Al{sub 2}O{sub 3}/(TiO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1−x}/Al{sub 2}O{sub 3}/p-Si(nominal composition x = 0.05, 0.50 and 0.70) were fabricated by using rf-magnetron sputtering and atomic layer deposition techniques, in which the dielectric constant and the bottom of the conduction band of the high-k composite (TiO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1−x} were adjusted by controlling the partial composition of Al{sub 2}O{sub 3}. With the largest dielectric constant and the lowest deviation from the bottom of the conduction band of Si, (TiO{sub 2}){sub 0.7}(Al{sub 2}O{sub 3}){sub 0.3} memory devices show the largest memory window of 7.54 V, the fast programming/erasing speed and excellent endurance and retention characteristics, which were ascribed to the special structural design, proper combination of dielectric constant and band alignment in the high-k composite (TiO{sub 2}){sub 0.7}(Al{sub 2}O{sub 3}){sub 0.3}.

  6. Frequency and temperature dependent dielectric studies of BaTi0.96Fe0.04O3

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Mishra, Niyati; Bisen, Supriya; Jarabana, Kanaka M.

    2014-09-01

    A Finest possible sample of 4% Iron doped BaTiO3 (BTO) with possible tetragonal structure via a solid state route was prepared. Prepared sample was characterized by X-ray diffraction (XRD) using Brnker D8 Advance XRD instrument, the value of 2θ is in between 200 to 800. Detailed analysis of dielectric constant, dielectric loss, ac conductivity and electrical modulus at various range of frequency and temperature have been done of 4% Fe doped BTO was recorded on hp-Hewlett Packard 4192 A, LF impedance, 5Hz-13Hz analyser.

  7. Dielectric and Impedance Spectroscopy of Barium Bismuth Vanadate Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Sutar, B. C.; Choudhary, R. N. P.; Das, Piyush R.

    2014-07-01

    Structural, micro-structural and electrical properties of barium bismuth vanadate Ba(Bi0.5V0.5)O3 ceramics were investigated. X-ray diffraction (XRD) analysis of the prepared material confirmed the formation of the compound with monoclinic crystal system. Scanning electron microscopy (SEM) of the compound exhibits well-defined grains that are uniformly distributed throughout the surface of the sample. Dielectric properties of the compound were studied as a function of temperature at different frequencies. An observation of dielectric anomaly at 295 °C is due to ferroelectric phase transition that was later confirmed by the appearance of hysteresis loop. Detailed studies of complex impedance spectroscopy have provided a better understanding of the relaxation process and correlations between the microstructure-electrical properties of the materials. The nature of frequency dependence of ac conductivity obeys the Debye power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor.

  8. Effect of gamma irradiation on dielectric properties of manganese zinc nanoferrites

    SciTech Connect

    Angadi, V. Jagadeesha Rudraswamy, B.; Melagiriyappa, E.; Somashekarappa, H. M.; Nagabhushana, H.

    2014-04-24

    Naocrystalline ferrites Mn{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x = 0.00, 0.25, 0.50, 0.75 and 1.00) were prepared by combustion method. The samples were characterized by XRD technique. The dielectric measurements were carried out in the frequency range 40 Hz to 100 MHz at room temperature. All the measurements were performed before and after gamma {sup 60}Co irradiation. The X-ray diffraction patterns revealed the formation of nanocrystalline and single-phase spinel structure. The lattice parameter decrease with zinc ion concentration and increased after the irradiation due to ferric ions of smaller radius converted to ferrous ions of larger radius. The dielectric behavior is attributed to the Maxwell-Wagner type interfacial polarization. The dielctric contant, dielectric loss and AC conductivity enhanced after the irradiation.

  9. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  10. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties

    NASA Astrophysics Data System (ADS)

    Abdullah, M. M.; Rajab, Fahd M.; Al-Abbas, Saleh M.

    2014-02-01

    The structural, optical and dielectric properties of as-grown Cr2O3 nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Å; c = 13.578 Å, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr-O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr2O3 nanostructures attest the potential candidature of the material as an efficient dielectric medium.

  11. Dielectric response of the human tooth dentine

    NASA Astrophysics Data System (ADS)

    Leskovec, J.; Filipič, C.; Levstik, A.

    2005-07-01

    Dielectric properties of tooth dentine can be well described by the model which was developed for the dielectric response to hydrating porous cement paste. It is shown that the normalized dielectric constant and the normalized specific conductivity are proportional to the model parameters ɛ and σv, indicating the deposition of AgCl in the dentine tubules during the duration of the precipitation. The fractal dimension of the tooth dentine was determined by dielectric spectroscopy.

  12. New silicone dielectric elastomers with a high dielectric constant

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Liu, Liwu; Fan, Jiumin; Yu, Kai; Liu, Yanju; Shi, Liang; Leng, Jinsong

    2008-03-01

    Dielectric elastomers (Des) are a type of EAPs with unique electrical properties and mechanical properties: high actuation strains and stresses, fast response times, high efficiency, stability, reliability and durability. The excellent figures of merit possessed by dielectric elastomers make them the most performing materials which can be applied in many domains: biomimetics, aerospace, mechanics, medicals, etc. In this paper, we present a kind of electroactive polymer composites based on silicone Dielectric elastomers with a high dielectric constant. Novel high DEs could be realized by means of a composite approach. By filling an ordinary elastomer (e.g. silicone) with a component of functional ceramic filler having a greater dielectric permittivity, it is possible to obtain a resulting composite showing the fruitful combination of the matrix's advantageous elasticity and the filler's high permittivity. Here we add the ferroelectric relaxor ceramics (mainly BaTiO3) which has high dielectric constant (>3000) to the conventional silicone Dielectric elastomers, to get the dielectric elastomer which can exhibit high elastic energy densities induced by an electric field of about 15 MV/m. Tests of the physical and chemical properties of the dielectric elastomers are conducted, which verify our supposes and offer the experimental data supporting further researches.

  13. Composites of hybrids BaTiO3/carbon nanotubes/polyvinylidene fluoride with high dielectric properties

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Bai, Jinbo

    2015-11-01

    High dielectric composites were prepared based on polyvinylidene fluoride (PVDF) and hybrids BaTiO3-carbon nanotubes (H-BT-CNTs) with a special structure. The hybrids that BT was a core and CNTs grew outside were fabricated by chemical vapor deposition. Due to the special structure, composite’s dielectric permittivity reached 1777 at 100 Hz and 80 at 1 MHz, while loss tangent maintained as 6 at 100 Hz and 0.56 at 1 MHz, respectively. Moreover, dielectric permittivity and ac conductivity of composite were further enhanced after annealing process at moderate temperature. These improved properties were originated from the reformation of conductive network and BT-CNTs structure inside PVDF matrix.

  14. Study of Dielectric Behavior and Charge Conduction Mechanism of Poly(Vinyl Alcohol) (PVA)-Copper (Cu) and Gold (Au) Nanocomposites as a Bio-resorbable Material for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Goyal, Parveen Kumar; Tomar, Anil Kumar; Chahal, Rishi Pal; Kumar, Shyam

    2016-06-01

    Poly(vinyl alcohol) (PVA) embedded with varying concentrations of chemically synthesized copper (Cu) and gold (Au) nanoparticles (NPs) were prepared using ex situ sol-gel casting method. The addition of almost the same concentration of CuNPs in PVA improves the conducting properties, while that of AuNPs improves the dielectric nature of composite films. It has been found that addition of AuNPs up to ˜0.4 wt.% concentration enhaneces the capacitive nature due to the formation of small Coulomb tunneling knots as internal capacitors. The dielectric studies suggest the Maxwell-Wagner interfacial polarization as the dominant dielectric relaxation process, whereas the I-V characteristics indicate bulk limited Poole-Frenkel emission at high voltages as the dominant charge transport mechanism operating at room temperature in all specimens. These novel features lead to the conclusion that addition of a small quantity of metal nanoparticles can help tune the properties of PVA for desired applications in bio-compatible polymer-based organic electronic devices.

  15. Cell Electrofusion in Centrifuged Erythrocyte Pellets Assessed by Dielectric Spectroscopy.

    PubMed

    Asami, Koji

    2016-04-01

    We have characterized cell electrofusion in cell pellets by dielectric spectroscopy. Cell pellets were formed from horse erythrocyte suspensions by centrifugation and were subjected to intense AC pulses. The dielectric spectra of the pellets were measured over a frequency range of 10 Hz to 10 MHz. The application of AC pulses caused low-frequency (LF) dielectric relaxation below about 100 kHz. The LF dielectric relaxation was markedly affected not only by pretreatment of cells at 50 °C, which disrupts the spectrin network of erythrocytes, but also by the parameters of the AC pulses (frequency of the sine wave and repeat count of the pulses). The occurrence of the LF dielectric relaxation was qualitatively accounted for by modeling fusion products in the pellet by prolate spheroidal cells whose long axes run parallel to the applied electric field. PMID:26407874

  16. Vanadium oxide nanotubes VOx-NTs: Hydrothermal synthesis, characterization, electrical study and dielectric properties

    NASA Astrophysics Data System (ADS)

    Nefzi, H.; Sediri, F.

    2013-05-01

    Vanadium oxide nanotubes (VOx-NTs) have been synthesized via one-step hydrothermal treatment. The compounds were analyzed through X-ray powder diffraction; scanning electron microscope, UV-Visible spectroscopy, X-ray photoelectron spectroscopy (XPS) and complex impedance spectroscopy. The electrical and dielectric properties dependence on temperature (302-523 K) and on frequency (5 Hz to 13 MHz) of VOx-NTs have been reported. The complex impedance plots exhibits the presence of grain and grain boundaries. Dielectric data were analyzed using complex permittivity and complex electrical modulus for the sample at various temperatures. The presence of non-Debye type of relaxation has been confirmed by the complex modulus analysis. AC conductivity exhibits two conduction mechanisms: at high temperature, a translational motion with a sudden hopping and at low temperature, a localized hopping with a small hopping or reorientational motion. DC conductivity indicated, negative temperature coefficient of resistance (NTCR) type behavior.

  17. Pumping of Dielectric Liquids Using Non-Uniform-Field Induced Electrohydrodynamic Flow

    NASA Astrophysics Data System (ADS)

    Ryu, Jae Chun; Kim, Wonkyoung; Kang, Kwan Hyoung

    2010-11-01

    Pumping of dielectric liquids or poorly conducting liquids is necessary in cooling of microelectronic devices, dispensing liquids in miniature systems for chemical and biological analysis, and micropumping of organic solvents for microreactor. Electrical pumping of liquids is more attractive than conventional mechanical pumping methods because of many advantages such as simple design, no mechanical parts, low acoustic noise, and lightweight. We present a new electrohydrodynamic (EHD) pumping method for dielectric liquids. The pumping method relies on the EHD flow generated by electric-field dependent electrical conductivity (Onsager effect). A polar additive plays an important role in enhancing the field-dependency of conductivity. When ac voltage is applied, a fast and regular flow was produced around electrodes. Flow speed is proportional to cube of electric-field strength and inversely to applied frequency. The experimental results showed good agreement with numerical analysis which is based on our model.

  18. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  19. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  20. Study Of Structural And Dielectric Properties Of Ni-Mg Ferrite Nanoparticles

    SciTech Connect

    Nongjai, Razia; Batoo, Khalid Mujasam; Khan, Shakeel

    2010-12-01

    Ferrite nanoparticles of basic composition Ni{sub 0.7}Mg{sub 0.3}Fe{sub 2-x}Al{sub x}O{sub 4}(0.0{<=}x{<=}0.5) were prepared through citrate gel method and characterized using XRD, TEM and dielectric spectroscopy techniques. The dielectric properties were studied as a function of frequency (42 Hz-5 MHz) at room temperature. The average particle size has been found between 8-17 nm. The dispersion in dielectric properties and ac conductivity ({sigma}{sub ac}), with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and the hopping of charge between Fe{sup 2+} and Fe{sup 3+} as well as between Ni{sup 2+} and Ni{sup 3+} ions at B-sites. The dielectric loss tangent (tan {delta}) shows abnormal behavior for the compositions 0.3, 0.4 and 0.5 which has been explained in the light of Rezlescue model.

  1. Effect of LiCl doping on dielectric behavior of copper-zinc ferrite system

    NASA Astrophysics Data System (ADS)

    Lipare, A. Y.; Vasambekar, P. N.; Vaingankar, A. S.

    2004-08-01

    Polycrystalline soft ferrite samples were prepared with chemical formula, Zn xCu 1- xFe 2O 4 ( x=0.30,0.50,0.70,0.80 and 0.90) doped with controlled amount of lithium chloride (LiCl) by standard ceramic technique. The samples were characterized by XRD, IR absorption techniques. X-ray diffraction studies of the compositions reveal formation of single-phase cubic structure. The values of lattice constant decrease as doping percentage of LiCl is increased from 0.01% to 0.10%. The presence of chlorine ions is confirmed by IR absorption peak in spectrum near 650 cm-1 for all the samples. The investigation on dielectric constant ( ɛ'), dielectric loss tangent ( tan δ) and AC resistivity ( ρAC) was carried out in the applied field frequency range 100 Hz- 1 MHz, at room temperature. Dielectric constant and loss tangent were found to decrease as the frequency increases. This is attributed to the Maxwell-Wagner polarization. Temperature-dependent DC resistivity was carried out in the temperature range from 300 to 800 K. From the compositional study, it was found that the dielectric constant shows decreasing trend with increasing both zinc concentration as well as doping percentage of lithium chloride. Conduction mechanism in these ferrites is discussed on the basis of electron exchange between Fe 2+ and Fe 3+ ions on the octahedral B-sites.

  2. Magnetic and dielectric properties of Bi3+ substituted SrFe12O19 hexaferrite

    NASA Astrophysics Data System (ADS)

    Auwal, I. A.; Erdemi, H.; Sözeri, H.; Güngüneş, H.; Baykal, A.

    2016-08-01

    In the present study, SrBixFe12-xO19 (0.0≤x≤1.0) nanomaterials were successfully synthesized by using chemical co-precipitation method. Products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating sample magnetometer (VSM), Mössbauer spectroscopy, AC conductivity and dielectric measurements. The crystal structural information studied by X-ray diffraction (XRD) indicated the formation of single phase pure hexagonal structure, while electron-dispersive X-ray spectroscopy (EDX) revealed the stoichiometric ratio among Bi, Sr, Fe elements. The crystallite sizes of the products were in the range of 65-82 nm. VSM analysis showed a tendency in saturation magnetization as Bi2O3 concentration raises, which can be ascribed to preferential site occupied by Bi3+ ions. The frequency-dependent ac conductivity plots exhibited similar trends for all samples. A significant temperature-dependent behavior was only observed at low and medium frequencies. The replacement of non-magnetic Bi3+ ions by Fe3+ ones having magnetic moment of 5 μB decrease the magnetic moment of 4f1 site. The AC conductivity increases with frequency as hopping of the charge carriers increases between Fe2+and Fe3+. The DC conductivity exhibited an improvement with increasing temperature and Bi content, and the highest conductivity was measured as 2.84×10-9 S cm-1 for x=0.8 at 120 °C. The variation of dielectric constant, dielectric loss and tangent loss was observed with the frequency and temperature due to change of electrical conductivity as x changes.

  3. Effects of adding HfO2 on the microstructure and dielectric properties of giant dielectric constant ceramic CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Yuan, W. X.; Hark, S. K.

    2010-03-01

    CaCu3Ti4O12 (CCTO), an unusual perovskite-like ceramic, is known for its extraordinarily high (˜10^4) and relatively frequency independent dielectric constant. It has drawn a lot of attention recently because of its potential applications in microelectronics and microwave devices. In this investigation, HfO2 powder was added to a pre-reacted CCTO powder, which was synthesized by a conventional solid-state reaction, at different concentrations from 1 to 70 wt% and the mixture was sintered into disc-shaped ceramic samples. The effects of adding HfO2 on the microstructure and dielectric properties of CCTO ceramics were investigated. In general, we found that the dielectric constant tends to increase with HfO2 addition up to 8 wt% and then decrease with further addition. Moreover, the dielectric loss was also influenced by the addition of HfO2, and a low loss tangent of ˜0.035 was obtained. The ac conductivity, impedance, complex dielectric permittivity and electric modulus graphs were used to analyze the data. These observations were explained on the basis of the internal-barrier-layer capacitor model with Maxwell-Wagner relaxations.

  4. High temperature X-ray diffraction, Raman spectroscopy and dielectric studies on yttrium orthochromites

    NASA Astrophysics Data System (ADS)

    Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev

    2016-05-01

    The structural, thermal and dielectric properties of YCrO3 ceramic prepared by solid state reaction method have been investigated by a combination of XRD, Raman spectroscopy and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pnma symmetry over a wide range of temperature 300K to 1100K. Impedance spectroscopy study on the sample showed that the dielectric constant, tangent loss and ac conductivity with frequency increases on increasing the temperature. Dielectric measurement shows a relaxor like transition at about 460K. Non-Debye type relaxation is observed with activation energy of 0.25 eV extracted from ac conductivity at 11 kHz frequency. We believe that the oxygen ion vacancies play an important role in conduction processes in addition to polaron hopping at higher temperatures. Raman scattering measurements were performed over a wide temperature range from 300K to 600 K. The line width of the modes due to CrO6 bending and in-plane O2 stretching broadens with increasing temperature.

  5. Dielectric and Electrical Properties of BiFeO3-PbZrO3 Composites

    NASA Astrophysics Data System (ADS)

    Satpathy, S. K.; Mohanty, N. K.; Behera, A. K.; Sen, S.; Behera, Banarji; Nayak, P.

    2015-11-01

    The dielectric and electrical properties of composites prepared by addition of two different amounts of PbZrO3 (PZO) to BiFeO3 (BFO) are discussed. The composites (1 - x)(BiFeO3)- x(PbZrO3) ( x = 0.5, 0.7; i.e., 0.5BF-0.5PZ and 0.3BF-0.7PZ) were synthesized by solid-state reaction. X-ray diffraction analysis confirmed formation of composites with a rhombohedral structure at room temperature. Scanning electron microscopy revealed homogeneously distributed grains. Dielectric constants and dielectric loss increased with decreasing PZO content whereas the transition temperature shifted to higher temperature with decreasing PZO content. Hysteresis loops confirmed the ferroelectric nature of the materials. The Nyquist plot was indicative of the contribution of the bulk effect and a small contribution from the grain boundary effect. Temperature-dependent relaxation occurred for both materials. Non-Debye type electrical impedance was confirmed by asymmetric peak broadening and a spread of relaxation times. Activation energies were calculated from plots of ac conductivity as a function of temperature by linear fitting. Dc and ac conductivity increased with increasing temperature. Activation energies calculated from the complex impedance plot and from the fitted Jonscher power law were very similar, implying conduction by a similar type of charge carrier in both composites.

  6. Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites

    SciTech Connect

    Elena Ciomaga, Cristina; Maria Neagu, Alexandra; Valentin Pop, Mihai; Mitoseriu, Liliana; Airimioaei, Mirela; Tascu, Sorin; Schileo, Giorgio; Galassi, Carmen

    2013-02-21

    Particulate composites of ferrite and ferroelectric phases with xNiFe{sub 2}O{sub 4} (NF) and (1 - x)Pb{sub 0.988}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.976}Nb{sub 0.024}O{sub 3} (where x = 2, 10, 20, 30, 50, 70, and 100 wt. %) were prepared in situ by sol-gel method. The presence of a diphase composition was confirmed by X-ray diffraction while the microstructure of the composites was studied by scanning electron microscopy revealing a good mixing of the two phases and a good densification of the bulk ceramics. The dielectric permittivity shows usual dielectric dispersion behavior with increasing frequency due to Maxwell-Wagner interfacial polarization. AC conductivity measurements made in frequency range 1 Hz-1 MHz suggest that the conduction process is due to mixed polaron hopping. The effect of NF phase concentration on the P-E and M-H hysteresis behavior and dielectric properties of the composites was investigated. At low NF concentration a sharp ferro-paraelectric transition peak can be observed at around 360 Degree-Sign C while for higher NF concentrations a trend to a diffuse phase transition occurs. All the composite samples exhibit typical ferromagnetic hysteresis loops, indicating the presence of ordered magnetic structure.

  7. Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow

    NASA Astrophysics Data System (ADS)

    Kim, Wonkyoung; Chun Ryu, Jae; Kweon Suh, Yong; Hyoung Kang, Kwan

    2011-11-01

    We present a method of pumping dielectric (or non-polar) liquids. The pumping method relies on the electrohydrodynamic flow generated by field dependent electrical conductivity (Onsager effect). Adding a small amount of polar liquid increases the field-dependency of conductivity. Applying either dc or ac voltage produces a fast and regular flow around electrodes. Flow speed is proportional to cube of electric-field strength and inversely to applied frequency. The experimental results agreed well with numerical analysis based on our theoretical model.

  8. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  9. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  10. Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites

    NASA Astrophysics Data System (ADS)

    Lakshmi, Ch. S.; Sridhar, Ch. S. L. N.; Govindraj, G.; Bangarraju, S.; Potukuchi, D. M.

    2015-02-01

    Nanocrystalline Ni-Zn-Sb ferrites synthesized by hydrothermal method are reported. Influence of Sb5+ ions on structural, magnetic and dielectric properties of ferrites is studied. Phase identification, lattice parameter and crystallite size studies are carried out using by X-ray diffraction (XRD). Addition of dopant resulted for decrease in lattice parameter. Crystallite size gets reduced from 62 nm to 38 nm with doping of Antimony. Crystallite size and porosity exhibit similar trends with doping. Morphological study is carried out by Field Emission Scanning Electron Microscopy (FESEM). Strong FTIR absorption bands at 400-600 cm-1 confirm the formation of ferrite structure. Increase of porosity is attributed to the grain size. Doping with Antimony results for decrease in saturation magnetization and increase in coercivity. An initial increase of saturation magnetization for x=0.1 is attributed to the unusually high density. Reversed trend of coercivity with crystallite size are observed. Higher value of dielectric constant ε‧(ω) is attributed to the formation of excess of Fe2+ ions caused by aliovalent doping of Sb5+ ions. Variation of dielectric constant infers hopping type of conductivity mechanism. The dielectric loss factor tanδ attains lower values of ~10-2. High ac resistivity ρ(ω) of 108 Ω cm is witnessed for antimony doped ferrites. Higher saturation magnetization and enhanced dielectric response directs for a possible utility as microwave oscillators and switches.

  11. The effect of gamma irradiation on electrical and dielectric properties of organic-based Schottky barrier diodes (SBDs) at room temperature

    NASA Astrophysics Data System (ADS)

    Uslu, Habibe; Yıldırım, Mert; Altındal, Şemsettin; Durmuş, Perihan

    2012-04-01

    The effect of 60Co (γ-ray) irradiation on the electrical and dielectric properties of Au/Polyvinyl Alcohol (Ni,Zn-doped)/n-Si Schottky barrier diodes (SBDs) has been investigated by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and 1 MHz. The real capacitance and conductance values were obtained by eliminating series resistance (Rs) effect in the measured capacitance (Cm) and conductance (Gm) values through correction. The experimental values of the dielectric constant (ɛ'), dielectric loss (ɛ″), loss tangent (tanδ), ac electrical conductivityac) and the real (M') and imaginary (M″) parts of the electrical modulus were found to be strong functions of radiation and applied bias voltage, especially in the depletion and accumulation regions. In addition, the density distribution of interface states (Nss) profile was obtained using the high-low frequency capacitance (CHF-CLF) method for before and after irradiation. The Nss-V plots give two distinct peaks for both cases, namely before radiation and after radiation, and those peaks correspond to two different localized interface states regions at M/S interface. The changes in the dielectric properties in the depletion and accumulation regions stem especially from the restructuring and reordering of the charges at interface states and surface polarization whereas those in the accumulation region are caused by series resistance effect.

  12. Standard and nonstandard nematic electrohydrodynamic convection in the presence of asymmetric ac electric fields

    NASA Astrophysics Data System (ADS)

    Low, Jonathan; Hogan, S. John

    2008-10-01

    In planar nematic electrohydrodynamic convection (EHC), a microscopic liquid crystal cell is driven by a homogeneous ac electric field, which, if strong enough, causes the fluid to destabilize into a regular pattern-forming state. We consider asymmetric electric fields E(t)=E(t+T)≠-E(t+T/2) , which leads to the possibility of three different types of instabilities at onset: conductive, dielectric, and subharmonic. The first two are already well known as they are easily produced when the system is driven by symmetric electric fields; the third can only occur when the electric field symmetry is broken. We present theoretical results on EHC using linear stability analysis and Floquet theory. We consider rigid and free boundary conditions, extending the model to two Fourier modes in the vertical plane, the inclusion of flexoelectricity, and using standard (nematic electric conductivity σa>0 and dielectric anisotorpy γa<0 ) and nonstandard (σa<0) material parameters. We make full use of a three-dimensional linear model where two mutually perpendicular planar wave numbers q and p can be varied. Our results show that there is a qualitative difference between the boundary conditions used, which is also dependent on how many vertical Fourier modes were used in the model. We have obtained threshold values favoring oblique rolls in subharmonic and dielectric regimes in parameter space. For the nonstandard EHC parameter values, both conduction and subharmonic regimes disappear and only the dielectric threshold exists.

  13. Dynamic Properties of Dielectric Susceptibility in Ferroelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Cui, Lian; Cui, Haiying; Wu, Chunmei; Yang, Guihua; He, Zelong; Wang, Yuling; Che, Jixin

    2016-02-01

    In this paper, frequency, temperature, film thickness, surface effects, and various parameters dependence of dielectric susceptibility is investigated theoretically for ferroelectric thin films by the modified Landau theory under an AC applied field. The dielectric susceptibility versus AC applied field shows butterfly-shaped behavior, and depends strongly on the frequency and amplitude of the field and temperature. Our study shows that the existence of the surface transition layer can depress the dielectric susceptibility of a ferroelectric thin film. These results are well consistent with the phenomena reported in experiments.

  14. Structural and optical characterization of Cr{sub 2}O{sub 3} nanostructures: Evaluation of its dielectric properties

    SciTech Connect

    Abdullah, M. M.; Rajab, Fahd M.; Al-Abbas, Saleh M.

    2014-02-15

    The structural, optical and dielectric properties of as-grown Cr{sub 2}O{sub 3} nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Å; c = 13.578 Å, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr–O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr{sub 2}O{sub 3} nanostructures attest the potential candidature of the material as an efficient dielectric medium.

  15. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  16. Comparative study of the temperature-dependent dielectric properties of Au/PPy/n-Si (MPS)-type Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Gümüş, Ahmet; Ersöz, Gülçin; Yücedağ, İbrahim; Bayrakdar, Sümeyye; Altindal, Şemsettin

    2015-09-01

    The dielectric properties of Au/PPy/n-Si metal-polymer-semiconductor (MPS)-type Schottky barrier diodes (SBDs) were investigated by using capacitance-voltage ( C-V) and conductancevoltage ( G/ω-V) measurements at various temperatures and voltages at frequencies of 100 kHz and 500 kHz. Both the real and the imaginary parts of the complex dielectric constant and dielectric loss ( ɛ', ɛ″) and of the electric modulus ( M', M″), as well as the conductivityac ), were found to depend strongly on the temperature and the voltage. Both the C and G/ω values increased with increasing applied voltage and had inversion, depletion, and accumulation regions as with a metal-insulator-semiconductor (MIS) type behavior. Both the dielectric constant ( ɛ') and the dielectric loss ( ɛ″) increased with increasing temperature and decreased with increasing frequency. The loss tangent (tan δ) vs. temperature curve had a peak at about 200 K for both frequencies. The M' and the M″ values decreased with increasing temperature and became independent of the frequency at high temperatures. The series resistance ( R s ) of the diode decreased with increasing temperature for the two frequencies while the σ ac increased. Such behaviors of the dielectric properties with temperature were attributed to the restructuring and reordering of charges at interface states/traps due to the varying temperature, the interfacial polarization, and the interfacial polymer layer. ln(σ ac ) vs. q/kT plots had two distinct linear regions with different slopes for the two frequencies. Such behaviors of these plots confirmed the existence of two different conduction mechanisms corresponding to low and high temperatures. The values of the activation energy ( E a ) were obtained from the slopes of these plots, and its value at low temperatures was considerably lower than that at high temperatures.

  17. Interfaces: nanometric dielectrics

    NASA Astrophysics Data System (ADS)

    Lewis, T. J.

    2005-01-01

    The incorporation of nanometric size particles in a matrix to form dielectric composites shows promise of materials (nanodielectrics) with new and improved properties. It is argued that the properties of the interfaces between the particles and the matrix, which will themselves be of nanometric dimensions, will have an increasingly dominant role in determining dielectric performance as the particle size decreases. The forces that determine the electrical and dielectric properties of interfaces are considered, with emphasis on the way in which they might influence composite behaviour. A number of examples are given in which interfaces at the nanometric level exercise both passive and active control over dielectric, optical and conductive properties. Electromechanical properties are also considered, and it is shown that interfaces have important electrostrictive and piezoelectric characteristics. It is demonstrated that the process of poling, namely subjecting macroscopic composite materials to electrical stress and raised temperatures to create piezoelectric materials, can be explained in terms of optimizing the collective response of the nanometric interfaces involved. If the electrical and electromechanical features are coupled to the long-established electrochemical properties, interfaces represent highly versatile active elements with considerable potential in nanotechnology.

  18. Dielectric ridge waveguide gas laser apparatus

    SciTech Connect

    DeMaria, A.J.; Bridges, W.

    1989-03-14

    A dielectric ridged waveguide flowing gas laser apparatus is described, comprising in combination; a dielectric substrate having a predetermined number of the grooves formed theron, the grooves extending along the longitudinal axis of the dielectric substrate, an electrically conductive member in parallel alignment with the grooved side of the dielectric substrate such that an air gasp is formed therebetween the air gap containing an active laser gas medium, electrically conductive strips disposed on the outside of the dielectric substrate forming electrodes, the conductive strips being aligned with the grooves and having the same length and width as the grooves, and an excitation source connected between the conductive member and the conductive strips, to provide lasing in the ridged waveguide.

  19. Frequency dependent negative capacitance effect and dielectric properties of swift heavy ion irradiated Ni/oxide/n-GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Bobby, A.; Shiwakoti, N.; Verma, S.; Asokan, K.; Antony, B. K.

    2016-05-01

    The Ni/n-GaAs Schottky barrier diode having thin interfacial oxide layer was subjected to 25 MeV C4+ ion irradiation at selected fluences. The in-situ capacitance and dielectric properties were investigated in the 1 KHz to 5 MHz frequency range. The results show a decrease in capacitance with increase in ion fluence at low frequencies. Interestingly, a negative capacitance effect was also observed in this frequency range in all the samples. As a consequence, changes were observed in parameters like series resistance, conductance, dielectric loss, dielectric constant, loss tangent and ac electrical conductivity. At high frequencies, the capacitance reaches the geometric value 'C0'. The results were interpreted in terms of the generation of irradiation induced traps, carrier capture and emission from deep and shallow states and its frequency dependent saturation effects.

  20. Structural characterization and AC conductivity of bis tetrapropylammonium hexachlorado-dicadmate, [N(C{sub 3}H{sub 7}){sub 4}]{sub 2}Cd{sub 2}Cl{sub 6}

    SciTech Connect

    Hannachi, N.; Guidara, K.; Bulou, A.; Hlel, F.

    2010-11-15

    Synthesis, crystal structure, vibrational study, {sup 13}C, {sup 111}Cd CP-MAS-NMR analysis and electrical properties of the compound [N(C{sub 3}H{sub 7}){sub 4}]{sub 2}Cd{sub 2}Cl{sub 6}, are reported. The latter crystallizes in the triclinic system (space group P1-bar, Z = 2) with the following unit cell dimensions: a = 9.530(1) A, b = 11.744(1) A, c = 17.433(1) A, {alpha} = 79.31(1){sup o}, {beta} = 84.00(1){sup o} and {gamma} = 80.32(1){sup o}. Besides, its structure was solved using 6445 independent reflections down to R = 0.037. The atomic arrangement can be described by alternating organic and inorganic layers parallel to the (11-bar 0) plan, made up of tetrapropylammonium groups and Cd{sub 2}Cl{sub 6} dimers, respectively. In crystal structure, the inorganic layer, built up by Cd{sub 2}Cl{sub 6} dimers, is connected to the organic ones through van der Waals interaction in order to build cation-anion-cation cohesion. Impedance spectroscopy study, reported in the sample, reveals that the conduction in the material is due to a hopping process. The temperature and frequency dependence of dielectric constants of the single crystal sample has been investigated to determine some related parameters to the dielectric relaxation.

  1. Fabrication of SrFe12- x Ni x O19 nanoparticles and investigation on their structural, magnetic and dielectric properties

    NASA Astrophysics Data System (ADS)

    Mousavi Ghahfarokhi, S. E.; Hosseini, S.; Zargar Shoushtari, M.

    2015-08-01

    SrFe12- x Ni x O19 nanoparticles ( x = 0-1) were synthesized by a combustion sol-gel method. Their structure, dielectric and magnetic properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), an LCR metry, and vibrating sample magnetometry (VSM).The results reveal that all samples of Ni doped compounds (SrFe12- x Ni x O19) with x < 0.2 are single phase. It appears that the Fe3+ ions are substituted by Ni2+ ions on the crystallographic sites of the SrFe12O19 structure; however, for x ≥ 0.2, the secondary Ni phase ferrite (NiFe2O3) appears, which reduces the saturation magnetization and coercivity. In addition, Ni doping reduces the dielectric constant, dielectric loss, and alternating current (ac) electrical conductivity of the samples. The variation in ac conductivity ( σ ac) with frequency shows that the electrical conductivity in these ferrites is mainly attributed to the electron hopping mechanism.Therefore; all the single-phase Ni doped samples are suitable for use in magnetic recording media and microwave devices.

  2. Ionic conductivity studies in crystalline PVA/NaAlg polymer blend electrolyte doped with alkali salt KCl

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish

    2014-04-01

    Potassium Chloride (KCl) doped poly(vinyl alcohol) (PVA)/sodium alginate (NaAlg) in 60:40 wt% polymer blend electrolytes were prepared by solution casting method. The complexation of KCl with host PVA/NaAlg blend is confirmed by FTIR and UV-Vis spectra. The XRD studies show that the crystallinity of the prepared blends increases with increase in doping. The dc conductivity increases with increase in dopant concentration. Temperature dependent dc conductivity shows an Arrhenius behavior. The dielectric properties show that both the dielectric constant and dielectric loss increases with increase in KCl doping concentration and decreases with frequency. The cole-cole plots show a decrease in bulk resistance, indicates the increase in ac conductivity, due to increase in charge carrier mobility. The doping of KCl enhances the mechanical properties of PVA/NaAlg, such as Young's modulus, tensile strength, stiffness.

  3. Weak ferromagnetism and temperature dependent dielectric properties of Zn{sub 0.9}Ni{sub 0.1}O diluted magnetic semiconductor

    SciTech Connect

    Ahmed, Raju; Moslehuddin, A.S.M.; Mahmood, Zahid Hasan; Hossain, A.K.M. Akther

    2015-03-15

    Highlights: • Single phase wurtzite structure was confirmed from XRD analysis. • Weak ferromagnetic behaviour at room temperature. • Pure semiconducting properties confirmed from temperature dependent conductivity. • Smaller dielectric properties at higher frequency. • Possible potential application in high frequency spintronic devices. - Abstract: In this study the room temperature ferromagnetic behaviour and dielectric properties of ZnO based diluted magnetic semiconductor (DMS) have been investigated using nominal chemical composition Zn{sub 0.9}Ni{sub 0.1}O. The X-ray diffraction analysis confirmed formation of single phase hexagonal wurtzite structure. An increase in grain size with increasing sintering temperature was observed from scanning electron microscopy. Field dependent DC magnetization values indicated dominant paramagnetic ordering along with a slight ferromagnetic behaviour at room temperature. Frequency dependent complex initial permeability showed some positive values around 12 at room temperature. In dielectric measurement, an increasing trend of complex permittivity, loss tangent and ac conductivity with increasing temperature were observed. The temperature dependent dispersion curves of dielectric properties revealed clear relaxation at higher temperature. Frequency dependent ac conductivity was found to increase with frequency whereas complex permittivity and loss tangent showed an opposite trend.

  4. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  5. Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong

    2016-01-01

    Electrical breakdown of dielectric elastomer actuators (DEA) is very localized; a spark and a pinhole (puncture) in dielectric ends up with short-circuit. This letter shows that prevention of electrothermal breakdown helps defer failure of DEAs even with conductive-grease electrodes. Dielectric gel encapsulation or coating (Dow Corning 3-4170) helps protect acrylic elastomer (VHB 4905), making it thermally more stable and delaying its thermal oxidation (burn) from 218 °C to 300 °C. Dielectric-gel-coated acrylic DEAs can withstand higher local leak-induced heating and thus achieve higher dielectric strengths than non-coated DEAs do.

  6. Broadband local dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Labardi, M.; Lucchesi, M.; Prevosto, D.; Capaccioli, S.

    2016-05-01

    A route to extend the measurement bandwidth of local dielectric spectroscopy up to the MHz range has been devised. The method is based on a slow amplitude modulation at a frequency Ω of the excitation field oscillating at a frequency ω and the coherent detection of the modulated average electric force or force gradient at Ω. The cantilever mechanical response does not affect the measurement if Ω is well below its resonant frequency; therefore, limitations on the excitation field frequency are strongly reduced. Demonstration on a thin poly(vinyl acetate) film is provided, showing its structural relaxation spectrum on the local scale up to 45 °C higher than glass temperature, and nanoscale resolution dielectric relaxation imaging near conductive nanowires embedded in the polymer matrix was obtained up to 5 MHz frequency, with no physical reason to hinder further bandwidth extension.

  7. Dielectric relaxation of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Navjeet; Singh, Mohan; Singh, Lakhwant; Awasthi, A.M.; Lochab, S.P.

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, using the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.

  8. Calculation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics

    NASA Astrophysics Data System (ADS)

    Heitzer, Henry Matthew

    with experiment. This method is then used to help design new high-capacitance molecular dielectrics by determining what materials and chemical properties are important in maximizing dielectric response in Self-Assembled Monolayers (SAMs). Highly (hyper)polarizable Donor-Bridge-Acceptor (DBA) molecular materials are shown to have remarkable dielectric responses. Lastly, the interplay between charge conduction and dielectric constant is examined and it is demonstrated that high dielectric constant materials with low conductance are achievable through molecular design. This technique is a powerful tool for understanding and designing molecular dielectric systems, whose properties are fundamental in many scientific pursuits.

  9. Characterization of the dielectric properties and alternating current conductivity of the SrBi5-xLaxTi4FeO18 (x=0, 0.2) compound

    NASA Astrophysics Data System (ADS)

    Almodovar, N. S.; Portelles, J.; Raymond, O.; Heiras, J.; Siqueiros, J. M.

    2007-12-01

    Lanthanum-doped bismuth layer-structured ferroelectric ceramics SrBi5-xLaxTi4FeO18 (x =0,0.2) were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that single phases were formed. Hysteresis loops at room temperature (20 °C) show that the La-doped ceramic presents a slightly lower spontaneous polarization than the undoped compound. Measurements of relative permittivity and dielectric loss versus temperature were performed from room temperature to 700 °C in the 100 Hz-1 MHz frequency range. Three anomalies were observed in the thermal behavior of the relative permittivity in both samples. Anomalies around the temperatures of 465 and 430 °C have been identified as the ferroelectric-paraelectric transition temperatures for the x =0 and 0.2 compounds, respectively. The sizable shift of the transition temperatures toward lower temperatures with the La doping is interpreted as a manifestation of the La ion incorporation into the crystal structure. From the conductivity studies, the activation energies as functions of frequency for three different temperature zones are obtained. It is found that activation energies are strongly frequency dependent, particularly in the low-frequency region. The frequency dependence of the conductivity at different temperatures was analyzed using Jonscher's power law and the Almond-West conductivity formalism.

  10. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    SciTech Connect

    P, Sharmila P; Tharayil, Nisha J.

    2014-10-15

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of both AC and DC conductivity are studied and activation energy calculated.

  11. Dielectric and relaxation properties of poly(o-anisidine)/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2016-05-01

    Poly(o-anisidine)/graphene (POA/GR) nanocomposite was synthesized via chemical oxidative polymerization of o-anisidine in the presence of graphene sheets in acidic medium. The electrical properties of the nanocomposite are studied using AC impedance spectroscopic technique. It has been found that the room temperature electrical conductivity value enhanced from 1.28 × 10-6 S cm-1 to 4.47 × 10-4 S cm-1 on addition of 10 wt % of graphene into the polymer. An analysis of real and imaginary parts of dielectric permittivity reveals that both ɛ` and ɛ״ increases with the decrease of frequency at all temperature levels. Frequency dependence of dielectric loss (tan δ) spectrum indicates that hopping frequency increases with temperature and the relaxation time decreases from 2.67 × 10-5 to 7.28 × 10-6 sec.

  12. Dielectric response and electric properties of organic semiconducting phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Saleh, A. M.; Hraibat, S. M.; M-L. Kitaneh, R.; Abu-Samreh, M. M.; Musameh, S. M.

    2012-08-01

    The dielectric function of some phthalocyanine compounds (ZnPc, H2Pc, CuPc, and FePc) were investigated by analyzing the measured capacitance and loss tangent data. The real part of the dielectric constant, ɛ1, varies strongly with frequency and temperature. The frequency dependence was expressed as: ɛ1 = Aωn, where the index, n, assumes negative values (n < 0). In addition, the imaginary part of the dielectric constant, ɛ2, is also frequency and temperature dependent. Data analysis confirmed that ɛ2 = Bωm with values of m less than zero. At low frequencies and all temperatures, a strong dependence is observed, while at higher frequencies, a moderate dependence is obvious especially for the Au-electrode sample. Qualitatively, the type of electrode material had little effect on the behavior of the dielectric constant but did affect its value. Analysis of the AC conductivity dependence on frequency at different temperatures indicated that the correlated barrier hopping (CBH) model is the most suitable mechanism for the AC conduction behavior. Maximum barrier height, W, has been estimated for ZnPc with different electrode materials (Au and Al), and had values between 0.10 and 0.9 eV For both electrode types, the maximum barrier height has strong frequency dependence at high frequency and low temperatures. The relaxation time, τ, for ZnPc and FePc films increases with decreasing frequency. The activation energy was derived from the slopes of τ versus 1/T curves. At low temperatures, an activation energy value of about 0.01 eV and 0.04 eV was estimated for ZnPc and FePc, respectively. The low values of activation energy suggest that the hopping of charge carriers between localized states is the dominant mechanism.

  13. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  14. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    NASA Astrophysics Data System (ADS)

    Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.

    2015-07-01

    Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  15. Effects of high-energy electron radiation on polypropylene dielectric

    SciTech Connect

    Hammoud, A.N.

    1988-01-01

    Polypropylene, a polymeric materials widely used as the main dielectric in many high-voltage components such as capacitors and cables, was exposed to electron irradiation in air at room temperature. The 25.4-{mu}m-thick dry polypropylene films were irradiated to different doses up to 10{sup 8} rads with electron beam having energies of 0.5, 1.0, and 1.5 MeV. Monoisopropyl biphenyl (MIPB)-impregnated polypropylene films were also exposed to 1-MeV electron beam to doses up to 10{sup 8} rads and the post-irradiation effects on the electrical, mechanical, and morphological and chemical properties of the films were evaluated. The electrical properties included the AC, DC and pulsed breakdown strengths, dielectric constant, dissipation factor, conductivity, and pulsed life-endurance. The mechanical properties comprised the Young's modulus, elongation-at-break, tensile strength, complex modulus, and mechanical loss. Finally, the morphological and chemical diagnoses carried out included surface morphology, elemental analysis, crystallinity changes, and identification of newly formed bonds and degree of oxidation. The results obtained indicate that the dry polypropylene films started to exhibit degradation at doses as low as 10{sup 6} rads. The properties that were mostly affected included the film's tensile properties, pulsed life, dissipation factor, and electrical conductivity.

  16. Dielectric relaxation of PrFeO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Saha, Sujoy; Chanda, Sadhan; Dutta, Alo; Sinha, T. P.

    2016-08-01

    PrFeO3 (PFO) nanoceramic is synthesized by a sol-gel reaction technique. Thermogravimetric study of the as prepared gel is performed to get the lowest possible calcination temperature of PFO nanoparticles. The Rietveld refinement of the powder X-ray diffraction (XRD) pattern shows that the sample crystallizes in the orthorhombic (Pnma) phase at room temperature. The particle size of the sample is determined by scanning electron microscopy. The vibrational properties of the samples are studied by Raman spectroscopy at an excitation wavelength of 488 nm to substantiate the XRD results. Group-theoretical study is performed to assign the different vibrational modes of the sample in accordance with structural symmetry. Dielectric spectroscopy is applied to investigate the ac electrical properties of PFO at various temperatures between 313 and 473 K and in a frequency range of 42 Hz-1.1 MHz. The modified Cole-Cole equation is used to describe the experimental dielectric spectra. The frequency-dependent conductivity spectra are found to follow the power law. The temperature dependent dc conductivity is found to obey the Arrhenius law with an activation energy of 0.280 eV. An analysis of the real and imaginary parts of impedance is performed, assuming a distribution of relaxation times as confirmed by Cole-Cole plot.

  17. Development of dielectric barrier discharging power supply

    NASA Astrophysics Data System (ADS)

    Gao, Yinghui; Liu, Kun; Fu, Rongyao; Sun, Yaohong; Yan, Ping

    2015-11-01

    Due to the demand of a dielectric barrier discharge power supply, a high voltage and high frequency AC power supply was designed and implemented. Its output voltage is standard or approximate standard sine waveform with the frequency range of 1 kHz to 50 kHz. The output voltage and output frequency can be adjusted individually. The maximum output power of the power supply is 2 kW. It can be operated through local or remote control. The power supply has been used in the dielectric barrier discharging research under different conditions.

  18. Influence of Conductivity and Dielectric Constant of Water–Dioxane Mixtures on the Electrical Response of SiNW-Based FETs

    PubMed Central

    Mescher, Marleen; Brinkman, Aldo G.M.; Bosma, Duco; Klootwijk, Johan H.; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    In this study, we report on the electrical response of top-down, p-type silicon nanowire field-effect transistors exposed to water and mixtures of water and dioxane. First, the capacitive coupling of the back gate and the liquid gate via an Ag/AgCl electrode were compared in water. It was found that for liquid gating smaller potentials are needed to obtain similar responses of the nanowire compared to back gating. In the case of back gating, the applied potential couples through the buried oxide layer, indicating that the associated capacitance dominates all other capacitances involved during this mode of operation. Next, the devices were exposed to mixtures of water and dioxane to study the effect of these mixtures on the device characteristics, including the threshold voltage (VT). The VT dependency on the mixture composition was found to be related to the decreased dissociation of the surface silanol groups and the conductivity of the mixture used. This latter was confirmed by experiments with constant conductivity and varying water–dioxane mixtures. PMID:24481233

  19. Optical, Dielectric Characterization and Impedance Spectroscopy of Ni-Substituted MgTiO3 Thin Films

    NASA Astrophysics Data System (ADS)

    Gogoi, Pallabi; Srinivas, P.; Sharma, Pramod; Pamu, D.

    2016-02-01

    We report the effects of oxygen mixing percentage (OMP) and annealing temperature on surface morphology, optical, dielectric and electrical properties of (Mg0.95Ni0.05)TiO3 (MNT) thin films deposited onto amorphous SiO2 and platinized silicon (Pt/TiO2/SiO2/Si) substrates by radio frequency (RF) magnetron sputtering. The annealed films exhibited the highest refractive index, 2.05, at 600 nm with an optical bandgap value of 4.33 eV. The metal-insulator-metal (MIM) capacitors of the MNT thin films were fabricated under different OMPs and the dielectric properties were analyzed by using Maxwell-Wagner two-layer theory and Koop's phenomenological theory. MNT films prepared under 50% OMP displayed the highest dielectric constant (11.21) and minimum loss tangent (0.0114) at 1 MHz. The impedance spectroscopy of the films deposited under 50% OMP has been studied. The Nyquist plots of MNT films revealed two semi-circular arcs and is explained on the basis of an equivalent circuit model. The frequency-dependent alternative current (AC) conductivity followed the Jonscher's power law. The activation energies are calculated using the Arrhenius relationship. The hopping frequency of the charged species was calculated, and the correlation between AC and direct current (DC) conduction mechanisms established in accordance with the Barton-Nakajima-Namikawa (BNN) relationship.

  20. The effects of Bi4Ti3O12 interfacial ferroelectric layer on the dielectric properties of Au/n-Si structures

    NASA Astrophysics Data System (ADS)

    Gökçen, Muharrem; Yıldırım, Mert

    2015-06-01

    Au/n-Si metal-semiconductor (MS) and Au/Bi4Ti3O12/n-Si metal-ferroelectric-semiconductor (MFS) structures were fabricated and admittance measurements were held between 5 kHz and 1 MHz at room temperature so that dielectric properties of these structures could be investigated. The ferroelectric interfacial layer Bi4Ti3O12 decreased the polarization voltage by providing permanent dipoles at metal/semiconductor interface. Depending on different mechanisms, dispersion behavior was observed in dielectric constant, dielectric loss and loss tangent versus bias voltage plots of both MS and MFS structures. The real and imaginary parts of complex modulus of MFS structure take smaller values than those of MS structure, because permanent dipoles in ferroelectric layer cause a large spontaneous polarization mechanism. While the dispersion in AC conductivity versus frequency plots of MS structure was observed at high frequencies, for MFS structure it was observed at lower frequencies.

  1. Magnetic, dielectric and magnetodielectric properties of PVDF-La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polymer nanocomposite film

    SciTech Connect

    Thirmal, Ch.; Nayek, Chiranjib; Murugavel, P. Subramanian, V.

    2013-11-15

    We have investigated the structure, magnetic and dielectric properties of PVDF-La{sub 0.7}Sr{sub 0.3}MnO{sub 3} polymer nanocomposite thick film fabricated by dip coating technique along with the magnetodielectric effect. The structure and dielectric properties show the enhanced β phase in the composite compared to the PVDF film. The coupling between the ferroelectric and magnetic phases in the composite is revealed in the form of dielectric anomaly at the ferromagnetic Curie temperature. We observed 1.9% magnetodielectric effect at 300 K with the possibility of enhanced effect near the transition temperature. In addition, the analysis of the electric modulus indicates that the composite exhibits interfacial related relaxation and it follows Arrhenius Law. Our study suggests that the ac conductivity of the PVDF-La{sub 0.7}Sr{sub 0.3}MnO{sub 3} composite could be explained by correlated barrier hopping mechanism.

  2. Effect of gamma irradiation on opto-structural, dielectric, and thermoluminescence properties of natural phlogopite mica

    SciTech Connect

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant; Lochab, S. P.

    2013-09-07

    Gamma ray induced modifications in natural phlogopite mica have been studied in the dose range of 1–2000 kGy. These modifications were monitored using different techniques viz: ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy, dielectric measurements, X-ray diffraction, and thermoluminescence dosimeter. The analysis of the results reveals that the dose of 100 kGy produces significant change in the natural phlogopite mica as compared to pristine and other exposed samples. Ultraviolet-visible analysis provides the value of optical indirect, direct band gap, and Urbach energy. Cody model was used to calculate structural disorder from Urbach energy. Different dielectric parameters such as dielectric constant, dielectric loss, ac conductivity, and real and imaginary parts of electric modulus were calculated for pristine and irradiated samples at room temperature. Williamson Hall analysis was employed to calculate crystallite size and micro-strain of pristine and irradiated sheets. No appreciable changes in characteristic bands were observed after irradiation, indicating that natural phlogopite mica is chemically stable. The natural phlogopite mica may be recommended as a thermoluminescent dosimeter for gamma dose within 1 kGy–300 kGy.

  3. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT–PZT–PC and Cu–PZT–PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu–PZT–PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT–PZT–PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu–PZT–PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT–PZT–PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  4. Crystal structure, NMR study, dc-conductivity and dielectric relaxation studies of a new compound [C2H10N2]Cd(SCN)2Cl2

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. F.; Gargouri, M.

    2012-06-01

    The crystal structure, the solid NMR spectroscopy and the complex impedance study have been carried out on [C2H10N2]CdCl2(SCN)2. Characterization by single crystal X-ray crystallography shows that the cadmium atoms have à 2N2S2Cl hexa-coordination sphere, exhibiting pseudo-octahedral geometry. The cadmium atoms are bridged by two thiocyanate ions generating 1-D polymeric-chains. These chains are themselves interconnected by means of N-H…Cl(NCS) hydrogen bonds originating from the organic cation [(NH3)2(CH2)2]2+. 111Cd isotropic chemical shifts span a range of 268ppm. The cadmium atom exhibits multiplets that result from 111Cd-14N spin-spin coupling. Examination of 111Cd and 13C MAS line shapes shows direct measurement of the indirect spin-spin coupling constant 2J(111Cd, 14N) = 105Hz and the dipolar coupling constant of 1381Hz . Impedance spectroscopy measurements of [C2H10N2]CdCl2(SCN)2 have been studied from 209Hz to 5 MHz over the temperature range 300-370 K. The Cole-Cole (Z" versus Z') plots are fitted to two equivalent circuits models. The formalism of complex permittivity and impedance were employed to analyze the experimental data. The dc conductivity follows the Arrhenius relation with an activation energy Ea = 0.54 (3) eV.

  5. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  6. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivityac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  7. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    PubMed

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivityac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  8. Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p—Si and Al/Bi4Ti3O12/p—Si structures by using the admittance spectroscopy method

    NASA Astrophysics Data System (ADS)

    Mert, Yıldırım; Perihan, Durmuş; Şemsettin, Altındal

    2013-10-01

    In this study, Al/p—Si and Al/Bi4Ti3O12/p—Si structures are fabricated and their interface states (Nss), the values of series resistance (Rs), and AC electrical conductivityac) are obtained each as a function of temperature using admittance spectroscopy method which includes capacitance—voltage (C—V) and conductance—voltage (G—V) measurements. In addition, the effect of interfacial Bi4Ti3O12 (BTO) layer on the performance of the structure is investigated. The voltage-dependent profiles of Nss and Rs are obtained from the high-low frequency capacitance method and the Nicollian method, respectively. Experimental results show that Nss and Rs, as strong functions of temperature and applied bias voltage, each exhibit a peak, whose position shifts towards the reverse bias region, in the depletion region. Such a peak behavior is attributed to the particular distribution of Nss and the reordering and restructuring of Nss under the effect of temperature. The values of activation energy (Ea), obtained from the slope of the Arrhenius plot, of both structures are obtained to be bias voltage-independent, and the Ea of the metal-ferroelectric-semiconductor (MFS) structure is found to be half that of the metal—semiconductor (MS) structure. Furthermore, other main electrical parameters, such as carrier concentration of acceptor atoms (NA), built-in potential (Vbi), Fermi energy (EF), image force barrier lowering (Δ Φb), and barrier height (Φb), are extracted using reverse bias C-2—V characteristics as a function of temperature.

  9. Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility.

    PubMed

    Chaudhuri, Biswadeep; Bhadra, Debabrata; Moroni, Lorenzo; Pramanik, Krishna

    2015-01-01

    Recently graphene and graphene based composites are emerging as better materials to fabricate scaffolds. Addition of graphene oxide (GO) nanoplatelets (GOnPs) in bioactive polymers was found to enhance its conductivity (σ) and, dielectric permittivity (ϵ) along with biocompatibility. In this paper, human cord blood derived mesenchymal stem cells (CB-hMSCs) were differentiated to skeletal muscle cells (hSkMCs) on spin coated thin GO sheets composed of GOnPs and on electrospun fibrous meshes of GO-PCL (poly-caprolactone) composite. Both substrates exhibited excellent myoblast differentiations and promoted self-alignedmyotubesformation similar to natural orientation. σ, ϵ, microstructural and vibration spectroscopic studies were carried out for the characterizations of GO sheet and the composite scaffolds. Significantly enhanced values of both σ and ϵ of the GO-PCL composite were considered to provide favourable cues for the formation of superior multinucleated myotubes on the electrospun meshes compared to those on thin GO sheets. The present results demonstrated that both substrates might be used as potential candidates for CB-hMSCs differentiation and proliferation for human skeletal muscle tissue regeneration. PMID:25691492

  10. Spectroscopic Investigations of Amorphous Complex Dielectric Materials.

    NASA Astrophysics Data System (ADS)

    Anwar, Muhammad

    1989-03-01

    Available from UMI in association with The British Library. A discussion of general properties of three systems of dielectric films i.e. MoO_3 and the mixed oxide systems MoO_3/In _2O_3 and MoO_3/SiO is presented. Composition, film thickness, substrate deposition temperature and annealing, all have a substantial effect on the structure and various properties of the films. General properties of these three systems of dielectric films include analysis by X-ray photoelectron spectroscopy, U.V/VIS and infra-red spectroscopy including the Fourier transform technique, electrical properties both D.C and A.C at both low and high fields, and electron paramagnetic resonance. A comprehensive comparison of all the results is carried out in a correlated manner and some new ideas are presented on an established semiconducting/dielectric material. (Abstract shortened by UMI.).

  11. Aluminum nanoparticle/acrylate copolymer nanocomposites for dielectric elastomers with high dielectric constants

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zhang, Suki N.; Niu, Xiaofan; Liu, Chao; Pei, Qibing

    2014-03-01

    Dielectric elastomers are useful for large-strain actuation and energy harvesting. Their application has been limited by their low dielectric constants and consequently high driving voltage. Various fillers with high dielectric constants have been incorporated into different elastomer systems to improve the actuation strain, force output and energy density of the compliant actuators and generators. However, agglomeration may happen in these nanocomposites, resulting in a decrease of dielectric strength, an increase of leakage current, and in many instances the degree of enhancement of the dielectric constant. In this work, we investigated aluminum nanoparticles as nanofillers for acrylate copolymers. This metallic nanoparticle was chosen because the availability of free electrons could potentially provide an infinite value of dielectric constant as opposed to dielectric materials including ferroelectric nanocrystals. Moreover, aluminum nanoparticles have a self-passivated oxide shell effectively preventing the formation of conductive path. The surfaces of the aluminum nanoparticles were functionalized with methacrylate groups to assist the uniform dispersion in organic solutions and additionally enable copolymerization with acrylate copolymer matrix during bulk polymerization, and thus to suppress large range drifting of the nanoparticles. The resulting Al nanoparticle-acrylate copolymer nanocomposites were found to exhibit higher dielectric constant and increased stiffness. The leakage current under high electric fields were significantly lower than nanocomposites synthesized without proper nanoparticle surface modification. The dielectric strengths of the composites were comparable with the pristine polymers. In dielectric actuation evaluation, the actuation force output and energy specific work density were enhanced in the nanocomposites compared to the pristine copolymer.

  12. The conduction mechanism of Cu-Ge ferrite

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; El Taher, A. M.

    2010-09-01

    The electric conductivity, σ (DC and AC), drift mobility and dielectric properties of germanium-substituted copper ferrite, with the chemical formula CuGeFeO (where x=0.0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3), have been studied. Plots of lnσT versus 104/T (K) are linear and showed two sloping regions for all values of x except for the values 0.0 and 0.05, which showed one slope only. The two activation energies around a kink point called Tk were calculated. The electrical conduction in these ferrites is explained on the basis of the hopping mechanism. The values of the charge carrier mobility have been calculated from the experimental values of electrical conductivity which increased exponentially with increasing temperature. Dielectric properties such as dielectric loss tangent tanδ were measured at elevated temperature in the frequency range from 10 2 to 10 6 Hz. The variation of these parameters with temperature is explained qualitatively. An attempt is made to explain the possible mechanism.

  13. Study of dielectric and impedance properties of Mn ferrites

    NASA Astrophysics Data System (ADS)

    Mujasam Batoo, Khalid

    2011-02-01

    The paper reports on the effect of Al substitution on the structural and electrical properties of bulk ferrite series of basic composition MnFe 2-2 xAl 2 xO 4 (0.0≤ x≤0.5) synthesized using solid state reaction method. XRD analysis confirms that all the samples exhibit single phase cubic spinel structure excluding presence of any secondary phase. The dielectric constant shows a normal behaviour with frequency, whereas the loss tangent exhibits an anomalous behaviour with frequency for all compositions. Variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Fe +2 and Fe +3 as well as between Mn +2 and Mn +3 ions at octahedral sites. The complex impedance plane spectra shows the presence of two semicircles up to x=0.2, and only one semicircle for the higher values of x. The analysis of the data shows that the resistive and capacitive properties of the Mn ferrite are mainly due to processes associated with grain and grain boundaries.

  14. Spectroscopic and dielectric investigations of tungsten ions doped zinc bismuth phosphate glass-ceramics

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, P.; Bala Murali Krishna, S.; Yusub, S.; Ramesh Babu, P.; Tirupataiah, Ch.; Krishna Rao, D.

    2013-03-01

    Pure and tungsten oxide doped ZnF2sbnd Bi2O3sbnd P2O5 glass-ceramics are prepared by the melt quenching and heat treatment techniques. These samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and differential thermal analysis (DTA) techniques. The X-ray diffraction and the scanning electron microscopic studies have revealed the presence of BiPO4, α-Zn3(PO4)2, α-Zn(PO3)2, Zn3(PO4)2, WOF4, WOPO4, γ-Bi2WO6, Bi2W2O9, microcrystalline phases in these samples. FTIR and Raman studies exhibit bands due WO4 and WO6 units along with conventional phosphate groups. The optical absorption and electron spin resonance (ESR) spectra of present glass-ceramics indicate the co-existence of both W5+ and W6+ ions. The analysis of dielectric properties (dielectric constant, loss tan δ, a.c. conductivity) over a range of frequency and temperature suggests a gradual increase in semi conducting character with increase in the concentration of WO3. The studies on dielectric breakdown strength indicated the lowest insulating strength for 5.0 mol% of WO3 in the present samples.

  15. Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO3

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Mall, Ashish Kumar; Gupta, Rajeev

    2016-05-01

    Polycrystalline GaFeO3 (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO3 ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc21n symmetry over a wide range of temperature 300K to 600K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz-5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and ac conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.

  16. Electro-structural correlations, elastic and optical properties among the nanolaminated ternary carbides Zr 2AC

    NASA Astrophysics Data System (ADS)

    Kanoun, Mohammed Benali; Goumri-Said, Souraya; Reshak, Ali H.; Merad, Abdelkarim E.

    2010-05-01

    We have performed ab initio calculations for the nanolaminates Zr 2AC (A = Ti, In, Tl, Si, Ge, Sn, Pb, P, As, S) ceramics to study their electronic structure, elastic and optical properties. In this work, we used the accurate augmented plane wave plus local orbital method with density functional theory to find the equilibrium structural parameters, dielectric functions and to compute the full elastic tensors. The obtained elastic constants were used to quantify the stiffness of the Zr 2AC phases and to appraise their mechanical stability. The relationship between elastic, electronic and valence electron concentration is discussed. Our results show that the bulk modulus and shear modulus increase across the periodic table for Zr 2AC. Furthermore, trends in elastic stiffness are well explained in terms of electronic structure analysis, as occupation of valence electrons in states near the Fermi level of Zr 2AC. We show that increments of bulk moduli originate from additional valence electrons filling states involving Zr d-A p. We show also that Zr d-A p hybridizations are located just below the Fermi level and are weaker bonds than the Zr d-C p hybridizations, which are deeper in energy. As a function of the p-state filling of the A element the Zr d-A p bands are driven to deeper energy. The optical spectra were analyzed by means of the electronic structure, which provides theoretical understanding of the conduction mechanism of these ceramics.

  17. Optical and dielectrical properties of 2-hydroxy-1-naphthylideneaniline and its derivatives

    NASA Astrophysics Data System (ADS)

    El-Ghamaz, N. A.; Shoair, A. F.; El-Shobaky, A. R.; Abo-Yassin, H. R.

    2016-08-01

    The optical and electrical properties of 2-Hydroxy-1-naphthylideneaniline and its derivatives (HLn) have been investigated. The spectral distribution of absorption (α) coefficient for the ligands HL1 and HL4 showed five absorption peaks and shoulders which are assigned as π-π* and n-π* transitions. The optical energy gap (Eg) for HL1 and HL4 is investigated and found to be in the range of 2.09-2.27 eV depending on the function group and the type of electronic transition. The ac conductivity measurements showed a semiconductor behavior. The electrical conduction mechanism was also investigated and found to be correlated barrier-hopping (CBH) and quantum mechanical tunneling (QMT) mechanisms depending on the function group. The effect of adsorbed NH3 gas on the electrical conductivity and dielectric constants of ligand HL3 was also investigated.

  18. Rietveld refinement and dielectric studies of Bi0.8Ba0.2FeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Kaswan, Kavita; Agarwal, Ashish; Sanghi, Sujata; Rangi, Manisha; Jangra, Sandhaya; Singh, Ompal

    2016-05-01

    Polycrystalline Bi0.8Ba0.2FeO3 ceramic has been synthesized via conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c). With increase in temperature, the values of dielectric constant (ɛ') and dielectric loss (tan δ) are found to be increase at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. Further the ac conductivity data is analyzed by using Jonscher's universal power law. The values of frequency exponent `s' lies in the range 0.2 ≤ s ≤ 0.7 and decreases with increase in temperature which can be explained on the basis of CBH (Correlated Barrier Height) model.

  19. Electrical properties of AC{sub 3}B{sub 4}O{sub 12}-type perovskite ceramics with different cation vacancies

    SciTech Connect

    Li, Guizhong; Chen, Zhi; Sun, Xiaojun; Liu, Laijun; Fang, Liang; Elouadi, Brahim

    2015-05-15

    Highlights: • AC{sub 3}B{sub 4}O{sub 12} perovskite with different concentration cation vacancies were prepared. • Cell parameter decreases with the increase of concentration of cation vacancies. • PTCO and CTO remain high dielectric permittivity but depress loss greatly. • Dielectric loss associates with cation vacancies and motion of oxygen vacancies. - Abstract: AC{sub 3}B{sub 4}O{sub 12}-type perovskite CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO), □{sub 0.34}Pr{sub 0.67}Cu{sub 3}Ti{sub 4}O{sub 12} (PCTO), □{sub 1}Cu{sub 3}Ta{sub 2}Ti{sub 2}O{sub 12} (CTTO), □{sub 2}Cu{sub 2}Ta{sub 4}O{sub 12} (CTO) ceramics with different concentration cation vacancies were prepared through traditional solid state reaction method. X-ray diffraction analysis indicated that CCTO and PCTO are perovskite cubic with space group Im-3 (no. 204) while CTTO and CTO are Pm-3 (no. 200). Cell parameter of the samples dramatically increases with the increase of cation vacancies. Dielectric permittivity of them maintains very high value of ∼10{sup 4} from room temperature to 550 K but the dielectric loss is depressed with the increase of cation vacancies in the same space group. The dielectric properties and conductivity behavior were described by the Debye relaxation and the universal dielectric response, respectively. The effect mechanism of cation vacancy and crystal structure on carrier transposition were discussed.

  20. Capacitance and conductance characterization of nano-ZnGa{sub 2}Te{sub 4}/n-Si diode

    SciTech Connect

    Fouad, S.S.; Sakr, G.B.; Yahia, I.S.; Abdel-Basset, D.M.; Yakuphanoglu, F.

    2014-01-01

    Graphical abstract: - Highlights: • XRD and DTA micrographs were used to study the structure of ZnGa{sub 2}Te{sub 4}. • C–V, G–V and R{sub s}–V of the diode characteristics have been analyzed for the first time. • Dielectric constant, dielectric loss, loss tangent and ac conductivity were determined. • The interfaces states were determined using conductance–voltage technique. • ZnGa{sub 2}Te{sub 4} is a good candidate for electronic device applications. - Abstract: Capacitance–voltage (C–V) and conductance–voltage (G–V) characteristics of p-ZnGa{sub 2}Te{sub 4}/n-Si HJD were studied over a wide frequency and temperature. Both the interface states density N{sub ss} and series resistance R{sub s} were strongly frequency and temperature dependent. The interface states density N{sub ss} is decreased with increasing frequency and increase with increasing temperature. The values of the built-in potential (V{sub bi}) were calculated and found to increase with increasing temperature and frequency. The values of capacitance C, conductance G, series resistance R{sub s}, corrected capacitance C{sub ADJ}, corrected conductance G{sub ADJ}, dielectric constant (ε′), dielectric loss (ε″), loss tangent (tan δ) and the AC conductivity (σ{sub ac}) are strongly dependent on the applied frequency, voltage and temperature. The obtained results show that the locations of N{sub ss} and R{sub s} have a significant effect on the electrical characteristics of the studied diode.

  1. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  2. Plasmonics without negative dielectrics

    NASA Astrophysics Data System (ADS)

    Della Giovampaola, Cristian; Engheta, Nader

    2016-05-01

    Plasmonic phenomena are exhibited in light-matter interaction involving materials whose real parts of permittivity functions attain negative values at operating wavelengths. However, such materials usually suffer from dissipative losses, thus limiting the performance of plasmon-based optical devices. Here, we utilize an alternative methodology that mimics a variety of plasmonic phenomena by exploiting the well-known structural dispersion of electromagnetic modes in bounded guided-wave structures filled with only materials with positive permittivity. A key issue in the design of such structures is prevention of mode coupling, which can be achieved by implementing thin metallic wires at proper interfaces. This method, which is more suitable for lower frequencies, allows designers to employ conventional dielectrics and highly conductive metals for which the loss is low at these frequencies, while achieving plasmonic features. We demonstrate, numerically and analytically, that this platform can provide surface plasmon polaritons, local plasmonic resonance, plasmonic cloaking, and epsilon-near-zero-based tunneling using conventional positive-dielectric materials.

  3. Effect of tetra ionic substitution on the dielectric properties of Cu-ferrite

    NASA Astrophysics Data System (ADS)

    Mazen, S. A.; Zaki, H. M.

    2003-09-01

    X-ray diffraction (XRD), of the two systems of mixed ferrites Cu1+xTixFe2-2xO4 (where x = 0.0, 0.1, 0.2, 0.3, and 0.4); indicates that the samples of x = 0 (CuFe2O4) and x = 0.1 of the Cu-Ti system were formed in tetragonal structure and all other samples of the two system were formed in the cubic system.The ac conductivity , dielectric constant , dielectric loss and the loss tangent tan δ were determined against frequency at room temperature for Cu-Ge and Cu-Ti ferrites. The measurements of and tan δ were performed over a wide range of frequency and temperature.The Maxwell-Wagner model was applied to analyze the dielectric properties of the investigated systems, according to which the dielectric parameters such as the relaxation time . A value of 1 = 5 × 10-7 s was found for Cu-Ge ferrite and 2 = 1.85 × 10-6 s for Cu-Ti ferrites. The hopping rate (g) was found to be 2 × 106 s-1 and 5.4 × 105 s-1 for the two systems Cu-Ge and Cu-Ti ferrites, respectively.The conduction of the two-ferrite systems was discussed on the basis of the hopping mechanism. The activation energy for conduction was calculated and found in the range of 0.27-0.39 eV for Cu-Ge ferrite and 0.21-0.30 eV for Cu-Ti ferrite. (

  4. Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Shahnawaze Ansari, M.; Alimuddin

    2013-12-01

    Nanoparticles of basic composition Sn1-xCoxO2 (x=0.00, 0.01, 0.03, 0.05 and 0.1) were synthesized through the citrate-gel method and were characterized for structural properties using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the powder samples sintered at 500 °C for 12 h showed single phase rutile type tetragonal structure and the crystallite size decreased as the cobalt content was increased. FT-IR spectrum displayed various bands that came due to fundamental overtones and combination of O-H, Sn-O and Sn-O-Sn entities. The effect of Co doping on the electrical and magnetic properties was studied using dielectric spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The dielectric parameters (ε, tan δ and σac) show their maximum value for 10% Co doping. The dielectric loss shows anomalous behavior with frequency where it exhibits the Debye relaxation. The variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization in general and hopping of charge between Sn2+ and Sn4+ as well as between Co2+ and Co3+ ions. The complex impedance analysis was used to separate the grain and grain boundary contributions in the system which shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. Hysteresis loops were observed clearly in M-H curves from 0.01 to 0.1% Co doped SnO2 samples. The saturation magnetization of the doped samples increased slightly with increase of Co concentration. However pure SnO2 displayed paramagnetism which vanished at higher values of magnetic field.

  5. Dielectric characterization and catalytic activity studies of nickel chloride doped carboxymethyl cellulose films

    NASA Astrophysics Data System (ADS)

    El-Bahy, Zeinhom M.; Mahmoud, Khaled H.

    Cast technique was used to prepare films of sodium carboxymethyl cellulose (CMC) doped with different ratios of NiCl2·6H2O in the range of 0-40 Ni2+ wt.%. Thermal analysis (DTA) in the range of 25-600 °C and dielectric properties in the temperature range of 30-150 °C and frequency range of 0.1-100 kHz were measured for the prepared samples. DTA analysis showed new exothermic peaks which were attributed to structural phase transitions. Different molecular motions are separated via dielectric relaxation spectroscopy. In the high temperature range (higher than 100 °C), the σ-relaxation, which is associated with the hopping motion of ions through polymer material, was detected. The detailed analysis of the results showed that the dielectric dispersion consists of both dipolar and interfacial polarization. Measurements of ac conductivity as a function of frequency at different temperatures indicated that the correlated barrier hopping model (CBH) is the most suitable mechanism for the ac conduction behavior. The catalytic activity of CMC doped with Ni2+ was tested in the reduction of the hazardous pollutant 4-nitrophenol to the functional 4-aminophenol with an excess amount of NaBH4. Ni-free CMC did not exhibit any catalytic activity for the studied reaction. However, Ni2+-doped CMC showed a significant catalytic activity that is proportional to the ratio of Ni2+ included in CMC. The activation energy (Ea) was estimated in the temperature range of 25-40 °C. The estimated value of Ea decreased with increasing the ratio of Ni2+. Finally, the optimum catalyst mass was found to be ≈0.6 g/l.

  6. Structural features of MoO3 doped sodium sulpho borophosphate glasses by means of spectroscopic and dielectric dispersion studies

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, A. V.; Srinivasa Rao, Ch.; Murali Krishna, G.; Ravi Kumar, V.; Veeraiah, N.

    2012-05-01

    Na2SO4-B2O3-P2O5 glasses doped with different concentrations of MoO3 (ranging from 0 to 10.0 mol%) were prepared. The valence states of molybdenum ions and their coordination in the glass network have been investigated using optical absorption, ESR, and IR spectroscopy. The analysis of the spectroscopic results has indicated that the molybdenum ions exist in both Mo6+ (occupy octahedral and tetrahedral positions) and Mo5+ (occupy octahedral positions) local coordination sites and the redox ratio increases with the concentration of MoO3. Dielectric properties have been studied over a frequency range (102-105 Hz) and within the temperature range from 30 to 250 °C. The ac conductivity is observed to increase, whereas the activation energy for the conductivity exhibited decreasing trend, with the concentration of MoO3. In the low temperature region, the ac conductivity is nearly temperature independent and is varied linearly with frequency. Such behaviour is explained based on quantum mechanical tunneling (QMT) model. The dispersion of real part of dielectric constant ɛ'(ω), and loss, tan δ, with temperature have been analyzed on the basis of space charge and orientation polarization models.

  7. Thermal, vibrational, and dielectric studies on PVP/LiBF4+ionic liquid [EMIM][BF4]-based polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Singh, R. K.; Chandra, S.

    2014-07-01

    Free-standing polymer electrolyte membranes based on poly(vinyl) pyrrolidone (PVP)/salt(LiBF4) having different amounts of ionic liquid (IL) [EMIM][BF4] were prepared and characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and alternating current (AC) impedance spectroscopic techniques. The DSC results show a shift in Tm of PVP with salt/or IL content. TGA and DTGA (first derivative of TGA) results give evidence of the presence of uncomplexed PVP, PVP/salt, and PVP/IL complexes. Signatures of these entities are also present in the dielectric spectra. Complexation of PVP with salt and IL has been confirmed by FT-IR analysis. Electrical conductivity as a function of temperature has been studied for PVP/LiBF4/IL [EMIM][BF4]. Role of IL in changing phase transition, conductivity, and dielectric relaxation frequency has been discussed.

  8. Effect of exceeding the concentration limit of solubility of silver in perovskites on the dielectric and electric properties of half doped lanthanum-calcium manganite

    NASA Astrophysics Data System (ADS)

    Rahmouni, H.; Cherif, B.; Smari, M.; Dhahri, E.; Moutia, N.; Khirouni, K.

    2015-09-01

    Dielectric and electric properties of La0.5Ca0.2Ag0.3MnO3 (LCMO-Ag) manganite have been investigated using admittance spectroscopy technique. AC conductivity analysis shows that the conductivity verifies the Jonscher universal power law. The deduced exponent 's' values prove that hopping model is the dominating mechanism in the material. From dc-electrical resistivity study, conduction process is found to be dominated by thermally activated small polaron hopping (SPH) mechanism. Complex impedance analysis (CIA) indicates the presence of relaxation phenomenon and allows to modelize the sample in terms of an electrical equivalent circuit. Also, impedance study confirms the contribution of grain boundary in the electrical properties. Dielectric studies indicate that the La0.5Ca0.2Ag0.3MnO3 compound has a Debye-like relaxation. The temperature dependence of permittivity is well fitted by the modified Curie-Weiss law. It is found that dielectric permittivity behavior and the estimated relaxation parameter value (γ≈2), support the evidence of the relaxor nature of La0.5Ca0.2Ag0.3MnO3 material. The high dielectric constant and the low loss tangent indicate the material is promising for tunable capacitor applications.

  9. Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol-gel auto combustion method

    NASA Astrophysics Data System (ADS)

    Odeh, I.; El Ghanem, H. M.; Mahmood, S. H.; Azzam, S.; Bsoul, I.; Lehlooh, A.-F.

    2016-08-01

    This work describes the synthesis, structural, dielectric, and magnetic properties of Y-type Ba2Co2-xZnxFe12O22 hexaferrites prepared by the sol-gel n method. X-ray diffraction (XRD) results revealed a structure of the Zn-substituted samples consistent with the standard patterns for Y-type hexaferrites. The saturation magnetization at room temperature increased with Zn-substitution. Further, the coercive field for the sample with x=2.0 was found to have the lowest value. The results of the dielectric measurements indicated that all samples are insulators, and that the ac conductivity decreased with increasing zinc content. However, the ac conductivity increased with increasing dc bias. The effect of the dc bias was more pronounced on samples with low zinc content. The real part of the dielectric constant decreased markedly with increasing frequency at constant applied bias voltage. Further, the activation energy for the prepared samples depends strongly on the Zn concentration.

  10. Study on A.C. electrical properties of pure and L-serine doped ADP crystals

    NASA Astrophysics Data System (ADS)

    Joshi, J. H.; Dixit, K. P.; Joshi, M. J.; Parikh, K. D.

    2016-05-01

    Ammonium Dihydrogen Phosphate (ADP) crystals have a wide range of applications in integrated and nonlinear optics. Amino acids having significant properties like molecular chirality, zwitter ionic nature, etc. attracted many researchers to dope them in various NLO crystals. In the present study, pure and different weight percentage L-serine doped ADP crystals were grown by slow solvent evaporation technique at room temperature. The A.C. electrical study was carried out for palletized samples at room temperature. The Nyquist plot showed two semi circles for pure ADP indicated the effect of grain and grain boundary, whereas the doped ADP samples exhibited the single semi circle suggesting the effect of grain. The values resistance and capacitance for grain and grain boundary were calculated. The effect of doping was clearly seen in the grain capacitance and resistance values. The dielectric constant and dielectric loss decreased with increase in frequency for all samples. The Jonscher power law was applied for A.C. conductivity for pure and doped ADP samples. The imaginary part of modulus and impedance versus frequency were drawn and the value of stretch exponent (β) was calculated for all the samples.

  11. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  12. Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4

    NASA Astrophysics Data System (ADS)

    Pradhan, Dhiren K.; Misra, Pankaj; Puli, Venkata S.; Sahoo, Satyaprakash; Pradhan, Dillip K.; Katiyar, Ram S.

    2014-06-01

    We report the crystal structure, dielectric, transport, and magnetic properties of Ni0.65Zn0.35Fe2O4. Rietveld refinement results of X-ray diffraction patterns confirm the phase formation of the material with cubic crystal structure (Fd3¯m). The frequency dependent ac conductivity behavior obeys the Jonscher's power law and is explained using the jump relaxation model. The observed behavior of temperature dependent bulk conductivity is attributed to the variable-range hopping of localized polarons. The correlation of polaron conduction and high permittivity behavior of NZFO is established on the basis of long range and short range conduction mechanisms. The complex impedance spectra clearly show the contribution of both grain and grain boundary effect on the electrical properties.

  13. Structural evolution of nanoporous ultra-low k dielectrics under voltage stress

    NASA Astrophysics Data System (ADS)

    Raja, Archana; Shaw, Thomas; Grill, Alfred; Laibowitz, Robert; Heinz, Tony

    2013-03-01

    High speed interconnects in advanced integrated circuits require ultra-low-k dielectrics. Reduction of the dielectric constant is achieved via incorporation of nanopores in structures containing silicon, carbon, oxygen and hydrogen (SiCOH). We study nanoporous SiCOH films of k=2.5 and thicknesses of 40 - 400 nm. Leakage currents develop in the films under long-term voltage stress, eventually leading to breakdown and chip failure. Previous work* has shown the build-up of trap states as dielectric breakdown progresses. Using FTIR spectroscopy we have tracked the reorganization of the bonds in the SiCOH networks induced by voltage stress. Our results indicate that the cleavage of the Si-C and SiC-O bonds contribute toward increase in the density of bulk trapping states as breakdown is approached. AC conductance and capacitance measurements have also been carried out to describe interfacial and bulk traps and mechanisms. Comparison of breakdown properties of films with differing carbon content will also be presented to further delineate the role of carbon. *Atkin, J.M.; Shaw, T.M.; Liniger, E.; Laibowitz, R.B.; Heinz, T.F. Reliability Physics Symposium (IRPS), 2012 IEEE International Supported by the Semiconductor Research Corporation

  14. Dynamic electromechanical instability of a dielectric elastomer balloon

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Zhu, Jian; Wang, Michael Yu

    2015-11-01

    Electromechanical instability, a significant phenomenon in dielectric elastomers, has been well studied in the literature. However, most previous work was based on the assumption that dielectric elastomers undergo quasi-static deformation. This letter investigates the dynamic electromechanical instability of a dielectric elastomer balloon which renders four types of oscillation subject to a parametric combination of DC and AC voltages. The simulated oscillations show that dynamic electromechanical instability occurs within quite a large range of excitation frequency, in the form of snap-through or snap-back, when the DC and AC voltages reach critical values. The balloon is at its most susceptible to dynamic electromechanical instability when the superharmonic, harmonic or subharmonic resonance is excited. Taking all excitation parameters into account, this letter analyzes the global critical condition which triggers the dynamic electromechanical instability of the balloon.

  15. Universal dielectric loss in glass from simultaneous bias and microwave fields.

    PubMed

    Burin, Alexander L; Khalil, Moe S; Osborn, Kevin D

    2013-04-12

    We derive the ac dielectric loss in glasses due to resonant processes created by two-level systems and a swept electric field bias. It is shown that at sufficiently large ac fields and bias sweep rates, the nonequilibrium loss tangent created by the two fields approaches a universal maximum determined by the bare linear dielectric permittivity. In addition, this nonequilibrium loss tangent is derived for a range of bias sweep rates and ac amplitudes. A predicted loss function can be understood in a Landau-Zener theory and used to extract the two-level system density, dipole moment, and relaxation rate. PMID:25167300

  16. Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites

    NASA Astrophysics Data System (ADS)

    Ashima; Sanghi, Sujata; Agarwal, Ashish; Reetu; Ahlawat, Neetu; Monica

    2012-07-01

    M-type hexaferrites with compositions BaFe12O19 (BFO), SrFe12O19 (SFO), Ba0.5Sr0.5Fe12O19 (BSFO), and Ba0.5Pb0.5Fe12O19 (BPFO) were synthesized by commercial solid state reaction method. The Rietveld refinement of x-ray powder diffraction revealed a single hexagonal phase with space group P63/mmc for BFO, SFO, and BSFO samples, whereas BPFO sample contains hematite (α-Fe2O3) phase with space group R3c along with the M-type main phase. All the samples show dispersion in dielectric constant (ɛ') and dielectric loss (tan δ) values with frequency. The values of ɛ' and tan δ increase with increase in temperature due to increase in the number of charge carriers and their mobilities, which are thermally activated. The reciprocal temperature dependence of conductivityac) and the most probable relaxation time (τM″) satisfies the Arrhenius relation. A perfect overlapping of the normalized plots of modulus isotherms on a single "super curve" for all the studied temperatures reveals a temperature independence of dynamic processes involved in conduction and for relaxation. Further, the complex plots of M* (M″ vs M') indicate that dc conductivity dominates in the region below the M″max point. Above M″max, the variations follow Jonscher power law (σ = Aωs) implying that ac conductivity is dominating in this region. Among the prepared samples, SFO hexaferrite has lowest values of σac, ɛ', and tan δ making it suitable for use in microwave devices.

  17. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  18. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  19. Dielectric relaxations and dielectric response in multiferroic BiFeO{sub 3} ceramics

    SciTech Connect

    Hunpratub, Sitchai; Thongbai, Prasit; Maensiri, Santi; Yamwong, Teerapon; Yimnirun, Rattikorn

    2009-02-09

    Single-phase multiferroic BiFeO{sub 3} ceramics were fabricated using pure precipitation-prepared BiFeO{sub 3} powder. Dielectric response of BiFeO{sub 3} ceramics was investigated over a wide range of temperature and frequency. Our results reveal that the BiFeO{sub 3} ceramic sintered at 700 deg. C exhibited high dielectric permittivity, and three dielectric relaxations were observed. A Debye-type dielectric relaxation at low temperatures (-50 to 20 deg. C) is attributed to the carrier hopping process between Fe{sup 2+} and Fe{sup 3+}. The other two dielectric relaxations at the temperature ranges 30-130 deg. C and 140-200 deg. C could be due to the grain boundary effect and the defect ordering and/or the conductivity, respectively.

  20. Structural, Dielectric, and Electrical Properties of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3

    NASA Astrophysics Data System (ADS)

    Panda, Niranjan; Pattanayak, Samita; Choudhary, R. N. P.

    2015-12-01

    Polycrystalline samples of Bi1- x Pb x Fe1- x (Zr0.5Ti0.5) x O3 (BPFZTO) with x = 0.0, 0.2, 0.3, and 0.4 were prepared by high-temperature solid-state reaction. Preliminary structural analysis of calcined powders of the materials by use of x-ray powder diffraction confirmed formation of single-phase systems with the tetragonal structure. Room-temperature scanning electron micrographs of the samples revealed uniform distribution of grains of low porosity and different dimensions on the surface of the samples. The frequency-temperature dependence of dielectric and electric properties was studied by use of dielectric and complex impedance spectroscopy over a wide range of frequency (1 kHz to 1 MHz) at different temperatures (25-500°C). The dielectric constant of BiFeO3 (BFO) was enhanced by substitution with Pb(Zr0.5Ti0.5)O3 (PZT) whereas the dielectric loss of the BPFZTO compounds decreased with increasing PZT content. A significant contribution of both grains and grain boundaries to the electrical response of the materials was observed. The frequency-dependence of the ac conductivity of BPFZTO followed Jonscher's power law. Negative temperature coefficient of resistance behavior was observed for all the BPFZTO samples. Conductivity by thermally excited charge carriers and oxygen vacancies in the materials was believed to be of the Arrhenius-type.

  1. Study of the dielectric properties of weathered granite, basalt and quartzite by means of broadband dielectric spectroscopy over a wide range of frequency and temperature.

    NASA Astrophysics Data System (ADS)

    Araujo, Steven; Delbreilh, Laurent; Antoine, Raphael; Dargent, Eric; Fauchard, Cyrille

    2016-04-01

    Broadband Dielectric Spectroscopy (BDS) allows the measurement of the complex impedance of various materials over a wide range of frequency (0.1 Hz to 2 MHz) and temperature (-150 to 400°C). Other properties can be assessed from this measurement such as permittivity and conductivity. In this study, the BDS is presented to figure out the complex behaviour of several rock parameters as a function of the temperature and frequency. Indeed, multiple processes might occur such as interfacial polarization, AC and DC conductivity. The measurements of a weathered granite, basalt and quartzite were performed. The activation energy associated to each process involved during the measurement can be calculated by following the relaxation time as a function of the temperature, taking into account the Havriliak-Négami model. The principle of the technique and the whole study is presented here and several hypothesis are advanced to explain the dielectric behaviour of rocks. Finally, as the range of frequency and temperature of the BDS method is common to several electromagnetic and electrical techniques applied in subsurface geophysics, some perspectives are proposed to better understand geophysical measurements in hydrothermal systems.

  2. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  3. Magnetoresistance of a Low-k Dielectric

    NASA Astrophysics Data System (ADS)

    McGowan, Brian Thomas

    Low-k dielectrics have been incorporated into advanced computer chip technologies as a part of the continuous effort to improve computer chip performance. One drawback associated with the implementation of low-k dielectrics is the large leakage current which conducts through the material, relative to silica. Another drawback is that the breakdown voltage of low-k dielectrics is low, relative to silica [1]. This low breakdown voltage makes accurate reliability assessment of the failure mode time dependent dielectric breakdown (TDDB) in low-k dielectrics critical for the successful implementation of these materials. The accuracy with which one can assess this reliability is currently a topic of debate. These material drawbacks have motivated the present work which aims both to contribute to the understanding of electronic conduction mechanisms in low-k dielectrics, and to improve the ability to experimentally characterize changes which occur within the material prior to TDDB failure. What follows is a study of the influence of an applied magnetic field on the conductivity of a low-k dielectric, or in other words, a study of the material's magnetoresistance. This study shows that low-k dielectrics used as intra-level dielectrics exhibit a relatively large negative magnetoresistance effect (˜2%) at room temperature and with modest applied magnetic fields (˜100 Oe). The magnetoresistance is attributed to the spin dependence of trapping electrons from the conduction band into localized electronic sites. Mixing of two-electron spin states via interactions between electron spins and the the spins of hydrogen nuclei is suppressed by an applied magnetic field. As a result, the rate of trapping is reduced, and the conductivity of the material increases. This study further demonstrates that the magnitude of the magnetoresistance changes as a function of time subjected to electrical bias and temperature stress. The rate that the magnetoresistance changes correlates to the

  4. Resonant dielectric metamaterials

    SciTech Connect

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  5. Dielectric and Electrical Properties of BiFeO3-LiTaO3 Systems

    NASA Astrophysics Data System (ADS)

    Mohanty, Suchismita; Choudhary, R. N. P.

    2015-07-01

    Materials of general formula (Bi1- x Li x )(Fe1- x Ta x )O3 ( x = 0.0, 0.5) were prepared from polycrystalline BiFeO3 and LiTaO3 by solid-state reaction. Analysis of the basic structural properties of the materials by room-temperature x-ray diffraction revealed the formation of single-phase tetragonal crystals for (Bi0.5Li0.5)(Fe0.5Ta0.5)O3. Scanning electron micrographs confirmed the polycrystalline nature of the materials. The microstructure of the materials comprised uniformly distributed grains of unequal size. Studies of the temperature-frequency dependence of dielectric did not reveal any dielectric anomaly or phase transition in the temperature range studied. The presence of hysteresis loops at room temperature confirmed the known ferroelectricity of BiFeO3 and (Bi0.5Li0.5)(Fe0.5Ta0.5)O3. Complex impedance spectroscopic analysis revealed the materials had negative temperature coefficient of resistance (NTCR)-type behavior. The electrical conductivity and relaxation characteristics of the materials suggested the presence of a thermally activated process, and their values suggested the materials had similar types of conductivity and relaxation species. The frequency dependence of the ac conductivity obeyed Jonscher's universal power law.

  6. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3-based lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Saidi, M.; Chaouchi, A.; D'Astorg, S.; Rguiti, M.; Courtois, C.

    2015-04-01

    Polycrystalline of [(Na0.535K0.480)0.966Li0.058](Nb0.90Ta0.10)O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD) analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR) characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH) model to evaluate the binding energy (Wm), the minimum hopping distance (Rmin), the density of states at Fermi level (N(Ef)), and the activation energy of the compound.

  7. Magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15)

    SciTech Connect

    Zuo, X. Z.; Yang, J. Yuan, B.; Tang, X. W.; Zhang, K. J.; Zhu, X. B.; Song, W. H.; Dai, J. M.; Song, D. P.; Sun, Y. P.

    2015-03-21

    We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ε{sub r}, complex impedance Z″, the dc conductivity σ{sub dc}, and hopping frequency f{sub H} manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450–750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively. The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature T{sub c} decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ E{sub a} ≤ 2.72 eV)

  8. Dielectrically loaded horns

    NASA Astrophysics Data System (ADS)

    Tun, S. M.; Bustamante, R.; Williams, N.

    Dielectrically loaded horns have been proposed as alternatives to conical corrugated horns in high-performance primary feeds in virtue both of their lower cost and theoretical indications of superior operational bandwidth performance, while retaining circularly symmetric radiation, low sidelobes, and low cross-polarization. A prototype dielectric core-loaded horn, and a dual-band transmit/receive horn antenna incorporating a dielectric rod inside a small corrugated horn, have been developed and tested; the dielectric used for the rod is Rexolite. The high performance obtainable by this inexpensive technology has been experimentally demonstrated.

  9. Structural investigation of vanadium ions doped Li2Osbnd PbOsbnd B2O3sbnd P2O5 glasses by means of spectroscopic and dielectric studies

    NASA Astrophysics Data System (ADS)

    Yusub, S.; Narendrudu, T.; Suresh, S.; Krishna Rao, D.

    2014-11-01

    In the present investigation we report the synthesis of a series of transparent glasses of composition 20Li2Osbnd 20PbOsbnd 45B2O3sbnd (15-x) P2O5: xV2O5 with eight values of x ranging from 0 to 2.5 mol%, and their characterization. X-ray diffraction (XRD) spectra reflected the amorphous nature of the glasses. Optical absorption, electron paramagnetic resonance (EPR) spectra and FTIR study of vanadyl ions in the present glass network have been analyzed. The optical absorption and EPR investigations have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio (V4+/V5+) is observed to increase with the increase in concentration of V2O5. Dielectric properties viz., dielectric constant ε‧(ω), loss tan δ, electrical moduli M‧(ω), M″(ω), a.c. conductivity σac over an extensive scale of frequency and temperature have been investigated as a function of V2O5 concentration. The dispersion of dielectric constant ε‧(ω) with temperature has been interpreted by space charge polarization model. The dielectric loss and electrical moduli variation with frequency and temperature exhibited relaxation effects. These effects are ascribed to V4+ ions. The a.c. conductivity of the prepared glasses is perceived to escalate with the hike in V2O5 concentration whereas the activation energy for conduction exhibits a reverse trend. The conductivity mechanism is explained on the basis of polaronic transfer between V4+ and V5+ ions. The low temperature a.c. conductivity mechanism is elucidated by the quantum mechanical tunneling model. The growth in the values of dielectric parameters with raise in the concentration of V2O5 is due to V4+ ions which act as modifiers. The investigation of these results has indicated that at higher concentrations of V2O5, the VO2+ ions in the glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry.

  10. A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region

    NASA Astrophysics Data System (ADS)

    Sheen, Jyh

    2008-05-01

    A technique for the measurement of dielectric properties of low loss and homogeneously isotropic media in the microwave region is studied. The measuring structure is a resonator made up of a cylindrical dielectric rod and conducting plates. The dielectric constants and loss tangents are computed from the resonant frequencies, structure dimensions and unloaded Qs of the TE01δ mode. A simple field model is introduced to analyze this resonator structure. Unlike other simple models, this model does not have the defect of low measurement accuracy of dielectric properties. Important factors affecting the dielectric properties measurements are introduced. Error sources for measurements are also discussed. The measurement accuracy is justified by comparing the results with those of other techniques. In addition, various methods for calculating the power factor and conducting loss and for measuring the conductivity of the conducting plates are discussed. The accuracies of certain of these methods have not previously been studied, but are given in this paper. The swept frequency capability was also studied. It was found that dielectric properties in microwave frequencies could be measured within a frequency range of 3 GHz.

  11. Texture effects on megahertz dielectric properties of calcite rock samples

    NASA Astrophysics Data System (ADS)

    Kenyon, W. E.

    1984-04-01

    Dielectric measurements have been made from 0.5 to 1300 MHz on Whitestone, a quarried calcite rock, saturated with salty water. Whitestone shows a large increase in dielectric permittivity (dispersion) at the low end of this frequency range. When the conductivity of the water is varied, the dielectric permittivity of Whitestone is found to scale as water conductivity/frequency, i.e., as the complex dielectric constant of water. This is believed to be unique in measurements on insulator-conductor mixtures, and establishes that the dispersion is primarily caused by the geometry of the sample. Two other calcite samples show much lower dielectric dispersion. Micrographs indicate that the variation in dispersion among the three samples is in rough proportion to grain platiness. This is consistent with the platey grain mechanism, one of three mechanisms proposed by Sen to explain dielectric dispersion in water-saturated rocks. A model consisting of water containing insulating spheroids of identical aspect ratio, isotropically distributed in orientation, predicts that increased grain platiness reduces both low-frequency conductivity and high-frequency dielectric permittivity in a closely related way; this is observed experimentally. However, this model does not fit simultaneously all electrical properties of Whitestone; evidently a more complex geometrical model is needed. Dielectric dispersion caused by texture is of practical importance in estimating water content of subsurface rocks from borehole measurements of dielectric permittivity, particularly at high water salinities.

  12. Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites

    NASA Astrophysics Data System (ADS)

    Ali, Ihsan; Islam, M. U.; Awan, M. S.; Ahmad, Mukhtar

    2014-02-01

    M-type hexaferrite BaCr x Ga x Fe12-2 x O19 ( x = 0.2) powders have been synthesized by use of a sol-gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 109 Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz-3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell-Wagner two-layer model and Koop's phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves.

  13. Characterisation of Proton Conducting Polymer Electrolyte Based on Pan

    NASA Astrophysics Data System (ADS)

    Nithya, S.; Selvasekarapandian, S.; Rajeswari, N.; Sikkanthar, S.; Karthikeyan, S.; Sanjeeviraja, C.

    2013-07-01

    The polymer electrolytes composed of polyacrylonitrile (PAN) with various concentration of ammonium nitrare (NH4NO3) salt have been prepared by solution casting method, using DMF as solvent. The increase in amorphous nature of the polymer electrolytes has been confirmed by Xray diffraction analysis. The complex formation between polymer and dissociated salt has been confirmed by Fourier transform infrared spectroscopy. From the Ac impedance spectroscopic analysis, the ionic conductivity of 20 mol% NH4NO3 doped polymer complex has been found to be 2.742 × 10-6 S cm-1 at room temperature. The conductivity has been increased when the temperature is increased. The activation energy of 20 mol% NH4NO3 doped polymer electrolyte was calculated using Arrhenius plot and it has been found to be 0.58 eV. The dielectric permitivitty (ɛ*) and electric modulus (m*) have been discussed.

  14. Electrowetting on dielectric experiments using graphene

    NASA Astrophysics Data System (ADS)

    Tan, Xuebin; Zhou, Zhixian; Ming-Cheng Cheng, Mark

    2012-09-01

    We report electrowetting on dielectric (EWOD) experiments using graphene; a transparent, flexible and stretchable nanomaterial. Graphene sheets were synthesized by chemical vapor deposition, and transferred to various substrates (including glass slides and PET films). Reversible contact angle changes were observed on the Teflon-coated graphene electrode with both AC and DC voltages. Nyquist plots of the EWOD reveal that the graphene electrode has higher capacitive impedance than gold electrodes under otherwise identical conditions, suggesting a lower density of pin-holes and defects in the Teflon/graphene electrode than in the Teflon/gold electrode. Furthermore, we have observed reduced electrolysis of the electrolyte and smaller leakage current in the dielectric layer (Teflon) on graphene electrodes than on Au electrodes at the same Teflon thickness and applied voltage. We expect that the improved EWOD properties using graphene as an electrode material will open the door to various applications, including flexible displays and droplet manipulation in three-dimensional microfluidics.

  15. Vanadyl ions influence on spectroscopic and dielectric properties of glass network

    NASA Astrophysics Data System (ADS)

    Ramesh Babu, A.; Rajyasree, Ch.; Srinivasa Rao, P.; Vinaya Teja, P. M.; Krishna Rao, D.

    2011-11-01

    Melt quenching derived (in air) transparent glasses containing 30LiF sbnd 10SrO sbnd (60 - x)B 2O 3sbnd xV 2O 5, with 0 ⩽ x ⩽ 1.0 (mol%) were investigated for physical, spectroscopic measurements, viz., optical absorption, electron spin resonance (ESR) and FTIR along with dielectric properties (dielectric constant ɛ', loss tan δ, conductivity σac, etc.). The results were analyzed to correlate with each other in the light of local environment and oxidation states of vanadyl ion in the glass network. The observed blue shift in 3T 1g(F) → 3T 2g(F) and red shift in 2B 2g → 2E g transitions and decrease in Δ g∥/Δ g⊥ values up to V 8 indicates that the decrease in tetragonality of the vanadium site. The increase in area of optical absorption peak, ESR signal intensity and in the relative value of ac conductivity up to 0.8 mol% of V 2O 5 doped glasses is due to the predominant presence of V 4+ and V 3+ ions. Beyond this concentration, the redox ratio V 4+/V 5+ is found to decrease. By the gradual replacement of B 2O 3 by V 2O 5 up to 0.8 mol% the semi conducting nature of the glass network is found to increase due to increase of BO 3 structural units beyond this concentration insulating strength of glass matrix is increased.

  16. Real-time crystallization in fluorinated parylene probed by conductivity spectra

    NASA Astrophysics Data System (ADS)

    Khazaka, R.; Locatelli, M. L.; Diaham, S.; Tenailleau, C.; Kumar, R.

    2014-03-01

    Dielectric relaxation spectroscopy experiments were performed at high temperature on fluorinated parylene films during the occurrence of the isothermal crystalline phase transition. For this polymer, since the difference between the glass transition temperature (Tg) and the phase transition temperature (Tc) is very strong (Tc ≥ 4Tg), segmental and dipolar relaxation usually used to probe the crystallization are not shown in the experiment frequency window (10-1 to 106 Hz) during the crystallization. The charge diffusion becomes the only electrical marker that allows probing the phase transition. During the transition phase, a continuous decrease of about two orders of magnitude is observed in the conductivity values below an offset frequency (fc) with a tendency to stabilization after 600 min. Below the offset frequency, the decrease of the normalized conductivity to the initial value as function of time is frequency independent. The same behavior is also observed for the fc values that decrease from 160 Hz to about 20 Hz. Above the offset frequency, the electronic hopping mechanism is also affected by the phase transition and the power law exponent (n) of the AC conductivity shows a variation from 0.7 to 0.95 during the first 600 min that tend to stabilize thereafter. Accordingly, three parameters (n, fc, and AC conductivity values for frequencies below fc) extracted from the AC conductivity spectra in different frequency windows seem suitable to probe the crystalline phase transition.

  17. Dielectric relaxation characteristics of muscovite mica

    NASA Astrophysics Data System (ADS)

    Kaur, Navjeet; Singh, Lakhwant; Singh, Mohan; Awasthi, A. M.; Kumar, Jitender

    2014-04-01

    In the present work, the dielectric relaxation phenomenon in muscovite mica has been studied over the frequency range 0.1 Hz-10 MHz and in the temperature range of 653-853K, using the dielectric permittivity, electric modulus and conductivity formalisms. The values of the activation energy obtained from electric modulus and conductivity data are found to be nearly similar, suggesting that same types of charge carriers are involved in the relaxation mechanism. This type of study will explore the potential of this material for various applications in electrical engineering.

  18. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  19. Dielectric and electrical characteristics of La0.5Na0.5Ga0.5V0.5O3

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2016-07-01

    La0.5Na0.5Ga0.5V0.5O3 (LNGVO) ceramic was prepared using a high-temperature solid-state reaction method. The structural phase, microstructure, dielectric, ferroelectric and optical properties of the material were systematically investigated. The preliminary structural analysis using x-ray diffraction (XRD) data shows the formation of the material in an orthorhombic crystal structure at room temperature. Detailed studies of dielectric and electrical properties have been carried out over a wide range of frequency (1 kHz-1 MHz) and temperature (25-450 °C) in order to elucidate the basic mechanism of the conduction and relaxation process. The dielectric characteristics show that the ceramic is a relaxor with strong diffuse phase transition and frequency dispersion. The nature of the variation of ac conductivity as a function of frequency obeys the universal power law, and confirms the existence of a hopping conduction mechanism in the material. The material also exhibits ferroelectricity at room temperature with a very low value of remnant polarization. The ionic conductivity and transport number of the ferroelectric ionic conductor were obtained with the standard experiment and calculation respectively. The material shows NTCR behavior similar to that of a semi-conductor. Similar behavior has also been observed in the study of I-V characteristics of the material.

  20. The electrical characteristics of the dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf

    2016-06-01

    The electrical characteristics of the dielectric barrier discharges have been studied in this paper under different operating conditions. The dielectric barrier discharges were formed inside two reactors composed of electrodes in the shape of two parallel plates. The dielectric layers inside these reactors were pasted on the surface of one electrode only in the first reactor and on the surfaces of the two electrodes in the second reactor. The reactor under study has been fed by atmospheric air that flowed inside it with a constant rate at the normal temperature and pressure, in parallel with applying a sinusoidal ac voltage between the electrodes of the reactor. The amount of the electric charge that flows from the reactors to the external circuit has been studied experimentally versus the ac peak voltage applied to them. An analytical model has been obtained for calculating the electrical characteristics of the dielectric barrier discharges that were formed inside the reactors during a complete cycle of the ac voltage. The results that were calculated by using this model have agreed well with the experimental results under the different operating conditions.

  1. Gaseous dielectrics V

    SciTech Connect

    Christophorou, L.G.; Bouldin, D.W.

    1987-01-01

    This symposium represents a transdisciplinary and comprehensive approach to the study of gaseous dielectrics. The goal of the symposium was to demonstrate the effective coupling between basic and applied research and modern technology achieved in this area, and to guide future research and development and industrial use of gaseous dielectrics. Separate abstracts were prepared for 85 papers in these proceedings. (DWL)

  2. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  3. Composite dielectric waveguides

    NASA Astrophysics Data System (ADS)

    Yamashita, E.; Atsuki, K.; Kuzuya, R.

    1980-09-01

    The modal analysis of a composite circular dielectric waveguide (CCDW) is presented. Computed values of the propagation constant of a CCDW are compared with those of the homogeneous circular dielectric waveguides (HCDW). Microwave experiments concerning the propagation constant of a CCDW of Teflon and Rexolite are described.

  4. Terahertz Artificial Dielectric Lens

    PubMed Central

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  5. Terahertz Artificial Dielectric Lens.

    PubMed

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M

    2016-01-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294

  6. Photoelectric charging of partially sunlit dielectric surfaces in space

    NASA Technical Reports Server (NTRS)

    De, B. R.; Criswell, D. R.

    1977-01-01

    Sunlight-shadow effects may substantially alter the charging situation for a dielectric surface. The sunlight-shadow boundary tends to be the site of intense multipole electric fields. Charges on a sunlit dielectric surface have a finite effective mobility. The charge distribution tends to resemble that on a conducting surface. A boundary between a conducting and a dielectric surface may not represent a conductivity discontinuity when this boundary is sunlit; charges may migrate at a nontrivial rate across the boundary. A contracting or expanding sunlit area may experience a supercharging.

  7. Dielectric decrement effects in electrokinetics

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen; Moran, Jeffrey

    2015-11-01

    Understanding the nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces is a key issue in electrokinetics. In recent studies, Nakayama and Andelman [J. Chem. Physics 2015] Hatlo et al. [EPL 2012], and Zhao and Zhai [JFM 2013] demonstrated that dielectric decrement significantly influences the ionic concentration in the electric double layer (EDL) at high zeta potential, leading to the formation of a condensed layer near the particle's surface. In this presentation, we apply the dielectric decrement model to study two archetypal problems in electrokinetics, namely the electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles. Our aim is to rely on numerical simulations to incorporate nonlinear effects including crowding effects due to the finite size of ions, dielectric decrement in the EDL, surface conduction, concentration polarization and advection in the bulk solution. In parallel, we derive a simplified composite layer model that enables us to obtain analytical estimates of the physical quantities involved in the physical description of the problem.

  8. Temperature and frequency-dependent dielectric properties of Zn substituted Li-Mg ferrites

    NASA Astrophysics Data System (ADS)

    Shaikh, A. M.; Bellad, S. S.; Chougule, B. K.

    1999-05-01

    The DC and AC resistivity ( ρ DC, ρ AC), dielectric constant ( ɛ') and dielectric loss tangent (tan δ) of Zn substituted Li-Mg ferrites having the general formula Li xMg 0.4 Zn 0.6-2 xFe 2+ xO 4 (where x=0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3) have been investigated as a function of composition, temperature and frequency. The compositional variation of DC resistivity and dielectric constant show the inverse trend with each other. The sample with x=0.15 (Zn=0.3) shows lowest DC resistivity and highest dielectric constant. The dielectric constant increases slowly with temperature in the beginning and then abruptly at about 473 K and above. The AC resistivity and dielectric constant of all the samples decrease with increase in frequency exhibiting normal ferrimagnetic behaviour. The variation of dielectric loss tangent with frequency showed maxima in the 2-40 kHz frequency range. These maxima are also found to shift towards low-frequency region as the content of Zn increases. All the variations are explained on the basis of Fe 2+ and Fe 3+ concentrations on octahedral sites and electronic hopping frequency between Fe 2+ and Fe 3+ ions.

  9. Electrical, dielectric and spectroscopic studies on MnO doped LiI-AgI-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Moguš-Milanković, A.; Pavić, L.; Srilatha, K.; Srinivasa Rao, Ch.; Srikumar, T.; Gandhi, Y.; Veeraiah, N.

    2012-01-01

    LiI-AgI-B2O3 glasses doped with different concentrations of MnO (ranging from 0 to 0.8 mol%) were prepared. Electrical and dielectric properties have been studied over a wide frequency range of 10-2 - 106 Hz and in the temperature range from 173 to 523 K. The valence states of manganese ions and their coordination in the glass network have been investigated using optical absorption, luminescence, and ESR spectroscopy. The analysis of the spectroscopic results has indicated that the manganese ions exist in both Mn2+ and Mn3+ states and occupy octahedral and tetrahedral positions. With increasing MnO concentration there is a gradual increase in the tetrahedral occupancy of Mn2+ ions at the expense of octahedral occupancy in the glass network. The results of dc conductivity have indicated that when T > θD/2, the small polaron hopping model is appropriate and the conduction is adiabatic in the nature. Further, the analysis of experimental data indicates that there is a mixed, ionic and electronic, conduction. It has been observed that the electrical conductivity decreases as the concentration of MnO increases suggesting the electronic conduction controlled by polaron hopping between manganese ions. In the low temperature region, up to 250 K, the ac conductivity is nearly temperature independent and varies linearly with frequency, which can be explained by the quantum mechanical tunneling (QMT) model. The dielectric properties have been analyzed in the framework of complex dielectric permittivity and complex electrical modulus formalisms. The evolution of the complex permittivity as a function of frequency and temperature has been investigated.

  10. Synthesis, crystal structure, spectroscopic, thermal and dielectric properties of a novel semi-organic pentachloroantimonate (III)

    NASA Astrophysics Data System (ADS)

    Lahbib, Ikram; Rzaigui, Mohamed; Smirani, Wajda

    2016-09-01

    A new organic-inorganic hybrid material of formula (C10H15N2F)5(SbCl5)5.2H2O was synthesized and characterized by X-Ray diffraction analysis. It crystallizes in the monoclinic space group P21/c with the following unit cell parameters a = 15.819(4) Å, b = 17.685(3) Å, c = 30.529(4) Å, Z = 4 and V = 8540(3) Å3. The examination of the structure shows that the three-dimensional frameworks are produced by Nsbnd H⋯Cl, Nsbnd H⋯O, Csbnd H⋯Cl and Nsbnd H⋯F, Csbnd H⋯F hydrogen bonding and Cl⋯Cl interactions. IR, Raman and UV-Visible spectroscopies were also used to characterize this compound. In addition, the fluorescent properties of this compound have been investigated in the liquid state at room temperature. Differential scanning calorimetry (DSC) has revealed a structural phase transition of the order-disorder type around 370 K. Dielectric investigations revealed a step-wise change of the electric permittivity at Ttr characteristic of the crystal in the high-temperature phase. The evolution of dielectric constant as a function of temperature of the sample has been investigated in order to determine some related parameters. Measurements of AC conductivity as a function of frequency at different temperatures indicated a hopping conduction mechanism and/or reorientational motion.

  11. Dielectric cure monitoring: Preliminary studies

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Semmel, M. L.

    1984-01-01

    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

  12. Studies on structural, dielectric, and transport properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}

    SciTech Connect

    Pradhan, Dhiren K.; Misra, Pankaj; Sahoo, Satyaprakash; Katiyar, Ram S.; Puli, Venkata S.; Pradhan, Dillip K.

    2014-06-28

    We report the crystal structure, dielectric, transport, and magnetic properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}. Rietveld refinement results of X-ray diffraction patterns confirm the phase formation of the material with cubic crystal structure (Fd3{sup ¯}m). The frequency dependent ac conductivity behavior obeys the Jonscher's power law and is explained using the jump relaxation model. The observed behavior of temperature dependent bulk conductivity is attributed to the variable-range hopping of localized polarons. The correlation of polaron conduction and high permittivity behavior of NZFO is established on the basis of long range and short range conduction mechanisms. The complex impedance spectra clearly show the contribution of both grain and grain boundary effect on the electrical properties.

  13. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  14. Polyimide thin-film dielectrics on ferroelectrics

    NASA Technical Reports Server (NTRS)

    Galiardi, R. V.

    1977-01-01

    Conducting layers of multi-layered thin-film ferroelectric device, such as is used in liquid crystal/ferroelectric display, can be electrically isolated using thin-film layer of polyimide. Ease of application and high electrical-breakdown strength allow dependable and economical means of providing dielectric for other thin-film microelectronic devices.

  15. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  16. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    There is a wide variety of situations wherein metals are in solid state contact with dielectric materials. The paper reviews some of the factors that influence solid state interactions for metals in contact with dielectric surfaces. Since surfaces play an important part in these reactions, the use of analytical tools in characterizing surfaces is discussed. Adhesion, friction, and wear are utilized as indicators of the nature of interfacial bonding between metals and dielectrics can be effectively determined with adhesion and friction force measurements. Films present on the surface, such as oxygen or water vapor, markedly alter adhesive bond strength which in turn affects friction force and interfacial fracture when attempts are made to separate the contact regions. Analytical surface tools such as the field ion microscope, Auger emission spectroscopy, and X-ray photoelectron spectroscopy are very effective in providing insight into the effect of contact on the surfaces of metals and dielectrics.

  17. Chain Dynamics in Solid Polymers and Polymerizing Systems as Revealed by Broadband Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Williams, Graham

    2008-08-01

    A number of techniques are used to study the chain-dynamics of solid polymers, including those of dielectric relaxation [1-4], dynamic mechanical thermal analysis (DMTA) [1, 5], multinuclear NMR relaxations [6], quasi-elastic dynamic light scattering [7] and neutron scattering [8] (QELS & QENS) and transient fluorescence depolarization (TFD) [9]. Each technique has its own particular probe of the dynamics in a material. e.g. dielectric relaxation gives information on the angular motions of molecular chain-dipoles (for dipole relaxation) and the translational motions of ions (for f-dependent electrical conduction); NMR relaxations relate to the angular motions of chemical bonds; QELS relates to fluctuations in local refractive index; QENS to the time-dependent van Hove correlation function (suitably-defined) for proton-containing groups; TFD to the angular motions of fluorescent groups in a chain. Due to its relevance to practical applications of materials, DMTA is pre-eminent among the many physical techniques applied to solid polymers, but interpretations of behaviour in terms of molecular properties remain difficult since the direct link between an applied macroscopic stress and the molecular response of polymer chains in a bulk material remains an unsolved problem. Of the above techniques, Broadband Dielectric Spectroscopy (BDS) offers several advantages. (a) Materials may be studied in the frequency range 10-6 to 1010 Hz, over wide ranges of temperature and applied pressure, using commercially-available instrumentation. (b) Since the electrical capacitance of a film is inversely proportional its thickness, free-standing and supported films may be studied down to nm-thicknesses, giving e.g. information on the behaviour of the dynamic Tg as sample thickness approaches molecular dimensions. (c) Theoretical interpretations of dielectric relaxation and a.c. conduction are well-established in terms of Fourier transforms of molecular time correlation functions (TCFs

  18. Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics

    SciTech Connect

    Garten, L. M. Trolier-McKinstry, S.; Lam, P.; Harris, D.; Maria, J.-P.

    2014-07-28

    Loss reduction is critical to develop Ba{sub 1−x}Sr{sub x}TiO{sub 3} thin film tunable microwave dielectric components and dielectric energy storage devices. The presence of ferroelectricity, and hence the domain wall contributions to dielectric loss, will degrade the tunable performance in the microwave region. In this work, residual ferroelectricity—a persistent ferroelectric response above the global phase transition temperature—was characterized in tunable dielectrics using Rayleigh analysis. Chemical solution deposited Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films, with relative tunabilities of 86% over 250 kV/cm at 100 kHz, demonstrated residual ferroelectricity 65 °C above the ostensible paraelectric transition temperature. Frequency dispersion observed in the dielectric temperature response was consistent with the presence of nanopolar regions as one source of residual ferroelectricity. The application of AC electric field for the Rayleigh analysis of these samples led to a doubling of the dielectric loss for fields over 10 kV/cm at room temperature.

  19. Aperture excited dielectric antennas

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Chatterjee, J. S.; Mason, V. B.; Tai, C. T.

    1974-01-01

    The results of a comprehensive experimental and theoretical study of the effect of placing dielectric objects over the aperture of waveguide antennas are presented. Experimental measurements of the radiation patterns, gain, impedance, near-field amplitude, and pattern and impedance coupling between pairs of antennas are given for various Plexiglas shapes, including the sphere and the cube, excited by rectangular, circular, and square waveguide feed apertures. The waveguide excitation of a dielectric sphere is modeled using the Huygens' source, and expressions for the resulting electric fields, directivity, and efficiency are derived. Calculations using this model show good overall agreement with experimental patterns and directivity measurements. The waveguide under an infinite dielectric slab is used as an impedance model. Calculations using this model agree qualitatively with the measured impedance data. It is concluded that dielectric loaded antennas such as the waveguide excited sphere, cube, or sphere-cylinder can produce directivities in excess of that obtained by a uniformly illuminated aperture of the same cross section, particularly for dielectric objects with dimensions of 2 wavelengths or less. It is also shown that for certain configurations coupling between two antennas of this type is less than that for the same antennas without dielectric loading.

  20. Dielectric spectroscopy in agrophysics

    NASA Astrophysics Data System (ADS)

    Skierucha, W.; Wilczek, A.; Szypłowska, A.

    2012-04-01

    The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

  1. DIELECTRIC-LOADED WAVE-GUIDES

    DOEpatents

    Robertson-Shersby-Harvie, R.B.; Mullett, L.B.

    1957-04-23

    This patent presents a particular arrangement for delectric loading of a wave-guide carrying an electromagnetic wave in the E or TM mode of at least the second order, to reduce the power dissipated as the result of conduction loss in the wave-guide walls. To achieve this desirabie result, the effective dielectric constants in the radial direction of adjacent coaxial tubular regions bounded approximateiy by successive nodai surfaces within the electromagnetic field are of two different values alternating in the radial direction, the intermost and outermost regions being of the lower value, and the dielectric constants between nodes are uniform.

  2. Method for producing high dielectric strength microvalves

    SciTech Connect

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  3. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  4. Evaluation of high temperature capacitor dielectrics

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  5. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  6. Effect of Gd3+ doping on structural, optical and frequency-dependent dielectric response properties of pseudo-cubic BaTiO3 nanostructures

    NASA Astrophysics Data System (ADS)

    Borah, Manjit; Mohanta, Dambarudhar

    2014-06-01

    We report on the structural, optical and dielectric characterization of solid state derived, pseudo-cubic nanoscale barium titanates (BTs) with gadolinium (Gd3+) as substitutional dopant. Referring to X-ray diffractograms, apart from the BT peaks related to perovskite structure, the non-existence of any additional peaks due to byproducts has revealed that Gd3+ has undergone substitutional doping into the BT host lattice. The well-separated BT nanoparticles of typical size ˜10-15 nm were observed through electron microscopy studies. Following a direct, allowed type carrier transition ( n=1/2), a reduction in the optical band gap value (from 3.28 to 3.255 eV) was observed when the Gd-doping level was varied within 0-7 %. Conversely, the Urbach energy followed an increasing trend, from a value of 0.741 to 1.879 eV. Furthermore, the dielectric constant showed a decreasing tendency with doping content and with increasing frequency. However, in the low-frequency region, the loss tangent (tan δ), which is the combined result of orientational polarization and electrical conduction, was found to be quite high in the doped samples as compared to their un-doped counterpart. The frequency-dependent electrical data were also analyzed in the framework of conductivity and impedance formalisms. In particular, the ac conductivity which varies as ˜ ω s approaches ideal Debye behavior ( s→1) for a low Gd level and a higher doping concentration did not show improved dielectric feature of the host. The incorporation of rare-earth (Gd3+) ions into the BT host system could greatly manifest dielectric relaxation and carrier conduction mechanisms, in a given frequency range, and thus can find immense scope in miniaturized nanoelectronic elements including ceramic capacitors and transducers.

  7. PREFACE: Dielectrics 2011

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Lewin, Paul

    2011-08-01

    In 2011, the biennial meeting of the Dielectrics Group of the IOP, Dielectrics 2011, was held for the first time in a number of years at the University of Kent at Canterbury. This conference represents the most recent in a long standing series that can trace its roots back to a two-day meeting that was held in the spring of 1968 at Gregynog Hall of the University of Wales. In the intervening 43 years, this series of meetings has addressed many topics, including dielectric relaxation, high field phenomena, biomaterials and even molecular electronics, and has been held at many different venues within the UK. However, in the early 1990s, a regular venue was established at the University of Kent at Canterbury and, it this respect, this year's conference can be considered as "Dielectrics coming home". The format for the 2011 meeting followed that established at Dielectrics 2009, in breaking away from the concept of a strongly themed event that held sway during the mid 2000s. Rather, we again adopted a general, inclusive approach that was based upon four broad technical areas: Theme 1: Insulation/HV Materials Theme 2: Dielectric Spectroscopy Theme 3: Modelling Dielectric Response Theme 4: Functional Materials The result was a highly successful conference that attracted more than 60 delegates from eight countries, giving the event a truly international flavour, and which included both regular and new attendees; it was particularly pleasing to see the number of early career researchers at the meeting. Consequently, the organizing committee would like to thank our colleagues at the IOP, the invited speakers, our sponsors and all the delegates for making the event such a success. Finally, we look forward to convening again in 2013, when we will be returning to The University of Reading. Prof Alun Vaughan and Prof Paul Lewin, Editors

  8. Virtual gap dielectric wall accelerator

    SciTech Connect

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  9. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  10. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field. PMID:25314449

  11. Low temperature dielectric properties of YMn0.95Ru0.05O3

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Okram, G. S.; Kaurav, N.; Gaur, N. K.

    2013-02-01

    The single phase hexagonal YMn0.95Ru0.05O3 compound has been synthesized via solid state reaction method at sintering temperature 1280°C with space group P63cm (25-1079). The detailed dielectric properties were evaluated over broad temperature and frequency ranges. An obvious dielectric relaxation was observed near the antiferromagnetic (AFM) transition temperature. The temperature dependence of the ac resistivity at low frequency infers the semiconducting behavior and favored the variable range hopping conduction model. The obtained experimental data in the temperature range of our study can be described by the equation ρ(T) = ρ0exp[(T*/T)1/4]. The fitting results are used for the calculation of the temperature scale T* ˜ 0.8 × 104 K and finally the density of state at Fermi level N(EF). The activation energy Ea ˜ 0.0314 eV is calculated from the plot, peak temperature of the loss tangent near the magnetic transition region versus frequency using Arrhenius law.

  12. Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.

    PubMed

    Han, Shu-Jen; Reddy, Dharmendar; Carpenter, Gary D; Franklin, Aaron D; Jenkins, Keith A

    2012-06-26

    Recently, graphene field-effect transistors (FET) with cutoff frequencies (f(T)) between 100 and 300 GHz have been reported; however, the devices showed very weak drain current saturation, leading to an undesirably high output conductance (g(ds)= dI(ds)/dV(ds)). A crucial figure-of-merit for analog/RF transistors is the intrinsic voltage gain (g(m)/g(ds)) which requires both high g(m) (primary component of f(T)) and low g(ds). Obtaining current saturation has become one of the key challenges in graphene device design. In this work, we study theoretically the influence of the dielectric thickness on the output characteristics of graphene FETs by using a surface-potential-based device model. We also experimentally demonstrate that by employing a very thin gate dielectric (equivalent oxide thickness less than 2 nm), full drain current saturation can be obtained for large-scale chemical vapor deposition graphene FETs with short channels. In addition to showing intrinsic voltage gain (as high as 34) that is comparable to commercial semiconductor FETs with bandgaps, we also demonstrate high frequency AC voltage gain and S21 power gain from s-parameter measurements. PMID:22582702

  13. Effects of Ti doping on the dielectric properties of HfO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Pokhriyal, S.; Biswas, S.

    2016-05-01

    We report the effects of Ti doping on the dielectric properties of HfO2 [Hf1-xTixO2 (x = 0.2-0.8)] nanoparticles at room temperature. The Hf1-xTixO2 nanoparticles were synthesized by a wet chemical process. The structural and morphological properties of the derived samples were analyzed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM). Impedance analysis was performed in pelletized samples in the frequency range of 1 MHz to 1 GHz. The obtained results were analyzed in correlation with microstructure and doping concentration in the derived samples. The average size of the Hf1-xTixO2 nanoparticles is typically in the range of 4-8 nm depending on the processing temperature. The Hf1-xTixO2 nanoparticles show reduction in crystallinity with the increase in Ti doping. The dielectric constants of the derived samples decrease with the increase in frequency. The ac-conductivity in the samples increases with the increase in frequency irrespective of Ti concentration and shows significant drop with the increase in Ti concentration at all frequencies.

  14. Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan

    2015-12-01

    Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.

  15. Numerical calculation of the dielectric and electrokinetic properties of vesicle suspensions.

    PubMed

    Grosse, Constantino; Zimmerman, Viviana

    2005-09-29

    The dielectric and electrokinetic properties of aqueous suspensions of vesicles (unilamellar liposomes) are numerically calculated in the 1 Hz to 1 GHz frequency range using a network simulation method. The model consists of a conducting internal medium surrounded by an insulating membrane with fixed surface charges on both sides. Without an applied field, the internal medium is in electric equilibrium with the external one, so that it also bears a net volume charge. Therefore, in the presence of an applied ac field, there is fluid flow both in the internal and in the external media. The obtained results are qualitatively different from those corresponding to suspensions of charged homogeneous particles, mainly due to the existence of an additional length scale (the membrane thickness) and the corresponding dispersion mechanism, charging of the membrane. Because of this dispersion, the shapes of the spectra change with the size of the particles (at constant zeta potential and particle radius to Debye length ratio) instead of merely shifting along the frequency axis. A comparison between the numerical results and those obtained using approximate analytical expressions shows deviations that are, in general, sufficiently large enough to show the necessity to use numerical results in order to interpret broad frequency range dielectric and electrokinetic measurements of vesicle suspensions. PMID:16853323

  16. Possible mechanism of charge transport and dielectric relaxation in SrO-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Majhi, Koushik; Varma, K. B. R.; Rao, K. J.

    2009-10-01

    Transparent SrBi2B2O7 glasses were prepared via melt-quenching technique and characterized using differential scanning calorimetry and x-ray powder diffraction. The ac conductivities of the glasses were studied as a function of frequency (100 Hz-10 MHz) at different temperatures. The frequency dependence of conductivity has been analyzed using Almond-West expression. The exponent n was nearly unaffected by temperature. Impedance and modulus spectroscopies were employed to further examine the electrical data. Dielectric relaxation exhibited a stretched exponential behavior with a stretching exponent β independent of temperature. From conductivity analysis we have proposed that the charge transport occurs through the participation of nonbridging oxygen (NBO), which switches positions in a facile manner. The stretched exponential behavior appears to be a direct consequence of the NBO switching mechanism of charge transport.

  17. Possible mechanism of charge transport and dielectric relaxation in SrO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    SciTech Connect

    Majhi, Koushik; Varma, K. B. R.; Rao, K. J.

    2009-10-15

    Transparent SrBi{sub 2}B{sub 2}O{sub 7} glasses were prepared via melt-quenching technique and characterized using differential scanning calorimetry and x-ray powder diffraction. The ac conductivities of the glasses were studied as a function of frequency (100 Hz-10 MHz) at different temperatures. The frequency dependence of conductivity has been analyzed using Almond-West expression. The exponent n was nearly unaffected by temperature. Impedance and modulus spectroscopies were employed to further examine the electrical data. Dielectric relaxation exhibited a stretched exponential behavior with a stretching exponent beta independent of temperature. From conductivity analysis we have proposed that the charge transport occurs through the participation of nonbridging oxygen (NBO), which switches positions in a facile manner. The stretched exponential behavior appears to be a direct consequence of the NBO switching mechanism of charge transport.

  18. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  19. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  20. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  1. Influence of Eu impurity on the dielectric properties of Sr{sub x}Ba{sub 1−x}Nb{sub 2}O{sub 6} crystals

    SciTech Connect

    Malyshkina, O. V. Pedko, B. B.; Lisitsin, V. S.

    2015-03-15

    The dielectric characteristics of barium-strontium niobate crystals with Eu impurities of 2000, 4000, 8000, and 16 000 ppm are presented. The dielectric hysteresis loops observed during heating and exposure to an electric field at room temperature are compared. It is shown that the evolution of the loops in time occurs as a result of sample heating under an ac electric field.

  2. Controlling birefringence in dielectrics

    NASA Astrophysics Data System (ADS)

    Danner, Aaron J.; Tyc, Tomáš; Leonhardt, Ulf

    2011-06-01

    Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

  3. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  4. Rietveld refinement and dielectric studies of Bi{sub 0.8}Ba{sub 0.2}Fe{sub 0.95}V{sub 0.05}O{sub 3} ceramic

    SciTech Connect

    Priyanka, Agarwal, A. Ahlawat, N. Sanghi, S. Rani, S.

    2014-04-24

    Polycrystalline Bi{sub 0.8}Ba{sub 0.2}Fe{sub 0.95}V{sub 0.05}O{sub 3} ceramic has been prepared by the conventional solid state reaction technique. The Rietveld refinement of x-ray powder diffraction revealed that the sample has a rhombohedral crystal structure (space group R3c) with average particle size of 29 nm. The values of dielectric constant (ε′) and dielectric loss (tan δ) increases with increasing temperature at different frequencies which may be the result of increase in the number of charge carriers and their mobilities due to the thermal activation. The Jonscher’s universal power law used to analyze the ac conductivity. In the measured temperature range, the values of frequency exponent ‘s’ are less than one and shows a continous decrease which is attributed to the short range translational hopping assisted by large polaron hopping mechanisms.

  5. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  6. Structural, dielectric and magnetic properties of Gd substituted manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Murugesan, C.; Sathyamoorthy, B.; Chandrasekaran, G.

    2015-08-01

    Gd3+ ion-substituted manganese ferrite nanoparticles with the chemical formula MnGdxFe2-xO4 (x = 0.0, 0.05, and 0.1) were synthesized by sol-gel auto combustion method. Thermal stability of the as-prepared sample was analyzed using thermo gravimetric and differential thermal analysis (TG-DTA) and the result reveals that the prepared sample is thermally stable above 300 °C. Structural and morphology studies were performed using powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Indexed PXRD patterns confirm the formation of pure cubic spinel structure. The average crystallite sizes calculated using Sherrer’s formula decreased from 47 nm to 32 nm and lattice constant was enhanced from 8.407 Å to 8.432 Å. The FTIR spectrum of manganese ferrite shows a high frequency vibrational band at 564 cm-1 assigned to tetrahedral site and a low frequency vibrational band at 450 cm-1 assigned to octahedral site which are shifted to 556 cm-1 and 439 cm-1 for Gd3+ substitution and confirm the incorporation of Gd3+ into manganese ferrite. SEM analysis shows the presence of agglomerated spherical shaped particles at the surface. Room temperature dielectric and magnetic properties were studied using broadband dielectric spectroscopy (BDS) and vibrating sample magnetometry (VSM). Frequency dependent dielectric constant, ac conductivity and tan delta were found to increase with Gd3+ ion substitution. The measured values of saturation magnetization decrease from 46.6 emu g-1 to 41 emu g-1 with increase in Gd3+ concentration and coercivity decreases from 179.5 Oe to 143 Oe.

  7. Dielectric Behavior of Biomaterials at Different Frequencies on Room Temperature

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.; Barde, Ravindra; Mishra, A.; Phadke, S.

    2014-09-01

    Propagation of electromagnetic (EM) waves in radiofrequency (RF) and microwave systems is described mathematically by Maxwell's equations with corresponding boundary conditions. Dielectric properties of lossless and lossy materials influence EM field distribution. For a better understanding of the physical processes associated with various RF and microwave devices, it is necessary to know the dielectric properties of media that interact with EM waves. For telecommunication and radar devices, variations of complex dielectric permittivity (referring to the dielectric property) over a wide frequency range are important. For RF and microwave applicators intended for thermal treatments of different materials at ISM (industrial, scientific, medical) frequencies, one needs to study temperature and moisture content dependencies of the Permittivity of the treated materials. Many techniques have been developed for the measurement of materials. In the present paper authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biomaterials. Dielectric properties of Biomaterials with the frequency range from 1Hz to 10 MHz at room temperature with low water content were measured by in-situ performance dielectric kit. Analysis has been done by Alpha high performance impedance analyzer and LCR meters. The experimental work were carried out in Inter University Consortium UGC-DAE, CSR center Indore MP. Measured value indicates the dielectric constant (ɛ') dielectric loss (ɛ") decreases with increasing frequency while conductivity (σ) increases with frequency increased.

  8. The electrical breakdown of thin dielectric elastomers: thermal effects

    NASA Astrophysics Data System (ADS)

    Zakaria, Shamsul; Morshuis, Peter H. F.; Benslimane, Mohamed Y.; Gernaey, Krist V.; Skov, Anne L.

    2014-03-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields. This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength. In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field. We performed numerical analysis with a quasi-steady state approximation to predict thermal runaway of dielectric elastomer films. We also studied experimentally the effect of temperature on dielectric properties of different PDMS dielectric elastomers. Different films with different percentages of silica and permittivity enhancing filler were selected for the measurements. From the modeling based on the fitting of experimental data, it is found that the electrothermal breakdown of the materials is strongly influenced by the increase in both dielectric permittivity and conductivity.

  9. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  10. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  11. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  12. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  13. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  14. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    SciTech Connect

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.; Nowak, J.; Kwiatkowski, L.

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  15. Optimization of structural and dielectric properties of CdSe loaded poly(diallyl dimethyl ammonium chloride) polymer in a desired frequency and temperature window

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-01-01

    In the present paper, investigations of CdSe loaded poly(diallyl dimethyl ammonium chloride) (PDADMAC) nanocomposites and pure PDADMAC synthesized by wet chemical technique have been carried out. Fourier transform infrared and X-ray diffraction analysis have been performed to reveal the structural details of pure polymer and polymer nanocomposite (PNC). The dielectric behavior of pure polymer and PNC has been recorded, which results in higher value of the real and imaginary part of dielectric constant for PNC, as compared with pure PDADMAC. The increase is attributed to the addition of CdSe quantum dots to the pure polymer. The contribution of ionic and electronic polarization has been observed at higher frequency. The theoretical fitting of Cole-Cole function to the experimental data of dielectric constant of PNC and pure PDADMAC results in the determination of relaxation time and conductivity of space charge carriers. The CdSe loaded polymer nanocomposite has been used as an electrolyte in the battery fabrication with configuration Al/PNC/Ag2O. The ac conductivity measurements have been carried out for both samples in a frequency window of 1 kHz-5 MHz and at different temperatures varying from 298 K to 523 K. Activation energy (Ea) has been determined for pure polymer as well as PNC and is found to be less for PNC, as compared with pure polymer. Further, impedance measurement at different temperatures results in two frequency ranges corresponding to ionic conduction and blocking electrode effect. The value of bulk resistance for pure polymer and PNC has been found to be 3660 Ω and 442 Ω, respectively, at 298 K temperature. Electric modulus has been determined and is observed to support the dielectric constant data; it further reveals the deviation from Debye behavior at a higher frequency.

  16. Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Ghodake, U. R.; Chaudhari, N. D.; Kambale, R. C.; Patil, J. Y.; Suryavanshi, S. S.

    2016-06-01

    In this work, Mn substituted Mg-Zn spinel ferrites having general formula Zno.4Mg0.6-xMnxFe2O4 (0≤x≤0.30) have been synthesized by oxalate precursor chemical method and investigated their structural, magnetic and electric properties. X-ray diffraction (XRD) is used to study the crystal structure of synthesized materials. XRD study reveals the formation of polycrystalline cubic spinel lattice structure without any impurity phase having crystallite size in the range from 39.97 nm to 45.62 nm. Scanning electron micrographs revealed, increase in grain size (D) with increase in Mn2+ content up to x=0.10; then it decreases for x>0.10. Energy dispersive x-ray analysis (EDAX) confirms the presence of Mg2+, Mn2+, Fe3+, Zn2+ and O2- ions as per the stoichiometry. The magnetic moment (nB), with Mn2+ substitution is found to increase initially up to x=0.10 and then it deceases with further Mn2+ substitution. The observed variation in the magnetic moment (nB) is explained by considering the variation of saturation magnetization, anisotropy constant, density values and exchange interaction. The d.c. electrical resistivity decreased with increase in temperature in accordance with semiconducting behavior. Furthermore, the conductivity was found to obey the Arrhenius relation with a change in slope at critical temperature (i.e. the Curie temperature). The increase in d.c. resistivity is attributed to the hindering of Verwey mechanism between Fe2+⇔Fe3+ ions and Mn2+⇔Mn3+. The dielectric constant (ε‧) measurement revealed the dielectric dispersion behavior in accordance with the Maxwell-Wagner model and Koops phenomenological theory, which is responsible for conduction and polarization. The dielectric characteristics (ε‧, ε″ and tan δ) exhibit dispersion due to Maxwell-Wagner type interfacial polarization. The values of dielectric constant (ε‧) and a.c. resistivity (ρac) exhibit highest magnitude at x=0.10 and decreases further with Mn2+ substitution.

  17. The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models

    NASA Astrophysics Data System (ADS)

    Clerc, J. P.; Giraud, G.; Laugier, J. M.; Luck, J. M.

    1990-05-01

    We review theoretical and experimental studies of the AC dielectric response of inhomogeneous materials, modelled as bond percolation networks, with a binary (conductor-dielectric) distribution of bond conductances. We first summarize the key results of percolation theory, concerning mostly geometrical and static (DC) transport properties, with emphasis on the scaling properties of the critical region around the percolation threshold. The frequency-dependent (AC) response of a general binary model is then studied by means of various approaches, including the effective-medium approximation, a scaling theory of the critical region, numerical computations using the transfer-matrix algorithm, and several exactly solvable deterministic fractal models. Transient regimes, related to singularities in the complex-frequency plane, are also investigated. Theoretical predictions are made more explicit in two specific cases, namely R-C and RL-C networks, and compared with a broad variety of experimental results, concerning, for example, granular composites, thin films, powders, microemulsions, cermets, porous ceramics and the viscoelastic properties of gels.

  18. TiO2 nanoparticles and silicon nanowires hybrid device: Role of interface on electrical, dielectric, and photodetection properties

    NASA Astrophysics Data System (ADS)

    Rasool, Kamran; Rafiq, M. A.; Ahmad, Mushtaq; Imran, Z.; Hasan, M. M.

    2012-12-01

    We report ˜12, 5, 12, 100, and 70 times enhancement of external quantum efficiency, detectivity, responsivity, AC conductivity, and overall dielectric constant (ɛ'), respectively of hybrid silicon nanowires (SiNWs) and titania (TiO2) nanoparticles (NPs) device as compared to SiNWs only device. Devices show persistent photoconductivity. Metal assisted chemical etching and co-precipitation method were used to prepare SiNWs (length ˜40 μm, diameter ˜30-400 nm) and TiO2 NPs (diameter ˜50 nm), respectively. Formation of acceptor like states at NPs and SiNWs interface improves electrical properties. Presence of low refractive index TiO2 around SiNWs causing funneling of photon energy into SiNWs improves photodetection.

  19. Optical and electrical properties of nanolaminate dielectric structures

    NASA Astrophysics Data System (ADS)

    Dikov, Hr; Vitanov, P.; Ivanova, T.; Stavrov, V.

    2016-03-01

    The aim of this study was formation of a multilayered transparent conductive nanolaminate structure with optimized conductivity vs. transparency parameters. The nanolayered structure comprised one or two thin layers of dielectric materials. The overall electrical conductivity was modified by tuning the size of the planar metal granules. Magnetron sputtering system with three different targets was used for layers deposition. The advantages are: the good reproducibility of a low-temperature process allows for effective process control and, optionally, selective formation of conductive areas in a dielectric structure. Our studies revealed that the relation between the sheet resistance and the maximum transparency in the visible spectral range depends on the size of the metal granules and the film thickness of the dielectric coating. The technology provides transparent conductive coatings with well-controlled optical and electrical properties.

  20. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  1. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  2. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  3. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  4. Modeling of thermal effects in dielectric wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Piot, Philippe; Mihalcea, Daniel; Lemery, Francois

    2013-04-01

    An electron bunch passing through a dielectric-lined waveguide generates Cerenkov radiation that can result in a high-peak axial electric field suitable for acceleration of a subsequent bunch. Axial fields beyond gigavolt-per-meter are attainable in structures with sub-mm sizes depending on the achievement of suitable electron bunch parameters. A promising configuration consists of using a planar dielectric structure driven by flat electron bunches. However, a main concern is the thermal loading in the dielectric that will result from a high repetition rate. We present numerical modeling of the temperature rise due to single and multiple bunch passings and also the thermal conduction and cooling requirements.

  5. Synthesis and characterization of structural, optical, thermal and dielectric properties of polyaniline/CoFe2O4 nanocomposites with special reference to photocatalytic activity.

    PubMed

    Khan, Javed Alam; Qasim, Mohd; Singh, Braj Raj; Singh, Sneha; Shoeb, Mohd; Khan, Wasi; Das, Dibakar; Naqvi, Alim H

    2013-05-15

    In this study we have synthesized polyaniline/CoFe2O4 nanocomposites (PANI@CFs) by in situ polymerization method with different amounts of the CoFe2O4 nanoparticles NPs (CF-NPs) (0.5 g and 1.0 g). The structural optical, thermal and dielectric properties of the as synthesized PANI@CFs were studied. The XRD analysis ensures that CF-NPs have a single phase spinel structure. The XRD and EDAX results confirmed that the CF-NPs were successfully incorporated in the PANI matrix. The crystalline size analysis revealed that the size increased with increasing CF-NPs amount in the PANI@CFs, because of the aggregation effect. TGA exhibited an enhanced thermal stability of the PANI@CFs as compare with PANI owing to the strong interaction between the CF-NPs and polymer matrix. The energy band gaps as calculated through the Tauc relation were found to be gradually higher with the increasing the amount of CF-NPs in PANI@CFs. The dielectric constants (ε', ε″), dielectric loss (tanδ) and AC conductivityac) were studied as the function of frequency and composition, which have been explained by 'Maxwell Wagner Model'. The high dielectric constant and ac conductivity were observed of PANI@CFs than PANI. Moreover, PANI@CF 1:2 exhibited the promising photocatalytic activity for the photo-decoloration of the methyl orange (MO) dye under UV light irradiation. Results also showed protection of photo-decoloration of the MO dye by the disodium ethylenediaminetetraacetate dehydrate (EDTA-Na2; C10H14N2Na2O8·2H2O) (hole scavenger) and tert-butyl alcohol (C4H10O) (radical scavenger) clearly suggested the implication of reactive oxygen species (ROS) in the photocatalytic activity of PANI@CF 1:2. It is encouraging to conclude that PANI@CF bears the potential of its applications in photocatalysis. PMID:23545437

  6. The effects of vacuum ultraviolet radiation on low-k dielectric films

    SciTech Connect

    Sinha, H.; Ren, H.; Nichols, M. T.; Lauer, J. L.; Shohet, J. L.; Tomoyasu, M.; Russell, N. M.; Jiang, G.; Antonelli, G. A.; Fuller, N. C.; Engelmann, S. U.; Lin, Q.; Ryan, V.; Nishi, Y.

    2012-12-01

    Plasmas, known to emit high levels of vacuum ultraviolet (VUV) radiation, are used in the semiconductor industry for processing of low-k organosilicate glass (SiCOH) dielectric device structures. VUV irradiation induces photoconduction, photoemission, and photoinjection. These effects generate trapped charges within the dielectric film, which can degrade electrical properties of the dielectric. The amount of charge accumulation in low-k dielectrics depends on factors that affect photoconduction, photoemission, and photoinjection. Changes in the photo and intrinsic conductivities of SiCOH are also ascribed to the changes in the numbers of charged traps generated during VUV irradiation. The dielectric-substrate interface controls charge trapping by affecting photoinjection of charged carriers into the dielectric from the substrate. The number of trapped charges increases with increasing porosity of SiCOH because of charge trapping sites in the nanopores. Modifications to these three parameters, i.e., (1) VUV induced charge generation, (2) dielectric-substrate interface, and (3) porosity of dielectrics, can be used to reduce trapped-charge accumulation during processing of low-{kappa} SiCOH dielectrics. Photons from the plasma are responsible for trapped-charge accumulation within the dielectric, while ions stick primarily to the surface of the dielectrics. In addition, as the dielectric constant was decreased by adding porosity, the defect concentrations increased.

  7. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  8. Ionic, XRD, dielectric and cyclic voltammetry studies on PVdF-co-HFP / MMT clay intercalated LiN(C2F5SO2)2 based composite electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Vickraman, P.; Purushothaman, K.; SankaraSubramanian, N.

    2014-04-01

    The composition dependence of plasticizer, (EC/DMC)(70-x(wt%)) and LiBETIx(wt%) salt for fixed contents on PVdF-co-HFP(25wt%)/surface modified(SM)-octadecylamine MMT(ODA-MMT) nanoclay(5wt%) host matrix by varying its compositions x=1.5, 3.0, 4.5, 6.0 wt% prepared via solution casting technique has been investigated by A.C. Impedance, Dielectric, XRD, and cyclic voltammetry(CV) studies. The enhanced conductivity 2.1×10-5 S/cm at 300C is observed for (EC/DMC)(70-6)wt%/LiBETI(x=6)wt%. The XRD at 2θ=20.9° confirms β-phase formation, and CV studies on membranes show cyclability and reversibility. The dielectric studies show increase in dielectric constant and dielectric loss with decrease in frequency is attributed to high contribution of charge accumulation at the electrode-electrolyte interface.

  9. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  10. Dielectric measurements of selected ceramics at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, J. N.; Templeton, C. K.

    1994-01-01

    Dielectric measurements of strontium titanate and lead titanate zirconate ceramics are conducted at microwave frequencies using a cylindrical resonant cavity in the TE(sub 011) mode. The perturbations of the electric field are recorded in terms of the frequency shift and Q-changes of the cavity signal. Slater's perturbation equations are used to calculate e' and e" of the dielectric constant as a function of temperature and frequency.

  11. Dielectric breakdown strength of magnetic nanofluid based on insulation oil after impulse test

    NASA Astrophysics Data System (ADS)

    Nazari, M.; Rasoulifard, M. H.; Hosseini, H.

    2016-02-01

    In this study, the dielectric breakdown strength of magnetic nanofluids based on transformer mineral oil for use in power systems is reviewed. Nano oil samples are obtained from dispersion of the magnetic nanofluid within uninhibited transformer mineral oil NYTRO LIBRA as the base fluid. AC dielectric breakdown voltage measurement was carried out according to IEC 60156 standard and the lightning impulse breakdown voltage was obtained by using the sphere-sphere electrodes in an experimental setup for nano oil in volume concentration of 0.1-0.6%. Results indicate improved AC and lightning impulse breakdown voltage of nano oil compared to the base oil. AC test was performed again after applying impulse current and result showed that nano oil unlike the base oil retains its dielectric properties. Increase the dielectric strength of the nano oil is mainly due to dielectric and magnetic properties of Fe3O4 nanoparticles that act as free electrons snapper, and reduce the rate of free electrons in the ionization process.

  12. Dielectric resonances in disordered media

    NASA Astrophysics Data System (ADS)

    Raymond, L.; Laugier, J.-M.; Schäfer, S.; Albinet, G.

    2003-02-01

    Binary disordered systems are usually obtained by mixing two ingredients in variable proportions: conductor and insulator, or conductor and super-conductor. They present very specific properties, in particular the second-order percolation phase transition, with its fractal geometry and the multi-fractal properties of the current moments. These systems are naturally modeled by regular bi-dimensional or tri-dimensional lattices, on which sites or bonds are chosen randomly with given probabilities. The two significant parameters are the ratio h = σ1/σ of the complex conductances, σ and σ1, of the two components, and their relative abundances p (or, respectively, 1 - p). In this article, we calculate the impedance of the composite by two independent methods: the so-called spectral method, which diagonalises Kirchhoff's Laws via a Green function formalism, and the Exact Numerical Renormalization method (ENR). These methods are applied to mixtures of resistors and capacitors (R-C systems), simulating e.g. ionic conductor-insulator systems, and to composites constituted of resistive inductances and capacitors (LR-C systems), representing metal inclusions in a dielectric bulk. The frequency dependent impedances of the latter composites present very intricate structures in the vicinity of the percolation threshold. In this paper, we analyse the LR-C behavior of compounds formed by the inclusion of small conducting clusters (``n-legged animals'') in a dielectric medium. We investigate in particular their absorption spectra who present a pattern of sharp lines at very specific frequencies of the incident electromagnetic field, the goal being to identify the signature of each animal. This enables us to make suggestions of how to build compounds with specific absorption or transmission properties in a given frequency domain.

  13. Model of dissipative dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiang Foo, Choon; Cai, Shengqiang; Jin Adrian Koh, Soo; Bauer, Siegfried; Suo, Zhigang

    2012-02-01

    The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

  14. Metallic magnetism and change of conductivity in the nano to bulk transition of cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Arunkumar, A.; Vanidha, D.; Oudayakumar, K.; Rajagopan, S.; Kannan, R.

    2013-11-01

    Variations in conductivity with particle size have been observed in cobalt ferrite, when synthesized by solgel auto-combustion method. Impedance analysis reveals metallic and semiconducting behavior at room temperature for a particle size of 6 nm and 52 nm, respectively. Upon thermal activation, metallic to semiconducting phase transition has been observed as a function of particle size and vice-versa. Grainboundary Resistance (Rgb), increased drastically with particle size (19 MΩ for 6 nm and 259 MΩ for 52 nm) at room temperature. AC conductivity and dielectric constants exhibit similar metallic to semiconducting phase transition at 6 nm and semiconducting behavior at 52 nm with temperature in the selected frequencies. Enhanced magnetic moment with an increase in the grain size along with decreased coercivity (1444 G to 1146 G) reveals transition from single domain to multi-domain. Increased inter-particle interaction is responsible for metallicity at the nano level and on the contrary semiconductivity is attributed to bulk.

  15. Open-access dielectric elastomer material database

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.; Stiubianu, G.; Cazacu, M.

    2014-03-01

    Dielectric Elastomer Transducers (DETs) are deformable capacitors that can be used as sensors, actuators and generators. The design of effective and optimized DETs requires the knowledge of a set of relevant properties of the employed Dielectric Elastomer (DE) material, which make it possible to accurately predict their electromechanical dynamic behavior. In this context, an open-access database for DE materials has been created with the aim of providing the practicing engineer with the essential information for the design and optimization of new kinds of DET. Among the electrical properties, dielectric susceptibility, dielectric strength and conductivity are considered along with their dependence on mechanical strain. As regards mechanical behavior, experimental stress-strain curves are provided to predict hyperelasticity, plasticity, viscosity, Mullins effect and mechanical rupture. Properties of commercial elastomeric membranes have been entered in the database and made available to the research community. This paper describes the instrumentations, experimental setups and procedures that have been employed for the characterization of the considered DE materials. To provide an example, the experimental data acquired for a commercially available natural rubber membrane (OPPO Band Red 8012) are presented.

  16. Analysis of Dielectric and Thermal Properties of Polyamide Enamel Filled with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Selvaraj, D. Edison; Sugumaran, C. Pugazhendhi; Ganesan, Lieutenant J.; Ramathilagam, J.

    2013-06-01

    In recent days, there was a significant development in the area of nanoparticles and nanoscale fillers on dielectric, thermal and mechanical properties of polymeric materials. The dielectric and thermal properties of standard polyamide and nanoscale-filled samples were detailed and analyzed. Carbon nanotubes were used as nanofillers. Carbon nanotubes were synthesized by chemical vapor deposition (CVD). The basic properties such as dielectric loss tangent (tan δ), dielectric constant (ɛ), dielectric strength, partial discharge inception voltage, surface resistivity, quality factor, phase angle, dielectric conductivity, dielectric power loss and thermal withstand strength of the polyamide enamel filled with carbon nanotubes were analyzed and compared with the properties of the standard enamel. The experimental results show that carbon nanotubes mixed with polyamide enamel had better thermal properties when compared to that of standard enamel.

  17. Giant dielectric permittivity caused by carrier hopping in a layered cuprate Bi 2Ba 2Nd 1.6Ce 0.4Cu 2O 10+ δ

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Cao, Guanghan; Jiao, Zhengkuan

    2004-12-01

    The ceramic sample of a layered cuprate Bi 2Ba 2Nd 1.6Ce 0.4Cu 2O 10+ δ, so-called Ba-based Bi-2222 compound was studied by the measurement of the temperature (80-300 K) and the frequency (20-10 6 Hz) dependence of the complex dielectric permittivity. The dielectric constant was measured as high as ˜1000 at 1 kHz and 300 K with relatively low dissipation factor. However, it decreases systematically with decreasing temperature or with increasing frequency due to the dipolar relaxation process. This thermally activated relaxation process plays a dominant role for the low frequency dielectric response. Furthermore, the frequency-dependent ac conductivity was found to obey the power law σ=Aω. The results were interpreted in terms of Pike's model of hopping transport of localized charge carriers which yields explicitly the ω behavior and the temperature dependence of s. And we calculated the ionization energy of localized carriers W=0.35 eV for the present sample.

  18. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  19. Reactance and resistance: main properties to follow the cell differentiation process in Bacillus thuringiensis by dielectric spectroscopy in real time.

    PubMed

    Dinorín-Téllez-Girón, Jabel; Delgado-Macuil, Raúl Jacobo; Larralde Corona, Claudia Patricia; Martínez Montes, Francisco Javier; de la Torre Martínez, Mayra; López-Y-López, Víctor Eric

    2015-07-01

    During growth, Bacillus thuringiensis presents three phases: exponential phase (EP), transition state (TS), and sporulation phase (SP). In order to form a dormant spore and to synthesize delta-endotoxins during SP, bacteria must undergo a cellular differentiation process initiated during the TS. Dielectric spectroscopy is a technique that can be utilized for continuous and in situ monitoring of the cellular state. In order to study on-line cell behavior in B. thuringiensis cultures, we conducted a number of batch cultures under different conditions, by scanning 200 frequencies from 42 Hz to 5 MHz and applying fixed current and voltage of 20 mA and 5 V DC, respectively. The resulting signals included Impedance (Z), Angle phase (Deg), Voltage (V), Current (I), Conductance (G), Reactance (X), and Resistance (R). Individual raw data relating to observed dielectric property profiles were correlated with the different growth phases established using data from cellular growth, cry1Ac gene expression, and free spores obtained with conventional techniques and fermentation parameters. Based on these correlations, frequencies of 0.1, 0.5, and 1.225 MHz were selected for the purpose of measuring dielectric properties in independent batch cultures, at a fixed frequency. X and R manifest more propitious behavior in relation to EP, TS, SP, and spore release, due to particular changes in their signals. Interestingly, these profiles underwent pronounced changes during EP and TS that were not noticed when using conventional methods, but were indicative of the beginning of the B. thuringiensis cell differentiation process. PMID:25862207

  20. Structural and dielectric studies of Co doped MgTiO3 thin films fabricated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, T. Santhosh; Gogoi, P.; Thota, S.; Pamu, D.

    2014-06-01

    We report the structural, dielectric and leakage current properties of Co doped MgTiO3 thin films deposited on platinized silicon (Pt/TiO2/SiO2/Si) substrates by RF magnetron sputtering. The role of oxygen mixing percentage (OMP) on the growth, morphology, electrical and dielectric properties of the thin films has been investigated. A preferred orientation of grains along (110) direction has been observed with increasing the OMP. Such evolution of the textured growth is explained on the basis of the orientation factor analysis followed the Lotgering model. (Mg1-xCox)TiO3 (x = 0.05) thin films exhibits a maximum relative dielectric permittivity of ɛr = 12.20 and low loss (tan δ ˜ 1.2 × 10-3) over a wide range of frequencies for 75% OMP. The role of electric field frequency (f) and OMP on the ac-conductivity of (Mg0.95Co0.05)TiO3 have been studied. A progressive increase in the activation energy (Ea) and relative permittivity ɛr values have been noticed up to 75% of OMP, beyond which the properties starts deteriorate. The I-V characteristics reveals that the leakage current density decreases from 9.93 × 10-9 to 1.14 × 10-9 A/cm2 for OMP 0% to 75%, respectively for an electric field strength of 250 kV/cm. Our experimental results reveal up to that OMP ≥ 50% the leakage current mechanism is driven by the ohmic conduction, below which it is dominated by the schottky emission.

  1. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  2. Introducing phase analysis light scattering for dielectric characterization: measurement of traveling-wave pumping.

    PubMed Central

    Gimsa, J; Eppmann, P; Prüger, B

    1997-01-01

    Phase analysis light scattering (PALS) was applied to characterize a high-frequency traveling-wave (TW) micropump. Field strength and frequency characteristics were measured for aqueous solutions up to 40 MHz and conductivities of 16 mS/m. The TW field was generated by an ultramicroelectrode array of intercastellated electrodes, which were driven by square-topped signals. Pumping exhibited one major relaxation peak, which strongly increased for conductivities above 4 mS/m. The conductivity dependence of the peak frequency showed an unexpected nonlinear behavior. Around 20 MHz an additional peak caused by electronic resonance was found. Additional coils or capacitors shifted the resonance peak and allowed us to determine the electronic properties of the array. Analysis of distortions in the pump spectra caused by the harmonic content of the driving signals showed that the pump direction is determined by the traveling direction of the field. For measurement of AC-field-induced particle translations, the advantage of PALS over the commonly used microscopic analysis is that it offers an objective method for statistically significant, computerized registration of extremely slow motions. Thus, for dielectric characterization, low field strengths can be used, which is advantageous not only for analyzing liquid pumping, but also for measuring particle translations induced by dielectrophoresis or TW dielectrophoresis. Images FIGURE 1 FIGURE 2 FIGURE 7 PMID:9414241

  3. Dielectric coated wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Newman, E. H.

    1976-01-01

    An electrically thin dielectric insulating shell on an antenna composed of electrically thin circular cylindrical wires is examined. A moment method solution is obtained, and the insulating shell is modeled by equivalent volume polarization currents. These polarization currents are related in a simple manner to the surface charge density on the wire antenna. In this way the insulating shell causes no new unknowns to be introduced, and the size of the impedance matrix is the same as for the uninsulated wires. The insulation is accounted for entirely through a modification of the symmetric impedance matrix. This modification influences the current distribution, impedance, efficiency, field patterns, and scattering properties. The theory is compared with measurement for dielectric coated antennas in air.

  4. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  5. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces. PMID:26740041

  6. Low-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshihiro

    As CMOS transistors were scaled, interconnects to link them are also shrunk to reduce the line pitches [1-10]. As shown in Fig. 22.1, the interconnect pitches have been shrunk from 180 nm, 140 nm, and 100 nm for 65 [4], 45 [32], and 32 nm nodes [10] LSIs, respectively. To eliminate the interconnect parasitic capacitance, low-k dielectric films which have lower permittivity than the conventional silica (SiO2) dielectrics have been introduced. Figure 22.2 shows the technology trend of the k-value and the deposition process, in which the low-k films are deposited by spin-on-dielectric (SOD) method or plasma-enhanced CVD. In the case of SOD, precursor solution is poured on a rotated wafer, and the precursor film is heated to vaporize the solvent followed by reaction and densification to make a low-k film. In the case of PECVD [36, 42], on the other hand, precursor solution is vaporized with inert carrier gas such as He, and the precursor gas is introduced into PECVD chamber with RF power. The vaporized precursor gas is exited from plasma, depositing a low-k film on a wafer heated in high vacuum. The SOD method is advantageous to decrease the k-value, while PECVD method is superior in the adhesion strength due to the possibility of in-suite plasma surface treatment in vacuum just before the low-k deposition.

  7. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  8. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  9. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  10. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  11. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  12. Real-time crystallization in fluorinated parylene probed by conductivity spectra

    SciTech Connect

    Khazaka, R. Diaham, S.; Locatelli, M. L.; Tenailleau, C.

    2014-03-17

    Dielectric relaxation spectroscopy experiments were performed at high temperature on fluorinated parylene films during the occurrence of the isothermal crystalline phase transition. For this polymer, since the difference between the glass transition temperature (T{sub g}) and the phase transition temperature (T{sub c}) is very strong (T{sub c} ≥ 4T{sub g}), segmental and dipolar relaxation usually used to probe the crystallization are not shown in the experiment frequency window (10{sup −1} to 10{sup 6} Hz) during the crystallization. The charge diffusion becomes the only electrical marker that allows probing the phase transition. During the transition phase, a continuous decrease of about two orders of magnitude is observed in the conductivity values below an offset frequency (f{sub c}) with a tendency to stabilization after 600 min. Below the offset frequency, the decrease of the normalized conductivity to the initial value as function of time is frequency independent. The same behavior is also observed for the f{sub c} values that decrease from 160 Hz to about 20 Hz. Above the offset frequency, the electronic hopping mechanism is also affected by the phase transition and the power law exponent (n) of the AC conductivity shows a variation from 0.7 to 0.95 during the first 600 min that tend to stabilize thereafter. Accordingly, three parameters (n, f{sub c}, and AC conductivity values for frequencies below f{sub c}) extracted from the AC conductivity spectra in different frequency windows seem suitable to probe the crystalline phase transition.

  13. Evaluation of Dielectric-Barrier-Discharge Actuator Substrate Materials

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Siochi, Emilie J.; Sauti, Godfrey; Xu, Tian-Bing; Meador, Mary Ann; Guo, Haiquan

    2014-01-01

    A key, enabling element of a dielectric barrier discharge (DBD) actuator is the dielectric substrate material. While various investigators have studied the performance of different homogeneous materials, most often in the context of related DBD experiments, fundamental studies focused solely on the dielectric materials have received less attention. The purpose of this study was to conduct an experimental assessment of the body-force-generating performance of a wide range of dielectric materials in search of opportunities to improve DBD actuator performance. Materials studied included commonly available plastics and glasses as well as a custom-fabricated polyimide aerogel. Diagnostics included static induced thrust, electrical circuit parameters for 2D surface discharges and 1D volume discharges, and dielectric material properties. Lumped-parameter circuit simulations for the 1D case were conducted showing good correspondence to experimental data provided that stray capacitances are included. The effect of atmospheric humidity on DBD performance was studied showing a large influence on thrust. The main conclusion is that for homogeneous, dielectric materials at forcing voltages less than that required for streamer formation, the material chemical composition appears to have no effect on body force generation when actuator impedance is properly accounted for.

  14. Effects of dielectric material properties on graphene transistor performance

    NASA Astrophysics Data System (ADS)

    Jang, Sung Kyu; Jeon, Jaeho; Jeon, Su Min; Song, Young Jae; Lee, Sungjoo

    2015-07-01

    Graphene has attracted attention due to its excellent electrical properties; however, the electrical performance of graphene devices, including device hysteresis, mobility, and conductivity, tends to be limited by the supporting dielectric layer properties. In this work, the impact of a dielectric material on a graphene transistor was investigated by fabricating graphene field effect transistors integrated with four different dielectric substrates (SiO2, Al2O3, Si3N4 and hexagonal boron nitride) and by comparing the transistor performances. Results revealed that the carrier transport characteristics of the graphene transistors, including the hysteresis, Dirac point shift, and mobility, were highly correlated with the hydrophobicity-induced charge trapping and surface optical phonon energies of the dielectric materials.

  15. Dielectric relaxation in 0-3 PVDF-Ba(Fe1/2Nb1/2)O3 composites

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Singh, Rajan; Kulkarni, A. R.; Prasad, K.

    2016-05-01

    (1-x)PVDF-xBa(Fe1/2Nb1/2)O3 ceramic-polymer composites with x = 0.025, 0.05, 0.10, 0.15 were prepared using melt-mixing technique. The crystal symmetry, space group and unit cell dimensions were determined from the XRD data of Ba(Fe1/2Nb1/2)O3 using FullProf software, whereas crystallite size and lattice strain were estimated using Williamson-Hall approach. The distribution of Ba(Fe1/2Nb1/2)O3 particles in the PVDF matrix were examined on the cryo-fractured surfaces using a scanning electron microscope. Cole-Cole and pseudo Cole-Cole analysis suggested the dielectric relaxation in this system to be of non-Debye type. Filler concentration dependent real and imaginary parts of dielectric constant as well as ac conductivity data followed definite trends of exponential growth types of variation.

  16. Permittivity transition from highly positive to negative: Polyimide/carbon nanotube composite's dielectric behavior around percolation threshold

    SciTech Connect

    Sun, Yiyi; Wang, Junli; Qi, Shengli; Tian, Guofeng Wu, Dezhen

    2015-07-06

    In this report, a series of composite films consisting of polyimide as the matrix and multi-wall carbon nanotubes as the filler (PI/MWCNTs) were prepared in a water-based method with the use of triethylamine. Their dielectric properties were tested under frequency of between 100 Hz and 10 MHz, and it was revealed that the permittivity value behaved interestingly around the percolation threshold (8.01% in volume). The water-based method ensured that fillers had high dispersibility in the matrix before percolation, which led to a relatively high dielectric constant (284.28). However, the overlapping caused by excess MWCNTs created pathways for electrons inside the matrix, turning the permittivity to negative. The former phenomenon was highly congruent with the percolation power law, while the latter could be explained by the Drude Model. AC conductivity was measured for more supportive information. Additionally, scanning electron microscopy and transmission electron microscopy were employed to record MWCNTs' microscopic distribution and morphology at the percolation threshold.

  17. Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Abd Majid, W. H.; Gan, W. C.; Khorsand Zak, A.; Gan, S. N.

    2012-09-01

    ZnO nanoparticles (ZnO-NPs) were synthesized by a new, simple sol-gel method in gelatin media (particle size of ZnO ≈ 30 to 60 nm). Polyurethane/ZnO nanocomposites thin films (PU/ZnO-NPs) were prepared by mixing the ZnO-NPs into PU prepolymer. The nanocomposites were structurally characterized using Fourier transmission infrared (FTIR) spectroscopy. The interaction between ZnO-NPs and PU matrix is studied by analyzing the differences in C=O region and N-H region of FTIR spectra. The morphology of ZnO and PU/ZnO nanocomposites were assessed using transmission electron micrograph, TEM, and field emission scanning electron microscope, FESEM, respectively. The dielectric properties of ZnO-NPs were attributed to the interfacial and orientation polarization. Measurement is reported for the real and imaginary parts of the ac conductivity of ZnO-NPs in the frequency range of 10 to 106 Hz in the temperature range 298-478 K. The experimental results are interpreted in terms of the classical correlated-barrier hopping theory. In addition, the dielectric properties of PU/ZnO nanocomposites (0-15 vol. % filler concentration) were analyzed with respect to frequency. Quantitative analysis based on mixing laws for two-phase spherical dispersion system such as Lichtenecker, Maxwell, Jayasundere and Smith, and Yamada equations was used to predict the effective permittivity accurately up to 15 vol. % of ZnO in PU matrix.

  18. Dielectric Constant Measurements for Characterizing Lunar Soils

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  19. Polaron-electron assisted giant dielectric dispersion in SrZrO3 high-k dielectric

    NASA Astrophysics Data System (ADS)

    Borkar, Hitesh; Barvat, Arun; Pal, Prabir; Shukla, A. K.; Pulikkotil, J. J.; Kumar, Ashok

    2016-06-01

    The SrZrO3 is a well known high-k dielectric constant (˜22) and high optical bandgap (˜5.8 eV) material and one of the potential candidates for future generation nanoelectronic logic elements (8 nm node technology) beyond silicon. Its dielectric behavior is fairly robust and frequency independent till 470 K; however, it suffers a strong small-polaron based electronic phase transition (Te) linking 650 to 750 K. The impedance spectroscopy measurements revealed the presence of conducting grains and grain boundaries at elevated temperature which provide energetic mobile charge carriers with activation energy in the range of 0.7 to 1.2 eV supporting the oxygen ions and proton conduction. X-ray photoemission spectroscopy measurements suggest the presence of weak non-stoichiometric O2- anions and hydroxyl species bound to different sites at the surface and bulk. These thermally activated charge carriers at elevated temperature significantly contribute to the polaronic based dielectric anomaly and conductivity. Our dielectric anomaly supports pseudo phase transition due to high degree of change in ZrO6 octahedral angle in the temperature range of 650-750 K, where electron density and phonon vibration affect the dielectric and conductivity properties.

  20. Method of measuring dielectric constant using an oscilloscope

    NASA Astrophysics Data System (ADS)

    Nogi, Yasuyuki; Watanabe, Masayuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2015-09-01

    A simple relationship determining the dielectric constant of a material inserted in a parallel-plate capacitor is formulated from Gauss's law for a uniform electric field and the continuity condition of electric flux at the boundary of the material. The relationship suggests that the dielectric constant can be determined from the dependence of the charge stored on the capacitor on the thicknesses of the material and the air layer between the plates. A uniform field is created by applying an ac voltage to the plates, which includes a guard ring. The stored charge is estimated by using an oscilloscope to measure the voltage across a resistor inserted between the power supply and the capacitor. The results of the measurement are given for planar materials such as soda-lime glass, Bakelite, acrylic glass, and Teflon with a thickness of 0.5-1 cm.