Science.gov

Sample records for ac dielectrophoresis technique

  1. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    SciTech Connect

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-08-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.

  2. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-08-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface-immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.

  3. Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures

    NASA Astrophysics Data System (ADS)

    Chung, Cheng-Che; Glawdel, Tomasz; Ren, Carolyn L.; Chang, Hsien-Chang

    2015-03-01

    This work presents a simple method to fabricate controllable microscale wave structures on the top of regular interdigitated electrode (IDE) arrays using electrically-assisted lithography techniques. Smooth wave structures are extremely difficult, if not impossible, to fabricate using traditional multilayer photolithography technology. The fabricated wave structures were carefully measured using an optical profiler and the measured wave profiles were used in the numerical simulation of electrical field and for evaluating the parameters influencing the fabricated wave structure. It is demonstrated that the combined smooth wave structure and IDE array offer unique capability for particle manipulation including particle concentration, aggregation and separation. Particle motion manipulated via the combined wave structure and IDE array is governed by ac electroosmosis (ACEO), dielectrophoresis (DEP) or a combination of both depending on the applied frequency. At lower frequencies (~30 kHz), ACEO dominates and particles are driven to move along the valleys of the wave structures; while at higher frequencies (~200 kHz), DEP force dominates which concentrates particles at the peaks of the wave structures. In addition, varying the ac waveform from sine-wave to square-wave allows for dynamic control of particle motion. Size-dependent particle separation over the wave structure is also demonstrated for a mixture of 0.5 µm and 2 µm particles that are separated into two populations by the joint effects of drag and DEP forces when being pumped to flow via ACEO.

  4. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.

    PubMed

    Walid Rezanoor, Md; Dutta, Prashanta

    2016-03-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394

  5. High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques.

    PubMed

    Wu, Hung-Wei; Huang, Yao-Sheng; Lee, Hsin-Ying; Tsai, Wu-Han; Chen, Kuan-Yu; Jian, Li-Yi

    2016-10-01

    This article describes a high-efficiency light-induced dielectrophoresis biochip containing a thin film prepared through inductively coupled plasma chemical vapor deposition (ICPCVD). The biochip comprises two ITO glass substrates and a photoconductive amorphous silicon thin film. The biochip can effectively sort particular particles (or cells) by projecting visible light onto the surface of the silicon thin film. The sorting efficiency of biochips is highly associated with the quality of the deposited amorphous silicon thin films; therefore, the choice of deposition technique is extremely critical. However, no study has examined this problem. Hence, the current study thoroughly compared the efficiency of the biochip when films produced through plasma-enhanced chemical vapor deposition and ICPCVD are used. PMID:27530346

  6. An Anti-Adhesion Technique in Microfluidic Channel Using Dielectrophoresis for Particle Processing Microfluidic Chip Applications.

    PubMed

    Kang, Dong-Hyun; Kim, Min-Gu; Seo, Hye-Kyoung; Kim, Yong-Jun

    2015-09-01

    Particle adhesion to the walls of microfluidic channels is a prominent cause of deteriorating performance and reliability in miniaturized analytical devices; it can also cause unexpected changes in their structures and operating conditions. Therefore, the demand of anti-adhesion for wall loss reduction on particle processing chips is high. This paper demonstrates an anti-adhesion technique using dielectrophoresis. The proposed technique is applied to a distribution microchannel for a feasibility test and is then applied to a blood plasma filter, which is a human blood cell and plasma separation device. In the distribution microchannel, the application of electric potentials of 0-20 V(pp) at 3 MHz caused the wall loss of polystyrene latex (PSL) particles to decrease with decreasing particle diameter. When an electric potential of 20 V(pp) was applied in a distribution microchannel experiment using PSL particles, the wall loss decreased by 52.7 ± 3% for 10-μm-diameter particles. On the other hand, when a 20 V(pp) electric potential was applied in a distribution microchannel experiment using human blood cells, the wall loss decreased by 66.4 ± 6%. In the blood plasma filter, the wall loss decreased by 54.89 ± 5% at 20 V(pp) and 1 MHz. The purity efficiency of the blood plasma filter was 69.56% without the wall loss reduction technique and 95.14% when the applied electric potential was 20 V(pp). PMID:26485924

  7. Bubble dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Bliss, G. W.

    1977-01-01

    The theoretical principles related to bubble dielectrophoresis are examined, taking into account the polarization force, aspects of bubble deformation, the electrostatic bubble levitation theorem, and the equation of motion. The measurement of the dielectrophoretic force on static and dynamic bubbles represents a convenient experimental method for the study of the general problem of dielectrophoresis. The experiments reported include static-force measurements, static-levitation experiments, and dynamic-force measurements.

  8. Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique.

    PubMed

    Ahadian, Samad; Yamada, Shukuyo; Ramón-Azcón, Javier; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu

    2014-10-01

    In this manuscript, we demonstrate the rapid formation of three-dimensional (3D) embryonic stem cell (ESC) aggregates with controllable sizes and shapes in hydrogels using dielectrophoresis (DEP). The ESCs encapsulated within a methacrylated gelatin (GelMA) prepolymer were introduced into a DEP device and, upon applying an electric field and crosslinking of the GelMA hydrogel, formed 3D ESC aggregates. Embryoid bodies (EBs) fabricated using this method showed high cellular viability and pluripotency. The proposed technique enables production of EBs on a large scale and in a high-throughput manner for potential cell therapy and tissue regeneration applications. PMID:25082412

  9. Dielectrophoresis for bioparticle manipulation.

    PubMed

    Qian, Cheng; Huang, Haibo; Chen, Liguo; Li, Xiangpeng; Ge, Zunbiao; Chen, Tao; Yang, Zhan; Sun, Lining

    2014-01-01

    As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested. PMID:25310652

  10. Dielectrophoresis for Bioparticle Manipulation

    PubMed Central

    Qian, Cheng; Huang, Haibo; Chen, Liguo; Li, Xiangpeng; Ge, Zunbiao; Chen, Tao; Yang, Zhan; Sun, Lining

    2014-01-01

    As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested. PMID:25310652

  11. Particle separation by dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody

    2009-01-01

    The application of dielectrophoresis to particle discrimination, separation, and fractionation is reviewed, some advantages and disadvantages of currently available approaches are considered, and some caveats are noted. PMID:12210248

  12. Critical field measurements in superconductors using ac inductive techniques

    NASA Astrophysics Data System (ADS)

    Campbell, S. A.; Ketterson, J. B.; Crabtree, G. W.

    1983-09-01

    The ac in-phase and out-of-phase response of type II superconductors is discussed in terms of dc magnetization curves. Hysteresis in the dc magnetization is shown to lead to a dependence of the ac response on the rate at which an external field is swept. This effect allows both Hc1 and Hc2 to be measured by ac techniques. A relatively simple mutual inductance bridge for making such measurements is described in the text, and factors affecting bridge sensitivity are discussed in the Appendix. Data for the magnetic superconductor ErRh4B4 obtained using this bridge are reported.

  13. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    NASA Astrophysics Data System (ADS)

    Yusvana, Rama; Headon, Denis; Markx, Gerard H.

    2009-08-01

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  14. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing.

    PubMed

    Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I

    2015-06-01

    An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment. PMID:26083806

  15. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing

    PubMed Central

    Siebman, Coralie; Velev, Orlin D.; Slaveykova, Vera I.

    2015-01-01

    An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm−1, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10−5 M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment. PMID:26083806

  16. Dielectrophoresis of graded microparticles in suspensions

    NASA Astrophysics Data System (ADS)

    Lei, Dong; Ji-Ping, Huang; Wah, Yu Kin; Q, Gu G.

    2003-03-01

    Dielectrophoresis of graded microparticles in suspensions L. Dong, J. P. Huang, K. W. Yu and G. Q. Gu Department of Physics, The Chinese University of Hong Kong Shatin, NT, HK. Dielectrophoresis is an AC electrokinetic phenomenon that employs the difference in the electric polarizability of microparticles and the suspending media. Under the action of an external electric field, these particles polarize, and experience a force in a nonuniform field. The degree of polarizability can depend on the frequency of the applied AC field. In this work, we consider graded spherical particles in which the material properties can vary continuously in space. These inhomogeneous particles can be more useful and interesting than the homogeneous inclusions. A new theory has been established to study the effective properties of graded composite materials under externally applied field, namely, the differential effective dipole approximation (DEDA). The theory has been applied to two model dielectric profiles, namely, the power-law and linear profiles. Moreover, we have shown that these profiles actually admit exact solutions for the local electric field. We have compared the DEDA results with the exact results for the two model profiles and the agreement is excellent. Based on the DEDA, we investigate the DEP spectrum of a colloidal suspension of graded spherical particles, and compare the results with the DEP spectrum derived from the homogeneous particles.

  17. Materials separation by dielectrophoresis

    NASA Technical Reports Server (NTRS)

    Sagar, A. D.; Rose, R. M.

    1988-01-01

    The feasibility of vacuum dielectrophoresis as a method for particulate materials separation in a microgravity environment was investigated. Particle separations were performed in a specially constructed miniature drop-tower with a residence time of about 0.3 sec. Particle motion in such a system is independent of size and based only on density and dielectric constant, for a given electric field. The observed separations and deflections exceeded the theoretical predictions, probably due to multiparticle effects. In any case, this approach should work well in microgravity for many classes of materials, with relatively simple apparatus and low weight and power requirements.

  18. Three dimensional microelectrode system for dielectrophoresis

    DOEpatents

    Dehlinger, Dietrich A.; Rose, Klint A.; Shusteff, Maxim; Bailey, Christopher G.; Mariella, Jr., Raymond P.

    2013-09-03

    A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.

  19. High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis.

    PubMed

    Leiterer, Christian; Wünsche, Erik; Singh, Prabha; Albert, Jens; Köhler, Johann M; Deckert, Volker; Fritzsche, Wolfgang

    2016-05-01

    AFM tips are modified with silver nanoparticles using an AC electrical field. The used technique works with sub-micron precision and also does not require chemical modification of the tip. Based on the electrical parameters applied in the process, particle density and particle position on the apex of the tip can be adjusted. The feasibility of the method is proven by subsequent tip-enhanced Raman spectroscopy (TERS) measurements using the fabricated tips as a measurement probe. Since this modification process itself does not require any lithographic processing, the technique can be easily adapted to modify AFM tips with a variety of nanostructures with pre-defined properties, while being parallelizable for a potential commercial application. Graphical abstract Silver nanoparticles attached to AFM tips using dielectrophoresis. Comparing nanoparticles attached using 1 kHz (left) to 1 MHz (right), SEM and optical (inset) images. PMID:26968565

  20. Colon Cancer Cell Separation by Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Yang, Xiaoming; Jiang, H.; Wood, P.; Hrushesky, W.; Wang, Guiren

    2009-11-01

    Separation of cancer cells from the other biological cells can be useful for clinical cancer diagnosis and cancer treatment. In this presentation, conventional dielectrophoresis (c-DEP) is used in a microfluidic chip to manipulate and collect colorectal cancer HCT116 cell, which is doped with Human Embryonic Kidney 293 cells (HEK 293). It is noticed that, the HCT116 cell are deflected to a side channel from a main channel clearly by apply electric field at particular AC frequency band. This motion caused by negative DEP can be used to separate the cancer cell from others. In this manuscript, chip design, flow condition, the DEP spectrum of the cancer cell are reported respectively, and the separation and collection efficiency are investigated as well. The sorter is microfabricated using plastic laminate technology. -/abstract- This work has been financially supported by the NSF RII funding (EP

  1. Eddy Current Rail Inspection Using AC Bridge Techniques

    PubMed Central

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train’s motion and the Y-axis mimicking the train’s vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  2. Eddy Current Rail Inspection Using AC Bridge Techniques.

    PubMed

    Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng

    2013-01-01

    AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427

  3. Manipulation of Bacteriophages with Dielectrophoresis on Carbon Nanofiber Nanoelectrode Arrays

    PubMed Central

    Madiyar, Foram Ranjeet; Syed, Lateef Uddin; Culbertson, Christopher; Li, Jun

    2013-01-01

    This work describes efficient manipulation of bacteriophage virus particles using a nanostructured dielectrophoresis (DEP) device. The non-uniform electric field for DEP is created by utilizing a nanoelectrode array (NEA) made of vertically aligned carbon nanofibers (VACNFs) versus a macroscopic indium tin oxide electrode in a “points-and-lid” configuration integrated in a microfluidic channel. The capture of the virus particles has been systematically investigated versus the flow velocity, sinusoidal AC frequency, peak-to-peak voltage, and virus concentration. The DEP capture at all conditions is reversible and the captured virus particles are released immediately when the voltage is turned off. At the low virus concentration (8.9×104 pfu·ml−1), the DEP capture efficiency up to 60% can be obtained. The virus particles are individually captured at isolated nanoelectrode tips and accumulate linearly with time. Due to the comparable size, it is more effective to capture virus particles than larger bacterial cells with such NEA based DEP devices. This technique can be potentially utilized as a fast sample preparation module in a microfluidic chip to capture, separate, and concentrate viruses and other biological particles in small volumes of dilute solutions in a portable detection system for field applications. PMID:23348683

  4. Dielectrophoresis in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Rose, R. M.

    1986-01-01

    Microgravity and vacuum, singly or combined, are uniquely advantageous media for the use of dielectrophoresis as a mmaterial s separation technology. In order to assess these advantages, a free-fall vacuum dielectrophoretic separator was designed and constructed for use at the earth's surface.

  5. Rapid DNA Idetification by Dielectrophoresis of Nanocolloids

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary; Senapati, Satyajyoti; Gordon, Jason; Chang, Hsueh-Chia

    2008-03-01

    Due to their size and number, dispersed oligo-functionalized nanocolloids can reduce the diffusion length/docking time and increase the sensitivity of ssDNA hybridization reactions by orders of magnitude compared to immobilized probes. We find that, for long target ssDNAs, their docked conformation is a sensitive function of the nanocolloid size, surface charge, functionalized probe density and number of docked DNAs per bead. Three distinct conformations (collapsed, stretched and condensed) are detected via independent light scattering, Zeta potential, dielectrophoresis (DEP) and electron micrograph techniques. By optimizing the hybridization conditions to produce a stretched conformation, we are able to significantly change the DEP cross-over frequency of hybridized beads, thus allowing rapid label-free detection of hybridization by simple impedance techniques down to pM concentrations.

  6. Determination of colloidal particle surface charge from dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Chavez, Marko; Nuansri, Rittirong; Mazza, Jacob; Ou-Yang, H. Daniel

    2015-03-01

    Electrophoresis (EP) is used to determine colloidal particle surface charge. However, when the Debye length is comparable to or larger than the particle size, electrophoresis cannot be reliably used to determine the surface charge due to counter ion retardation flow. Alexander et al. developed a theory relating colloidal osmotic pressure and particle surface charge. We use dielectrophoresis (DEP) to obtain a potential landscape based on the number density distribution of the particles in a non-uniform AC electric field. We determine the osmotic pressure from the DEP force and density profiles using Einstein's osmotic equilibrium equation. Surface charge obtained by DEP (thermodynamics) will be compared to that obtained by EP (electrokinetics).

  7. Three dimensional microelectrode system for dielectrophoresis

    SciTech Connect

    Dehlinger, Dietrich A; Rose, Klint A; Shusteff, Maxim; Bailey, Christopher G; Mariella, Jr., Raymond P

    2014-12-02

    A dielectrophoresis method for separating particles from a sample, including a dielectrophoresis channel, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa parallel to said first mesa; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode, and pumping a recovery fluid through said gap between said first electrode and into said space between at least one of said first mesa and said second side or said second mesa and said second side.

  8. Tailoring particle translocation via dielectrophoresis in pore channels.

    PubMed

    Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji

    2016-01-01

    Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126

  9. Tailoring particle translocation via dielectrophoresis in pore channels

    PubMed Central

    Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji

    2016-01-01

    Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126

  10. Combined impedance and dielectrophoresis portable device for point-of-care analysis

    NASA Astrophysics Data System (ADS)

    del Moral Zamora, B.; Colomer-Farrarons, J.; Mir-Llorente, M.; Homs-Corbera, A.; Miribel-Català, P.; Samitier-Martí, J.

    2011-05-01

    In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.

  11. Ac loss characteristics of YBCO superconducting tapes fabricated by TFA-MOD technique

    NASA Astrophysics Data System (ADS)

    Iwakuma, Masataka; Nigo, Masahiro; Inoue, Daisuke; Miyamoto, Naoya; Kiss, Takanobu; Funaki, Kazuo; Iijima, Yasuhiro; Saitoh, Takashi; Izumi, Teruo; Yamada, Yutaka; Shiohara, Yuu

    2005-10-01

    We investigated the ac loss properties of a YBCO superconducting tape fabricated by TFA-MOD technique. The thickness of the YBCO layer is 1.2 μm. A 6-tape stack of 50 mm in length and 10 mm in width was inserted into a saddle-shaped pickup coil. The ac loss was measured at 35-77 K by applying an external ac magnetic field. The magnetic field angle was changed by rotating the sample stack around its longitudinal axis. The effective penetration field, which corresponds to the breaking point of an ac loss curve, decreased with increasing field angle though it was much smaller than that which was estimated for a superconducting slab with the same thickness as the width of a tape. As a result, the ac loss increased monotonically with an increasing field angle against the wide surface for any amplitude. The observed field angular dependence of the ac loss agreed with the theoretically predicted one by using the observed ac losses in perpendicular magnetic field. Anyway the ac loss for a larger amplitude than the effective penetration field was proportional to the critical current density and the projective width of a tape in the direction of the applied magnetic field for any field angle and any temperature as well known. In addition we estimated the magnetic field, B, dependence of the critical current, Ic, from the observed magnetization curves. It was shown that zero-field Ic appeared to be a linear function of temperature and Ic-B characteristics was scaled with zero-field Ic. We also discussed a difference in Ic-B characteristics and its temperature dependence between TFA-MOD tapes and IBAD-PLD ones.

  12. New Technique of AC drive in Tokamak using Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Matteucci, Jackson; Zolfaghari, Ali

    2013-10-01

    This study investigates a new technique of capturing the rotational energy of alternating permanent magnets in order to inductively drive an alternating current in tokamak devices. The use of rotational motion bypasses many of the pitfalls seen in typical inductive and non-inductive current drives. Three specific designs are presented and assessed in the following criteria: the profile of the current generated, the RMS loop voltage generated as compared to the RMS power required to maintain it, the system's feasibility from an engineering perspective. All of the analysis has been done under ideal E&M conditions using the Maxwell 3D program. Preliminary results indicate that it is possible to produce an over 99% purely toroidal current with a RMS d Φ/dt of over 150 Tm2/s, driven by 20 MW or less of rotational power. The proposed mechanism demonstrates several key advantages including an efficient mechanical drive system, the generation of pure toroidal currents, and the potential for a quasi-steady state fusion reactor. The following quantities are presented for various driving frequencies and magnet strengths: plasma current generated, loop voltage, torque and power required. This project has been supported by DOE Funding under the SULI program.

  13. Measurement of solar cell ac parameters using the time domain technique

    NASA Astrophysics Data System (ADS)

    Deshmukh, M. P.; Kumar, R. Anil; Nagaraju, J.

    2004-08-01

    The instrumentation to measure solar cell ac parameters [cell capacitance (CP) and cell resistance (RP)] using the time domain technique is developed. The cell capacitance (CP) and series resistance (r) are calculated using open circuit voltage decay (OCVD) technique. It is calibrated with the help of an electrical network with passive components similar to ac equivalent circuit of a solar cell consisting of precision resistors and capacitors. The maximum error observed in the measurement of resistor and capacitor value is ±3.5%. The cell resistance (RP) is calculated from I-V characteristics of solar cell. The data obtained in time domain technique is compared with the impedance spectroscopy technique data measured on same solar cell and it is found that the deviation in cell capacitance and resistance are within ±8%.

  14. Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis.

    PubMed

    Montemurro, D; Stornaiuolo, D; Massarotti, D; Ercolani, D; Sorba, L; Beltram, F; Tafuri, F; Roddaro, S

    2015-09-25

    We present a novel technique for the realization of suspended Josephson junctions based on InAs semiconductor nanowires. The devices are assembled using a technique of drop-casting guided by dielectrophoresis, which allows one to finely align the nanostructures on top of the electrodes. The proposed architecture removes the interaction between the nanowire and the substrate which is known to influence disorder and the orientation of the Rashba vector. The relevance of this approach in view of the implementation of hybrid Josephson junctions based on semiconducting nanowires coupled with high-temperature superconductors is discussed. PMID:26335273

  15. Suspended InAs nanowire Josephson junctions assembled via dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Montemurro, D.; Stornaiuolo, D.; Massarotti, D.; Ercolani, D.; Sorba, L.; Beltram, F.; Tafuri, F.; Roddaro, S.

    2015-09-01

    We present a novel technique for the realization of suspended Josephson junctions based on InAs semiconductor nanowires. The devices are assembled using a technique of drop-casting guided by dielectrophoresis, which allows one to finely align the nanostructures on top of the electrodes. The proposed architecture removes the interaction between the nanowire and the substrate which is known to influence disorder and the orientation of the Rashba vector. The relevance of this approach in view of the implementation of hybrid Josephson junctions based on semiconducting nanowires coupled with high-temperature superconductors is discussed.

  16. Liquid dielectrophoresis and surface microfluidics

    PubMed Central

    Kaler, Karan V. I. S.; Prakash, Ravi; Chugh, Dipankar

    2010-01-01

    Liquid dielectrophoresis (L-DEP), when deployed at microscopic scales on top of hydrophobic surfaces, offers novel ways of rapid and automated manipulation of very small amounts of polar aqueous samples for microfluidic applications and development of laboratory-on-a-chip devices. In this article we highlight some of the more recent developments and applications of L-DEP in handling and processing of various types of aqueous samples and reagents of biological relevance including emulsions using such microchip based surface microfluidic (SMF) devices. We highlighted the utility of these devices for on-chip bioassays including nucleic acid analysis. Furthermore, the parallel sample processing capabilities of these SMF devices together with suitable on- or off-chip detection capabilities suggest numerous applications and utility in conducting automated multiplexed assays, a capability much sought after in the high throughput diagnostic and screening assays. PMID:20697595

  17. Arthroscopically Assisted Reconstruction of Acute Acromioclavicular Joint Dislocations: Anatomic AC Ligament Reconstruction With Protective Internal Bracing—The “AC-RecoBridge” Technique

    PubMed Central

    Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P.; Maier, Dirk

    2015-01-01

    An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC (“AC-Reco”). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage (“AC-Bridge”) is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the “AC-RecoBridge.” A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given. PMID:26052493

  18. Dielectrophoresis force of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Ou-Yang, Daniel

    Dielectrophoresis (DEP) is the motion of a polarizable colloidal particle in a non­uniform electric field. The magnitude of the DEP force is known to be proportional to the gradient of E2. The DEP force also depends on the relative polarizability of the particle to that of the surrounding medium. Due to its ease of use, DEP has been proposed for a variety of applications to manipulate colloidal particles in a microfluidic setting. However, accurate measurements of the DEP force on colloidal nanoparticles are lacking. A new method is proposed to measure accurately the DEP potential force of colloidal nanoparticles by using confocal fluorescence imaging to determine the density distributions of dilute colloidal nanoparticle in a DEP potential force field. The DEP potential field can be calculated from the particle density distributions since the spatial distribution of the particle number density follows the Boltzmann distribution of the DEP potential energy. The validity of the measured DEP force is tested by examining the force as a function of the E field strength and particle size. The classic Maxwell­Wagner­O'Konski is found to be inadequate to fully describe the frequency dependence of the DEP force. NSF 0928299, Emulsion Polymer Institute, Department of Physics of Lehigh University.

  19. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  20. Scalable dielectrophoresis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fitzhugh, William A.

    Single Walled Carbon Nanotubes (SWNTs) have attracted much attention as a candidate material for future nano-scale 'beyond silicon' devices. However industrial scale operations have been impeded by difficulties in separating the metallic and semiconducting species. This paper addresses the use of highly inhomogeneous alternating electric fields, dielectrophoresis, to isolate SWNT species in scaled systems. Both numerical and experimental methods will be discussed.

  1. Electrodeless dielectrophoresis for DNA trapping and cell separation

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Fu

    2003-03-01

    To move and concentrate molecules in a micro- or nano-fluidic environment is a great challenge in Lab-on-a-Chip systems. Dielectrophoresis (DEP) provides such a capability in translating dielectric objects caused by polarization effects in a nonuniform electric field. In the context of DEP, an electrically polarizable object will be trapped in a region of a focused electric field, provided there is sufficient dielectric response to overcome thermal energy and the electrophoretic force. Typically DEP trapping of biological objects (DNA, cells, virus, etc.) is carried out via microfabricated metal electrodes on a substrate. The standard way to make a DEP trap is to create an electric field gradient with an arrangement of planar metallic electrodes either directly connected to a voltage source or free- floating in the presence of an AC field. Here we constructed an array of dielectric traps ("electrodeless" dielectrophoresis, EDEP) [1] composed of geometrical constrictions defined by photo and soft lithography. The constriction is used to squeeze the electric field in ionic buffer, thereby creating a high field gradient with a local maximum. I will discuss the advantages of the EDEP over the metallic DEP technology and give examples of EDEP for DNA focusing and the separation of bacterial cells (E. Coli) from blood sample in various salt concentrations. Many folds of concentration enhancement may be achieved in a matter of seconds. This technology promises broad applications in a micro-total analysis system. [1] C.F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T.A.J. Duke, R.H. Austin, Biophys. J. 83, 2170-2179 (2002).

  2. Preimplantation Mouse Embryo Selection Guided by Light-Induced Dielectrophoresis

    PubMed Central

    Valley, Justin K.; Swinton, Paul; Boscardin, W. John; Lue, Tom F.; Rinaudo, Paolo F.; Wu, Ming C.; Garcia, Maurice M.

    2010-01-01

    Selection of optimal quality embryos for in vitro fertilization (IVF) transfer is critical to successful live birth outcomes. Currently, embryos are chosen based on subjective assessment of morphologic developmental maturity. A non-invasive means to quantitatively measure an embryo's developmental maturity would reduce the variability introduced by the current standard. We present a method that exploits the scaling electrical properties of pre-transfer embryos to quantitatively discern embryo developmental maturity using light-induced dielectrophoresis (DEP). We show that an embryo's DEP response is highly correlated with its developmental stage. Uniquely, this technique allows one to select, in sequence and under blinded conditions, the most developmentally mature embryos among a mixed cohort of morphologically indistinguishable embryos cultured in optimized and sub-optimal culture media. Following assay, embryos continue to develop normally in vitro. Light-induced dielectrophoresis provides a non-invasive, quantitative, and reproducible means to select embryos for applications including IVF transfer and embryonic stem cell harvest. PMID:20405021

  3. Dielectrophoresis and its application to biomedical diagnostics platforms

    NASA Astrophysics Data System (ADS)

    Basuray, Sagnik

    Novel pathogenic diagnostics and on field devices to attest their growth have been the current norm of scientific research and curiosity. Microfluidics and Nanofluidics have recently been on the forefront of the development of these devices for their inherent advantages of large surface to volume ratio and small diffusion times. With the advancement of soft lithographic techniques, the devices can be easily adapted for medical systems and bio-diagnostic devices to study mechanistic pathways of bio-molecules, bio-chemical reactions and as delivery modules for drug. However, the lack of better sensors, other than optics, to detect low bio-particle numbers in real samples have made the instruments bulky, expensive and not suitable for field use. Thus there is an urgent need to develop label-free, portable, inexpensive, rapid diagnostic devices. In order to achieve a viable device, researchers in these fields have been using dielectrophoresis as the mechanism of choice for a variety of tasks, from particle manipulation, to delivery, to movement of the particles through the fluid. However, the exact physical mechanism for not only the dielectrophoresis of the colloidal assembly is unclear, but the dielectrophoresis of single bio-particles/charged nano-colloids is not understood fully. In this thesis, I present a theory for charged nano-colloid dielectrophoresis taking into account the surface charge and Debye double layer effects. The exact mechanism of the origin of the Stern layer, through the surface conductance effect of a nano-colloid to form a collapsed diffuse layer that renders a nano-colloid conductive at sub-optical frequency has been formulated. This effect is utilized to optimize a nano-colloid assay to detect DNA hybridization. The collapsed diffuse layer kinetics with thick diffuse layer is solved, using spherical harmonics of the Bessel solution of the Poisson equation, to give a modified Clausius-Mosotti factor, that accounts for the size dependent

  4. ELECTRICALLY ADDRESSABLE VESICLES – TOOLS FOR DIELECTROPHORESIS METROLOGY

    PubMed Central

    Desai, Salil P.; Vahey, Michael D.; Voldman, Joel

    2009-01-01

    Dielectrophoresis (DEP) has emerged as an important tool for the manipulation of bioparticles ranging from the submicron to the tens of microns in size. Here we show the use of phospholipid vesicle electroformation techniques to develop a new class of test particles with specifically engineered electrical properties to enable identifiable dielectrophoretic responses in microfabricated systems. These electrically addressable vesicles (EAVs) enable the creation of electrically distinct populations of test particles for DEP. EAVs offer control of both their inner aqueous core and outer membrane properties; by encapsulating solutions of different electrolyte strength inside the vesicle and by incorporating functionalized phospholipids containing PEG brushes attached to their hydrophilic head group in the vesicle membrane, we demonstrate control of the vesicles’ electrical polarizabilities. This combined with the ability to encode information about the properties of the vesicle in its fluorescence signature, form the first steps toward the development of EAV populations as metrology tools for any DEP-based microsystem. PMID:19227986

  5. Protein dielectrophoresis and the link to dielectric properties

    PubMed Central

    Camacho-Alanis, Fernanda; Ros, Alexandra

    2015-01-01

    There is a growing interest in protein dielectrophoresis (DEP) for biotechnological and pharmaceutical applications. However, the DEP behavior of proteins is still not well understood which is important for successful protein manipulation. In this paper, we elucidate the information gained in dielectric spectroscopy (DS) and electrochemical impedance spectroscopy (EIS) and how these techniques may be of importance for future protein DEP manipulation. EIS and DS can be used to determine the dielectric properties of proteins predicting their DEP behavior. Basic principles of EIS and DS are discussed and related to protein DEP through examples from previous studies. Challenges of performing DS measurements as well as potential designs to incorporate EIS and DS measurements in DEP experiments are also discussed. PMID:25697193

  6. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells.

    PubMed Central

    Gimsa, J; Marszalek, P; Loewe, U; Tsong, T Y

    1991-01-01

    Dielectrophoresis and electrorotation are commonly used to measure dielectric properties and membrane electrical parameters of biological cells. We have derived quantitative relationships for several critical points, defined in Fig. A 1, which characterize the dielectrophoretic spectrum and the electrorotational spectrum of a cell, based on the single-shell model (Pauly, H., and H.P. Schwan, 1959. Z. Naturforsch. 14b:125-131; Sauer, F.A. 1985. Interactions between Electromagnetic Field and Cells. A. Chiabrera, C. Nicolini, and H.P. Schwan, editors. Plenum Publishing Corp., New York. 181-202). To test these equations and to obtain membrane electrical parameters, a technique which allowed simultaneous measurements of the dielectrophoresis and the electrorotation of single cells in the same chamber, was developed and applied to the study of Neurospora slime and the Myeloma Tib9 cell line. Membrane electrical parameters were determined by the dependence of the first critical frequency of dielectrophoresis (fct1) and the first characteristic frequency of electrorotation (fc1) on the conductivity of the suspending medium. Membrane conductances of Neurospora slime and Myeloma also were found to be 500 and 380 S m-2, respectively. Several observations indicate that these cells are more complex than that described by the single-shell model. First, the membrane capacities from fct1 (0.81 x 10(-2) and 1.55 x 10(-2) F m-2 for neurospora slime and Myeloma, respectively) were at least twice those derived from fc1. Second, the electrorotation spectrum of Myeloma cells deviated from the single-shell like behavior. These discrepancies could be eliminated by adapting a three-shell model (Furhr, G., J. Gimsa, and R. Glaser. 1985. Stud. Biophys. 108:149-164). Apparently, there was more than one membrane relaxation process which could influence the lower frequency region of the beta-dispersion. fct1 of Myeloma in a medium of given external conductivity were found to be similar for most

  7. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    PubMed Central

    Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora

    2016-01-01

    Summary DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  8. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures.

    PubMed

    Henning-Knechtel, Anja; Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora; Mertig, Michael

    2016-01-01

    DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  9. Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique

    NASA Astrophysics Data System (ADS)

    Kishore Babu, N.; Cross, C. E.

    2012-11-01

    The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.

  10. Characteristics of ? multifilamentary wires for a.c. use developed by the bronze process using diffusion barrier techniques

    NASA Astrophysics Data System (ADS)

    Miura, Osuke; Matsumoto, Kaname; Tanaka, Yasuzo; Uno, Naoki

    1996-03-01

    0953-2048/9/3/015/img7 multifilamentary superconducting wires for a.c. use were developed by the bronze method using Cu diffusion barrier techniques. To reduce a.c. losses, the filament diameter was designed to be less than 0953-2048/9/3/015/img8 and the final resistivity of the bronze matrix was increased using a Cu alloy diffusion barrier with the addition of Si and Mn elements around the filaments. As a result, interfilamentary proximity coupling could be prevented until a filament spacing of 0953-2048/9/3/015/img9 and hysteresis losses for the wires reached lower values, from 0953-2048/9/3/015/img10 to 0953-2048/9/3/015/img11 at a magnetic field amplitude of 0.5 T under controlled reaction heat treatment. The perpendicular resistivity of the matrix between the filaments estimated from the coupling loss was about 0953-2048/9/3/015/img12, which was considerably less than the resistivity value of the matrix estimated after the reaction. This was thought to be due to an extreme reduction in Sn concentration between the filaments. Furthermore, a small a.c. coil was fabricated by winding a stranded cable fabricated in this way. The a.c. loss of the coil at 50 Hz in a central magnetic field of 0.5 T was 0953-2048/9/3/015/img13 and the a.c. quench current at 50 Hz was 195 A, which is about 10% lower than the critical current on the load line. This degradation was due to the temperature rise in the cable caused by a.c. loss.

  11. Nanoparticles trapping from flue gas using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Neculae, Adrian; Strambeanu, Nicolae; Lungu, Antoanetta; Bunoiu, Madalin; Lungu, Mihai

    2015-12-01

    The paper first presents a mathematical model which describes the effect of dielectrophoretic forces on the nanoparticles suspended in gaseous environment, together with a set of numerical results obtained in the frame of this model. Next, an experimental microfluidic device with interdigitated bar electrodes for retaining of nanometric particles from combustion gases under dielectrophoresis is described. The particles deposited on the electrodes of the experimental device are analysed using a reflection metallographic microscope with CCD camera together with a data analysis system. The experimental results are analysed in terms of a new trapping parameter, named as Filtration. Finally, a comparison between the theoretical results provided by numerical simulations and the experimental results on the deposition of nanoparticles on electrodes is given. The comparison demonstrates a good agreement between the two types of results.

  12. Dielectrophoresis of nanocolloids: a molecular dynamics study.

    PubMed

    Salonen, E; Terama, E; Vattulainen, I; Karttunen, M

    2005-10-01

    Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for a polarizable nanoparticle, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature. PMID:16195818

  13. Discriminating dengue-infected hepatic cells (WRL-68) using dielectrophoresis.

    PubMed

    Yafouz, Bashar; Kadri, Nahrizul Adib; Rothan, Hussin A; Yusof, Rohana; Ibrahim, Fatimah

    2016-02-01

    Dielectrophoresis (DEP), the induced movement of dielectric particles placed in a nonuniform electric field, has been used as a potential technique for manipulation and separation of many biological samples without destructive consequences to the cell. Cells of the same genotype in different physiological and pathological states have unique morphological and structural features, therefore, it is possible to differentiate between them using their DEP responses. This paper reports the experimental discrimination of normal and dengue-infected human hepatic fetal epithelial cells (WRL-68 cells) based on their DEP crossover frequency, at which no resultant movement occurs in the cells in response to the DEP force. A microarray dot electrode was used to conduct the DEP experiments. The DEP forces applied to the cells were quantified by analyzing the light intensity shift within the electrode's dot region based on the Cumulative Modal Intensity Shift image analysis technique. The differences in dielectric properties between infected and uninfected cells were exploited by plotting a unique DEP spectrum for each set of cells. We observed that the crossover frequency decreased from 220 kHz for the normal WRL-68 cells to 140 kHz after infection with the dengue virus in a medium conductivity of 100 μS/cm. We conclude that the change in the DEP crossover frequency between dengue-infected cells and their healthy counterparts should allow direct characterization of these cell types by exploiting their electrophysiological properties. PMID:26530354

  14. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  15. Rapid microbead-based DNA detection using dielectrophoresis and impedance measurement

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Kasahara, Hiromichi; Suehiro, Junya

    2014-10-01

    Polymerase chain reaction (PCR) is a powerful tool for diagnostic procedures in bacterial and viral infections. The authors propose a new electrical technique for rapid detection of DNA amplified by PCR using dielectrophoresis (DEP) of microbeads. The method is based on dramatic alteration of DEP characteristics of microbeads caused by DNA labeling. DNA-labeled microbeads are trapped on a microelectrode under the action of positive DEP, whereas pristine ones are not. DEP-trapped microbeads are measured impedimetrically to realize rapid and quantitative detection of the amplified DNA. The validity of the proposed method was demonstrated by detection of PCR-amplified DNA of viruses.

  16. Marker-specific sorting of rare cells using dielectrophoresis

    PubMed Central

    Hu, Xiaoyuan; Bessette, Paul H.; Qian, Jiangrong; Meinhart, Carl D.; Daugherty, Patrick S.; Soh, Hyongsok T.

    2005-01-01

    Current techniques in high-speed cell sorting are limited by the inherent coupling among three competing parameters of performance: throughput, purity, and rare cell recovery. Microfluidics provides an alternate strategy to decouple these parameters through the use of arrayed devices that operate in parallel. To efficiently isolate rare cells from complex mixtures, an electrokinetic sorting methodology was developed that exploits dielectrophoresis (DEP) in microfluidic channels. In this approach, the dielectrophoretic amplitude response of rare target cells is modulated by labeling cells with particles that differ in polarization response. Cell mixtures were interrogated in the DEP-activated cell sorter in a continuous-flow manner, wherein the electric fields were engineered to achieve efficient separation between the dielectrophoretically labeled and unlabeled cells. To demonstrate the efficiency of marker-specific cell separation, DEP-activated cell sorting (DACS) was applied for affinity-based enrichment of rare bacteria expressing a specific surface marker from an excess of nontarget bacteria that do not express this marker. Rare target cells were enriched by >200-fold in a single round of sorting at a single-channel throughput of 10,000 cells per second. DACS offers the potential for automated, surface marker-specific cell sorting in a disposable format that is capable of simultaneously achieving high throughput, purity, and rare cell recovery. PMID:16236724

  17. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry

    PubMed Central

    Flanagan, Lisa A.; Jeon, Noo Li; Monuki, Edwin; Lee, Abraham P.

    2012-01-01

    A novel dielectrophoresis switching with vertical electrodes in the sidewall of microchannels for multiplexed switching of objects has been designed, fabricated and tested. With appropriate electrode design, lateral DEP force can be generated so that one can dynamically position particulates along the width of the channel. A set of interdigitated electrodes in the sidewall of the microchannels is used for the generation of non-uniform electrical fields to generate negative DEP forces that repel beads/cells from the sidewalls. A countering DEP force is generated from another set of electrodes patterned on the opposing sidewall. These lateral negative DEP forces can be adjusted by the voltage and frequency applied. By manipulating the coupled DEP forces, the particles flowing through the microchannel can be positioned at different equilibrium points along the width direction and continue to flow into different outlet channels. Experimental results for switching biological cells and polystyrene microbeads to multiple outlets (up to 5) have been achieved. This novel particle switching technique can be integrated with other particle detection components to enable microfluidic flow cytometry systems. PMID:17713608

  18. Electrodeless dielectrophoresis: Impact of geometry and material on obstacle polarization.

    PubMed

    Pesch, Georg R; Kiewidt, Lars; Du, Fei; Baune, Michael; Thöming, Jorg

    2016-01-01

    Insulator-based (electrodeless) dielectrophoresis (iDEP) is a promising particle manipulation technique, based on movement of matter in inhomogeneous fields. The inhomogeneity of the field arises because the excitatory field distorts at obstacles (posts). This effect is caused by accumulation of polarization charges at material interfaces. In this study, we utilize a multipole expansion method to investigate the influence of geometry and material on field distortion of posts with arbitrary cross-sections in homogeneous electric fields applied perpendicular to the longitudinal axis of the post. The post then develops a multipole parallel or anti parallel to the excitatory field. The multipoles intensity is defined by the post's structure and material properties and directly influences the DEP particle trapping potential. We analyzed posts with circular and rhombus-shaped cross-sections with different cross-sectional width-to-height ratios and permittivities for their polarization intensity, multipole position, and their particle trapping behavior. A trade-off between high maximum field gradient and high coverage range of the gradient is presented, which is determined by the sharpness of the post's edges. We contribute to the overall understanding of the post polarization mechanism and expect that the results presented will help optimizing the structure of microchannels with arrays of posts for electrodeless DEP application. PMID:26463845

  19. Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation.

    PubMed

    Verduzco-Luque, Cynthia E; Alp, Burçak; Stephens, Gillian M; Markx, Gerard H

    2003-07-01

    A novel approach was developed for the construction of biofilms with defined internal architecture using AC electrokinetics and flocculation. Artificial structured microbial consortia (ASMC) consisting of localized layered microcolonies of different cell types were formed by sequentially attracting different cell types to high field regions near microelectrodes using dielectrophoresis. Stabilization of the microbial consortia on the electrode surface was achieved by crosslinking the cells using the flocculant polyethyleneimine (PEI). Consortia of Escherichia coli, Micrococcus luteus, and Saccharomyces cerevisiae were made as model systems. Also, more natural consortia were made of the bacteria Pseudomonas putida, Clavibacter michiganense, and Methylobacterium mesophilum, which are found together in consortia during biodegradation of metal-cutting waste fluids. PMID:12740931

  20. Directed Assembly of Ultrathin Gold Nanowires over Large Area by Dielectrophoresis.

    PubMed

    Venkatesh, R; Kundu, Subhajit; Pradhan, Avradip; Sai, T Phanindra; Ghosh, Arindam; Ravishankar, N

    2015-08-25

    Ultrathin Au nanowires (∼2 nm diameter) are interesting from a fundamental point of view to study structure and electronic transport and also hold promise in the field of nanoelectronics, particularly for sensing applications. Device fabrication by direct growth on various substrates has been useful in demonstrating some of the potential applications. However, the realization of practical devices requires device fabrication strategies that are fast, inexpensive, and efficient. Herein, we demonstrate directed assembly of ultrathin Au nanowires over large areas across electrodes using ac dielectrophoresis with a mechanistic understanding of the process. On the basis of the voltage and frequency, the wires either align in between or across the contact pads. We exploit this assembly to produce an array of contacting wires for statistical estimation of electrical transport with important implications for future nanoelectronic/sensor applications. PMID:26255906

  1. Electrochromism in metal oxide films studied by Raman spectroscopy and A.C. techniques: charge insertion mechanism

    NASA Astrophysics Data System (ADS)

    Cordoba de Torresi, Susana I.; Takenouti, H.

    1990-08-01

    Two different types of electrochromic nickel oxide films are studied : nickel hydroxide films prepared by cathodic precipitation from a Ni2 containing solution and nickel oxide films formed by anodic oxidation of a nickel substrate in very concentrated sulfuric acid. Chemical and crystallographic nature is analysed by in-situ Raman spectroscopy and the charge insertion mechanisms are studied by A.C. electrochemical impedance technique. The optical transfer function is also determined by means of 1254 Solartron frequency response analyzer. The complex capacitance C*(w), the differential coloration R/(RAE) and the differential coloration efficiency R/(RQ) are calculated.

  2. AC loss reduction of TFA-MOD coated conductors in long length by laser scribing technique

    NASA Astrophysics Data System (ADS)

    Katayama, K.; Hirano, H.; Machi, T.; Takagi, Y.; Takahashi, Y.; Izumi, T.

    TFA-MOD process is expected to be promising for future applications since it can produce high performance YBCO coated conductors with low cost. Applying YBCO coated conductors to the power electric devices such as transformer, cable, motors, reduction of AC loss for long wire is necessary. Multifilamentation, which is one of the effective approaches for AC loss reduction, has been developed by the scribing process. YBCO coated conductors produced by our standard TFA-MOD process delaminated into two parts by the laser scribing. The delamination was clarified to occur within the superconducting layer caused by the defects such as pores in the superconducting layer. In order to reduce the defects in the superconducting layer, we modify the heat treatment profile performed on the decomposed precursor films by applying the interim annealing(550-600°C) before crystallization heat treatment(740-770°C). The interim annealed samples had much less and smaller pores than the standard processed ones. The peel strength measured by transverse tensile test was as high as the PLD derived coated conductors which was successfully scribed into five filaments resulting in 1/5 AC loss. A 50m long YBCO coated conductor with the characteristics of 398A/cmwidth was obtained and cut into 5 mm width, followed by the laser scribing process into five filaments. The multifilamentation process was successfully performed without delamination throughout the wire. The hysteresis loss was down to 1/N (N: number of filaments), as we aimed. The IC properties of the filaments were 29±4A, indicating the wire was uniformly fabricated.

  3. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  4. Isolation of Circulating Tumor Cells by Dielectrophoresis

    PubMed Central

    Gascoyne, Peter R. C.; Shim, Sangjo

    2014-01-01

    Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies. PMID:24662940

  5. Light emission from electrodes under dielectrophoresis conditions

    NASA Astrophysics Data System (ADS)

    Tsai, Long-Fang; Gong, Hua; Dallon, Kathryn L.; Mazzeo, Brian A.; Nordin, Gregory P.

    2016-04-01

    The use of fluorescence in microfluidic optical biodetection requires materials with low-background fluorescence to avoid influencing the desired optical signal with spurious light emission. For the same reason, spurious light emission from galvanoluminescence (GL) should be avoided when fluorescence is used in dielectrophoresis (DEP)-based biosensors. Use of non-noble metal electrodes such as indium tin oxide (ITO) in DEP devices is therefore a concern. We evaluate GL in the context of conditions typical of DEP devices. We experimentally show that use of ITO can result in GL. We also show that GL can be avoided, even with metals that demonstrate strong GL such as Al, by proper selection of operating frequency, which can be determined by measuring the impedance spectrum of the DEP device. In addition, we demonstrate that GL results in broadband emission for all of the salt solutions tested. Broadband emission implies that at least some of the light will pass through typical fluorescence filters if a device exhibits GL. We also show that Ni and Cr electrodes do not exhibit GL and may therefore be suitable as low-cost DEP electrodes.

  6. Alternating current-dielectrophoresis driven on-chip collection and chaining of green microalgae in freshwaters.

    PubMed

    Suscillon, Coralie; Velev, Orlin D; Slaveykova, Vera I

    2013-01-01

    The capability of the AC dielectrophoresis (DEP) for on-chip capture and chaining of microalgae suspended in freshwaters was evaluated. The effects of freshwater composition as well as the electric field voltage, frequency, and duration, on the dielectrophoretic response of microalga Chlamydomonas reinhardtii were characterized systematically. Highest efficiency of cell alignment in one-dimensional arrays, determined by the percentage of cells in chain and the chain length, was obtained at AC-field of 20 V mm(-1) and 1 kHz applied for 600 s. The DEP response and cell alignment of C. reinhardtii in water sampled from lake, pond, and river, as well as model media were affected by the chemical composition of the media. In the model media, the efficiency of DEP chaining was negatively correlated to the conductivity of the cell suspensions, being higher in suspensions with low conductivity. The cells suspended in freshwaters, however, showed anomalously high chaining at long exposure times. High concentrations of nitrate and dissolved organic matter decrease cell chaining efficiency, while phosphate and citrate concentrations increase it and favor formation of longer chains. Importantly, the application of AC-field had no effect on algal autofluorescence, cell membrane damage, or oxidative stress damages in C. reinhardtii. PMID:24404014

  7. Alternating current-dielectrophoresis driven on-chip collection and chaining of green microalgae in freshwaters

    PubMed Central

    Suscillon, Coralie; Velev, Orlin D.; Slaveykova, Vera I.

    2013-01-01

    The capability of the AC dielectrophoresis (DEP) for on-chip capture and chaining of microalgae suspended in freshwaters was evaluated. The effects of freshwater composition as well as the electric field voltage, frequency, and duration, on the dielectrophoretic response of microalga Chlamydomonas reinhardtii were characterized systematically. Highest efficiency of cell alignment in one-dimensional arrays, determined by the percentage of cells in chain and the chain length, was obtained at AC-field of 20 V mm−1 and 1 kHz applied for 600 s. The DEP response and cell alignment of C. reinhardtii in water sampled from lake, pond, and river, as well as model media were affected by the chemical composition of the media. In the model media, the efficiency of DEP chaining was negatively correlated to the conductivity of the cell suspensions, being higher in suspensions with low conductivity. The cells suspended in freshwaters, however, showed anomalously high chaining at long exposure times. High concentrations of nitrate and dissolved organic matter decrease cell chaining efficiency, while phosphate and citrate concentrations increase it and favor formation of longer chains. Importantly, the application of AC-field had no effect on algal autofluorescence, cell membrane damage, or oxidative stress damages in C. reinhardtii. PMID:24404014

  8. Nanoslit design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media.

    PubMed

    Rohani, Ali; Varhue, Walter; Liao, Kuo-Tang; Chou, Chia-Fu; Swami, Nathan S

    2016-05-01

    Selective and rapid enrichment of biomolecules is of great interest for biomarker discovery, protein crystallization, and in biosensing for speeding assay kinetics and reducing signal interferences. The current state of the art is based on DC electrokinetics, wherein localized ion depletion at the microchannel to nanochannel interface is used to enhance electric fields, and the resulting biomarker electromigration is balanced against electro-osmosis in the microchannel to cause high degrees of biomarker enrichment. However, biomarker enrichment is not selective, and the levels fall off within physiological media of high conductivity, due to a reduction in ion concentration polarization and electro-osmosis effects. Herein, we present a methodology for coupling AC electrokinetics with ion concentration polarization effects in nanoslits under DC fields, for enabling ultrafast biomarker enrichment in physiological media. Using AC fields at the critical frequency necessary for negative dielectrophoresis of the biomarker of interest, along with a critical offset DC field to create proximal ion accumulation and depletion regions along the perm-selective region inside a nanoslit, we enhance the localized field and field gradient to enable biomarker enrichment over a wide spatial extent along the nanoslit length. While enrichment under DC electrokinetics relies solely on ion depletion to enhance fields, this AC electrokinetic mechanism utilizes ion depletion as well as ion accumulation regions to enhance the field and its gradient. Hence, biomarker enrichment continues to be substantial in spite of the steady drop in nanostructure perm-selectivity within physiological media. PMID:27462378

  9. High power dc/dc and dc/ac electrical power conversion techniques developed

    NASA Technical Reports Server (NTRS)

    Berryman, G.; White, W. T.

    1967-01-01

    Small magnetic amplifiers pass square waves through transformers and provide regulation by varying the pulse width on the secondary of the output power transformers. This pulse duration modulation is provided by a control rectifier technique or a phase-shift technique.

  10. Double-layer polarization of a non-conducting particle in an alternating current field with applications to dielectrophoresis.

    PubMed

    Zhao, Hui

    2011-09-01

    Dielectrophoresis is becoming one of the most important techniques in particle manipulation including particle separation, particle assembly, and biomolecule characterization. Understanding dielectrophoretic properties of particles is a key step toward effective and efficient particle manipulation. Theoretical studies of polarization of a particle can help to understand experimental observations and also go beyond to develop a predictive theory to guide the experimental design. This article discusses recent theoretical advances in the polarization of a dielectric particle, in particular, the polarization of the electric double layer. The double-layer polarization is critical to determine particle dynamics in dielectrophoresis. The dipole moment characterizing the strength of this polarization depends on the double-layer thickness, the electric field frequency, the particle's surface charge, and other surface's properties (Pohl, H. A., Dielectrophoresis, Cambridge University Press, New York 1978). After a brief review of the mathematical model, the focus is on the following problems: (i) the polarization of a spherical particle; (ii) the polarization of an elongated cylindrical particle; (iii) the effect of the slip on the polarization of a particle. The double-layer polarization is examined here in the context of high-frequency and low-frequency dispersions induced by surface conduction and diffusion, respectively. PMID:21823130

  11. Fluidic Dielectrophoresis of Aqueous Electrical Interfaces

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary

    2014-11-01

    To date, alternating current (AC) electric fields have been exploited to dielectrophoretically manipulate bubbles, liquid drops, particles, biomolecules and cells. Research and applications in this area, however, has been primarily limited to the interfaces formed between two immiscible metal-liquid, particle-liquid, or gas-liquid surfaces on particles. The influence of AC electric fields across aqueous liquid-liquid interfaces remains relatively unexplored. Fundamentally, many electrokinetic phenomena arise from discontinuities in ionic flux and charge accumulation at electrical interfaces, and here I explore the influence of AC electric fields on the electrical interface created between two aqueous liquids with disparaging electrical properties Using a microfluidic channel with embedded electrodes, two fluid streams - one with a greater electrical conductivity, the other a greater dielectric constant - were made to flow side-by-side. An AC electric field was applied across the flow channel and fluid was observed to displace across the phase interface. The displacement direction is AC frequency dependent, and is attributed to the Maxwell-Wagner interfacial polarization at the liquid-liquid electrical interface. At low AC frequency, below the interfacial charge relaxation time, the high conductive stream is observed to displace into the high dielectric stream. Above this frequency, the direction of liquid injection reverses, and the high dielectric stream injects into the high conductivity stream. An analytical model is presented for this liquid crossover frequency, and applied towards biosensing applications.

  12. Dielectrophoresis device and method having insulating ridges for manipulating particles

    DOEpatents

    Cummings, Eric B.; Fiechtner, Gregory J.

    2008-03-25

    Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.

  13. Dynamic Dielectrophoresis Model of Multi-Phase Ionic Fluids

    PubMed Central

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids. PMID:25699513

  14. A portable and integrated instrument for cell manipulation by dielectrophoresis.

    PubMed

    Burgarella, Sarah; Di Bari, Marco

    2015-07-01

    The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications. PMID:25808778

  15. Developing interface localized liquid dielectrophoresis for optical applications

    NASA Astrophysics Data System (ADS)

    McHale, Glen; Brown, Carl V.; Newton, Michael I.; Wells, Gary G.; Sampara, Naresh

    2012-11-01

    Electrowetting charges the solid-liquid interface to change the contact area of a droplet of a conducting liquid. It is a powerful technique used to create variable focus liquid lenses, electronic paper and other devices, but it depends upon ions within the liquid. Liquid dielectrophoresis (L-DEP) is a bulk force acting on the dipoles throughout a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. In this work, we show theoretically how non-uniform electric fields generated by interdigitated electrodes can effectively convert L-DEP into an interface localized form. We show that for droplets of sufficient thickness, the change in the cosine of the contact angle is proportional to the square of the applied voltage and so obeys a similar equation to that for electrowetting - this we call dielectrowetting. However, a major difference to electrowetting is that the strength of the effect is controlled by the electrode spacing and the liquid permittivity rather than the properties of an insulator in a sandwich structure. Experimentally, we show that that this dielectrowetting equation accurately describes the contact angle of a droplet of oil viewed across parallel interdigitated electrodes. Importantly, the induced spreading can be complete, such that contact angle saturation does not occur. We then show that for thin films, L-DEP can shape the liquid-air interface creating a spatially periodic wrinkle and that such a wrinkle can be used to create a voltage programmable phase diffraction grating.

  16. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis.

    PubMed

    Gallo-Villanueva, Roberto C; Pérez-González, Victor H; Davalos, Rafael V; Lapizco-Encinas, Blanca H

    2011-09-01

    Dielectrophoresis is the electrokinetic movement of particles due to polarization effects in the presence of non-uniform electric fields. In insulator-based dielectrophoresis (iDEP) regions of low and high electric field intensity, i.e. non-uniformity of electric field, are produced when the cross-sectional area of a microchannel is decreased by the presence of electrical insulating structures between two electrodes. This technique is increasingly being studied for the manipulation of a wide variety of particles, and novel designs are continuously developed. Despite significant advances in the area, complex mixture separation and sample fractionation continue to be the most important challenges. In this work, a microchannel design is presented for carrying out direct current (DC)-iDEP for the separation of a mixture of particles. The device comprises a main channel, two side channels and two sections of cylindrical posts with different diameters, which will generate different non-uniformities in the electric field on the main channel, designed for the discrimination and separation of particles of two different sizes. By applying an electric potential of 1000 V, a mixture of 1 and 4 μm polystyrene microspheres were dielectrophoretically separated and concentrated at the same time and then redirected to different outlets. The results obtained here demonstrate that, by carefully designing the device geometry and selecting operating conditions, effective sorting of particle mixtures can be achieved in this type of multi-section DC-iDEP devices. PMID:21874656

  17. Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis.

    PubMed

    Szydzik, Crispin; Khoshmanesh, Khashayar; Mitchell, Arnan; Karnutsch, Christian

    2015-11-01

    Microfluidic based blood plasma extraction is a fundamental necessity that will facilitate many future lab-on-a-chip based point-of-care diagnostic systems. However, current approaches for providing this analyte are hampered by the requirement to provide external pumping or dilution of blood, which result in low effective yield, lower concentration of target constituents, and complicated functionality. This paper presents a capillary-driven, dielectrophoresis-enabled microfluidic system capable of separating and extracting cell-free plasma from small amounts of whole human blood. This process takes place directly on-chip, and without the requirement of dilution, thus eliminating the prerequisite of pre-processed blood samples and external liquid handling systems. The microfluidic chip takes advantage of a capillary pump for driving whole blood through the main channel and a cross flow filtration system for extracting plasma from whole blood. This filter is actively unblocked through negative dielectrophoresis forces, dramatically enhancing the volume of extracted plasma. Experiments using whole human blood yield volumes of around 180 nl of cell-free, undiluted plasma. We believe that implementation of various integrated biosensing techniques into this plasma extraction system could enable multiplexed detection of various biomarkers. PMID:26759637

  18. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    PubMed

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  19. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator-based dielectrophoresis.

    PubMed

    Khashei, Hesamodin; Latifi, Hamid; Seresht, Mohsen Jamshidi; Ghasemi, Amir Hossein Baradaran

    2016-03-01

    The separation and manipulation of microparticles in lab on a chip devices have importance in point of care diagnostic tools and analytical applications. The separation and sorting of particles from biological and clinical samples can be performed using active and passive techniques. In passive techniques, no external force is applied while in active techniques by applying external force (e.g. electrical), higher separation efficiency is obtained. In this article, passive (pinched flow fractionation) and active (insulator-based dielectrophoresis) methods were combined to increase the separation efficiency at lower voltages. First by simulation, appropriate values of geometry and applied voltages for better focusing, separation, and lower Joule heating were obtained. Separation of 1.5 and 6 μm polystyrene microparticles was experimentally obtained at optimized geometry and low total applied voltage (25 V). Also, the trajectory of 1.5 μm microparticles was controlled by adjusting the total applied voltage. PMID:26685118

  20. Dielectrophoresis-Based Double-Emulsion Droplet Centering for Concentric Laser Target Foam Shells

    NASA Astrophysics Data System (ADS)

    Bei, Zongmin

    Cryogenic laser targets used for inertial confinement fusion experiments are prepared from hollow, low-density polymer foam shells. For effective implosion, these foam shells must meet very rigid requirements on their dimensions. They must be concentric within ≤ 5% of the average shell thickness and the inner surface root-mean-square (RMS) roughness must be on the scale of microns. In this dissertation, a voltage-controlled scheme for centering double-emulsion droplets is developed based on dielectrophoresis (DEP). This technique has potential application in a scalable microfluidic assembly-line process for the formation of highly concentric foam shells for laser targets. The DEP centering effect, utilizing a uniform AC electric field, originates from the interactions between the induced dipoles of the inner droplet and the surrounding liquid . Double-emulsion droplets can be centered only when the dielectric constant of the outer shell is higher than that of the suspension medium. The dielectric constant of the inner droplet has no effect on the centering stability. The AC frequency of the applied electric field must be sufficiently high (˜20 MHz) to overcome electrostatic shielding due to the electrical conductivity (>10-3 S/m) of the liquid forming the outer shell. To minimize gravity and buoyancy, the densities of the liquids must be closely matched to ˜0.1%. Preliminary demonstration of the centering effect was performed with a thin ITO glass plate to support the droplets midway between the two parallel electrodes. Fairly good centering results for 3˜6 mm diameter droplets were obtained within ˜60 s using an electric field of magnitude >10 4 V/m in liquids of viscosity ˜10 centipoise. The physical support, however, caused a systematic ˜10% vertical offset between the two centers. The droplets also exhibited some distortion on the lower side adjacent to the glass plate. To reduce these offset and distortion problems, double-emulsion droplets were

  1. Contact properties and surface reaction kinetics of single ZnO nanowire devices fabricated by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Pau, J. L.; García Núñez, C.; García Marín, A.; Guerrero, C.; Rodríguez, P.; Borromeo, S.; Piqueras, J.

    2014-03-01

    This work describes the development of ZnO nanowire (NW) devices for ultraviolet detection and cost-effective gas sensing. A dielectrophoresis (DEP) flow cell fabricated for the integration of NWs on different substrates is presented. The system includes the possibility to set characteristic parameters such as alternating current (AC) frequency, amplitude or flow speed in order to control NW trapping on specific sites defined by micro-gapped electrodes. The electrical characteristics of the rectifying metal/NW contact fabricated by DEP are investigated in darkness and under direct illumination of the metal-NW interface through the ZnO NW. A significant downshift of the turn-on voltage is observed in the current-voltage characteristics during the illumination with photon energies higher than the ZnO bandgap. The reduction is attributed to a barrier height lowering induced by interface charge emission. The effects of AC bias on the thermal drift of the DC average current in NW devices are also discussed. Finally, the reaction kinetics of ethanol and water vapors on the NW surface are compared through the analysis of the DC current under direct exposure to gas flows. Device responses to more complex compound mixtures such as coffee or mint are also monitored over time, showing different performance in both cases.

  2. Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.

    PubMed

    Yang, Shih-Mo; Tseng, Sheng-Yang; Chen, Hung-Po; Hsu, Long; Liu, Cheng-Hsien

    2013-10-01

    A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation. PMID:23925640

  3. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2011-12-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  4. Fuzzy-control-based five-step Li-ion battery charger by using AC impedance technique

    NASA Astrophysics Data System (ADS)

    Asadi, Houshyar; Aghay Kaboli, Seyed Hamidreza; Mohammadi, Arash; Oladazimi, Maysam

    2012-01-01

    In This paper the previous Li-Ion battery charger techniques are reviewed and compared and the new fuzzy logic battery charging method which is proposed to optimize and improve the battery charger efficiently. According to results of comparison, using the fuzzy control charging system can shorten the charging time with higher efficiency and lower temperature rise. Additionally, we have used optimal Li-ion battery charging frequency by using AC impedance technique which means if the battery is charged by the optimal charging frequency fZmin, that obtain from Bode Plot of the Li-ion battery, the charging time and charging efficiency will improve. Thus using the switching frequency (fZmin) of the battery charger and the fuzzy logic control on the same system can optimize the performance on the charging process. According to the experimental results, the proposed charger can charge the Li-ion batteries with higher efficiency 97.16%, lower temperature rise1.513degree celosias, fast charging period around 50.43 minute and long life cycle. The results in this paper are presented by using MATLAB and dsPIC30F2020 is used as controller applying designed fuzzy logic inside.

  5. Dielectric model for Chinese hamster ovary cells obtained by dielectrophoresis cytometry.

    PubMed

    Salimi, E; Braasch, K; Butler, M; Thomson, D J; Bridges, G E

    2016-01-01

    We present a dielectric model and its parameters for Chinese hamster ovary (CHO) cells based on a double-shell structure which includes the cell membrane, cytoplasm, nuclear envelope, and nucleoplasm. Employing a dielectrophoresis (DEP) based technique and a microfluidic system, the DEP response of many single CHO cells is measured and the spectrum of the Clausius-Mossotti factor is obtained. The dielectric parameters of the model are then extracted by curve-fitting to the measured spectral data. Using this approach over the 0.6-10 MHz frequency range, we report the values for CHO cells' membrane permittivity, membrane thickness, cytoplasm conductivity, nuclear envelope permittivity, and nucleoplasm conductivity. The size of the cell and its nuclei are obtained using optical techniques. PMID:26858823

  6. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE PAGESBeta

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  7. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    PubMed

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications. PMID:21293829

  8. Resonant dielectrophoresis and electrohydrodynamics for high-sensitivity impedance detection of whole-cell bacteria.

    PubMed

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2015-08-01

    We present the co-integration of CMOS-compatible Al/Al2O3 interdigitated microelectrodes (IDEs) with an electrokinetic-driven macroelectrode for sensitive detection of whole-cell bacteria in a microfluidic channel. Two frequency ranges applied to the macroelectrode were identified to notably increase the bacterial coverage of the impedimetric sensor per unit time. Around 10 kHz, the bacterial cells were directed towards the IDE center thanks to AC electroosmosis (AC-EO) and the sensor capacitance linearly increased, achieving a limit of detection (LoD) of 3.5 × 10(5) CFU mL(-1) after an incubation time of 20 min with Staphylococcus epidermidis. At 63 MHz precisely, a resonance effect due to the device was found to dramatically increase the trapping of S. epidermidis on the sensor periphery, due to the combined actions of short-range contactless dielectrophoresis (cDEP) and long-range Joule heating electrothermal (J-ET) flow. Thanks to a flow-based method, the bacterial cells were redirected towards the sensor center and an LoD of 10(5) CFU mL(-1) was achieved within 20 min of incubation, which is almost two orders of magnitude better than the impedimetric sensor alone. Analytical models and 2D simulations using the Maxwell stress tensor (MST) provide a comprehensive analysis of the experimental results, especially about the spectral balance between cDEP, AC-EO and J-ET accounting for the 33-nm thick insulating layer atop the electrodes. Electrode CMOS compatibility confers portability, miniaturization and affordability capabilities for building point-of-care (PoC) diagnostic tests in a lab-on-a-chip (LoC). PMID:26120099

  9. Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody V.

    2009-01-01

    As the molecular origins of disease are better understood, the need for affordable, rapid, and automated technologies that enable microscale molecular diagnostics has become apparent. Widespread use of microsystems that perform sample preparation and molecular analysis could ensure that the benefits of new biomedical discoveries are realized by a maximum number of people, even those in environments lacking any infrastructure. While progress has been made in developing miniaturized diagnostic systems, samples are generally processed off-device using labor-intensive and time-consuming traditional sample preparation methods. We present the concept of an integrated programmable general-purpose sample analysis processor (GSAP) architecture where raw samples are routed to separation and analysis functional blocks contained within a single device. Several dielectrophoresis-based methods that could serve as the foundation for building GSAP functional blocks are reviewed including methods for cell and particle sorting, cell focusing, cell ac impedance analysis, cell lysis, and the manipulation of molecules and reagent droplets. PMID:19684877

  10. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis.

    PubMed

    Tai, Yi-Hsin; Chang, Dao-Ming; Pan, Ming-Yang; Huang, Ding-Wei; Wei, Pei-Kuen

    2016-01-01

    This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO) substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP) effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli) bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system. PMID:26927128

  11. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis

    PubMed Central

    Tai, Yi-Hsin; Chang, Dao-Ming; Pan, Ming-Yang; Huang, Ding-Wei; Wei, Pei-Kuen

    2016-01-01

    This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO) substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP) effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli) bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system. PMID:26927128

  12. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis.

    PubMed

    Castillo, Jaime; Tanzi, Simone; Dimaki, Maria; Svendsen, Winnie

    2008-12-01

    Self-assembled amyloid peptide nanotubes (SAPNT) were manipulated and immobilized using dielectrophoresis. Micro-patterned electrodes of Au were fabricated by photolithography and lifted off on a silicon dioxide layer. SAPNT were manipulated by adjusting the amplitude and frequency of the applied voltage. The immobilized SAPNT were evaluated by SEM and atomic force microscopy. The conductivity of the immobilized SAPNT was studied by I-V characterization, for both single SAPNT and bundles. This work illustrates a way to manipulate and integrate biological nanostructures into novel bio-nanoassemblies with concrete applications, such as field-effect transistors, microprobes, microarrays, and biosensing devices. PMID:19130587

  13. Wafer-level assembly of carbon nanotube networks using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Monica, A. H.; Papadakis, S. J.; Osiander, R.; Paranjape, M.

    2008-02-01

    We use dielectrophoresis (DEP) to controllably and simultaneously assemble multiple carbon nanotube (CNT) networks at the wafer level. By an appropriate choice of electrode dimensions and geometry, an electric field is generated that captures CNTs from a sizable volume of suspension, resulting in good CNT network uniformity and alignment. During the DEP process, the electrical characteristics of the CNT network are measured and correlated with the network morphology. These experiments give novel insight into the physics of DEP assembly of CNT networks, and demonstrate the scalability of DEP for future device applications.

  14. A real-time multiple-cell tracking platform for dielectrophoresis (DEP)-based cellular analysis

    NASA Astrophysics Data System (ADS)

    Prasad, Brinda; Du, Shan; Badawy, Wael; Kaler, Karan V. I. S.

    2005-04-01

    There is an increasing demand from biosciences to develop new and efficient techniques to assist in the preparation and analysis of biological samples such as cells in suspension. A dielectrophoresis (DEP)-based characterization and measurement technique on biological cells opens up a broader perspective for early diagnosis of diseases. An efficient real-time multiple-cell tracking platform coupled with DEP to capture and quantify the dynamics of cell motion and obtain cell viability information is presented. The procedure for tracking a single DEP-levitated Canola plant protoplast, using the motion-based segmentation algorithm hierarchical adaptive merge split mesh-based technique (HAMSM) for cell identification, has been enhanced for identifying and tracking multiple cells. The tracking technique relies on the deformation of mesh topology that is generated according to the movement of biological cells in a sequence of images that allows the simultaneous extraction of the biological cell from the image and the associated motion characteristics. Preliminary tests were conducted with yeast cells and then applied to a cancerous cell line subjected to DEP fields. Characteristics, such as cell count, velocity and size, were individually extracted from the tracked results of the cell sample. Tests were limited to eight yeast cells and two cancer cells. A performance analysis to assess tracking accuracy, computational effort and processing time was also conducted. The tracking technique employed on model intact cells in DEP fields proved to be accurate, reliable and robust.

  15. Dielectrophoresis-based classification of cells using multi-target multiple-hypothesis tracking.

    PubMed

    Dickerson, Samuel J; Chiarulli, Donald M; Levitan, Steven P; Carthel, Craig; Coraluppi, Stefano

    2014-01-01

    In this paper we present a novel methodology for classifying cells by using a combination of dielectrophoresis, image tracking and classification algorithms. We use dielectrophoresis to induce unique motion patterns in cells of interest. Motion is extracted via multi-target multiple-hypothesis tracking. Trajectories are then used to classify cells based on a generalized likelihood ratio test. We present results of a simulation study and of our prototype tracking the dielectrophoretic velocities of cells. PMID:25570230

  16. Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis

    PubMed Central

    Weiss, Noah G.; Jones, Paul V.; Mahanti, Prasun; Chen, Kang Ping; Taylor, Thomas J.; Hayes, Mark A.

    2012-01-01

    Insulator based dielectrophoresis is powerful tool for separating and charactering particles, yet it is limited by a lack of quantitative characterizations. Here this limitation is addressed by employing a method capable of quantifying the dielectrophoretic mobility of particles. Using streak-based velocimetry the particle properties are deduced from their motion in a microfluidic channel with a constant electric field gradient. From this approach the dielectrophoretic mobility of 1 μm polystyrene particles was found to be −2 ± 0.4 × 10−8 cm4/(V2·s). In the future, such quantitative treatment will allow for the elucidation of unique insights and rational design of devices. PMID:21823129

  17. Determination of colloidal osmotic equation of state by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Mazza, Jacob; Huang, Hao; Ou-Yang, H. Daniel

    2015-03-01

    Osmotic equation of state [P(N,T)] describes both the mechanical properties and phase behavior of a colloidal suspension. As an alternative to sedimentation, we propose a new approach to determine P(N,T) by dielectrophoresis (DEP). Using fluorescence confocal microscopy, we obtain particle density profiles in order to determine the DEP force distribution when the particle concentration is low and the inter-particle interactions are negligible. From the known force distribution and Einstein's osmotic equilibrium equation, we can calculate P(N,T) from the particle density profile of interacting, charge-stabilized polystyrene latex particles under different salt concentrations and added neutral polymers. The osmotic equation of state for colloidal suspensions can then be crosschecked by sedimentation equilibrium.

  18. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  19. Dielectrophoresis based integration of nanostructures and their sensorial application

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Brönstrup, Gerald; Berg, Steffen; Jahr, Norbert; Fritzsche, Wolfgang

    2015-08-01

    Here we present a technique to integrate bottom-up nanostructures for optoelectronic and chemoresistive sensing using an AC electrical field. The work focuses mainly on two types of nanostructured materials: gold nanoparticle and silicon nanowire. In terms of electrical microintegration of these structures, it is especially important to apply a reliable electrical contact with low contact-resistance, in order to be able to use them as optoelectronic or chemo resistive sensors. To achieve this, a micro integration process was developed to achieve this goal. The contacted nanostructures were characterized electrically to optimize the integration procedure and acquire best possible sensing capabilities. Silicon nanowires were demonstrated to work as wavelength sensitive optical sensors and gold nanoparticle as marker free chemo resistive sensor.

  20. Numerical characterization of electrohydrodynamic micro- or nanopatterning processes based on a phase-field formulation of liquid dielectrophoresis.

    PubMed

    Tian, Hongmiao; Shao, Jinyou; Ding, Yucheng; Li, Xiangming; Liu, Hongzhong

    2013-04-16

    The electrohydrodynamic patterning of polymer is a unique technique for micro- and nanostructuring where an electric voltage is applied to an electrode pair consisting of a patterned template and a polymer-coated substrate either in contact or separated by an air gap to actuate the deformation of the rheological polymer. Depending on the template composition, three processes were proposed for implementing the EHDP technique and have received a great amount of attention (i.e., electrostatic force-assisted nanoimprint, dielectrophoresis-electrocapillary force-driven imprint, and electrically induced structure formation). A numerical approach, which is versatile for visualizing the full evolution of micro- or nanostructures in these patterning processes or their variants, is a desirable critical tool for optimizing the process variables in industrial applications of this structuring technique. Considering the fact that all of these processes use a dielectric and viscous polymer (behaving mechanically as a liquid) and are carried out in ambient air, this Article presents a generalized formulation for the numerical characterization of the EHDP processes by coupling liquid dielectrophoresis (L-DEP) and the phase field of the air-liquid dual phase. More importantly, some major scale effects, such as the surface tension, contact angle, liquid-solid interface slip, and non-Newtonian viscosity law are introduced, which can impact the accuracy of the numerical results, as shown experimentally by our electrical actuation of a dielectric microdroplet as a test problem. The numerical results are in good agreement with or are well explained by experimental observations published for the three EHDP processes. PMID:23506225

  1. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.

    PubMed

    Naieni, A Kashefian; Nojeh, A

    2012-12-14

    Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of the electrothermal phenomenon can affect the DEP deposition differently in each case. We investigated the effect of this movement in solutions with various levels of conductivity through experiments as well as numerical modeling. Our results show that electrothermal motion in the solution can alter the deposition pattern of the nanotubes drastically for high conductivity solutions, while DEP remains the dominant force when a low conductivity (surfactant-free) solution is used. The extent of effectiveness of each force is discussed in the various cases and the fluid movement model is investigated using two- and three-dimensional finite element simulations. PMID:23165429

  2. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis

    PubMed Central

    Salmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; C. Roberts, Paul; Schmelz, Eva M.; Davalos, Rafael V.

    2012-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. PMID:22536308

  3. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis.

    PubMed

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-01-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm(2). This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress. PMID:26202725

  4. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-07-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.

  5. Insulator-Based Dielectrophoresis with β-Galactosidase in Nanostructured Devices

    PubMed Central

    Nakano, Asuka; Camacho-Alanis, Fernanda; Ros, Alexandra

    2014-01-01

    Insulator-based dielectrophoresis (iDEP) has been explored as a powerful analytical technique in recent years. Unlike with larger entities such as cells, bacteria or organelles, the mechanism of iDEP transport of proteins remains little explored. In this work, we extended the pool of proteins investigated with iDEP in nanostructured devices with β-galactosidase. Our work indicates that β-galactosidase shows concentration due to negative DEP which we compare to DEP response of immunoglobulin G (IgG) encapsulated in micelles also showing negative DEP. Experimental observations are further compared with numerical simulations to elucidate the influence of electrokinetic transport and the magnitude of DEP mobility. Numerical simulations suggest that the DEP mobility calculated using the classical model underestimates the actual contribution of DEP on the experimentally monitored concentration effect of proteins. Moreover, we observed a unique voltage dependent β-galactosidase concentration which we attribute to an additional factor influencing the protein concentration at the nanoconstrictions, namely ion concentration polarization. Our work aids in understanding factors influencing protein iDEP transport which is required for the future development of protein preconcentration or separation methods based on iDEP. PMID:25479537

  6. Feedback control for noise-aided parallel micromanipulation of several particles using dielectrophoresis.

    PubMed

    Zemánek, Jiří; Michálek, Tomáš; Hurák, Zdeněk

    2015-07-01

    The paper describes a novel control strategy for simultaneous manipulation of several microscale particles over a planar microelectrode array using dielectrophoresis. The approach is based on a combination of numerical nonlinear optimization, which gives a systematic computational procedure for finding the voltages applied to the individual electrodes, and exploitation of the intrinsic noise, which compensates for the loss of controllability when two identical particles are exposed to identical forces. Although interesting on its own, the proposed functionality can also be seen as a preliminary achievement in a quest for a technique for separation of two particles. The approach is tested experimentally with polystyrene beads (50 microns in diameter) immersed in deionized water on a flat microelectrode array with parallel electrodes. A digital camera and computer vision algorithm are used to measure the positions. Two distinguishing features of the proposed control strategy are that the range of motion is not limited to interelectrode gaps and that independent manipulation of several particles simultaneously is feasible even on a simple microelectrode array. PMID:25875804

  7. Dielectrophoresis in a slanted microchannel for separation of microparticles and bacteria.

    PubMed

    Nam, Seong-Won; Kim, So Hyun; Park, Je-Kyun; Park, Sungsu

    2013-12-01

    Dielectrophoresis (DEP) is an effective method to trap, manipulate and separate various dielectric particles. To generate a DEP force, a spatially nonuniform electrical field has been generated by an array of electrodes, while electrodeless DEP has been accomplished by placing an insulating material between two electrodes. Here, we describe a new DEP method for generating a nonuniform electrical field using a slanted microchannel. The electric field gradient is induced due to a slope in the channel and can be used to move and separate particles. Based on the gradual electric field induced by three dimensional structure of the microchannel, our method enables particles of different sizes to be separated solely by DEP force without flow. The slanted microchannel was easily fabricated by a replica molding technique using a commercial UV-cured photopolymer (NOA 63) and bonded as an insulating layer between two indium-tin-oxide films. By applying the electrical field, polystyrene beads of different sizes (6-45 microm in diameter) were trapped and separated depending on the applied electric strength and frequency. Using this method, the opportunistic pathogen Pseudomonas aeruginosa attached to antibody-conjugated microbeads was successfully separated from Escherichia coli in a slanted microchannel. PMID:24266178

  8. Direct current-dielectrophoresis assisted microscale machining of metal by femtosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Park, ChangKyoo; Farson, Dave F.

    2015-07-01

    Accumulation of ablation debris particles interferes with femtosecond laser micromachining of high-aspect ratio grooves in metal. Debris removal from such grooves by an air or inert gas jet requires that the gas jet axis be aligned with the groove. This requirement constrains the motion system design and programming as well as the gas nozzle design for cutting of arbitrary shapes. Gas jet debris removal is also not feasible in vacuum environments. In this study, a novel technique based on DC-dielectrophoresis (DEP) for removing debris from the cut groove was investigated. Femtosecond laser ablation of linear and circular grooves from thick sections of aluminum was performed with no debris removal and with debris removal by air jet or DC-DEP force. Ablation depth and precision were compared for the three experimental conditions. Debris removal by DC-DEP force resulted in the most accurate, consistent, and orientation-independent machining of high-aspect ratio grooves. Moreover, larger electric fields exerted stronger DC-DEP force on debris particles and resulted in better ablation precision and machining rate.

  9. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    PubMed Central

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-01-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress. PMID:26202725

  10. Biaxial Dielectrophoresis Force Spectroscopy: A Stoichiometric Approach for Examining Intermolecular Weak Binding Interactions.

    PubMed

    Park, In Soo; Kwak, Tae Joon; Lee, Gyudo; Son, Myeonggu; Choi, Jeong Woo; Choi, Seungyeop; Nam, Kihwan; Lee, Sei-Young; Chang, Woo-Jin; Eom, Kilho; Yoon, Dae Sung; Lee, Sangyoup; Bashir, Rashid; Lee, Sang Woo

    2016-04-26

    The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.e., transverse and/or vertical axes) as well as the loading rate. With the BDFS system, we can quantitatively analyze binding interactions related to hydrogen bonding or ionic attractions between functionalized microbeads and a surface within a microfluidic device. Our BDFS system allowed for the characterization of the number of bonds involved in an interaction, bond affinity, kinetic rates, and energy barrier heights and widths from different regimes of the energy landscape. PMID:27007455

  11. Monitoring drug induced apoptosis and treatment sensitivity in non-small cell lung carcinoma using dielectrophoresis.

    PubMed

    Taruvai Kalyana Kumar, Rajeshwari; Liu, Shanshan; Minna, John D; Prasad, Shalini

    2016-09-01

    Non-invasive real time methods for characterizing biomolecular events that contribute towards apoptotic kinetics would be of significant importance in the field of cancer biology. Effective drug-induced apoptosis is an important factor for establishing the relationship between cancer genetics and treatment sensitivity. The objective of this study was to develop a non-invasive technique to characterize cancer cells that are undergoing drug-induced apoptosis. We used dielectrophoresis to determine apoptotic cells as early as 2h post drug treatment as compared to 24h with standard flow cytometry method using non-small cell lung cancer (NSCLC) adenocarcinoma cell line (HCC1833) as a study model. Our studies have shown significant differences in apoptotic cells by chromatin condensation, formation of apoptotic bodies and exposure of phosphatidylserine (PS) on the extracellular surface when the cells where treated with a potent Bcl-2 family inhibitor drug (ABT-263). Time lapse dielectrophoretic studies were performed over 24h period after exposure to ABT-263 at clinically relevant concentrations. The dielectrophoretic studies were compared to Annexin-V FITC flow assay for the detection of PS in mid-stage apoptosis using flow cytometry. As a result of physical and biochemical changes, inherent dielectric properties of cells undergoing varying stages of apoptosis showed amplified changes in their cytoplasmic and membrane capacitance. In addition, zeta potential of these fixed isolated cells was measured to obtain direct correlation to biomolecular events. PMID:27262539

  12. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    SciTech Connect

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  13. Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis

    NASA Astrophysics Data System (ADS)

    McGraw, Greg J.; Davalos, Rafael V.; Brazzle, John D.; Hachman, John T.; Hunter, Marion C.; Chames, Jeffery M.; Fiechtner, Gregory J.; Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2005-01-01

    We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a variety of biological pathogen simulants and organisms. These organisms include bacteria and spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented a methodology to determine the concentration factors obtained in these devices.

  14. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  15. Surface enhanced Raman spectroscopy on dielectrophoresis induced diffusion limited aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdhury, Faisal Khair

    Wires formed by diffusion limited aggregation (DLA) induced by dielectrophoresis (DEP) of gold nanoparticles were investigated as an effective sample preparation method for surface enhanced Raman spectroscopy (SERS). Thymine was used as a test molecule and its SERS was measured to investigate the effectiveness of this technique that reproducibly resulted in x10 9 enhancement. It is known that molecules adsorbed near or at the surface of certain nanostructures produce strongly increased Raman signals and such phenomena is attributed to the concentration of electromagnetic (EM) optical fields at "hotspots" that usually occur at nanoscale junctions or clefts in metal nanostructures. Similarly, the enhancement obtained is attributed to the localized surface Plasmon's of the gold nanoparticles and the formation of "hotspots" in DEP wires. There are other methods that reproducibly yield in excess of x108 enhancement in SERS using tunable lasers and very elaborate Raman spectroscopy. The results presented here are obtained using a fixed laser excitation source at 785 nm and a simple spectrometer (5 cm-1 resolution).

  16. Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices.

    PubMed

    Nakano, Asuka; Camacho-Alanis, Fernanda; Ros, Alexandra

    2015-02-01

    Insulator-based dielectrophoresis (iDEP) has been explored as a powerful analytical technique in recent years. Unlike with larger entities such as cells, bacteria or organelles, the mechanism of iDEP transport of proteins remains little explored. In this work, we extended the pool of proteins investigated with iDEP in nanostructured devices with β-galactosidase. Our work indicates that β-galactosidase shows concentration due to negative DEP which we compare to DEP response of immunoglobulin G (IgG) encapsulated in micelles also showing negative DEP. Experimental observations are further compared with numerical simulations to elucidate the influence of electrokinetic transport and the magnitude of DEP mobility. Numerical simulations suggest that the DEP mobility calculated using the classical model underestimates the actual contribution of DEP on the experimentally monitored concentration effect of proteins. Moreover, we observed a unique voltage dependent β-galactosidase concentration which we attribute to an additional factor influencing the protein concentration at the nanoconstrictions, namely ion concentration polarization. Our work aids in understanding factors influencing protein iDEP transport which is required for the future development of protein preconcentration or separation methods based on iDEP. PMID:25479537

  17. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    NASA Astrophysics Data System (ADS)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  18. Real-Time Analysis of Cellular Response to Small-Molecule Drugs within a Microfluidic Dielectrophoresis Device.

    PubMed

    Park, In Soo; Lee, Jaewoo; Lee, Gyudo; Nam, Kihwan; Lee, Taewoo; Chang, Woo-Jin; Kim, Hansung; Lee, Sei-Young; Seo, Jongbum; Yoon, Dae Sung; Lee, Sang Woo

    2015-06-16

    Quantitative detection of the biological properties of living cells is essential for a wide range of purposes, from the understanding of cellular characteristics to the development of novel drugs in nanomedicine. Here, we demonstrate that analysis of cell biological properties within a microfluidic dielectrophoresis device enables quantitative detection of cellular biological properties and simultaneously allows large-scale measurement in a noise-robust and probeless manner. Applying this technique, the static and dynamic biological responses of live B16F10 melanoma cells to the small-molecule drugs such as N-ethylmaleimide (NEM) and [(dihydronindenyl)oxy]alkanoic acid (DIOA) were quantitatively and statistically examined by investigating changes in movement of the cells. Measurement was achieved using subtle variations in dielectrophoresis (DEP) properties of the cells, which were attributed to activation or deactivation of K(+)/Cl(-) cotransporter channels on the cell membrane by the small-molecule drugs, in a microfluidic device. On the basis of quantitative analysis data, we also provide the first report of the shift of the complex permittivity of a cell induced by the small-molecule drugs. In addition, we demonstrate interesting quantifiable parameters including the drug effectiveness coefficient, antagonistic interaction coefficient, kinetic rate, and full width at half-maximum, which corresponded to changes in biological properties of B16F10 cells over time when NEM and DIOA were introduced alone or in combination. Those demonstrated parameters represent very useful tools for evaluating the effect of small-molecule drugs on the biological properties of cells. PMID:25811309

  19. Dielectrophoresis-based particle sensor using nanoelectrode arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Arumugam, Prabhu U. (Inventor)

    2009-01-01

    A method for concentrating or partly separating particles of a selected species from a liquid or fluid containing these particles and flowing in a channel, and for determining if the selected species particle is present in the liquid or fluid. A time varying electrical field E, having a root-mean-square intensity E.sup.2.sub.rms with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array, with a very high magnitude gradient near exposed electrode tips. A dielectrophoresis force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of each of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected species particles to the surface. An electrical property value Z(meas) is measured at the functionalized surface and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface.

  20. Characterization and optimization of liquid electrodes for lateral dielectrophoresis.

    PubMed

    Demierre, Nicolas; Braschler, Thomas; Linderholm, Pontus; Seger, Urban; van Lintel, Harald; Renaud, Philippe

    2007-03-01

    Using the concept of insulator-based "electrodeless" dielectrophoresis, we present a novel geometry for shaping electric fields to achieve lateral deviation of particles in liquid flows. The field is generated by lateral planar metal electrodes and is guided along access channels to the active area in the main channel. The equipotential surfaces at the apertures of the access channels behave as vertical "liquid" electrodes injecting the current into the main channel. The field between a pair of adjacent liquid electrodes generates the lateral dielectrophoretic force necessary for particle manipulation. We use this force for high-speed deviation of particles. By adding a second pair of liquid electrodes, we focus a particle stream. The position of the focused stream can be swept across the channel by adjusting the ratio of the voltages applied to the two pairs. Based on conformal mapping, we provide an analytical model for estimating the potential at the liquid electrodes and the field distribution in the main channel. We show that the simulated particle trajectories agree with observations. Finally, we show that the model can be used to optimize the device geometry in different applications. PMID:17330167

  1. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    PubMed Central

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2013-01-01

    During the last three decades; dielectrophoresis (DEP) has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC) devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development. PMID:23857266

  2. Cell pairing using microwell array electrodes based on dielectrophoresis.

    PubMed

    Yoshimura, Yuki; Tomita, Masahiro; Mizutani, Fumio; Yasukawa, Tomoyuki

    2014-07-15

    We report a simple device with an array of 10,000 (100 × 100) microwells for producing vertical pairs of cells in individual microwells with a rapid manipulation based on positive dielectrophoresis (p-DEP). The areas encircled with micropoles which fabricated from an electrical insulating photosensitive polymer were used as microwells. The width (14 μm) and depth (25 μm) of the individual microwells restricted the size to two vertically aligned cells. The DEP device for the manipulation of cells consisted of a microfluidic channel with an upper indium tin oxide (ITO) electrode and a lower microwell array electrode fabricated on an ITO substrate. Mouse myeloma cells stained in green were trapped within 1 s in the microwells by p-DEP by applying an alternating current voltage between the upper ITO and the lower microwell array electrode. The cells were retained inside the wells even after switching off the voltage and washing with a fluidic flow. Other myeloma cells stained in blue were then trapped in the microwells occupied by the cells stained in green to form the vertical cell pairing in the microwells. Cells stained in different colors were paired within only 1 min and a pairing efficiency of over 50% was achieved. PMID:24947270

  3. DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS

    PubMed Central

    Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig

    2009-01-01

    Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905

  4. The use of microfluidics and dielectrophoresis for separation, concentration, and identification of bacteria

    NASA Astrophysics Data System (ADS)

    Hanson, Cynthia; Sieverts, Michael; Tew, Karen; Dykes, Annelise; Salisbury, Michaela; Vargis, Elizabeth

    2016-03-01

    Traditional bacterial identification methods take one to two days to complete, relying on large bacteria colonies for visual identification. In order to decrease this analysis time in a cost-effective manner, a method to sort and concentrate bacteria based on the bacteria's characteristics itself is needed. One example of such a method is dielectrophoresis, which has been used by researchers to separate bacteria from sample debris and sort bacteria according to species. This work presents variations in which dielectrophoresis can be performed and their associated drawbacks and benefits specifically to bacterial identification. In addition, a potential microfluidic design will be discussed.

  5. Critical current density and ac harmonic voltage generation in YBaCuO thin films by the screening technique

    NASA Astrophysics Data System (ADS)

    Pérez-López, Israel O.; Gamboa, Fidel; Sosa, Víctor

    2010-12-01

    The temperature and field dependence of harmonics in voltage Vn=Vn‧-iVn″ using the screening technique have been measured for YBaCuO superconducting thin films. Using the Sun model we obtained the curves for the temperature-dependent critical current density Jc(T). In addition, we applied the criterion proposed by Acosta et al. to compute Jc(T). Also, we made used of the empirical law Jc∝(1-T/Tc)n as an input in our calculations to reproduce experimental harmonic generation up to the fifth harmonic. We found that most models fit well the fundamental voltage but higher harmonics are poorly reproduced. Such behavior suggests the idea that higher harmonics contain information concerning complex processes like flux creep or thermally assisted flux flow.

  6. AC Electric Field-Induced Trapping of Microparticles in Pinched Microconfinements.

    PubMed

    Dey, Ranabir; Shaik, Vaseem Akram; Chakraborty, Debapriya; Ghosal, Sandip; Chakraborty, Suman

    2015-06-01

    The trapping of charged microparticles under confinement in a converging-diverging microchannel, under a symmetric AC field of tunable frequency, is studied. We show that at low frequencies, the trapping characteristics stem from the competing effects of positive dielectrophoresis and the linear electrokinetic phenomena of electroosmosis and electrophoresis. It is found, somewhat unexpectedly, that electroosmosis and electrophoresis significantly affect the concentration profile of the trapped analyte, even for a symmetric AC field. However, at intermediate frequencies, the microparticle trapping mechanism is predominantly a consequence of positive dielectrophoresis. We substantiate our experimental results for the microparticle concentration distribution, along the converging-diverging microchannel, with a detailed theoretical analysis that takes into account all of the relevant frequency-dependent electrokinetic phenomena. This study should be useful in understanding the response of biological components such as cells to applied AC fields. Moreover, it will have potential applications in the design of efficient point-of-care diagnostic devices for detecting biomarkers and also possibly in some recent strategies in cancer therapy using AC fields. PMID:25954982

  7. Three dimensional passivated-electrode insulator-based dielectrophoresis

    PubMed Central

    Nakidde, Diana; Zellner, Phillip; Shake, Tyler; Riquelme, Maria V.; Pruden, Amy; Agah, Masoud

    2015-01-01

    In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape. PMID:25784964

  8. Dielectrophoresis-driven spreading of immersed liquid droplets.

    PubMed

    Brown, Carl V; McHale, Glen; Trabi, Christophe L

    2015-01-27

    In recent years electrowetting-on-dielectric (EWOD) has become an effective tool to control partial wetting. EWOD uses the liquid-solid interface as part of a capacitive structure that allows capacitive and interfacial energies to adjust by changes in wetting when the liquid-solid interface is charged due to an applied voltage. An important aspect of EWOD has been its applications in microfluidics in chemistry and biology and in optical devices and displays in physics and engineering. Many of these rely on the use of a liquid droplet immersed in a second liquid due to the need either for neutral buoyancy to overcome gravity and shield against impact shocks or to encapsulate the droplet for other reasons, such as in microfluidic-based DNA analyses. Recently, it has been shown that nonwetting oleophobic surfaces can be forcibly wetted by nonconducting oils using nonuniform electric fields and an interface-localized form of liquid dielectrophoresis (dielectrowetting). Here we show that this effect can be used to create films of oil immersed in a second immiscible fluid of lower permittivity. We predict that the square of the thickness of the film should obey a simple law dependent on the square of the applied voltage and with strength dependent on the ratio of difference in permittivity to the liquid-fluid interfacial tension, Δε/γ(LF). This relationship is experimentally confirmed for 11 liquid-air and liquid-liquid combinations with Δε/γ(LF) having a span of more than two orders of magnitude. We therefore provide fundamental understanding of dielectrowetting for liquid-in-liquid systems and also open up a new method to determine liquid-liquid interfacial tensions. PMID:25519875

  9. Three dimensional passivated-electrode insulator-based dielectrophoresis.

    PubMed

    Nakidde, Diana; Zellner, Phillip; Alemi, Mohammad Mehdi; Shake, Tyler; Hosseini, Yahya; Riquelme, Maria V; Pruden, Amy; Agah, Masoud

    2015-01-01

    In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape. PMID:25784964

  10. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  11. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  12. Study of Ac Dielectrophoretic Process of SiC Nanowires: A Universal Method for Alignment of Semiconductor Nanowires.

    PubMed

    Yao, Limei; Cui, Yan; Cong, Haining; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Yang, Weiyou; Wei, Guodong; Gao, Fengmei

    2016-04-01

    In this study, the dielectrophoretic processes of SiC nanowires suspended in three typical solvents, (highly purified water, ethanol and isopropanol) were systematically investigated. Optical microscope and SEM characterizations were used to observe the order of SiC nanowires on the surface of gold microchannels. The gold microchannels were induced by Ac dielectrophoresis of the corresponding dispersion solutions of SiC nanowires, with a concentration of 0.1 mg/mL. The study shows that the dielectrophoresis process is an effective way of synthesizing highly oriented SiC nanoarrays using isopropanol solution. The results also show that the arrangement of SiC nanowires on the interdigital electrode configuration not only depend on the kind of solvent used, but also on the applied frequency (1000 Hz~1 MHz) and voltage (1 V~20 V). PMID:27451739

  13. Dielectrophoresis of a surfactant-laden viscous drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  14. Dielectrophoresis device and method having nonuniform arrays for manipulating particles

    SciTech Connect

    Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2012-09-04

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  15. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis

    PubMed Central

    Patel, Saurin; Showers, Daniel; Vedantam, Pallavi; Tzeng, Tzuen-Rong; Qian, Shizhi; Xuan, Xiangchun

    2012-01-01

    Separating live and dead cells is critical to the diagnosis of early stage diseases and to the efficacy test of drug screening, etc. This work demonstrates a novel microfluidic approach to dielectrophoretic separation of yeast cells by viability. It exploits the cell dielectrophoresis that is induced by the inherent electric field gradient at the reservoir-microchannel junction to selectively trap dead yeast cells and continuously separate them from live ones right inside the reservoir. This approach is therefore termed reservoir-based dielectrophoresis (rDEP). It has unique advantages as compared to existing dielectrophoretic approaches such as the occupation of zero channel space and the elimination of any mechanical or electrical parts inside microchannels. Such an rDEP cell sorter can be readily integrated with other components into lab-on-a-chip devices for applications to biomedical diagnostics and therapeutics. PMID:23853679

  16. Traveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer

    NASA Astrophysics Data System (ADS)

    Marczak, Marcin; Diesinger, Heinrich

    2009-06-01

    A traveling wave dielectrophoresis microfluid pump based on structural dispersion is demonstrated. The phase shift between medium polarization and applied propagating field, necessary to generate asynchronous propagative forces in dielectrophoresis, is generated by an RC circuit consisting of the electrode insulator and the liquid conductivity. Since the device characteristics involve only bulk properties, the micropump does not require conductivity gradient or double layers, unlike existing micropumps using electro-osmosis and electrohydrodynamic shear forces. Its frequency of maximum pumping force can be made considerably lower than the dielectric relaxation frequency of the liquid. By decomposing the traveling wave electrode array into a rudimentary RC model, coincidence is found between optimized pumping conditions and crossover of the impedance measured between electrode combs. By using impedance spectroscopy alternately with pumping, the frequency of the applied signal can be matched in real-time to the complex dielectric constant of the liquid to keep the pumping force maximized.

  17. Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis.

    PubMed

    Puigmartí-Luis, Josep; Stadler, Johannes; Schaffhauser, Daniel; del Pino, Angel Pérez; Burg, Brian R; Dittrich, Petra S

    2011-03-01

    We present the site-selective, parallel and reproducible formation of conductive gold and tetrathiafulvalene-gold (TTF-Au) hybrid micro- and nanowires from their respective ion salt and cation-radical solutions. While the formation of micro- and nanowires by means of dielectrophoresis with directly coupled electrodes has been thoroughly investigated in recent studies, we present here the first relevant example of metal and hybrid wire assembly obtained by floating potential dielectrophoresis. In this configuration, the assembly of micro- and nanowires is achieved by capacitively coupling a large electrode (bias electrode) to a conductive substrate (p-doped Si) separated by an insulating oxide layer. In contrast to former studies, this allows parallel production of micro- and nanowires with only one pair of electrodes connected to a sine wave generator. We further demonstrate that these structures are suitable probes for localized surface enhanced Raman spectroscopy (SERS). PMID:21225055

  18. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis.

    PubMed

    Islam, Monsur; Natu, Rucha; Larraga-Martinez, Maria Fernanda; Martinez-Duarte, Rodrigo

    2016-05-01

    Here, we report on an enrichment protocol using carbon electrode dielectrophoresis to isolate and purify a targeted cell population from sample volumes up to 4 ml. We aim at trapping, washing, and recovering an enriched cell fraction that will facilitate downstream analysis. We used an increasingly diluted sample of yeast, 10(6)-10(2) cells/ml, to demonstrate the isolation and enrichment of few cells at increasing flow rates. A maximum average enrichment of 154.2 ± 23.7 times was achieved when the sample flow rate was 10 μl/min and yeast cells were suspended in low electrically conductive media that maximizes dielectrophoresis trapping. A COMSOL Multiphysics model allowed for the comparison between experimental and simulation results. Discussion is conducted on the discrepancies between such results and how the model can be further improved. PMID:27375816

  19. Trajectory of microscale entities in a microdevice for field-flow fractionation based on dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Mathew, Bobby; Alazzam, Anas; Khashan, Saud A.; El-Khasawneh, Bashar S.

    2015-06-01

    This article deals with the development of a two-dimensional dynamic model for tracking the path of cells subjected to dielectrophoresis, in a continuous flow microfluidic device, for purposes of field-flow fractionation. The nonuniform electric field exists between the top and bottom surface of the microchannel; the top electrode runs over the entire length of the microchannel while the bottom surface of the same holds multiple finite sized electrodes of opposite polarity. The model consists of two governing equations with each describing the movement of the cell in one of the two dimensions of interest. The equations governing of the cell trajectories as well as that of the electric potential inside the microchannel are solved using finite difference method. The model is subsequently used for parametric study; the parameters considered include cell radii, actuation voltage, microchannel height and volumetric flow rate. The model is particularly useful in the design of microfluidic device employing dielectrophoresis for field flow fractionation.

  20. Guided assembly of metal and hybrid conductive probes using floating potential dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Puigmartí-Luis, Josep; Stadler, Johannes; Schaffhauser, Daniel; Del Pino, Ángel Pérez; Burg, Brian R.; Dittrich, Petra S.

    2011-03-01

    We present the site-selective, parallel and reproducible formation of conductive gold and tetrathiafulvalene-gold (TTF-Au) hybrid micro- and nanowires from their respective ion salt and cation-radical solutions. While the formation of micro- and nanowires by means of dielectrophoresis with directly coupled electrodes has been thoroughly investigated in recent studies, we present here the first relevant example of metal and hybrid wire assembly obtained by floating potential dielectrophoresis. In this configuration, the assembly of micro- and nanowires is achieved by capacitively coupling a large electrode (bias electrode) to a conductive substrate (p-doped Si) separated by an insulating oxide layer. In contrast to former studies, this allows parallel production of micro- and nanowires with only one pair of electrodes connected to a sine wave generator. We further demonstrate that these structures are suitable probes for localized surface enhanced Raman spectroscopy (SERS).We present the site-selective, parallel and reproducible formation of conductive gold and tetrathiafulvalene-gold (TTF-Au) hybrid micro- and nanowires from their respective ion salt and cation-radical solutions. While the formation of micro- and nanowires by means of dielectrophoresis with directly coupled electrodes has been thoroughly investigated in recent studies, we present here the first relevant example of metal and hybrid wire assembly obtained by floating potential dielectrophoresis. In this configuration, the assembly of micro- and nanowires is achieved by capacitively coupling a large electrode (bias electrode) to a conductive substrate (p-doped Si) separated by an insulating oxide layer. In contrast to former studies, this allows parallel production of micro- and nanowires with only one pair of electrodes connected to a sine wave generator. We further demonstrate that these structures are suitable probes for localized surface enhanced Raman spectroscopy (SERS). Electronic supplementary

  1. Dielectrophoresis in particle confinement: Aligned carbon particles in polymer matrix below percolation threshold

    NASA Astrophysics Data System (ADS)

    Knaapila, M.; Høyer, H.; Helgesen, G.

    2014-09-01

    We review preparation and properties of confined, aligned string-like particle assemblies formed by dielectrophoresis under alternating electric fields. Particular attention is placed on carbon particles aligned in the oligomer matrix. In these systems the particle fraction is low, below the isotropic percolation threshold. The matrix is polymerized after alignment, which locks the aligned strings in place. Application examples are discussed including particle separation, conductivity enhancement and piezoresistive sensors.

  2. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.

    PubMed

    Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D

    2015-02-01

    Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications. PMID:25501324

  3. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase.

    PubMed

    Tang, Shi-Yang; Yi, Pyshar; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2015-05-01

    Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes. PMID:25701421

  4. Review article-dielectrophoresis: status of the theory, technology, and applications.

    PubMed

    Pethig, Ronald

    2010-01-01

    A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal

  5. Review Article—Dielectrophoresis: Status of the theory, technology, and applications

    PubMed Central

    Pethig, Ronald

    2010-01-01

    A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal

  6. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  7. A dielectrophoretic-gravity driven particle focusing technique for digital microfluidic systems

    NASA Astrophysics Data System (ADS)

    Samiei, Ehsan; Rezaei Nejad, Hojatollah; Hoorfar, Mina

    2015-05-01

    In the present study, a particle focusing technique functioning based on the cumulative effects of gravity and negative dielectrophoresis (nDEP) is developed for digital microfluidic (DMF) systems. This technique works using the conventional electrodes used for droplet manipulation without a need for geometrical modification. Particle manipulation is performed by applying an AC voltage to the electrode above which there is the droplet containing the non-buoyant particles. The particles sediment due to the difference between the gravitational and the vertical component of the nDEP forces, while the horizontal component of the nDEP force concentrates them on the center of the electrode. Therefore, the magnitude of the voltage must be kept within an effective range to have simultaneous effects of sedimentation (dominated by gravity) and concentration (due to the horizontal component of the nDEP force). The physics of the phenomenon is explained using simulation. The effects of the magnitude of the applied voltage, the particle size and density, and the electrode size on the focusing behavior of the particles are studied. Finally, a potential application of the present technique is illustrated for particle concentration in DMF.

  8. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    SciTech Connect

    Yoon, Tai Hyun

    2007-07-15

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms.

  9. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    SciTech Connect

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  10. AC electrokinetic manipulation of selenium nanoparticles for potential nanosensor applications

    SciTech Connect

    Mahmoodi, Seyed Reza; Bayati, Marzieh; Hosseinirad, Somayeh; Foroumadi, Alireza; Gilani, Kambiz; Rezayat, Seyed Mahdi

    2013-03-15

    Highlights: ► Se nanoparticles were synthesized using a reverse-microemulsion process. ► AC osmotic fluid flow repulses the particles from electrode edges. ► Dielectrophoretic force attracts the particles to electrode edges. ► Dielectrophoresis electrode showed non-ohmic behavior. ► The device can potentially be used as a nanosensor. - Abstract: We report the AC electrokinetic behavior of selenium (Se) nanoparticles for electrical characterization and possible application as micro/nano devices. selenium Se nanoparticles were successfully synthesized using a reverse-microemulsion process and investigated structurally using X-ray diffraction and transmission electron microscope. Interdigitated castellated ITO and non-castellated platinum electrodes were employed for manipulation of suspended materials in the fluid. Using ITO electrodes at low frequency limits resulted in deposition of Se particles on electrode surface. When Se particles exposed to platinum electrodes in the 10 Hz–1 kHz range and V {sub p−p}> 8, AC osmotic fluid flow repulses the particles from electrode edges. However, in 10 kHz–10 MHz range and V {sub p−p}> 5, dielectrophoretic force attracts the particles to electrode edges. As the Se particle concentration increased, the trapped Se particles were aligned along the electric field line and bridged the electrode gap. The device was characterized and can potentially be useful in making micro/nano electronic devices.

  11. Nanoconstriction-based electrodeless dielectrophoresis chip for nanoparticle and protein preconcentration

    NASA Astrophysics Data System (ADS)

    Chiou, Chi-Han; Chien, Liang-Ju; Kuo, Ju-Nan

    2015-08-01

    An electrodeless dielectrophoresis (EDEP) microchip is proposed for the concentration of nanoscale particles and proteins in a 150 nm nanoconstriction gap in a microchannel. Notably, the nanoconstriction is fabricated using a simple thermal-oxidation shrinkage process. It is shown that the nanoconstriction enhances the local electric field intensity by a factor of 1 × 103. The strong electric field and field gradient result in concentration enrichment by factors 1 × 104 and 1 × 103 for nanoparticles and proteins, respectively, within 30 s. Thus, the proposed EDEP chip has significant potential for achieving rapid and highly sensitive protein detection and for biomarker discovery applications.

  12. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    SciTech Connect

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-18

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (V{sub pp}) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the V{sub pp} electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  13. Novel electrodeless-dielectrophoresis device for nanoparticle trapping using three-dimensional inverted-pyramid arrays

    NASA Astrophysics Data System (ADS)

    Chiou, Chi-Han; Chien-Lung Lin, Liang-Ju, Jr.; Kuo, Ju-Nan

    2016-05-01

    A novel electrodeless-dielectrophoresis (EDEP) device incorporating three-dimensional (3D) inverted-pyramid arrays is proposed for the trapping and separation of nanoparticles. The electrokinetic phenomena in the proposed device are investigated both numerically and experimentally. The results reveal that the pyramid structures induce a 3D squeezed electric field, which allows particle trapping with a lower driving voltage than that required in traditional two-dimensional (2D) EDEP devices. Overall, the proposed EDEP device provides a mass-producible solution for nanoparticle-trapping applications and overcomes the Poisson statistical limit inherent in 2D nanogap-based EDEP devices with smaller (pL) sample volumes.

  14. Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces

    NASA Astrophysics Data System (ADS)

    Brown, C. V.; Al-Shabib, W.; Wells, G. G.; McHale, G.; Newton, M. I.

    2010-12-01

    Dielectrophoresis forces have been used to create a static periodic wrinkle with a sinusoidal morphology on the surface of a thin layer of 1-decanol oil. The surface deformation occurs when a voltage V is applied between adjacent coplanar strip electrodes in an interdigitated array onto which the oil film is coated. It has been shown experimentally that the peak-to-peak amplitude A of the wrinkle scales according to the functional form A ∝V2 exp(-αh¯/p) for a range of oil film thicknesses h¯ (between 15 and 50 μm) and wrinkle pitches p (160, 240, and 320 μm).

  15. High-purity separation of cancer cells by optically induced dielectrophoresis.

    PubMed

    Chen, Hsiu-Hsiang; Lin, Mai-Wei; Tien, Wan-Ting; Lai, Chin-Pen; Weng, Kuo-Yao; Ko, Ching-Huai; Lin, Chun-Chuan; Chen, Jyh-Chern; Tiao, Kuo-Tung; Chen, Tse-Ching; Chen, Shin-Cheh; Yeh, Ta-Sen; Cheng, Chieh-Fang

    2014-04-01

    Detecting and concentrating cancer cells in peripheral blood is of great importance for cancer diagnosis and prognosis. Optically induced dielectrophoresis (ODEP) can achieve high resolution and low optical intensities, and the electrode pattern can be dynamically changed by varied light patterns. By changing the projected light pattern, it is demonstrated to separate high-purity gastric cancer cell lines. Traditionally, the purity of cancer cell isolation by negative selection is 0.9% to 10%; by positive selection it is 50% to 62%. An ODEP technology is proposed to enhance the purity of cancer cell isolation to about 77%. PMID:24723112

  16. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-01

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (Vpp) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the Vpp electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  17. Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood

    NASA Astrophysics Data System (ADS)

    Menachery, Anoop; Kremer, Clemens; Wong, Pui E.; Carlsson, Allan; Neale, Steven L.; Barrett, Michael P.; Cooper, Jonathan M.

    2012-10-01

    Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator.

  18. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2010-10-12

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  19. Label-free detection of multidrug resistance in K562 cells through isolated 3D-electrode dielectrophoresis.

    PubMed

    Demircan, Yağmur; Koyuncuoğlu, Aziz; Erdem, Murat; Özgür, Ebru; Gündüz, Ufuk; Külah, Haluk

    2015-05-01

    Dielectrophoresis (DEP), a technique used to separate particles based on different sizes and/or dielectric properties under nonuniform electric field, is a promising method to be applied in label-free, rapid, and effective cell manipulation and separation. In this study, a microelectromechanical systems-based, isolated 3D-electrode DEP device has been designed and implemented for the label-free detection of multidrug resistance in K562 leukemia cells, based on the differences in their cytoplasmic conductivities. Cells were hydrodynamically focused to the 3D-electrode arrays, placed on the side walls of the microchannel, through V-shaped parylene-C obstacles. 3D-electrodes extruded along the z-direction provide uniformly distributed DEP force through channel depth. Cell suspension containing resistant and sensitive cancer cells with 1:100 ratio was continuously flown through the channel at a rate of 10 μL/min. Detection was realized at 48.64 MHz, the cross-over frequency of sensitive K562 cells, at which sensitive cells flow with the fluid, while the resistant ones are trapped by positive DEP force. Device can be operated at considerably low voltages (<9 Vpp ). This is achieved by means of a very thin (0.5 μm) parylene coating on electrodes, providing the advantages offered by the isolation of electrodes from the sample, while the working voltage can still be kept low. Results prove that the presented DEP device can provide an efficient platform for the detection of multidrug resistance in leukemia, in a label-free manner. PMID:25781271

  20. Multiphase optofluidics on an electro-microfluidic platform powered by electrowetting and dielectrophoresis.

    PubMed

    Fan, Shih-Kang; Wang, Fu-Min

    2014-08-01

    For diverse material phases used on an electro-microfluidic (EMF) platform, exploiting the electro-optical properties of matter in varied phases is essential to reap the benefits of the optofluidic capabilities of that platform. Materials in the four fundamental phases--solid-phase dielectric layer, liquid-phase droplet, gas-phase bubble, and plasma-phase bubble microplasma--have been investigated to offer electrically tunable optical characteristics for the manipulation of fluids on an EMF platform. Here we present an overview of the basic driving mechanisms for electrowetting and dielectrophoresis on the EMF platform. Three optofluidic examples occurring in multiple phases are described: solid optofluidics--liquid and light regulation by electrowetting on a solid polymer dispersed liquid crystal (PDLC) dielectric layer; liquid optofluidics--transmittance and reflectance modulation with formation of particle chains in a liquid droplet; and gas and plasma optofluidics--ignition and manipulation of a bubble microplasma by liquid dielectrophoresis. By combining the various materials possessing diverse electro-optical characteristics in separate phases, the EMF platform becomes an ideal platform for integrated optofluidics. PMID:24899133

  1. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.

    PubMed

    Bakewell, David J; Morgan, Hywel

    2006-06-01

    This paper reports measurements that characterize the collection of DNA onto interdigitated microelectrodes by high-frequency dielectrophoresis. Measurements of time-dependent collection of 12 kilobase pair plasmid DNA onto microelectrodes by dielectrophoresis show significant reduction in the response as the frequency increases from 100 kHz to 20 MHz. Collection time profiles are quantitatively measured using fluorescence microscopy over the range 100 kHz to 5 MHz and are represented in terms of two parameters: the initial dielectrophoretic collection rate, and the initial to steady-state collection transition. Measured values for both parameters are consistent with trends in the frequency-dependent real part of the effective polarizability measured for the same plasmid DNA using dielectric spectroscopy. The experimentally measured parameters are qualitatively compared with trends predicted by theory that takes into account dielectrophoretic particle movement and diffusion. The differences between experiment and theory are discussed with suggested improvements to theoretical models, for example, including the effects of electrohydrodynamically driven fluid motion. PMID:16805110

  2. Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes.

    PubMed

    Bakewell, David J; Morgan, Hywel

    2006-03-01

    This paper reports measurements that characterize the collection of DNA onto interdigitated microelectrodes by high-frequency dielectrophoresis. Measurements of time-dependent collection of 12 kilobase pair plasmid DNA onto microelectrodes by dielectrophoresis show significant reduction in the response as the frequency increases from 100 kHz to 20 MHz. Collection time profiles are quantitatively measured using fluorescence microscopy over the range 100 kHz to 5 MHz and are represented in terms of two parameters: the initial dielectrophoretic collection rate, and the initial to steady-state collection transition. Measured values for both parameters are consistent with trends in the frequency-dependent real part of the effective polarizability measured for the same plasmid DNA using dielectric spectroscopy. The experimentally measured parameters are qualitatively compared with trends predicted by theory that takes into account dielectrophoretic particle movement and diffusion. The differences between experiment and theory are discussed with suggested improvements to theoretical models, for example, including the effects of electrohydrodynamically driven fluid motion. PMID:16570867

  3. On-chip DNA preconcentration in different media conductivities by electrodeless dielectrophoresis.

    PubMed

    Li, Shunbo; Ye, Ziran; Hui, Yu Sanna; Gao, Yibo; Jiang, Yusheng; Wen, Weijia

    2015-09-01

    Electrodeless dielectrophoresis is the best choice to achieve preconcentration of nanoparticles and biomolecules due to its simple, robust, and easy implementation. We designed a simple chip with microchannels and nano-slits in between and then studied the trapping of DNA in high conductive medium and low conductive medium, corresponding to positive and negative dielectrophoresis (DEP), respectively. It is very important to investigate the trapping in media with different conductivities since one always has to deal with the sample solutions with different conductivities. The trapping process was analyzed by the fluorescent intensity changes. The results showed that DNA could be trapped at the nano-slit in both high and low conductive media in a lower electric field strength (10 V/cm) compared to the existing methods. This is a significant improvement to suppress the Joule heating effect in DEP related experiments. Our work may give insight to researchers for DNA trapping by a simple and low cost device in the Lab-on-a-Chip system. PMID:26487901

  4. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis

    PubMed Central

    Kim, Unyoung; Shu, Chih-Wen; Dane, Karen Y.; Daugherty, Patrick S.; Wang, Jean Y. J.; Soh, H. T.

    2007-01-01

    An effective, noninvasive means of selecting cells based on their phase within the cell cycle is an important capability for biological research. Current methods of producing synchronous cell populations, however, tend to disrupt the natural physiology of the cell or suffer from low synchronization yields. In this work, we report a microfluidic device that utilizes the dielectrophoresis phenomenon to synchronize cells by exploiting the relationship between the cell's volume and its phase in the cell cycle. The dielectrophoresis activated cell synchronizer (DACSync) device accepts an asynchronous mixture of cells at the inlet, fractionates the cell populations according to the cell-cycle phase (G1/S and G2/M), and elutes them through different outlets. The device is gentle and efficient; it utilizes electric fields that are 1–2 orders of magnitude below those used in electroporation and enriches asynchronous tumor cells in the G1 phase to 96% in one round of sorting, in a continuous flow manner at a throughput of 2 × 105 cells per hour per microchannel. This work illustrates the feasibility of using laminar flow and electrokinetic forces for the efficient, noninvasive separation of living cells. PMID:18093921

  5. Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis

    PubMed Central

    Huang, Chao; Smith, James P.; Saha, Trisha N.; Rhim, Andrew D.; Kirby, Brian J.

    2014-01-01

    Current microfluidic techniques for isolating circulating tumor cells (CTCs) from cancer patient blood are limited by low capture purity, and dielectrophoresis (DEP) has the potential to complement existing immunocapture techniques to improve capture performance. We present a hybrid DEP and immunocapture Hele-Shaw flow cell to characterize DEP's effects on immunocapture of pancreatic cancer cells (Capan-1, PANC-1, and BxPC-3) and peripheral blood mononuclear cells (PBMCs) with an anti-EpCAM (epithelial cell adhesion molecule) antibody. By carefully specifying the applied electric field frequency, we demonstrate that pancreatic cancer cells are attracted to immunocapture surfaces by positive DEP whereas PBMCs are repelled by negative DEP. Using an exponential capture model to interpret our capture data, we show that immunocapture performance is dependent on the applied DEP force sign and magnitude, cell surface EpCAM expression level, and shear stress experienced by cells flowing in the capture device. Our work suggests that DEP can not only repel contaminating blood cells but also enhance capture of cancer cell populations that are less likely to be captured by traditional immunocapture methods. This combination of DEP and immunocapture techniques to potentially increase CTC capture purity can facilitate subsequent biological analyses of captured CTCs and research on cancer metastasis and drug therapies. PMID:25379092

  6. ACS Quicklook PDF products

    NASA Astrophysics Data System (ADS)

    Suchkov, Anatoly

    1999-12-01

    This report details the features of the ACS quicklook PDF products produced by the HST data pipeline. The requirements closely follow the design of paper products recommended by the Data Quality Committee, with appropriate changes required to fully support ACS.

  7. Efficient dielectrophoretic cell enrichment using a dielectrophoresis-well based system

    PubMed Central

    Abdul Razak, Mohd Azhar; Hoettges, Kai F.; Fatoyinbo, Henry O.; Labeed, Fatima H.; Hughes, Michael P.

    2013-01-01

    Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede “real world” performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In this paper, we present a scalable structure based on 3D wells with approximately unity height-to-width ratios (based on tubes with electrodes on the sides), which is capable of enriching yeast cell populations whilst ensuring that up to 94.3% of cells processed through the device can be collected in tubes beyond the output. PMID:24396544

  8. Atmospheric-pressure microplasma in dielectrophoresis-driven bubbles for optical emission spectroscopy.

    PubMed

    Fan, Shih-Kang; Shen, Yan-Ting; Tsai, Ling-Pin; Hsu, Cheng-Che; Ko, Fu-Hsiang; Cheng, Yu-Ting

    2012-10-01

    The manipulation of bubbles and the ignition of microplasma within a 200 nL bubble at atmospheric pressure and in an inert silicone oil environment were achieved. Driven by dielectrophoresis (DEP), bubble generation, transportation, mixing, splitting, and expelling were demonstrated. This process facilitated the preparation of various bubbles with tuneable gas compositions. Different gas bubbles, including air, argon (Ar), helium (He), and Ar/He mixtures, were manipulated and ignited to the plasma state by dielectric barrier discharge (DBD) within a 50 μm-high gap between parallel plates. Moving and splitting the atmospheric-pressure microplasma in different gas bubbles were achieved by DEP. The excited light of the microplasma was recorded by an optical spectrometer for the optical emission spectroscopy (OES) analyses. The characteristic peaks of air, Ar, and He were observed in the DEP-driven microplasma. With the capability to manipulate bubbles and microplasma, this platform could be used for gas analyses in the future. PMID:22878730

  9. Separating Beads and Cells in Multi-channel Microfluidic Devices Using Dielectrophoresis and Laminar Flow

    PubMed Central

    Millet, Larry J.; Park, Kidong; Watkins, Nicholas N.; Hsia, K. Jimmy; Bashir, Rashid

    2011-01-01

    Microfluidic devices have advanced cell studies by providing a dynamic fluidic environment on the scale of the cell for studying, manipulating, sorting and counting cells. However, manipulating the cell within the fluidic domain remains a challenge and requires complicated fabrication protocols for forming valves and electrodes, or demands specialty equipment like optical tweezers. Here, we demonstrate that conventional printed circuit boards (PCB) can be used for the non-contact manipulation of cells by employing dielectrophoresis (DEP) for bead and cell manipulation in laminar flow fields for bioactuation, and for cell and bead separation in multichannel microfluidic devices. First, we present the protocol for assembling the DEP electrodes and microfluidic devices, and preparing the cells for DEP. Then, we characterize the DEP operation with polystyrene beads. Lastly, we show representative results of bead and cell separation in a multichannel microfluidic device. In summary, DEP is an effective method for manipulating particles (beads or cells) within microfluidic devices. PMID:21339720

  10. Microfabrication of multi-layered electrodes for dielectrophoresis-based field flow fractionation

    NASA Astrophysics Data System (ADS)

    Mathew, Bobby; Alazzam, Anas; Khashan, Saud A.

    2015-06-01

    This article details the process layout required for realizing a three-dimensional arrangement of electrodes in a microfluidic device for field flow fractionation based on dielectrophoresis. The metal electrodes are placed horizontally, in a stair-case arrangement, and pass through the bulk of the fluid. Several standard microfabrication processes are employed, in realizing this microdevice, including multi-layer photolithography, casting and plasma bonding. Thus the process layout is repeatable and reproducible. The feasibility of this process layout is demonstrated using three electrodes arranged in aforementioned manner; nevertheless, this process can be extended to as many electrodes as desired in the horizontal direction. This process layout can will make applications possible that were not possible till date due to the inability in microfabricating three-dimensional horizontal metal electrodes that run through the entire width of the microchannel.

  11. On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Zhang, Jun; Li, Ming; Alici, Gursel; Du, Haiping; Sluyter, Ronald; Li, Weihua

    2014-05-01

    This paper proposes a novel concept of dielectrophoresis (DEP)-active hydrophoretic focusing of micro-particles and murine erythroleukemia (MEL) cells. The DEP-active hydrophoretic platform consists of crescent shaped grooves and interdigitated electrodes that generate lateral pressure gradients. These embedded electrodes exert a negative DEP force onto the particles by pushing them into a narrow space in the channel where the particle to groove interaction is intensive and hydrophoretic ordering occurs. Particles passing through the microfluidic device are directed towards the sidewalls of the channel. The critical limitation of DEP operating at a low flow rate and the specific hydrophoretic device for focusing particles of given sizes were overcome with the proposed microfluidic device. The focusing pattern can be modulated by varying the voltage. High throughput was achieved (maximum flow rate ~150 μL min-1) with good focusing performance. The non-spherical MEL cells were utilised to verify the effectiveness of the DEP-active hydrophoretic device.

  12. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis.

    PubMed

    Ding, Jie; Lawrence, Robert M; Jones, Paul V; Hogue, Brenda G; Hayes, Mark A

    2016-03-01

    Biotechnology, separation science, and clinical research are impacted by microfluidic devices. Separation and manipulation of bioparticles such as DNA, protein and viruses are performed on these platforms. Microfluidic systems provide many attractive features, including small sample size, rapid detection, high sensitivity and short processing time. Dielectrophoresis (DEP) and electrophoresis are especially well suited to microscale bioparticle control and have been demonstrated in many formats. In this work, an optimized gradient insulator-based DEP device was utilized for concentration of Sindbis virus, an animal virus with a diameter of 68 nm. Within only a few seconds, the concentration of Sindbis virus can be increased by two to six times in the channel under easily accessible voltages as low as about 70 V. Compared with traditional diagnostic methods used in virology, DEP-based microfluidics can enable faster isolation, detection and concentration of viruses in a single step within a short time. PMID:26878279

  13. Interplay of induced charge electroosmosis, electrothermal flow, and dielectrophoresis at insulating constrictions

    NASA Astrophysics Data System (ADS)

    Dingari, Naga Neehar; Wang, Qianru; Buie, Cullen

    2014-11-01

    We present a theoretical and experimental study on the combined influence of induced charge electroosmotic flow (ICEO) and electrothermal flow on particle motion in an insulator based dielectrophoretic (iDEP) device. Strong electric fields used for particle trapping induce charges on the channel wall of low, but finite permittivity, and also induce strong temperature gradients because of Joule heating. Consequently, the background fluid flow near the constriction is a superposition of these two effects. Our analysis presents a hitherto unexplored interplay between these two effects and how they influence particles which also experience dielectrophoresis. From our analysis, we find that for channels of low surface permittivity and conductivity, electrothermal effects are stronger near the constriction compared to ICEO effects, while the opposite is true when the surface permittivity or conductivity (or both) are comparable to that of bulk fluid. The analysis also includes the pH and electrolyte concentration dependent contributions of the dynamic Stern layer on ICEO flow.

  14. Efficient dielectrophoretic cell enrichment using a dielectrophoresis-well based system.

    PubMed

    Abdul Razak, Mohd Azhar; Hoettges, Kai F; Fatoyinbo, Henry O; Labeed, Fatima H; Hughes, Michael P

    2013-01-01

    Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede "real world" performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In this paper, we present a scalable structure based on 3D wells with approximately unity height-to-width ratios (based on tubes with electrodes on the sides), which is capable of enriching yeast cell populations whilst ensuring that up to 94.3% of cells processed through the device can be collected in tubes beyond the output. PMID:24396544

  15. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    PubMed

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-01

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h. PMID:25963028

  16. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    NASA Astrophysics Data System (ADS)

    Wang, Tun; Liu, Bin; Jiang, Shusen; Rong, Hao; Lu, Miao

    2014-05-01

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration.

  17. Orientation and Pearl-Chain Formation of Paramecia Induced by AC Electric Field

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Toyomasa; Tanji, Ayafumi; Yagi, Hiroshi

    1987-11-01

    Paramecium deciliated with ethanol is able to orient itself in a parallel (positive orientation) or perpendicular direction (negative orientation) to an AC electric field, depending upon the applied frequency. We found that this turnover frequency is between 1 and 10 MHz in a non-electrolyte solution for the cells. The cells also aggregate with one another by the mutual dielectrophoresis in the electric field, provided the distance between the two cells is shorter than about half their length. The two critical field intensities for the orientation and for the aggregation cannot be clearly distinguished. Consequently, when the cell density in the solution is sufficiently high, a positive or negative pearl-chain of the cells is formed, depending upon the applied frequency.

  18. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2015-02-01

    In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. PMID:24981085

  19. Virus enrichment for single virus infection by using 3D insulator based dielectrophoresis.

    PubMed

    Masuda, Taisuke; Maruyama, Hisataka; Honda, Ayae; Arai, Fumihito

    2014-01-01

    We developed an active virus filter (AVF) that enables virus enrichment for single virus infection, by using insulator-based dielectrophoresis (iDEP). A 3D-constricted flow channel design enabled the production of an iDEP force in the microfluidic chip. iDEP using a chip with multiple active virus filters (AVFs) was more accurate and faster than using a chip with a single AVF, and improved the efficiency of virus trapping. We utilized maskless photolithography to achieve the precise 3D gray-scale exposure required for fabrication of constricted flow channel. Influenza virus (A PR/8) was enriched by a negative DEP force when sinusoidal wave was applied to the electrodes within an amplitude range of 20 Vp-p and a frequency of 10 MHz. AVF-mediated virus enrichment can be repeated simply by turning the current ON or OFF. Furthermore, the negative AVF can inhibit virus adhesion onto the glass substrate. We then trapped and transported one of the enriched viruses by using optical tweezers. This microfluidic chip facilitated the effective transport of a single virus from AVFs towards the cell-containing chamber without crossing an electrode. We successfully transported the virus to the cell chamber (v = 10 µm/s) and brought it infected with a selected single H292 cell. PMID:24918921

  20. 3D experimental investigation of the interplay between dielectrophoresis and induced-charge electroosmosis

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Zehavi, Matan; Yossifon, Gilad

    2014-11-01

    It is well-known that the advent non-linear electrokinetic flows, such as induced-charge electroosmosis, are strongly dependent on the frequency of the applied field. However, to date, there exists no unifying theory which can exactly predict both the strength and frequency dispersion of such electrokinetic flows. Using microPIV and temperature sensitive dyes we demonstrate the presence of a number of competing non-linear effects including dielectrophoresis, electrothermal flow and wall effects which compete with induced-charge electrokinetic flow, potentially causing a distortion of both the strength and frequency dispersion predicted for pure induced-charge effects. In terms of the wall effects, we investigate the differences between channels in which the walls are conducting (the field is perpendicular to the wall) and insulating (the field is parallel to the wall). This work is of both fundamental and practical importance and may be used to further refine non-linear electrokinetic theory and optimize the flow parameters of electroosmotic pumps and the mobility of electrokinetically driven micromotors or carriers in lab-on-a-chip analysis systems.

  1. An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation

    NASA Astrophysics Data System (ADS)

    Yan, Sheng; Zhang, Jun; Pan, Chao; Yuan, Dan; Alici, Gursel; Du, Haiping; Zhu, Yonggang; Li, Weihua

    2015-08-01

    Microfluidic manipulation of biological objects from mixture has a significant application in sample preparation and clinical diagnosis. This work presents a dielectrophoresis-active hydrophoretic device for continuous label-free particle separation and filtration. This device comprises interdigitated electrodes and a hydrophoretic channel. According to the difference of lateral positions of polystyrene particles, the device can run at separation or filtration modes by altering the power supply voltages. With an applied voltage of 24 Vp-p, both 3 and 10 μm beads had close lateral positions and were redirected to the same outlet. Under a voltage of 36 Vp-p, beads with the diameters of 3 and 10 μm had different lateral positions and were collected from the different outlets. Separation of 5 and 10 μm particles was achieved to demonstrate the relatively small size difference of the beads. This device has great potential in a range of lab-on-a-chip applications.

  2. Numerical Simulation of Optically-Induced Dielectrophoresis Using a Voltage-Transformation-Ratio Model

    PubMed Central

    Hung, Shih-Hsun; Huang, Sheng-Chieh; Lee, Gwo-Bin

    2013-01-01

    Optically-induced dielectrophoresis (ODEP) has been extensively used for the manipulation and separation of cells, beads and micro-droplets in microfluidic devices. With this approach, non-uniform electric fields induced by light projected on a photoconductive layer can be used to generate attractive or repulsive forces on dielectric materials. Then, moving these light patterns can be used for the manipulation of particles in the microfluidic devices. This study reports on the results from numerical simulation of the ODEP platform using a new model based on a voltage transformation ratio, which takes the effective electrical voltage into consideration. Results showed that the numerical simulation was in reasonably agreement with experimental data for the manipulation of polystyrene beads and emulsion droplets, with a coefficient of variation less than 6.2% (n = 3). The proposed model can be applied to simulations of the ODEP force and may provide a reliable tool for estimating induced dielectrophoretic forces and electric fields, which is crucial for microfluidic applications. PMID:23385411

  3. Apoptosis progression studied using parallel dielectrophoresis electrophysiological analysis and flow cytometry.

    PubMed

    Mulhall, H J; Cardnell, A; Hoettges, K F; Labeed, F H; Hughes, M P

    2015-11-01

    Apoptosis is characterised by many cellular events, but the standard Annexin-V assay identifies two; the transfer of the phospholipid phosphatidylserine (PS) from inner to outer leaflets of the plasma membrane, acting as an "eat me" signal to macrophages, and the permeabilisation of the plasma membrane. In this paper we compare the results from the Annexin-V assay with electrophysiology data obtained in parallel using dielectrophoresis, which highlights two changes in cell electrophysiology; a change in cytoplasmic conductivity which correlates with PS expression, and a membrane conductance spike that correlates with permeabilisation. Combining results from both methods shows a strong inverse relationship between conductivity and PS externalisation. One mechanism which may explain this correlation is related to intracellular Ca(2+), which is known to increase early in apoptosis. PS expression occurs when enzymes called scramblases swap external and internal phospholipids, and which are usually activated by Ca(2+), whilst the change in cytoplasmic conductivity may be due to K(+) efflux from intermediate conductance (IK) ion channels that are also activated by Ca(2+). PMID:26235126

  4. Arraying single microbeads in microchannels using dielectrophoresis-assisted mechanical traps

    NASA Astrophysics Data System (ADS)

    Tirapu-Azpiroz, Jaione; Temiz, Yuksel; Delamarche, Emmanuel

    2015-11-01

    Manipulating and immobilizing single microbeads in flowing fluids is relevant for biological assays and chemical tests but typically requires expensive laboratory equipment and trapping mechanisms that are not reversible. In this paper, we present a highly efficient and reversible mechanism for trapping microbeads by combining dielectrophoresis (DEP) with mechanical traps. The integration of planar electrodes and mechanical traps in a microchannel enables versatile manipulation of microbeads via DEP for their docking in recessed structures of mechanical traps. By simulating the combined effects of the hydrodynamic drag and DEP forces on microbeads, we explore a configuration of periodic traps where the beads are guided by the electrodes and immobilized in recess areas of the traps. The design of the electrode layout and operating configuration are optimized for the efficient trapping of single microbeads. We demonstrated the predicted guiding and trapping effectiveness of the design as well as the reversibility of the system on 10 μm polystyrene beads. Experimental verification used an array of 96 traps in an area of 420 × 420 μm2, reaching a trapping efficiency of 63% when 7 Vpp is applied to the electrodes under 80 nl min-1 flow rate conditions, and 98% of bead release when the voltage is turned off.

  5. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis.

    PubMed

    LaLonde, Alexandra; Romero-Creel, Maria F; Saucedo-Espinosa, Mario A; Lapizco-Encinas, Blanca H

    2015-11-01

    Isolation and enrichment of low-abundant particles are essential steps in many bio-analytical and clinical applications. In this work, the capability of an insulator-based dielectrophoresis (iDEP) device for the detection and stable capture of low abundant polystyrene particles and yeast cells was evaluated. Binary and tertiary mixtures of particles and cells were tested, where the low-abundant particles had concentration ratios on the order of 1:10 000 000 compared to the other particles present in the mixture. The results demonstrated successful and stable capture and enrichment of rare particles and cells (trapping efficiencies over 99%), where particles remained trapped in a stable manner for up to 4 min. A device with four reservoirs was employed for the separation and enrichment of rare particles, where the particles of interest were first selectively concentrated and then effectively directed to a side port for future collection and analysis. The present study demonstrates that simple iDEP devices have appropriate screening capacity and can be used for handling samples containing rare particles; achieving both enrichment and isolation of low-abundant particles and cells. PMID:26674134

  6. Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy.

    PubMed

    Chang, Lingqian; Gallego-Perez, Daniel; Zhao, Xi; Bertani, Paul; Yang, Zhaogang; Chiang, Chi-Ling; Malkoc, Veysi; Shi, Junfeng; Sen, Chandan K; Odonnell, Lynn; Yu, Jianhua; Lu, Wu; Lee, L James

    2015-08-01

    Current transfection technologies lead to significant inter-clonal variations. Previously we introduced a unique electrotransfection technology, Nanochannel-Electroporation (NEP), which can precisely and benignly transfect small cell populations (~100-200 cells) with single-cell resolution. Here we report on the development of a novel 3D NEP system for large scale transfection. A properly-engineered array of nanochannels, capable of handling/transfecting ~60 000 cells cm(-2), was fabricated using cleanroom technologies. Positive dielectrophoresis was used to selectively position cells on the nanochannels, thus allowing highly efficient transfection. Single-cell dosage control was demonstrated using both small and large molecules, and different cell types. The potential clinical relevance of this system was tested with difficult-to-transfect natural killer cell suspensions, and plasmids encoding for the chimeric antigen receptor (CAR), a model of high relevance for adoptive immunotherapy. Our results show significantly higher CAR transfection efficiencies for the DEP-NEP system (>70% vs. <30%), as well as enhanced cell viabilities. PMID:26105628

  7. Dielectrophoresis-Assisted Raman Spectroscopy of Intravesicular Analytes on Metallic Pyramids.

    PubMed

    Barik, Avijit; Cherukulappurath, Sudhir; Wittenberg, Nathan J; Johnson, Timothy W; Oh, Sang-Hyun

    2016-02-01

    Chemical analysis of membrane-bound containers such as secretory vesicles, organelles, and exosomes can provide insights into subcellular biology. These containers are loaded with a range of important biomolecules, which further underscores the need for sensitive and selective analysis methods. Here we present a metallic pyramid array for intravesicular analysis by combining site-selective dielectrophoresis (DEP) and Raman spectroscopy. Sharp pyramidal tips act as a gradient force generator to trap nanoparticles or vesicles from the solution, and the tips are illuminated by a monochromatic light source for concurrent spectroscopic detection of trapped analytes. The parameters suitable for DEP trapping were optimized by fluorescence microscopy, and the Raman spectroscopy setup was characterized by a nanoparticle based model system. Finally, vesicles loaded with 4-mercaptopyridine were concentrated at the tips and their Raman spectra were detected in real time. These pyramidal tips can perform large-area array-based trapping and spectroscopic analysis, opening up possibilities to detect molecules inside cells or cell-derived vesicles. PMID:26751756

  8. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-01

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. PMID:23933253

  9. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  10. Online optical and dielectric monitoring of anisotropic epoxy/BaTiO3 composite formation tailored by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Belijar, Guillaume; Diaham, Sombel; Valdez-Nava, Zarel; Lebey, Thierry

    2016-02-01

    Anisotropic composites can be obtained by applying an alternating (ac) electric field, forming particle chains in its direction. The control of the particle chains will directly impact the final properties of the composite. Nevertheless, up to now the monitoring of the particle chain formation has only been made by direct optical or post-curing observations. A new technique for the monitoring of the particle dielectrophoretic alignment is proposed, based on the online measurement of the dielectric permittivity. Epoxy/barium titanate (BaTiO3) composites, in the range of 0.25 vol% to 20 vol% of BaTiO3 microparticles, are cured while an ac field (600 Vrms mm-1) is applied. The ac current magnitude and the phase shift angle are measured to determine the dielectric properties of the composite. The same experiment is achieved under optical microscope observation for 0.25 vol% to correlate the changes of the composite dielectric properties to the particle chain formation. As a result, the permittivity variations can be correlated to the particle chains formation and to their growth.

  11. Cell separation technique in dilectrophoretic chip with bulk electrode

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  12. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  13. ACS Symposium Support

    SciTech Connect

    Kenneth D. Jordan

    2010-02-20

    The funds from this DOE grant were used to help cover the travel costs of five students and postdoctoral fellows who attended a symposium on 'Hydration: From Clusters to Aqueous Solutions' held at the Fall 2007 American Chemical Society Meeting in Boston, MA, August 19-23. The Symposium was sponsored by the Physical Chemistry Division, ACS. The technical program for the meeting is available at http://phys-acs.org/fall2007.html.

  14. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    NASA Astrophysics Data System (ADS)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  15. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures.

    PubMed

    Čemažar, Jaka; Douglas, Temple A; Schmelz, Eva M; Davalos, Rafael V

    2016-01-01

    We designed a new microfluidic device that uses pillars on the same order as the diameter of a cell (20 μm) to isolate and enrich rare cell samples from background. These cell-scale microstructures improve viability, trapping efficiency, and throughput while reducing pearl chaining. The area where cells trap on each pillar is small, such that only one or two cells trap while fluid flow carries away excess cells. We employed contactless dielectrophoresis in which a thin PDMS membrane separates the cell suspension from the electrodes, improving cell viability for off-chip collection and analysis. We compared viability and trapping efficiency of a highly aggressive Mouse Ovarian Surface Epithelial (MOSE) cell line in this 20 μm pillar device to measurements in an earlier device with the same layout but pillars of 100 μm diameter. We found that MOSE cells in the new device with 20 μm pillars had higher viability at 350 VRMS, 30 kHz, and 1.2 ml/h (control 77%, untrapped 71%, trapped 81%) than in the previous generation device (untrapped 47%, trapped 42%). The new device can trap up to 6 times more cells under the same conditions. Our new device can sort cells with a high flow rate of 2.2 ml/h and throughput of a few million cells per hour while maintaining a viable population of cells for off-chip analysis. By using the device to separate subpopulations of tumor cells while maintaining their viability at large sample sizes, this technology can be used in developing personalized treatments that target the most aggressive cancerous cells. PMID:26858821

  16. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  17. Multiplexed actuation using ultra dielectrophoresis for proteomics applications: a comprehensive electrical and electrothermal design methodology.

    PubMed

    Emaminejad, Sam; Dutton, Robert W; Davis, Ronald W; Javanmard, Mehdi

    2014-06-21

    In this work, we present a methodological approach to analyze an enhanced dielectrophoresis (DEP) system from both a circuit analysis and electrothermal view points. In our developed model, we have taken into account various phenomena and constraints such as voltage degradation (due to the presence of the protecting oxide layer), oxide breakdown, instrumentation limitations, and thermal effects. The results from this analysis are applicable generally to a wide variety of geometries and high voltage microsystems. Here, these design guidelines were applied to develop a robust electronic actuation system to perform a multiplexed bead-based protein assay. To carry out the multiplexed functionality, along a single microfluidic channel, an array of proteins is patterned, where each element is targeting a specific secondary protein coated on micron-sized beads in the subsequently introduced sample solution. Below each element of the array, we have a pair of addressable interdigitated electrodes. By selectively applying voltage at the terminals of each interdigitated electrode pair, the enhanced DEP, or equivalently 'ultra'-DEP (uDEP) force detaches protein-bound beads from each element of the array, one by one, without disturbing the bound beads in the neighboring regions. The detached beads can be quantified optically or electrically downstream. For proof of concept, we illustrated 16-plex actuation capability of our device to elute micron-sized beads that are bound to the surface through anti-IgG and IgG interaction which is on the same order of magnitude in strength as typical antibody-antigen interactions. In addition to its application in multiplexed protein analysis, our platform can be potentially utilized to statistically characterize the strength profile of biological bonds, since the multiplexed format allows for high throughput force spectroscopy using the array of uDEP devices, under the same buffer and assay preparation conditions. PMID:24801800

  18. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    García Núñez, C.; García Marín, A.; Nanterne, P.; Piqueras, J.; Kung, P.; Pau, J. L.

    2013-10-01

    ZnO nanowires (NWs) with different radii (rNW) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (FDEP) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I-V measurements in darkness and under illumination (200 nm < λ < 600 nm). In darkness, the NW resistance increases as rNW decreases due to the reduction of the conduction volume, until saturation is reached for rNW < 65 nm. On the other hand, the NW spectral photoresponse shows high values around 108 A W-1 (measured at 5 V and λ < 370 nm) and follows a linear trend as a function of the NW cross section. In addition, the cut-off wavelength depends on rNW, presenting a clear blue-shift for NWs with a lower radius (rNW < 50 nm). Transient photoresponse studies show that NWs with lower radii have longer rise times and shorter decay times mainly due to surface trapping effects. Regardless of NW size, passivation of the surface using a dielectric capping layer of SiO2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current.

  19. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis.

    PubMed

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Mitchell, Arnan; McIntyre, Peter; Khoshmanesh, Khashayar

    2016-03-01

    Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation. PMID:27099646

  20. Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency.

    PubMed

    Wang, Zhenyu; Hansen, Ole; Petersen, Peter K; Rogeberg, Anders; Kutter, Jörg P; Bang, Dang D; Wolff, Anders

    2006-12-01

    Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DEP. The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell is measured by integrated polymer optical elements (waveguide, lens, and fiber coupler). By comparing the cell counting rates measured by the two FCs, the collection efficiency of the DEP filter can be determined. The chips were used for quantitative determination of the effect of flow rate, applied voltage, conductivity of the sample, and frequency of the electric field on the sorting efficiency. A theoretical model for the capture efficiency was developed and a reasonable agreement with the experimental results observed. Viable and non-viable yeast cells showed different frequency dependencies and were sorted with high efficiency. At 2 MHz, more than 90% of the viable and less than 10% of the non-viable cells were captured on the DEP filter. The presented approach provides quantitative real-time data for sorting a large number of cells and will allow optimization of the conditions for, e.g., collecting cancer cells on a DEP filter while normal cells pass through the system. Furthermore, the microstructure is simple to fabricate and can easily be integrated with other microstructures for lab-on-a-chip applications. PMID:17161009

  1. Dielectrophoresis microjets: a merging of electromagnetics and microfluidics for on-chip technologies

    NASA Astrophysics Data System (ADS)

    Hill, Kyle A.; Collier, Christopher M.; Holzman, Jonathan F.

    2014-05-01

    Digital (droplet-based) microfluidic systems apply electromagnetic characteristics as the fundamental fluid actuation mechanism. These systems are often implemented in two-dimensional architectures, overcoming one-dimensional continuous flow channel practical issues. The fundamental operation for digital microfluidics requires the creation of an electric field distribution to achieve desired fluid actuation. The electric field distribution is typically non-uniform, enabling creation of net dielectrophoresis (DEP) force. The DEP force magnitude is proportional to the difference between microdroplet and surrounding medium complex dielectric constants, and the gradient of the electric field magnitude squared. Force sign/direction can be manipulated to achieve a force towards higher (positive DEP) or lower (negative DEP) electrostatic energy by tailoring the relative difference between microdroplet and surrounding medium complex dielectric constants through careful selection of the devices fabrication materials. The DEP force magnitudes and directions are applied here for well-controlled and high-speed microdroplet actuation. Control and speed characteristics arise from significant differences in the microdroplet/medium conductivity and the use of a micropin architecture with strong electric field gradients. The implementation, referred to here as a DEP microjet, establishes especially strong axial propulsion forces. Single- and double-micropin topologies achieve strong axial propulsion force, but only the double-micropin topology creates transverse converging forces for stable and controlled microdroplet actuation. Electric field distributions for each topology are investigated and linked to axial and transverse forces. Experimental results are presented for both topologies. The double-micropin topology is tested with biological fluids. Microdroplet actuation speeds up to 25 cm/s are achieved—comparable to the fastest speeds to-date.

  2. Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness.

    PubMed

    Leung, Siu Ling; Lu, Yi; Bluestein, Danny; Slepian, Marvin J

    2016-04-01

    Platelets, essential for hemostasis, are easily activated via biochemical and mechanical stimuli. Cell stiffness is a vital parameter modulating the mechano-transduction of exogenous mechanical stimuli. While methods exist to measure cell stiffness, no ready method exists for measuring platelet stiffness that is both minimally-contacting, imparting minimal exogenous force and non-activating. We developed a minimal-contact methodology capable of trapping and measuring the stiffness of individual platelets utilizing dielectrophoresis (DEP)-mediated electrodeformation. Parametric studies demonstrate a non-uniform electric field in the MHz frequency range (0.2-20 MHz) is required for generating effective DEP forces on platelets, suspended in isotonic buffer with conductivity ~100-200 μS/cm. A nano-Newton DEP force (0.125-4.5 nN) was demonstrated to be essential for platelet electrodeformation, which could be generated with an electric field with strength of 1.5-9 V/μm. Young's moduli of platelets were calculated using a Maxwell stress tensor model and stress-deformation relationship. Platelet stiffness was determined to be in the range of 3.5 ± 1.4 and 8.5 ± 1.5 kPa for resting and 0.4% paraformaldehyde-treated cells, respectively. The developed methodology fills a gap in approaches of measuring individual platelet stiffness, free of inadvertent platelet activation, which will facilitate further studies of mechanisms involved in mechanically-mediated platelet activation. PMID:26202677

  3. High-frequency ac power distribution in Space Station

    NASA Technical Reports Server (NTRS)

    Tsai, Fu-Sheng; Lee, Fred C. Y.

    1990-01-01

    A utility-type 20-kHz ac power distribution system for the Space Station, employing resonant power-conversion techniques, is presented. The system converts raw dc voltage from photovoltaic cells or three-phase LF ac voltage from a solar dynamic generator into a regulated 20-kHz ac voltage for distribution among various loads. The results of EASY5 computer simulations of the local and global performance show that the system has fast response and good transient behavior. The ac bus voltage is effectively regulated using the phase-control scheme, which is demonstrated with both line and load variations. The feasibility of paralleling the driver-module outputs is illustrated with the driver modules synchronized and sharing a common feedback loop. An HF sinusoidal ac voltage is generated in the three-phase ac input case, when the driver modules are phased 120 deg away from one another and their outputs are connected in series.

  4. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    PubMed

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. PMID:26297051

  5. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  6. Ac electrode diagnostics in ac-operated metal halide lamps

    NASA Astrophysics Data System (ADS)

    Luijks, G. M. J. F.; van Esveld, H. A.; Nijdam, S.; Weerdesteijn, P. A. M.

    2008-07-01

    A diagnostic technique is presented to determine the electrode work function in ac-operated metal halide lamps. The heart of the experimental set-up is a high-speed photodiode array detector, which is able to follow real-time variations of electrode tip temperature and near-electrode plasma emissions in ac-operated experimental YAG lamps, enabling discrimination between the anode and cathode effects. Electrode tip temperature ripples have been measured for 100 Hz square wave operation and simulated with an existing electrode model. By using the electrode work function as main fit parameter for the simulations it is found that the measured cooling effect of the electrode tip in a NaTlDy-iodide lamp is caused by a gas-phase emitter effect of Dy. It is concluded that Dy coverage of the electrode tip causes an effective work function reduction of 0.3 eV at 100 Hz square wave operation, considerably less than the 1.0 eV reduction measured earlier for dc operation.

  7. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  8. AC solar cell

    SciTech Connect

    Schutten, H.P.; Benjamin, J.A.; Lade, R.W.

    1986-03-18

    An AC solar cell is described comprising: a pair of PN junction type solar cells connected in antiparallel between a pair of main terminals; and means for electrically directing light alternatingly without mechanical movement on the PN junctions to generate an alternating potential across the main terminals.

  9. AC 67 Launch Video

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Live footage of the Unmanned Atlas Centaur (AC) 67 launch is presented on March 26, 1987 at the WESH television station in Florida. Lightning is shown after 49 seconds into the flight. The vehicle is totally destroyed due to a cloud-to-ground lightning flash.

  10. A biocompatible microchip and methodology for efficiently trapping and positioning living cells into array based on negative dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoliang; Zhu, Rong

    2015-06-01

    We present a microchip and trapping methodology based on negative dielectrophoresis (nDEP), whereby living cells were manipulated and positioned into an array with high trapping efficiency while maintaining good viability. The main factors that ensured good viability of cells were investigated including temperature of medium, extra transmembrane potential on cells, and electrolysis effect in DEP-based trapping. Optimum DEP conditions for the microchip were determined by considering both biocompatibility and trapping efficiency. Experiments demonstrated that under a voltage of 3.6-4 Vpp and at a frequency of 100 kHz, HeLa cells could be trapped and positioned into an array in less than 10 s while maintaining good viability. The normal adherence morphology and fluorescence of the cells, dyed with propidium iodide and Calcein-AM, were observed and verified the biocompatibility of the microchip and trapping methodology.

  11. Analysis of a static undulation on the surface of a thin dielectric liquid layer formed by dielectrophoresis forces

    NASA Astrophysics Data System (ADS)

    Brown, Carl V.; McHale, Glen; Mottram, Nigel J.

    2011-07-01

    A layer of insulating liquid of dielectric constant ɛOil and average thickness h- coats a flat surface at y = 0 at which a one-dimensional sinusoidal potential V(x ,0)=VOcos(πx /p) is applied. Dielectrophoresis forces create a static undulation (or "wrinkle") distortion h(x) of period p at the liquid/air interface. Analytical expressions have been derived for the electrostatic energy and the interfacial energy associated with the surface undulation when h(x)=h--(1/2)Acos(2πx /p) yielding a scaling relationship for A as a function of h-, p, VO, ɛOil and the surface tension. The analysis is valid as A/p → 0, and in this limit convergence with numerical simulation of the system is shown.

  12. AC power systems handbook

    SciTech Connect

    Whitaker, J.

    1991-01-01

    Transient disturbances are what headaches are made of. Whatever you call them-spikes, surges, are power bumps-they can take your equipment down and leave you with a complicated and expensive repair job. Protection against transient disturbances is a science that demands attention to detail. This book explains how the power distribution system works, what can go wrong with it, and how to protect a facility against abnormalities. system grounding and shielding are covered in detail. Each major method of transient protection is analyzed and its relative merits discussed. The book provides a complete look at the critical elements of the ac power system. Provides a complete look at the ac power system from generation to consumption. Discusses the mechanisms that produce transient disturbances and how to protect against them. Presents diagrams to facilitate system design. Covers new areas, such as the extent of the transient disturbance problem, transient protection options, and stand-by power systems.

  13. Dielectrophoresis device and method having non-uniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake

    2008-09-02

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  14. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal. PMID:20208642

  15. AC loss in superconducting tapes and cables

    NASA Astrophysics Data System (ADS)

    Oomen, Marijn Pieter

    estimated with theoretical models, based on the magnetisation loss in a single tape. With the presently known techniques, the AC loss can probably be decreased to a level that makes a high-temperature superconducting transformer technically and commercially attractive.

  16. The application of Halbach cylinders to brushless ac servo motors

    SciTech Connect

    Atallah, K.; Howe, D.

    1998-07-01

    Halbach cylinders are applied to brushless ac servo motors. It is shown that a sinusoidal back-emf waveform and a low cogging torque can be achieved without recourse to conventional design features such as distributed windings and/or stator/rotor skew. A technique for imparting a multipole Halbach magnetization distribution on an isotropic permanent magnet cylinder is described, and it is shown that the torque capability of a Halbach ac servo motor can be up to 33% higher than conventional brushless permanent magnet ac motors.

  17. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.

    PubMed

    Trainito, Claudia Irene; Français, Olivier; Le Pioufle, Bruno

    2015-05-01

    The electric field is commonly used in microdevices to handle, treat, or monitor living cells for various biological or biomedical applications (cells electrofusion, gene electrotransfer, drugs injection, cell sorting, …). Dielectrophoresis (DEP) forces, using stationary waves (conventional DEP) or traveling waves, are widely used for the cell handling or sorting. Electrorotation, which is induced by a rotating electrical field, is used for the determination of cell dielectric parameters. The application of pulsed electric field (PEF) results in the cell membrane permeabilization that might allow the transfer of various molecules in the cytoplasm. In this paper, we propose a method to monitor in situ the level of electropermeabilization induced by PEF application on a single cell, by combining the dielectrophoresis force and the electrorotation torque within a microfluidic device. The method was experimented on two different cell lines (human leukemic T-cell lymphoblast and murine melanoma cell): a single cell is captured by dielectrophoresis while its dielectric properties (both permittivity and conductivity of cytoplasm and membrane) are estimated thanks to a rotating electric field, which is applied simultaneously. The permeabilization effect of PEF, applied to the single cell trapped in such conditions in the biodevice, could be monitored by the estimation of its dielectric properties before and after pulse application. PMID:25641658

  18. Procedures used in the calibration of AC calibrators

    SciTech Connect

    Salazar, M.T.

    1991-02-01

    This report describes an automatic calibration system used in the calibration of all precision AC calibrators. The system includes an AC-DC Transfer Standard, a DC Voltage Standard, and a high-resolution digital multimeter, with an IBM-XT Personal Computer for data acquisition and analysis. Specialized instrumentation and measurement techniques make it possible to achieve high accuracy measurements with repeatability. 5 refs., 3 figs.

  19. Alternating parity structure in doubly odd /sup 218/Ac

    SciTech Connect

    Debray, M.E.; Davidson, M.; Kreiner, A.J.; Davidson, J.; Falcone, G.; Hojman, D.; Santos, D.

    1989-03-01

    States in doubly odd /sup 218/Ac have been studied using in-beam ..cap alpha..-, ..gamma..-, and e/sup -/-spectroscopy techniques mainly through the /sup 209/Bi(/sup 12/C,3n)= fusion-evaporation reaction. /sup 218/Ac shows a band structure, with interleaved states of alternating parities connected by enhanced B(E1) transitions, which is strikingly similar to the one in its isotone /sup 217/Ra.

  20. Cloning of the Aegiceras corniculatum class I chitinase gene (AcCHI I) and the response of AcCHI I mRNA expression to cadmium stress.

    PubMed

    Wang, Li-Ying; Wang, You-Shao; Cheng, Hao; Zhang, Jing-Ping; Yeok, Foong Swee

    2015-10-01

    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I. PMID:26044931

  1. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  2. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  3. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  4. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  5. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  6. Thermionic triode generates ac power

    NASA Technical Reports Server (NTRS)

    Kniazzeh, A. G. F.; Scharz, F. C.

    1970-01-01

    Electrostatic grid controls conduction cycle of thermionic diode to convert low dc output voltages to high ac power without undesirable power loss. An ac voltage applied to the grid of this new thermionic triode enables it to convert heat directly into high voltage electrical power.

  7. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  8. Fast electric dipole transitions in Ra-Ac nuclei

    SciTech Connect

    Ahmad, I.

    1985-01-01

    Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.

  9. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  10. Development of flow through dielectrophoresis microfluidic chips for biofuel production: Sorting and detection of microalgae with different lipid contents

    PubMed Central

    Deng, Yu-Luen; Kuo, Mei-Yi; Juang, Yi-Je

    2014-01-01

    In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow that the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae that experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30%–35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells. PMID:25553195

  11. Screening of antibiotic susceptibility to β-lactam-induced elongation of Gram-negative bacteria based on dielectrophoresis.

    PubMed

    Chung, Cheng-Che; Cheng, I-Fang; Chen, Hung-Mo; Kan, Heng-Chuan; Yang, Wen-Horng; Chang, Hsien-Chang

    2012-04-01

    We demonstrate a rapid antibiotic susceptibility test (AST) based on the changes in dielectrophoretic (DEP) behaviors related to the β-lactam-induced elongation of Gram-negative bacteria (GNB) on a quadruple electrode array (QEA). The minimum inhibitory concentration (MIC) can be determined within 2 h by observing the changes in the positive-DEP frequency (pdf) and cell length of GNB under the cefazolin (CEZ) treatment. Escherichia coli and Klebsiella pneumoniae and the CEZ are used as the sample bacteria and antibiotic respectively. The bacteria became filamentous due to the inhibition of cell wall synthesis and cell division and cell lysis occurred for the higher antibiotic dose. According to the results, the pdfs of wild type bacteria decrease to hundreds of kHz and the cell length is more than 10 μm when the bacterial growth is inhibited by the CEZ treatment. In addition, the growth of wild type bacteria and drug resistant bacteria differ significantly. There is an obvious decrease in the number of wild type bacteria but not in the number of drug resistant bacteria. Thus, the drug resistance of GNB to β-lactam antibiotics can be rapidly assessed. Furthermore, the MIC determined using dielectrophoresis-based AST (d-AST) was consistent with the results of the broth dilution method. Utilizing this approach could reduce the time needed for bacteria growth from days to hours, help physicians to administer appropriate antibiotic dosages, and reduce the possibility of the occurrence of multidrug resistant (MDR) bacteria. PMID:22404714

  12. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  13. AC and Phase Sensing of Nanowires for Biosensing.

    PubMed

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  14. Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System

    NASA Astrophysics Data System (ADS)

    Shizu, Keiichiro; Azuma, Satoshi

    Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.

  15. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  16. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range

    NASA Astrophysics Data System (ADS)

    Liu, Weiyu; Wang, Chunhui; Ding, Haitao; Shao, Jinyou; Ding, Yucheng

    2016-05-01

    In this work, we focus on frequency-dependence of pearl chain formations (PCF) of gold nanoparticles driven by AC dielectrophoresis (DEP), especially in a low field-frequency range, where induced double-layer charging effect at ideally polarizable surfaces on particle DEP behavior and surrounding liquid motion need not be negligible. As field frequency varies, grown features of DEP assembly structures ranging from low-frequency non-bridged gap to high-frequency single gold nanoparticle-made nanowires bridging the electrodes are demonstrated experimentally. Specifically, at 10 kHz, a kind of novel channel-like structure with parallel opposing banks is formed at the center of interelectrode gap. In stark contrast, at 1 MHz, thin PCF with diameter of 100 nm is created along the shortest distance of the isolation spacing. Moreover, a particular conductive path of nanoparticle chains is produced at 1 MHz in a DEP device embedded with multiple floating electrodes. A theoretical framework taking into account field-induced double-layer polarization at both the particle/electrolyte and electrode/electrolyte interface is developed to correlate these experimental observations with induced-charge electrokinetic (ICEK) phenomenon. And a RC circuit model is helpful in accounting for the formation of this particular non-bridged channel-like structure induced by a low-frequency AC voltage. As compared to thin PCF formed at high field frequency that effectively short circuits the electrode pair, though it is difficult for complete PCF bridging to occur at low frequency, the non-bridged conducting microstructure has potential to further miniaturize the size of electrode gap fabricated by standard micromachining process and may find useful application in biochemical sensing.

  17. Ac traction gets on track

    SciTech Connect

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  18. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials. PMID:23218240

  19. Continuous separation of multiple size microparticles using alternating current dielectrophoresis in microfluidic device with acupuncture needle electrodes

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Ren, Yukun; Yan, Hui; Jiang, Hongyuan

    2016-03-01

    The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(nDEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the nDEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems.

  20. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  1. Method for concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    SciTech Connect

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2012-09-04

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  2. A Survey of Techniques for Approximate Computing

    DOE PAGESBeta

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  3. The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems.

    PubMed

    Chen, Yu; Sun, Xiaofu; Yan, Chuanyu; Cao, Yuanyuan; Mu, Tiancheng

    2014-10-01

    There are mainly three findings related to the dynamic process of atmospheric water sorption in the ionic liquid (IL) 1-ethyl-3-methlyl-imidazolium acetate ([EMIM][Ac]) and its mixtures with biopolymers (i.e., cellulose, chitin, and chitosan), and CO2 capture in these systems above. The analytical methods mainly include gravimetric hygroscopicity measurement and in situ infrared spectroscopy with the techniques of difference, derivative, deconvoluted attenuated total reflectance and two-dimensional correlation. These three findings are listed as below. (1) Pure [EMIM][Ac] only shows a two-regime pattern, while all the mixtures of [EMIM][Ac] with biopolymers (i.e., cellulose, chitin, and chitosan) present a three-regime tendency for the dynamic process of atmospheric water sorption. Specifically, the IL/chitosan mixture has a clear three-regime mode; the [EMIM][Ac]/chitin mixture has an unclear indiscernible regime 3; and the [EMIM][Ac]/cellulose mixture shows an indiscernible regime 2. (2) [EMIM][Ac] and its mixtures with biopolymers could physically absorb a trace amount of and chemically react with a much larger amount of CO2 from the air. The chemisorption capacity of CO2 in these pure and mixed systems is ordered as chitosan/[EMIM][Ac] mixture > chitin/[EMIM][Ac] mixture > cellulose/[EMIM][Ac] mixture > pure [EMIM][Ac] (ca. 0.09 mass ratio % g/g CO2/IL). (3) The CO2 solubility in [EMIM][Ac] decreases about 50% after being exposed to the atmospheric moist air for some specific time period. PMID:25208304

  4. Aragonite coating solutions (ACS) based on artificial seawater

    NASA Astrophysics Data System (ADS)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  5. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.

  6. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  7. AC Loss Measurements on a 2G YBCO Coil

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Schwenterly, S W

    2011-01-01

    The Oak Ridge National Laboratory (ORNL) is collaborating with Waukesha Electric Systems (WES) to continue development of HTS power transformers. For compatibility with the existing power grid, a commercially viable HTS transformer will have to operate at high voltages in the range of 138 kV and above, and will have to withstand 550-kV impulse voltages as well. Second-generation (2G) YBCO coated conductors will be required for an economically-competitive design. In order to adequately size the refrigeration system for these transformers, the ac loss of these HTS coils must be characterized. Electrical AC loss measurements were conducted on a prototype high voltage (HV) coil with co-wound stainless steel at 60 Hz in a liquid nitrogen bath using a lock-in amplifier technique. The prototype HV coil consisted of 26 continuous (without splice) single pancake coils concentrically centered on a stainless steel former. For ac loss measurement purposes, voltage tap pairs were soldered across each set of two single pancake coils so that a total of 13 separate voltage measurements could be made across the entire length of the coil. AC loss measurements were taken as a function of ac excitation current. Results show that the loss is primarily concentrated at the ends of the coil where the operating fraction of critical current is the highest and show a distinct difference in current scaling of the losses between low current and high current regimes.

  8. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.

    PubMed

    Fan, Shih-Kang; Lee, Hsuan-Ping; Chien, Chia-Chi; Lu, Yi-Wen; Chiu, Yi; Lin, Fan-Yi

    2016-03-01

    An electrically reconfigurable liquid-core/liquid-cladding (L(2)) optical waveguide with core liquid γ-butyrolactone (GBL, ncore = 1.4341, εcore = 39) and silicone oil (ncladding = 1.401, εcladding = 2.5) as cladding liquid is accomplished using dielectrophoresis (DEP) that attracts and deforms the core liquid with the greater permittivity to occupy the region of strong electric field provided by Teflon-coated ITO electrodes between parallel glass plates. Instead of continuously flowing core and cladding liquids along a physical microchannel, the DEP-formed L(2) optical waveguide guides light in a stationary virtual microchannel that requires liquids of limited volume without constant supply and creates stable liquid/liquid interfaces for efficient light guidance in a simply fabricated microfluidic device. We designed and examined (1) stationary and (2) moving L(2) optical waveguides on the parallel-plate electromicrofluidic platform. In the stationary L-shaped waveguide, light was guided in a GBL virtual microchannel core for a total of 27.85 mm via a 90° bend (radius 5 mm) before exiting from the light outlet of cross-sectional area 100 μm × 100 μm. For the stationary spiral waveguide, light was guided in a GBL core containing Rhodamine 6G (R6G, 1 mM) and through a series of 90° bends with decreasing radii from 5 mm to 2.5 mm. With the stationary straight waveguide, the propagation loss was measured to be 2.09 dB cm(-1) in GBL with R6G (0.01 mM). The moving L-shaped waveguide was implemented on a versatile electromicrofluidic platform on which electrowetting and DEP were employed to generate a precise GBL droplet and form a waveguide core. On sequentially applying appropriate voltage to one of three parallel L-shaped driving electrodes, the GBL waveguide core was shifted; the guided light was switched at a speed of up to 0.929 mm s(-1) (switching period 70 ms, switching rate 14.3 Hz) when an adequate electric signal (173.1 VRMS, 100 kHz) was applied. PMID

  9. The ac53, ac78, ac101, and ac103 Genes Are Newly Discovered Core Genes in the Family Baculoviridae

    PubMed Central

    Garavaglia, Matías Javier; Miele, Solange Ana Belén; Iserte, Javier Alonso; Belaich, Mariano Nicolás

    2012-01-01

    The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae. PMID:22933288

  10. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  11. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  12. Energy saving in ac generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  13. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.

    PubMed

    Kinio, Steven; Mills, James K

    2016-08-01

    Dielectrophoretic (DEP) forces applied to microscopic particles are highly dependent on the gradient of the electric field experienced by the particles. These DEP forces can be used to selectively capture and remove cells from fluid flows within a micro-channel above the DEP electrodes. Modification of the geometry of the electrodes that generate the electric field is the main approach available to increase the electric field gradient over a wide area, and hence increase the applied dielectrophoretic force. Optimized DEP forces increase attraction or repulsion of target cells from the electrode surface, enhancing the efficacy of electrodes for cell sorting applications. In this paper, we present a design approach, using genetic optimization techniques, to develop novel electrode geometries that effectively capture target particles. The performance of candidate electrode designs is evaluated by calculating simplified particle trajectories. PMID:27432322

  14. Frequency dependence and assembly characteristics of silver nanomaterials trapped by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Tokita, H.; Uchida, S.; Sano, R.; Nishikawa, H.

    2015-10-01

    For rapid and accurate fabrication of industrial products, the development of effective technique to manipulate and assemble nanomaterials is essential. In the present work, we investigated the dielectrophoretic behavior of silver nanoparticles and nanowires at various driving frequencies and voltage amplitudes, and examined three-dimensional assembly of the nanomaterials using dielectrophoretic devices with microstructures. The collectable range in frequency for nanoparticles and nanowires was from 10 kHz to 1 MHz. In particular, the aggregation shape of nanowires was changed against driving frequency. The bunch of nanowires was bridged between pillars of dielectrophoretic device. When the applied voltage was turned off, the trapped nanowires were entirely released. In pit type device, trapping of nanoparticles was observed in outermost pits of array. The aggregates of nanoparticles were directly fixed to the bottom electrode.

  15. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations. PMID:22940415

  16. Voltage controller/current limiter for ac

    NASA Technical Reports Server (NTRS)

    Wu, T. T.

    1980-01-01

    Circuit protects ac power systems for overload failures, limits power surge and short-circuit currents to 150 percent of steady state level, regulates ac output voltage, and soft starts loads. Limiter generates dc error signal in response to line fluctuations and dumps power when overload is reached. Device is inserted between ac source and load.

  17. Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles

    NASA Astrophysics Data System (ADS)

    Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.

    2007-01-01

    In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.

  18. A Tapered Aluminium Microelectrode Array for Improvement of Dielectrophoresis-Based Particle Manipulation

    PubMed Central

    Buyong, Muhamad Ramdzan; Larki, Farhad; Faiz, Mohd Syafiq; Hamzah, Azrul Azlan; Yunas, Jumrail; Majlis, Burhanuddin Yeop

    2015-01-01

    In this work, the dielectrophoretic force (FDEP) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The FDEP is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (fxo). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode’s side wall. PMID:25970255

  19. A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation.

    PubMed

    Buyong, Muhamad Ramdzan; Larki, Farhad; Faiz, Mohd Syafiq; Hamzah, Azrul Azlan; Yunas, Jumrail; Majlis, Burhanuddin Yeop

    2015-01-01

    In this work, the dielectrophoretic force (F(DEP)) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The F(DEP) is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (f(xo)). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode's side wall. PMID:25970255

  20. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  1. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  2. Direct Experimental Observation of a Practical AC Zeeman Force

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Rotunno, Andrew; Du, Shuangli; Aubin, Seth

    2016-05-01

    We present measurements of the spin-dependent AC Zeeman force produced by microwave magnetic near-field gradients on an atom chip. We measure the AC Zeeman force on ultracold 87 Rb atoms by observing its effect on the motion of atoms in free-fall and on those confined in a trap. We have studied the force as a function of microwave frequency detuning from a hyperfine transition at 6.8 GHz at several magnetic field strengths and have observed its characteristic bipolar and resonant features predicted by two-level dressed atom theory. We find that the force is several times the strength of gravity in our setup, and that it can be targeted to a specific hyperfine transition while leaving other hyperfine states and transitions relatively unaffected. We find that our measurements are reasonably consistent with theory and are working towards a parameter-free comparison. AC Zeeman potentials offer the possibility of targeting qualitatively different trapping potentials to different spin states, a capability currently absent from the toolbox of atomic quantum control techniques. In particular, an AC Zeeman potential could be used as the beamsplitter for a spin-dependent atom interferometer or for engineering a quantum gate. Work supported by AFOSR and W&M, and in part by AFRL.

  3. Exchange anisotropy determined by magnetic field dependence of ac susceptibility

    NASA Astrophysics Data System (ADS)

    Rodríguez-Suárez, R. L.; Vilela Leão, L. H.; de Aguiar, F. M.; Rezende, S. M.; Azevedo, A.

    2003-10-01

    ac susceptibility measurements of ferromagnetic/antiferromagnetic (FM/AF) bilayers are usually performed as a function of the temperature. In this work we describe measurements of transverse biased ac susceptibility (χt) of FM/AF bilayers as a function of the applied magnetic field H0. The measurements were carried out at room temperature by means of an ac magneto-optical Kerr effect susceptometer. The χt-1(H0) dependence, at the saturation magnetization regime, exhibits a linear behavior with the applied field parallel and perpendicular to the exchange bias direction. The linear extrapolation of χt-1 versus H0 cuts the abscissa at asymmetrical values of field due to the exchange bias coupling. The inverse susceptibility is calculated in the saturation regime by a model, which takes into account the free energy of both layers plus a term corresponding to the interfacial coupling. The exchange coupling field (HE) and uniaxial anisotropy (HU) are extracted from the best fit to the experimental results. The results obtained are crosschecked by those obtained from ferromagnetic resonance (FMR) and dc magnetometry. The measurements of the exchange bias and the uniaxial field in all of the three analyzed bilayers gave values that are consistently lower when measured by FMR than those obtained by ac and dc magnetometry. It is argued that the apparently discrepant values of HE and HU, obtained by different techniques, might be explained by existence of unstable AF grains at the AF/FM interface.

  4. Measurement of klystron phase modulation due to ac-powered filaments

    NASA Technical Reports Server (NTRS)

    Finnegan, E. J.

    1977-01-01

    A technique for determining the intermodulation components in the RF spectrum of the S-band radar transmitter generated by having the klystron filaments heated by 400-Hz ac power is described. When the klystron is being operated with 400-Hz (ac) on the filament, the IPM is buried in the 400-Hz equipment interference noise. The modulation sidebands were separated and identified and found to be-67 db below the main carrier. This is well below the transmitter specifications, and operating the filaments on ac would not degrade the spectrum to where it would be detrimental to the radiated RF.

  5. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

  6. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  7. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  8. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects. PMID:16351310

  9. Single event AC - DC electrospraying

    NASA Astrophysics Data System (ADS)

    Stachewicz, U.; Dijksman, J. F.; Marijnissen, J. C. M.

    2008-12-01

    Electrospraying is an innovative method to deposit very small amounts of, for example, biofluids (far less than 1 p1) that include DNA or protein molecules. An electric potential is applied between a nozzle filled with liquid and a counter electrode placed at 1-2 millimeter distance from the nozzle. In our set-up we use an AC field superposed on a DC field to control the droplet generation process. Our approach is to create single events of electrospraying triggered by one single AC pulse. During this pulse, the equilibrium meniscus (determined by surface tension, static pressure and the DC field) of the liquid changes rapidly into a cone and subsequently into a jet formed at the cone apex. Next, the jet breaks-up into fine droplets and the spraying stops. The meniscus returns to its equilibrium shape again. So far we obtained a stable and reproducible single event process for ethanol and ethylene glycol with water using glass pipettes. The results will be used to generate droplets on demand in a controlled way and deposit them on a pre-defined place on the substrate.

  10. Measurements of AC Losses and Current Distribution in Superconducting Cables

    SciTech Connect

    Nguyen, Doan A; Ashworth, Stephen P; Duckworth, Robert C; Carter, Bill; Fleshler, Steven

    2011-01-01

    This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

  11. Surgical technique affects outcomes in acromioclavicular reconstruction.

    PubMed

    Grassbaugh, Jason A; Cole, Chad; Wohlrab, Kurt; Eichinger, Josef

    2013-01-01

    Optimal treatment for acromioclavicular (AC) dislocation is unknown. Numerous surgical procedures for AC injuries have been described with little comparison. This study sought to compare the clinical and radiographic results of various surgical techniques in order to identify the optimal surgical technique. Ninety patients met inclusion criteria of AC reconstruction at this institution. A retrospective review of outcomes was performed using the electronic records system. Radiographs were measured for pre- and postoperative grade and percent elevation versus the contralateral side. Overall revision rate was 9%. Suture button fixation had a revision rate of 0% compared to 14% (p = .01). Reconstruction procedures performed with distal clavicle excision showed a higher revision rate, 17% compared to 0% (p = .003). There were no statistically significant clinical differences. AC reconstructions performed with suture button construct were superior to other surgical techniques. Procedures performed with distal clavicle excision were inferior to those without. PMID:23449059

  12. Fiber Materials AC Impedance Characteristics and Principium Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Li, Xiaofeng

    With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.

  13. Low-frequency ac electro-flow-focusing microfluidic emulsification

    NASA Astrophysics Data System (ADS)

    He, Peng; Kim, Haejune; Luo, Dawei; Marquez, Manuel; Cheng, Zhengdong

    2010-04-01

    Applications of electric field, using either dc or high-frequency ac field, have shown many advantages in emulsification. We further develop this technique by a detailed study on low-frequency ac electro-flow-focusing (EFF) microfluidic emulsification. Counter-intuitively, the droplet size variation is not monotonic with the electric field, in contrary to the dc-EFF emulsification. This phenomenon originates from a relaxation oscillation of flow rate through the Taylor cone. Particularly, a continuous droplet size decrease was obtained at the voltage ramp-up stage. This emulsification process was modeled in analog to the accumulation and release of charges in an RC electric circuit with an adjustable resistor.

  14. Characterization of flow-through electrode processes by AC impedance

    SciTech Connect

    Yuh, C.Y. ); Selman, J.R. )

    1993-04-01

    Flow-through porous electrodes, such as packed-bed and fluidized-bed electrodes, are attractive for electrowinning, electro-organic synthesis and flow-battery applications. The extensive surface area of the porous electrodes makes high volumetric reaction rate more possible than in a cell with smooth electrodes. Forced convection also enhances mass-transfer rate and hence reduces concentration polarization. AC-impedance method has been used successfully in characterizing a packed-bed flow-through electrode system. A macrohomogeneous model was developed to simulate the effect of structural, physical and flow parameters. The relative importance of kinetics and mass transfer can be inferred from the AC-impedance analysis. Kinetic information about copper deposition in supported cupric sulfate solution has been obtained successfully using this technique.

  15. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  16. AC Loss Reduction in Filamentized YBCO Coated Conductors with Virtual Transverse Cross-cuts

    SciTech Connect

    Zhang, Yifei; Duckworth, Robert C; Ha, Tam T; List III, Frederick Alyious; Gouge, Michael J; Chen, Y; X, Xiong,; Selvamanickam, V.

    2011-01-01

    While the performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO)-based coated conductors under dc currents has improved significantly in recent years, filamentization is being investigated as a technique to reduce ac loss so that the 2nd generation (2G) high temperature superconducting (HTS) wires can also be utilized in various ac power applications such as cables, transformers and fault current limiters. Experimental studies have shown that simply filamentizing the superconducting layer is not effective enough to reduce ac loss because of incomplete flux penetration in between the filaments as the length of the tape increases. To introduce flux penetration in between the filaments more uniformly and further reduce the ac loss, virtual transverse cross-cuts were made in superconducting filaments of the coated conductors fabricated using the metal organic chemical vapor deposition (MOCVD) method. The virtual transverse cross-cuts were formed by making cross-cuts (17 - 120 {micro}m wide) on the IBAD (ion beam assisted deposition)-MgO templates using laser scribing followed by depositing the superconducting layer ({approx} 0.6 {micro}m thick). AC losses were measured and compared for filamentized conductors with and without the cross-cuts under applied peak ac fields up to 100 mT. The results were analyzed to evaluate the efficacy of filament decoupling and the feasibility of using this method to achieve ac loss reduction.

  17. The multiphoton AC Stark effect

    NASA Astrophysics Data System (ADS)

    Rudolph, T. G.; Ficek, Z.; Freedhoff, H. S.

    1998-02-01

    We study the interaction of a two-level atom with two intense lasers: a strong laser of Rabi frequency 2Ω on resonance with the atomic transition, and a weaker laser detuned by 2Ω/n, i.e. by a subharmonic of the Rabi frequency of the first. The second laser "dresses" the dressed states created by the first in an n-photon process. We calculate the energy levels and eigenstates of this "doubly-dressed" atom, and find a new phenomenon: the splitting of the energy levels due to an n-photon coupling between them, resulting in a multiphoton AC Stark effect. We illustrate this effect in the fluorescence spectrum, and show that the spectrum contains triplets at the subharmonic as well as harmonic resonance frequencies with a clear dependence on the order n of the resonance and the ratio α of the Rabi frequencies of the lasers

  18. Protection of superconducting AC windings

    SciTech Connect

    Verhaege, T.; Agnoux, C.; Tavergnier, J.P. ); Lacaze, A. ); Collet, M. )

    1992-01-01

    Recent progresses on multifilamentary wires open new prospects of 50-60 Hz applications for superconductivity. The problem of AC windings protection is more critical than that of DC windings, because of high current densities, and of high matrix resistivity: one should not allow the quenched wire to carry it nominal current for longer than a few milliseconds, otherwise permanent damage could occur. After a quench initiation, the protection system therefore has to switch off or drastically reduce the current very rapidly. In this paper, the authors propose various schemes, applicable when the conductor is made of several wires: active protection involves an ultra-rapid quench detection. It is based on the measurement of the current passing through the central resistive wire, and/or of unbalanced currents in the different superconducting wires. About 20 milliseconds after detection, a fast circuit-breaker switched off the current. A complementary passive protection is provided by the resistance developing during normal phase propagation.

  19. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines. PMID:20687748

  20. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  1. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  2. Measurements and calculations of transport AC loss in second generation high temperature superconducting pancake coils

    NASA Astrophysics Data System (ADS)

    Yuan, Weijia; Coombs, T. A.; Kim, Jae-Ho; Han Kim, Chul; Kvitkovic, Jozef; Pamidi, Sastry

    2011-12-01

    Theoretical and experimental AC loss data on a superconducting pancake coil wound using second generation (2 G) conductors are presented. An anisotropic critical state model is used to calculate critical current and the AC losses of a superconducting pancake coil. In the coil there are two regions, the critical state region and the subcritical region. The model assumes that in the subcritical region the flux lines are parallel to the tape wide face. AC losses of the superconducting pancake coil are calculated using this model. Both calorimetric and electrical techniques were used to measure AC losses in the coil. The calorimetric method is based on measuring the boil-off rate of liquid nitrogen. The electric method used a compensation circuit to eliminate the inductive component to measure the loss voltage of the coil. The experimental results are consistent with the theoretical calculations thus validating the anisotropic critical state model for loss estimations in the superconducting pancake coil.

  3. Development of a bio-microelectromechanical system device for axonal extension evaluation by PC12D patterning using a dielectrophoresis method

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Murakami, Shinya; Koga, Hirotaka; Morita, Yusuke

    2015-04-01

    We developed a bio-microelectromechanical system (bio-MEMS) device by combining the dielectrophoresis (DEP) method and MEMS technology that to trap a single PC12D (rat phenocromocytoma cell) for cell pattern formation to measure the axonal extension function. Our device could trap PC12Ds to assign bicells, with designed distances between two cells of 100, 200, and 300 μm. PC12Ds were injected into our bio-MEMS device using a micropipette. We observed the axonal extension using a time-lapse microscope to study the effect of the bicell distance on the axonal extension and connection ability. An alternative electric field (frequency: 10 MHz, voltage: 5 V) was applied for the PC12D DEP patterning. To keep the patterned PC12Ds on the electrode holes, water was injected using a microsyringe to sweep out excess cells, which remained outside the holes. An average single PC12D pattern ratio of 89.3% was achieved. The axonal extension ability was affected by the cell distance. PC12D bicell distances of 100 and 200 μm showed good connection ratios of 86.7% and 91.7%, respectively, where as a bicell distance of 300 μm showed a low-connection ratio of about 40.0%. We confirmed the applicability of our bio-MEMS device to bicell patterning and evaluated the cell extension function.

  4. A novel micro/nano fabrication process based on the combined use of dielectrophoresis, electroosmotic flow, and electrodeposition for surface patterning

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, Victor H.; Ho, Vinh; Vazquez-Pinon, Matias; Martinez-Chapa, Sergio O.; Kulinsky, Lawrence

    2015-11-01

    In this work, a novel application of electrokinetic forces is presented. Employing a gold interdigitated electrode array (IDEA), dielectrophoresis (a force acting on polarizable material) and electroosmosis (a force acting on ionic fluids) were utilized as microfabrication tools. Through electroosmotic flow, particles were dragged toward dielectrophoretic trapping zones, where they were held. Then polypyrrole, an electroconductive material with good mechanical and electrical properties, wide electrochemical window, and ease of fabrication, was electrodeposited onto the gold IDEA surface, permanently entrapping the microparticles within the structure. The process was tested employing organic (polystyrene), inorganic (silicon), and biologic (yeast cells) microparticles, all of which were successfully trapped. Computational models were developed to predict the electrokinetic response of the microparticles and compared to experimental observations. It was demonstrated that this process can be used to produce hierarchical structures through sequential repetition of entrapment cycles. Additionally, it is compatible with the Carbon-MEMS process. The fabrication process presented in this paper opens a wide range of applications that include: energy storage devices, scaffolds for cell culture, biomedical devices, electrochemical sensors, electrokinetic devices, among many others.

  5. Aqueous stress-corrosion cracking of high-toughness D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1976-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history, and test technique, under sustained load in filtered natural seawater, 3.3 per cent sodium chloride solution, and distilled water, was investigated. Reported investigations of D6AC were considered in terms of the present study with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, and threshold. Both threshold and growth kinetics were found to be relatively insensitive to these test parameters. The apparent incubation period was dependent on technique, both detection sensitivity and precracking stress intensity level.

  6. AC Electric Field Communication for Human-Area Networking

    NASA Astrophysics Data System (ADS)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  7. The ST-ECF ACS Grism Hubble Legacy Archive Project

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Kuntschner, H.; Walsh, J. R.; Lombardi, M.; Stoehr, F.; Haase, J.; Hook, R. N.; Rosati, P.; Micol, A.; Fosbury, R.; Freudling, W.

    2009-09-01

    In 2006 the Space Telescope - European Coordinating Facility (ST-ECF), together with its partners at the STScI and the CADC, started a project to build a Hubble Legacy Archive (HLA): a collection of high-level Hubble data products and access tools to ease scientific analysis in the age of the Virtual Observatory. The ST-ECF has focused on providing extracted spectra from slitless spectroscopy HST images. The slitless NICMOS G141 data were presented at previous ADASS meetings and have already been released. In this contribution we present an overview of the ongoing project of processing the ACS/WFC G800L data which cover a larger area and contain more spectra. There are around 150 ACS/WFC G800L datasets covering an area of ˜ 600 arcmin^2, and we expect to extract and publish about 20,000 fully-calibrated spectra. We discuss the techniques and methods that were developed to automatically extract the spectra from the observations and present a selection of ACS/WFC G800L spectra as examples.

  8. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  9. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  10. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  11. AC Servo Motor Based Position Sensorless Control System Making Use of Springs

    NASA Astrophysics Data System (ADS)

    Shimada, Akira; Kishiwada, Yu; Arimura, Michiyo

    This paper describes a position sensorless control technique on AC servo motor based position control systems. Shimada et al. had previously presented a paper on a DC servo motor based position sensorless control technique using mechanical springs. It was based on a point of view that mechanical springs form the key components for the observability. On the basis of the result obtained from the successful experiment, we assumed that the AC servo motor position sensorless control system would be identical. Using vector control, the controller needs the data of the magnetic pole position on the rotor of the AC servo motor. It is not perfect sensorless control, since it use a rotary encoder. However, we introduce it and demonstrate the expreimental results as an initial step in the new control technology.

  12. Tevatron optics measurements using an AC dipole

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is a device to study beam optics of hadron synchrotrons. It can produce sustained large amplitude oscillations with virtually no emittance growth. A vertical AC dipole for the Tevatron is recently implemented and a maximum oscillation amplitude of 2{sigma} (4{sigma}) at 980 GeV (150 GeV) is achieved [1]. When such large oscillations are measured with the BPM system of the Tevatron (20 {micro}m resolution), not only linear but even nonlinear optics can be directly measured. This paper shows how to measure {beta} function using an AC dipole and the result is compared to the other measurement. The paper also shows a test to detect optics changes when small changes are made in the Tevatron. Since an AC dipole is nondestructive, it allows frequent measurements of the optics which is necessary for such an test.

  13. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  14. New ACS Guidelines Approved by CPT

    NASA Astrophysics Data System (ADS)

    Polik, William F.; Larive, Cynthia K.

    2008-04-01

    The American Chemical Society (ACS) Guidelines for Bachelor's Degree Programs have been revised in 2008 by the Committee on Professional Training (CPT) to reflect changes that are occurring in the chemistry profession and chemistry education. The goals of these changes are to promote modern and innovative chemistry curricula, encourage pedagogical innovation that enhances student learning and success, define faculty and infrastructure attributes of excellent chemistry programs, and streamline the procedures for program approval and review by ACS. The curriculum guidelines for an ACS-certified bachelor's degree are described in terms of foundation coursework, in-depth coursework, and laboratory requirements. Chemistry departments are encouraged to develop degree tracks to target emerging areas of interest within chemistry. The importance of developing student skills and regular program self-evaluation is emphasized. Finally, the procedures for approving and reviewing chemistry programs by ACS are summarized.

  15. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  16. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  17. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  18. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  19. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  20. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  1. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  2. Calibration of low-temperature ac susceptometers with a copper cylinder standard

    SciTech Connect

    Chen, D.-X.; Skumryev, V.

    2010-02-15

    A high-quality low-temperature ac susceptometer is calibrated by comparing the measured ac susceptibility of a copper cylinder with its eddy-current ac susceptibility accurately calculated. Different from conventional calibration techniques that compare the measured results with the known property of a standard sample at certain fixed temperature T, field amplitude H{sub m}, and frequency f, to get a magnitude correction factor, here, the electromagnetic properties of the copper cylinder are unknown and are determined during the calibration of the ac susceptometer in the entire T, H{sub m}, and f range. It is shown that the maximum magnitude error and the maximum phase error of the susceptometer are less than 0.7% and 0.3 deg., respectively, in the region T=5-300 K and f=111-1111 Hz at H{sub m}=800 A/m, after a magnitude correction by a constant factor as done in a conventional calibration. However, the magnitude and phase errors can reach 2% and 4.3 deg. at 10 000 and 11 Hz, respectively. Since the errors are reproducible, a large portion of them may be further corrected after a calibration, the procedure for which is given. Conceptual discussions concerning the error sources, comparison with other calibration methods, and applications of ac susceptibility techniques are presented.

  3. Experimental AC (Asphalt Concrete) overlays of PCC pavement

    NASA Astrophysics Data System (ADS)

    Smith, R. D.

    1983-11-01

    A series of experimental asphalt concrete (AC) overlays was constructed over an existing distressed portland cement concrete pavement on Interstate 80 near Boca, California. The experimental overlays included rubberized dense-graded AC, rubberized open-graded AC, a rubber flush coat interlayer, dense-graded AC with short polyester fibers and Bituthene interlayer strips. The report presents a description and discussion of AC mix batching, construction observations, laboratory testing, overlay covering, and initial performance evaluation.

  4. Excitation and photo-ionization of ultra-cold potassium atoms in the AC-driven magneto optical trap (AC-MOT)

    NASA Astrophysics Data System (ADS)

    Agomuo, John; Murray, Andrew; Harvey, Matthew

    2014-03-01

    The operation of a new cold atom trap (the AC-MOT) and its application in photoionization experiments is described. Ionization of cold K atoms in the AC-MOT is discussed, the ionization proceeding in a stepwise fashion using a combination of infra-red radiation with that from a blue diode laser. A significant limitation of magneto optical trapping (MOT) techniques has been the requirement to eliminate the magnetic fields prior to the interaction occurring. To address this, the AC-MOT was invented in Manchester. This is a pulsed trap, so that the magnetic fields are completely eliminated prior to the electron interaction. Low energy electrons can then be extracted from laser photoionization. In this work, the potassium is cooled to ~0.25mK. Photoionization proceeds by a stepwise route, atoms excited by the trapping laser at ~766nm being ionized by radiation at ~448nm. Both fluorescence from the atoms and the ion yield are used to determine details of the interaction. These techniques are being studied since it then is possible to create cold electron bunches of high coherence. A detailed description of the AC-MOT, its operation and application will be presented. A new cold electron source being built in Manchester will also be discussed. I wish to acknowledge the financial support from Tertiary Education Trust Fund Nigeria and Nigerian Defence Academy Kaduna.

  5. AC biosusceptometry in the study of drug delivery.

    PubMed

    Corá, L A; Romeiro, F G; Stelzer, M; Américo, M F; Oliveira, R B; Baffa, O; Miranda, J R A

    2005-06-15

    Conventionally, pharmaceutical substances are administered orally because the gastrointestinal tract possesses the appropriate features for drug absorption. Nevertheless, the gastrointestinal tract physiology is complex and influenced by many factors. These factors must be completely understood for the optimization of oral drug delivery systems. Although in vitro tests provide information about release and drug absorption profiles, in vivo studies are essential, due to the biological variability. Several techniques have been employed in an attempt to conveniently characterize the behavior of solid dosage forms in vivo. The noninvasive biomagnetic technique of alternate current biosusceptometry (ACB) has been used in studies focusing on gastrointestinal motility and, more recently, to evaluate the performance of magnetic dosage forms. This article will discuss the main characteristics of AC biosusceptometry and its applicability for determination of the relationship between the human gastrointestinal tract and orally administered pharmaceutical dosage forms. PMID:15935871

  6. Using ac dipoles to localize sources of beam coupling impedance

    NASA Astrophysics Data System (ADS)

    Biancacci, N.; Tomás, R.

    2016-05-01

    The beam coupling impedance is one of the main sources of beam instabilities and emittance blow up in circular accelerators. A refined machine impedance evaluation is therefore required in order to understand and model intensity dependent effects and instabilities that may limit the machine performance. For this reason, many impedance source localization techniques have been developed. In this work we present the impedance localization technique based on the observation of phase advance versus intensity at the beam position monitors using ac dipoles to force betatron oscillations. We present analytical formulas for the interpretation of measurements together with simulations to benchmark and illustrate the equations. Studies on the method accuracy for different Fourier transform algorithms are presented as well as first exploratory measurements performed in the LHC.

  7. Cyclotron and linac production of Ac-225.

    PubMed

    Melville, Graeme; Allen, Barry J

    2009-04-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. The reduction of radium by photonuclear transmutation by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) has been investigated. A linac dose of 2800 Gy produced about 2.4 MBq (64 microCi) of Ra-225, which decays to Ac-225 and can then be used for 'Targeted Alpha Therapy' (TAT) of cancer. This result, while consistent with theoretical calculations, is far too low to be of practical use unless much larger quantities of radium are irradiated. The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. This paper investigates the possibility of producing of Ac-225 in commercial quantities, which could potentially reduce obsolete radioactive material and displace the need for expensive importation of Ac-225 from the USA and Russia in the years ahead. Scaled up production of Ac-225 could theoretically be achieved by the use of a high current cyclotron or linac. Production specifications are determined for a linac in terms of current, pulse length and frequency, as well as an examination of other factors such as radiation issues and radionuclei separation. Yields are compared with those calculated for the Australian National Cyclotron in Sydney. PMID:19135381

  8. Control of multiterminal HVDC systems embedded in AC networks. Volume 1. Methodologies for control system design

    NASA Astrophysics Data System (ADS)

    Hauth, R. L.; Nozari, F.; Winkelman, J. R.; Athans, M.; Chan, S. M.

    1982-05-01

    Control concepts applicable to future multiterminal high voltage dc (MTDC) networks embedded in bulk power ac systems are discussed. The control's objectives are to enhance the steady state and/or dynamic performance of the integrated MTDC/ac power system. A multi-terminal HVdc system is one with more than two converter terminals. The three basic control levels of an MTDC system are: primary control, supplementary power modulation (damping) controls, and dispatch control. Techniques for use in all three levels of control are described. The application of modern control robustness theories to the MTDC power modulation control design methodology is discussed.

  9. Paltolides A--C, anabaenopeptin-type peptides from the palau sponge Theonella swinhoei.

    PubMed

    Plaza, Alberto; Keffer, Jessica L; Lloyd, John R; Colin, Patrick L; Bewley, Carole A

    2010-03-26

    Three new anabaenopeptin-like peptides, named paltolides A-C, were isolated from a deep-water specimen of the marine sponge Theonella swinhoei from Palau. Paltolides belong to a rare subgroup of sponge-derived anabaenopeptins that have in common a C-terminal tryptophan residue linked to the epsilon-amine of a lysine bearing a d configuration. The structures of paltolides A-C were determined by NMR and tandem MS techniques. Paltolide A is the first anabaenopeptin structure where a non-N-methylated amino acid precedes the C-terminal residue. PMID:20078073

  10. Scattering effects of Space Station structure on Assembly/Contingency Subsystem (ACS) antenna performance

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Lu, Ba P.; Johnson, Larry A.; Fournet, Jon S.; Panneton, Robert J.; Eggers, Donald S.; Arndt, G. D.

    1992-01-01

    ACS antenna patterns were computed using the Geometrical Theory of Diffraction (GTD) modeling technique in which the multipath interference from the Space Station structures was included. The accuracy of the numerical results obtained is verified by comparing them against a series of RF anechoic chamber measurements. Less than 1 dB degradation is expected if a +/- 15 deg cone is used to protect the ACS high gain antenna boresight pattern; a +/- 20 deg cone is required if no more than 0.5 dB gain degradation is desired.

  11. ac propulsion system for an electric vehicle

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  12. ACS Data Handbook v.6.0

    NASA Astrophysics Data System (ADS)

    Gonzaga, S.; et al.

    2011-03-01

    ACS was designed to provide a deep, wide-field survey capability from the visible to near-IR using the Wide Field Camera (WFC), high resolution imaging from the near-UV to near-IR with the now-defunct High Resolution Camera (HRC), and solar-blind far-UV imaging using the Solar Blind Camera (SBC). The discovery efficiency of ACS's Wide Field Channel (i.e., the product of WFC's field of view and throughput) is 10 times greater than that of WFPC2. The failure of ACS's CCD electronics in January 2007 brought a temporary halt to CCD imaging until Servicing Mission 4 in May 2009, when WFC functionality was restored. Unfortunately, the high-resolution optical imaging capability of HRC was not recovered.

  13. Magnetic images of the disintegration process of tablets in the human stomach by ac biosusceptometry

    NASA Astrophysics Data System (ADS)

    Corá, L. A.; Andreis, U.; Romeiro, F. G.; Américo, M. F.; Oliveira, R. B.; Baffa, O.; Miranda, J. R. A.

    2005-12-01

    Oral administration of solid dosage forms is usually preferred in drug therapy. Conventional imaging methods are essential tools to investigate the in vivo performance of these formulations. The non-invasive technique of ac biosusceptometry has been introduced as an alternative in studies focusing on gastrointestinal motility and, more recently, to evaluate the behaviour of magnetic tablets in vivo. The aim of this work was to employ a multisensor ac biosusceptometer system to obtain magnetic images of disintegration of tablets in vitro and in the human stomach. The results showed that the transition between the magnetic marker and the magnetic tracer characterized the onset of disintegration (t50) and occurred in a short time interval (1.1 ± 0.4 min). The multisensor ac biosusceptometer was reliable to monitor and analyse the in vivo performance of magnetic tablets showing accuracy to quantify disintegration through the magnetic images and to characterize the profile of this process.

  14. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    SciTech Connect

    Rupich, Martin, Dr.; Duckworth, Robert, Dr.

    2009-10-01

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2G template strips.

  15. Structural, AC conductivity and dielectric properties of Sr-La hexaferrite

    NASA Astrophysics Data System (ADS)

    Singh, A.; Narang, S. B.; Singh, K.; Sharma, P.; Pandey, O. P.

    2006-03-01

    A series of M-type hexaferrite samples with composition Sr{1-x}La{x}Fe{12}O{19} (x = 0.00, 0.05, 0.15 and 0.25) were prepared by standard ceramic technique. AC electrical conductivity measurements were carried out at different frequencies (20 Hz 1 MHz) and at different temperatures. The dielectric constant and dielectric loss tangent were measured in the same range of frequencies. The experimental results indicate that AC electrical conductivity increases on increasing the frequency as well as the temperature, indicating magnetic semiconductor behavior of the samples. The increase in AC electrical conductivity with frequency and temperature has been explained on the basis of Koops Model whereas dielectric constant and dielectric loss tangent has been explained with the Maxwell Wagner type interfacial polarization in agreement with the Koops phenomenological theory.

  16. Stability improvement of AC superconducting magnet by forced-convection cooling

    SciTech Connect

    Ishigohka, T.; Kasuya, A.; Ninomiya, A.

    1996-07-01

    The authors propose a new improved cooling system of an AC(50/60Hz) superconducting magnet introducing a forced-convection flow of liquid helium. In this system, the flow through the cooling channel between the winding layers is generated by a screw rotating in a cylinder surrounding the magnet. A small experimental device composed of an AC superconducting magnet and a rotating screw was manufactured. The screw was rotated by an extended driving shaft. The experimental result shows that the stability of the magnet is improved by the rotation of the screw. That is, the thermal disturbance (heater input power) which generates the quench of the magnet increases as the rotational speed of the screw does. It is expected that this technique can be successfully applied to superconducting AC power apparatuses as transformers or reactors.

  17. Brazilian Angiostrongylus cantonensis haplotypes, ac8 and ac9, have two different biological and morphological profiles

    PubMed Central

    Monte, Tainá CC; Gentile, Rosana; Garcia, Juberlan; Mota, Ester; Santos, Jeannie N; Maldonado, Arnaldo

    2014-01-01

    Angiostrongylus cantonensis is the etiologic agent of eosinophilic meningoencephalitis in humans. Cases have been recorded in many parts of the world, including Brazil. The aim of this study was to compare the differences in the biology and morphology of two different Brazilian haplotypes of A. : ac8 and ac9. A significantly larger number of L1 larvae eliminated in the faeces of rodents at the beginning of the patent period was observed for ac9 haplotype and compared to the total of L1 larvae eliminated, there was a significant difference between the two haplotypes. The ac9 haplotype showed a significant difference in the proportion of female and male specimens (0.6:1), but the same was not observed for ac8 (1.2:1). The morphometric analysis showed that male and female specimens isolated from ac8 haplotype were significantly larger with respect to body length, oesophagus length, spicule length (male) and distance from the anus to the rear end (female) compared to specimens from ac9. The morphological analysis by light microscopy showed little variation in the level of bifurcations at the lateral rays in the right lobe of the copulatory bursa between the two haplotypes. The biological, morphological and morphometric variations observed between the two haplotypes agree with the observed variation at the molecular level using the cytochrome oxidase subunit I marker and reinforce the possible influence of geographical isolation on the development of these haplotypes. PMID:25591110

  18. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449

  19. AC loss in high-temperature superconducting conductors, cables and windings for power devices

    NASA Astrophysics Data System (ADS)

    Oomen, M. P.; Rieger, J.; Hussennether, V.; Leghissa, M.

    2004-05-01

    High-temperature superconducting (HTS) transformers and reactor coils promise decreased weight and volume and higher efficiency. A critical design parameter for such devices is the AC loss in the conductor. The state of the art for AC-loss reduction in HTS power devices is described, starting from the loss in the single HTS tape. Improved tape manufacturing techniques have led to a significant decrease in the magnetization loss. Transport-current loss is decreased by choosing the right operating current and temperature. The role of tape dimensions, filament twist and resistive matrix is discussed and a comparison is made between state-of-the-art BSCCO and YBCO tapes. In transformer and reactor coils the AC loss in the tape is influenced by adjacent tapes in the coil, fields from other coils, overcurrents and higher harmonics. These factors are accounted for by a new AC-loss prediction model. Field components perpendicular to the tape are minimized by optimizing the coil design and by flux guidance pieces. High-current windings are made of Roebel conductors with transposed tapes. The model iteratively finds the temperature distribution in the winding and predicts the onset of thermal instability. We have fabricated and tested several AC windings and used them to validate the model. Now we can confidently use the model as an engineering tool for designing HTS windings and for determining the necessary tape properties.

  20. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  1. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  2. AC electric trapping of neutral atoms

    NASA Astrophysics Data System (ADS)

    Marian, Adela; Schlunk, Sophie; Schoellkopf, Wieland; Meijer, Gerard

    2008-05-01

    We have demonstrated trapping of ultracold ground-state ^87Rb atoms in a macroscopic ac electric trap [1]. Trapping by ac electric fields has been previously achieved for polar molecules [2], as well as Sr atoms on a chip [3], and recently for Rb atoms in a three-phase electric trap [4]. Similar to trapping of ions in a Paul trap, three-dimensional confinement in an ac electric trap is obtained by switching between two saddle-point configurations of the electric field. For the first time, this dynamic confinement is directly visualized with absorption images taken at different phases of the ac switching cycle. Stable electric trapping is observed in a narrow range of switching frequencies around 60 Hz, in agreement with trajectory calculations. In a typical experiment, about 3 x 10^5 Rb atoms are trapped with lifetimes on the order of 9 s and trap depths of about 10 μK. Additionally, we show that the atoms can be used to sensitively probe the electric fields in the trap by imaging the cloud while the fields are still on. References: 1. S. Schlunk et al., PRL 98, 223002 (2007) 2. H. L. Bethlem et al., PRA 74, 063403 (2006) 3. T. Kishimoto et al., PRL 96, 123001 (2006) 4. T. Rieger et al., PRL 99, 063001 (2007)

  3. Ac-dc converter firing error detection

    SciTech Connect

    Gould, O.L.

    1996-07-15

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal.

  4. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  5. AC magnetic susceptibility of Bi2223-system

    NASA Astrophysics Data System (ADS)

    Kimishima, Y.; Inagaki, K.; Tanabe, K.; Nagata, N.; Ichiyanagi, Y.

    1998-01-01

    The AC magnetic susceptibilities χ AC of a Bi2223 sintered sample were measured by the Hartshorn bridge method. The linear AC χ' 0 showed the two-steps behavior at T C1 and T C2, where T C1 > T C2. The χ'0-data between T C1 and T C2 has no H AC-dependence and agreed well with those of powder specimen, and they can be regarded as the intragrain magnetic susceptibility. Below the inter-grain transition temperature T C2 the χ″ 0 showed a positive peak. The temperature dependence of χ' 0 and χ″ 0 were analyzed by the Bean's critical-state model. As a result, the temperature dependence of critical current density J C ∝ (1 - T/T C2) β was obtained with β = 2.3-2.6. The non-linear χ' 2 and χ″ 2 below T C2 resemble the behaviors derived from the Bean model, but the negative divergence of χ' 2 may show the evidence of d-wave paring in the present Bi2223-system.

  6. 76 FR 65633 - RIN 1904-AC43

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... FR 56678 (September 14, 2011) to make available and invite comments on the framework document for... Part 430 RIN 1904-AC43 Energy Conservation Program: Framework Document for General Service Fluorescent... general service fluorescent lamps and incandescent reflector lamps energy conservation standards in...

  7. ACS Task Force Frames Recommendations on Education.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1984

    1984-01-01

    Discusses findings and recommendations of an American Chemical Society (ACS) task force study on the status of chemical education in the United States. Recommendations relate to national concerns; all educational levels; elementary, secondary, university, college, and two-year college chemistry and science; chemistry careers; and industry and…

  8. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  9. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  10. 48 CFR Appendixes A-C to Chapter 7 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false A Appendixes A-C to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes A-C to Chapter 7...

  11. 48 CFR Appendixes A-C to Chapter 7 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false A Appendixes A-C to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes A-C to Chapter 7...

  12. Combined Operation of AC and DC Distribution System with Distributed Generation Units

    NASA Astrophysics Data System (ADS)

    Noroozian, Reza; Abedi, Mehrdad; Gharehpetian, Gevorg

    2010-07-01

    This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.

  13. Direct numerical simulation of AC dielectrophoretic particle-particle interactive motions.

    PubMed

    Ai, Ye; Zeng, Zhenping; Qian, Shizhi

    2014-03-01

    Under an AC electric field, individual particles in close proximity induce spatially non-uniform electric field around each other, accordingly resulting in mutual dielectrophoretic (DEP) forces on these particles. The resulting attractive DEP particle-particle interaction could assemble individual colloidal particles or biological cells into regular patterns, which has become a promising bottom-up fabrication technique for bio-composite materials and microscopic functional structures. In this study, we developed a transient multiphysics model under the thin electric double layer (EDL) assumption, in which the fluid flow field, AC electric field and motion of finite-size particles are simultaneously solved using an Arbitrary Lagrangian-Eulerian (ALE) numerical approach. Numerical simulations show that negative DEP particle-particle interaction always tends to attract particles and form a chain parallel to the applied electric field. Particles usually accelerate at the first stage of the attractive motion due to an increase in the DEP interactive force, however, decelerate until stationary at the second stage due to a faster increase in the repulsive hydrodynamic force. Identical particles move at the same speed during the interactive motion. In contrast, smaller particles move faster than bigger particles during the attractive motion. The developed model explains the basic mechanism of AC DEP-based particle assembly technique and provides a versatile tool to design microfluidic devices for AC DEP-based particle or cell manipulation. PMID:24407661

  14. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  15. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  16. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  17. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  18. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area. (b... 7 Agriculture 11 2014-01-01 2014-01-01 false Area Coverage Survey (ACS). 1737.31 Section...

  19. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered photostimulator. 886.1630 Section 886.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  20. Methods for Addressing Missing Data with Applications from ACS Exams

    ERIC Educational Resources Information Center

    Brandriet, Alexandra; Holme, Thomas

    2015-01-01

    As part of the ACS Examinations Institute (ACS-EI) national norming process, student performance data sets are collected from professors at colleges and universities from around the United States. Because the data sets are collected on a volunteer basis, the ACS-EI often receives data sets with only students' total scores and without the students'…

  1. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered photostimulator. 886.1630 Section 886.1630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  2. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  3. ChAcNLS, a Novel Modification to Antibody-Conjugates Permitting Target Cell-Specific Endosomal Escape, Localization to the Nucleus, and Enhanced Total Intracellular Accumulation.

    PubMed

    Beaudoin, Simon; Rondeau, Andreanne; Martel, Olivier; Bonin, Marc-Andre; van Lier, Johan E; Leyton, Jeffrey V

    2016-06-01

    The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high

  4. Improved transistorized ac motor controller for battery powered urban electric passenger vehicles

    SciTech Connect

    Peak, S.C.

    1982-09-01

    The objectives of this program for an improved ac motor controller for battery powered urban electric passenger vehicles were: the design, fabrication, test, evaluation and cost analysis of an engineering model controller for an ac induction motor drive system, the investigation of a power level expansion to a family of horsepower and battery system voltages, and the investigation of the applicability of the ac controller for use as an on-board battery charger and for providing the function of motor reversal. Additional vehicle specifications, e.g., acceleration and pulling out of potholes, were added to the NASA vehicle specifications. Then, a vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The General Electric ac induction motor used in the drive is optimized to operate as a vehicle traction motor with a pulse width modulated (PWM) inverter as a power source. The motor is nominally rated 20 hp and 41 hp peak. The power inverter design is a three-phase transistorized bridge configuration with feedback diodes. The transistors are a special design General Electric high-power Darlington transistor rated 450 volts and 200 amps. The battery system voltage chosen was 108 volts. The control strategy is a constant torque profile by PWM operation to base speed and a constant horsepower profile by square-wave operation to maximum speed. A gear shifting transmission is not required. An advanced current-controlled PWM technique is used to control the motor voltage. The primary feedback control is a motor angle control, with voltage and torque outer loop controls.

  5. Level structure and reflection asymmetric shape in sup 223 Ac

    SciTech Connect

    Sheline, R.K.; Liang, C.F.; Paris, P. )

    1990-07-20

    Mass separated sources of {sup 227}Pa (separated as PaF{sub 4}{sup +} ions) were used to study the level structure of {sup 223}Ac following alpha decay. The levels in {sup 223}Ac are interpreted as K = 5/2{sup {plus minus}} parity doublet bands which occur naturally in reflection asymmetric models and the multiphonon octupole model. The anomalous structure of the K = 3/2{sup {minus}} band is explained in terms of Coriolis coupling. The low lying parity doublet bands in {sup 223}Ac, {sup 225}Ac, and {sup 227}Ac are compared and contrasted.

  6. RHIC AC DIPOLE DESIGN AND CONSTRUCTION.

    SciTech Connect

    BAI,M.; METH,M.; PAI,C.; PARKER,B.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.; ZALTSMAN,A.

    2001-06-18

    Two ac dipoles with vertical and horizontal magnetic field have been proposed at RHIC for applications in linear and non-linear beam dynamics and spin manipulations. A magnetic field amplitude of 380 Gm is required to produce a coherent oscillation of 5 times the rms beam size at the top energy. We take the ac dipole frequency to be 1.0% of the revolution frequency away from the betatron frequency. To achieve the strong magnetic field with minimum power loss, an air-core magnet with two seven turn winding of low loss Litz wire resonating at 64 kHz is designed. The system is also designed to allow one to connect the two magnet winding in series to resonate at 37 kHz for the spin manipulation. Measurements of a half length prototype magnet are also presented.

  7. Initial Implementation Strategy for Drizzle with ACS

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Hack, W.; Hook, R. N.

    2001-04-01

    In order to provide geometric correction for single pointing ACS images, and to provide geometric correction together with simple image combination for associations of ACS images, we describe plans to implement the "drizzle" code by means of a python wrapper, and to use this wrapper in calacs. The initial strategy will endeavour to be robust and scientifically accurate, although not necessarily optimal. An upgrade path is outlined which could lead to significantly improved processing, involving an iterative pass through the data. The tools will be available stand-alone, offering a greater degree of flexibility than in pipeline implementation. The output product will be a multiple extension fits file containing the data (units counts per second), a weight image and a context image. The latter are provided by the drizzle program and are related to the variance and data quality arrays respectively.

  8. THE ACS NEARBY GALAXY SURVEY TREASURY

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; De Jong, Roelof S. E-mail: ben@astro.washington.edu E-mail: stephanie@astro.washington.edu E-mail: fabio@astro.washington.edu E-mail: aseth@cfa.harvard.edu

    2009-07-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  9. Highlights of the Dallas ACS Meeting

    NASA Astrophysics Data System (ADS)

    Wildeman, Thomas R.; Freilich, Mark; Kelter, Paul B.

    1998-06-01

    Without a doubt, a primary feature of the 1998 Spring National Meeting in Dallas was the High School Program, which was organized by George Hague, and the impact that the Texas teachers had on other participants. Over 150 teachers registered for the meeting and participated in the program. Their organizational skills were used to reinstitute the High School/College Interface Luncheon. (The High School/College Interface Luncheon will also be held at the Fall ACS Meeting in Boston.)

  10. Graphs for Isotopes of 89-Ac (Actinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides a graphic representation of nucleon separation energies and residual interaction parameters for isotopes of the chemical element 89-Ac (Actinium, atomic number Z = 89).

  11. [A novel Fe/AC desulphurizer at low temperature].

    PubMed

    Ma, J; Liu, S; Liu, Z; Zhu, Z; An, M; Yan, B

    2001-11-01

    Activated coke was used to support Fe2O3(Fe/AC) for flue gas SO2 removal. Reaction conditions on DeSOx activity were investigated. The results show that Fe/AC had higher activity than AC or Fe2O3 at temperature of 120 degrees C-250 degrees C. H2SO4 and Fe2(SO4)3 were formed after Fe/AC sorbed SO2, H2O and O2 increased the amount of SO2 adsorption. Fe/AC derived from AC of higher BET surface area had higher DeSOx activity. Fe/AC was suitable to be used at GHSV below 800 L/(kg.h). PMID:11855176

  12. Transport and AC loss properties of the repaired multifilamentary REBCO superconducting tapes

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Iwakuma, M.; Funaki, K.; Kato, J.; Chikumoto, T.; Tanabe, K.; Nakao, K.; Izumi, T.; Yamada, Y.; Shiohara, Y.; Saito, T.

    2010-11-01

    For near-future applications of REBa 2Cu 3O 7 (REBCO) coated conductors to electric power cables, transformers and Superconducting Magnetic Energy Storage (SMES), the long taped wires with high performance in the transport properties have been designed and fabricated. Moreover, in order to drastically reduce AC losses in perpendicular field configuration, advanced multifilament YBCO coated conductors (MFYCCs) fabricated with technique of a laser scribing process have been also developed. In the present study, from engineering viewpoints to utilize such advanced conductors, we evaluated the transport and AC loss properties of short MFYCCs with a repaired part or a joint by a diffusion joint technique with the saddle-shaped pickup coil method.

  13. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  14. The Hubble Legacy Archive ACS grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  15. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation.

    PubMed

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-12-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species. PMID:27295260

  16. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-06-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  17. Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious

    SciTech Connect

    Fang Minggang; Nie, Yingchao; Theilmann, David A.

    2009-06-20

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 is a core gene and its function in the virus life cycle is unknown. To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac109 deletion virus (vAc{sup 109KO}). Fluorescence and light microscopy showed that transfection of vAc{sup 109KO} results in a single-cell infection phenotype. Viral DNA replication is unaffected and the development of occlusion bodies in vAc{sup 109KO}-transfected cells evidenced progression to the very late phases of viral infection. Western blot and confocal immunofluorescence analysis showed that AC109 is expressed in the cytoplasm and nucleus throughout infection. In addition, AC109 is a structural protein as it was detected in both budded virus (BV) and occlusion derived virus in both the envelope and nucleocapsid fractions. Titration assays by qPCR and TCID{sub 50} showed that vAc{sup 109KO} produced BV but the virions are non-infectious. The vAc{sup 109KO} BV were indistinguishable from the BV of repaired and wild type control viruses as determined by negative staining and electron microscopy.

  18. Comparative study of evaporation using DC and AC filament electron guns

    NASA Astrophysics Data System (ADS)

    Lahiri, Sutanwi; Sahu, G. K.; Baruah, S.; Jana, B.; Dixit, A. R.; Bhardwaj, R. L.; Das, R. C.; Kalra, R.; Kaushik, V.; Majumder, A.; Mohapatra, S.; Dikshit, B.; Mishra, K. K.; Bhatia, M. S.; Bapat, A. V.; Mago, V. K.; Thakur, K. B.; Das, A. K.; Gantayet, L. M.

    2012-11-01

    Electron beam assisted physical vapour deposition (EB-PVD) and purification of metal by repeated melting using electron guns is a well-established technique in industrial metallurgy. Strip electron gun is considered a cost effective alternative to multiple pencil guns for handling of large size substrates. In the electron guns, the thermionic emission of the electrons from a filament is achieved by using AC or DC filament heating. A study of their relative merits and demerits was conducted for the both types of electron guns. Due to finite length of the filament, the magnetic field generated around the filament by heating current drops down towards ends. The DC filament heating results in electron beam with a comet shape having high power density hot spot at one end with low power density tails. With AC filament heating, electron beam oscillates with the frequency as that of heating current. The study of vapour flux distribution using DC gun revealed that highly directional vapour evolution takes place from a smaller hot spot whereas with AC gun vapour evolution occurs from an oscillatory 2D-evaporating source. The vapour deposit on substrate indicated that evaporation using DC gun caused splashing and granular deposit due to volumetric melting and evaporation from the ingot. This is contrary to the AC filament heating wherein quiet evaporation was observed due to surface melting and evaporation. The experimental results are critically reviewed to decide the configuration of electron guns for large-scale evaporation.

  19. Trapping Single Molecules by Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Hölzel, Ralph; Calander, Nils; Chiragwandi, Zackary; Willander, Magnus; Bier, Frank F.

    2005-09-01

    We have trapped single protein molecules of R-phycoerythrin in an aqueous solution by an alternating electric field. A radio frequency voltage is applied to sharp nanoelectrodes and hence produces a strong electric field gradient. The resulting dielectrophoretic forces attract freely diffusing protein molecules. Trapping takes place at the electrode tips. Switching off the field immediately releases the molecules. The electric field distribution is computed, and from this the dielectrophoretic response of the molecules is calculated using a standard polarization model. The resulting forces are compared to the impact of Brownian motion. Finally, we discuss the experimental observations on the basis of the model calculations.

  20. Swimming of bacteria under dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Tran, Ngoc Phu; Marcos, Marcos

    In this work, we present a model to predict the response of a swimming helically flagellated bacterium to a unidirectional dielectrophoretic (DEP) force with its strength varying linearly in space. We employ resistive force theory to compute the hydrodynamic force on the flagellar bundle, and the effects of DEP force and rotational diffusion are examined using the Fokker-Planck equation. The DEP force greatly contributes to the reorientation of the bacterium such that the bacterium's primary axis is aligned with the direction of the force. Interestingly, when the DEP strength varies perpendicularly to the direction of the force, the bacterium's primary axis is no longer aligned with the DEP force, which results in a translation of the bacterium perpendicular to its primary axis. Finally, we show the feasibility to utilize this phenomenon to achieve bacterial focusing. The full name of the second author is MARCOS.

  1. Influence of compression forces on tablets disintegration by AC Biosusceptometry.

    PubMed

    Corá, Luciana A; Fonseca, Paulo R; Américo, Madileine F; Oliveira, Ricardo B; Baffa, Oswaldo; Miranda, José Ricardo A

    2008-05-01

    Analysis of physical phenomena that occurs during tablet disintegration has been studied by several experimental approaches; however none of them satisfactorily describe this process. The aim of this study was to investigate the influence of compression force on the tablets by associating the AC Biosusceptometry with consolidated methods in order to validate the biomagnetic technique as a tool for quality control in pharmaceutical processes. Tablets obtained at five compression levels were submitted to mechanical properties tests. For uncoated tablets, water uptake and disintegration force measurements were performed in order to compare with magnetic data. For coated tablets, magnetic measurements were carried out to establish a relationship between physical parameters of the disintegration process. According to the results, differences between the compression levels were found for water uptake, force development and magnetic area variation measurements. ACB method was able to estimate the disintegration properties as well as the kinetics of disintegration process for uncoated and coated tablets. This study provided a new approach for in vitro investigation and validated this biomagnetic technique as a tool for quality control for pharmaceutical industry. Moreover, using ACB will also be possible to test these parameters in humans allowing to establish an in vitro/in vivo correlation (IVIVC). PMID:18164605

  2. Conformational restriction through C alpha i <--> C alpha i cyclization: Ac12c, the largest cycloaliphatic C alpha,alpha- disubstituted glycine known.

    PubMed

    Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C

    2000-02-01

    Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed. PMID:10679624

  3. Selecting for efficacy of Bollgard cotton cultivars against various Lepidoptera using forward breeding techniques.

    PubMed

    Adamczyk, J J; Meredith, W R

    2006-10-01

    Studies during the past 5 yr have shown that the overall level of protein (Cry1Ac) produced from the cry1Ac transgene (Monsanto Co., St. Louis, MO) differ among commercial Bollgard cotton, Gossypium hirsutum L., cultivars. These differences between cultivars are under genetic control and have been correlated with efficacy of certain lepidopteran pests. Previous studies have shown that the parental background (i.e., non-Cry1Ac conventional cultivar) has a significant influence on the amount of Cry1Ac protein in Bollgard cultivars. Unlike the backcross technique commonly used to acquire commercial Bollgard cultivars, we used forward breeding to obtain cultivars of Bollgard cotton that were selected for various levels of Cry1Ac. These differences in the amount of Cry1Ac were correlated with growth and survival of two lepidopteran pests of cotton. Implications for effective resistance management as well as relative ease of this procedure are discussed. PMID:17066820

  4. FAST COMPENSATION OF GLOBAL LINEAR COUPLING IN RHIC USING AC DIPOLES.

    SciTech Connect

    CALAGA, R.; FRANCHI, A. , TOMAS, R.

    2006-06-26

    Global linear coupling has been extensively studied in accelerators and several methods have been developed to compensate the coupling coefficient C using skew quadrupole families scans. However, scanning techniques can become very time consuming especially during the commissioning of an energy ramp. In this paper they illustrate a new technique to measure and compensate, in a single machine cycle, global linear coupling from turn-by-turn BPM data without the need of a skew quadrupole scan. The algorithm is applied to RHIC BPM data using AC dipoles and compared with traditional methods.

  5. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  6. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  7. Verification of low frequency ac-dc transfer differences of thermal converters using sampling with sine-wave fit

    NASA Astrophysics Data System (ADS)

    Funck, Torsten; Spiegel, Thomas

    2015-09-01

    Thermal converters show significant ac-dc transfer differences at low frequencies due to nonlinearities of the heat transport mechanism and of the thermal-to-electric conversion. It is assumed that the ac-dc transfer differences at low frequencies are proportional to the input power. We have proved this assumption by an independent method with sampling techniques. A novel approach based on sine-wave fitting is used to calculate the RMS value of the sampled signal from the samples. It makes use of the low noise in a metrological environment. Expanded uncertainties in the order of 1.2 μV/V have been achieved.

  8. ac transport studies in polymers by resistor-network and transfer-matrix approaches: Application to polyaniline

    NASA Astrophysics Data System (ADS)

    Nagashima, H. N.; Onody, R. N.; Faria, R. M.

    1999-01-01

    A statistical model of resistor networks is proposed to describe a polymer structure and to simulate the real and imaginary components of its ac resistivity. It takes into account the polydispersiveness of the material as well as intrachain and interchain charge transport processes. By the application of a transfer-matrix technique, it reproduces ac resistivity measurements carried out with polyaniline films in different doping degrees and at different temperatures. Our results indicate that interchain processes govern the resistivity behavior in the low-frequency region while, for higher frequencies, intrachain mechanisms are dominant.

  9. Study of AC electrical conduction mechanisms in an epoxy polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  10. AC Electroosmotic Pumping in Nanofluidic Funnels.

    PubMed

    Kneller, Andrew R; Haywood, Daniel G; Jacobson, Stephen C

    2016-06-21

    We report efficient pumping of fluids through nanofluidic funnels when a symmetric AC waveform is applied. The asymmetric geometry of the nanofluidic funnel induces not only ion current rectification but also electroosmotic flow rectification. In the base-to-tip direction, the funnel exhibits a lower ion conductance and a higher electroosmotic flow velocity, whereas, in the tip-to-base direction, the funnel has a higher ion conductance and a lower electroosmotic flow velocity. Consequently, symmetric AC waveforms easily pump fluid through the nanofunnels over a range of frequencies, e.g., 5 Hz to 5 kHz. In our experiments, the nanofunnels were milled into glass substrates with a focused ion beam (FIB) instrument, and the funnel design had a constant 5° taper with aspect ratios (funnel tip width to funnel depth) of 0.1 to 1.0. We tracked ion current rectification by current-voltage (I-V) response and electroosmotic flow rectification by transport of a zwitterionic fluorescent probe. Rectification of ion current and electroosmotic flow increased with increasing electric field applied to the nanofunnel. Our results support three-dimensional simulations of ion transport and electroosmotic transport through nanofunnels, which suggest the asymmetric electroosmotic transport stems from an induced pressure at the junction of the nanochannel and nanofunnel tip. PMID:27230495

  11. Monitoring colloidal stability of polymer-coated magnetic nanoparticles using AC susceptibility measurements.

    PubMed

    Herrera, Adriana P; Barrera, Carola; Zayas, Yashira; Rinaldi, Carlos

    2010-02-15

    The application of the response of magnetic nanoparticles to oscillating magnetic fields to probe transitions in colloidal state and structure of polymer-coated nanoparticles is demonstrated. Cobalt ferrite nanoparticles with narrow size distribution were prepared and shown to respond to oscillating magnetic fields through a Brownian relaxation mechanism, which is dependent on the mechanical coupling between the particle dipoles and the surrounding matrix. These nanoparticles were coated with covalently-attached poly(N-isopropylacrylamide) (pNIPAM) or poly(N-isopropylmethacrylamide) (pNIPMAM) through free radical polymerization. The temperature induced transitions of colloidal suspensions of these nanoparticles were studied through a combination of differential scanning calorimetry (DSC), dynamic light scattering (DLS), and AC susceptibility measurements. In the pNIPAM coated nanoparticles excellent agreement was found for a transition temperature of approximately 30 degrees C by all three methods, although the AC susceptibility measurements indicated aggregation which was not evident from the DLS results. Small-angle neutron scattering (SANS) results obtained for pNIPAM coated nanoparticles confirmed that aggregation indeed occurs above the lower critical transition temperature of pNIPAM. For the pNIPMAM coated nanoparticles DLS and AC susceptibility measurements indicated aggregation at a temperature of approximately 33-35 degrees C, much lower than the transition temperature peak at 40 degrees C observed by DSC. However, the transition observed by DSC is very broad, hence it is possible that aggregation begins to occur at temperatures lower than the peak, as indicated by the AC susceptibility and DLS results. These experiments and observations demonstrate the possibility of using AC susceptibility measurements to probe transitions in colloidal suspensions induced by external stimuli. Because magnetic measurements do not require optical transparency, these

  12. Ac45 silencing mediated by AAV-sh-Ac45-RNAi prevents both bone loss and inflammation caused by periodontitis

    PubMed Central

    Zhu, Zheng; Chen, Wei; Hao, Liang; Zhu, Guochun; Lu, Yun; Li, Sheng; Wang, Lin; Li, Yi-Ping

    2015-01-01

    Aim Periodontitis induced by oral pathogens leads to severe periodontal tissue damage and osteoclast-mediated bone resorption caused by inflammation. Based on the importance of Ac45 in osteoclast formation and function, we performed this study to evaluate the therapeutic potential of periodontitis by local adeno-associated virus (AAV)-mediated Ac45 gene knockdown. Material and Methods We used AAV-mediated short hairpin RNAi knockdown of Ac45 gene expression (AAV-sh-Ac45) to inhibit bone erosion and gingival inflammation simultaneously in a well-established periodontitis mouse model induced by Porphyromonas gingivalis W50. Histological studies were performed to evaluate the bone protection of AAV-sh-Ac45. Immunochemistry, ELISA and qRT-PCR were performed to reveal the role of Ac45 knockdown on inflammation, immune response and expression of cytokine. Results We found that Ac45 knockdown impaired osteoclast-mediated extracellular acidification and bone resorption in vitro and in vivo. Furthermore, local administration of AAV-sh-Ac45 protected mice from bone erosion by >85% and attenuated inflammation and decreased infiltration of T-cells, dendritic cells and macrophages in the periodontal lesion. Notably, the expression of pro-inflammatory cytokines was also reduced. Conclusions Local AAV-sh-Ac45 gene therapy efficiently protects against periodontal tissue damage and bone erosion through both inhibition of osteoclast function and attenuating inflammation, and may represent a powerful new treatment strategy for periodontitis. PMID:25952706

  13. Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges

    NASA Astrophysics Data System (ADS)

    Derdouri, A.; Casanovas, J.; Hergli, R.; Grob, R.; Mathieu, J.

    1989-03-01

    Mixtures of SF6 (100 kPa≤PSF6≤400 kPa) and water (concentrations ranging from 240 to 2000 vpm) have been submitted to point-plane 50-Hz ac corona discharges. The only stable gaseous by-products detected, either by gas-phase chromatography or gas chromatography-mass spectrometry techniques, were SOF2 and SO2F2. The variation of their concentrations as a function of the discharge current value (3-25 μA rms), the charge transported (0.15-1.5 C), the water content, the SF6 pressure, and the gap spacing (1.5-5 mm) have been studied. The results indicate that, at least in our experimental conditions, the 50-Hz ac corona discharges behave more like negative than like positive dc corona.

  14. Direct Measurement of Ab and Ac at the Z0 Pole Using a Lepton Tag

    NASA Astrophysics Data System (ADS)

    Abe, Kenji; Abe, Koya; Abe, T.; Adam, I.; Akagi, T.; Allen, N. J.; Arodzero, A.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bauer, J. M.; Bellodi, G.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolen, B.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Byrne, R. M.; Calcaterra, A.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; Damerell, C. J.; Danielson, M. N.; Daoudi, M.; de Groot, N.; dell'Orso, R.; Dervan, P. J.; de Sangro, R.; Dima, M.; D'Oliveira, A.; Dong, D. N.; Doser, M.; Dubois, R.; Eisenstein, B. I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Flood, K.; Frey, R.; Gillman, T.; Gladding, G.; Gonzalez, S.; Goodman, E. R.; Hart, E. L.; Harton, J. L.; Hasan, A.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Huynh, X.; Hwang, H.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kamyshkov, Y.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kim, Y. D.; King, R.; King, M. E.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Langston, M.; Lath, A.; Leith, D. W.; Lia, V.; Lin, C.-J. S.; Liu, X.; Liu, M. X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mahjouri, M.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Menegatti, G.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, H.; Park, C. H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Schwiening, J.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, R.; Steiner, H.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Thom, J.; Torrence, E.; Toumbas, N. K.; Usher, T.; Vannini, C.; Va'Vra, J.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Wagner, D. L.; Waite, A. P.; Walston, S.; Wang, J.; Ward, C.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, B.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Word, G. B.; Wright, T. R.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    1999-10-01

    The parity violation parameters Ab and Ac of the Zbb¯ and Zcc¯ couplings have been measured directly, using the polar angle dependence of the Z0-pole polarized cross sections. Bottom and charmed hadrons were tagged via semileptonic decays. Both the muon and electron identification algorithms take advantage of new multivariate techniques, incorporating for the first time information from the SLD Cˇerenkov Ring Imaging Detector. Based on the 1993-1995 SLD sample of 150 000 Z0 decays produced with highly polarized electron beams, we measure Ab = 0.910+/-0.068\\(stat\\)+/-0.037\\(syst\\), Ac = 0.642+/-0.110\\(stat\\)+/-0.063\\(syst\\).

  15. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane

    PubMed Central

    Zhou, Dinggang; Guo, Jinlong; Xu, Liping; Gao, Shiwu; Lin, Qingliang; Wu, Qibin; Wu, Luguang; Que, Youxiong

    2014-01-01

    To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane. PMID:24810230

  16. Public Understanding of Chemistry, ACS National Meeting

    NASA Astrophysics Data System (ADS)

    Gettys, Nancy S.

    2000-06-01

    Three public events for area school-aged children were held on Saturday, March 25, 2000, prior to the opening of the 219th National Meeting of the American Chemical Society. All took place at the Moscone Convention Center in downtown San Francisco. The photographs tell the story: the programs were successful and a good time was had by all. Readers may be encouraged to try these ideas in their own area. If so, the local organizers of Carver Kidvention have additional information at www.scvacs.org/Carver/index.html or contact Howard Peters (Santa Clara Valley Section, ACS), peters4pa@aol.com. Additional photos of the Kidvention event may also be seen as supplemental material.

  17. An ac bridge readout for bolometric detectors

    NASA Technical Reports Server (NTRS)

    Rieke, F. M.; Lange, A. E.; Beeman, J. W.; Haller, E. E.

    1989-01-01

    The authors have developed a bolometer readout circuit which greatly improves the low-frequency stability of bolometric detectors. The circuit uses an ac bias voltage and two matched bolometers and allows stable dc bolometer operation for integration times greater than 10 s. In astronomical applications the readout allows for qualitatively different observation modes (e.g. staring or slow-drift scanning) which are particularly well suited for space observations and for the use of arrays. In many applications the readout can increase sensitivity. The authors present noise spectra for 4He temperature bolometers with no excess noise at frequencies greater than 0.1 Hz. The measured optical responsivity of a bolometer operated with the present readout is the same as that of a bolometer operated with a conventional readout.

  18. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  19. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  20. Modeling of ac dielectric barrier discharge

    SciTech Connect

    Shang, J. S.; Huang, P. G.

    2010-06-15

    The qualitative electrodynamic field of the dielectric barrier discharge in air is studied by a three-component, drift-diffusion plasma model including the Poisson equation of plasmadynamics. The critical media interface boundary conditions independent of the detailed mechanisms of surface absorption, diffusion, recombination, and charge accumulation on electrode or dielectrics are developed from the theory of electromagnetics. The computational simulation duplicates the self-limiting feature of dielectric barrier discharge for preventing corona-to-spark transition, and the numerical results of the breakdown voltage are compared very well with data. According to the present modeling, the periodic electrodynamic force due to charge separation over the electrodes also exerts on alternative directions from the exposed to encapsulated electrodes over a complete ac cycle as experimental observations.

  1. Undergraduate Chemistry Education: Report of an ACS Presidential Symposium

    ERIC Educational Resources Information Center

    Polik, William F.

    2006-01-01

    The American Chemical Society (ACS) Presidential Symposium, Envisioning Undergraduate Chemistry Education in 2015 was organized by the ACS Committee on Professional Training (CPT), in response to the challenge to envision the chemistry enterprise in 2015. The need for more diverse role models at all levels is emphasized, including high school…

  2. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  3. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  4. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  5. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  6. 24 CFR Appendixes A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false A Appendixes A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendixes A-C to Subtitle A...

  7. Equivalent circuit models for ac impedance data analysis

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.

  8. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  9. A Hyperactive Transposase of the Maize Transposable Element Activator (Ac)

    PubMed Central

    Lazarow, Katina; Du, My-Linh; Weimer, Ruth; Kunze, Reinhard

    2012-01-01

    Activator/Dissociation (Ac/Ds) transposable elements from maize are widely used as insertional mutagenesis and gene isolation tools in plants and more recently also in medaka and zebrafish. They are particularly valuable for plant species that are transformation-recalcitrant and have long generation cycles or large genomes with low gene densities. Ac/Ds transposition frequencies vary widely, however, and in some species they are too low for large-scale mutagenesis. We discovered a hyperactive Ac transposase derivative, AcTPase4x, that catalyzes in the yeast Saccharomyces cerevisiae 100-fold more frequent Ds excisions than the wild-type transposase, whereas the reintegration frequency of excised Ds elements is unchanged (57%). Comparable to the wild-type transposase in plants, AcTPase4x catalyzes Ds insertion preferentially into coding regions and to genetically linked sites, but the mutant protein apparently has lost the weak bias of the wild-type protein for insertion sites with elevated guanine–cytosine content and nonrandom protein-DNA twist. AcTPase4x exhibits hyperactivity also in Arabidopsis thaliana where it effects a more than sixfold increase in Ds excision relative to wild-type AcTPase and thus may be useful to facilitate Ac/Ds-based insertion mutagenesis approaches. PMID:22562933

  10. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  11. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  12. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  13. Measurement of coupling resonance driving terms with the AC dipole

    SciTech Connect

    Miyamoto, R.

    2010-10-01

    Resonance driving terms for linear coupled betatron motion in a synchrotron ring can be determined from corresponding spectral lines of an excited coherent beam motion. An AC dipole is one of instruments to excite such a motion. When a coherent motion is excited with an AC dipole, measured Courant-Snyder parameters and betatron phase advance have apparent modulations, as if there is an additional quadrupole field at the location of the AC dipole. Hence, measurements of these parameters using the AC dipole require a proper interpretation of observed quantities. The situation is similar in measurements of resonance driving terms using the AC dipole. In this note, we derive an expression of coupled betatron motion excited with two AC dipoles in presence of skew quadrupole fields, discuss an impact of this quadrupole like effect of the AC dipole on a measurement of coupling resonance driving terms, and present an analytical method to determine the coupling resonance driving terms from quantities observed using the AC dipole.

  14. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2012-10-01

    This is a continuation of Program 12386 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks were newly added in Cycle 19 to study CTE tails in different subarray readout modes.

  15. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2013-10-01

    This is a continuation of Program 13156 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks were added in Cycle 19 to study CTE tails in different subarray readout modes.

  16. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  17. Preliminary Geologic Mapping of the Ac-S-1 Hemisphere of Ceres from NASA's Dawn Mission

    NASA Astrophysics Data System (ADS)

    Mest, S. C.; Williams, D. A.; Buczkowski, D. L.; Scully, J. E. C.; Crown, D. A.; Yingst, R. A.; Jaumann, R.; Russell, C. T.; Raymond, C. A.

    2015-10-01

    NASA's Dawn spacecraft [1], launched in September 2007, spent ~1 year (2011-2012) investigating Vesta and recently (March 6, 2015) arrived at dwarf planet Ceres. The first images of Ceres' surface were acquired by Dawn's Framing Camera (FC) [2] as it made optical navigation and rotation characterization observations during the Approach phase. The Dawn Science Team will conduct a geological mapping campaign at Ceres during the Nominal Mission, which will include iterative mapping using data obtained during each orbital phase. Iterative geologic mapping was previously successfully conducted during Dawn's mission to Vesta [3,4]. This abstract describes the preliminary geologic mapping results for quadrangle Ac-S-1 (55-90°N, 0-360°E), the northern hemisphere of Ceres.

  18. Tribological behavior of electron beam D6ac weldment

    NASA Astrophysics Data System (ADS)

    Wu, Shyh-Chi; Tseng, Kuang-Hung; Wen, Hua-Chiang; Wu, Ming-Jhang; Chou, Chang-Pin

    2013-01-01

    A flow formed D6ac steel tubing was joined using electron beam (EB) welding. Thereafter, the EB weldments were treated by tempering at temperatures of 450 °C and 550 °C. After tempering, the microstructural features, mechanical properties, and tribological characteristics of the EB D6ac weldment were studied. This study used a scratch test to evaluate the sliding wear resistance of the tempered weldment. Results indicate that the tempering softens the microstructure by reducing the dislocation density of the flow formed D6ac steel. For the 450 °C/2 h/air cooling tempering treated D6ac steel, the fracture toughness of the EB weldment can be significantly improved. The tribological behavior of the tempered D6ac weldment depended on the tempered microstructures.

  19. Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Babuchowska, Paulina; Frąckowiak, Elżbieta; Béguin, François

    2016-09-01

    A high energy hybrid AC/AC electrochemical capacitor has been realized in aqueous Li2SO4+KI electrolyte mixture. Owing to the redox processes associated with the 2I-/I2 system, the positive electrode operates in narrow potential range and displays high capacity. During prolonged potentiostatic floating at 1.6 V, the hybrid cell demonstrates remarkably stable capacitance and resistance. Analyses by temperature programmed desorption after floating at 1.6 V proved that oxidation of the positive AC electrode is prevented by the use of Li2SO4+KI, which enables the maximum potential of this electrode to be shifted below the water oxidation potential. When charged at 0.2 A g-1 up to U = 1.6 V, the hybrid cell displays a high capacitance of 75 F g-1 (300 F g-1 per mass of one electrode) compared to 47 F g-1 (188 F g-1 per mass of one electrode) for a symmetric cell in Li2SO4. At 0.2 A g-1 up to 1.6 V, the hybrid capacitor in Li2SO4+KI displays an energy density of 26 Wh kg-1 which approaches the energy density of 30.9 Wh kg-1 measured when the same carbon is implemented in a capacitor using TEABF4/ACN electrolyte and charged up to 2.5 V.

  20. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  1. Ac-Induced Instability at the Xanthophyllic Locus of Tomato

    PubMed Central

    Peterson, P. W.; Yoder, J. I.

    1993-01-01

    To detect genomic instability caused by Ac elements in transgenic tomatoes, we used the incompletely dominant mutation Xanthophyllic-1 (Xa-1) as a whole plant marker gene. Xa-1 is located on chromosome 10 and in the heterozygote state causes leaves to be yellow. Transgenic Ac-containing tomato plants which differed in the location and number of their Ac elements were crossed to Xa-1 tester lines and F(1) progeny were scored for aberrant somatic sectoring. Of 800 test and control F(1) progeny screened, only four plants had aberrantly high levels of somatic sectors. Three of the plants had twin sectors consisting of green tissue adjacent to white tissue, and the other had twin sectors comprised of green tissue adjacent to tissue more yellow than the heterozygote background. Sectoring was inherited and the two sectoring phenotypes mapped to opposite homologs of chromosome 10; the green/yellow sectoring phenotype mapped in coupling to Xa-1 while the green/white sectoring phenotype mapped in repulsion. The two sectoring phenotypes cosegregated with different single, non-rearranged Acs, and loss of these Acs from the genome corresponded to the loss of sectoring. Sectoring was still observed after transposition of the Ac to a new site which indicated that sectoring was not limited to a single locus. In both sectored lines, meiotic recombination of the sectoring Ac to the opposite homolog caused the phenotype to switch between the green/yellow and the green/white phenotypes. Thus the two different sectoring phenotypes arose from the same Ac-induced mechanism; the phenotype depended on which chromosome 10 homolog the Ac was on. We believe that the twin sectors resulted from chromosome breakage mediated by a single intact, transposition-competent Ac element. PMID:8394266

  2. ACS grism spectra in the HDF-North

    NASA Astrophysics Data System (ADS)

    Meurer, G. R.; Tsvetanov, Z. I.; Gronwall, C.; Benitez, N.; Franx, M.; Blakeslee, J. P.; Cross, N.; Ford, H. C.; Martel, A. R.; Tran, H. D.; Illingworth, G. D.; Clampin, M.; Postman, M.; Allen, T.; Anderson, K.; Ardila, D. R.; Feldman, P. D.; Golimowski, D. A.; McCann, Wm. J.; Menanteau, F.; Sirianni, M.; Zheng, W.; Brown, R. A.; Burrows, C.; Hartig, G.; Krist, J.; Sparks, W. B.; White, R. L.; Cheng, E.; Kimble, R. A.; Campbell, D.; Sullivan, P.; Bouwens, R.; Magee, D.; Bartko, F.; Broadhurst, T. J.; Infante, L.; Lesser, M.; Miley, G.; Rosati, P.; Volmer, P.; Rafal, M.; Woodruff, R. A.

    2002-12-01

    We present slitless spectra of sources in the Hubble Deep Field North obtained with the Advanced Camera for Surveys. The Wide Field Camera was used to obtain dithered observations with a total exposure of 6700s (3 orbits) with the G800L grism. We concentrate on objects with published redshifts obtained spectroscopically and photometrically. In addition, we use a semi-automated technique to identify sources with emission line spectra, and those with broad stellar features. Sources with emission lines having a peak S/N > 4, have a median mF775W = 24.6 ABmag. This is 1.5 mag fainter than the median mF775W of objects in the Cohen et al. (2000, ApJ, 538, 29) spectroscopic redshift survey, illustrating that the G800L is a potentially useful tool for obtaining spectroscopic data of faint compact sources. ACS was developed under NASA contract NAS 5-32865, and this research is supported by NASA grant NAG5-7697. We are grateful for an equipment grant from the Sun Microsystems, Inc.

  3. Electrohydrodynamics of suspension of liquid drops in AC fields

    NASA Astrophysics Data System (ADS)

    Abdul Halim, Md.; Esmaeeli, Asghar

    2012-11-01

    Manipulation of liquid drops by an externally applied electric field is currently the focus of increased attention because of its relevance in a broad range of industrial processes. The effect of a uniform DC electric field on a solitary drop is well studied; however, less is know about the impact of electric field on suspension of liquid drops, and very little information is available on the impact of AC field on a single or a suspension of drops. Here we report the results of Direct Numerical Simulations of electrohydrodynamics of suspension of liquid drops. The governing equations are solved using a front tracking/finite difference technique, in conjunction with Taylor's leaky dielectric model. The imposed electric potential comprises of two parts, a time-independent base and a time-dependent part. The goal is to explore the relative importance of these two components in setting the statistically steady state behavior of the suspension. To this end, we report the results of three sets of simulations, where (i) the time-dependent part act as a perturbation on the base potential, (ii) the two components are of the same order, and (iii) the time-dependent part is much larger than the base potential. The problem is studied as a function of the governing nondimensional parameters.

  4. ac susceptibility study of a magnetite magnetic fluid

    NASA Astrophysics Data System (ADS)

    Ayala-Valenzuela, O. E.; Matutes-Aquino, J. A.; Galindo, J. T. Elizalde; Botez, C. E.

    2009-04-01

    Magnetite nanometric powder was synthesized from metal salts using a coprecipitation technique. The powders were used to produce magnetic fluid via a peptization method, with hydrocarbon Isopar M as liquid carrier and oleic acid as surfactant. The complex magnetic susceptibility χ =χ'+iχ″ was measured as a function of temperature T in steps of 2.5 K from 3 to 298 K for frequencies ranging from f =10 to 10 000 Hz. The magnetic fluid real and imaginary components of the ac susceptibility show a prominent maximum at temperatures that increase with the measuring frequency, which is attributed to a spin-glass-like behavior. The peak temperature Tp1 of χ″ depends on f following the Vogel-Fulcher law f =f0 exp[E /kB(Tp1-T0)], where f0 and E are positive constants and T0 is a parameter related to particle interactions. There is another kind of peak temperature, Tp2, in the loss factor tan δ =χ″/χ' which is related to a magnetic aftereffect. The peak temperature Tp2 is far less than Tp1 and shows an Arrhenius-type dependence on f.

  5. Measurement of AC Induced Flow using Mico PIV

    NASA Astrophysics Data System (ADS)

    Wang, Dazhi; Meinhart, Carl; Sigurdson, Marin

    2002-11-01

    The fluid motion in a wedge-shaped device subject to an AC electric field is measured using Micron-Resolution Particle Image Velocimetry (micro-PIV). The fluorescent polystyrene spherical particles are used as flow tracers. In the non-uniform electric field, the particles in the suspension experience dielectrophoretic forces, which cause difference of velocities between the particles and the fluid. In order to eliminate the velocity difference, two different size particles are used for the micro-PIV measurements to determine the fluid velocity field. A two-color PIV technique is used to determine uniquely the fluid velocity field. The wedge-shaped channel is 100-micron wide at the apex, and fabricated from a 550-micron thick silicon wafer. A voltage of 15Vrms at 100 kHz is applied to the electrodes. The particle volume fraction is set below 0.1% so that the effect of the particles on the fluid can be negligible. Fifty successive images are taken to record particle images and analyzed to estimate the particle velocity fields. The velocity fields of the two different size particles are then used to uniquely determine the underlying fluid velocity. The measured fluid flow is a saddle-point flow, which could be used for precision mixing and transport in microscale devices.

  6. On two-liquid AC electroosmotic system for thin films.

    PubMed

    Navarkar, Abhishek; Amiroudine, Sakir; Demekhin, Evgeny A

    2016-03-01

    Lab-on-chip devices employ EOF for transportation and mixing of liquids. However, when a steady (DC) electric field is applied to the liquids, there are undesirable effects such as degradation of sample, electrolysis, bubble formation, etc. due to large magnitude of electric potential required to generate the flow. These effects can be averted by using a time-periodic or AC electric field. Transport and mixing of nonconductive liquids remain a problem even with this technique. In the present study, a two-liquid system bounded by two rigid plates, which act as substrates, is considered. The potential distribution is derived by assuming a Boltzmann charge distribution and using the Debye-Hückel linearization. Analytical solution of this time-periodic system shows some effects of viscosity ratio and permittivity ratio on the velocity profile. Interfacial electrostatics is also found to play a significant role in deciding velocity gradients at the interface. High frequency of the applied electric field is observed to generate an approximately static velocity profile away from the Electric Double Layer (EDL). PMID:26773725

  7. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    PubMed Central

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness. PMID:22219690

  8. 78 FR 49318 - Availability of Draft Advisory Circular (AC) 90-106A and AC 20-167A

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo... Systems (78 FR 34935-34958) (Docket No.: FAA-2013-0485; Notice No. 1209). AC 90-106A, Enhanced Flight...), Synthetic Vision System (SVS), and Combined Vision System (CVS) equipment installation. AC 90-106A is...

  9. Development of Low AC Loss TFA-MOD Coated Conductors

    NASA Astrophysics Data System (ADS)

    Katayama, K.; Machi, T.; Nakamura, T.; Takagi, Y.; Nakaoka, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.

    TFA-MOD process is expected to be promising for future applications since it can produce high performance YBCO coated conductors (CCs) with low cost. Applying YBCO CCs to the power electric devices such as transformers and power cables, the reduction of alternating current (AC) loss for long wire is necessary. Multi-filamentation process, which is one of the most effective approaches for AC loss reduction, has been developed by the scribing process. We have developed the filamentation process using chemical etching. MOD derived CCs are, however, easily damaged in the chemical etching process due to existence of pores in a YBCO layer, resulting in critical current (Ic)-degradation and weak delamination strength. Consequently, it is difficult to scribe MOD derived CCs into 1mm-wide filaments for long length using the chemical etching process. Accordingly, we have studied a scribing process using an excimer laser without chemical etching. We defined P' value in this study as a function of irradiated laser power [J] divided by processing speed[m/s]. We studied relationship between the P' value and the results of scribing. It was found that we could scribe the C.C. with a sufficient depth in the condition of large P' value. Furthermore, we found that the Ic was degraded with further increase of the P' value. A 5 mm wide short sample was divided into 10 filaments by the excimer laser scribing process at the P' of 9[J/(m/s)]. The sample revealed reduction of the hysteresis loss down to 1/10 which could be expected from a theoretical prediction using the numbers of the filaments. Ic-degradation was suppressed as 28%, which was smaller than that of the scribed sample using chemical etching (Ic degradation was 38%). Subsequently, we applied the technique to a 100m long YBCO CC. The hysteresis loss of the 100m long MOD derived CC was reduced down to 1/10 (1/the number of filaments) after the multi-filamentation.

  10. Stapedectomy technique.

    PubMed

    House, J W

    1993-06-01

    This article reviews the evolution of the author's stapedectomy technique from total footplate removal with single loop wire prosthesis and Gelfoam seal to small fenestra stapedectomy with platinum ribbon piston prosthesis and blood seal. The author concludes that the microdrill is effective, safe, and cost effective for performing this procedure. Since using this technique, the author has had no cases of sensorineural hearing loss and few complaints of dizziness or vertigo. PMID:8341570

  11. Spatial Techniques

    NASA Astrophysics Data System (ADS)

    Jabeur, Nafaa; Sahli, Nabil

    The environment, including the Earth and the immense space, is recognized to be the main source of useful information for human beings. During several decades, the acquisition of data from this environment was constrained by tools and techniques with limited capabilities. However, thanks to continuous technological advances,spatial data are available in huge quantities for different applications. The technological advances have been achieved in terms of hardware and software as well. They are allowing for better accuracy and availability, which in turn improves the quality and quantity of useful knowledge that can be extracted from the environment. They have been applied to geography, resulting in geospatial techniques. Applied to both science and technology, geospatial techniques resulted in areas of expertise, such as land surveying, cartography, navigation, remote sensing, Geographic Infor-mation Systems (GISs), and Global Positioning Systems (GPSs). They had evolved quickly with advances in computing, satellite technology and a growing demand to understand our global environment. In this chapter, we will discuss three important techniques that are widely used in spatial data acquisition and analysis: GPS and remote sensing techniques that are used to collect spatial data and a GIS that is used to store, manipulate, analyze, and visualize spatial data. Later in this book, we will discuss the techniques that are currently available for spatial knowledge discovery.

  12. Gastrointestinal transit and disintegration of enteric coated magnetic tablets assessed by ac biosusceptometry.

    PubMed

    Corá, Luciana A; Romeiro, Fernando G; Américo, Madileine F; Oliveira, Ricardo Brandt; Baffa, Oswaldo; Stelzer, Murilo; Miranda, José Ricardo de Arruda

    2006-01-01

    The oral administration is a common route in the drug therapy and the solid pharmaceutical forms are widely used. Although much about the performance of these formulations can be learned from in vitro studies using conventional methods, evaluation in vivo is essential in product development. The knowledge of the gastrointestinal transit and how the physiological variables can interfere with the disintegration and drug absorption is a prerequisite for development of dosage forms. The aim of this work was to employing the ac biosusceptometry (ACB) to monitoring magnetic tablets in the human gastrointestinal tract and to obtain the magnetic images of the disintegration process in the colonic region. The ac biosusceptometry showed accuracy in the quantification of the gastric residence time, the intestinal transit time and the disintegration time (DT) of the magnetic formulations in the human gastrointestinal tract. Moreover, ac biosusceptometry is a non-invasive technique, radiation-free and harmless to the volunteers, as well as an important research tool in the pharmaceutical, pharmacological and physiological investigations. PMID:16188432

  13. Theory of the ac spin valve effect: a new method to measure spin relaxation time

    NASA Astrophysics Data System (ADS)

    Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav

    2012-02-01

    Parallel (P) and antiparallel (AP) configurations of FNF junctions have, in a dc regime, different resistivities (RAP>RP), giving rise to the giant magnetoresistance (GMR) effect, which can be explained within the spin injection drift-diffusion model. We extend the model to include ac phenomena and predict new spin dynamical phenomenon; the resonant amplification and depletion of spin accumulation in the P and AP configurations, respectively. As the major new effect, the spin valve magnetoimpedance of the FNF junction oscillates with the driving ac frequency, which leads to negative GMR effect (|ZAP|<|ZP|). We show that from the spin-valve oscillation periods, measured all electrically in the GHz regime, the spin relaxation times could be extracted without any magnetic field and sample size changes (contrary to other techniques). For thin tunnel junctions the ac signal becomes pure Lorentzian, also enabling one to obtain the spin relaxation time of the N region from the signal width. This work, was published in Physical Review Letters,10, 176604 (2011).

  14. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    NASA Astrophysics Data System (ADS)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  15. Combined AC-STEM and FIB-SEM Characterization of Shale

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Heath, J. E.; Kotula, P.; Yoon, H.; Gardner, P.

    2013-12-01

    We examine shale samples with state-of-the-art aberration corrected scanning transmission electron microscopy (AC-STEM) and focused ion beam-scanning electron (FIB-SEM) microscopy. Three-dimensional reconstruction of pore space incorporates electron tomography using the AC-TEM and serial sectioning by FIB-SEM. Chemical analysis by X-ray energy dispersive microscopy reveals composition of pore-lining phases at ~ 1 nm resolution. Our methods reveal the left tail of the pore size distribution that FIB-SEM techniques typically do not capture (pore sizes < 7 nm). Water in pores of this size will deviate from those of bulk water, which can influence non-Darcy flow and mechanical response. The impact of these small pores on fluid and coupled tracer transport is examined by computation fluid dynamics using 3D pore reconstructions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  17. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current (AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For educational purposes, however, an LED-based rectifier is ideal because it allows students to literally see the rectifier operating. Here I'll discuss the practical aspects of building a full AC adapter incorporating an LED-based rectifier and ideas on how to use it in class.

  18. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. PMID:21823132

  19. Stochastic Dynamics of DC and AC Driven Dislocation Kinks

    NASA Astrophysics Data System (ADS)

    Vardanyan, A.; Kteyan, A.

    2013-02-01

    Dynamics of a pinned dislocation kink controlled by the acting DC and AC forces is studied analytically. The motion of the kink, described by sine-Gordon (sG) equation, is explored within the framework of McLaughlin-Scott perturbation theory. Assuming weakness of the acting AC force, the equation of motion of the dislocation kink in the pinning potential is linearized. Based on the equations derived, we study stochastic behavior of the kink, and determine the probability of its depinning. The dependencies of the depinning probability on DC and AC forces are analyzed in detail.

  20. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer. PMID:15607913

  1. ACS (Alma Common Software) operating a set of robotic telescopes

    NASA Astrophysics Data System (ADS)

    Westhues, C.; Ramolla, M.; Lemke, R.; Haas, M.; Drass, H.; Chini, R.

    2014-07-01

    We use the ALMA Common Software (ACS) to establish a unified middleware for robotic observations with the 40cm Optical, 80cm Infrared and 1.5m Hexapod telescopes located at OCA (Observatorio Cerro Armazones) and the ESO 1-m located at La Silla. ACS permits to hide from the observer the technical specifications, like mount-type or camera-model. Furthermore ACS provides a uniform interface to the different telescopes, allowing us to run the same planning program for each telescope. Observations are carried out for long-term monitoring campaigns to study the variability of stars and AGN. We present here the specific implementation to the different telescopes.

  2. An electrohydrodynamic flow in ac electrowetting

    PubMed Central

    Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung

    2009-01-01

    In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed. PMID:20216975

  3. An electrohydrodynamic flow in ac electrowetting.

    PubMed

    Lee, Horim; Yun, Sungchan; Ko, Sung Hee; Kang, Kwan Hyoung

    2009-01-01

    In ac electrowetting, hydrodynamic flows occur within a droplet. Two distinct flow patterns were observed, depending on the frequency of the applied electrical signal. The flow at low-frequency range was explained in terms of shape oscillation and a steady streaming process in conjunction with contact line oscillation. The origin of the flow at high-frequency range has not yet been explained. We suggest that the high-frequency flow originated mainly from the electrothermal effect, in which electrical charge is generated due to the gradient of electrical conductivity and permittivity, which is induced by the Joule heating of fluid medium. To support our argument, we analyzed the flow field numerically while considering the electrical body force generated by the electrothermal effect. We visualized the flow pattern and measured the flow velocity inside the droplet. The numerical results show qualitative agreement with experimental results with respect to electric field and frequency dependence of flow velocity. The effects of induced-charge electro-osmosis, natural convection, and the Marangoni flow are discussed. PMID:20216975

  4. Tracer Technique

    NASA Astrophysics Data System (ADS)

    Haba, H.; Motomura, S.; Kamino, S.; Enomoto, S.

    In radioactive tracer technique, radioactive nuclides are used to follow the behavior of elements or chemical species in chemical and other processes. This is realized by means of radioactivity measurement. In 1913, Hevesy and Paneth succeeded in determining the extremely low solubility of lead salts by using naturally occurring 210Pb as a radioactive tracer. As various radioactive nuclides became artificially available, this technique has been widely employed in studies of chemical equilibrium and reactions as well as in chemical analysis. It is also an essential technique in biochemical, biological, medical, geological, and environmental studies. Medical diagnosis and industrial process control are the fields of its most important practical application. In this chapter, fundamental ideas concerning radioactive tracers will be described followed by their application with typical examples. Detailed description on their application to life sciences and medicine is given in Vol. 4.

  5. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    NASA Astrophysics Data System (ADS)

    Li, M.; Li, W. H.; Zhang, J.; Alici, G.; Wen, W.

    2014-02-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP.

  6. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    NASA Astrophysics Data System (ADS)

    Wee, Wei Hong; Li, Zedong; Hu, Jie; Adib Kadri, Nahrizul; Xu, Feng; Li, Fei; Pingguan-Murphy, Belinda

    2015-10-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells.

  7. Recent Advances in AC-DC Transfer Measurements Using Thin-Film Thermal Converters

    SciTech Connect

    WUNSCH,THOMAS F.; KINARD,JOSEPH R.; MANGINELL,RONALD P.; LIPE,THOMAS E.; SOLOMON JR.,OTIS M.; JUNGLING,KENNETH C.

    2000-12-08

    New standards for ac current and voltage measurements, thin-film multifunction thermal converters (MJTCS), have been fabricated using thin-film and micro-electro-mechanical systems (MEMS) technology. Improved sensitivity and accuracy over single-junction thermoelements and targeted performance will allow new measurement approaches in traditionally troublesome areas such as the low frequency and high current regimes. A review is presented of new microfabrication techniques and packaging methods that have resulted from a collaborative effort at Sandia National Laboratories and the National Institute of Standards and Technology (MHZ).

  8. High power switch mode linear amplifiers for flexible ac transmission system

    SciTech Connect

    Mwinyiwiwa, B.; Wolanski, Z.; Ooi, B.T.

    1996-10-01

    The Pulse Width Modulation (PWM) technique has been proposed for the force-commutated Shunt and Series VAR Controllers and Unified Power Flow Controllers in Flexible AC Transmission Systems. The PWM converters can be operated as linear amplifiers of constant gain so that treasure trove of linear control system theory can be brought to bear more easily when applying feedback controls. For example, pole-placement and active filtering have been successfully applied in laboratory models. This paper is written as a tutorial describing the stages of signal processing: modulation, amplification and demodulation, without reference to power electronics since the solid-state switches are modelled as ON-OFF switches.

  9. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  10. Regulation of the activities of African cassava mosaic virus promoters by the AC1, AC2, and AC3 gene products.

    PubMed

    Haley, A; Zhan, X; Richardson, K; Head, K; Morris, B

    1992-06-01

    DNA fragments comprising each of the promoter regions from the geminivirus African cassava mosaic virus (ACMV) were cloned into the pUC18-based vector, pG1, producing transcriptional fusions with the beta-glucuronidase gene (GUS) and nopaline synthase terminator sequence. The relative activity of each promoter construct was analyzed by a GUS expression assay of extracts from Nicotiana clevelandii protoplasts coelectroporated with the GUS reporter constructs and constructs in which individual ACMV open reading frames (ORFs) were placed under control of a cauliflower mosaic virus 35 S promoter. Results suggest repression of the AC1 gene by its gene product, which is required for ACMV DNA synthesis. The promoter activity observed for the single promoter for the DNA A genes encoding functions of spread and the regulation of replication (AC2 and AC3 ORFs) was unaffected by coelectroporation with any of the ACMV ORF constructs. Promoters for the AV1 (coat protein) gene and the two DNA B genes (BV1 and BC1) were activated by electroporation of the AC2 ORF construct. To a lesser extent promoters for the AV1 and BV1 genes were activated with the AC3 ORF construct. The same pattern of promoter repression and activation was observed when transgenic N. benthamiana plants expressing the GUS reporter constructions were inoculated with ACMV DNA A. PMID:1585657

  11. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  12. Miscellaneous Techniques

    NASA Astrophysics Data System (ADS)

    Jha, Shyam N.

    Nondestructive way of determining the food quality is the need of the hour. Till now major methods such as colour measurements and their modeling; machine vision systems; X-ray, CT and MRI; NIR spectroscopy; electronic nose and tongue; and ultrasonic technology have been discussed in detail. These techniques, in general, are considered to be sophisticated and costly, and therefore probably are not being adopted as fast as it should be. I am however of the reverse opinion. While going through these techniques, it has been seen that majority of quality parameters have been measured and correlated with the signals obtained using different equipment.

  13. 7. VIEW OF THREE BOATHOUSES FROM 'PENN AC ROWING ASSN' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF THREE BOATHOUSES FROM 'PENN AC ROWING ASSN' TO NORTH END OF 'VESPER,' LOOKING EAST FROM WEST BANK OF SCHUYLKILL RIVER - Boathouse Row, East River Drive, Philadelphia, Philadelphia County, PA

  14. Dc to ac converter operates efficiently at low input voltages

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Self-oscillating dc to ac converter with transistor switching to produce a square wave output is used for low and high voltage power sources. The converter has a high efficiency throughout a wide range of loads.

  15. Initial tests of an AC dipole for the Tevatron

    SciTech Connect

    Miyamoto, R.; Jansson, A.; Kopp, S.; Syphers, M.; /Fermilab

    2006-06-01

    The AC dipole is a device to diagnose transverse motions of a beam. It can achieve large-amplitude oscillations without two inevitable problems of conventional kicker/pinger magnets: decoherence and emittance growth. While not the first synchrotron to operate with an AC dipole, the Tevatron can now make use of its recently upgraded BPM system, providing unprecedented resolution for use with an AC dipole, to measure both linear and nonlinear properties of the accelerator. Plans are to provide AC dipole systems for both transverse degrees of freedom. Preliminary tests have been done using an audio power amplifier with an existing vertical pinger magnet, producing oscillation amplitudes up to 2{sigma} at 150 GeV. In this paper, we will present the configuration of this system. We also show the analysis of a first few data sets, including the direct measurement of beta functions at BPM locations.

  16. ACS Algorithm in Discrete Ordinates for Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Walters, William; Haghighat, Alireza

    2016-02-01

    The Adaptive Collision Source (ACS) method can solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. This is similar to, and essentially an extension of, the first collision source method. Previously, the ACS methodology has been implemented into the TITAN discrete ordinates code, and has shown speedups of 2-4 on a simple test problem, with very little loss of accuracy (within a provided adaptive tolerance). This work examines the use of the ACS method for a more realistic problem: pressure vessel dosimetry with the VENUS-2 MOX-fuelled reactor dosimetry benchmark. The ACS method proved to be able to obtain accurate results while being approximately twice as efficient as using a constant quadrature in a standard source iteration scheme.

  17. Reentrant ac Magnetic Susceptibility in Josephson-Junction Arrays

    SciTech Connect

    Araujo-Moreira, F.M.; Barbara, P.; Cawthorne, A.B.; Lobb, C.J.

    1997-06-01

    We have measured the complex ac magnetic susceptibility of unshunted Josephson-junction arrays as a function of temperature T , amplitude of the excitation field h{sub ac} , and external magnetic field H{sub dc} . For small h{sub ac} Meissner screening occurs. For larger h{sub ac} , however, the screening is reentrant in T . This reentrance is not thermodynamic but dynamic and arises from the paramagnetic contribution of multijunction loops. This result gives an alternative explanation of the paramagnetic Meissner effect observed in granular superconductors. Experimental results are in agreement with a simplified model based on a single loop containing four junctions. {copyright} {ital 1997} {ital The American Physical Society}

  18. Abdominal compartment syndrome (ACS) in a severely burned patient.

    PubMed

    Kollias, S; Stampolidis, N; Kourakos, P; Mantzari, E; Koupidis, S; Tsaousi, S; Dimitrouli, A; Atiyeh, B; Castana, O

    2015-03-31

    Abdominal compartment syndrome (ACS) occurs when increasing intra abdominal-pressure (IAP) reduces blood flow to abdominal organs. This results in impairment of pulmonary, cardiovascular, renal, hepatic, central nervous system and gastro-intestinal (gi) function, causing multiple organ dysfunction syndrome and death. The significant prognostic value of elevated intra-abdominal pressure has prompted many intensive care units to adopt measurement of this physiologic parameter as a routine vital sign in patients at risk. ACS generally occurs in patients who are critically ill due to any of a wide variety of medical and surgical conditions. it has been recently described as a rare complication of burn injury. it is fundamental to: 1) recognize IAP and ACS; 2) resuscitate effectively; and 3) prevent the development IAP-induced end-organ dysfunction and failure. We present our recent experience with one patient suffering from ACS secondary to burn injury and the physiologic results of abdominal wall escharotomy. PMID:26668555

  19. Abdominal compartment syndrome (ACS) in a severely burned patient

    PubMed Central

    kollias, S.; Stampolidis, N.; kourakos, P.; Mantzari, E.; Koupidis, S.; Tsaousi, S.; Dimitrouli, A.; Atiyeh, B.; Castana, O.

    2015-01-01

    Summary Abdominal compartment syndrome (ACS) occurs when increasing intra abdominal-pressure (IAP) reduces blood flow to abdominal organs. This results in impairment of pulmonary, cardiovascular, renal, hepatic, central nervous system and gastro-intestinal (gi) function, causing multiple organ dysfunction syndrome and death. The significant prognostic value of elevated intra-abdominal pressure has prompted many intensive care units to adopt measurement of this physiologic parameter as a routine vital sign in patients at risk. ACS generally occurs in patients who are critically ill due to any of a wide variety of medical and surgical conditions. it has been recently described as a rare complication of burn injury. it is fundamental to: 1) recognize IAP and ACS; 2) resuscitate effectively; and 3) prevent the development IAP-induced end-organ dysfunction and failure. We present our recent experience with one patient suffering from ACS secondary to burn injury and the physiologic results of abdominal wall escharotomy. PMID:26668555

  20. Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac].

    PubMed

    Liu, Fusheng; Li, Lei; Yu, Shitao; Lv, Zhiguo; Ge, Xiaoping

    2011-05-15

    The methanolysis of polycarbonate (PC) was studied using ionic liquid [Bmim][Ac] as a catalyst. The effects of temperature, time, methanol dosage and [Bmim][Ac] dosage on the methanolysis reaction were examined. It was shown that the conversion of PC was nearly 100%, and the yield of bisphenol A (BPA) was over 95% under the following conditions: m([Bmim][Ac]):m(PC) = 0.75:1;m(methanol):m(PC) = 0.75:1; a reaction temperature of 90 °C and a total time of 2.5h. The ionic liquid could be reused up to 6 times with no apparent decrease in the conversion of PC and yield of BPA. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PC in [Bmim][Ac] was a first-order kinetic reaction with an activation energy of 167 kJ/mol. PMID:21402441

  1. Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac].

    PubMed

    Song, Xiuyan; Liu, Fusheng; Li, Lei; Yang, Xuequn; Yu, Shitao; Ge, Xiaoping

    2013-01-15

    Hydrolysis of polycarbonate (PC) was studied using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as a catalyst. The influences of temperature, time, water dosage and [Bmim][Ac] dosage on the hydrolysis reaction were examined. Under the conditions of temperature 140°C, reaction time 3.0 h, m([Bmim][Ac]):m(PC)=1.5:1 and m(H(2)O):m(PC)=0.35:1, the conversion of PC was nearly 100% and the yield of bisphenol A (BPA) was over 96%. The ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PC and yield of BPA. The kinetics of the reaction was also investigated. The results showed that the hydrolysis of PC in [Bmim][Ac] was a first-order kinetic reaction with an activation energy of 228 kJ/mol. PMID:23246956

  2. High-Frequency ac Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.; Mildice, James

    1987-01-01

    Loads managed automatically under cycle-by-cycle control. 440-V rms, 20-kHz ac power system developed. System flexible, versatile, and "transparent" to user equipment, while maintaining high efficiency and low weight. Electrical source, from dc to 2,200-Hz ac converted to 440-V rms, 20-kHz, single-phase ac. Power distributed through low-inductance cables. Output power either dc or variable ac. Energy transferred per cycle reduced by factor of 50. Number of parts reduced by factor of about 5 and power loss reduced by two-thirds. Factors result in increased reliability and reduced costs. Used in any power-distribution system requiring high efficiency, high reliability, low weight, and flexibility to handle variety of sources and loads.

  3. Nearly Unity Power-Factor of the Modular Three-Phase AC to DC Converter with Minimized DC Bus Capacitor

    NASA Astrophysics Data System (ADS)

    Chunkag, Viboon; Kamnarn, Uthen

    The analysis and design of nearly unity power-factor and fast dynamic response of the modular three-phase ac to dc converter using three single-phase isolated SEPIC rectifier modules with minimized dc bus capacitor is discussed, based on power balance control technique. The averaged small-signal technique is used to obtain the inductor current compensator, thus resulting in the output impedance and audio susceptibility become zero, that is, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The proposed system significantly improves the dynamic response of the converter to load steps with minimized dc bus capacitor for Distributed Power System (DPS). A 600W prototype modular three-phase ac to dc converter comprising three 200W single-phase SEPIC rectifier modules with the proposed control scheme has been designed and implemented. The proposed system is confirmed by experimental implementation.

  4. Accelerator Production of 225Ac For Alpha-Immunotherapy

    NASA Astrophysics Data System (ADS)

    Weidner, J. W.; Nortier, F. M.; Bach, H. T.; John, K. D.; Couture, A.; Ullmann, J. L.; Fassbender, M. E.; Goff, G. S.; Taylor, W.; Valdez, F.; Wolfsberg, L. E.; Cisneros, M.; Dry, D.; Gallegos, M.; Gritzo, R.; Bitteker, L. J.; Wender, S.; Baty, R. S.

    2011-06-01

    225Ac has tremendous potential for the treatment of metastatic cancer due to the four alpha-particles emitted during its decay to stable 209Bi. Additionally, it is one of the few alpha-emitters being considered for clinical trials. The anticipated 225Ac demand for these trials is expected to far exceed the annual worldwide supply of approximately 1,000 mCi/yr. Consequently, the DOE Office of Science has funded investigations into accelerator-based production of 225Ac. Existing 232Th(p,x)225Ac cross section data indicate that up to 480 mCi/day of 225Ac could be created by bombarding a thick target of natural thorium with 100 MeV protons at the Los Alamos Isotope Production Facility. To verify these predictions, experiments are underway at the Los Alamos Neutron Science Center to measure the 232Th(p,x)225Ac production cross sections for protons in the energy range 40-200 MeV, and at 800 MeV. For 800 MeV protons, preliminary results indicate that the 225Ac production cross section is 12.4±0.6 mb and the 225Ra production cross section is 3.2±0.2 mb. Moreover, preliminary results suggest that the 227Ac production cross section is 16±1 mb. Experiments to measure these same cross sections at proton energies below 200 MeV are planned for the last half of calendar year 2010.

  5. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    SciTech Connect

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  6. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  7. Development of an AC Module System: Final Technical Report

    SciTech Connect

    Suparna Kadam; Miles Russell

    2012-06-15

    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more

  8. Search for {beta}-delayed fission of {sup 228}Ac

    SciTech Connect

    Xu Yanbing; Ding Huajie; Yuan Shuanggui; Yang Weifan; Niu Yanning; Li Yingjun; Xiao Yonghou; Zhang Shengdong; Lu Xiting

    2006-10-15

    Radium was radiochemically separated from natural thorium. Thin {sup 228}Ra{yields}{beta}{sup -228}Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe {gamma}-ray detector. The {beta}-delayed fission events of {sup 228}Ac were observed and its {beta}-delayed fission probability was found to be (5{+-}2)x10{sup -12}.

  9. Accelerator Production of {sup 225}Ac For Alpha-Immunotherapy

    SciTech Connect

    Weidner, J. W.; Nortier, F. M.; Bach, H. T.; John, K. D.; Couture, A.; Ullmann, J. L.; Fassbender, M. E.; Goff, G. S.; Taylor, W.; Valdez, F.; Wolfsberg, L. E.; Cisneros, M.; Dry, D.; Gallegos, M.; Gritzo, R.; Bitteker, L. J.; Wender, S.; Baty, R. S.

    2011-06-01

    {sup 225}Ac has tremendous potential for the treatment of metastatic cancer due to the four alpha-particles emitted during its decay to stable {sup 209}Bi. Additionally, it is one of the few alpha-emitters being considered for clinical trials. The anticipated {sup 225}Ac demand for these trials is expected to far exceed the annual worldwide supply of approximately 1,000 mCi/yr. Consequently, the DOE Office of Science has funded investigations into accelerator-based production of {sup 225}Ac. Existing {sup 232}Th(p,x){sup 225}Ac cross section data indicate that up to 480 mCi/day of {sup 225}Ac could be created by bombarding a thick target of natural thorium with 100 MeV protons at the Los Alamos Isotope Production Facility. To verify these predictions, experiments are underway at the Los Alamos Neutron Science Center to measure the {sup 232}Th(p,x){sup 225}Ac production cross sections for protons in the energy range 40-200 MeV, and at 800 MeV. For 800 MeV protons, preliminary results indicate that the {sup 225}Ac production cross section is 12.4{+-}0.6 mb and the {sup 225}Ra production cross section is 3.2{+-}0.2 mb. Moreover, preliminary results suggest that the {sup 227}Ac production cross section is 16{+-}1 mb. Experiments to measure these same cross sections at proton energies below 200 MeV are planned for the last half of calendar year 2010.

  10. ISTTOK upgrade towards AC and remote operation

    NASA Astrophysics Data System (ADS)

    Fernandes, H.; Silva, C.; Carvalho, B.; Sousa, J.; Valcárcel, D.; Neto, A.; Fortunato, J.; Carvalho, I.; Varandas, C. A. F.

    2006-12-01

    ISTTOK has performed one of the earliest experiments of AC tokamak operation showing that long discharges could be produced merely with inductive current drive. However, due to the design of the machine, the data acquisition system and the power supplies, a limit of 250 ms (six times the nominal forward shot duration) is currently imposed. In this paper the relevant constrains to attain current operation up to the limit of the stable toroidal magnetic field (3s) are discussed and the work being carried out to achieve this goal is presented. The conditions that shall be accomplished are: (i) removing the power deposited on the limiters; (ii) density control through gas puffing and monitoring the recycling from the walls; (iii) assessment of the free magnetic flux available on the iron core (Wmax=0.2 Vs); (iv) reformulation of the data acquisition system towards an event driven philosophy maintaining the actual distributed architecture but allowing a real-time control; (v) active control of the equilibrium magnetic fields implementing a digital plasma position estimator and actuator through new power supplies for the poloidal magnetic fields. As a new high level software was needed to implement all this features, the ISTTOK data acquisition system and control has been totally redesigned in JAVA/SQL database technology and time stamps events were adopted to catalogue the data. This software has been design keeping in mind the needs for remote participation and operation of the machine. Therefore, a cooperative environment has been implemented where several persons can be connected together to the platform, programming their own devices and exchanging knowledge or opinions through an embedded chat.

  11. ISTTOK upgrade towards AC and remote operation

    SciTech Connect

    Fernandes, H.; Silva, C.; Carvalho, B.; Sousa, J.; Valcarcel, D.; Neto, A.; Fortunato, J.; Carvalho, I.; Varandas, C. A. F.

    2006-12-04

    ISTTOK has performed one of the earliest experiments of AC tokamak operation showing that long discharges could be produced merely with inductive current drive. However, due to the design of the machine, the data acquisition system and the power supplies, a limit of 250 ms (six times the nominal forward shot duration) is currently imposed.In this paper the relevant constrains to attain current operation up to the limit of the stable toroidal magnetic field (3s) are discussed and the work being carried out to achieve this goal is presented.The conditions that shall be accomplished are: (i) removing the power deposited on the limiters; (ii) density control through gas puffing and monitoring the recycling from the walls; (iii) assessment of the free magnetic flux available on the iron core (Wmax=0.2 Vs); (iv) reformulation of the data acquisition system towards an event driven philosophy maintaining the actual distributed architecture but allowing a real-time control; (v) active control of the equilibrium magnetic fields implementing a digital plasma position estimator and actuator through new power supplies for the poloidal magnetic fields. As a new high level software was needed to implement all this features, the ISTTOK data acquisition system and control has been totally redesigned in JAVA/SQL database technology and time stamps events were adopted to catalogue the data. This software has been design keeping in mind the needs for remote participation and operation of the machine. Therefore, a cooperative environment has been implemented where several persons can be connected together to the platform, programming their own devices and exchanging knowledge or opinions through an embedded chat.

  12. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  13. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  14. Equivalent Electrical Circuit Representations of AC Quantized Hall Resistance Standards

    PubMed Central

    Cage, M. E.; Jeffery, A.; Matthews, J.

    1999-01-01

    We use equivalent electrical circuits to analyze the effects of large parasitic impedances existing in all sample probes on four-terminal-pair measurements of the ac quantized Hall resistance RH. The circuit components include the externally measurable parasitic capacitances, inductances, lead resistances, and leakage resistances of ac quantized Hall resistance standards, as well as components that represent the electrical characteristics of the quantum Hall effect device (QHE). Two kinds of electrical circuit connections to the QHE are described and considered: single-series “offset” and quadruple-series. (We eliminated other connections in earlier analyses because they did not provide the desired accuracy with all sample probe leads attached at the device.) Exact, but complicated, algebraic equations are derived for the currents and measured quantized Hall voltages for these two circuits. Only the quadruple-series connection circuit meets our desired goal of measuring RH for both ac and dc currents with a one-standard-deviation uncertainty of 10−8 RH or less during the same cool-down with all leads attached at the device. The single-series “offset” connection circuit meets our other desired goal of also measuring the longitudinal resistance Rx for both ac and dc currents during that same cool-down. We will use these predictions to apply small measurable corrections, and uncertainties of the corrections, to ac measurements of RH in order to realize an intrinsic ac quantized Hall resistance standard of 10−8 RH uncertainty or less.

  15. Quenching characteristics of a.c. superconducting coils

    NASA Astrophysics Data System (ADS)

    Akita, S.; Kasahara, H.; Torii, S.

    Quenching characteristics of two superconducting coils for a.c. use are investigated at different frequencies. One is impregnated with epoxy resin and the other is not. Both coils have experienced over 40 quenches in a.c. and d.c. The impregnated coil shows steady quenching currents for a.c. and the values are nearly the same as for d.c. On the other hand, quenching currents for a.c. in the non-impregnated coil are almost 80% of the trained-up d.c. quenching current and are scattered. Furthermore, the relationship between quenching currents and the estimated a.c. losses of the superconducting cable at the highest magnetic field point is investigated. According to the results of this investigation, the cause of quench in the impregnated coil is assumed to be the temperature rise of the winding due to a.c. losses, while the cause in the non-impregnated coil might be wire motion.

  16. Diagnostics of the Fermilab Tevatron using an AC dipole

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoichi

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f˜20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  17. Spin density wave (SDW) transition in Ru doped BaFeAs{sub 2} investigated by AC steady state calorimetry

    SciTech Connect

    Vinod, K. Sharma, Shilpam; Sundar, C. S.; Bharathi, A.

    2015-06-24

    Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.

  18. Titration Techniques

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jerrold J.; Houston Jetzer, Kelly; Patani, Néha; Zimmerman, John; Zweerink, Gerald

    1995-07-01

    Significant attention is paid to the proper technique for reading a meniscus. Video shows meniscus-viewing techniques for colorless and dark liquids and the consequences of not reading a meniscus at eye level. Lessons are provided on approaching the end point, focusing on end point colors produced via different commonly used indicators. The concept of a titration curve is illustrated by means of a pH meter. Carefully recorded images of the entire range of meniscus values in a buret, pipet, and graduated cylinder are included so that you can show your students, in lecture or pre-lab discussion, any meniscus and discuss how to read the buret properly. These buret meniscus values are very carefully recorded at the rate of one video frame per hundredth of a milliliter, so that an image showing any given meniscus value can be obtained. These images can be easily incorporated into a computer-based multimedia environment for testing or meniscus-reading exercises. Two of the authors have used this technique and found the exercise to be very well received by their students. Video on side two shows nearly 100 "bloopers", demonstrating both the right way and wrong ways to do tasks associated with titration. This material can be used in a variety of situations: to show students the correct way to do something; to test students by asking them "What is this person doing wrong?"; or to develop multimedia, computer-based lessons. The contents of Titration Techniques are listed below: Side 1 Titration: what it is. A simple titration; Acid-base titration animation; A brief redox titration; Redox titration animation; A complete acid-base titration. Titration techniques. Hand technique variations; Stopcock; Using a buret to measure liquid volumes; Wait before reading meniscus; Dirty and clean burets; Read meniscus at eye level (see Fig. 1); Meniscus viewing techniques--light colored liquids; Meniscus viewing techniques--dark liquids; Using a magnetic stirrer; Rough titration

  19. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  20. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    PubMed Central

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  1. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  2. Three-phase ac-to-ac series-resonant power converter with a reduced number of thyristors

    SciTech Connect

    Klaassens, J.B.; de Beer, F. )

    1991-07-01

    This paper reports that ac-ac series-resonant converters have been proven to be functional and useful. Power pulse modulation with internal frequencies of tens of kHz and suited for multikilowatt power levels is applied to a series-resonant converter system for generating synthesized multiphase bipolar waveforms with reversible power flow and flow distortion. The use of a series-resonant circuit for power transfer and control obtains natural current commutation of the thyristors and the prevention of excessive stresses on components. Switches are required which have bidirectional current conduction and voltage blocking ability. The conventional series-resonant ac-ac converter applies a total for 24 anti-parallel thyristors. An alternative circuit configuration for the series-resonant ac-ac converter with only 12 thyristors is also presented. The alternative power circuit has three neutrals, related to the polyphase source, the load and the converter, which may be interconnected. If they are connected, the high-frequency component of the source and load currents will flow through the connection between the neutrals. The test results of a converter system generating three-phase sinusoidal input and output waveforms have demonstrated the significant aspects of this type of power interfaces.

  3. Ramp technique for dc partial discharge testing

    NASA Technical Reports Server (NTRS)

    Bever, R. S.

    1985-01-01

    The partial discharge (PD) data presently obtained by means of a stepwise ramp technique, for the cases of high voltage (HV) components and such resin-packaged HV devices as the Space Telescope's Faint Object Camera, is acquired separately on part-way ramps to rated voltage and on the intermediate voltage plateaus. For test specimens intended for dc service, this ramp method yields more data on insulation integrity than quiescent dc measurements, especially in the case of specimens of high resistivity which causes the discharge frequency to be deceptively low at constant dc voltage. During upward ramping the voltage distribution is capacitive, and the PD behavior resembles that of an ac test. Many more pulses are obtained in the voids without the heat otherwise generated by the application of 60-Hz ac. PD histograms are presented for various materials, with and without intentional defects.

  4. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    NASA Astrophysics Data System (ADS)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  5. [Tracheostomy techniques].

    PubMed

    Mieth, M; Schellhaaß, A; Hüttner, F J; Larmann, J; Weigand, M A; Büchler, M W

    2016-01-01

    Due to the comprehensive establishment of modern techniques, tracheostomy has become a routine procedure in intensive care units (ICU). The negative effects of prolonged translaryngeal intubation on the laryngeal and tracheal mucosa up to tracheal stenosis can be reduced by tracheostomy. Furthermore, long-term ventilation is facilitated; however, there is no clear evidence on the optimal timing of tracheostomy in critically ill patients. The specific indications and contraindications of surgical as well as percutaneous tracheostomy must be strictly observed for a safe and successful intervention. Exchanging the tracheostomy tube may lead to potentially dangerous situations especially after percutaneous tracheostomy. A standardized and structured approach is therefore recommended. PMID:26643155

  6. Separation techniques.

    PubMed

    Duke, T

    1998-10-01

    The past two years have seen continued development of capillary electrophoresis methods. The separation performance of flowable sieving media now equals, and in some respects exceeds, that provided by gels. The application of microfabrication techniques to separation science is gaining pace. There is a continuing trend towards miniaturization and integration of separation with preparative or analytical steps. Innovative separation methods based on microfabrication technology include electrophoresis in purpose-designed molecular sieves, dielectric, trapping using microelectrodes, and force-free motion in Brownian ratchets. PMID:9818184

  7. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  8. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  9. Vibration energy harvesting with polyphase AC transducers

    NASA Astrophysics Data System (ADS)

    McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko

    2016-04-01

    Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.

  10. ac electroosmotic pumping induced by noncontact external electrodes

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  11. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  12. AC propulsion system for an electric vehicle, phase 2

    NASA Astrophysics Data System (ADS)

    Slicker, J. M.

    1983-06-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  13. Muc5ac Mucin Expression During Rat Skin Development

    PubMed Central

    Ferretti, V.; Segal-Eiras, A.; Barbeito, C.G.; Croce, M.V.

    2015-01-01

    Some mucin genes have been detected during human embryonic and fetal organ development; however, little is known about mucin expression in epidermal development, neither in humans nor in other species. The present research was developed to explore Muc5ac skin expression during pre- and post-natal rat development. Immunohistochemistry (IHC), Western blotting (WB) and RT-PCR were employed. By IHC, Muc5ac protein was found early in embryonic epidermis from day 13 of gestation until seven days after birth when the surface epidermis became negative and the reaction was restricted to secreting sebum cells. In coincidence with IHC findings, WB analysis showed a band at approximately 200KDa at the same periods of development. Results were also confirmed by RT-PCR. Muc5ac expression in rat embryonic epidermis suggests that Muc5ac may play a protective role in embryonic skin previous to birth which may be replaced by pile covering. To our knowledge, this is the first report that confirmed Muc5ac expression during skin development. PMID:25820562

  14. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  15. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and

  16. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  17. ac conductance of surface layer in lithium tetraborate single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Park, Jong-Ho; Moon, Byung Kee; Seo, Hyo-Jin; Choi, Byung-Chun; Hwang, Yoon-Hwae; Kim, Hyung Kook; Kim, Jung Nam

    2003-12-01

    ac conductance for the electrode effect in Li2B4O7 single crystal was investigated by use of a coplanar electrode applied on the surface of a (001) plate. A coplanar electrode in this material more clearly shows conduction of the electrode effect than a conventional parallel planar electrode. The electrode effect in ac conductance is likely to be controlled by the surface layer, which is a poorly conductive depletion layer possibly filled with vacancies of lithium ions. We found that the surface layer is not locally distributed near the electrodes, but, rather, on the broad area of the surface (001) plane of the material. So we conclude that the electrode effect in ac conduction of Li2B4O7 single crystal is mainly due to the poor conductive surface layer distributed over the whole surface of the (001) plane and is not a secondary phase formed by reaction with the electrode material.

  18. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  19. Lamin A/C, laminopathies and premature ageing.

    PubMed

    Liu, Baohua; Zhou, Zhongjun

    2008-06-01

    Lamin A/C belongs to type V intermediate filaments and constitutes the nuclear lamina and nuclear matrix, where a variety of nuclear activities occur. Lamin A/C protein is firstly synthesized as a precursor and is further proteolytically processed by the zinc metallo-proteinase Ste24 (Zmpste24). Lamin A/C mutations cause a series of human diseases, collectively called laminopathies, the most severe of which is Hutchinson Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) which arises due to an unsuccessful maturation of prelamin A. Although the exact underlying molecular mechanisms are still poorly understood, genomic instability, defective nuclear mechanics and mechanotransduction, have been hypothesized to be responsible for laminopathy-based premature ageing. Removal of unprocessed prelamin A (progerin) or rescue of defective DNA repair could be potential therapeutic strategies for the treatment of HGPS in future. PMID:18366013

  20. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  1. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Nagendra, K.; Babu, G. Satish; Reddy, C. Narayana; Gowda, Veeranna

    2011-07-01

    Glasses in the system xLi2SO4-20Li2O-(80-x) [80P2O5-20V2O5] (5⩾x⩾20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li2SO4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aωs where `s' is the power law exponent. The ac conductivity found to increase with increase of Li2SO4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  2. Analysis of ac Surface Photovoltages in Accumulation Region

    NASA Astrophysics Data System (ADS)

    Munakata, Chusuke

    1988-05-01

    Equations for ac surface photovoltages (SPVs) excited with a chopped photon beam (PB) in the accumulation region are proposed for such semiconductors as silicon and germanium. Following the previously reported half-sided junction model for the depleted or inverted region, equations for photocurrent density and surface impedance per unit area have been newly deduced. When the surface potential is highly negative in p-type semiconductors, the maximum ac SPV in the accumulation region is limited by the conductance due to majority carrier diffusion flow. This is compared with the strong inversion region, where the mathematically maximum SPV depends upon the minority carrier diffusion flow. The voltage ratio between the two maximum ac SPVs is the same as that previously reported using the different models for dc SPVs excited with a continuous PB.

  3. ac susceptibility of chosen chromium compounds with noncollinear spin structure

    NASA Astrophysics Data System (ADS)

    Juszczyk, S.; Gogołowicz, M.

    1993-11-01

    Results from the preliminary ac susceptibility χ ac( T) measurements at H( rms)=80 A/ m and ƒ=1 kHz on the chosen chromate Zn 1- xA xCr 2Se 4 with noncollinear spin structure for A=Cu and Ga {2}/{3} are presented. From the temperature position peak of the in-phase (real, χ') part of the complex susceptibility the transition temperatures from a magnetically ordered phase to a paramagnetic one have been determined. The out-of-phase (imaginary of absorptive, χ″) peak is discussed in terms of different spin-lattice relaxation processes causing a dissipation of energy. A proposal that in both the real and imaginary part of the ac susceptibility a significant role can be played by a skin size effect is also presented.

  4. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  5. Encapsulation of α-Particle–Emitting 225Ac3+ Ions Within Carbon Nanotubes

    PubMed Central

    Matson, Michael L.; Villa, Carlos H.; Ananta, Jeyarama S.; Law, Justin J.; Scheinberg, David A.; Wilson, Lon J.

    2016-01-01

    225Ac3+ is a generator of α-particle–emitting radionuclides with 4 net α-particle decays that can be used therapeutically. Targeting 225Ac3+ by use of ligands conjugated to traditional bifunctional chelates limits the amount of 225Ac3+ that can be delivered. Ultrashort, single-walled carbon nanotubes (US-tubes), previously demonstrated as sequestering agents of trivalent lanthanide ions and small molecules, also successfully incorporate 225Ac3+. Methods Aqueous loading of both 225Ac3+ ions and Gd3+ ions via bath sonication was used to construct 225Ac@gadonanotubes (225Ac@GNTs). The 225Ac@GNTs were subsequently challenged with heat, time, and human serum. Results US-tubes internally loaded with both 225Ac3+ ions and Gd3+ ions show 2 distinct populations of 225Ac3+ ions: one rapidly lost in human serum and one that remains bound to the US-tubes despite additional challenge with heat, time, and serum. The presence of the latter population depended on cosequestration of Gd3+ and 225Ac3+ ions. Conclusion US-tubes successfully sequester 225Ac3+ ions in the presence of Gd3+ ions and retain them after a human serum challenge, rendering 225Ac@GNTs candidates for radioimmunotherapy for delivery of 225Ac3+ ions at higher concentrations than is currently possible for traditional ligand carriers. PMID:25931476

  6. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  7. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  8. Modeling and Correcting the Time-Dependent ACS PSF

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie

    2006-01-01

    The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.

  9. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  10. New techniques

    NASA Astrophysics Data System (ADS)

    Pisacane, V. L.

    1983-04-01

    Equipment, operations, calibration, and accuracy of existing positioning, geodetic, and gravimetric equipment are explored. Radio navigation and positioning systems now include OMEGA, LORAN, VOR, DME, TACAN, and LONAR. Dedicated positioning satellites comprise the Transit and Navstar systems, with positioning accuracies of 8 m available with the GPS. Missile tracking, particularly for submarine launched rockets, is accomplished with the Satrack satellite, which furnishes position and velocity accuracy to within 40 ft and 0.08 ft/sec, respectively. VLBI techniques permit sighting of astronomical objects to obtain 20 cm accuracy for pole positioning and 1 m/sec for earth rotation speeds. Methods have been devised to use portable equipment which compensates for refraction when using lasers and masers in ranging trials. NASA has established a fixed and mobile global laser tracking network to provide a ranging accuracy of 100 cm when employed with satellite and lunar reflectors. Lasers are also used for terrain contouring, aircraft ranging, and satellite altimetry. A free-fall gravimeter has been developed which involves dropping one reflector of a two-beam Michelson interferometer, yielding an accuracy of 10 microgal. It is noted that new standards are needed for the NASA Deep Space Network.

  11. Aligned Immobilization of Proteins Using AC Electric Fields.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2016-03-01

    Protein molecules are aligned and immobilized from solution by AC electric fields. In a single-step experiment, the enhanced green fluorescent proteins are immobilized on the surface as well as at the edges of planar nanoelectrodes. Alignment is found to follow the molecules' geometrical shape with their longitudinal axes parallel to the electric field. Simultaneous dielectrophoretic attraction and AC electroosmotic flow are identified as the dominant forces causing protein movement and alignment. Molecular orientation is determined by fluorescence microscopy based on polarized excitation of the proteins' chromophores. The chromophores' orientation with respect to the whole molecule supports X-ray crystal data. PMID:26779699

  12. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  13. L’acétaminophène chez les enfants

    PubMed Central

    Goldman, Ran D.

    2013-01-01

    Résumé Question Je suggère fréquemment aux parents d’utiliser de l’acétaminophène comme traitement de la fièvre et de la douleur pour leurs enfants. J’ai récemment reçu un enfant à mon cabinet qui s’est présenté avec une éruption cutanée sous forme de lésions en cibles une journée après avoir pris de l’acétaminophène. L’éruption s’est résorbée 3 jours après qu’on ait arrêté l’administration d’acétaminophène. L’acétaminophène comporte-t-elle des risques d’événements indésirables comme celui-ci? Réponse Comme les autres médicaments ou substances actives, les préparations d’acétaminophène pourraient poser des risques d’événements indésirables. Au cours des dernières années, on a procédé à une investigation concernant une association potentielle entre l’acétaminophène et l’asthme et la Food and Drug Administration des États-Unis a récemment publié un avertissement à propos de réactions cutanées éventuelles, graves mais rares, associées à l’acétaminophène. Même si l’acétaminophène est principalement un médicament sûr, les professionnels de la santé devraient être alertes et informer les parents à propos de la possibilité d’événements indésirables rares mais sévères.

  14. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  15. Interplay between electron overheating and ac Josephson effect

    NASA Astrophysics Data System (ADS)

    De Cecco, A.; Le Calvez, K.; Sacépé, B.; Winkelmann, C. B.; Courtois, H.

    2016-05-01

    We study the response of high-critical-current proximity Josephson junctions to a microwave excitation. Electron overheating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron overheating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron overheating is obtained.

  16. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  17. Dynamically tuned high-Q AC-dipole implementation

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, W.C.; Meng, W.; Mernick, K.; Pai, C.; Roser, T.; Russo, T.

    2010-05-02

    AC-dipole magnets are typically implemented as a parallel LC resonant circuit. To maximize efficiency, it's beneficial to operate at a high Q. This, however, limits the magnet to a narrow frequency range. Current designs therefore operate at a low Q to provide a wider bandwidth at the cost of efficiency. Dynamically tuning a high Q resonant circuit tries to maintain a high efficiency while providing a wide frequency range. The results of ongoing efforts at BNL to implement dynamically tuned high-Q AC dipoles will be presented.

  18. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  19. Dynamic conductivity of ac-dc-driven graphene superlattice

    NASA Astrophysics Data System (ADS)

    Kukhar', E. I.; Kryuchkov, S. V.; Ionkina, E. S.

    2016-06-01

    The dynamic conductivity of graphene superlattice in the presence of ac electric field and dc electric field with longitudinal and transversal components with respect to superlattice axis was calculated. In the case of strong transversal component of dc field conductivity of graphene superlattice was shown to be such as if the electrons had got the effective mass. In the case of weak transversal component of dc field conductivity was shown to change its sign if the frequency of ac field was an integer multiple of half of Bloch frequency.

  20. Characterization of pili associated with Escherichia coli O18ac.

    PubMed Central

    Wevers, P; Picken, R; Schmidt, G; Jann, B; Jann, K; Golecki, J R; Kist, M

    1980-01-01

    A strain of Escherichia coli O18ac isolated from the stool sample of a patient with diarrhea was found to agglutinate human erythrocytes. From the results presented it is suggested that this hemagglutination is mediated by pili. Isolated pilus preparations agglutinated human erythrocytes, whereas pilus-negative mutants did not. The serological and chemical analyses indicate that the pili associated with E. coli O18ac are distinct from other types found with E. coli. Images Fig. 1 Fig. 2 Fig. 3 PMID:6111534