Science.gov

Sample records for ac coupled amplifier

  1. DIRECT COUPLED AMPLIFIER

    DOEpatents

    Dandl, R.A.

    1961-09-19

    A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.

  2. Bolometers - Ultimate sensitivity, optimization, and amplifier coupling

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1984-01-01

    Theoretical expressions for Johnson noise and thermal noise in bolometers are considered, and optimization with respect to thermal conductivity and bias power is performed. Numerical approximations are given for the ultimate NEP of bolometers as a function of material parameters and compared with photon noise including photon correlations. A resonating capacitor is shown to improve the coupling to an amplifier, so that the amplifier need not limit performance even for very low temperature bolometers.

  3. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-04-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  4. Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Pan, Guixia; Xiao, Ruijie; Zhou, Ling

    2016-08-01

    A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.

  5. Design and technological peculiarities of making vacuum integrated circuit of a thermocathode-based AC amplifier

    NASA Astrophysics Data System (ADS)

    Grigorishin, I. L.; Kotova, I. F.; Mukhurov, N. I.

    1997-02-01

    Despite promising prospects and comprehensive nature of contemporary studies aimed at developing autoemission cathodes, only thermoemitter-based vacuum integrated circuits (VIC) have been realized by now. Here, the results are presented of building and testing, in extreme environment, thermoemission VICs of a RF active oscillator and multivibrator. The microcircuits made have limited functional capabilities. To expand their capabilities the VIC of an AC amplifier was developed. This paper deals with circuit design aspects of making the AC amplifier based on the potentialities and specific features of the process of anodic oxidation of aluminium to form dielectric substrates of cathode-heating assemblies (CHA) and anode-grid assemblies (AGA). Design and technological methods are described that are used to make active (five vacuum microtriodes) and passive (resistors, capacitors, commutation) film elements. As compared to earlier devices, the AC amplifier VIC is more economical and has better characteristics in terms of miniaturization and integration. Its fundamental peculiarities are two-sided obtained through anodizing to form dielectric substrates with microrelief and superfine-structure grids of microtriodes. Some characteristics of the AC amplifier VIC are given and ways of improving them are discussed.

  6. Strong environmental coupling in a Josephson parametric amplifier

    SciTech Connect

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.

    2014-06-30

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  7. Measurement of coupling resonance driving terms with the AC dipole

    SciTech Connect

    Miyamoto, R.

    2010-10-01

    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.

  8. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  9. High power switch mode linear amplifiers for flexible ac transmission system

    SciTech Connect

    Mwinyiwiwa, B.; Wolanski, Z.; Ooi, B.T.

    1996-10-01

    The Pulse Width Modulation (PWM) technique has been proposed for the force-commutated Shunt and Series VAR Controllers and Unified Power Flow Controllers in Flexible AC Transmission Systems. The PWM converters can be operated as linear amplifiers of constant gain so that treasure trove of linear control system theory can be brought to bear more easily when applying feedback controls. For example, pole-placement and active filtering have been successfully applied in laboratory models. This paper is written as a tutorial describing the stages of signal processing: modulation, amplification and demodulation, without reference to power electronics since the solid-state switches are modelled as ON-OFF switches.

  10. Beam position monitor electronics using DC coupled demodulating logarithmic amplifiers

    SciTech Connect

    Aiello, G.R.; Mills, M.R.

    1992-03-01

    An electronics circuit operating up to 120 MHz suitable for Beam Position Monitor signal processing is described. Two different channels process signals from the electrodes. Each channel is realized with two cascaded DC coupled demodulating logarithmic amplifiers, providing an output voltage proportional to the logarithm of the input signal amplitude. The outputs from the two channels are processed by differential and summing amplifiers. The difference output produces a voltage proportional to the beam displacement between the electrodes, but both the difference and sum outputs are digitized in order to allow for a software correction of the gain and offset mismatches. The electronics show better characteristics than previous implementations utilizing log-amp circuits. The dynamic range has been increased, keeping the linearity error smaller than 1% over a 65 dB input signal range. The noise characteristics have been improved providing good resolution at low currents. The RF burst response has also been tested showing good characteristics for use on a Linac or Transfer Line. One prototype, working at 60 MHz, has been built and is planned for use on one or more machines at the SSC.

  11. A coupling model for amplified spontaneous emission in laser resonators

    NASA Astrophysics Data System (ADS)

    Su, Hua; Wang, Xiaojun; Shang, Jianli; Yu, Yi; Tang, Chun

    2015-10-01

    The competition between amplified spontaneous emission (ASE) and main laser in solid-state laser resonators is investigated both theoretically and experimentally. A coupled model using the spatial volume integral instead of the Monte Carlo type raytrace technique is proposed to depict ASE in the laser resonators. This model is able to evaluate all possible reflections at both the polishing surface and the diffusive side, to calculate ASE for an inhomogeneous gain distribution, and to include the spectral correction. An experiment is carefully designed to verify the theoretical model and to investigate the distinct physical properties caused by the coupling between ASE and the laser oscillations. The experimental data exhibit an excellent agreement with the theoretical predictions. According to that model, we confirm that ASE in thin-disk lasers can be characterized approximately by the product of the threshold gain of the resonator and the diameter of the disks, as laser modes are highly overlapped with the pumping beam. Theoretical evaluation shows that the scattering characteristic of the disk side impacts on ASE significantly. Furthermore, we point out that ASE decreases output laser power by affecting threshold pumping power, while slope efficiency is not changed by ASE. This observation provides us with a simple way to estimate the decrease of the optical efficiency by ASE.

  12. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.

  13. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  14. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m-1 was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio

  15. Bio-isolated DC operational amplifier

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1974-01-01

    Possibility of shocks from leakage currents can be reduced by use of isolated preamplifiers. Amplifier consists of battery-powered operational amplifier coupled by means of light-emitting diodes to another amplifier which may be grounded and operated from ac power mains or separate battery supply.

  16. Low noise tuned amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1984-01-01

    A bandpass amplifier employing a field effect transistor amplifier first stage is described with a resistive load either a.c. or directly coupled to the non-inverting input of an operational amplifier second stage which is loaded in a Wien Bridge configuration. The bandpass amplifier may be operated with a signal injected into the gate terminal of the field effect transistor and the signal output taken from the output terminal of the operational amplifier. The operational amplifier stage appears as an inductive reactance, capacitive reactance and negative resistance at the non-inverting input of the operational amplifier, all of which appear in parallel with the resistive load of the field effect transistor.

  17. Using ac dipoles to localize sources of beam coupling impedance

    NASA Astrophysics Data System (ADS)

    Biancacci, N.; Tomás, R.

    2016-05-01

    The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  18. Design of fiber coupled Er:chalcogenide microsphere amplifier via particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Palma, Giuseppe; Bia, Pietro; Mescia, Luciano; Yano, Tetsuji; Nazabal, Virginie; Taguchi, Jun; Moréac, Alain; Prudenzano, Francesco

    2014-07-01

    A mid-IR amplifier consisting of a tapered chalcogenide fiber coupled to an Er-doped chalcogenide microsphere has been optimized via a particle swarm optimization (PSO) approach. More precisely, a dedicated three-dimensional numerical model, based on the coupled mode theory and solving the rate equations, has been integrated with the PSO procedure. The rate equations have included the main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions. The PSO has allowed the optimal choice of the microsphere and fiber radius, taper angle, and fiber-microsphere gap in order to maximize the amplifier gain. The taper angle and the fiber-microsphere gap have been optimized to efficiently inject into the microsphere both the pump and the signal beams and to improve their spatial overlapping with the rare-earth-doped region. The employment of the PSO approach shows different attractive features, especially when many parameters have to be optimized. The numerical results demonstrate the effectiveness of the proposed approach for the design of amplifying systems. The PSO-based optimization approach has allowed the design of a microsphere-based amplifying system more efficient than a similar device designed by using a deterministic optimization method. In fact, the amplifier designed via the PSO exhibits a simulated gain G=33.7 dB, which is higher than the gain G=6.9 dB of the amplifier designed via the deterministic method.

  19. Development of a cryogenic GaAs AC-coupled CTIA readout for far-infrared and submillimeter detectors

    NASA Astrophysics Data System (ADS)

    Nagata, Hirohisa; Kobayashi, Jun; Matsuo, Hiroshi; Hibi, Yasunori; Nakahashi, Misato; Ikeda, Hirokazu; Fujiwara, Mikio

    2008-07-01

    We have been developing cryogenic readout integrated circuits (ROICs) for sensitive detectors at far-infrared and submillimeter wavelengths: The ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. In addition, it is suitable device for ultra low background applications because of the extremely low gate leakage current. In the spring of 2008, we have designed and fabricated 4-ch AC-coupled capacitive transimpedance amplifiers and several basic digital circuits giving multiplex function for 32-element SIS photon detector array. The expected performance of the amplifier is as follows; open loop gain of >2000, power consumption <1.5 μW, and input referred noise ~ 1 μV/√Hz@1Hz. A summary of this 2008's experimental production and initial test results are presented in this paper.

  20. All-optical signal amplifier and distributor using cavity-atom coupling systems

    NASA Astrophysics Data System (ADS)

    Duan, Yafan; Lin, Gongwei; Niu, Yueping; Gong, Shangqing

    2016-05-01

    We report an all-optical signal amplifier and a signal distributor using cavity-atom coupling systems. In this system we couple atoms with an optical cavity and realize the great enhancement of a control laser by the cavity with the help of two high coupling lasers. By this effect, we can use one weak control field to control another strong target field and the intensity changes are linear with our experimental conditions. This can be used as an all-optical signal amplifier, also known as a ‘transphasor’. In our experiment, the gain of the weak field to strong field can be as high as 60. Furthermore, we can realize the distribution of optical signals, if we coordinate multiple cavity-atom coupling systems.

  1. New low-level a-c amplifier provides adjustable noise cancellation and automatic temperature compensation

    NASA Technical Reports Server (NTRS)

    Smith, J. R., Jr.

    1964-01-01

    Circuit utilizing a transistorized differential amplifier is developed for biomedical use. This low voltage operating circuit provides adjustable cancellation at the input for unbalanced noise signals, and automatic temperature compensation is accomplished by a single active element across the input-output ends.

  2. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.

    PubMed

    Loh, William; Yegnanarayanan, Siva; Plant, Jason J; O'Donnell, Frederick J; Grein, Matthew E; Klamkin, Jonathan; Duff, Shannon M; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (<-115 dBc/Hz at 1 kHz offset) and large sidemode suppression (>70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN). PMID:23038585

  3. Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber.

    PubMed

    Abedin, Kazi S; Fini, John M; Thierry, Taunay F; Zhu, Benyuan; Yan, Man F; Bansal, Lalit; Dimarcello, Frank V; Monberg, Eric M; DiGiovanni, David J

    2014-02-15

    We demonstrate a seven-core erbium-doped fiber amplifier in which all the cores were pumped simultaneously by a side-coupled tapered multimode fiber. The amplifier has multicore (MC) MC inputs and MC outputs, which can be readily spliced to MC transmission fiber for amplifying space division multiplexed signals. Gain over 25 dB was obtained in each of the cores over a 40-nm bandwidth covering the C-band. PMID:24562260

  4. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  5. Fast Charge Sensing of a Cavity-Coupled Double Quantum Dot Using a Josephson Parametric Amplifier

    NASA Astrophysics Data System (ADS)

    Stehlik, J.; Liu, Y.-Y.; Quintana, C. M.; Eichler, C.; Hartke, T. R.; Petta, J. R.

    2015-07-01

    We demonstrate fast readout of a double quantum dot (DQD) that is coupled to a superconducting resonator. Utilizing a parametric amplifier beyond its range of linear amplification, we improve the signal-to-noise ratio (SNR) by a factor of 2000 compared to the situation with the parametric amplifier turned off. With an integration time of 400 ns comparable to the inverse effective bandwidth, we achieve a SNR of 76. By measuring the SNR as a function of the integration time, we extract an equivalent charge sensitivity of 8 ×10-5 e /√{Hz } . The high SNR allows us to acquire a DQD charge-stability diagram in just 20 ms. At such a high data rate, it is possible to acquire charge-stability diagrams in a live "video mode," enabling real-time tuning of the DQD confinement potential.

  6. A flux-coupled ac/dc magnetizing device

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Liu, H.; Kent, A. D.

    2013-06-01

    We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

  7. First thin AC-coupled silicon strip sensors on 8-inch wafers

    NASA Astrophysics Data System (ADS)

    Bergauer, T.; Dragicevic, M.; König, A.; Hacker, J.; Bartl, U.

    2016-09-01

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  8. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  9. Graphene-coated coupling coil for AC resistance reduction

    DOEpatents

    Miller, John M

    2014-03-04

    At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.

  10. Traveling-Wave Parametric Amplifier Based on a Chain of Coupled Asymmetric SQUIDs

    NASA Astrophysics Data System (ADS)

    Bell, M. T.; Samolov, A.

    2015-08-01

    A traveling-wave parametric amplifier (TWPA) composed of a transmission line made up of a chain of coupled asymmetric superconducting quantum interference devices (SQUIDs) is proposed. The unique nature of this transmission line is that its nonlinearity can be tuned with an external magnetic flux and can even change sign. This feature of the transmission line can be used to perform phase matching in a degenerate four-wave mixing process which can be utilized for the parametric amplification of a weak signal in the presence of a strong pump. Numerical simulations of the TWPA design show that, with tuning, phase matching can be achieved and an exponential gain as a function of the transmission-line length can be realized. The flexibility of the proposed design can realize: compact TWPAs with fewer than 211 unit cells, signal gains greater than 20 dB, 3-dB bandwidth greater than 5.4 GHz, and saturation powers up to -98 dBm . This amplifier design is well suited for the multiplexed readout of quantum circuits or astronomical detectors in a compact configuration which can foster on-chip implementations.

  11. Traveling-Wave Parametric Amplifier Based on a Chain of Coupled Asymmetric SQUIDs

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Samolov, Ana

    A traveling-wave parametric amplifier (TWPA) composed of a transmission line made up of a chain of coupled asymmetric superconducting quantum interference devices (SQUIDs) is proposed. The unique nature of this transmission line is that its nonlinearity can be tuned with an external magnetic flux and can even change sign. This feature of the transmission line can be used to perform phase matching in a degenerate four-wave mixing process which can be utilized for the parametric amplification of a weak signal in the presence of a strong pump. Numerical simulations of the TWPA design show that, with tuning, phase matching can be achieved and an exponential gain as a function of the transmission-line length can be realized. The flexibility of the proposed design can realize: compact TWPAs with fewer than 211 unit cells, signal gains greater than 20 dB, 3-dB bandwidth greater than 5.4 GHz, and saturation powers up to -98 dBm. This amplifier design is well suited for the multiplexed readout of quantum circuits or astronomical detectors in a compact configuration which can foster on-chip implementations. Phys. Rev. Applied 4 024014 (2015). This work was supported in part by the Joseph P. Healey Research Grant (No. P2016), and University of Massachusetts Boston startup funds.

  12. Amplifier-free slab-coupled optical waveguide optoelectronic oscillator systems.

    PubMed

    Loh, William; Yegnanarayanan, Siva; Klamkin, Jonathan; Duff, Shannon M; Plant, Jason J; O'Donnell, Frederick J; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a free-running 3-GHz slab-coupled optical waveguide (SCOW) optoelectronic oscillator (OEO) with low phase-noise (<-120 dBc/Hz at 1-kHz offset) and ultra-low sidemode spurs. These sidemodes are indistinguishable from noise on a spectrum analyzer measurement (>88 dB down from carrier). The SCOW-OEO uses high-power low-noise SCOW components in a single-loop cavity employing 1.5-km delay. The noise properties of our SCOW external-cavity laser (SCOWECL) and SCOW photodiode (SCOWPD) are characterized and shown to be suitable for generation of high spectral purity microwave tones. Through comparisons made with SCOW-OEO topologies employing amplification, we observe the sidemode levels to be degraded by any amplifiers (optical or RF) introduced within the OEO cavity. PMID:23038600

  13. FAST COMPENSATION OF GLOBAL LINEAR COUPLING IN RHIC USING AC DIPOLES.

    SciTech Connect

    CALAGA, R.; FRANCHI, A. , TOMAS, R.

    2006-06-26

    Global linear coupling has been extensively studied in accelerators and several methods have been developed to compensate the coupling coefficient C using skew quadrupole families scans. However, scanning techniques can become very time consuming especially during the commissioning of an energy ramp. In this paper they illustrate a new technique to measure and compensate, in a single machine cycle, global linear coupling from turn-by-turn BPM data without the need of a skew quadrupole scan. The algorithm is applied to RHIC BPM data using AC dipoles and compared with traditional methods.

  14. An etalon stabilized 10-GHz comb source using a slab coupled waveguide amplifier

    NASA Astrophysics Data System (ADS)

    Davila-Rodriguez, Josue; Ozdur, Ibrahim T.; Mandridis, Dimitrios; Williams, Charles; Delfyett, Peter J.; Plant, Jason J.; Juodawlkis, Paul W.

    2011-06-01

    An optical comb source based on a slab-coupled optical waveguide amplifier (SCOWA) is presented. The laser is harmonically mode-locked at 10.287 GHz repetition rate and stabilized to an intra-cavity Fabry-Pérot etalon via Pound- Drever-Hall locking. The Fabry-Pérot etalon serves as a reference for the optical frequency of the comb-lines and suppresses the fiber cavity modes to allow only a single longitudinal mode-set to oscillate, generating a frequency comb spaced by the repetition rate. The pulse-to-pulse timing jitter and energy fluctuations are < 2 fs and < 0.03%, respectively (integrated from 1Hz to 100 MHz). Fundamental to this result is the incorporation of the SCOW amplifier as the gain medium and the use of an ultra-low noise sapphire-loaded cavity oscillator to mode-lock the laser. The SCOWA has higher saturation power than commercially available gain media, permitting higher intra-cavity power as well as available power at the output, increasing the power of the photodetected RF tones which increases their signal-to-noise ratio. A high visibility optical frequency comb is observed spanning ~3 nm (at -10 dB), with optical SNR > 60 dB for a cavity with no dispersion compensation. Initial results of a dispersion compensated cavity are presented. A spectral width of ~7.6 nm (-10 dB) was obtained for this case and the pulses can be compressed to near the transform limit at ~930 fs.

  15. Digital DC-Reconstruction of AC-Coupled Electrophysiological Signals with a Single Inverting Filter

    PubMed Central

    Schmid, Ramun; Leber, Remo; Schmid, Hans-Jakob; Generali, Gianluca

    2016-01-01

    Since the introduction of digital electrocardiographs, high-pass filters have been necessary for successful analog-to-digital conversion with a reasonable amplitude resolution. On the other hand, such high-pass filters may distort the diagnostically significant ST-segment of the ECG, which can result in a misleading diagnosis. We present an inverting filter that successfully undoes the effects of a 0.05 Hz single pole high-pass filter. The inverting filter has been tested on more than 1600 clinical ECGs with one-minute durations and produces a negligible mean RMS-error of 3.1*10−8 LSB. Alternative, less strong inverting filters have also been tested, as have different applications of the filters with respect to rounding of the signals after filtering. A design scheme for the alternative inverting filters has been suggested, based on the maximum strength of the filter. With the use of the suggested filters, it is possible to recover the original DC-coupled ECGs from AC-coupled ECGs, at least when a 0.05 Hz first order digital single pole high-pass filter is used for the AC-coupling. PMID:26938769

  16. Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with an intracavity fiber parametric amplifier.

    PubMed

    Dahan, David; Shumakher, Evgeny; Eisenstein, Gadi

    2005-07-01

    A self-starting optical pulse source based on mutually coupled optoelectronic oscillators is described. The system employs a phototransistor-based microwave oscillator that is coupled to a fiber cavity optoelectronic oscillator with an intracavity fiber parametric amplifier. It self-starts and exhibits 3 ps pulses at a rate of 10 GHz with extremely low jitter of 30, 29, and 40 fs (for integration bandwidths of 100 Hz-15 kHz, 500 Hz-1 MHz, and 100 Hz-1 MHz, respectively). PMID:16075517

  17. Design of mid-infrared amplifiers based on fiber taper coupling to erbium-doped microspherical resonator.

    PubMed

    Mescia, Luciano; Bia, Pietro; De Sario, Marco; Di Tommaso, Annalisa; Prudenzano, Francesco

    2012-03-26

    A dedicated 3D numerical model based on coupled mode theory and solving the rate equations has been developed to analyse, design and optimize an optical amplifier obtained by using a tapered fiber and a Er³⁺-doped chalcogenide microsphere. The simulation model takes into account the main transitions among the erbium energy levels, the amplified spontaneous emission and the most important secondary transitions pertaining to the ion-ion interactions. The taper angle of the optical fiber and the fiber-microsphere gap have been designed to efficiently inject into the microsphere both the pump and the signal beams and to improve their spatial overlapping with the rare earth doped region. In order to reduce the computational time, a detailed investigation of the amplifier performance has been carried out by changing the number of sectors in which the doped area is partitioned. The simulation results highlight that this scheme could be useful to develop high efficiency and compact mid-infrared amplifiers. PMID:22453441

  18. Second VAMAS a.c. loss measurement intercomparison: a.c. magnetization measurement of hysteresis and coupling losses in NbTi multifilamentary strands

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Itoh, K.; Wada, H.

    The article summarizes results of part of the second VAMAS a.c. loss measurement intercomparison. This program was carried out at 17 participating laboratories on two sets of multifilamentary NbTi strands (Set No. 1: copper matrix, fil. diam. between 0.5 and 12 μm; Set No. 2: cupronickel matrix, fil. diam. between 0.4 and 1.2 μm). The results reported here were measured by means of a.c. magnetization methods and separated into hysteresis and coupling losses. One laboratory used a calorimetric method. The data scatter in measured hysteresis losses among the participating laboratories was reasonably small for different measuring methods adopted and experimental arrangements used. On the other hand, the data scatter in coupling losses was large, mainly because in most laboratories a.c. losses were measured only at low frequencies (below 1 Hz), where the separation of coupling losses from total losses tends to be inaccurate. The comparison of measured hysteresis losses with the critical state model showed a large disagreement, which is assumed to be due to proximity effect coupling between filaments. 1997 Elsevier Science Limited

  19. Rabi oscillations at different tunnel couplings for an ac-gated quantum dot qubit

    NASA Astrophysics Data System (ADS)

    Thorgrimsson, Brandur; Kim, Dohun; Simmons, C. B.; Ward, Daniel R.; Foote, Ryan H.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.

    2015-03-01

    One way to create a qubit is to use two distinct positions of a single electron as qubit states. Such a system can be achieved by using the left and right positions in a gated double quantum dot. In this system the qubit is strongly coupled to electric fields and has potential for high-speed operations. By tuning specific gate voltages, the tunnel coupling between the left and right quantum dots can be changed. Here, by using resonant ac microwave driving and gate tuning, we explore variations of T2* and the Rabi frequency on the tunnel coupling and microwave drive power, and we study strong driving effects such as generation of second harmonics. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is sup- ported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  20. Evaluation of FOXFET biased ac-coupled silicon strip detector prototypes for CDF SVX upgrade

    SciTech Connect

    Laakso, M. Research Inst. for High Energy Physics , Helsinki )

    1992-03-01

    Silicon microstrip detectors for high-precision charged particle position measurements have been used in nuclear and particle physics for years. The detectors have evolved from simple surface barrier strip detectors with metal strips to highly complicated double-sided AC-coupled junction detectors. The feature of AC-coupling the readout electrodes from the diode strips necessitates the manufacture of a separate biasing structure for the strips, which comprises a common bias line together with a means for preventing the signal from one strip from spreading to its neighbors through the bias line. The obvious solution to this is to bias the strips through individual high value resistors. These resistors can be integrated on the detector wafer by depositing a layer of resistive polycrystalline silicon and patterning it to form the individual resistors. To circumvent the extra processing step required for polysilicon resistor processing and the rather difficult tuning of the process to obtain uniform and high enough resistance values throughout the large detector area, alternative methods for strip biasing have been devised. These include the usage of electron accumulation layer resistance for N{sup +}{minus} strips or the usage of the phenomenon known as the punch-through effect for P{sup +}{minus} strips. In this paper we present measurement results about the operation and radiation resistance of detectors with a punch-through effect based biasing structure known as a Field OXide Field-Effect Transistor (FOXFET), and present a model describing the FOXFET behavior. The studied detectors were prototypes for detectors to be used in the CDF silicon vertex detector upgrade.

  1. Efficient second-harmonic generation using a semiconductor tapered amplifier in a coupled ring-resonator geometry.

    PubMed

    Skoczowsky, Danilo; Jechow, Andreas; Menzel, Ralf; Paschke, Katrin; Erbert, Götz

    2010-01-15

    A new approach for efficient second-harmonic generation using diode lasers is presented. The experimental setup is based on a tapered amplifier operated in a ring resonator that is coupled to a miniaturized enhancement ring resonator containing a periodically poled lithium niobate crystal. Frequency locking of the diode laser emission to the resonance frequency of the enhancement cavity is realized purely optically, resulting in stable, single-frequency operation. Blue light at 488 nm with an output power of 310 mW is generated with an optical-to-optical conversion efficiency of 18%. PMID:20081978

  2. Fast switching, modular high-voltage DC/AC-power supplies for RF-Amplifiers and other applications

    SciTech Connect

    Alex, J.; Schminke, W.

    1995-12-31

    A new kind of high voltage high-power Pulse-Step Modulator (PSM) for broadcast transmitters, accelerator sources, for NBI (Neutral Beam Injection for Plasma Heating), gyrotrons and klystrons has been developed. Since its first introduction in 1984 for broadcast transmitters, more than 100 high-power sound broadcast transmitters had been equipped with the first generation of the PSM modulators, using Gate Turn-Off Thyristors (GTOs) as switching elements. Recently, due to faster switching elements and making use of the latest DSP technologies (Digital Signal Processing), the performance data and areas of application could be extended further. In 1994, a precision high voltage source for MW gyrotrons was installed at CRPP in Lausanne. Supplementary very low cost solutions for lower powers but high voltages had been developed. Hence, today, a large area of applications can be satisfied with the family of solutions. The paper describes the principle of operation, the related control systems and refers to some particular applications of the PSM amplifiers, especially the newest developments and corresponding field results.

  3. Study of the design optimization of AC-coupled single-sided silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Jeon, H. B.; Kang, K. H.; Park, H.; Hyun, H. J.

    2015-05-01

    The high-intensity rare-isotope accelerator, RAON, will be constructed for nuclear physics research in Korea. AC-coupled single-sided silicon strip detectors (SSSDs) are being investigated for use in the Si-CsI detector of a large acceptance multi-purpose spectrometer to measure the energies of various isotopes. To determine the optimal design, four SSSD design parameters were examined in this study, namely the ratio of p+ implant width to strip pitch ( I/P), the width of the metal layer, the presence of an n+-edge field shaper (FS), and the distance between the guard-ring and sensor edge (DGS). The designed detectors were fabricated on high resistivity n-type silicon wafers of 500 μm thickness. The SSSDs had the strip pitch of 730 μm and 32 readout strips in each, and the size of the sensors was 40.0 × 25.5 mm2. In terms of the leakage current and production yield, the noise improved by up to 30%when the I/P ratio was 0.4, the metal layer was wider than the p+ implantation, and the DGS with n+-edge FS was twice the sensor thickness. The signal-to-noise ratio of the SSSD with the design parameters that provided the optimal leakage current and coupling capacitance was measured to be 29.1 using a 90Sr radioactive source and commercial electronics.

  4. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  5. The Design of Monolithic AC-coupled 1-Dimensional Voltage-Controlled-Oscillators (VCOs) Phased-array Network

    NASA Astrophysics Data System (ADS)

    Lie, Donald Y. C.; Lopez, J.

    2011-04-01

    A fully monolithic 1-Dimensional (1-D) AC-coupled Voltage-Controlled-Oscillators (VCOs) phased-array network design will be presented in this paper. This radio-frequency (RF) VCO array integrates on-chip inductors, varactors and bias current sources and it contains an odd number of VCOs AC-coupled through on-chip switchable resistor networks using MOSFETs. The measured results and SPICE simulated performance of the monolithic unit cell VCO agree reasonably well. Realistic circuit simulations in IBM 7HP 0.18 um BiCMOS design kit indicate promising results of the 1-D coupled-VCO array by showing the design can control the phasing of this on-chip VCO-array by means of tuning the edge elements and/or by varying the coupling strength via different resistor values using the on-chip MOSFET switches. Simulation data shows that it can offer high directivity and a possible element-to-element phase tuning arrangement that allows a ˜±20-30° degree coverage from broadside without the need for phase shifters or additional circuitry complexity. This AC-coupled 1-D VCO array, therefore, shows great potential for RF active antennas applications to perform wide angle beam steering for the highly used S-band.

  6. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  7. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect

    Haque, S; Frost, F Dion R.; Groulx, R; Holland, S E; Karcher, A; Kolbe, W F; Roe, N A; Wang, G; Yu, Y

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup -} rms at 70 kpixels/sec.

  8. Coupling an induction motor type generator to ac power lines. [making windmill generators compatible with public power lines

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A system for coupling an induction motor type generator to an A.C. power line includes an electronic switch means that is controlled by a control system and is regulated to turn on at a relatively late point in each half cycle of its operation. The energizing power supplied by the line to the induction motor type generator is decreased and the net power delivered to the line is increased.

  9. AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling.

    PubMed

    Ivanoff, Chris S; Wu, Jie Jayne; Mirzajani, Hadi; Cheng, Cheng; Yuan, Quan; Kevorkyan, Stepan; Gaydarova, Radostina; Tomlekova, Desislava

    2016-10-01

    AC electrokinetics (ACEK) has been shown to deliver certain drugs into human teeth more effectively than diffusion. However, using electrical wires to power intraoral ACEK devices poses risks to patients. The study demonstrates a novel interdigitated electrode arrays (IDE) assembly powered by inductive coupling to induce ACEK effects at appropriate frequencies to motivate drugs wirelessly. A signal generator produces the modulating signal, which multiplies with the carrier signal to produce the amplitude modulated (AM) signal. The AM signal goes through the inductive link to appear on the secondary coil, then rectified and filtered to dispose of its carrier signal, and the positive half of the modulating signal appears on the load. After characterizing the device, the device is validated under light microscopy by motivating carboxylate-modified microspheres, tetracycline, acetaminophen, benzocaine, lidocaine and carbamide peroxide particles with induced ACEK effects. The assembly is finally tested in a common dental bleaching application. After applying 35 % carbamide peroxide to human teeth topically or with the IDE at 1200 Hz, 5 Vpp for 20 min, spectrophotometric analysis showed that compared to diffusion, the IDE enhanced whitening in specular optic and specular optic excluded modes by 215 % and 194 % respectively. Carbamide peroxide absorbance by the ACEK group was two times greater than diffusion as measured by colorimetric oxidation-reduction and UV-Vis spectroscopy at 550 nm. The device motivates drugs of variable molecular weight and structure wirelessly. Wireless transport of drugs to intraoral targets under ACEK effects may potentially improve the efficacy and safety of drug delivery in dentistry. PMID:27565821

  10. Novel scheme of assist-light injection through waveguide coupling in a semiconductor optical amplifier for fast gain recovery

    NASA Astrophysics Data System (ADS)

    Nithin, V.; Kumar, Yogesh; Shenoy, M. R.

    2016-01-01

    We propose a novel scheme for injection of assist-light into the active region of a semiconductor optical amplifier (SOA) for fast gain recovery. In the proposed scheme, the assist-light is coupled into the active region of the SOA through an adjacent channel waveguide. Numerical results based on the well established model for carrier dynamics in SOA show that the gain recovery is faster in the proposed scheme as compared to the earlier reported scheme of counter-propagating assist-light injection. Our analysis shows that a desired power profile of the assist-light can be maintained in the active region of the SOA by tailoring the coupling through suitable design of the adjacent channel waveguide. The dependence of gain recovery on the input power of the assist-light in the proposed scheme has also been studied. Under typical operating conditions, it is found that 20 dBm of assist-light power injection in the proposed scheme is as effective as 27 dBm of assist-light power in the counter-propagating scheme.

  11. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism

    NASA Astrophysics Data System (ADS)

    Quickel, Thomas E.; Schelhas, Laura T.; Farrell, Richard A.; Petkov, Nikolay; Le, Van H.; Tolbert, Sarah H.

    2015-03-01

    Coupled ferromagnetic and ferroelectric materials, known as multiferroics, are an important class of materials that allow magnetism to be manipulated through the application of electric fields. Bismuth ferrite, BiFeO3, is the most-studied intrinsic magnetoelectric multiferroic because it maintains both ferroelectric and magnetic ordering to well above room temperature. Here we report the use of epitaxy-free wet chemical methods to create strained nanoporous BiFeO3. We find that the strained material shows large changes in saturation magnetization on application of an electric field, changing from 0.04 to 0.84 μb per Fe. For comparison, non-porous films produced using analogous methods change from just 0.002 to 0.01 μb per Fe on application of the same electric field. The results indicate that nanoscale architecture can complement strain-layer epitaxy as a tool to strain engineer magnetoelectric materials.

  12. Mesoporous bismuth ferrite with amplified magnetoelectric coupling and electric field-induced ferrimagnetism.

    PubMed

    Quickel, Thomas E; Schelhas, Laura T; Farrell, Richard A; Petkov, Nikolay; Le, Van H; Tolbert, Sarah H

    2015-01-01

    Coupled ferromagnetic and ferroelectric materials, known as multiferroics, are an important class of materials that allow magnetism to be manipulated through the application of electric fields. Bismuth ferrite, BiFeO3, is the most-studied intrinsic magnetoelectric multiferroic because it maintains both ferroelectric and magnetic ordering to well above room temperature. Here we report the use of epitaxy-free wet chemical methods to create strained nanoporous BiFeO3. We find that the strained material shows large changes in saturation magnetization on application of an electric field, changing from 0.04 to 0.84 μb per Fe. For comparison, non-porous films produced using analogous methods change from just 0.002 to 0.01 μb per Fe on application of the same electric field. The results indicate that nanoscale architecture can complement strain-layer epitaxy as a tool to strain engineer magnetoelectric materials. PMID:25754622

  13. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier.

    PubMed

    Hou, Lianping; Haji, Mohsin; Akbar, Jehan; Marsh, John H

    2012-11-01

    We present a laterally coupled 1.55 μm AlGaInAs/InP distributed feedback laser monolithically integrated with a curved tapered optical amplifier, providing an output power of 210 mW with single transverse and longitudinal mode operation exhibiting a record low linewidth of 64 kHz. PMID:23114351

  14. Portable musical instrument amplifier

    DOEpatents

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  15. A fast large dynamic range shaping amplifier for particle detector front-end

    NASA Astrophysics Data System (ADS)

    Rivetti, Angelo; Delaurenti, Paolo

    2007-03-01

    The paper describes a fast shaping amplifier with rail-to-rail output swing. The circuit is based on a CMOS operational amplifier with a class AB output stage. A baseline holder, incorporating a closed-loop unity gain buffer with slew rate limitation, performs the AC coupling with the preamplifier and guarantees a baseline shift smaller than 3 mV for unipolar output pulses of 3 V and 10 MHz rate.

  16. Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme.

    PubMed

    Jin, Lu-Yi; Dong, Yu-Ming; Wu, Xiu-Ming; Cao, Gen-Xia; Wang, Guang-Li

    2015-10-20

    The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays. PMID:26419907

  17. Synchronous Photoinjection Using a Frequency-Doubled Gain-Switched Fiber-Coupled Seed Laser and ErYb-Doped Fiber Amplifier

    SciTech Connect

    John Hansknecht; Benard Poelker

    2006-06-01

    Light at 1.56 um from a gain-switched fiber-coupled diode laser and ErYb-doped fiber amplifier was frequency doubled to obtain over 2W average power at 780 nm with {approx} 40ps pulses and pulse repetition rate of 499 MHz. This light was used to drive the 100kV DC high voltage GaAs photoemission gun at CEBAF at Jefferson Laboratory to produce a high average current beam (100uA) of highly spin-polarized electrons (>80%). This new drive laser system represents a significant advance over laser systems used previously, providing significantly higher power and enhanced reliability.

  18. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  19. Applications of Kinetic Inductance: Parametric Amplifier & Phase Shifter, 2DEG Coupled Co-planar Structures & Microstrip to Slotline Transition at RF Frequencies

    NASA Astrophysics Data System (ADS)

    Surdi, Harshad

    Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K +/- 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz -- 115 GHz). The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift Deltaφmax(I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a

  20. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Divergence and intensity of amplified spontaneous emission coupled out of an active medium by a distributed refraction method

    NASA Astrophysics Data System (ADS)

    Ladagin, V. K.; Starikov, F. A.; Urlin, V. D.

    1993-05-01

    The dynamics of the radiation in the near and far zones has been studied analytically and numerically for the case in which nonlinearly amplified spontaneous x radiation is coupled out of a plasma active medium by a distributed refraction method. The divergence Δθ of the amplified noise falls off exponentially with increasing length of the active medium, z. When z is equal to five or six refraction lengths, Δθ is an order of magnitude smaller than the geometric divergence. The maximum radiation flux qm is at the refraction angle and increases exponentially with increasing z. The rate of increase of qm and the rate of decrease of Δθ may be lowered by diffraction. In the case of a linear amplification of the noise, qm also corresponds to the refraction angle and may be much greater than the paraxial flux density. However, the advantage over coupling out the end in the case of a homogeneous active medium is achieved at a substantial cost in power.

  1. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOEpatents

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  2. Classicalization times of parametrically amplified “Schrödinger cat” states coupled to phase-sensitive reservoirs

    NASA Astrophysics Data System (ADS)

    Dodonov, V. V.; Valverde, C.; Souza, L. S.; Baseia, B.

    2011-10-01

    The exact Wigner function of a parametrically excited quantum oscillator in a phase-sensitive amplifying/attenuating reservoir is found for initial even/odd coherent states. Studying the evolution of negativity of the Wigner function we show the difference between the “initial positivization time” (IPT), which is inversely proportional to the square of the initial size of the superposition, and the “final positivization time” (FPT), which does not depend on this size. Both these times can be made arbitrarily long in maximally squeezed high-temperature reservoirs. Besides, we find the conditions when some (small) squeezing can exist even after the Wigner function becomes totally positive.

  3. Galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718 and graphite-epoxy composite material: Corrosion occurrence and prevention

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Higgins, R. H.

    1983-01-01

    The effects of galvanic coupling between D6AC steel, 6061-T6 aluminum, Inconel 718, and graphite-epoxy composite material (G/E) in 3.5% NaCl were studied. Measurements of corrosion potentials, galvanic currents and corrosion rates of the bare metals using weight-loss methods served to establish the need for corrosion protection in cases where D6AC steel and 6061-T6 aluminum are galvanically coupled to G/E in salt water while Inconel 718 was shown to be compatible with G/E. Six tests were made to study corrosion protective methods for eliminating galvanic corrosion in the cases of D6AC steel and 6061-T6 aluminum coupled to G/E. These results indicate that, when the G/E is completely coated with paint or a paint/polyurethane resin combination, satisfactory protection of the D6AC steel is achieved with either a coat of zinc-rich primer or a primer/topcoat combination. Likewise, satisfactory corrosion protection of the aluminum is achieved by coating it with an epoxy coating system.

  4. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  5. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  6. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease

    PubMed Central

    Krause, Vanessa; Wach, Claudia; Südmeyer, Martin; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina

    2014-01-01

    Parkinson’s disease (PD) is associated with pathologically altered oscillatory activity. While synchronized oscillations between 13 and 30 Hz are increased within a cortico-subcortical network, cortico-muscular coupling (CMC) is decreased. The present study aims at investigating the effect of non-invasive transcranial alternating current stimulation (tACS) of the primary motor cortex (M1) on motor symptoms and motor-cortical oscillations in PD. In 10 PD patients and 10 healthy control subjects, static isometric contraction, dynamic fast finger tapping, and diadochokinesia of the more severely affected hand were investigated prior to and shortly after tACS of the contralateral M1 at 10 Hz vs. 20 Hz vs. sham. During isometric contraction, neuromagnetic activity was recorded using magnetoencephalography. 20 Hz tACS attenuated beta band CMC during isometric contraction and amplitude variability during finger tapping in PD patients but not in healthy control subjects. 10 Hz tACS yielded no significant after-effects. The present data suggest that PD is associated with pathophysiological alterations which abet a higher responsiveness toward frequency-specific tACS – possibly due to pathologically altered motor-cortical oscillatory synchronization at frequencies between 13 and 30 Hz. PMID:24474912

  7. Proximate transition temperatures amplify linear magnetoelectric coupling in strain-disordered multiferroic BiMnO3

    NASA Astrophysics Data System (ADS)

    Mickel, Patrick R.; Jeen, Hyoungjeen; Kumar, Pradeep; Biswas, Amlan; Hebard, Arthur F.

    2016-04-01

    We report a giant linear magnetoelectric coupling in strained BiMnO3 thin films in which the disorder associated with an islanded morphology gives rise to extrinsic relaxor ferroelectricity that is not present in bulk centrosymmetric ferromagnetic crystalline BiMnO3. Strain associated with the disorder is treated as a local variable, which couples to the two ferroic order parameters, magnetization M ⃗ and polarization P ⃗. A straightforward "gas under a piston" thermodynamic treatment explains the observed correlated temperature dependencies of the product of susceptibilities and the magnetoelectric coefficient together with the enhancement of the coupling by the proximity of the ferroic transition temperatures close to the relaxor freezing temperature. Our interpretation is based on a trilinear coupling term in the free energy of the form L ⃗.(P ⃗×M ⃗) , where L ⃗ is a hidden antiferromagnetic order parameter, previously postulated by theory for BiMnO3. This phenomenological invariant not only preserves inversion and time-reversal symmetry of the strain-induced interactions but also explains the pronounced linear magnetoelectric coupling without using the more conventional higher order biquadratic interaction proportional to (P⃗.M ⃗) 2.

  8. Coupling a DNA-Based Machine with Glucometer Readouts for Amplified Detection of Telomerase Activity in Cancer Cells

    PubMed Central

    Wang, Wenjing; Huang, Shan; Li, Jingjing; Rui, Kai; Zhang, Jian-Rong; Zhu, Jun-Jie

    2016-01-01

    The strong correlation between cancer and telomerase activity has inspired the development of new strategies to evaluate telomerase activity. Here, a personal glucose meter (PGM) system that uses DNA-based machine amplification to detect telomerase in cancer cells is reported. In this assay, telomerase elongation products are amplified in the form of another type of product by a DNA-based machine. This process can only be activated by the hybridization of the extended telomerase substrate (TS) probe and the complementary primer in the presence of telomerase. The obtained products are then transformed to glucose-related signals via a three-component assay, which enables the simple use of a PGM to indirectly quantify the telomerase activity. The proposed method realizes sensitive telomerase activity detection down to 20 HeLa cells with a significantly enhanced dynamic range. Additionally, short telomerase elongation products, such as telomerase substrate probes with two repetitive sequences, that cannot be detected using the most widely used telomeric repeat amplification protocol assay were detected. PMID:27009555

  9. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  10. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  11. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  12. STABILIZED FEEDBACK AMPLIFIER

    DOEpatents

    Fishbine, H.L.; Sewell, C. Jr.

    1957-08-01

    Negative feedback amplifiers, and particularly a negative feedback circuit which is economical on amode power consumption, are described. Basically, the disclosed circuit comprises two tetrode tubes where the output of the first tube is capacitamce coupled to the grid of the second tube, which in turn has its plate coupled to the cathode of the first tube to form a degenerative feedback circuit. Operating potential for screen of the second tube is supplied by connecting the cathode resistor of the first tube to the screen, while the screen is by-passed to the cathode of its tube for the amplified frequencies. Also, the amplifier incorporates a circuit to stabilize the transconductance of the tubes by making the grid potential of each tube interdependent on anode currents of both lubes by voltage divider circuitry.

  13. Improved RF Isolation Amplifier

    NASA Technical Reports Server (NTRS)

    Stevens, G. L.; Macconnell, J.

    1985-01-01

    Circuit has high reverse isolation and wide bandwidth. Wideband isolation amplifier has low intermodulation distortion and high reverse isolation. Circuit does not require selected or matched components or directional coupling device. Circuit used in applications requiring high reverse isolation such as receiver intermediate-frequency (IF) strips and frequency distribution systems. Also applicable in RF and video signaling.

  14. An upstream reach-extender for 10Gb/s PON applications based on an optimized semiconductor amplifier cascade.

    PubMed

    Porto, Stefano; Antony, Cleitus; Ossieur, Peter; Townsend, Paul D

    2012-01-01

    We present a reach-extender for the upstream transmission path of 10Gb/s passive optical networks based on an optimised cascade of two semiconductor optical amplifiers (SOAs). Through careful optimisation of the bias current of the second stage SOA, over 19dB input dynamic range and up to 12dB compression of the output dynamic range were achieved without any dynamic control. A reach of 70km and split up to 32 were demonstrated experimentally using an ac-coupled, continuous-mode receiver with a reduced 56ns ac-coupling constant. PMID:22274342

  15. Gyromagnetron amplifier

    SciTech Connect

    Lau, Y.-Y.; Barnett, L. R.

    1985-10-29

    A gyromagnetron amplifier for radiation at millimeter wavelengths comprising a tapered waveguide tube with longitudinally running vanes in the walls of the tube with the number of vanes chosen to coincide with a desired cyclotron harmonic frequency to be amplified. A beam of spiralling mildly relativistic electrons with an energy of 100 keV or less is directed into the small end of the tapered waveguide tube. A tapered axial magnetic field is set up within the waveguide tube with a low value appropriate to the amplification of a cyclotron harmonic frequency. An electromagnetic wave to be amplified is launched into the waveguide tube to co-propagate and be amplified by the spiralling electron beam. This device is characterized by a wide bandwidth, a low operating magnetic field, a relatively low operating beam voltage, with high power, and the capability of continuous wave operation.

  16. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  17. Ping-pong auto-zero amplifier with glitch reduction

    SciTech Connect

    Larson, Mark R.

    2008-01-22

    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  18. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    NASA Astrophysics Data System (ADS)

    Manninen, N. K.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S.

    2016-07-01

    Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag+ due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  19. AC Stark effect in a spin-orbit mixed quantum states in a five-level molecular system coupled by three lasers

    NASA Astrophysics Data System (ADS)

    Qi, Jianbing

    2016-05-01

    The interaction of the spin orbital motion of electrons can mix quantum states with different spin multiplicity. Thus the mixed states can carry both characteristics of the two states depending on the mixing coefficients. The spin-orbit coupled rovibrational levels in diatomic alkali are ubiquitous. These levels are classified as singlet states (if the total spin is zero) and triplet states (if the total spin is one), respectively. A transition from a singlet level can only go to singlet levels and a triplet only to triplet levels. The spin-orbit coupled states can be used as a gateway to access some normally prohibited transitions. By coupling the mixed states to an auxiliary quantum state with lasers, the coupling coefficient of two mixed singlet-triplet molecular states can be modified by ac Stark effect via varying the Rabi frequency of the coupling lasers and the detuning of the laser frequency, We use density matrix equations and a five-level molecular model to show that a coupled singlet-triplet pair of rovibrational levels can be used as a channel to enhance the probability of accessing target quantum states.

  20. LOGARITHMIC AMPLIFIER

    DOEpatents

    Wade, E.J.; Stone, R.S.

    1959-03-10

    Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.

  1. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  2. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  3. Amplified Policymaking

    ERIC Educational Resources Information Center

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  4. Tapered fiber amplifier

    NASA Astrophysics Data System (ADS)

    Russell, Stephen D.; Stamnitz, Timothy C.

    1990-07-01

    A tapered optical fiber amplifier is designed to provide for long-distance, un-repeatered fiber optic communications. Two single-mode fiber portions are tapered to efficiently intensify and couple an information signal from a laser diode and a pump signal at a shorter wavelength into a fused, tapered single-mode fiber optic coupler. The concentrated information signal and concentrated pump signal are combined via the coupler which is coupled to a several-kilometer length of a relatively small core diametered single-mode fiber to create nonlinear optical effect (stimulated Raman scattering) (SRS). The SRS causes Raman shift of the pump light into the small core diametered single-mode fiber length, thereby generating SRS to result in a signal amplification and an efficient extraction of the amplified signal via the tapered output fiber portion or pigtail.

  5. STABILIZED TRANSISTOR AMPLIFIER

    DOEpatents

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  6. Bio-potential amplifier for potential gradient measurements

    NASA Astrophysics Data System (ADS)

    Bermúdez, Andrea N.; Spinelli, Enrique M.; Muravchik, Carlos H.

    2007-11-01

    This work proposes a bio-potential amplifier suitable for measurements from an electric potential gradient sensor, in electro-encephalography (EEG). The sensor is an array made by three electrodes placed on the vertices of an equilateral triangle of reduced size. Measuring the gradient requires small separation between electrodes hence, very low amplitude signals, of a few μV, are obtained. Therefore, it is important to minimize amplifier noise and electromagnetic interference effects. In the proposed scheme, the first stage is a passive and balanced ac-coupling network adapted to the gradient configuration and the second stage is an 80 dB gain amplifier. The implementation requires a reduced number of components. Therefore, the circuit can be mounted just above the electrodes (active electrodes). The proposed amplifier was built and tested. It achieves a CMRR of 125dB at 50 Hz and an equivalent input noise voltage of 0,3μV RMS in the band 0.5 - 500 Hz. Finally, some preliminary results in the detection of occipital alpha rhythm are presented.

  7. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  8. Parallel multilayer magnetoelectric composite based on (1-x)Pb(Mg1/3Nb2/3)-xPbTiO3 and Terfenol-D coupled with charge mode amplifier

    NASA Astrophysics Data System (ADS)

    Jiao, Jie; Li, Lingying; Ren, Bo; Guo, Hao; Deng, Hao; Di, Wenning; Zhao, Xiangyong; Jing, Weiping; Luo, Haosu

    2012-02-01

    In this paper, the sources and categories of noise regarding a charge mode magnetoelectric (ME) sensor are analyzed and simulated. A series of parallel multilayer magnetoelectric composites of Terfenol-D and (1-x)Pb(Mg1/3Nb2/3)-xPbTiO3 with different numbers of layers have been developed. The high magnetoelectric charge coefficients of these composites have been measured. By coupling different parallel multilayer magnetoelectric composites with a low noise-level charge amplifier, we found that the noise equivalent magnetic induction (NEB) of the ME sensor based on the charge mode is in accordance with the theoretical prediction, and multilayers can reduce the NEB at low frequency and hardly at high frequency. At last we have established a new method of using high g31 piezoelectric material that can effectively reduce the influence of the operational amplifier voltage noise component and enhance resolution.

  9. REGENERATIVE TRANSISTOR AMPLIFIER

    DOEpatents

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  10. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  11. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  12. ULTRA-STABILIZED D. C. AMPLIFIER

    DOEpatents

    Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.

    1959-02-17

    An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.

  13. A dc amplifier for nuclear particle measurement

    NASA Technical Reports Server (NTRS)

    Macnee, A. B.; Masnari, N. A.

    1978-01-01

    A monolithic preamplifier-postamplifier combination has been developed for use with solid state particle detectors. The direct coupled amplifiers employ interdigitated n-channel JFET's, diodes, and diffused resistors. The circuits developed demonstrate the feasibility of matching the performance of existing discrete component designs. The fabrication procedures for the monolithic amplifier fabrication are presented and the results of measurements on a limited number of sample amplifiers are given.

  14. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  15. Bio-isolated dc operational amplifier. [for bioelectric measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1974-01-01

    A bio-isolated dc operational amplifier is described for use in making bioelectrical measurements of a patient while providing isolation of the patient from electrical shocks. The circuit contains a first operational amplifier coupled to the patient with its output coupled in a forward loop through a first optic coupler to a second operational amplifier. The output of the second operational amplifier is coupled to suitable monitoring circuitry via a feedback circuit including a second optic coupler to the input of the first operational amplifier.

  16. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  17. A low power on-chip class-E power amplifier for remotely powered implantable sensor systems

    NASA Astrophysics Data System (ADS)

    Ture, Kerim; Kilinc, Enver G.; Dehollain, Catherine

    2015-06-01

    This paper presents a low power fully integrated class-E power amplifier and its integration with remotely powered sensor system. The class-E power amplifier is suitable solution for low-power applications due to its high power efficiency. However, the required high inductance values which make the on-chip integration of the power amplifier difficult. The designed power amplifier is fully integrated in the remotely powered sensor system and fabricated in 0.18 μm CMOS process. The power is transferred to the implantable sensor system at 13.56 MHz by using an inductively coupled remote powering link. The induced AC voltage on the implant coil is converted into a DC voltage by a passive full-wave rectifier. A voltage regulator is used to suppress the ripples and create a clean and stable 1.8 V supply voltage for the sensor and communication blocks. The data collected from the sensors is transmitted by on-off keying modulated low-power transmitter at 1.2 GHz frequency. The transmitter is composed of a LC tank oscillator and a fully on-chip class-E power amplifier. An additional output network is used for the power amplifier which makes the integration of the power amplifier fully on-chip. The integrated power amplifier with 0.2 V supply voltage has a drain efficiency of 31.5% at -10 dBm output power for 50 Ω load. The measurement results verify the functionality of the power amplifier and the remotely powered implantable sensor system. The data communication is also verified by using a commercial 50 Ω chip antenna and has 600 kbps data rate at 1 m communication distance.

  18. A low-noise instrumentation amplifier with DC suppression for recording ENG signals.

    PubMed

    Paraskevopoulou, Sivylla E; Eftekhar, Amir; Kulasekeram, Nishanth; Toumazou, Christofer

    2015-08-01

    This paper presents an AC-coupled instrumentation amplifier for electroneurogram (ENG) activity recording. For this design, we evaluate gain and noise requirements based on interference sources (electrodes, power line, EMG). The circuit has been implemented in a commercially-available 0.35μm CMOS technology with total power consumption 460μW. The amplifier achieves CMRR 107 dB and integrated input referred noise 940 nV. The gain is 63 dB and the bandwidth is 0.5 Hz- 13 kHz. The chosen topology enables to minimise on-chip capacitance (only 27 pF), with a total chip area of 0.4mm2. PMID:26736847

  19. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  20. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2008-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  1. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  2. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2011-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  3. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  4. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  5. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2010-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  6. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  7. Narrow-band amplified photoluminescence of amorphous silicon quantum dots via the coupling between localized surface plasmon and Fabry-Pérot cavity modes

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Lin, Ming-Yi; Hsiao, Li-Jen; Choi, Wing-Kit; Lin, Hoang Yan

    2016-02-01

    We experimentally investigate the multifold intensity enhancement and spectral narrowing of photoluminescence (PL) from amorphous silicon quantum dots (a-Si QDs) embedded in a silicon-rich SiOx film of the Ag/SiOx:a-Si QDs/Au plasmonic nanocavity, through the resonance coupling between the localized surface plasmon (LSP) mode and the Fabry-Pérot (FP) cavity mode, by tuning a one-dimensional (1-D) Ag grating on the top. The LSP resonance can be precisely tuned by adjusting the Ag line widths of the 1-D Ag grating. It is found that the LSP mode strongly couples with the FP cavity mode, resulting in a narrower emission line width and a larger PL enhancement. An optimized Ag grating structure is found to exhibit a narrow emission line width of 15 nm and 2.77-fold enhancement in the PL peak intensity, as compared to an SiOx:a-Si QDs/Au structure without 1-D Ag grating, due to the strong resonance coupling between the two modes.

  8. Qubit readout with a directional parametric amplifier

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.

  9. High voltage distributed amplifier

    NASA Astrophysics Data System (ADS)

    Willems, D.; Bahl, I.; Wirsing, K.

    1991-12-01

    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  10. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  11. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  12. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH{sub 2}F{sub 2}/H{sub 2} plasmas

    SciTech Connect

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-15

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si{sub 3}N{sub 4} hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si{sub 3}N{sub 4} layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH{sub 2}F{sub 2}/H{sub 2}/Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P{sub HF}), and low-frequency source power (P{sub LF}). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si{sub 3}N{sub 4} layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si{sub 3}N{sub 4}/PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO{sub x}/PVD a-C/Si{sub 3}N{sub 4} MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si{sub 3}N{sub 4} hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  13. A cryo-amplifier working in a double loop-flux locked loop scheme for SQUID readout of TES detectors

    NASA Astrophysics Data System (ADS)

    Torrioli, Guido; Bastia, Paolo; Piro, Luigi; Macculi, Claudio; Colasanti, Luca

    2010-07-01

    In this paper we report on a novel SQUID readout scheme, called Double Loop-Flux Locked loop (DL-FLL), that we are investigating in the frame of ASI and ESA technological development contracts. This scheme is based on the realization of a cryogenic amplifier which is used in order to readout TES detectors in the Frequency Division Multiplexing technique, where high loop-gain is required up to few MHz. Loop-gain in feedback systems is, usually, limited by the propagation delay of the signals traveling in the loop because of the distance between the feedback loop elements. This problem is particularly evident in the case of SQUID systems, where the elements of the feedback loop are placed both at cryogenic and room temperature. To solve this issue we propose a low power dissipation cryo-amplifier capable to work at cryogenic temperatures so that it can be placed close to the SQUID realizing a local cryogenic loop. The adoption of the DL-FLL scheme allows to simplify considerably the cryo-amplifier which, being AC-coupled, don't require the features of a precision DC-coupled amplifier and can be made with a limited number of electronic components and with a consequent reduction of power dissipation.

  14. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  15. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  16. Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper(II) ion coupling with DNAzyme-catalyzed precipitation strategy.

    PubMed

    Xu, Mingdi; Gao, Zhuangqiang; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2015-12-15

    A new signal-amplification strategy based on copper(II) (Cu(2+))-dependent DNAzyme was developed for sensitive impedimetric biosensing of Cu(2+) in aqueous solution by coupling with target-induced formation of hemin/G-quadruplex-based DNAzyme and enzymatic catalytic precipitation technique. Initially, the target analyte cleaved the Cu(2+)-specific DNAzyme to generate an initiator strand on the sensor. Thereafter, the initiator strand underwent an unbiased strand-displacement reaction between hairpin probes in turn to construct a nicked double-helix, accompanying the formation of hemin/G-quadruplex DNAzyme on the long duplex DNA. The newly formed DNAzyme could oxidize the 4-chloro-1-naphthol (4-CN) to produce an insoluble precipitation on the sensor, thus resulting in a local alteration of the conductivity. Under the optimal conditions, the resistance increased with the increasing Cu(2+) in the sample, and exhibited a wide dynamic working range from 0.1 pM to 5.0 nM with a detection limit of 60 fM. The methodology also displayed a high selectivity for Cu(2+) relative to other potentially interfering ions owing to the highly specific Cu(2+)-dependent DNAzyme, and was applicable for monitoring Cu(2+) in real river samples. Thus, our strategy has a good potential in the environment surveys. PMID:26093122

  17. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  18. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  19. High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillator power amplifier.

    PubMed

    Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Hu, Chengzhi; Wu, Bo; Shen, Yonghang

    2013-09-01

    We have experimentally demonstrated a periodically poled magnesium-oxide-doped lithium niobate (PPMgLN)-based, fiber-laser-pumped optical parametric oscillator (OPO) generating idler wavelength of 3.82 μm. The pump fiber laser was constructed with a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber oscillator and a polarization-maintaining fiber amplifier with pulse duration of 190 ns at the highest output power. The OPO was specifically configured in single-pass, singly resonant linear cavity structure to avoid the damage risk of the pump fiber laser, which is always a serious issue in the fiber-laser-pumped, double-pass, singly oscillating structured OPOs. Under the highest pump power of 25 W, an idler average output power of 3.27 W with one-hour peak-to-peak instability of 5.2% was obtained. The measured M2 factors were 1.98 and 1.44 for horizontal and vertical axis, respectively. The high power stability and good beam quality demonstrated the suitability of such technology for practical application. PMID:24085093

  20. Saturation of the right-leg drive amplifier in low-voltage ECG monitors.

    PubMed

    Freeman, Daniel K; Gatzke, Ronald D; Mallas, Georgios; Chen, Yu; Brouse, Chris J

    2015-01-01

    Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation. PMID:25181288

  1. Dye laser amplifier

    DOEpatents

    Moses, Edward I.

    1992-01-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye lr amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant.

  2. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  3. Amplifier improvement circuit

    NASA Technical Reports Server (NTRS)

    Sturman, J.

    1968-01-01

    Stable input stage was designed for the use with a integrated circuit operational amplifier to provide improved performance as an instrumentation-type amplifier. The circuit provides high input impedance, stable gain, good common mode rejection, very low drift, and low output impedance.

  4. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  5. Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

    2012-01-01

    The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

  6. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  7. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Hallberg, Carl; Cecil, Jim

    1994-01-01

    A state-of-the-art instrumentation amplifier capable of being used with most types of transducers has been developed at the Kennedy Space Center. This Universal Signal Conditioning Amplifier (USCA) can eliminate costly measurement setup item and troubleshooting, improve system reliability and provide more accurate data than conventional amplifiers. The USCA can configure itself for maximum resolution and accuracy based on information read from a RAM chip attached to each transducer. Excitation voltages or current are also automatically configured. The amplifier uses both analog and digital state-of-the-art technology with analog-to-digital conversion performed in the early stages in order to minimize errors introduced by offset and gain drifts in the analog components. A dynamic temperature compensation scheme has been designed to achieve and maintain 12-bit accuracy of the amplifier from 0 to 70 C. The digital signal processing section allows the implementation of digital filters up to 511th order. The amplifier can also perform real-time linearizations up to fourth order while processing data at a rate of 23.438 kS/s. Both digital and analog outputs are available from the amplifier.

  8. Experimental results of a vortex flow transistor amplifier

    SciTech Connect

    McGinnis, D.P.; Hohenwarter, G.K.G.; Ketkar, M.; Beyer, J.B.; Nordman, J.E.

    1989-03-01

    A Niobium based superconducting amplifier consisting of a series array of 60 vortex flow transistors (VFT) was fabricated and tested. Each VFT consisted of a long Josephson junction biased in the flux flow state, magnetically coupled to a current carrying control line. The topology of the circuit is based on a distributed amplifier configuration. The transresistance of the amplifier in a 50 Ohm environment for frequencies up to 1 MHz was measured.

  9. Multipass optical parametric amplifier

    SciTech Connect

    Jeys, T.H.

    1996-08-01

    A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45{mu}J, and at three to four times this threshold pump power the amplifier converted 30{percent} of the input 1064-nm radiation into 1572-nm output radiation. {copyright} {ital 1996 Optical Society of America.}

  10. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  11. NON-BLOCKING STABILIZED FEED BACK AMPLIFIER

    DOEpatents

    Fairstein, E.

    1960-03-01

    A plural stuge nonblocking degenerative feed-back amplifier was designed particularly suitable for counting circuits because of the stability and linearity in operation, characterized by the fact that the inltial stage employs a cathode coupled input circuit fed from a cathode follower and the final stage has a tline constant greater than those of the other stages.

  12. Amplify Interest in STS.

    ERIC Educational Resources Information Center

    Chiappetta, Eugene L; Mays, John D.

    1992-01-01

    Presents activities in which students construct simple crystal radio sets and amplifiers out of diodes, transistors, and integrated circuits. Provides conceptual background, materials needed, instructions, diagrams, and classroom applications. (MDH)

  13. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  14. Tunable microstrip SQUID amplifiers for the Gen 2 Axion Dark Matter eXperiment (ADMX)

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hilton, Gene; Clarke, John; ADMX Collaboration

    2016-03-01

    We present a series of tunable microstrip SQUID (Superconducting Quantum Interference Device) amplifiers (MSAs) for installation in ADMX. The axion dark matter candidate is detected via Primakoff conversion to a microwave photon in a high-Q (~100,000) tunable microwave cavity cooled with a dilution refrigerator in a 7-tesla magnetic field. The microwave photon frequency ν is a function of the unknown axion mass, so both the cavity and amplifier must be scanned over a wide frequency range. An MSA is a linear, phase-preserving amplifier consisting of a square washer loop, fabricated from a thin Nb film, incorporating two Josephson tunnel junctions with resistive shunts to prevent hysteresis. The input is coupled via a microstrip made from a square Nb coil deposited over the washer with an intervening insulating layer. Tunability is achieved by terminating the microstrip with GaAs varactors that operate below 100 mK. By varying the varactor capacitance with a bias voltage, the resonant frequency is varied by up to a factor of 2. We demonstrate several devices operating below 100 mK, matched to the discrete operating bands of ADMX at frequencies ranging from 560 MHz to 1 GHz. The MSAs exhibit gains exceeding 20 dB and the associated noise temperatures, measured with a hot/cold load, approach the standard quantum limit (hν/kB) . Supported by DOE Grants DE - FG02 - 97ER41029, DE - FG02 - 96ER40956, DE - AC52 - 07NA27344, DE - AC03 - 76SF00098, and the Livermore LDRD program.

  15. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  16. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  17. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  18. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  19. Testing of a First Order AC Magnetic Susceptometer

    NASA Astrophysics Data System (ADS)

    Fukuda, Ryan; Sunny, Smitha; Ho, Pei-Chun

    2011-11-01

    A first-order AC magnetic susceptometer has been constructed and tested to find the magnetic response of strongly correlated electron materials. The instrument works by using a primary coil to apply a small AC magnetic field of .104 Oe to a sample with a cylindrical coil space of length .635 cm and diameter .355 cm. A lock-in amplifier is used to monitor the induced voltage from a set of secondary coils. By coupling a temperature-controlled system with this instrument, the change in the magnetic signal with respect to temperature is measured. Monitoring the signal changes may indicate the temperature that causes the material to transition to either a ferromagnetic, anti-ferromagnetic, or superconducting state. A 122.47 mg Gd polycrystal was used to test our susceptometer. The data qualitatively agrees with the previous results of magnetization vs. temperature of Gd single crystals by Nigh et al. [1]: there is a steep increase in the pick-up signal at 300 K where Gd becomes ferromagnetic and a peak at 210 K [1]. This susceptometer will be used for our future investigation of magnetic properties of rare earth compounds and nanoparticles in the temperature range of 10 K to 300 K. [4pt] [1] H. E. Nigh, S. Legvold, and F. H. Spedding, Physical Review 132, 1092 (1963)

  20. A cooled 1-2 GHz balanced HEMT amplifier

    NASA Astrophysics Data System (ADS)

    Padin, Stephen; Ortiz, Gerardo G.

    1991-07-01

    The design details and measurement results for a cooled 1-GHz-bandwidth L-band HEMT amplifier are presented. The HEMT noise parameters were measured at a physical temperature of 12 K, and a balanced configuration was adopted. This has the advantage of providing a good input match even though the amplifiers in the two arms of the balanced circuit are poorly matched. However, there are disadvantages. The loss of the input hybrid degrades the noise temperature and coupling errors in the hybrids, and differences between the amplifiers reduce the gain and result in a noise contribution from the input load. In the amplifier described, these effects degrade the noise temperature by less than 1 K. The amplifier uses commercially available packaged HEMT devices. At a physical temperature of 12 K the amplifier achieves noise temperatures between 3 and 6 K over the 1-2-GHz band. The associated gain is about 20 dB.

  1. A micropower electrocardiogram amplifier.

    PubMed

    Fay, L; Misra, V; Sarpeshkar, R

    2009-10-01

    We introduce an electrocardiogram (EKG) preamplifier with a power consumption of 2.8 muW, 8.1 muVrms input-referred noise, and a common-mode rejection ratio of 90 dB. Compared to previously reported work, this amplifier represents a significant reduction in power with little compromise in signal quality. The improvement in performance may be attributed to many optimizations throughout the design including the use of subthreshold transistor operation to improve noise efficiency, gain-setting capacitors versus resistors, half-rail operation wherever possible, optimal power allocations among amplifier blocks, and the sizing of devices to improve matching and reduce noise. We envision that the micropower amplifier can be used as part of a wireless EKG monitoring system powered by rectified radio-frequency energy or other forms of energy harvesting like body vibration and body heat. PMID:23853270

  2. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  3. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  4. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Hallberg, Carl; Medelius, Pedro J.

    1994-01-01

    Engineers at NASA's Kennedy Space Center have designed a signal conditioning amplifier which automatically matches itself to almost any kind of transducer. The product, called Universal Signal Conditioning Amplifier (USCA), uses state-of-the-art technologies to deliver high accuracy measurements. USCA's features which can be either programmable or automated include: voltage, current, or pulsed excitation, unlimited resolution gain, digital filtering and both analog and digital output. USCA will be used at Kennedy Space Center's launch pads for environmental measurements such as vibrations, strains, temperatures and overpressures. USCA is presently being commercialized through a co-funded agreement between NASA, the State of Florida, and Loral Test and Information Systems, Inc.

  5. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  6. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  7. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  8. AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers

    NASA Technical Reports Server (NTRS)

    Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.; Kilbourne, C.; Lindemann, M. A.; Parra Borderias, M.; Ridder, M.

    2011-01-01

    SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.

  9. Amplifier for measuring low-level signals in the presence of high common mode voltage

    NASA Technical Reports Server (NTRS)

    Lukens, F. E. (Inventor)

    1985-01-01

    A high common mode rejection differential amplifier wherein two serially arranged Darlington amplifier stages are employed and any common mode voltage is divided between them by a resistance network. The input to the first Darlington amplifier stage is coupled to a signal input resistor via an amplifier which isolates the input and presents a high impedance across this resistor. The output of the second Darlington stage is transposed in scale via an amplifier stage which has its input a biasing circuit which effects a finite biasing of the two Darlington amplifier stages.

  10. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  11. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  12. Man-Amplifying Exoskeleton

    NASA Astrophysics Data System (ADS)

    Rosheim, Mark E.

    1990-03-01

    This paper describes a design for a man-amplifying exoskeleton, an electrically powered, articulated frame worn by an operator. The design features modular construction and employ anthropomorphic pitch-yaw joints for arms and legs. These singularity-free designs offer a significant advancement over simple pivot-type joints used in older designs. Twenty-six degrees-of-freedom excluding the hands gives the Man-Amplifier its unique dexterity. A five hundred-pound load capacity is engineered for a diverse range of tasks. Potential applications in emergency rescue work, restoring functionality to the handicapped, and military applications ranging from material handling to an elite fighting core are discussed. A bibliography concludes this paper.

  13. Helical Fiber Amplifier

    DOEpatents

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  14. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  15. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  16. Improved tunable microstrip SQUID amplifiers for the Axion Dark Matter eXperiment

    NASA Astrophysics Data System (ADS)

    O'Kelley, Sean; Hansen, Jørn; Hilton, Gene; Mol, Jan-Michael; Clarke, John; ADMX Collaboration

    2015-04-01

    We describe a series of tunable microstrip SQUID (Superconducting QUantum Interference Device) amplifiers (MSAs) used as the photon detector in the Axion Dark Matter eXperiment (ADMX). Cooled to 100mK or lower, an optimized MSA approaches the quantum limit of detection. The axion dark matter candidate would be detected via Primakoff conversion to a microwave photon in a high-Q (~ 105) tunable microwave cavity, cooled to 1.6 K or lower, in the presence of a 7-tesla magnetic field. The MSA consists of a square loop of thin Nb film, incorporating two resistively shunted Josephson tunnel junctions biased to the voltage state, flux-coupled to a resonant microstrip. The photon frequency is determined by the unknown axion mass, so the cavity and amplifier must be tunable over a broad frequency range. MSA tunability is achieved by terminating the microstrip with a GaAs varactor diode that operates at cryogenic temperatures. This voltage-controlled capacitance enables us to vary the resonant microstrip mode from nearly λ/2 to λ/4. We demonstrate gains exceeding 20 dB, at frequencies above 900 MHz. With proper design of the microwave environment, a noise temperature of 1/2 to 1/4 of the physical temperature is demonstrated. Supported by DOE Grants DE-FG02-97ER41029, DE-FG02-96ER40956, DE- AC52-07NA27344, DE-AC03-76SF00098, NSF Grant 1067242, and the Livermore LDRD program.

  17. Fast terahertz imaging using a quantum cascade amplifier

    SciTech Connect

    Ren, Yuan Wallis, Robert; Jessop, David Stephen; Degl'Innocenti, Riccardo; Klimont, Adam; Beere, Harvey E.; Ritchie, David A.

    2015-07-06

    A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon density coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.

  18. Level structure and reflection asymmetric shape in sup 223 Ac

    SciTech Connect

    Sheline, R.K.; Liang, C.F.; Paris, P. )

    1990-07-20

    Mass separated sources of {sup 227}Pa (separated as PaF{sub 4}{sup +} ions) were used to study the level structure of {sup 223}Ac following alpha decay. The levels in {sup 223}Ac are interpreted as K = 5/2{sup {plus minus}} parity doublet bands which occur naturally in reflection asymmetric models and the multiphonon octupole model. The anomalous structure of the K = 3/2{sup {minus}} band is explained in terms of Coriolis coupling. The low lying parity doublet bands in {sup 223}Ac, {sup 225}Ac, and {sup 227}Ac are compared and contrasted.

  19. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  20. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  1. Yb:YAG single crystal fiber image amplifier

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Liu, Jian; Yang, Lih-Mei; Bai, Shuang

    2014-02-01

    In the paper, a Yb:YAG single crystal fiber is used for the first time to amplify week image signal. It was longitudinally pumped by a fiber-coupled laser diode with a maximum power of 150W at 940 nm. The image amplifier provided low noise and high gain amplification. A spatially uniform amplification gain of up to 10.2 dB at wavelength of 1030 nm was obtained.

  2. Biopotential amplifier for simultaneous operation with biomagnetic instruments.

    PubMed

    Virtanen, J; Parkkonen, L; Ilmoniemi, R J; Pekkonen, E; Näätänen, R

    1997-07-01

    A multichannel biopotential amplifier for simultaneous use with biomagnetic measurements in a magnetically shielded room is designed and evaluated. Particular care is taken to make the amplifier electromagnetically compatible with the biomagnetic instruments over the whole frequency spectrum, from DC to RF. The electromagnetically quiet environment allows the use of high electrode impedances; the preamplifier has been designed accordingly. Special care is taken to analyse the coupling mechanisms of mains interference to the amplifier. Over 170 simultaneous electric and magnetic recordings have been performed using the system in a hospital environment. PMID:9327620

  3. Amplifier circuit operable over a wide temperature range

    DOEpatents

    Kelly, Ronald D.; Cannon, William L.

    1979-01-01

    An amplifier circuit having stable performance characteristics over a wide temperature range from approximately 0.degree. C up to as high as approximately 500.degree. C, such as might be encountered in a geothermal borehole. The amplifier utilizes ceramic vacuum tubes connected in directly coupled differential amplifier pairs having a common power supply and a cathode follower output stage. In an alternate embodiment, for operation up to 500.degree. C, positive and negative power supplies are utilized to provide improved gain characteristics, and all electrical connections are made by welding. Resistor elements in this version of the invention are specially heat treated to improve their stability with temperature.

  4. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOEpatents

    Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max

    2001-01-01

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  5. Model of pulse extraction from a copper laser amplifier

    SciTech Connect

    Boley, C.D.; Warner, B.E.

    1997-03-01

    A computational model of pulse propagation through a copper laser amplifier has been developed. The model contains a system of 1-D (in the axial direction), time-dependent equations for the laser intensity and amplified spontaneous emission (ASE), coupled to rate equations for the atomic levels. Detailed calculations are presented for a high-power amplifier at Lawrence Livermore National Laboratory. The extracted power agrees with experiment near saturation. At lower input power the calculation overestimates experiment, probably because of increased ASE effects. 6 refs., 6 figs.

  6. Amplifying Electrochemical Indicators

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong; Li, Jun; Han, Jie

    2004-01-01

    Dendrimeric reporter compounds have been invented for use in sensing and amplifying electrochemical signals from molecular recognition events that involve many chemical and biological entities. These reporter compounds can be formulated to target specific molecules or molecular recognition events. They can also be formulated to be, variously, hydrophilic or amphiphilic so that they are suitable for use at interfaces between (1) aqueous solutions and (2) electrodes connected to external signal-processing electronic circuits. The invention of these reporter compounds is expected to enable the development of highly miniaturized, low-power-consumption, relatively inexpensive, mass-producible sensor units for diverse applications.

  7. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  8. Universal Signal Conditioning Amplifier

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1997-01-01

    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  9. Optical Amplifier for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Cole, Spencer T.; Diffey, William M.; Gamble, Lisa J.

    1999-01-01

    We describe an open multipass optical amplifier designed to amplify a sampled region of an optical wavefront to kilowatt average power with low optical phase distortion. The overall goal is to amplify optical fields in a segmented, but phase coherent manner, so as to achieve high average power optical fields with high quality phase coherence over the large apertures needed for transmission of space solar power.

  10. Wavelength tunable alexandrite regenerative amplifier

    SciTech Connect

    Harter, D.J.; Bado, P.

    1988-11-01

    We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

  11. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  12. Optical Amplifier for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Cole, Spencer T.; Gamble, Lisa J.; Diffey, William M.; Keys, Andrew S.

    1999-01-01

    We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.

  13. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date. PMID:21805988

  14. Investigation of responsivity and noise in a direct-coupled photodetector-preamplifier for facsimile cameras

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Katzberg, S. J.

    1973-01-01

    The direct-coupled (DC) mode of detector operation is evaluated for use in a facsimile camera. Photodiode-preamplifier sensitivity is described in terms of photodiode responsivity and possible noise sources resulting from the photodiode and preamplifier. Responsivity and noise limitations are experimentally verified and used to predict photodiode-preamplifier sensitivity under a wide range of operating conditions. Results demonstrate that the DC mode offers advantages in sensitivity and reduced mechanical complexity for facsimile cameras over the more common technique of chopping the radiation and ac amplifying the resultant signal.

  15. Compact, passively Q-switched, all-solid-state master oscillator-power amplifier-optical parametric oscillator (MOPA-OPO) system pumped by a fiber-coupled diode laser generating high-brightness, tunable, ultraviolet radiation.

    PubMed

    Peuser, Peter; Platz, Willi; Fix, Andreas; Ehret, Gerhard; Meister, Alexander; Haag, Matthias; Zolichowski, Paul

    2009-07-01

    We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator-power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr(4+):YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum-frequency mixing process within the OPO in the range of 245-260 nm with high beam quality. Maximum pulse energies of 1.2 mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064 nm. PMID:19571944

  16. A compact, low input capacitance neural recording amplifier.

    PubMed

    Ng, K A; Xu, Yong Ping

    2013-10-01

    Conventional capacitively coupled neural recording amplifiers often present a large input load capacitance to the neural signal source and hence take up large circuit area. They suffer due to the unavoidable trade-off between the input capacitance and chip area versus the amplifier gain. In this work, this trade-off is relaxed by replacing the single feedback capacitor with a clamped T-capacitor network. With this simple modification, the proposed amplifier can achieve the same mid-band gain with less input capacitance, resulting in a higher input impedance and a smaller silicon area. Prototype neural recording amplifiers based on this proposal were fabricated in 0.35 μm CMOS, and their performance is reported. The amplifiers occupy smaller area and have lower input loading capacitance compared to conventional neural amplifiers. One of the proposed amplifiers occupies merely 0.056 mm(2). It achieves 38.1-dB mid-band gain with 1.6 pF input capacitance, and hence has an effective feedback capacitance of 20 fF. Consuming 6 μW, it has an input referred noise of 13.3 μVrms over 8.5 kHz bandwidth and NEF of 7.87. In-vivo recordings from animal experiments are also demonstrated. PMID:24144666

  17. Circuits for differential signal extraction in the lock-in amplifiers

    NASA Astrophysics Data System (ADS)

    Baranov, P.; Bukrina, T.

    2014-10-01

    Confirmation of the metrological characteristics of measuring transducers provides maximum accuracy of the method of comparison with the standard instrument. Practical application of this technique is impossible without accurate instruments. As a measurement instrument to ensure the resolution of the order of several nanovolts when comparing two AC signals over a wide dynamic range, widely used lock-in amplifier with a differential input. The paper presents the results of the analysis of circuits based on operational amplifiers for comparing two signals and extraction differential signal in lock-in amplifier with a differential input. Common-mode rejection ratio for each of the circuits was estimated.

  18. Laser amplifier developments at Mercury

    SciTech Connect

    Rose, E.A.; Brucker, J.P.; Honig, E.M.; McCown, A.W.; Romero, V.O.; York, G.W.

    1993-09-01

    Electron-beam pumped laser amplifiers have been modified to address the mission of krypton-fluoride excimer laser technology development. Methods are described for improving the performance and reliability of two pre-existing amplifiers at minimal cost and time. Preliminary performance data are presented to support the credibility of the approach.

  19. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  20. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  1. Eddy Current Rail Inspection Using AC Bridge Techniques

    PubMed Central

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train’s motion and the Y-axis mimicking the train’s vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  2. Eddy Current Rail Inspection Using AC Bridge Techniques.

    PubMed

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  3. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  4. Magnetic Amplifier-Based Power-Flow Controller

    SciTech Connect

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can be regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.

  5. Magnetic Amplifier-Based Power-Flow Controller

    DOE PAGESBeta

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  6. Initial tests of an AC dipole for the Tevatron

    SciTech Connect

    Miyamoto, R.; Jansson, A.; Kopp, S.; Syphers, M.; /Fermilab

    2006-06-01

    The AC dipole is a device to diagnose transverse motions of a beam. It can achieve large-amplitude oscillations without two inevitable problems of conventional kicker/pinger magnets: decoherence and emittance growth. While not the first synchrotron to operate with an AC dipole, the Tevatron can now make use of its recently upgraded BPM system, providing unprecedented resolution for use with an AC dipole, to measure both linear and nonlinear properties of the accelerator. Plans are to provide AC dipole systems for both transverse degrees of freedom. Preliminary tests have been done using an audio power amplifier with an existing vertical pinger magnet, producing oscillation amplitudes up to 2{sigma} at 150 GeV. In this paper, we will present the configuration of this system. We also show the analysis of a first few data sets, including the direct measurement of beta functions at BPM locations.

  7. Final amplifier design and mercury

    SciTech Connect

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met.

  8. Final amplifier design and mercury

    SciTech Connect

    Rose, E.A.; Hanson, D.E.

    1991-12-31

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met.

  9. Push-pull switching power amplifier

    NASA Technical Reports Server (NTRS)

    Cuk, Slobodan M. (Inventor)

    1980-01-01

    A true push-pull switching power amplifier is disclosed utilizing two dc-to-dc converters. Each converter is comprised of two inductances, one inductance in series with a DC source and the other inductor in series with the output load, and an electrical energy transferring device with storage capability, namely storage capacitance, with suitable switching means between the inductances to obtain DC level conversion, where the switching means allows bidirectional current (and power) flow, and the switching means of one dc-to-dc converter is driven by the complement of a square-wave switching signal for the other dc-to-dc converter for true push-pull operation. For reduction of current ripple, the inductances in each of the two converters may be coupled, and with proper design of the coupling, the ripple can be reduced to zero at either the input or the output, but preferably the output.

  10. Compact, Single-Stage MMIC InP HEMT Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard

    2008-01-01

    A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.

  11. Isolated output for class-D dc amplifiers

    NASA Technical Reports Server (NTRS)

    Honnel, M. A.; Newell, J. K.

    1973-01-01

    Transformer-coupled output stage is used with pulse-width modulated class-D dc amplifiers. Circuit is comprised of two channels corresponding to negative and positive input signals. Amplitude of secondary-current triangular pulse is function of duration of driving pulse. Therefore, circuit converts pulse-width modulated driving signal to pulse-amplitude modulated signal.

  12. Characterization of SLUG microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Hoi, I.-C.; Zhu, S.; Thorbeck, T.; McDermott, R.; Mutus, J.; Jeffrey, E.; Barends, R.; Chen, Y.; Roushan, P.; Fowler, A.; Sank, D.; White, T.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    2015-03-01

    With the rapid growth of superconducting circuits quantum technology, a near quantum-limited amplifier at GHz frequency is needed to enable high fidelity measurements. We describe such an amplifier, the SQUID based, superconducting low inductance undulatory galvanometer (SLUG) amplifier. We measure the full scattering matrix of the SLUG. In particular, we measure both forward and reverse gain, as well as reflection. We see 15dB forward gain with added noise from one quanta to several quanta. The -1 dB compression point is around -95 dBm, about two orders of magnitude higher than that of typical Josephson parametric amplifiers. With these properties, SLUG is well suited for the high fidelity, simultaneous multiplexed readout of superconducting qubits.

  13. Amplifier arrays for CMB polarization

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Lawrence, Charles R.; Seiffert, Michael D.; Wells, Mary M.; Kangaslahti, Pekka; Dawson, Douglas

    2003-01-01

    Cryogenic low noise amplifier technology has been successfully used in the study of the cosmic microwave background (CMB). MMIC (Monolithic Millimeter wave Integrated Circuit) technology makes the mass production of coherent detection receivers feasible.

  14. New Packaging for Amplifier Slabs

    SciTech Connect

    Riley, M.; Thorsness, C.; Suratwala, T.; Steele, R.; Rogowski, G.

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  15. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1984-01-01

    A flashlamp pumped dye laser suitable for use as a single stage amplifier is described. Particular emphasis is placed on the efforts to increase output pulse energy and improve the temporal profile of the injected pulse. By using high power thin film polarizers, output energies reach from 4 to 45 mJ. Various dispersive elements are used to develop an amplified pulse with an extremely clean temporal profile.

  16. Compact 2-J master oscillator power amplifier (MOPA) laser system

    NASA Astrophysics Data System (ADS)

    Morelli, Gregg L.; Honig, John N.

    2000-04-01

    A compact, 2-J Master Oscillator, Power Amplifier (MOPA) laser system was designed and built to support a multiple- fiber injection experiment. The system was built in a breadboard configuration to support a risk-reduction/proof- of-concept effort. A common design approach for MOPA systems is to utilize a single-mode oscillator as the input source to the amplifier. However, to optimize this system for fiber injection, a multi-mode oscillator was chosen. A stable, multi-mode, 1053-nm, Nd:YLF laser oscillator was designed and built. A plano/concave resonator was utilized, with a 4.0-mm diameter Nd:YLF laser rod, pumped in a dual flashlamp, diffuse, close-coupled pump cavity. A lithium niobate (LiNbO3) Q-switch crystal was used in a quarter- wave scheme. This pump cavity design did not use any active cooling and was ideal for low duty cycle applications requiring no more than one shot every 60 seconds. The oscillator output was amplified using a neodymium-doped phosphate glass laser rod in a four-pass configuration. Two Joules of output energy with an output pulsewidth of 12 ns were obtained. The 9.53-mm diameter Nd:Glass amplifier rod was pumped in a dual flashlamp, diffuse, close-coupled pump cavity. Output energy, pulsewidth, far-field beam divergence and intensity profile results will be presented for a Schott LG750 amplifier rod.

  17. Gigatron microwave amplifier

    DOEpatents

    McIntyre, Peter M.

    1993-01-01

    An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  18. Gigatron microwave amplifier

    DOEpatents

    McIntyre, P.M.

    1993-07-13

    An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

  19. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  20. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  1. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  2. Results of comparison of different photodetector and amplifier-discriminator types used in ozone sensing lidar

    NASA Astrophysics Data System (ADS)

    Nevzorov, Aleksey V.; Marichev, Valerii N.; Khryapov, Piter A.

    2000-12-01

    In the report, we present and discuss the results of comparison between domestic photomultiplier tubes (PMTs) FEU- 130 coupled with amplifiers-discriminators and PMT R7207-01 coupled with HAMAMATSU C3866 amplifiers-discriminators, used in ozone sensing lidar. It is shown that, because photomultiplier R7207-01 has higher counting rate than FEU- 130, it can provide ozone retrievals in a 4 - 6 km wider (upward plus downward) altitude range.

  3. AC loss in superconducting tapes and cables

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn Pieter

    High-temperature superconductors are developed for use in power-transmission cables, transformers and motors. The alternating magnetic field in these devices causes AC loss, which is a critical factor in the design. The study focuses on multi-filament Bi-2223/Ag tapes exposed to a 50-Hz magnetic field at 77 K. The AC loss is measured with magnetic, electric and calorimetric methods. The results are compared to theoretical predictions based mainly on the Critical-State Model. The loss in high- temperature superconductors is affected by their characteristic properties: increased flux creep, high aspect ratio and inhomogeneties. Filament intergrowths and a low matrix resistivity cause a high coupling-current loss especially when the filaments are fully coupled. When the wide side of the tape is parallel to the external magnetic field, the filaments are decoupled by twisting. In a perpendicular field the filaments can be decoupled only by combining a short twist pitch with a transverse resistivity much higher than that of silver. The arrangement of the inner filaments determines the transverse resistivity. Ceramic barriers around the filaments cause partial decoupling in perpendicular magnetic fields at power frequencies. The resultant decrease in AC loss is greater than the accompanying decrease in critical current. With direct transport current in alternating magnetic field, the transport-current loss is well described with a new model for the dynamic resistance. The Critical- State Model describes well the magnetisation and total AC loss in parallel magnetic fields, at transport currents up to 0.7 times the critical current. When tapes are stacked face-to-face in a winding, the AC-loss density in perpendicular fields is greatly decreased due to the mutual shielding of the tapes. Coupling currents between the tapes in a cable cause an extra AC loss, which is reduced by a careful cable design. The total AC loss in complex devices with many tapes is generally well

  4. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  5. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  6. Low-Noise Band-Pass Amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  7. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  8. Evaluation and design of a small portable EMG amplifier with potential RMS output.

    PubMed

    Shimomura, Y; Iwanaga, K; Harada, H; Katsuura, T

    1999-03-01

    The present study attempted to design and evaluate a small portable electromyogram (EMG) amplifier that can output enhanced EMG and its root mean square (RMS) value. The production and design were of a laboratory scale without any special or high cost circuit construction. The designed amplifier was actually innovated according to the actual working conditions based on physiological anthropology. The present amplifier was compared with commercially available products and proved to be of practical use. The device was installed with a sufficiently small body depicting 8-channel variable gain AC amplifier and variable time-window RMS-to-DC converter. The prototype was battery-driven and well-shielded to minimize external noise interference. PMID:10388160

  9. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  10. IMPATT power building blocks for 20 GHz spaceborne transmit amplifier

    NASA Technical Reports Server (NTRS)

    Asmus, J.; Cho, Y.; Degruyl, J.; Ng, E.; Giannakopoulos, A.; Okean, H. C.

    1982-01-01

    Single-stage circulator coupled IMPATT building block constituents of a 20-GHz solid state power amplifier (SSPA) currently under development for spaceborne downlink transmitter usage have been demonstrated as providing 1.5 to 2.0W RF power output at 4 to 5 dB operating gain over a 1 GHz bandwidth. Using either commercially available or recently developed in-house GaAs Schottky Read-profile IMPATT diodes, DC/RF power added efficiencies of 14 to 15% were achieved in these amplifier stages. A two stage IMPATT driver amplifier with similar RF output power capability exhibited 13 + or - 0.5 dB operating gain over a 1 GHz bandwidth.

  11. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical

  12. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  13. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  14. Amplifier-Discriminator-Multiplexor card

    SciTech Connect

    Graupman, D.

    1986-02-01

    The Amplifier-Discriminator-Multiplexor (ADM) card described was designed for the External Muon Identifier at the 15 ft Bubble Chamber. The general scheme of the data readout of the External Muon Identifier is based on the use of a master clock. The ADM card serves to amplify the signals from the proportional tubes, discriminate them, latch the signals in parallel into a shift register. The data are then shifted out serially to the Time Digitizing System, using the master clock. The shift registers are loaded, and the latches are reset every sixteen cycles of the master clock. (LEW)

  15. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  16. The multiphoton AC Stark effect

    NASA Astrophysics Data System (ADS)

    Rudolph, T. G.; Ficek, Z.; Freedhoff, H. S.

    1998-02-01

    We study the interaction of a two-level atom with two intense lasers: a strong laser of Rabi frequency 2Ω on resonance with the atomic transition, and a weaker laser detuned by 2Ω/n, i.e. by a subharmonic of the Rabi frequency of the first. The second laser "dresses" the dressed states created by the first in an n-photon process. We calculate the energy levels and eigenstates of this "doubly-dressed" atom, and find a new phenomenon: the splitting of the energy levels due to an n-photon coupling between them, resulting in a multiphoton AC Stark effect. We illustrate this effect in the fluorescence spectrum, and show that the spectrum contains triplets at the subharmonic as well as harmonic resonance frequencies with a clear dependence on the order n of the resonance and the ratio α of the Rabi frequencies of the lasers

  17. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  18. Diagnostics of the Fermilab Tevatron using an AC dipole

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoichi

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f˜20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  19. The School as an Amplifier.

    ERIC Educational Resources Information Center

    Vincent, William S.

    1966-01-01

    This paper attempts to show that adaptation of mathematics to the input-output model of the school can provide powerful assistance in the measurement and analysis of school quality and its determinants. The mathematical relationship described here relates an educational model to the field of electronics. More specifically, the amplifier, a device…

  20. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1983-01-01

    A flash lamp pumped dye laser suitable for use as an amplifier stage was developed. The desired output laser pulses are of nanosecond duration, tunable in center frequency, and of good optical quality. Its usefulness as a laser oscillator is emphasized, because it constitutes a compact, relatively efficient source of tunable dye laser light.

  1. Electrometer Amplifier With Overload Protection

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Alexander, R.

    1986-01-01

    Circuit features low noise, input offset, and high linearity. Input preamplifier includes input-overload protection and nulling circuit to subtract dc offset from output. Prototype dc amplifier designed for use with ion detector has features desirable in general laboratory and field instrumentation.

  2. Stroke amplifier for deformable mirrors

    PubMed Central

    Webb, Robert H.; Albanese, Marc J.; Zhou, Yaopeng; Bifano, Thomas; Burns, Stephen A.

    2010-01-01

    We demonstrate a simple optical configuration that amplifies the usable stroke of a deformable mirror. By arranging for the wavefront to traverse the deformable mirror more than once, we correct it more than once. The experimental implementation of the idea demonstrates a doubling of 2.0 and 2.04 by two different means. PMID:15495423

  3. Cryogenic MMIC Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Gaier, T.; Fernandez, J.; Erickson, N.; Wielgus, J.

    2000-01-01

    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA's for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GZH range along with a very wideband LNA for the 1 to 60 GHz range.

  4. AC Losses in the MICE Channel Magnets -- Is This a Curse or aBlessing?

    SciTech Connect

    Green, M.A.; Wu, H.; Wang, L.; Kai, L.L.; Jia, L.X.; Yang, S.Q.

    2008-01-31

    This report discusses the AC losses in the MICE channelmagnets during magnet charging and discharging. This report talks aboutthe three types of AC losses in the MICE magnets; the hysteretic AC lossin the superconductor, the coupling AC loss in the superconductor and theeddy current AC loss in the magnet mandrel and support structure. AClosses increase the heat load at 4 K. The added heat load increases thetemperature of the second stage of the cooler. In addition, AC losscontributes to the temperature rise between the second stage cold headand the high field point of the magnet, which is usually close to themagnet hot spot. These are the curses of AC loss in the MICE magnet thatcan limit the rate at which the magnet can be charge or discharged. Ifone is willing to allow some of the helium that is around the magnet toboil away during a magnet charge or discharge, AC losses can become ablessing. The boil off helium from the AC losses can be used to cool theupper end of the HTS leads and the surrounding shield. The AC losses arepresented for all three types of MICE magnets. The AC loss temperaturedrops within the coupling magnet are presented as an example of how boththe curse and blessing of the AC losses can be combined.

  5. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  6. Low Cost RF Amplifier for Community TV

    NASA Astrophysics Data System (ADS)

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami

    2016-01-01

    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  7. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  8. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  9. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  10. Highly stable biased amplifier and stretcher system

    NASA Technical Reports Server (NTRS)

    Roddick, R. G.

    1970-01-01

    Amplifier and stretcher system, which minimizes thermal effects and compensates for repetition-rate effects, maintains resolution levels in spectrum analysis. An additional inverting amplifier is used in the system to provide a noiseless charge restorer.

  11. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  12. Improved charge amplifier using hybrid hysteresis compensation

    NASA Astrophysics Data System (ADS)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  13. Quantum Theory of Laser Amplifiers.

    NASA Astrophysics Data System (ADS)

    Mander, Gillian Linda

    Available from UMI in association with The British Library. Requires signed TDF. We calculate the input-output characteristics of a below threshold laser amplifier. Expressions are derived for the output second- and fourth-order spectral and temporal correlation functions in terms of the corresponding input quantities, and for the photocount first and second factorial moments for both homodyne and direct detection. The general results are applied to several cases of practical interest, including specific non-classical input states. We show that a maximum of twofold amplification is permitted if squeezing in the input is to survive at the output. Similarly, for preservation of photon antibunching in amplification we show that only very small gains are allowed. The model treated here provides a detailed example of the amplifier noise limitations imposed by quantum mechanics. In particular, we show that minimum noise occurs in a cavity that is asymmetric with respect to the mirror reflectivities. The latter part of this work treats the above threshold laser amplifier. The laser output is back-scattered from a moving target to provide a weak Doppler-shifted signal which re-enters the laser cavity and is amplified. We show that the three-level atomic lasing medium is equivalent to a two-level medium pumped by an inverted bath. We use the methods of quantum statistical analysis to obtain time -evolution equations for the c-number amplitudes of the laser and signal fields. We show that the results may be applied to the below threshold regime for appropriate values of the pump parameter. By considering the amplitude differential gain we show explicitly that the behaviour of the laser around threshold is characteristic of a second -order phase transition. We calculate the output intensity gain appropriate to a heterodyne detection process, and find good agreement between the predicted gain profiles and measured data for both carbon dioxide and argon-ion lasers.

  14. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  15. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  16. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  17. Small and lightweight power amplifiers

    NASA Astrophysics Data System (ADS)

    Shams, Qamar A.; Barnes, Kevin N.; Fox, Robert L.; Moses, Robert W.; Bryant, Robert G.; Robinson, Paul C.; Shirvani, Mir

    2002-07-01

    The control of u wanted structural vibration is implicit in most of NASA's programs. Currently several approaches to control vibrations in large, lightweight, deployable structures and twin tail aircraft at high angles of attack are being evaluated. The Air Force has been examining a vertical tail buffet load alleviation system that can be integrated onboard an F/A-18 and flown. Previous wind tunnel and full-scale ground tests using distributed actuators have shown that the concept works; however, there is insufficient rom available onboard an F/A-18 to store current state-of- the-art system components such as amplifiers, DC-to-DC converter and a computer for performing vibration suppression. Sensor processing, power electronics, DC-to-DC converters, and control electronics that may be collocated with distributed actuators, are particularly desirable. Such electronic system would obviate the need for complex, centralized, control processing and power distribution components that will eliminate the weight associated with lengthy wiring and cabling networks. Several small and lightweight power amplifiers ranging from 300V pp to 650V pp have been designed using off the shelf components for different applications. In this paper, the design and testing of these amplifiers will be presented under various electrical loads.

  18. Compact, harmonic multiplying gyrotron amplifiers

    SciTech Connect

    Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H.

    1995-12-31

    A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.

  19. Technique for the calibration of thermal voltage converters using a Josephson waveform synthesizer and a transconductance amplifier

    NASA Astrophysics Data System (ADS)

    Budovsky, Ilya; Behr, Ralf; Palafox, Luis; Djordjevic, Sophie; Hagen, Thomas

    2012-12-01

    This paper describes a simple and effective technique for calibrating thermal converters for an ac-dc voltage transfer difference using a Josephson waveform synthesizer and a transconductance amplifier. Preliminary measurements and uncertainty analysis confirm the possibility of achieving systematic uncertainties below 0.1 µV V-1 at frequencies up to 1 kHz.

  20. Cooled Low-Noise HEMT Microwave Amplifiers

    NASA Technical Reports Server (NTRS)

    Bautista, J. Javier; Ortiz, Gerardo G.; Duh, Kuanghann George

    1992-01-01

    Prototype cooled low-noise microwave amplifiers based on high-electron-mobility transistors (HEMT's) considered as replacements for cooled ruby masers used as low-noise receiver-front-end amplifiers in communications, radio science, radar systems, radio astronomy, and telemetry. HEMT amplifier operates at 12 K, requires less cooling power and operates at lower cost with simpler, more-reliable cooling system.

  1. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  2. Design of hysteresis circuits using differential amplifiers

    NASA Technical Reports Server (NTRS)

    Cooke, W. A.

    1971-01-01

    Design equations for hysteresis circuit are based on the following assumptions: amplifier input impedance is larger than source impedance; amplifier output impedance is less than load impedance; and amplifier switches state when differential input voltage is approximately zero. Circuits are designed to any given specifications.

  3. Solid state ku-band power amplifier

    NASA Technical Reports Server (NTRS)

    Bowers, H. C.; Lockyear, W. H.

    1972-01-01

    The design, fabrication, and testing of two types of IMPATT diode reflection amplifiers and a transmission amplifier are given. The Ku-band IMPATT diode development is discussed. Circuitry and electrical performance of the final version of the Ku-band amplifier is described. Construction details and an outline and mounting drawing are presented.

  4. Solid state, S-band, power amplifier

    NASA Technical Reports Server (NTRS)

    Digrindakis, M.

    1973-01-01

    The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.

  5. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  6. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS)

    PubMed Central

    Fehér, Kristoffer D.; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  7. Concurrent Electroencephalography Recording During Transcranial Alternating Current Stimulation (tACS).

    PubMed

    Fehér, Kristoffer D; Morishima, Yosuke

    2016-01-01

    Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized. PMID:26862814

  8. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  9. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  10. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  11. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  12. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  13. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  14. Ac-Induced Instability at the Xanthophyllic Locus of Tomato

    PubMed Central

    Peterson, P. W.; Yoder, J. I.

    1993-01-01

    To detect genomic instability caused by Ac elements in transgenic tomatoes, we used the incompletely dominant mutation Xanthophyllic-1 (Xa-1) as a whole plant marker gene. Xa-1 is located on chromosome 10 and in the heterozygote state causes leaves to be yellow. Transgenic Ac-containing tomato plants which differed in the location and number of their Ac elements were crossed to Xa-1 tester lines and F(1) progeny were scored for aberrant somatic sectoring. Of 800 test and control F(1) progeny screened, only four plants had aberrantly high levels of somatic sectors. Three of the plants had twin sectors consisting of green tissue adjacent to white tissue, and the other had twin sectors comprised of green tissue adjacent to tissue more yellow than the heterozygote background. Sectoring was inherited and the two sectoring phenotypes mapped to opposite homologs of chromosome 10; the green/yellow sectoring phenotype mapped in coupling to Xa-1 while the green/white sectoring phenotype mapped in repulsion. The two sectoring phenotypes cosegregated with different single, non-rearranged Acs, and loss of these Acs from the genome corresponded to the loss of sectoring. Sectoring was still observed after transposition of the Ac to a new site which indicated that sectoring was not limited to a single locus. In both sectored lines, meiotic recombination of the sectoring Ac to the opposite homolog caused the phenotype to switch between the green/yellow and the green/white phenotypes. Thus the two different sectoring phenotypes arose from the same Ac-induced mechanism; the phenotype depended on which chromosome 10 homolog the Ac was on. We believe that the twin sectors resulted from chromosome breakage mediated by a single intact, transposition-competent Ac element. PMID:8394266

  15. Optimizing bandwidth and dynamic range of lumped Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Vijay, R.; Macklin, C.; Minev, Z.; Siddiqi, I.

    2013-03-01

    Superconducting parametric amplifiers have revolutionized the field of quantum measurement by providing high gain, ultra-low noise amplification. They have been used successfully for high-fidelity qubit state measurements, probing nano-mechanical resonators, quantum feedback, and for microwave quantum optics experiments. Though several designs exist, a simple and robust architecture is the Lumped Josephson Parametric Amplifier (LJPA). This device consists of a capacitively shunted SQUID directly coupled to a transmission line to form a low quality factor (Q) nonlinear resonator. We discuss amplifiers which can be tuned over the full 4-8 GHz band with 20-25 dB of gain and 10 - 50 MHz of signal bandwidth. However, similar to other parametric amplifiers employing a resonant circuit, the LJPA suffers from low dynamic range and has a -1 dB gain compression point of order -130 dBm. We explore new designs comprised of an array of SQUIDs to improve the dynamic range. We will present the results of numerical simulations and preliminary experiments. We will also briefly discuss improvements obtained from different biasing methods and packaging. This research was supported by the Army Research Office under a QCT grant.

  16. Enhanced apparatus for AC Zeeman experiments with ultracold potassium

    NASA Astrophysics Data System (ADS)

    Rotunno, Andrew; Du, Shuangli; Fancher, Charles; Pyle, Andrew; Aubin, Seth

    2016-05-01

    Ultracold atomic potassium is an excellent candidate for studies of the AC Zeeman force, due to small hyperfine splittings. These experiments require a sufficient sample of potassium near an atom chip supporting RF currents, and an RF source which can make rapid phase-continuous frequency sweeps for fast manipulation of spin states. We present progress on the construction of laser amplifier system for improved laser cooling and trapping of potassium, development of a frequency-agile RF source, and research on RF-capable atom chips. The laser amplifier system consists of two tapered amplifiers for producing 0.4 W of 767 nm light, with a goal of collecting 107 potassium atoms at 100 μK, which will then be cooled sympathetically with ultracold rubidium. We have constructed a direct digital synthesizer (DDS) to produce 1-400 MHz with Hz-level linewidth and noise level below -60dBc, and the ability to produce fast 100 μs frequency sweeps. We are investigating atom chip designs for supporting large RF currents. Immediate applications include AC Zeeman potentials and traps for atom interferometry, and quantum many-body physics. Work supported by AFOSR, W&M, and in part by AFRL.

  17. Yb : YAG thin-rod laser amplifier with a high pulse energy for a fibre oscillator

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.

    2016-04-01

    High (more than ten times) small-signal gain is demonstrated in an Yb : YAG single crystal thin rods with pumping by a fibre-coupled diode laser. A four-pass amplifier for a fibre master oscillator with an average output power exceeding 15 W at a pulse repetition rate of 3 MHz is fabricated based on this active element. The small-signal gain in the developed amplifier is 26 dB, which is comparable with the gain in regenerative amplifiers. The possibility of obtaining sub-millijoule pulse energy at a pulse repetition rate of tens of kilohertz is shown.

  18. Method and system for compact, multi-pass pulsed laser amplifier

    DOEpatents

    Erlandson, Alvin Charles

    2014-11-25

    A laser amplifier includes an input aperture operable to receive laser radiation having a first polarization, an output aperture coupled to the input aperture by an optical path, and a polarizer disposed along an optical path. A transmission axis of the polarizer is aligned with the first polarization. The laser amplifier also includes n optical switch disposed along the optical path. The optical switch is operable to pass the laser radiation when operated in a first state and to reflect the laser radiation when operated in a second state. The laser amplifier further includes an optical gain element disposed along the optical path and a polarization rotation device disposed along the optical path.

  19. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  20. Charge amplifier with bias compensation

    DOEpatents

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  1. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  2. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    SciTech Connect

    Xie, M.; Kim, K.J.

    1995-12-31

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4{pi}. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY.

  3. Applications of the CSA-amplified PASS experiment.

    PubMed

    Orr, Robin M; Duer, Melinda J

    2006-07-01

    The recently reported CSA-amplified PASS experiment correlates the spinning sidebands at the true spinning frequency omega(r) with the spinning sidebands that would be obtained at the effective spinning frequency omega(r)/N, where N is termed the scaling factor. The experiment is useful for the measurement of small chemical shift anisotropies, for which slow magic-angle spinning frequencies, required to measure several spinning sidebands, can be unstable. We have experimentally evaluated the reliability of this experiment for this application. In particular we have demonstrated that large scaling factors of the order of N=27 may be used, whilst still obtaining accurate chemical shift sideband intensities at the effective spinning frequency from the F(1) projection. Moreover, the sideband intensities are accurately obtained even in the presence of significant pulse imperfections. A second application of the CSA-amplified PASS experiment is the measurement of the chemical shift anisotropy of sites that experience homonuclear dipolar coupling, as may be found in uniformly labelled biological molecules, or for nuclei with a high natural abundance. The effects of homonuclear dipolar coupling on CSA-amplified PASS spectra has been investigated by numerical simulations and are demonstrated using uniformly (13)C enriched l-histidine monohydrochloride monohydrate. PMID:16406513

  4. Integrating amplifiers using cooled JFETs

    NASA Astrophysics Data System (ADS)

    Low, F. J.

    1984-05-01

    It is shown how a simple integrating amplifier based on commercially available JFET and MOSFET switches can be used to measure photocurrents from detectors with noise levels as low as 1.6 x 10 to the -18th A/root Hz (10 electrons/sec). A figure shows the basic circuit, along with the waveform at the output. The readout is completely nondestructive; the reset noise does not contribute since sampling of the accumulated charge occurs between resets which are required only when the stored charge has reached a very high level. The storage capacity ranges from 10 to the 6th to 10 to the 9th electrons, depending on detector parameters and linearity requirements. Data taken with an Si:Sb detector operated at 24 microns are presented. The responsivity agrees well with the value obtained by Young et al. (1981) in the transimpedance amplifier circuit. The data are seen as indicating that extremely low values of NEP can be obtained for integration times of 1 sec and that longer integrations continue to improve the SNR at a rate faster than the square root of time when background noise is not present.

  5. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  6. Self-amplified optical pattern-recognition technique

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1992-01-01

    A self-amplified optical pattern-recognition technique that utilizes a photorefractive crystal as a real-time volume holographic filter with recording accomplished by means of laser beams of proper polarization and geometric configuration is described. After the holographic filter is recorded, it can be addressed with extremely weak object beams and an even weaker reference beam to obtain a pattern-recognition signal. Because of beam-coupling energy transfer from the input object beam to the diffracted beam, the recognition signal is greatly amplified. Experimental results of this technique using BaTiO3 crystal show that 5 orders of magnitude of amplification of a recognition signal can be obtained.

  7. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  8. A low-noise transimpedance amplifier for the detection of “Violin-Mode” resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    SciTech Connect

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-15

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level “Violin-Mode” (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent “noise-gain peaking” arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes’ two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m{sup −1}(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  9. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations-this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m(-1)(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm. PMID:25430131

  10. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m-1(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  11. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  12. Signal-Conditioning Amplifier Recorders

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John

    2003-01-01

    Signal-conditioning amplifier recorders (SCAmpRs) have been proposed as a means of simplifying and upgrading the Kennedy Space Center (KSC) Ground Measurement System (GMS), which is a versatile data-acquisition system that gathers and records a variety of measurement data before and during the launch of a space shuttle. In the present version of the GMS system, signal conditioning amplifiers digitize and transmit data to a VME chassis that multiplexes up to 416 channels. The data is transmitted via a high-speed data bus to a second VME chassis where it is available for snapshots. The data is passed from the second VME chassis to a high-speed data recorder. This process is duplicated for installations at two launch pads and the Vehicle Assembly Building (VAB). Since any failure of equipment in the data path results in loss of data, much of the system is redundant. The architecture of the existing GMS limits expansion or any modification to the system to meet changing requirements because of the cost and time required. A SCAmpR-based system is much more flexible. The basis of the simplification, flexibility, and reliability is the shifting of the recording function to the individual amplifier channels. Each SCAmpR is a self-contained single channel data acquisition system, which in its current implementation, has a data storage capacity of up to 30 minutes when operating at the fastest data sampling rates. The SCAmpR channels are self-configuring and self-calibrating. Multiple SCAmpR channels are ganged on printed circuit boards and mounted in a chassis that provides power, a network hub, and Inter-Range Instrument Group (IRIG) time signals. The SCAmpR channels share nothing except physical mounting on a circuit board. All circuitry is electrically separate for each channel. All that is necessary to complete the data acquisition system is a single master computer tied to the SCAmpR channels by standard network equipment. The size of the data acquisition system

  13. Broadband Microwave Amplifier Design with Lumped Elements

    NASA Astrophysics Data System (ADS)

    Şengül, Metin

    2016-03-01

    This study introduces a broadband microwave amplifier design that utilizes the measured scattering parameters of active devices without assuming an initial topology for the matching networks or an analytic form of the system transfer function. The algorithm can be extended to design multistage broadband microwave amplifiers. An example is given to illustrate the application of the proposed method. It was found that the proposed method provides very good initials for CAD tools to further improve amplifier performance by working on the element values.

  14. Simulation of a regenerative MW FEL amplifier

    SciTech Connect

    Nguyen, R.T.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    Both oscillator and regenerative amplifier configurations are being studied to optimize the design of a MW class FEL. The regenerative amplifier uses a longer undulator and relies on higher extraction efficiency to achieve high average power, whereas the oscillator is a more compact overall design requiring the transport of the high energy electron beam around bends for energy recovery. Using parameters extrapolated from the 1 kW LANL regenerative amplifier, simulations study the feasibility of achieving 1 MW average power.

  15. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW.

    PubMed

    Bolpasi, V; von Klitzing, W

    2010-11-01

    A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation. PMID:21133462

  16. Class E/F switching power amplifiers

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)

    2004-01-01

    The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.

  17. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, W.

    1985-02-08

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.

  18. Direct nuclear-pumped laser amplifier

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1981-01-01

    A (He-3)-Xe gas mixture, excited by the He-3(n,p)H-3 reaction, has been employed to amplify the output of a (He-3)Xe direct nuclear-pumped laser. Lasing occurred at the 2.63 micron line of XeI in the oscillator. The oscillator output was reflected through 180 deg and passed through the amplifier system. Power measurements of the oscillator output and the amplifier output show the laser power to be amplified by a factor of 3 for the (He-3)-Xe system. Amplification by a factor of 5 was obtained for a (He-3)-CO system.

  19. Fiber networks amplify active stress.

    PubMed

    Ronceray, Pierre; Broedersz, Chase P; Lenz, Martin

    2016-03-15

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  20. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  1. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  2. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  3. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  4. Methods of attenuating wind turbine ac generator output variations

    NASA Technical Reports Server (NTRS)

    Gold, H.

    1978-01-01

    Wind speed variation, tower blockage and structural and inertial factors produce unsteady torque in wind turbines. Methods for modifying the turbine torque so that steady torque is delivered to the coupled ac generator are discussed. The method that may evolve will be influenced by the power use that develops and the trade-offs of cost, weight and complexity.

  5. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  6. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  7. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  8. System for automatically switching transformer coupled lines

    NASA Technical Reports Server (NTRS)

    Dwinell, W. S. (Inventor)

    1979-01-01

    A system is presented for automatically controlling transformer coupled alternating current electric lines. The secondary winding of each transformer is provided with a center tap. A switching circuit is connected to the center taps of a pair of secondary windings and includes a switch controller. An impedance is connected between the center taps of the opposite pair of secondary windings. The switching circuit has continuity when the AC lines are continuous and discontinuity with any disconnect of the AC lines. Normally open switching means are provided in at least one AC line. The switch controller automatically opens the switching means when the AC lines become separated.

  9. RG flow of AC conductivity in soft wall model of QCD

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Neha; Siwach, Sanjay

    2016-03-01

    We study the Renormalization Group (RG) flow of AC conductivity in soft wall model of holographic QCD. We consider the charged black hole metric and the explicit form of AC conductivity is obtained at the cutoff surface. We plot the numerical solution of conductivity flow as a function of radial coordinate. The equation of gauge field is also considered and the numerical solution is obtained for AC conductivity as a function of frequency. The results for AC conductivity are also obtained for different values of chemical potential and Gauss-Bonnet couplings.

  10. Development and application of setup for ac magnetic field in neutron scattering experiments.

    PubMed

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P; Zabel, Hartmut

    2010-10-01

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm(3) and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed. PMID:21034083

  11. Development and application of setup for ac magnetic field in neutron scattering experiments

    SciTech Connect

    Klimko, Sergey; Zhernenkov, Kirill; Toperverg, Boris P.; Zabel, Hartmut

    2010-10-15

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm{sup 3} and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed.

  12. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  13. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  14. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  15. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  16. Method for reducing snap in magnetic amplifiers

    NASA Technical Reports Server (NTRS)

    Fischer, R. L. E.; Word, J. L.

    1968-01-01

    Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.

  17. Integrated-circuit balanced parametric amplifier

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Amplifier, fabricated on single dielectric substrate, has pair of Schottky barrier varactor diodes mounted on single semiconductor chip. Circuit includes microstrip transmission line and slot line section to conduct signals. Main features of amplifier are reduced noise output and low production cost.

  18. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1986-01-01

    During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  19. Design and performance of the beamlet amplifiers

    SciTech Connect

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  20. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    PubMed Central

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  1. Dual-range linearized transimpedance amplifier system

    DOEpatents

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  2. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  3. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  4. mm-wave solid state amplifiers

    NASA Astrophysics Data System (ADS)

    Wolfert, P. H.; Crowley, J. D.; Fank, F. B.

    The development of mm-wave amplifiers using InP Gunn diodes is reviewed including a low-noise eight-stage amplifier for replacement of a Ka-band TWTA and a three-stage amplifier for the 42.5 to 44.5 range with an output power of 100 mW and 20 dB associated gain. A detailed description of a three-stage amplifier for the 54 to 58 GHz range is given with 100 mW output power and 15 dB associated gain, a small signal gain of 30 dB and an N.F. of 15.5 to 16.5 dB. The design of a broad band, low-loss V-band circulator, which was used in the amplifier, is described.

  5. A high-power 95 GHz gyro-TWT amplifier

    SciTech Connect

    Kreischer, K.E.; Basten, M.; Blank, M.; Danly, B.G.; Guss, W.C.; Temkin, R.J.

    1992-07-01

    The need for radar systems with greater resolution has led to renewed interest in the development of efficient high-power amplifiers at 95 GHz. The gyro-TWT is capable of producing high power with the added attraction of having lower ohmic loading on the smooth fast-wave interaction circuit than conventional slow-wave sources. We have completed a comprehensive desip of a 95 GHz gyro-TWT amplifier that is capable of producing 120 kill of output power with an efficiency of 30%, a saturated gain of 38 dB and an instantaneous bandwidth of over 5 GHz. Our concept uses an annular beam produced by a MIG electron source and operates in the TE{sub 5,1} cylindrical waveguide mode. Realistic beam parameters from gun simulations were, included in our efficiency calculations. In addition, our design includes the use of a compact superconducting magnet, quasi-optical input and output couplers and a sever to supress oscillations. The overall mechanical design shows that a compact, lightweight amplifier with adequate beam clearance is possible. This report also includes a study of a gyro-TWT using a solid on-axis beam from a Pierce-wiggler electron source coupling with a TE{sub 1,n} waveguide mode. Nonlinear models indicated that an efficient interaction with the waveguide mode was possible, however, beam simulations indicated that the high current density beam had large internal space charge forces that caused a substantial degradation of the beam quality.

  6. A high-power 95 GHz gyro-TWT amplifier

    SciTech Connect

    Kreischer, K.E.; Basten, M.; Blank, M.; Danly, B.G.; Guss, W.C.; Temkin, R.J.

    1992-07-01

    The need for radar systems with greater resolution has led to renewed interest in the development of efficient high-power amplifiers at 95 GHz. The gyro-TWT is capable of producing high power with the added attraction of having lower ohmic loading on the smooth fast-wave interaction circuit than conventional slow-wave sources. We have completed a comprehensive desip of a 95 GHz gyro-TWT amplifier that is capable of producing 120 kill of output power with an efficiency of 30%, a saturated gain of 38 dB and an instantaneous bandwidth of over 5 GHz. Our concept uses an annular beam produced by a MIG electron source and operates in the TE[sub 5,1] cylindrical waveguide mode. Realistic beam parameters from gun simulations were, included in our efficiency calculations. In addition, our design includes the use of a compact superconducting magnet, quasi-optical input and output couplers and a sever to supress oscillations. The overall mechanical design shows that a compact, lightweight amplifier with adequate beam clearance is possible. This report also includes a study of a gyro-TWT using a solid on-axis beam from a Pierce-wiggler electron source coupling with a TE[sub 1,n] waveguide mode. Nonlinear models indicated that an efficient interaction with the waveguide mode was possible, however, beam simulations indicated that the high current density beam had large internal space charge forces that caused a substantial degradation of the beam quality.

  7. Amplified Electrokinetic Response Concentration Polarization near Nanofluidic Channel

    PubMed Central

    Kim, Sung Jae; Li, Leon D.; Han, Jongyoon

    2009-01-01

    Ion concentration polarization is the fundamental transport phenomenon that occurs near ion-selective membranes, but this important membrane phenomenon has been poorly understood due to theoretical and experimental challenges. Here, we report the first direct measurements of detailed flow and electric potential profiles within and near the depletion region. This work is an important step towards a full characterization of this coupled transport problem. Using microfabricated electrodes integrated with the microfluidic device, we measured and confirmed that the electric field inside an ion depletion region is amplified more than 30 fold compared to outside of the depletion zone due to the highly non-uniform ion concentration distribution along the microchannel. As a result, the electrokinetic motion of both fluid (electroosmosis) and particle (electrophoresis) was significantly amplified. The detailed flow profile within the depletion zone was also measured for the first time by optically tracking photobleached neutral dye molecules. We further showed that the amplified electrokinetic flows generated in this device may be used as a field-controlled, microfluidic fluid pump and switch. PMID:19358584

  8. Polarization-maintaining amplifier based on 3C fiber structures

    NASA Astrophysics Data System (ADS)

    Enokidani, Jun; Ito, Rumi; Sakurai, Tsutomu; Shin, Sumida; Tei, Kazuyoku

    2015-03-01

    Chirally-Coupled-Core (3C) fiber structure can preserve a single mode quality and even a linear polarization for a large core size. A principal advantage of fiber laser is its compatibility with monolithic integration and robust system. But so far, devices such as a combiner using the 3C fibers have not been reported. Here we report the first demonstration of such monolithic amplifier structure which contains an active fiber and a combiner based on 3C fibers. A single-stage amplifier is seeded by an EO Q-switched micro-laser and pumped by two high power fiber pigtailed 976-nm laser diodes via an in-house fabricated (2 + 1) × 1 pump signal combiner. The active fiber is based on a 3-m-long, 3C Yb-doped fiber (33 μm/250 μm core/cladding diameter with 0.06/0.46 NA). The amplifier demonstrates scaling up to 30W average power and 150 kW peak power in 0.3mJ, 2ns pulses. The beam profiles and beam qualities were characterized as its output power was varied up to 30W. The beam profile was maintained at a high beam quality of around M2=1.2. The spectral properties of the 3C fiber were also characterized as its output peak power was varied.

  9. Ultrafast laser and amplifier sources

    NASA Astrophysics Data System (ADS)

    Rundquist, A.; Durfee, C.; Chang, Z.; Taft, G.; Zeek, E.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.; Christov, I.; Stoev, V.

    1997-08-01

    There has been remarkable progress in the development of high peak-power ultrafast lasers in recent years. Lasers capable of generating terawatt peak powers with unprecedented short pulse durations can now be built on a single optical table in a small laboratory. The rapid technological progress has made possible a host of new scientific advances in high-field science, such as the generation of coherent femtosecond X-ray pulses, and the generation of MeV-energy electron beams and high-energy ions. In this paper, we review progress in the development and design of ultrafast high-power lasers based on Ti:sapphire, including the ultrafast laser oscillators that are a very important enabling technology for high-power ultrafast systems, and ultrafast amplified laser systems that generate 20 fs duration pulses with several watts average power at kilohertz repetition-rates. Ultrafast waveform measurements of these pulses demonstrate that such short pulses can be generated with high fidelity. Finally, we discuss applications of ultrafast high-power pulses, including the generation of femtosecond to attosecond X-ray pulses.

  10. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  11. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)

    1997-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.

  12. Exchange anisotropy determined by magnetic field dependence of ac susceptibility

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela Leão, L. H.; de Aguiar, F. M.; Rezende, S. M.; Azevedo, A.

    2003-10-01

    ac susceptibility measurements of ferromagnetic/antiferromagnetic (FM/AF) bilayers are usually performed as a function of the temperature. In this work we describe measurements of transverse biased ac susceptibility (χt) of FM/AF bilayers as a function of the applied magnetic field H0. The measurements were carried out at room temperature by means of an ac magneto-optical Kerr effect susceptometer. The χt-1(H0) dependence, at the saturation magnetization regime, exhibits a linear behavior with the applied field parallel and perpendicular to the exchange bias direction. The linear extrapolation of χt-1 versus H0 cuts the abscissa at asymmetrical values of field due to the exchange bias coupling. The inverse susceptibility is calculated in the saturation regime by a model, which takes into account the free energy of both layers plus a term corresponding to the interfacial coupling. The exchange coupling field (HE) and uniaxial anisotropy (HU) are extracted from the best fit to the experimental results. The results obtained are crosschecked by those obtained from ferromagnetic resonance (FMR) and dc magnetometry. The measurements of the exchange bias and the uniaxial field in all of the three analyzed bilayers gave values that are consistently lower when measured by FMR than those obtained by ac and dc magnetometry. It is argued that the apparently discrepant values of HE and HU, obtained by different techniques, might be explained by existence of unstable AF grains at the AF/FM interface.

  13. Interplay between electron overheating and ac Josephson effect

    NASA Astrophysics Data System (ADS)

    De Cecco, A.; Le Calvez, K.; Sacépé, B.; Winkelmann, C. B.; Courtois, H.

    2016-05-01

    We study the response of high-critical-current proximity Josephson junctions to a microwave excitation. Electron overheating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron overheating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron overheating is obtained.

  14. Lens Coupled Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  15. Static thermo-optic instability in double-pass fiber amplifiers.

    PubMed

    Lægsgaard, Jesper

    2016-06-13

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. PMID:27410360

  16. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  17. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  18. High power Ka band TWT amplifier

    SciTech Connect

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  19. ACS after Servicing Mission 4: The WFC Optimization Campaign

    NASA Astrophysics Data System (ADS)

    Golimowski, David; Cheng, Ed; Loose, Markus; Sirianni, Marco; Lupie, Olivia; Smith, Linda; Arslanian, Steve; Boyce, Kevin; Chapman, George; Chiaberge, Marco; Desjardins, Tyler; Dye, Darryl; Grogin, Norman; Lim, Pey Lian; Lucas, Ray; Maybhate, Aparna; Mil, Kathleen; Mutchler, Max; Ricardo, Raphael; Scott, Barbara; Serrano, Beverly; Suchkov, Anatoly; Waczynski, Augustyn; Welty, Alan; Wheeler, Thomas; Wilson, Erin

    2011-07-01

    The ACS CCD Electronics Box Replacement (CEB-R) installed during SM4 features a Teledyne SIDECAR ASIC that permits optimization of the WFC via adjustment of CCD clock voltages, bias voltages, and pixel transmission timing. A built-in oscilloscope mode allows sensing of the analog signal from each output amplifier. An on-orbit campaign to optimize the performance of the WFC was undertaken at the start of the SMOV period. Initial tests with pre-SM4 default voltages and timing patterns showed that WFC's performance matches or exceeds its pre-failure levels, notwithstanding the expected increases in dark current and hot pixels and the decline in charge-transfer efficiency due to prolonged exposure to HST's radiation environment. The WFC2 CCD exhibited anomalous behavior when operated with nondefault settings of its amplifiers' reset-drain voltage (VOD). The CCD again displayed normal behavior when VOD was restored to its default setting. Consequently, the Optimization Campaign was truncated after two iterations, and ACS science operations commenced with the pre-SM4 default configuration.

  20. A Low-Noise Semiconductor Optical Amplifier

    SciTech Connect

    Ratowsky, R.P.; Dijaili, S.; Kallman, J.S.; Feit, M.D.; Walker, J.

    1999-03-23

    Optical amplifiers are essential devices for optical networks, optical systems, and computer communications. These amplifiers compensate for the inevitable optical loss in long-distance propagation (>50 km) or splitting (>10x). Fiber amplifiers such as the erbium-doped fiber amplifier have revolutionized the fiber-optics industry and are enjoying widespread use. Semiconductor optical amplifiers (SOAs) are an alternative technology that complements the fiber amplifiers in cost and performance. One obstacle to the widespread use of SOAs is the severity of the inevitable noise output resulting from amplified spontaneous emission (ASE). Spectral filtering is often used to reduce ASE noise, but this constrains the source spectrally, and improvement is typically limited to about 10 dB. The extra components also add cost and complexity to the final assembly. The goal of this project was to analyze, design, and take significant steps toward the realization of an innovative, low-noise SOA based on the concept of ''distributed spatial filtering'' (DSF). In DSF, we alternate active SOA segments with passive free-space diffraction regions. Since spontaneous emission radiates equally in all directions, the free-space region lengthens the amplifier for a given length of gain region, narrowing the solid angle into which the spontaneous emission is amplified [1,2]. Our innovation is to use spatial filtering in a differential manner across many segments, thereby enhancing the effect when wave-optical effects are included [3]. The structure quickly and effectively strips the ASE into the higher-order modes, quenching the ASE gain relative to the signal.

  1. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  2. Very high gain Nd:YLF amplifiers

    SciTech Connect

    Knights, M.G.; Thomas, M.D.; Chicklis, E.P.; Rines, G.A.; Seka, W.

    1988-05-01

    The authors report on high gain Nd:YLF rod amplifiers in which single-pass, small signal gains of over 1700 have been obtained along with stored energy densitiesgreater than or equal to0.4J/cm/sup 3/. The ability of Nd:YLF amplifiers to support such gains is a result of high parasitic oscillation thresholds, due primarily to the low refractive index of the material. These results suggest that Nd:YLF is an excellent candidate for amplifiers where high specific stored energies and/or very high gains are required.

  3. Diode amplifier of modulated optical beam power

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  4. Achieving and maintaining cleanliness in NIF amplifiers

    SciTech Connect

    Burnham, A. K.; Horvath, J. A.; Letts, S. A.; Menapace, J. A.; Stowers, I. F.

    1998-07-28

    Cleanliness measurements made on AMPLAB prototype National Ignition Facility (NIF) laser amplifiers during assembly, cassette transfer, and amplifier operation are summarized. These measurements include particle counts from surface cleanliness assessments using filter swipe techniques and from airborne particle monitoring. Results are compared with similar measurements made on the Beamlet and Nova lasers and in flashlamp test fixtures. Observations of Class 100,000 aerosols after flashlamp firings are discussed. Comparisons are made between typical damage densities on laser amplifier optics from Novette, NOVA, Beamlet, and AMPLAB.

  5. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  6. The 60 GHz solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Mcclymonds, J.

    1991-01-01

    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  7. Phase noise in RF and microwave amplifiers.

    PubMed

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  8. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  9. Amplified energy harvester from footsteps: design, modeling, and experimental analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Chen, Wusi; Guzman, Plinio; Zuo, Lei

    2014-04-01

    This paper presents the design, modeling and experimental analysis of an amplified footstep energy harvester. With the unique design of amplified piezoelectric stack harvester the kinetic energy generated by footsteps can be effectively captured and converted into usable DC power that could potentially be used to power many electric devices, such as smart phones, sensors, monitoring cameras, etc. This doormat-like energy harvester can be used in crowded places such as train stations, malls, concerts, airport escalator/elevator/stairs entrances, or anywhere large group of people walk. The harvested energy provides an alternative renewable green power to replace power requirement from grids, which run on highly polluting and global-warming-inducing fossil fuels. In this paper, two modeling approaches are compared to calculate power output. The first method is derived from the single degree of freedom (SDOF) constitutive equations, and then a correction factor is applied onto the resulting electromechanically coupled equations of motion. The second approach is to derive the coupled equations of motion with Hamilton's principle and the constitutive equations, and then formulate it with the finite element method (FEM). Experimental testing results are presented to validate modeling approaches. Simulation results from both approaches agree very well with experimental results where percentage errors are 2.09% for FEM and 4.31% for SDOF.

  10. Phase properties of multicomponent superposition states in various amplifiers

    NASA Technical Reports Server (NTRS)

    Lee, Kang-Soo; Kim, M. S.

    1994-01-01

    There have been theoretical studies for generation of optical coherent superposition states. Once the superposition state is generated it is natural to ask if it is possible to amplify it without losing the nonclassical properties of the field state. We consider amplification of the superposition state in various amplifiers such as a sub-Poissonian amplifier, a phase-sensitive amplifier and a classical amplifier. We show the evolution of phase probability distribution functions in the amplifier.

  11. Ac traction gets on track

    SciTech Connect

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  12. Noise in phase-preserving linear amplifiers

    SciTech Connect

    Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.

    2014-12-04

    The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.

  13. Advanced Concepts in Josephson Junction Reflection Amplifiers

    NASA Astrophysics Data System (ADS)

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Paraoanu, G. S.; Seppä, Heikki; Hakonen, Pertti

    2014-06-01

    Low-noise amplification at microwave frequencies has become increasingly important for the research related to superconducting qubits and nanoelectromechanical systems. The fundamental limit of added noise by a phase-preserving amplifier is the standard quantum limit, often expressed as noise temperature . Towards the goal of the quantum limit, we have developed an amplifier based on intrinsic negative resistance of a selectively damped Josephson junction. Here we present measurement results on previously proposed wide-band microwave amplification and discuss the challenges for improvements on the existing designs. We have also studied flux-pumped metamaterial-based parametric amplifiers, whose operating frequency can be widely tuned by external DC-flux, and demonstrate operation at pumping, in contrast to the typical metamaterial amplifiers pumped via signal lines at.

  14. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  15. High dynamic range Josephson parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Roch, Nicolas; Murch, Kater W.; Vijay, Rajamani

    Josephson parametric amplifiers (JPAs) have become the technology of choice to amplify small amplitude microwave signals since they show noise performances close to the quantum limit of amplification. An important challenge that faces this technology is the low dynamic range of current devices, which limits the number of measurements that can be performed concurrently and the rate of information acquisition for single measurements. We have fabricated and tested novel parametric amplifiers based on arrays of up to 100 SQUIDS. The amplifiers produce gain in excess of 20 dB over a large bandwidth and match the dynamic range achieved with traveling wave devices. Compared to the latter devices they are fabricated in a single lithography step and we will show that their bandwidth performance can be further extended using a recently developed impedance matching technique.

  16. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  17. How to characterize the nonlinear amplifier?

    NASA Technical Reports Server (NTRS)

    Kallistratova, Dmitri Kouznetsov; Cotera, Carlos Flores

    1994-01-01

    The conception of the amplification of the coherent field is formulated. The definition of the coefficient of the amplification as the relation between the mean value of the field at the output to the value at the input and the definition of the noise as the difference between the number of photons in the output mode and square of the modulus of the mean value of the output amplitude are considered. Using a simple example it is shown that by these definitions the noise of the nonlinear amplifier may be less than the noise of the ideal linear amplifier of the same amplification coefficient. Proposals to search another definition of basic parameters of the nonlinear amplifiers are discussed. This definition should enable us to formulate the universal fundamental lower limit of the noise which should be valid for linear quantum amplifiers as for nonlinear ones.

  18. Two-stage hybrid microcircuit amplifier

    SciTech Connect

    Pyo, M.L.

    1987-04-01

    This report documents the design, development, and fabrication of a two-stage amplifier operating at 400 to 600 MHz. Included are characterization data, predictions generated during design, and measured performance.

  19. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P., Tran, V., Chau, R.

    2012-10-01

    We developed a high bandwidth differential amplifier for gas gun shock experiments. The circuit has a bandwidth up to 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. Various amplifying designs are shown, although the increased amplification decreases bandwidth. Bench tests show that the amplifier can withstand significant common mode DC voltage and measure 10 ns, and 50 mV signals.

  20. Noise in phase-preserving linear amplifiers

    NASA Astrophysics Data System (ADS)

    Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.

    2014-12-01

    The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.

  1. Tester periodically registers dc amplifier characteristics

    NASA Technical Reports Server (NTRS)

    Cree, D.; Wenzel, G. E.

    1966-01-01

    Motor-driven switcher-recorder periodically registers the zero drift and gain drift signals of a dc amplifier subjected to changes in environment. A time coding method is used since several measurements are shared on a single recorder trace.

  2. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)

    1996-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third

  3. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  4. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  5. High-Frequency, Conformable Organic Amplifiers.

    PubMed

    Reuveny, Amir; Lee, Sunghoon; Yokota, Tomoyuki; Fuketa, Hiroshi; Siket, Christian M; Lee, Sungwon; Sekitani, Tsuyoshi; Sakurai, Takayasu; Bauer, Siegfried; Someya, Takao

    2016-05-01

    Large-bandwidth, low-operation-voltage, and uniform organic amplifiers are fabricated on ultrathin foils. By the integration of short-channel OTFTs and AlOx capacitors, organic amplifiers with a bandwidth of 25 kHz are realized, demonstrating the highest gain-bandwidth product (GBWP) reported to date. Owing to material and process advancements, closed-loop architectures operate at frequencies of several kilohertz with an area smaller than 30 mm(2) . PMID:26922899

  6. Efficient Power Amplifier for Motor Control

    NASA Technical Reports Server (NTRS)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  7. Some Notes on Wideband Feedback Amplifiers

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  8. Multiple excitation regenerative amplifier inertial confinement system

    DOEpatents

    George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.

  9. Multiple excitation regenerative amplifier inertial confinement system

    DOEpatents

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.

  10. V-band IMPATT power amplifier

    NASA Technical Reports Server (NTRS)

    Schell, S. W.

    1985-01-01

    This program is the result of the continuing demand and future requirement for a high data rate 60-GHz communications link. A reliable solid-state transmitter which delivers the necessary power over a wide bandwidth using the present IMPATT diode technology required the development of combining techniques. The development of a 60-GHz IMPATT power combiner amplifier is detailed. The results form a basis from which future wideband, high-power IMPATT amplifiers may be developed. As a result, several state-of-the-art advancements in millimeter-wave components technology were achieved. Specific achievements for the amplifier integration were: development of a nonresonant divider/combiner circuit; reproducible multiple junction circulator assemblies; and reliable high power 60-GHz IMPATT diodes. The various design approaches and tradeoffs which lead to the final amplifier configuration are discussed. A detailed circuit design is presented for the various amplifier components, and the conical line combiner, radial line combiner, and circulator development are discussed. The performance of the amplifier, the overall achievement of the program, the implications of the results, and an assessment of future development needs and recommendations are examined.

  11. V-band IMPATT power amplifier

    NASA Astrophysics Data System (ADS)

    Schell, S. W.

    1985-09-01

    This program is the result of the continuing demand and future requirement for a high data rate 60-GHz communications link. A reliable solid-state transmitter which delivers the necessary power over a wide bandwidth using the present IMPATT diode technology required the development of combining techniques. The development of a 60-GHz IMPATT power combiner amplifier is detailed. The results form a basis from which future wideband, high-power IMPATT amplifiers may be developed. As a result, several state-of-the-art advancements in millimeter-wave components technology were achieved. Specific achievements for the amplifier integration were: development of a nonresonant divider/combiner circuit; reproducible multiple junction circulator assemblies; and reliable high power 60-GHz IMPATT diodes. The various design approaches and tradeoffs which lead to the final amplifier configuration are discussed. A detailed circuit design is presented for the various amplifier components, and the conical line combiner, radial line combiner, and circulator development are discussed. The performance of the amplifier, the overall achievement of the program, the implications of the results, and an assessment of future development needs and recommendations are examined.

  12. 50 W low noise dual-frequency laser fiber power amplifier.

    PubMed

    Kang, Ying; Cheng, Lijun; Yang, Suhui; Zhao, Changming; Zhang, Haiyang; He, Tao

    2016-05-01

    A three-stage dual-frequency laser signal amplification system is presented. An output from a narrow-linewidth Nd:YAG nonplanar ring-oscillator (NPRO) is split into two parts, one of them is frequency shifted by an acoustooptic modulator (AOM) then coupled into a single mode optical fiber. The other part is coupled into another single mode fiber then combined with the frequency-shifted beam with a 2 to 1 single mode fiber coupler. The combined beam has a power of 20 mW containing two frequency components with frequency separation of 150 ± 25 MHz. The dual-frequency signal is amplified via a three-stage Yb3+-doped diode pumped fiber power amplifier. The maximum amplified power is 50.3 W corresponding to a slope efficiency of 73.72% of the last stage. The modulation depth and signal to noise ratio (SNR) of the beat signal are well maintained in the amplifying process. The dual-frequency laser fiber power amplifier provides robust optical carried RF signal with high power and low noise. PMID:27137536

  13. Design and Operation of 1000-fold Voltage Multiplier based on Double-flux-quantum Amplifier

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Moriya, M.; Shimada, H.; Mizugaki, Y.; Maezawa, M.

    Rapid-single-flux-quantum digital-to-analogue converters (RSFQ-DACs) are now under development for ac voltage standard applications. The voltage multiplier (VM), which precisely amplifies the input voltage, is a key component for RSFQ-DACs. Because the amount of bias current for a conventional VM increases in proportion to its multiplication factor, we have been looking for a VM device which is operated on a different principle. In this paper, we report our design of a 1000-fold VM comprising double flux quantum amplifiers (DFQAs) of which the amount of bias current is independent of its multiplication factor. Test circuits were fabricated using a 2.5 kA/cm2 Nb process. We confirm that the experimental results demonstrate the 1000-fold operation up to 13.2 GHz input SFQ pulse repetition frequency.

  14. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  15. Tapered InAs/InGaAs quantum dot semiconductor optical amplifier design for enhanced gain and beam quality.

    PubMed

    Mesaritakis, Charis; Kapsalis, Alexandros; Simos, Hercules; Simos, Christos; Krakowski, Michel; Krestnikov, Igor; Syvridis, Dimitris

    2013-07-15

    In this Letter, a design for a tapered InAs/InGaAs quantum dot semiconductor optical amplifier is proposed and experimentally evaluated. The amplifier's geometry was optimized in order to reduce gain saturation effects and improve gain efficiency and beam quality. The experimental measurements confirm that the proposed amplifier allows for an elevated optical gain in the saturation regime, whereas a five-fold increase in the coupling efficiency to a standard single mode optical fiber is observed, due to the improvement in the beam quality factor M² of the emitted beam. PMID:23939062

  16. A dual-mode highly efficient class-E stimulator controlled by a low-Q class-E power amplifier through duty cycle.

    PubMed

    Chiu, Hung-Wei; Lu, Chien-Chi; Chuang, Jia-min; Lin, Wei-Tso; Lin, Chii-Wann; Kao, Ming-Chien; Lin, Mu-Lien

    2013-06-01

    This paper presents the design flow of two high-efficiency class-E amplifiers for the implantable electrical stimulation system. The implantable stimulator is a high-Q class-E driver that delivers a sine-wave pulsed radiofrequency (PRF) stimulation, which was verified to have a superior efficacy in pain relief to a square wave. The proposed duty-cycle-controlled class-E PRF driver designed with a high-Q factor has two operational modes that are able to achieve 100% DC-AC conversion, and involves only one switched series inductor and an unchanged parallel capacitor. The measured output amplitude under low-voltage (LV) mode using a 22% duty cycle was 0.98 V with 91% efficiency, and under high-voltage (HV) mode using a 47% duty cycle was 2.95 V with 92% efficiency. These modes were inductively controlled by a duty-cycle detector, which can detect the duty-cycle modulated signal generated from the external complementary low-Q class-E power amplifier (PA). The design methodology of the low-Q inductive interface for a non-50% duty cycle is presented. The experimental results exhibits that the 1.5-V PA that consumes DC power of 14.21 mW was able to deliver a 2.9-V sine wave to a 500 Ω load. The optimal 60% drain efficiency of the system from the PA to the load was obtained at a 10-mm coupling distance. PMID:23853324

  17. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  18. Optical amplifier based on guided polaritons in GaN and ZnO

    SciTech Connect

    Solnyshkov, D. D.; Terças, H.; Malpuech, G.

    2014-12-08

    We propose a scheme of an optical amplifier based on GaN and ZnO waveguides operating in the regime of strong coupling between photonic modes and excitonic resonances. Amplification of the guided exciton-polaritons is obtained by stimulated scattering from the excitonic reservoir, which is found to be fast enough compared with the large velocity of the guided polariton modes. We analyze the device parameters at different temperatures. We find that an 80 μm-long amplifier can provide a gain of 10 dB at room temperature, being supplied by 5 mA current in the cw regime.

  19. A remote millivolt multiplexer and amplifier module for wind tunnel data acquisition

    NASA Technical Reports Server (NTRS)

    Juanarena, D. B.; Blumenthal, P. Z.

    1982-01-01

    A 30-channel remotely located multiplexer and amplifier module is developed for the measurement of wind tunnel models, which substantially reduces the amount of wiring necessary and thus provides higher accuracy. The module provides for a wide variety of transducer voltage outputs to be multiplexed and amplified within the model, and all signals are able to exit the module on two wires. The module is self-calibrating, and when coupled with the electronically scanned pressure instrumentation widely used in wind tunnels, it allows the modular wind tunnel models to be fabricated and checked before installation into the wind tunnel.

  20. Design and construction of cost-effective tapered amplifier systems for laser cooling and trapping experiments

    NASA Astrophysics Data System (ADS)

    Kangara, Jayampathi C. B.; Hachtel, Andrew J.; Gillette, Matthew C.; Barkeloo, Jason T.; Clements, Ethan R.; Bali, Samir; Unks, Brett E.; Proite, Nicholas A.; Yavuz, Deniz D.; Martin, Paul J.; Thorn, Jeremy J.; Steck, Daniel A.

    2014-08-01

    We present plans for the construction and operation of a tapered optical amplifier (TA) system seeded by a single-mode, frequency-tunable, near-IR external-cavity diode laser. Our plans include machine drawings for the parts, electronic circuit diagrams, and information on prices and vendors. Instructions are provided on how to safely couple light into and out of the TA chip. Practical aspects of handling the chip are discussed as well. Because many cold atom experiments require light beams with Gaussian spatial profiles, measurements of the tapered amplifier light output through a single-mode optical fiber are presented as a function of seed intensity, polarization, and driving current.

  1. Time Difference Amplifier with Robust Gain Using Closed-Loop Control

    NASA Astrophysics Data System (ADS)

    Nakura, Toru; Mandai, Shingo; Ikeda, Makoto; Asada, Kunihiro

    This paper presents a Time Difference Amplifier (TDA) that amplifies the input time difference into the output time difference. Cross coupled chains of variable delay cells with the same number of stages are applicable for TDA, and the gain is adjusted via the closed-loop control. The TDA was fabricated using 65nm CMOS and the measurement results show that the time difference gain is 4.78 at a nominal power supply while the designed gain is 4.0. The gain is stable enough to be less than 1.4% gain shift under ±10% power supply voltage fluctuation.

  2. Improved Grid-Array Millimeter-Wave Amplifier

    NASA Technical Reports Server (NTRS)

    Rosenberg, James J.; Rutledge, David B.; Smith, R. Peter; Weikle, Robert

    1993-01-01

    Improved grid-array amplifiers operating at millimeter and submillimeter wavelengths developed for use in communications and radar. Feedback suppressed by making input polarizations orthogonal to output polarizations. Amplifier made to oscillate by introducing some feedback. Several grid-array amplifiers concatenated to form high-gain beam-amplifying unit.

  3. Method to amplify variable sequences without imposing primer sequences

    DOEpatents

    Bradbury, Andrew M.; Zeytun, Ahmet

    2006-11-14

    The present invention provides methods of amplifying target sequences without including regions flanking the target sequence in the amplified product or imposing amplification primer sequences on the amplified product. Also provided are methods of preparing a library from such amplified target sequences.

  4. Fully digital controlled A.C. servo engraving machine based on DEC4DA

    NASA Astrophysics Data System (ADS)

    Shu, Zhibing; Chen, Xianfeng; Zhang, Hairong; Huang, Yiqun; Yan, Caizhong

    2005-12-01

    A novel engraving machine (NUT-1A) is presented, in which fully digital controlled AC system based on DEC4DA was used to improve the machining precision and sensitivity. This engraving machine was constructed around AC servo motor with encoder, controlled by a servo motor control card - DEC4DA. As the upper unit of AC servo motor, DEC4DA was a numerical control generator, which received pulses form CPU by ISA bus, and these pulses were amplified and converted to drive AC servo actuator. This novel engraving machine can achieve a higher positioning accuracy of +/-0.01mm and positioning repetition of +/-0.005mm, and its resolution is 0.001mm/0.0001mm. Moreover, because of multi-closed loops were used in the system, the steady and transient performances are more excellent. This system ensures a much quicker current regulation in closed-loop operation, of acceleration and braking in both directions, as well as stable speed characteristics. Amplifier boards are protected against excessive current, excessive temperature and short circuiting of the motor supply cables.

  5. Injection- Seeded Optoplasmonic Amplifier in the Visible

    PubMed Central

    Gartia, Manas Ranjan; Seo, Sujin; Kim, Junhwan; Chang, Te-Wei; Bahl, Gaurav; Lu, Meng; Liu, Gang Logan; Eden, J. Gary

    2014-01-01

    A hybrid optoplasmonic amplifier, injection-seeded by an internally-generated Raman signal and operating in the visible (563–675 nm), is proposed and evidence for amplification is presented. Comprising a gain medium tethered to a whispering gallery mode (WGM) resonator with a protein, and a plasmonic surface, the optical system described here selectively amplifies a single (or a few) Raman line(s) produced within the WGM resonator and is well-suited for routing narrowband optical power on-a-chip. Over the past five decades, optical oscillators and amplifiers have typically been based on the buildup of the field from the spontaneous emission background. Doing so limits the temporal coherence of the output, lengthens the time required for the optical field intensity to reach saturation, and often is responsible for complex, multiline spectra. In addition to the spectral control afforded by injection-locking, the effective Q of the amplifier can be specified by the bandwidth of the injected Raman signal. This characteristic contrasts with previous WGM-based lasers and amplifiers for which the Q is determined solely by the WGM resonator. PMID:25156810

  6. Thermal recovery of the NIF amplifiers

    NASA Astrophysics Data System (ADS)

    Sutton, Steven B.; Erlandson, A. E.; London, Richard A.; Manes, Kenneth R.; Marshall, Christopher D.; Petty, Charles S.; Pierce, R.; Smith, Larry K.; Zapata, Luis E.; Beullier, J.; Bicrel, B.

    1999-07-01

    With approximately 99 percent of the electrical energy supplied to the NIF appearing as heat in the amplifiers, thermal recovery of the NIF system is a major consideration in the design process. The NIF shot rate is one shot every 8 hours, with a goal of 4 hours between shots. This necessitates that thermal recovery take place in no more than 7 hours, with a goal of 3 hours for the accelerated shot rate. Residual optical distortions, which restrict the shot rate, are grouped into two discrete categories: (1) distortions associated with residual temperature gradients in the laser slabs, and (2) distortions associated with buoyantly driven convective currents in the amplifier cavity and beam-tube regions. Thermal recovery of the amplifiers is achieved by cooling the flashlamps and blastshields with a heat deposited in the slabs and edge claddings. Advanced concepts, such as the use of slightly chilled gas to accelerate some aspects of recovery, are addressed. To quantify recovery rates of the amplifiers, experiments and numerical models are used to measure and calculate the temperatures and optical distortions in NIF-like amplifier elements. The calculation results are benchmarked against AMPLAB temperature measurements, thus allowing a quantitative prediction of NIF thermal recovery. These results indicate that the NIF requirement of 7 hour thermal recovery can be achieved with chilled temperature cooling gas. It is further shown that residual temperature gradient driven distortions in the slabs reach an acceptable level, after 4 hours of thermal recovery.

  7. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  8. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  9. Operational amplifier with adjustable frequency response.

    PubMed

    Gulisek, D; Hencek, M

    1978-01-01

    The authors describe an operational amplifier with an adjustable frequency response and its use in membrane physiology, using the voltage clamp and current clamp method. The amplifier eliminates feedback poles causing oscillation. It consists of a follower with a high input resistance in the form of a tube and of an actual amplifier with an adjustable frequency response allowing the abolition of clicks by one pole and of oscillation by two poles in the 500 Hz divided by infinity range. Further properties of the amplifier: a long-term voltage drift of 1 mv, a temperature voltage drift of 0.5 mv/degrees K, input resistance greater than 1 GOhm, amplification greater than 80 dB, output +/- 12 v, 25 ma, noise, measured from the width of the oscilloscope track in the presence of a ray of normal brightness, not exceeding 50 muv in the 0-250 kHz band, f1 = 1 MHz. A short report on the amplifier was published a few years ago (Gulísek and Hencek 1973). PMID:149322

  10. Experimental studies of low-voltage, grating TWT amplifiers

    SciTech Connect

    Joe, J.; Basten, M.A.; Scharer, J.E.; Booske, J.H.; Wagner, K.

    1995-12-31

    Recent results are presented from experimental studies of spontaneous emission and linear gain in a low-voltage, sheet-beam-compatible, grating TWT amplifier. A round probe beam from a 10 kV, 0.25 A Pierce gun electron source is utilized for 14 GHz amplifier experiments. From the spontaneous emission measurements the authors obtain the following valuable information: (a) measurements of the grating-induced spontaneous emission spectrum which can be correlated with the theoretically predicted linear gain curves, (b) measurements of broad-band noise emission which are critical for amplifier sensitivity characterization, and (c) measurements of spontaneous emission in the backward-wave regime to correlate with start oscillation predictions. The noise emission spectra have been correlated with the most dominant experimental factors including guide magnetic field intensity and body currents. Measurements of linear gain are also compared with the theoretical prediction in both forward and backward-wave regimes. The slow-wave structure consists of a uniform grating that adiabatically tapers to a smooth wall at both ends for impedance matching between the conventional TE{sub 10} rectangular guide mode and the TE{sub x10} hybrid slow-wave mode of the grating circuit. Small loop antennas are inserted at each end in smooth-walled rectangular guide sections for input and output signal coupling with the TE{sub 10} mode. Broadband, high-vacuum-compatible, SiC waveguide attenuator fins provide excellent suppression of unwanted end reflections and prevent the system from self-oscillation in the forward-wave regime.

  11. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  12. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  13. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  14. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  15. Optical switches based on semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Kalman, Robert F.; Dias, Antonio R.; Chau, Kelvin K.; Goodman, Joseph W.

    1991-12-01

    Fiber-optic switching systems typically exhibit large losses associated with splitting and combining of the optical power, and with excess component losses. These losses increase quickly with switch size. To obtain acceptable signal-to-noise performance through large optical switching, optical amplifiers can be used. In applications requiring optical switching, semiconductor optical amplifiers (SOAs) are preferred over erbium-doped fiber amplifiers due to their fast switching speeds and the possibility of their integration in monolithic structures with passive waveguides and electronics. We present a general analysis of optical switching systems utilizing SOAs. These systems, in which the gain provided by SOAs is distributed throughout the optical system, are referred to as distributed optical gain (DOG) systems. Our model predicts the performance and achievable sizes of switches based on the matrix-vector multiplier crossbar and Benes network. It is found that for realistic SOA parameters optical switches accommodating extremely large numbers of nodes are, in principle, achievable.

  16. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P. W., Tran, V., Chau, R.

    2012-04-30

    We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

  17. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  18. Transverse intensity transformation by laser amplifiers

    NASA Astrophysics Data System (ADS)

    Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.

    2015-03-01

    Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.

  19. Proposal of Current Control Method for High-Speed AC Motor System

    NASA Astrophysics Data System (ADS)

    Furutani, Shinichi; Satake, Akira

    In this paper, current control method for High-Speed AC Motor System is proposed. In High-Speed driving operation, Current controller tends to lose stability because of dead time caused by computational delay and Electromagnetic coupling included AC Motor Model. The Main purpose of the proposed method is reduction of dead time on current controller. Proposed method based model predictive control and optimizing of start timing. The Effectiveness of proposed method is confirmed by simulation results.

  20. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  1. Enhanced Dynamic Range in N-SQUID Lumped Josephson Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Eddins, A.; Levenson-Falk, E. M.; Toyli, D. M.; Vijay, R.; Minev, Z.; Siddiqi, I.

    2014-03-01

    Simultaneously providing high gain and nearly quantum-limited noise performance, superconducting parametric amplifiers (paramps) have been used successfully for high fidelity qubit readout, quantum feedback, and microwave quantum optics experiments. The Lumped Josephson Parametric Amplifier (LJPA) consists of a capacitively shunted SQUID coupled to a transmission line to form a nonlinear resonator. Like other paramps employing a resonant circuit, the LJPA's dynamic range-a potentially key ingredient for multiplexing-is limited. Simple theory predicts that the dynamic range can be increased without any reduction in bandwidth or gain by distributing the resonator nonlinearity over a series array of SQUIDs. We fabricated such array devices with up to 5 SQUIDs and observed a clear increase in the critical power for bifurcation about which parametric gain occurs. We discuss in detail amplifier performance as a function of the number of SQUIDs in the array. This research was supported by the Army Research Office under a QCT grant.

  2. 34-fs, all-fiber all-polarization-maintaining single-mode pulse nonlinear amplifier.

    PubMed

    Yu, Jia; Feng, Ye; Cai, Yajun; Li, Xiaohui; Hu, Xiaohong; Zhang, Wei; Duan, Lina; Yang, Zhi; Wang, Yishan; Liu, Yuanshan; Zhao, Wei

    2016-07-25

    We present an all-fiber all-polarization-maintaining (PM) single mode (SM) fiber pulse nonlinear amplification system. The seed laser with a repetition rate of 200 MHz is amplified by two-section erbium-doped PM gain fibers with different peak-absorption rate. The amplified pulse duration can be compressed into 34-fs with 320-mW output power, which corresponds to 1.6-nJ pulse energy and approximate 23.5-kW peak power. In addition, the amplified and compressed pulse is further coupled into the high nonlinear fiber and an octave-spanning supercontinuum generation can be obtained. To the best of our knowledge, it is the highest peak power and the shortest pulse duration obtained in the field of all-fiber all-PM SM pulse-amplification systems. PMID:27464117

  3. Beyond nonlinear saturation of backward Raman amplifiers

    DOE PAGESBeta

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-27

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  4. Beyond nonlinear saturation of backward Raman amplifiers.

    PubMed

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A; Fisch, Nathaniel J

    2016-06-01

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated saturation. The amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. This detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small. PMID:27415380

  5. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  6. Noise figure of amplified dispersive Fourier transformation

    SciTech Connect

    Goda, Keisuke; Jalali, Bahram

    2010-09-15

    Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.

  7. Transportable setup for amplifier phase fidelity measurements

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Bogan, C.; Barke, S.; Kühn, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-05-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.

  8. Beyond nonlinear saturation of backward Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-01

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated saturation. The amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. This detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  9. High-energy regenerative thin disk amplifier

    NASA Astrophysics Data System (ADS)

    Chyla, Michal; Smrz, Martin; Mocek, Tomas

    2012-07-01

    Design of a compact regenerative laser amplifier based on two Yb:YAG thin-disks is presented. Energy up to 100 mJ in picoseconds pulses will be delivered with a repetition rate of 1 kHz. System is designed for seeding a kW-class multipass amplifier for industrial and scientific applications. Laser heads are pumped at zero-phonon line (968.825 nm [1]) by stabilized high-power pump diodes operated in pulsed regime. Seed pulses are produced in a fiber oscillator at 1030 nm and CPA technique utilizing transmission gratings for pulse stretching and compression is applied.

  10. Thermoacoustically Driven Pulse Tube Coolers with Acoustic Amplifiers

    NASA Astrophysics Data System (ADS)

    Hu, J. Y.; Dai, W.; Luo, E. C.

    2006-04-01

    In previous thermoacoustically driven pulse tube coolers, the coolers are directly connected to the thermoacoustic engines with connecting tubes as short as possible for less power dissipation. This coupling method limits the amplitude of the pressure waves available to the coolers, which in turn limits the lowest obtainable temperatures. Through our analysis, if we use a connecting tube with length comparable to one quarter wavelength, the pressure wave coming from the thermoacoustic engine will be greatly amplified and drive the cooler to reach a much lower temperature. Experiments have been done on thermoacoustically driven single-stage and two-stage pulse tube cooler and successfully proved the effectiveness of this idea. The pressure ratios of 1.3 and 1.24 were obtained on the single-stage and two-stage pulse tube coolers, respectively, which are much higher than the pressure ratios of 1.1 and 1.13 provided by the thermoacoustic engine itself. With the amplified pressure ratio, the no-load lowest temperatures reached 65.2K and 41K, respectively.

  11. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  12. Measuring the energy of amplified spontaneous emission (ASE) in a short pulse laser amplifier

    NASA Astrophysics Data System (ADS)

    Iliev, Marin; Adams, Daniel; Greco, Michael; Meier, Amanda; Squier, Jeff; Durfee, Charles

    2010-10-01

    In high-gain pulsed laser amplifiers, amplified spontaneous emission (ASE) tends to limit the gain in single stage fiber amplifiers. Even if ASE is not strong enough to deplete the gain of the amplifier, it still contributes strongly to a low-intensity background output in the amplified signal. The intensity contrast between the amplified short pulse and this background ASE pedestal can be measured with third-order autocorrelation, but this method cannot be used to completely specify the ASE's energy, which is distributed over many nanoseconds. We have developed a novel method that allows us to determine the energy and the spectrum of the ASE. We use a cross polarized wave (XPW) generating crystal such as BaF2 to ``clean up'' the ASE from the short pulse(SP). The input pulse (SP and ASE) and the cross-polarized signal are passed through a birefringent crystal such as sapphire. The relative group velocity difference along each crystal axis results in a delay between both channels. After passing through a polarizer, an interferogram is obtained in a spectrometer. This interferogram results from interference of the XPW pulse with the short-pulse content of the amplifier output, with a background of the ASE spectrum. Fourier analysis yields both the ASE energy and its spectrum.

  13. Linearized traveling wave amplifier with hard limiter characteristics

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1986-01-01

    A dynamic velocity taper is provided for a traveling wave tube with increased linearity to avoid intermodulation of signals being amplified. In a traveling wave tube, the slow wave structure is a helix including a sever. A dynamic velocity taper is provided by gradually reducing the spacing between the repeating elements of the slow wave structure which are the windings of the helix. The reduction which takes place coincides with the ouput point of helix. The spacing between the repeating elements of the slow wave structure is ideally at an exponential rate because the curve increases the point of maximum efficiency and power, at an exponential rate. A coupled cavity traveling wave tube having cavities is shown. The space between apertured discs is gradually reduced from 0.1% to 5% at an exponential rate. Output power (or efficiency) versus input power for a commercial tube is shown.

  14. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  15. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  16. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  17. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  18. Multi-pass amplifier architecture for high power laser systems

    DOEpatents

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  19. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  20. A wideband RF amplifier for satellite tuners

    NASA Astrophysics Data System (ADS)

    Xueqing, Hu; Zheng, Gong; Yin, Shi; Foster, Dai Fa

    2011-11-01

    This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner. It is composed of a wideband low noise amplifier (LNA) and a two-stage RF variable gain amplifier (VGA) with linear gain in dB and temperature compensation schemes. To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal. Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network. A large gain control range (over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization. In total, the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm2.

  1. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  2. Stereoscopy Amplifies Emotions Elicited by Facial Expressions

    PubMed Central

    Kätsyri, Jari; Häkkinen, Jukka

    2015-01-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants’ gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15–65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  3. Reflected-wave maser. [low noise amplifier

    NASA Technical Reports Server (NTRS)

    Clauss, R. C. (Inventor)

    1976-01-01

    A number of traveling-wave, slow-wave maser structures, containing active maser material but absent the typical ferrite isolators, are immersed in a nonuniform magnetic field. The microwave signal to be amplified is inserted at a circulator which directs the signal to a slow-wave structure. The signal travels through the slow-wave structure, being amplified according to the distance traveled. The end of the slow-wave structure farthest from the circulator is arranged to be a point of maximum reflection of the signal traveling through the slow-wave structure. As a consequence, the signal to be amplified traverses the slow-wave structure again, in the opposite direction (towards the circulator) experiencing amplification equivalent to that achieved by a conventional traveling-wave maser having twice the length. The circulator directs the amplified signal to following like stages of amplification. Isolators are used in between stages to prevent signals from traveling in the wrong direction, between the stages. Reduced signal loss is experienced at each stage. The high gain produced by each slow-wave structure is reduced to a moderate value by use of a nonuniform magnetic field which also broadens the line width of the maser material. The resulting bandwidth can be exceptionally wide. Cascaded stages provide high gain, exceptionally wide bandwith and very low noise temperature.

  4. Stereoscopy Amplifies Emotions Elicited by Facial Expressions.

    PubMed

    Hakala, Jussi; Kätsyri, Jari; Häkkinen, Jukka

    2015-12-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants' gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15-65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  5. LOW-LEVEL DIRECT CURRENT AMPLIFIER

    DOEpatents

    Kerns, Q.A.

    1959-05-01

    A d-c amplifier is described. Modulation is provided between a d-c signal and an alternating current to give an output signal proportional to the d- c signal. The circuit has high sensitivity and accuracy. (T.R.H.)

  6. Gyrotron: A high-frequency microwave amplifier

    NASA Technical Reports Server (NTRS)

    Kupiszewski, A.

    1979-01-01

    A proposed microwave amplifier mechanism for future generations of millimeter high power uplinks to spacecraft and planetary radar transmitters is introduced. Basic electron-electromagnetic field interaction theory for RF power gain is explained. The starting point for general analytical methods leading to detailed design results is presented.

  7. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flights, agricultural and forest fire flights, border patrol flights, and other essential civil air...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... air traffic identification and control procedures to the more restrictive identification and...

  8. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flights, agricultural and forest fire flights, border patrol flights, and other essential civil air...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... air traffic identification and control procedures to the more restrictive identification and...

  9. Research on fluidics, valves, and proportional amplifiers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Research and development being conducted at the Systems and Controls Laboratory is reviewed. Static characteristics (supply, input, transfer, output, and noise characteristics) of laminar proportional amplifiers were investigated. Other topics discussed include velocity profiles for laminar fluidic jets, speed control systems employing a jet pipe valve, and power amplification with a vortex valve.

  10. Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier.

    PubMed

    Wilson, A C; Sharpe, J C; McKenzie, C R; Manson, P J; Warrington, D M

    1998-07-20

    The output of a grating-stabilized external-cavity diode laser was injected into a semiconductor tapered amplifier in a master-oscillator power amplifier configuration, producing as much as 500 mW of power with narrow linewidth. The additional linewidth that is due to the tapered amplifier is much smaller than the typical linewidth of grating-stabilized laser diodes. To demonstrate the usefulness of the narrow linewidth and high output power, we used the system to perform Doppler-free two-photon spectroscopy with rubidium. PMID:18285950

  11. Low phase noise oscillator using two parallel connected amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1987-01-01

    A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.

  12. Linear signal-compensated amplifier for reactor power measuring channels

    SciTech Connect

    Khaleeq, M. Tahir; Atique-ur-Rahman,; Ahmed, Eijaz

    2006-07-15

    A linear amplifier with automatic signal compensation has been developed for nuclear channels. The amplifier controls its sensitivity automatically according to the reference input within the desired settings and has automatic signal compensation capability for use in the nuclear channels. The amplifier will be used in the existing safety channel of Pakistan Research Reactor-1, where the system has an independent sensitivity control unit for manual compensation of xenon effect. The new amplifier will improve the safety of the system. The amplifier is tested and the results found are in very good agreement with the designed specifications. This article presents design and construction of the amplifier and test results.

  13. Linear signal-compensated amplifier for reactor power measuring channels

    NASA Astrophysics Data System (ADS)

    Khaleeq, M. Tahir; Atique-ur-Rahman, Ahmed, Eijaz

    2006-07-01

    A linear amplifier with automatic signal compensation has been developed for nuclear channels. The amplifier controls its sensitivity automatically according to the reference input within the desired settings and has automatic signal compensation capability for use in the nuclear channels. The amplifier will be used in the existing safety channel of Pakistan Research Reactor-1, where the system has an independent sensitivity control unit for manual compensation of xenon effect. The new amplifier will improve the safety of the system. The amplifier is tested and the results found are in very good agreement with the designed specifications. This article presents design and construction of the amplifier and test results.

  14. Challenges and Techniques in Measurements of Noise, Cryogenic Noise and Power in Millimeter-Wave and Submillimeter-Wave Amplifiers

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2014-01-01

    We will present the topic of noise measurements, including cryogenic noise measurements, of Monolithic Microwave Integrated Circuit (MMIC) and Sub-Millimeter-Wave Monolithic Microwave Integrated Circuit (S-MMIC) amplifiers, both on-wafer, and interfaced to waveguide modules via coupling probes. We will also present an overview of the state-of-the-art in waveguide probe techniques for packaging amplifier chips, and discuss methods to obtain the lowest loss packaging techniques available to date. Linearity in noise measurements will be discussed, and experimental methods for room temperature and cryogenic noise measurements will be presented. We will also present a discussion of power amplifier measurements for millimeter-wave and submillimeter-wave amplifiers, and the tools and hardware needed for this characterization.

  15. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  16. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Zhang, Shaoping; Cheng, Hongmei; Gao, Yulin; Wang, Guirong; Liang, Gemei; Wu, Kongming

    2009-07-01

    A Cry1Ac-resistant strain (Bt-R) of Helicoverpa armigera, with 2971-fold resistance, was derived by selection with Cry1Ac toxin for 75 generations. We used cDNA-amplified fragment length polymorphism analysis to identify those genes differentially expressed in the Cry1Ac-resistant and -susceptible strains, which revealed 212 differentially expressed transcripts among 2000 screened cDNAs. Among these transcript-derived fragments (TDFs), 37 showed some homology to known sequences, including Aminopeptidase N (APN), which is expressed in the midgut epithelium and has been implicated as a Cry1A subfamily receptor in several moths, including H. armigera. We confirmed the TDF by RT-PCR and identified a deletion mutation of apn1 in the Bt-R strain. We expressed the TDF in bacteria. The partial HaAPN1-96S wild-type protein, bound to Cry1Ac on ligand blots, whereas HaAPN1-BtR did not. This suggested that HaAPN1 is a receptor for Bt Cry1Ac and that its deletion mutation is associated with Cry1Ac resistance in H. armigera. The absence of one binding site is responsible for its resistance to Cry1Ac. We developed an allele-specific PCR to monitor whether the apn1 gene in an H. armigera field population produced a similar mutation. No deleted mutants were found in 2250 individuals collected from the field in 2006-2007. PMID:19376227

  17. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    PubMed

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  18. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  19. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    SciTech Connect

    Horvath, J. A.

    1998-07-16

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design.

  20. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  1. 100 ps time resolution with thin silicon pixel detectors and a SiGe HBT amplifier

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Cardarelli, R.; Débieux, S.; Favre, Y.; Iacobucci, G.; Nessi, M.; Paolozzi, L.; Shu, K.

    2016-03-01

    A 100 μm thick silicon detector with 1 mm2 pad readout optimized for sub-nanosecond time resolution has been developed and tested. Coupled to a purposely developed amplifier based on SiGe HBT technology, this detector was characterized at the H8 beam line at the CERN SPS. An excellent time resolution of (106 ± 1) ps for silicon detectors was measured with minimum ionizing particles.

  2. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  3. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  4. ACS after SM4: New Life for an Old Workhorse

    NASA Astrophysics Data System (ADS)

    Golimowski, David; Anderson, Jay; Armstrong, Amber; Arslanian, Steve; Bedin, Luigi; Bohlin, Ralph; Boyce, Kevin; Chapman, George; Cheng, Edward; Chiaberge, Marco; Cox, Colin; Desiardins, Tyler; Dye, Darryl; Ellis, Tracy; Ferguson, Brian; Fruchter, Andrew; Grogin, Norman; Lim, Pey Lian; Loose, Markus; Lucas, Ray; Lupie, Olivia; Mack, Jennifer; Maybhate, Aparna; Mil, Kathleen; Mutchler, Max; Ricardo, Raphael; Scott, Barbara; Serrano, Beverly; Sirianni, Marco; Smith, Linda; Suchkov, Anatoly A.; Waczynski, Augustyn; Welty, Alan; Wheeler, Thomas; Wilson, Erin

    2010-07-01

    The ACS CCD Electronics Box Replacement (CEB-R) installed during SM4 features a Teledyne SIDECAR ASIC that permits optimization of the WFC via adjustment of CCD clock voltages, bias voltages, and pixel transmission timing. An on-orbit campaign to optimize the performance of the WFC was undertaken at the start of the SMOV period. Initial tests with pre-SM4 default voltages and timing patterns showed that WFC's performance matches or exceeds its pre-failure levels, notwithstanding the expected increases in dark current and hot pixels and the decline in charge-transfer efficiency due to prolonged exposure to HST's radiation environment. One WFC CCD exhibited anomalous behavior when operated with nondefault settings of its reset drain voltage. Consequently, the optimization campaign was truncated after two iterations, and ACS science operations commenced with the pre-SM4 default configuration. Several artifacts attributed to the CEB-R appear in post-SM4 WFC images: large-scale but stable bias gradients, low-level but temporally variable horizontal stripes, a signal-dependent bias shift, and amplifier crosstalk. STScI has developed algorithms for the correction or mitigation of these electronic artifacts as well as for the restoration of images affected by continuously degrading CTE. Standalone correction packages are now or will soon be publicly available. These packages will be incorporated into the calacs package of the OPUS data pipeline by September 2011.

  5. Tiny biomedical amplifier combines high performance, low power drain

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1965-01-01

    Transistorized, portable, high performance amplifier with low power drain facilitates biomedical studies on mobile subjects. This device, which utilizes a differential input to obtain a common-mode rejection, is used for amplifying electrocardiogram and electromyogram signals.

  6. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range. PMID:19405681

  7. Experimental research of a chain of diode pumped rubidium amplifiers.

    PubMed

    Li, Yunfei; Hua, Weihong; Li, Lei; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2015-10-01

    In this paper, we have set up a diode pumped rubidium MOPA system with a chain of two amplifiers. The experimental results show an amplified laser power of 26W with amplification factor of 16.3 and power extraction efficiency of 53% for a single amplifier, and an amplified laser power of 11W with amplification factor of 7.9 and power extraction efficiency of 26% for a chain of two amplifiers. The reason for lower performance of cascade amplification is mainly due to the limited total pump power, which will be not sufficient for efficient pumping when assigned from a single amplifier into two amplifiers. The situation could be well improved by increasing the seed laser power as well as the pump power for each amplifier to realize high efficient saturated amplification. Such MOPA configuration has the potential for scaling high beam quality alkali laser into high powers. PMID:26480105

  8. Ideal photon number amplifier and duplicator

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.

    1992-01-01

    The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

  9. Solid state radiographic image amplifiers, part C

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1971-01-01

    The contrast sensitivity of the radiographic amplifiers, both the storage type and nonstorage type, their absolute sensitivity, and the reproducibility of fabrication were investigated. The required 2-2T quality level was reached with the radiographic storage screen. The sensitivity threshold was 100 to 200 mR with 45 to 100 kV filtered X-rays. The quality level of the radiographic amplifier screen (without storage) was 4-4T; for a 6 mm (0.25 in.) thick aluminum specimen, a 1 mm (0.040 in.) diameter hole in a 0.25 mm (0.010 in.) thick penetrameter was detected. Its sensitivity threshold was 2 to 6 mR/min. The developed radiographic screens are applicable for uses in nondestructive testing.

  10. High power single-frequency Innoslab amplifier.

    PubMed

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  11. Regenerative amplifier for the OMEGA laser system

    NASA Astrophysics Data System (ADS)

    Babushkin, Andrei; Bittle, W.; Letzring, S. A.; Skeldon, Mark D.; Seka, Wolf D.

    1999-07-01

    We present the requirements, design, and experimental results for a negative feedback-controlled Nd:YLF regenerative amplifier for the OMEGA laser system. This externally synchronizable region boosts the energy of temporally shaped optical pulses from the subnanojoule to the submillijoule energy level with a measured long-term output energy stability of 0.2 percent rms. To our knowledge this represents the highest energy stability ever demonstrated for a millijoule-level laser system, either flashlamp pumped or diode pumped. In addition to the excellent stability and reproducibility, the regen output is very insensitive to the injected pulse energy and the temporal distortions due to the negative feedback are immeasurable. Four regenerative amplifiers equipped with this negative feedback system have operated flawlessly on OMEGA over the past two year period.

  12. First Lasing of the Regenerative Amplifier FEL

    SciTech Connect

    Nguyen, D.C.; Sheffield, R.L.; Fortang, C.M.; Goldstein, J.C.; Kinross-Wright, J.M.; Ebrahim, N.A.

    1998-08-17

    The Regenerative Amplifier Free-Electron Laser (RAFEL) is a high-gain RF-linac FEL capable of producing high optical power from a compact design. The combination of a high-gain and small optical feedback enables the FEL to reach saturation and produce a high optical power and high extraction efficiency without risk of optical damage to the mirrors. This paper summarizes the first lasing of the Regenerative Amplifier FEL and describes recent experimental results. The highest optical energy achieved thus far at 16.3 {micro}m is 1.7 J over an 9-{micro}s macropulse, corresponding to an average power during the macropulse of 190 kW. They deduce an energy of 1.7 mJ in each 16 ps micropulse, corresponding to a peak power of 110 MW.

  13. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1986-01-01

    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.

  14. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  15. Cryogenic cooling for high power laser amplifiers

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.

    2013-11-01

    Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  16. Novel 140 GHz gyro-TWT amplifier

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Shapiro, M.; Temkin, R.J.

    1996-12-31

    The authors have designed and are currently building a novel gyro-TWT amplifier at powers up to 100 kW at a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with {nu}{sub {perpendicular}}/{nu}{sub {parallel}} equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This cavity design effectively reduces the mode competition problem in conventional amplifiers from two dimensions to one dimension. Another advantage of this circuit is the relatively large circuit size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7 dB/cm with an efficiency exceeding 20%. The driver of the Gyro-TWT amplifier is a 95 GHz Varian EIO generator with 100 W peak output power. The amplifier also employs a confocal mode converter which launches a gaussian beam along the axis. The slot size of the cavity is optimized to have minimal operating mode loss while maximizing losses of competing modes. A preliminary experiment using an oscillator configuration has also been designed. The device could easily be scaled to 95 GHz to meet D.O.D. needs at that frequency.

  17. Amplifying youth voices in the developing world.

    PubMed

    Fotenos, Saori; Rohatgi, Deepti

    2007-01-01

    Low-literacy youth in the slums of Brazil have been historically unequipped to share their ideas on how to improve their lives, because outside of the spoken word, it is difficult for them to express their thoughts persuasively. The Amplifying Voices afterschool video program piloted at Projeto Uerê in Rio de Janeiro shows that youth can leverage technological tools to voice their perspectives on social issues relevant to themselves and their communities. PMID:18271053

  18. Radiographic amplifier screens: Fabrication process and characteristics

    NASA Technical Reports Server (NTRS)

    Szepesi, Z. P.

    1977-01-01

    The fabrication process and transfer characteristics for solid state radiographic image transducers (radiographic amplifier screens) is described. These screens were developed for use in real time nondestructive evaluation procedures that require large format radiographic images with contrast and resolution capabilities unavailable with conventional fluoroscopic screens. This work was directed toward screens usable for inmotion, on-line radiographic inspection by means of closed circuit television.

  19. Reconfigurable Josephson Circulator/Directional Amplifier

    NASA Astrophysics Data System (ADS)

    Sliwa, K. M.; Hatridge, M.; Narla, A.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2015-10-01

    Circulators and directional amplifiers are crucial nonreciprocal signal routing and processing components involved in microwave read-out chains for a variety of applications. They are particularly important in the field of superconducting quantum information, where the devices also need to have minimal photon losses to preserve the quantum coherence of signals. Conventional commercial implementations of each device suffer from losses and are built from very different physical principles, which has led to separate strategies for the construction of their quantum-limited versions. However, as recently theoretically, by establishing simultaneous pairwise conversion and/or gain processes between three modes of a Josephson-junction-based superconducting microwave circuit, it is possible to endow the circuit with the functions of either a phase-preserving directional amplifier or a circulator. Here, we experimentally demonstrate these two modes of operation of the same circuit. Furthermore, in the directional amplifier mode, we show that the noise performance is comparable to standard nondirectional superconducting amplifiers, while in the circulator mode, we show that the sense of circulation is fully reversible. Our device is far simpler in both modes of operation than previous proposals and implementations, requiring only three microwave pumps. It offers the advantage of flexibility, as it can dynamically switch between modes of operation as its pump conditions are changed. Moreover, by demonstrating that a single three-wave process yields nonreciprocal devices with reconfigurable functions, our work breaks the ground for the development of future, more complex directional circuits, and has excellent prospects for on-chip integration.

  20. Phase stabilization of spatiotemporally multiplexed ultrafast amplifiers.

    PubMed

    Mueller, M; Kienel, M; Klenke, A; Eidam, T; Limpert, J; Tünnermann, A

    2016-04-18

    Actively stabilized, simultaneous spatial and temporal coherent beam combination is a promising power-scaling technique for ultrafast laser systems. For a temporal combination based on optical delay lines, multiple stable states of operation arise for common stabilization techniques. A time resolved Jones' calculus is applied to investigate the issue. A mitigation strategy based on a temporally gated error signal acquisition is derived and demonstrated, enabling to stabilize laser systems with arbitrary numbers of amplifier channels and optical delay lines. PMID:27137231

  1. Radiation and particle detector and amplifier

    NASA Technical Reports Server (NTRS)

    Schmidt, K. C. (Inventor)

    1973-01-01

    A radiation or charged particle detector is described which incorporates a channel multiplier structure to amplify the detected rays or particles. The channel multiplier structure has a support multiplying element with a longitudinal slot along one side. The element supports a pair of plates positioned contiguous with the slot. The plates funnel the particles or rays to be detected into the slotted aperture and the element, thus creating an effectively wide aperture detector of the windowless type.

  2. Design and simulation of a gyroklystron amplifier

    SciTech Connect

    Chauhan, M. S. Swati, M. V.; Jain, P. K.

    2015-03-15

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  3. Experimental realization of a polariton beam amplifier

    NASA Astrophysics Data System (ADS)

    Niemietz, Dominik; Schmutzler, Johannes; Lewandowski, Przemyslaw; Winkler, Karol; Aßmann, Marc; Schumacher, Stefan; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Bayer, Manfred

    2016-06-01

    In this paper we demonstrate a versatile concept for a planar cavity polariton beam amplifier using nonresonant excitation. In contrast to resonant excitation schemes, background carriers are injected which form excitons, providing both gain and a repulsive potential for a polariton condensate. Using an attractive potential environment induced by a locally elongated cavity layer, the repulsive potential of the injected background carriers is compensated, and a significant amplification of polariton beams is achieved without beam distortion.

  4. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier. PMID:18648406

  5. Amplifier/compressor fiber Raman lasers.

    PubMed

    Islam, M N; Mollenauer, L F; Stolen, R H; Simpson, J R; Shang, H T

    1987-10-01

    We show that the chirp from cross-phase modulation (XPM) dominates the operation of fiber Raman lasers (FRL's). Thus a FRL in the anomalous group-velocity regime is best described as a XPM-chirped Raman amplifier followed by a linear fiber compressor. While the output of such a laser is generally a narrow pulse with a broad pedestal, we show both experimentally and by computer simulation that negligible background is achievable. PMID:19741882

  6. Design and simulation of a gyroklystron amplifier

    NASA Astrophysics Data System (ADS)

    Chauhan, M. S.; Swati, M. V.; Jain, P. K.

    2015-03-01

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code "MAGIC" has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ˜218 kW for 0% velocity spread at 35 GHz, with ˜45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ˜5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  7. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  8. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. PMID:25620012

  9. High power X-band TWT amplifiers

    SciTech Connect

    Naqvi, S.; Kuang, E.; Kerslick, G.S.; Nation, J.A.; Schaechter, L.

    1995-12-31

    The recent research into multi-stage X-Band TWT`s producing output powers of 100--200 MW has shown that it is essential to minimize the reflections in each stage of the amplifier in order to avoid sideband development. These reflections also cause fluctuations in the RF output power envelope. Following extensive MAGIC code simulations they have designed tapers that adiabatically increase the iris diameter in the output sections of the amplifier to provide a smooth, broad-band transition from the slow-wave structure to cylindrical waveguide. They report results, extracting in the TM{sub 01} mode, showing smooth output pulses in the range 30--50 MW, with no evidence of sidebands. A second approach seeks to isolate the first amplifier stage with a drift tube beyond cutoff. The second stage and output section are quasi-periodic structures designed to minimize reflections, and allow the radial or longitudinal RF power extraction to be distributed over an extended region. The first stage of this system has been developed and initial operation results using an 0.8--1.0 MV, 0.5--1.0 kA, 50 ns cylindrical beam will be reported.

  10. High gain holmium-doped fibre amplifiers.

    PubMed

    Simakov, Nikita; Li, Zhihong; Jung, Yongmin; Daniel, Jae M O; Barua, Pranabesh; Shardlow, Peter C; Liang, Sijing; Sahu, Jayanta K; Hemming, Alexander; Clarkson, W Andrew; Alam, Shaif-Ul; Richardson, David J

    2016-06-27

    We investigate the operation of holmium-doped fibre amplifiers (HDFAs) in the 2.1 µm spectral region. For the first time we demonstrate a diode-pumped HDFA. This amplifier provides a peak gain of 25 dB at 2040 nm with a 15 dB gain window spanning the wavelength range 2030 - 2100 nm with an external noise figure (NF) of 4-6 dB. We also compare the operation of HDFAs when pumped at 1950 nm and 2008 nm. The 1950 nm pumped HDFA provides 41 dB peak gain at 2060 nm with 15 dB of gain spanning the wavelength range 2050 - 2120 nm and an external NF of 7-10 dB. By pumping at the longer wavelength of 2008 nm the gain bandwidth of the amplifier is shifted to longer wavelengths and using this architecture a HDFA was demonstrated with a peak gain of 39 dB at 2090 nm and 15 dB of gain spanning the wavelength range 2050 - 2150 nm. The external NF over this wavelength range was 8-14 dB. PMID:27410557

  11. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In H.; Stock, Larry V.

    1988-01-01

    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.

  12. Sheet beam slow-wave amplifiers

    SciTech Connect

    Kirolous, H.; Joe, J.; Basten, M.A.; Booske, J.H.; Scharer, J.E.; Anderson, J.; True, R.; Scheitrum, G.

    1994-12-31

    Sheet electron beams used in conjunction with slow-wave (Cerenkov) structures are a promising way to realize higher average power millimeter-wave amplifiers. For example, a sheet beam with a meander line structure is proposed to obtain a 100 watt W-band power booster amplifier. A sheet beam with a tapered grating structure is also being considered as a wideband ({approximately} 10--20% instantaneous bandwidth) Ka-band amplifier with approximately 10 kW of average output power. The authors describe results of research that examine critical technological issues relevant to the realization of the proposed devices. The method of forming a sheet beam using magnetic quadrupole lenses and focusing it using periodically-cusped magnetic (PCM) fields are discussed. A pencil beam from a 10 kV, 0.25 A Pierce electron source is used for the initial investigations. The EGUN simulations with the measured magnetic field indicates that a thin (2 mm dia.) beam is available at the interaction region. Beam characterization has been performed using current density probes and an electrostatic velocity spread analyzer. Numerical modeling and cold test measurements of a tapered slow-wave structure together with the simulations and measurements of small-signal gain and bandwidth are also presented.

  13. Gyro-amplifiers modeling with MAGY

    NASA Astrophysics Data System (ADS)

    Levush, Baruch; Nguyen, Khanh; Botton, Moti; Vlasov Antonsen, Alexander, Jr.

    1999-11-01

    Recent modeling results of several experiments on gyroklystron amplifier at the Naval Research Laboratory are presented. Modeling was performed using the quasi three-dimensional, self-consistent code MAGY[1] . Amplifiers in both Ka- and W-bands have been studied [2,3]. Using known experimental input parameters, code-predicted salient amplifier performance characteristics, e.g. efficiency, bandwidth, drive curve, have been found to be in good agreement with experimental results. Self-consistent phenomena, such as effects of window reflections on bandwidth and higher-order-mode interaction in uptaper, will also be presented. MAGY has also been used to design gyro-TWTs. The code has been successfully benchmarked against linear theory. Issues such as absolute instability, backward-wave oscillations, and effect of reflection in gyro-TWTs have been investigated. Detailed results of design trade-off studies for a Ka-band gyro-TWT will also be presented and discussed. [1] M. Botton, et al.,IEEE Trans. Plasma Sci.,Vol.26(1998) [3] J.P. Calame, et al.,Phys. of Plasmas,Vol.6(1999) [4] M. Blank, et al.,Submitted to Phys. of Plasmas (1999)

  14. High Power 35GHz Gyroklystron Amplifiers

    NASA Astrophysics Data System (ADS)

    Choi, Jin; McCurdy, A.; Wood, F.; Kyser, R.; Danly, B.; Levush, B.; Parker, R.

    1997-05-01

    High power coherent radiation sources at 35GHz are attractive for next generation high gradient particle accelerators. A multi-cavity gyroklystron amplifier is considered a promising candidate for high power millimeter wave generation. Experiments on two-cavity and three cavity gyroklystron amplifiers are underway to demonstrate a 140kW, 35GHz coherent radiation amplification. Though this power is low compared with that needed for colliders, many of the issues associated with the bandwidth of such devices can be addressed in the present experiments. High bandwidth is important to permit the rapid phase shifts required for RF pulse compression schemes presently under investigation. Large signal calculations (P.E. Latham, W. Lawson, V. Irwin, IEEE Trans. Plasma Sci., Vol. 22, No. 5, pp. 804-817, 1994.) predict that the two-cavity gyroklystron produces a peak power of 140kW, corresponding to 33% efficiency. Calculations also show that a stagger tuned three cavity circuit increases a bandwidth to more than 0.7%. Experimental results of the amplifier will be presented and compared with the theory.

  15. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  16. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  17. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  18. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  19. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  20. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  1. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  2. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  3. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  4. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  5. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  6. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  7. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  8. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  9. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  10. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  11. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  12. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  13. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  14. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  15. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    NASA Technical Reports Server (NTRS)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  16. Differential transimpedance amplifier circuit for correlated differential amplification

    DOEpatents

    Gresham, Christopher A.; Denton, M. Bonner; Sperline, Roger P.

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  17. Signal Conditioning Amplifier and Recorder (SCAmpR)

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Voska, Ned (Technical Monitor)

    2002-01-01

    The Signal Conditioning Amplifier and Recorder (SCAmpR) system is presented. The topics include: 1) System Description; 2) Universal Signal Conditioning Amplifier (USCA); 3) Advanced Data Acquisition System (ADAS); and 4) Signal Conditioning Amplifier and Recorder (SCAmpR). This paper is presented in viewgraph form.

  18. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  19. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  20. Chaotic noise in superconducting microbridge 4-photon, x-band parametric amplifier

    SciTech Connect

    Andresen, J.E.; Christiansen, B.; Levinsen, M.T. )

    1989-06-01

    The anomalous noise rise observed in nearly all types of parametric amplifiers based on Josephson junctions has been an intriguing as well as annoying problem for many years. This phenomenon has been most spectacular in microbridge amplifiers. Here they present measurements on externally pumped single microbridge 4-photon unbiased amplifiers, where the slit with the bridge is used as a slotline resonantly coupled to the waveguide in an exceptionally simple coupling scheme. This scheme may be of interest in itself, particularly if the noise problem can be overcome, and in other connections. Up to 16 dB gain was obtained at the top of the waveguide. However, the noise rise was observed as usual. An analog computer study on a model including an input/output circuit was performed. The results are in very good agreement with the experiments. The amplification is heralded by a seemingly chaotic noise rise. This noise is then amplified linearly when gain occurs. Amplification is found to take place very close to where the supercurrent is completely suppressed by the pump. The cause of the noise rise has previously been interpreted as loss of phaselock. However, the power spectra of the time-derivative of the phase show this still to be locked in the region of positive gain. Furthermore, computations of the Lyapunov exponents show one to be positive in the region where gain occurs, reaching a maximum value at the parameters corresponding to maximum gain. They therefore conclude that chaotic noise is indeed present in Josephson junction parametric amplifiers where low-impedance devices such as microbridges with negligible capacitance are used as the active elements.

  1. Effect of Interfacial Resistance on AC Loss as a Function of Applied AC Field in YBCO Filamentary Conductors

    SciTech Connect

    Duckworth, Robert C; List III, Frederick Alyious; Zhang, Yifei

    2009-01-01

    To reduce ac loss in Y-Ba-Cu-O (YBCO) coated conductors while maintaining current sharing between filaments, an attempt was made to introduce an interfacial resistance between the YBCO filaments and a continuous silver cap layer. The YBCO filaments were produced via laser scribing of MOCVD YBCO films deposited on standard Ion Beam Assisted Deposition (IBAD) templates. After laser scribing, the filaments were exposed to air at room temperature to degrade the YBCO surface. A three micron thick silver cap layer was then and each sample was oxygen annealed at different temperature to produce different interface resistance at the interface between the silver and YBCO. Measurements of the ac loss was measured as a function of applied perpendicular field and frequency revealed a correlation between the reduction in coupling loss and the oxygen annealing temperature.

  2. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene

    2009-01-01

    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have

  3. Achieving High Performance in AC-Field Driven Organic Light Sources

    PubMed Central

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance. PMID:27063414

  4. Achieving High Performance in AC-Field Driven Organic Light Sources.

    PubMed

    Xu, Junwei; Carroll, David L; Smith, Gregory M; Dun, Chaochao; Cui, Yue

    2016-01-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m(2) with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today's OLEDs in performance. PMID:27063414

  5. Achieving High Performance in AC-Field Driven Organic Light Sources

    NASA Astrophysics Data System (ADS)

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-04-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance.

  6. Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields

    NASA Astrophysics Data System (ADS)

    Titov, Serguey V.; Déjardin, Pierre-Michel; El Mrabti, Halim; Kalmykov, Yuri P.

    2010-09-01

    The nonlinear ac response of the magnetization M(t) of a uniaxially anisotropic superparamagnetic nanoparticle subjected to both ac and dc bias magnetic fields of arbitrary strengths and orientations is determined by averaging Gilbert’s equation augmented by a random field with Gaussian white-noise properties in order to calculate exactly the relevant statistical averages. It is shown that the magnetization dynamics of the uniaxial particle driven by a strong ac field applied at an angle to the easy axis of the particle (so that the axial symmetry is broken) alters drastically leading to different nonlinear effects due to coupling of the thermally activated magnetization reversal mode with the precessional modes of M(t) via the driving ac field.

  7. Analysis of the cochlear amplifier fluid pump hypothesis.

    PubMed

    Zagadou, Brissi Franck; Mountain, David C

    2012-04-01

    We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier. PMID:22302113

  8. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.

    PubMed

    Hageneder, Simone; Bauch, Martin; Dostalek, Jakub

    2016-08-15

    This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout. PMID:27260457

  9. Relativistic Harmonic Gyrotron Traveling-Wave Tube Amplifier Experiments.

    NASA Astrophysics Data System (ADS)

    Menninger, William Libbey

    1995-01-01

    The first multi-megawatt (4 MW, eta = 8%) harmonic (omega = sOmega _{c}, s = 2 or 3) relativistic gyrotron traveling-wave tube amplifier (gyro-twt) experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third harmonic gyro-twt results, are presented. The first detailed phase measurements of a gyro-twt are also reported. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulse width is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. The imparted beam pitch is alpha equivbeta_bot/beta_ |~1. Experimental operation involving both a second harmonic interaction with the TE_{21 } mode and a third harmonic interaction with the TE_{31} mode has been characterized. The third harmonic interaction resulted in 4 MW output power and 50 dB single-pass gain, with an efficiency of up to ~8% (for 115 A beam current). The best measured phase stability of the TE_{31} amplified pulse was +/-10^circ over a 9 ns period. The phase stability was limited because the maximum rf power was attained when operating far from wiggler resonance. The second harmonic, TE_ {21} had a peak amplified power of 2 MW corresponding to 40 dB single-pass gain and 4% efficiency. The second harmonic interaction showed stronger superradiant emission than the third harmonic interaction. Characterizations of the second and third harmonic gyro-twt experiments presented in this thesis include measurement of far-field radiation patterns, gain and phase versus interaction length, frequency spectrum, phase, and output power versus input power. The absolute power measurements are based both on angular radiation scans with a calibrated horn and diode, and on propagation of the TE_{31} mode through an efficient in-guide converter and measurement of the converted TE

  10. 17 GHz low noise GaAs FET amplifier

    NASA Astrophysics Data System (ADS)

    Bharj, J. S.

    1984-10-01

    The considered amplifier is suitable for use as the first stage in a direct broadcast TV satellite receiver, and it was specifically designed for the Unisat spacecraft. Attention is given to RF device characterization, the design of the low-noise FET amplifier, the very significant dispersion effects at 17 GHz, the noise figure, and questions of DC bias. Balanced stages are used for low-noise and high-gain amplifiers to enhance the reliability. The noise figure of the amplifier is approximately 3.75 dB in the frequency band of interest. A low-noise microstrip GaAs FET amplifier circuit is shown.

  11. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    NASA Technical Reports Server (NTRS)

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.

    2010-01-01

    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  12. Experimental study of multipass copper vapour laser amplifiers

    SciTech Connect

    Karpukhin, Vyacheslav T; Malikov, Mikhail M

    2008-12-31

    Repetitively pulsed multipass copper vapour amplifiers are studied experimentally. A considerable increase in the peak power of laser pulses was achieved by using a special scheme of the amplifier. It is found that the main reasons preventing an increase in the peak power during many passages of the beam are the competitive development of lasing from spontaneous seeds in a parasitic resonator formed by the fold mirrors of a multipass amplifier, a decrease in the amplification during the last passages, and an increase in the pulse width at the amplifier output. (lasers. amplifiers)

  13. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    NASA Technical Reports Server (NTRS)

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  14. Increased Long-Flight Activity Triggered in Beet Armyworm by Larval Feeding on Diet Containing Cry1Ac Protoxin

    PubMed Central

    Jiang, Xing Fu; Chen, Jian; Zhang, Lei; Sappington, Thomas W.; Luo, Li Zhi

    2013-01-01

    Evaluating ecological safety and conducting pest risk analysis for transgenic crops are vitally important before their commercial planting. The beet armyworm, Spodoptera exigua, a long-distance migratory insect pest, is not a direct target of transgenic Cry1Ac-expressing cotton in China, but nevertheless it has recently become an important pest. Migrants leaving their natal field arrive in other appropriate habitat far away in a short time, often followed by larval outbreaks. S. exigua has low susceptibility to Cry1Ac. However, our results from laboratory experiments identified (i) sublethal effects of Cry1Ac protoxin on larval development rate, larval and pupal weight, and adult lifetime fecundity, and (ii) increased long-flight behavior triggered by Cry1Ac which may contribute to larval outbreaks elsewhere. No significant differences in larval mortality, pupation rate, adult emergence rate, longevity, pre-oviposition period, or oviposition period were observed between controls and larvae fed on artificial diet incorporating a low concentration of Cry1Ac protoxin. The negative sublethal effects on some developmental and reproductive traits and lack of effect on others suggest they do not contribute to the observed severity of S. exigua outbreaks after feeding on Cry1Ac cotton. Interestingly, the percentage of long fliers increased significantly when larvae were reared on diet containing either of two low-dose treatments of Cry1Ac, suggesting a possible increased propensity to disperse long distances triggered by Cry1Ac. We hypothesize that negative effects on development and reproduction caused by Cry1Ac in the diet are offset by increased flight propensity triggered by the poor food conditions, thereby improving the chances of escaping adverse local conditions before oviposition. Increased long-flight propensity in turn may amplify the area damaged by outbreak populations. This phenomenon might be common in other migratory insect pests receiving sublethal doses

  15. Ac electrode diagnostics in ac-operated metal halide lamps

    NASA Astrophysics Data System (ADS)

    Luijks, G. M. J. F.; van Esveld, H. A.; Nijdam, S.; Weerdesteijn, P. A. M.

    2008-07-01

    A diagnostic technique is presented to determine the electrode work function in ac-operated metal halide lamps. The heart of the experimental set-up is a high-speed photodiode array detector, which is able to follow real-time variations of electrode tip temperature and near-electrode plasma emissions in ac-operated experimental YAG lamps, enabling discrimination between the anode and cathode effects. Electrode tip temperature ripples have been measured for 100 Hz square wave operation and simulated with an existing electrode model. By using the electrode work function as main fit parameter for the simulations it is found that the measured cooling effect of the electrode tip in a NaTlDy-iodide lamp is caused by a gas-phase emitter effect of Dy. It is concluded that Dy coverage of the electrode tip causes an effective work function reduction of 0.3 eV at 100 Hz square wave operation, considerably less than the 1.0 eV reduction measured earlier for dc operation.

  16. Booster's coupled bunch damper upgrade

    SciTech Connect

    William A. Pellico and D. W. Wildman

    2003-08-14

    A new narrowband active damping system for longitudinal coupled bunch (CB) modes in the Fermilab Booster has recently been installed and tested. In the past, the Booster active damper system consisted of four independent front-ends. The summed output was distributed to the 18, h=84 RF accelerating cavities via the RF fan-out system. There were several problems using the normal fan-out system to deliver the longitudinal feedback RF. The high power RF amplifiers normally operate from 37 MHz to 53 MHz whereas the dampers operate around 83MHz. Daily variations in the tuning of the RF stations created tuning problems for the longitudinal damper system. The solution was to build a dedicated narrowband, Q {approx} 10, 83MHz cavity powered with a new 3.5kW solid-state amplifier. The cavity was installed in June 2002 and testing of the amplifier and damper front-end began in August 2002. A significant improvement has been made in both operational stability and high intensity beam damping. At present there are five CB modes being damped and a sixth mode module is being built. The new damper hardware is described and data showing the suppression of the coupled-bunch motion at high intensity is presented.

  17. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-09-05

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  18. A system for tranmitting low frequency analog signals over ac power lines

    DOEpatents

    Baker, S.P.; Durall, R.L.; Haynes, H.D.

    1987-07-30

    A system for transmitting low frequency analog signals over ac power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an ac power line. The modulation signal frequency range is selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the ac power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal. 4 figs.

  19. System for transmitting low frequency analog signals over AC power lines

    DOEpatents

    Baker, Steven P.; Durall, Robert L.; Haynes, Howard D.

    1989-01-01

    A system for transmitting low frequency analog signals over AC power lines using FM modulation. A low frequency analog signal to be transmitted is first applied to a voltage-to-frequency converter where it is converted to a signal whose frequency varies in proportion to the analog signal amplitude. This signal is then used to modulate the carrier frequency of an FM transmitter coupled to an AC power line. The modulation signal frequency range in selected to be within the response band of the FM transmitter. The FM modulated carrier signal is received by an FM receiver coupled to the AC power line, demodulated and the demodulated signal frequency is converted by a frequency-to-voltage converter back to the form of the original low frequency analog input signal.

  20. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts.

    PubMed

    Xiol, Jordi; Spinelli, Pietro; Laussmann, Maike A; Homolka, David; Yang, Zhaolin; Cora, Elisa; Couté, Yohann; Conn, Simon; Kadlec, Jan; Sachidanandam, Ravi; Kaksonen, Marko; Cusack, Stephen; Ephrussi, Anne; Pillai, Ramesh S

    2014-06-19

    Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasa's helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5' sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons. PMID:24910301