Science.gov

Sample records for ac dielectrophoresis technique

  1. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    SciTech Connect

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-08-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.

  2. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles

    PubMed Central

    Walid Rezanoor, Md.; Dutta, Prashanta

    2016-01-01

    Electrorotation is widely used for characterization of biological cells and materials using a rotating electric field. Generally, multiphase AC electric fields and quadrupolar electrode configuration are needed to create a rotating electric field for electrorotation. In this study, we demonstrate a simple method to rotate dielectrophoretically trapped microparticles using a stationary AC electric field. Coplanar interdigitated electrodes are used to create a linearly polarized nonuniform AC electric field. This nonuniform electric field is employed for dielectrophoretic trapping of microparticles as well as for generating electroosmotic flow in the vicinity of the electrodes resulting in rotation of microparticles in a microfluidic device. The rotation of barium titanate microparticles is observed in 2-propanol and methanol solvent at a frequency below 1 kHz. A particle rotation rate as high as 240 revolutions per minute is observed. It is demonstrated that precise manipulation (both rotation rate and equilibrium position) of the particles is possible by controlling the frequency of the applied electric field. At low frequency range, the equilibrium positions of the microparticles are observed between the electrode edge and electrode center. This method of particle manipulation is different from electrorotation as it uses induced AC electroosmosis instead of electric torque as in the case of electrorotation. Moreover, it has been shown that a microparticle can be rotated along its own axis without any translational motion. PMID:27014394

  3. Development of dielectrophoresis separator with an insulating porous membrane using DC-Offset AC Electric Fields.

    PubMed

    Hakoda, Masaru

    2016-09-01

    Our previous studies revealed that the dielectrophoresis method is effective for separating cells having different dielectric properties. The purpose of this study was to evaluate the separation characteristics of two kinds of cells by direct current (DC) voltage offset/alternating current (AC) voltage using an insulating porous membrane dielectrophoretic separator. The separation device gives dielectrophoretic (DEP) force and electrophoretic (EP) force to dispersed particles by applying the DC-offset AC voltage. This device separates cells of different DEP properties by adopting a structure in which only the parallel plate electrodes and the insulating porous membrane are disposed in the flow path through which the cell-suspension flows. The difference in the retention ratios of electrically homogeneous 4.5 μm or 20.0 μm diameter standard particles was a maximum of 82 points. Furthermore, the influences of the AC voltage or offset voltage on the retention ratios of mouse hybridoma 3-2H3 cells and horse red blood cells (HRBC) were investigated. The difference in the retention ratio of the two kinds of cells was a maximum of 56 points. The separation efficiency of this device is expected to be improved by changing the device shape, number of pores, and pore placement. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1292-1300, 2016.

  4. Two-dimensional mapping of dielectrophoresis force and AC electro-osmosis flow

    NASA Astrophysics Data System (ADS)

    Wang, Jingyu; Ou-Yang, H. D.

    2010-03-01

    In an AC electric field, colloids in an aqueous suspension are subjected to different electrokinetic forces. Charged particles will experience a frequency dependent dielectrophoresis (DEP) force due to the polarizability response of the associated double layers, causing particle movement. At the cross-over frequency when the double layers cannot fully respond to the field, this force tends to zero. For free ions in solution, Coulomb forces exerted on them near the electrodes can produce fluid flows through AC-electro-osmosis (ACEO). As DEP and ACEO depend quadratically on the field strength, it is difficult to distinguish the contribution of each force exerted on a particle. To differentiate DEP and ACEO, we used optical tweezers to track individual particle motion to pin-point the DEP cross-over frequencies at locations where ACEO is negligible. We then mapped out the ACEO flow patterns at the cross-over frequency of zero DEP force. Moreover, as the cross-over frequency was a function of particle size, we were able to determine the scaling of the ACEO flow with the applied field frequency.

  5. DNA dielectrophoresis: Theory and applications a review.

    PubMed

    Viefhues, Martina; Eichhorn, Ralf

    2017-03-17

    Dielectrophoresis is the migration of an electrically polarizable particle in an inhomogeneous electric field. This migration can be exploited for several applications with (bio)molecules or cells. Dielectrophoresis is a non-invasive technique; therefore, it is very convenient for (selective) manipulation of (bio)molecules or cells. In this review, we will focus on DNA dielectrophoresis as this technique offers several advantages in trapping and immobilization, separation and purification, and analysis of DNA molecules. We present and discuss the underlying theory of the most important forces that have to be considered for applications with dielectrophoresis. Moreover, a review of DNA dielectrophoresis applications is provided to present the state-of-the-art and to offer the reader a perspective of the advances and current limitations of DNA dielectrophoresis. This article is protected by copyright. All rights reserved.

  6. 2-Dimensional MEMS dielectrophoresis device for osteoblast cell stimulation.

    PubMed

    Zou, H; Mellon, S; Syms, R R A; Tanner, K E

    2006-12-01

    A fixed microelectrode device for cell stimulation has been designed and fabricated using micro-electro-mechanical systems (MEMS) technology. Dielectrophoretic forces obtained from non-uniform electric fields were used for manipulating and positioning osteoblasts. The experiments show that the osteoblasts experience positive dielectrophoresis (p-DEP) when suspended in iso-osmotic culture medium and exposed to AC fields at 5 MHz frequency. Negative dielectrophoresis (n-DEP) is obtained at 0.1 MHz. The viability of osteoblasts under dielectrophoresis has been investigated. The viability values for cells exposed to DEP are nearly three times higher than the control values, indicating that dielectrophoresis may have an anabolic effect on osteoblasts.

  7. Dielectrophoresis for Bioparticle Manipulation

    PubMed Central

    Qian, Cheng; Huang, Haibo; Chen, Liguo; Li, Xiangpeng; Ge, Zunbiao; Chen, Tao; Yang, Zhan; Sun, Lining

    2014-01-01

    As an ideal method to manipulate biological particles, the dielectrophoresis (DEP) technique has been widely used in clinical diagnosis, disease treatment, drug development, immunoassays, cell sorting, etc. This review summarizes the research in the field of bioparticle manipulation based on DEP techniques. Firstly, the basic principle of DEP and its classical theories are introduced in brief; Secondly, a detailed introduction on the DEP technique used for bioparticle manipulation is presented, in which the applications are classified into five fields: capturing bioparticles to specific regions, focusing bioparticles in the sample, characterizing biomolecular interaction and detecting microorganism, pairing cells for electrofusion and separating different kinds of bioparticles; Thirdly, the effect of DEP on bioparticle viability is analyzed; Finally, the DEP techniques are summarized and future trends in bioparticle manipulation are suggested. PMID:25310652

  8. Dielectrophoresis of Functional Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Froude, Victoria; Zhu, Yingxi Elaine

    2008-03-01

    Recently, there has been an emerging interest in using AC-dielectrophoresis (DEP) to transport and assemble phospholipid vesicles (liposomes) and nanoparticles to form functional bio-assemblies where the underlying charge polarization mechanism of colloids in AC fields strongly depends on nano-scaled surface charge. In this work, we study liposomes segregation and aggregation in the presence of nanocolloids and salts in which the biological functionality of liposomes is augmented by the physical functionality of inorganic coating and particles. Liposomes, synthesized by sonication with 1,2-Dioleoyl-sn-Glycero-3-Phosphate (DOPA), are manipulated at varied AC-field frequencies across fabricated micro-electrodes in a quadrapole configuration on glass. We observe the co-assembly of liposome and opposite-charged nanocolloids by confocal microscopy and SEM, where the smaller nanocolloids are captured in between liposome junctions to form stabilized composite vesicles at several distinct frequencies. We observe a strong dependence of the liposome DEP mobility on the number of nanoparticles present in suspension and propose a new mechanism based on charge segregation and charged nanocolloid entrainment in the double layer.

  9. Sperm cells manipulation employing dielectrophoresis.

    PubMed

    Rosales-Cruzaley, E; Cota-Elizondo, P A; Sánchez, D; Lapizco-Encinas, Blanca H

    2013-10-01

    Infertility studies are an important growing field, where new methods for the manipulation, enrichment and selection of sperm cells are required. Microfluidic techniques offer attractive advantages such as requirement of low sample volume and short processing times in the range of second or minutes. Presented here is the application of insulator-based dielectrophoresis (iDEP) for the enrichment and separation of mature and spermatogenic cells by employing a microchannel with cylindrical insulating structures with DC electric potentials in the range of 200-1500 V. The results demonstrated that iDEP has the potential to concentrate sperm cells and distinguish between mature and spermatogenic cells by exploiting the differences in shape which lead to differences in electric polarization. Viability assessments revealed that a significant percentage of the cells are viable after the dielectrophoretic treatment, opening the possibility for iDEP to be developed as a tool in infertility studies.

  10. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing

    PubMed Central

    Siebman, Coralie; Velev, Orlin D.; Slaveykova, Vera I.

    2015-01-01

    An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm−1, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10−5 M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment. PMID:26083806

  11. Three dimensional microelectrode system for dielectrophoresis

    DOEpatents

    Dehlinger, Dietrich A.; Rose, Klint A.; Shusteff, Maxim; Bailey, Christopher G.; Mariella, Jr., Raymond P.

    2013-09-03

    A dielectrophoresis apparatus for separating particles from a sample, including an apparatus body; a dielectrophoresis channel in the apparatus body, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a first electrode extending along the first mesa; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa extending at an angle to the central axis of the dielectrophoresis channel; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode.

  12. An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation.

    PubMed

    Han, Song-I; Joo, Young-Don; Han, Ki-Ho

    2013-03-07

    This paper presents an effective electrorotation technique for measuring the dielectric properties of cells using a superposed electrical signal, which can simultaneously generate negative quadrupolar dielectrophoretic (nQDEP) force and electrorotational (ROT) torque. The proposed technique involves a three-dimensional (3D) octode, which includes four electrodes arranged in a crisscross pattern on the top and bottom of a microchannel, respectively. A single cell was trapped in the center of the 3D octode by the nQDEP force and simultaneously rotated by the ROT torque. Using the proposed electrorotation technique, ROT spectra of human leukocyte subpopulations (T and B lymphocytes, granulocytes, and monocytes) and metastatic human breast (SkBr3) and lung (A549) cancer cell lines were accurately measured without any disturbance. Torque on the cells generated by the ROT signal was analyzed theoretically based on the single-shell dielectric model for the cells. Furthermore, the dielectric properties of the cells, such as area-specific membrane capacitance and cytoplasm conductivity, were extracted using the measured ROT spectra and the analyzed torque.

  13. Positive dielectrophoresis and aggregation in suspensions of highly polarized particles subjected to high-gradient AC electric fields in macro-scale flow and microfluidics

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Khusid, Boris; Markarian, Nikolai

    2001-11-01

    The recent surge of activity in the area of electro-hydrodynamics of suspensions subjected to strong electric fields ( several kV/mm) is motivated not only by scientific curiosity but also by numerous technological applications from separation to filtration to microfluidics. We will present the results of theoretical and experimental studies of particle motions and segregation in a suspension subjected to high-gradient strong fields and shear. To study macro-scale electro-hydrodynamic phenomena in suspensions of highly polarized, heavy particles, we developed a setup in which a suspension flows through a channel rotating around a horizontal axis along with a special technique to energize the electrodes. At the rotation speed of several tens rpm, the buoyancy force averaged over the period of rotation equals zero whereas the centrifugal force appears to be negligibly small. Next we fabricated several electro-hydrodynamic microfluidics, each consisting of silicon and glass wafers bonded together and containing an array of 174 individually operated electric chambers (6 mm in length with the 3 mm X 30 um cross-section). These chambers are equipped with electrodes having the thickness of 2-um, 5-um, and 10-um. We found that the particle behavior in micro- and macro-flows appears to be quite similar and can be predicted by our theoretical models. The work was supported in parts by grants from NASA, the Office of Naval Research, and the New Jersey Commission on Science & Technology MEMS Initiative. The measurements of the suspension complex dielectric permittivity and the particle size distribution were conducted using the instrumentation of the NJIT W.M. Keck Foundation Laboratory for Electro-hydrodynamics of Suspensions.

  14. Dielectrophoresis for Biomedical Sciences Applications: A Review.

    PubMed

    Abd Rahman, Nurhaslina; Ibrahim, Fatimah; Yafouz, Bashar

    2017-02-24

    Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields.

  15. Dielectrophoresis for Biomedical Sciences Applications: A Review

    PubMed Central

    Abd Rahman, Nurhaslina; Ibrahim, Fatimah; Yafouz, Bashar

    2017-01-01

    Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields. PMID:28245552

  16. Continuous separation of colloidal particles using dielectrophoresis.

    PubMed

    Yunus, Nurul Amziah Md; Nili, Hossein; Green, Nicolas G

    2013-04-01

    Dielectrophoresis is the movement of particles in nonuniform electric fields and has been of interest for application to manipulation and separation at and below the microscale. This technique has the advantages of being noninvasive, nondestructive, and noncontact, with the movement of particle achieved by means of electric fields generated by miniaturized electrodes and microfluidic systems. Although the majority of applications have been above the microscale, there is increasing interest in application to colloidal particles around a micron and smaller. This paper begins with a review of colloidal and nanoscale dielectrophoresis with specific attention paid to separation applications. An innovative design of integrated microelectrode array and its application to flow-through, continuous separation of colloidal particles is then presented. The details of the angled chevron microelectrode array and the test microfluidic system are then discussed. The variation in device operation with applied signal voltage is presented and discussed in terms of separation efficiency, demonstrating 99.9% separation of a mixture of colloidal latex spheres.

  17. Rapid DNA Idetification by Dielectrophoresis of Nanocolloids

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary; Senapati, Satyajyoti; Gordon, Jason; Chang, Hsueh-Chia

    2008-03-01

    Due to their size and number, dispersed oligo-functionalized nanocolloids can reduce the diffusion length/docking time and increase the sensitivity of ssDNA hybridization reactions by orders of magnitude compared to immobilized probes. We find that, for long target ssDNAs, their docked conformation is a sensitive function of the nanocolloid size, surface charge, functionalized probe density and number of docked DNAs per bead. Three distinct conformations (collapsed, stretched and condensed) are detected via independent light scattering, Zeta potential, dielectrophoresis (DEP) and electron micrograph techniques. By optimizing the hybridization conditions to produce a stretched conformation, we are able to significantly change the DEP cross-over frequency of hybridized beads, thus allowing rapid label-free detection of hybridization by simple impedance techniques down to pM concentrations.

  18. Three dimensional microelectrode system for dielectrophoresis

    SciTech Connect

    Dehlinger, Dietrich A; Rose, Klint A; Shusteff, Maxim; Bailey, Christopher G; Mariella, Jr., Raymond P

    2014-12-02

    A dielectrophoresis method for separating particles from a sample, including a dielectrophoresis channel, the dielectrophoresis channel having a central axis, a bottom, a top, a first side, and a second side; a first mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the first mesa extending at an angle to the central axis of the dielectrophoresis channel; a second mesa projecting into the dielectrophoresis channel from the bottom and extending from the first side across the dielectrophoresis channel to the second side, the second mesa parallel to said first mesa; a space between at least one of the first electrode and the second side or the second electrode and the second side; and a gap between the first electrode and the second electrode, and pumping a recovery fluid through said gap between said first electrode and into said space between at least one of said first mesa and said second side or said second mesa and said second side.

  19. Microfluidic mixing using contactless dielectrophoresis.

    PubMed

    Salmanzadeh, Alireza; Shafiee, Hadi; Davalos, Rafael V; Stremler, Mark A

    2011-09-01

    The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead capacitively coupled to the mixing chamber through thin dielectric barriers, which eliminates many of the problems encountered with standard DEP. Four system designs with rectangular and circular mixing chambers were fabricated in PDMS. Mixing tests were conducted for flow rates from 0.005 to 1 mL/h subject to an alternating current signal range of 0-300 V at 100-600 kHz. When the time scales of the bulk fluid motion and the DEP motion were commensurate, rapid mixing was observed. The rectangular mixing chambers were found to be more efficient than the circular chambers. This approach shows potential for mixing low diffusivity biological samples, which is a very challenging problem in laminar flows at small scales.

  20. Tailoring particle translocation via dielectrophoresis in pore channels

    PubMed Central

    Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji

    2016-01-01

    Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification. PMID:27527126

  1. Tailoring particle translocation via dielectrophoresis in pore channels

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji; Tsutsui, Makusu; Theodore, Hu; Yuhui, He; Arima, Akihide; Tsuji, Tetsuro; Doi, Kentaro; Kawano, Satoyuki; Taniguchi, Masateru; Kawai, Tomoji

    2016-08-01

    Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification.

  2. Submicron particle trapping using traveling wave dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lungu, M.; Giugiulan, R.; Bunoiu, M.; Strambeanu, N.; Neculae, A.

    2013-11-01

    The manipulation of the submicron particles suspended in various fluid media using dielectrophoresis in microchannels with interdigitated electrodes had brought recently considerable attention in many scientific areas, both because of their various applications in industry or medicine and because of their harmful effects for human health when inhaled. The dielectrophoresis resulting from an electric field phase gradient is called "traveling wave dielectrophoresis". This paper analyses the behavior of a submicron particle suspension in a dense and viscous fluid under dielectrophoresis. The manipulation and controlled spatial separation of submicron particle suspensions is performed by a combination of dielectrophoretic (DEP) and traveling wave dielectrophoretic (twDEP) forces. The theoretical background, together with a set of numerical results obtained in the frame of a mathematical model (DEP and twDEP forces, particle trajectories and concentration profiles) in a separation micro system, were presented. The numerical solutions computed by the finite element method give important information for the optimization of the experimental setup.

  3. Combined impedance and dielectrophoresis portable device for point-of-care analysis

    NASA Astrophysics Data System (ADS)

    del Moral Zamora, B.; Colomer-Farrarons, J.; Mir-Llorente, M.; Homs-Corbera, A.; Miribel-Català, P.; Samitier-Martí, J.

    2011-05-01

    In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.

  4. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis.

    PubMed

    Alazzam, Anas; Stiharu, Ion; Bhat, Rama; Meguerditchian, Ari-Nareg

    2011-06-01

    In this paper, a method for continuous flow separation of circulating malignant cells from blood in a microfluidic device using dielectrophoresis is discussed. Separation of MDA231 breast cancer cells after mixing with normal blood cells was achieved with a level of accuracy that enabled precise counting of the malignant cells, separation and eventually, sub-culturing. MDA231 cells were separated from the blood to a daughter channel using two pairs of interdigitated activated comb-like electrode structures. All experiments are performed with conductivity adjusted medium samples. The electrode pairs were positioned divergent and convergent with respect to the flow. The AC signals used in the separation are 20 V peak-to-peak with frequencies of 10-50 kHz. The separation is based on balance of magnitude of the dielectrophoretic force and hydrodynamic force. The difference in response between circulating malignant cells and normal cells at a certain band of alternating current frequencies was used for rapid separation of cancer cells from blood. The significance of these experimental results is discussed in this paper, with detailed reporting on the suspension medium, preparation of cells, flow condition and the fabrication process of the microfluidic chip. The present technique could potentially be applied to identify incident cancer at a stage and size that is not yet detectable by standard diagnostic techniques (imaging and biochemical testing). Alternatively, it may also be used to detect cancer recurrences.

  5. Dielectrophoresis of particles on the nanometer scale

    NASA Astrophysics Data System (ADS)

    Hughes, Michael

    2003-03-01

    Dielectrophoresis is the phenomenon of force induced on particles suspended in non-uniform electric fields, the magnitude and direction of that force being dependent on such factors as the dielectric properties of particle and medium, and the frequency and magnitude of the applied electric field (Pohl 1978). Dielectrophoresis has been well-characterised over many years for particles on the micrometer scale such as cells. However, as the size of the particle is reduced below the micrometer scale, so other effects begin to dominate the dielectrophoretic response. In fact, for many years, manipulation of nanoparticles was presumed impossible because of the influence of effects such as the action of Brownian motion, electrohydrodynamic forces, high electric field gradients, the dominance of the motion of charges across the surface of the particle and the dielectric properties of the electrical double layer. However, experimental work in the last decade has shown that in fact, dielectrophoresis can be performed on particles down to molecular scale. By understanding the physics underlying the dielectrophoresis of nanoparticles, it is possible to determine the surface properties of such particles, as well as to separate them and manipulate them for particle detection (Hughes 2002). This technology may ultimately have a range of applications, from enhancing biosensors to detect viral bioterrorist attack, to the manipulation of molecules and DNA, and the ultimate goal of single molecule manipulation for nanotechnology. REFERENCES: Pohl, H. A. (1978) Dielectrophoresis (Cambridge; Cambridge University Press) Hughes, M. P (2002) Nanoelectromechanics in Engineering and Biology (Boca Raton; CRC Press)

  6. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    PubMed

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  7. Multi-stage separations based on dielectrophoresis

    DOEpatents

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  8. Electrodeless dielectrophoresis for DNA trapping and cell separation

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Fu

    2003-03-01

    To move and concentrate molecules in a micro- or nano-fluidic environment is a great challenge in Lab-on-a-Chip systems. Dielectrophoresis (DEP) provides such a capability in translating dielectric objects caused by polarization effects in a nonuniform electric field. In the context of DEP, an electrically polarizable object will be trapped in a region of a focused electric field, provided there is sufficient dielectric response to overcome thermal energy and the electrophoretic force. Typically DEP trapping of biological objects (DNA, cells, virus, etc.) is carried out via microfabricated metal electrodes on a substrate. The standard way to make a DEP trap is to create an electric field gradient with an arrangement of planar metallic electrodes either directly connected to a voltage source or free- floating in the presence of an AC field. Here we constructed an array of dielectric traps ("electrodeless" dielectrophoresis, EDEP) [1] composed of geometrical constrictions defined by photo and soft lithography. The constriction is used to squeeze the electric field in ionic buffer, thereby creating a high field gradient with a local maximum. I will discuss the advantages of the EDEP over the metallic DEP technology and give examples of EDEP for DNA focusing and the separation of bacterial cells (E. Coli) from blood sample in various salt concentrations. Many folds of concentration enhancement may be achieved in a matter of seconds. This technology promises broad applications in a micro-total analysis system. [1] C.F. Chou, J.O. Tegenfeldt, O. Bakajin, S.S. Chan, E.C. Cox, N. Darnton, T.A.J. Duke, R.H. Austin, Biophys. J. 83, 2170-2179 (2002).

  9. An AC electrokinetic method for enhanced detection of DNA nanoparticles.

    PubMed

    Krishnan, Rajaram; Heller, Michael J

    2009-04-01

    In biomedical research and diagnostics it is a challenge to isolate and detect low levels of nanoparticles and nanoscale biomarkers in blood and other biological samples. While highly sensitive epifluorescent microscope systems are available for ultra low level detection, the isolation of the specific entities from large sample volumes is often the bigger limitation. AC electrokinetic techniques like dielectrophoresis (DEP) offer an attractive mechanism for specifically concentrating nanoparticles into microscopic locations. Unfortunately, DEP requires significant sample dilution thus making the technology unsuitable for biological applications. Using a microelectrode array device, special conditions have been found for the separation of hmw-DNA and nanoparticles under high conductance (ionic strength) conditions. At AC frequencies in the 3000-10 000 Hz range, 10 mum microspheres and human T lymphocytes can be isolated into the DEP low field regions, while hmw-DNA and nanoparticles can be concentrated into microscopic high field regions for subsequent detection using an epifluorescent system.

  10. Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Olariu, Marius; Arcire, Alexandru; Plonska-Brzezinska, Marta E.

    2017-01-01

    Manipulation of onion-like carbon (OLC), also known as carbon nano-onions (CNOs), at the level of various arrays of microelectrodes is vital in practical applications such as biological and chemical sensing, ultracapacitors (supercapacitors), electromagnetic shielding, catalysis, tribology, optical limiting and molecular junctions in scanning tunneling microscopy, and field-effect transistors. In spite of technological developments in this area, rigorous handling of carbon nano-onions towards desired locations within a device remains a challenge, and the quantity of OLC required significantly influences the price of the final electrical or electronic device. We present herein an experimental study on electromanipulation and trapping of onion-like carbon (OLC) at the level of gold-patterned interdigitated microelectrodes through dielectrophoresis. The influence of the magnitude as well as frequency of the alternating-current (AC) voltage employed for OLC trapping is discussed in detail. The effects of tuning the AC field strength and frequency on the OLC trapping behavior are also considered.

  11. Dielectrophoresis and its application to biomedical diagnostics platforms

    NASA Astrophysics Data System (ADS)

    Basuray, Sagnik

    Novel pathogenic diagnostics and on field devices to attest their growth have been the current norm of scientific research and curiosity. Microfluidics and Nanofluidics have recently been on the forefront of the development of these devices for their inherent advantages of large surface to volume ratio and small diffusion times. With the advancement of soft lithographic techniques, the devices can be easily adapted for medical systems and bio-diagnostic devices to study mechanistic pathways of bio-molecules, bio-chemical reactions and as delivery modules for drug. However, the lack of better sensors, other than optics, to detect low bio-particle numbers in real samples have made the instruments bulky, expensive and not suitable for field use. Thus there is an urgent need to develop label-free, portable, inexpensive, rapid diagnostic devices. In order to achieve a viable device, researchers in these fields have been using dielectrophoresis as the mechanism of choice for a variety of tasks, from particle manipulation, to delivery, to movement of the particles through the fluid. However, the exact physical mechanism for not only the dielectrophoresis of the colloidal assembly is unclear, but the dielectrophoresis of single bio-particles/charged nano-colloids is not understood fully. In this thesis, I present a theory for charged nano-colloid dielectrophoresis taking into account the surface charge and Debye double layer effects. The exact mechanism of the origin of the Stern layer, through the surface conductance effect of a nano-colloid to form a collapsed diffuse layer that renders a nano-colloid conductive at sub-optical frequency has been formulated. This effect is utilized to optimize a nano-colloid assay to detect DNA hybridization. The collapsed diffuse layer kinetics with thick diffuse layer is solved, using spherical harmonics of the Bessel solution of the Poisson equation, to give a modified Clausius-Mosotti factor, that accounts for the size dependent

  12. Fabrication of a 3 dimensional dielectrophoresis electrode by a metal inkjet printing method

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Yun, Gyu-Young; Koh, Yul; Lee, Sang-Ho; Kim, Yong-Kweon

    2013-12-01

    We proposed a micro electrode fabrication method by a metal inkjet printing technology for the bio-applications of dielectrophoresis (DEP). The electrodes are composed of bottom planar gold (Au) electrodes and three dimensional (3D) silver (Ag) electrodes fabricated locally on the Au electrode through metal inkjet printing. We observed the negative DEP characteristics of the 4 μm polystyrene beads on the both electrodes at the 500 kHz, AC 20 Vpp point. The number of beads trapped on the printed Ag electrode is 79 and 25 on the planar Au electrode because of spatially larger electric field in a 3D electrode system.

  13. Protein dielectrophoresis and the link to dielectric properties

    PubMed Central

    Camacho-Alanis, Fernanda; Ros, Alexandra

    2015-01-01

    There is a growing interest in protein dielectrophoresis (DEP) for biotechnological and pharmaceutical applications. However, the DEP behavior of proteins is still not well understood which is important for successful protein manipulation. In this paper, we elucidate the information gained in dielectric spectroscopy (DS) and electrochemical impedance spectroscopy (EIS) and how these techniques may be of importance for future protein DEP manipulation. EIS and DS can be used to determine the dielectric properties of proteins predicting their DEP behavior. Basic principles of EIS and DS are discussed and related to protein DEP through examples from previous studies. Challenges of performing DS measurements as well as potential designs to incorporate EIS and DS measurements in DEP experiments are also discussed. PMID:25697193

  14. A dielectrophoresis-impedance method for protein detection and analysis

    NASA Astrophysics Data System (ADS)

    Mohamad, Ahmad Sabry; Hamzah, Roszymah; Hoettges, Kai F.; Hughes, Michael Pycraft

    2017-01-01

    Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.

  15. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures.

    PubMed

    Henning-Knechtel, Anja; Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora; Mertig, Michael

    2016-01-01

    DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.

  16. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    PubMed Central

    Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora

    2016-01-01

    Summary DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  17. Dielectrophoresis of reverse phase emulsions.

    PubMed

    Flores-Rodriguez, N; Bryning, Z; Markx, G H

    2005-08-01

    Reverse miniemulsions, emulsions of droplets of size 200 nm-1 microm of a polar liquid dispersed in an apolar continuous liquid phase, exhibit strong electrokinetic responses in low-frequency electric fields. The electrokinetic behaviour of a reverse miniemulsion, previously developed for use as electronic paper, has been investigated under static and flow conditions, in uniform and non-uniform electric fields. Results reveal that when using frequencies lower than 10 Hz strong aggregation of the droplets occurs. In uniform electric fields, under static conditions, droplets reversibly aggregate into honeycomb-like or irregular aggregates. Under flow conditions, droplets aggregate into approximately equidistant streams. In non-uniform electric fields the droplets reversibly aggregate in high-field regions, and can be guided along regions of high field strength in a flow. The potential of the technique for the formation of structured materials is discussed.

  18. Nanoparticles trapping from flue gas using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Neculae, Adrian; Strambeanu, Nicolae; Lungu, Antoanetta; Bunoiu, Madalin; Lungu, Mihai

    2015-12-01

    The paper first presents a mathematical model which describes the effect of dielectrophoretic forces on the nanoparticles suspended in gaseous environment, together with a set of numerical results obtained in the frame of this model. Next, an experimental microfluidic device with interdigitated bar electrodes for retaining of nanometric particles from combustion gases under dielectrophoresis is described. The particles deposited on the electrodes of the experimental device are analysed using a reflection metallographic microscope with CCD camera together with a data analysis system. The experimental results are analysed in terms of a new trapping parameter, named as Filtration. Finally, a comparison between the theoretical results provided by numerical simulations and the experimental results on the deposition of nanoparticles on electrodes is given. The comparison demonstrates a good agreement between the two types of results.

  19. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  20. Discriminating dengue-infected hepatic cells (WRL-68) using dielectrophoresis.

    PubMed

    Yafouz, Bashar; Kadri, Nahrizul Adib; Rothan, Hussin A; Yusof, Rohana; Ibrahim, Fatimah

    2016-02-01

    Dielectrophoresis (DEP), the induced movement of dielectric particles placed in a nonuniform electric field, has been used as a potential technique for manipulation and separation of many biological samples without destructive consequences to the cell. Cells of the same genotype in different physiological and pathological states have unique morphological and structural features, therefore, it is possible to differentiate between them using their DEP responses. This paper reports the experimental discrimination of normal and dengue-infected human hepatic fetal epithelial cells (WRL-68 cells) based on their DEP crossover frequency, at which no resultant movement occurs in the cells in response to the DEP force. A microarray dot electrode was used to conduct the DEP experiments. The DEP forces applied to the cells were quantified by analyzing the light intensity shift within the electrode's dot region based on the Cumulative Modal Intensity Shift image analysis technique. The differences in dielectric properties between infected and uninfected cells were exploited by plotting a unique DEP spectrum for each set of cells. We observed that the crossover frequency decreased from 220 kHz for the normal WRL-68 cells to 140 kHz after infection with the dengue virus in a medium conductivity of 100 μS/cm. We conclude that the change in the DEP crossover frequency between dengue-infected cells and their healthy counterparts should allow direct characterization of these cell types by exploiting their electrophysiological properties.

  1. Round-tip dielectrophoresis-based tweezers for single micro-object manipulation.

    PubMed

    Kodama, Taiga; Osaki, Toshihisa; Kawano, Ryuji; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2013-09-15

    In this paper, we present an efficient methodology to manipulate a single micro-object using round-tip positive dielectrophoresis-based tweezers. The tweezers consist of a glass needle with a round-tip and a pair of thin gold-film electrodes. The round-tip, which has a radius of 3µm, is formed by melting a finely pulled glass needle and concentrates the electric field at the tip of the tweezers, which allows the individual manipulation of single micro-objects. The tweezers successfully captured, conveyed, and positioned single cell-sized liposomes with diameters of 5-23µm, which are difficult to manipulate with conventional manipulation methodologies, such as optical tweezers or glass micropipettes, due to the similarities between their optical properties and those of the media, as well as the ease with which they are deformed or broken. We used Stokes' drag theory to experimentally evaluate the positive dielectrophoresis (pDEP) force generated by the tweezers as a function of the liposome size, the content of the surrounding media, and the applied AC voltage and frequency. The results agreed with the theoretically deduced pDEP force. Finally, we demonstrated the separation of labeled single cells from non-labeled cells with the tweezers. This device can be used as an efficient tool for precisely and individually manipulating biological micro-objects that are typically transparent and flexible.

  2. Probing top-gated field effect transistor of reduced graphene oxide monolayer made by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Vasu, K. S.; Chakraborty, Biswanath; Sampath, S.; Sood, A. K.

    2010-08-01

    We demonstrate a top-gated field effect transistor made of a reduced graphene oxide (RGO) monolayer (graphene) by dielectrophoresis. The Raman spectrum of RGO flakes of typical size of 5 μm×5 μm shows a single 2D band at 2687 cm -1, characteristic of single-layer graphene. The two-probe current-voltage measurements of RGO flakes, deposited in between the patterned electrodes with a gap of 2.5 μm using ac dielectrophoresis, show ohmic behavior with a resistance of ˜37 kΩ. The temperature dependence of the resistance (R) of RGO measured between 305 K and 393 K yields a temperature coefficient of resistance [dR/dT]/R˜-9.5×10-4/K, the same as that of mechanically exfoliated single-layer graphene. The field-effect transistor action was obtained by electrochemical top-gating using a solid polymer electrolyte (PEO+LiClO 4) and Pt wire. The ambipolar nature of graphene flakes is observed up to a doping level of ˜6×1012/cm and carrier mobility of ˜50 cm 2/V s. The source-drain current characteristics show a tendency of current saturation at high source-drain voltage which is analyzed quantitatively by a diffusive transport model.

  3. Evaluation of genetically modified sugarcane lines carrying Cry 1AC gene using molecular marker techniques.

    PubMed

    Ismail, Roba M

    2013-01-01

    Five genetically modified insect resistant sugarcane lines harboring the Bt Cry 1AC gene to produce insecticidal proteins were compared with non-transgenic control by using three types of molecular marker techniques namely, RAPD, ISSR and AFLP. These techniques were applied on transgenic and non-transgenic plants to investigate the genetic variations, which may appear in sugarcane clones. This variation might demonstrate the genomic changes associated with the transformation process, which could change important molecular basis of various biological phenomena. Genetic variations were screened using 22 different RAPD primers, 10 ISSR primers and 13 AFLP primer combinations. Analysis of RAPD and ISSR banding patterns gave no exclusive evidence for genetic variations. Meanwhile, the percentage of polymorphic bands was 0.45% in each of RAPD and ISSR, while the polymorphism generated by AFLP analysis was 1.8%. The maximum percentage of polymorphic bands was 1.4%, 1.1% and 5.5% in RAPD, ISSR and AFLP, respectively. These results demonstrate that most transgenic lines showed genomic homogeneity and verified minor genomic changes. Dendrograms revealing the relationships among the transgenic and control plants were developed from the data of each of the three marker types.

  4. Marker-specific sorting of rare cells using dielectrophoresis

    PubMed Central

    Hu, Xiaoyuan; Bessette, Paul H.; Qian, Jiangrong; Meinhart, Carl D.; Daugherty, Patrick S.; Soh, Hyongsok T.

    2005-01-01

    Current techniques in high-speed cell sorting are limited by the inherent coupling among three competing parameters of performance: throughput, purity, and rare cell recovery. Microfluidics provides an alternate strategy to decouple these parameters through the use of arrayed devices that operate in parallel. To efficiently isolate rare cells from complex mixtures, an electrokinetic sorting methodology was developed that exploits dielectrophoresis (DEP) in microfluidic channels. In this approach, the dielectrophoretic amplitude response of rare target cells is modulated by labeling cells with particles that differ in polarization response. Cell mixtures were interrogated in the DEP-activated cell sorter in a continuous-flow manner, wherein the electric fields were engineered to achieve efficient separation between the dielectrophoretically labeled and unlabeled cells. To demonstrate the efficiency of marker-specific cell separation, DEP-activated cell sorting (DACS) was applied for affinity-based enrichment of rare bacteria expressing a specific surface marker from an excess of nontarget bacteria that do not express this marker. Rare target cells were enriched by >200-fold in a single round of sorting at a single-channel throughput of 10,000 cells per second. DACS offers the potential for automated, surface marker-specific cell sorting in a disposable format that is capable of simultaneously achieving high throughput, purity, and rare cell recovery. PMID:16236724

  5. Electrodeless dielectrophoresis: Impact of geometry and material on obstacle polarization.

    PubMed

    Pesch, Georg R; Kiewidt, Lars; Du, Fei; Baune, Michael; Thöming, Jorg

    2016-01-01

    Insulator-based (electrodeless) dielectrophoresis (iDEP) is a promising particle manipulation technique, based on movement of matter in inhomogeneous fields. The inhomogeneity of the field arises because the excitatory field distorts at obstacles (posts). This effect is caused by accumulation of polarization charges at material interfaces. In this study, we utilize a multipole expansion method to investigate the influence of geometry and material on field distortion of posts with arbitrary cross-sections in homogeneous electric fields applied perpendicular to the longitudinal axis of the post. The post then develops a multipole parallel or anti parallel to the excitatory field. The multipoles intensity is defined by the post's structure and material properties and directly influences the DEP particle trapping potential. We analyzed posts with circular and rhombus-shaped cross-sections with different cross-sectional width-to-height ratios and permittivities for their polarization intensity, multipole position, and their particle trapping behavior. A trade-off between high maximum field gradient and high coverage range of the gradient is presented, which is determined by the sharpness of the post's edges. We contribute to the overall understanding of the post polarization mechanism and expect that the results presented will help optimizing the structure of microchannels with arrays of posts for electrodeless DEP application.

  6. Joule heating effects on reservoir-based dielectrophoresis.

    PubMed

    Kale, Akshay; Patel, Saurin; Qian, Shizhi; Hu, Guoqing; Xuan, Xiangchun

    2014-03-01

    Reservoir-based dielectrophoresis (rDEP) is a recently developed technique that exploits the inherent electric field gradients at a reservoir-microchannel junction to focus, trap, and sort particles. However, the locally amplified electric field at the junction is likely to induce significant Joule heating effects that are not considered in previous studies. This work investigates experimentally and numerically these effects on particle transport and control in rDEP processes in PDMS/PDMS microchips. It is found that Joule heating effects can reduce rDEP focusing considerably and may even disable rDEP trapping. This is caused by the fluid temperature rise at the reservoir-microchannel junction, which significantly increases the local particle velocity due to fluid flow and particle electrophoresis while has a weak impact on the particle velocity due to rDEP. The numerical predictions of particle stream width and electric current, which are the respective indicators of rDEP manipulation and fluid temperature, are demonstrated to both match the experimental measurements with a good accuracy.

  7. Rapid microbead-based DNA detection using dielectrophoresis and impedance measurement

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Kasahara, Hiromichi; Suehiro, Junya

    2014-10-01

    Polymerase chain reaction (PCR) is a powerful tool for diagnostic procedures in bacterial and viral infections. The authors propose a new electrical technique for rapid detection of DNA amplified by PCR using dielectrophoresis (DEP) of microbeads. The method is based on dramatic alteration of DEP characteristics of microbeads caused by DNA labeling. DNA-labeled microbeads are trapped on a microelectrode under the action of positive DEP, whereas pristine ones are not. DEP-trapped microbeads are measured impedimetrically to realize rapid and quantitative detection of the amplified DNA. The validity of the proposed method was demonstrated by detection of PCR-amplified DNA of viruses.

  8. Separation of submicron bioparticles by dielectrophoresis.

    PubMed Central

    Morgan, H; Hughes, M P; Green, N G

    1999-01-01

    Submicron particles such as latex spheres and viruses can be manipulated and characterized using dielectrophoresis. By the use of appropriate microelectrode arrays, particles can be trapped or moved between regions of high or low electric fields. The magnitude and direction of the dielectrophoretic force on the particle depends on its dielectric properties, so that a heterogeneous mixture of particles can be separated to produce a more homogeneous population. In this paper the controlled separation of submicron bioparticles is demonstrated. With electrode arrays fabricated using direct write electron beam lithography, it is shown that different types of submicron latex spheres can be spatially separated. The separation occurs as a result of differences in magnitude and/or direction of the dielectrophoretic force on different populations of particles. These differences arise mainly because the surface properties of submicron particles dominate their dielectrophoretic behavior. It is also demonstrated that tobacco mosaic virus and herpes simplex virus can be manipulated and spatially separated in a microelectrode array. PMID:10388776

  9. Tuning direct current streaming dielectrophoresis of proteins

    PubMed Central

    Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra

    2012-01-01

    Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679

  10. Tuning direct current streaming dielectrophoresis of proteins.

    PubMed

    Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra

    2012-09-01

    Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP.

  11. Application of the A.C. Admittance Technique to Double Layer Studies on Polycrystalline Gold Electrodes

    DTIC Science & Technology

    1992-02-24

    Chemistry University of California Davis, CA 95616 U.S.A. tOn leave from the Instituto de Fisica e Quimica de Sao Carlos, USP, Sao Carlos, SP 13560...input of the PAR 174A through an attentuator. The attentuator was introduced in order to avoid signal noise from the a.c. signal generator which is...surface begins. A.C. Admittance Measurements A.C. admittance data were gathered as a function of d.c. potential and frequency. In general , the gold

  12. Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique

    NASA Astrophysics Data System (ADS)

    Kishore Babu, N.; Cross, C. E.

    2012-11-01

    The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.

  13. Comprehensive analysis of particle motion under non-uniform AC electric fields in a microchannel.

    PubMed

    Oh, Jonghyun; Hart, Robert; Capurro, Jorge; Noh, Hongseok Moses

    2009-01-07

    AC electrokinetics is rapidly becoming a foundational tool for lab-on-a-chip systems due to its versatility and the simplicity of the components capable of generating them. Predicting the behavior of fluids and particles under non-uniform AC electric fields is important for the design of next generation devices. Though there are several important phenomena that contribute to the overall behavior of particles and fluids, current predictive techniques consider special conditions where only a single phenomenon may be considered. We report a 2D numerical simulation, using COMSOL Multiphysics, which incorporates the three major AC electrokinetic phenomena (dielectrophoresis, AC electroosmosis and electrothermal effect) and is valid for a wide range of operational conditions. Corroboration has been performed using experimental conditions that mimic those of the simulation and shows good qualitative agreement. Furthermore, a broad range of experiments has been performed using four of the most widely reported devices under varying conditions in order to show their behavior as it relates to the simulation. The large number of experimental conditions reported, together with the comprehensive numerical simulation, will help provide guidelines for scientists and engineers interested in incorporating AC electrokinetics into their lab-on-a-chip systems.

  14. Fluidic Dielectrophoresis of Aqueous Electrical Interfaces

    NASA Astrophysics Data System (ADS)

    Gagnon, Zachary

    2014-11-01

    To date, alternating current (AC) electric fields have been exploited to dielectrophoretically manipulate bubbles, liquid drops, particles, biomolecules and cells. Research and applications in this area, however, has been primarily limited to the interfaces formed between two immiscible metal-liquid, particle-liquid, or gas-liquid surfaces on particles. The influence of AC electric fields across aqueous liquid-liquid interfaces remains relatively unexplored. Fundamentally, many electrokinetic phenomena arise from discontinuities in ionic flux and charge accumulation at electrical interfaces, and here I explore the influence of AC electric fields on the electrical interface created between two aqueous liquids with disparaging electrical properties Using a microfluidic channel with embedded electrodes, two fluid streams - one with a greater electrical conductivity, the other a greater dielectric constant - were made to flow side-by-side. An AC electric field was applied across the flow channel and fluid was observed to displace across the phase interface. The displacement direction is AC frequency dependent, and is attributed to the Maxwell-Wagner interfacial polarization at the liquid-liquid electrical interface. At low AC frequency, below the interfacial charge relaxation time, the high conductive stream is observed to displace into the high dielectric stream. Above this frequency, the direction of liquid injection reverses, and the high dielectric stream injects into the high conductivity stream. An analytical model is presented for this liquid crossover frequency, and applied towards biosensing applications.

  15. Dielectrophoresis device and method having insulating ridges for manipulating particles

    SciTech Connect

    Cummings, Eric B.; Fiechtner, Gregory J.

    2008-03-25

    Embodiments of the present invention provide methods and devices for manipulating particles using dielectrophoresis. Insulating ridges and valleys are used to generate a spatially non-uniform electrical field. Particles may be concentrated, separated, or captured during bulk fluid flow in a channel having insulating ridges and valleys.

  16. A portable and integrated instrument for cell manipulation by dielectrophoresis.

    PubMed

    Burgarella, Sarah; Di Bari, Marco

    2015-07-01

    The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications.

  17. Microtubule alignment and manipulation using AC electrokinetics.

    PubMed

    Uppalapati, Maruti; Huang, Ying-Ming; Jackson, Thomas N; Hancock, William O

    2008-09-01

    The kinesin-microtubule system plays an important role in intracellular transport and is a model system for integrating biomotor-driven transport into microengineered devices. AC electrokinetics provides a novel tool for manipulating and organizing microtubules in solution, enabling new experimental geometries for investigating and controlling the interactions of microtubules and microtubule motors in vitro. By fabricating microelectrodes on glass substrates and generating AC electric fields across solutions of microtubules in low-ionic-strength buffers, bundles of microtubules are collected and aligned and the electrical properties of microtubules in solution are measured. The AC electric fields result in electro-osmotic flow, electrothermal flow, and dielectrophoresis of microtubules, which can be controlled by varying the solution conductivity, AC frequency, and electrode geometry. By mapping the solution conductivity and AC frequency over which positive dielectrophoresis occurs, the apparent conductivity of taxol-stabilized bovine-brain microtubules in PIPES buffer is measured to be 250 mS m(-1). By maximizing dielectrophoretic forces and minimizing electro-osmotic and electrothermal flow, microtubules are assembled into opposed asters. These experiments demonstrate that AC electrokinetics provides a powerful new tool for kinesin-driven transport applications and for investigating the role of microtubule motors in development and maintenance of the mitotic spindle.

  18. Cytoplasm resistivity of mammalian atrial myocardium determined by dielectrophoresis and impedance methods.

    PubMed

    Fry, Christopher H; Salvage, Samantha C; Manazza, Alessandra; Dupont, Emmanuel; Labeed, Fatima H; Hughes, Michael P; Jabr, Rita I

    2012-12-05

    Many cardiac arrhythmias are caused by slowed conduction of action potentials, which in turn can be due to an abnormal increase of intracellular myocardial resistance. Intracellular resistivity is a linear sum of that offered by gap junctions between contiguous cells and the cytoplasm of the myocytes themselves. However, the relative contribution of the two components is unclear, especially in atrial myocardium, as there are no precise measurements of cytoplasmic resistivity, R(c). In this study, R(c) was measured in atrial tissue using several methods: a dielectrophoresis technique with isolated cells and impedance measurements with both isolated cells and multicellular preparations. All methods yielded similar values for R(c), with a mean of 138 ± 5 Ω·cm at 23°C, and a Q(10) value of 1.20. This value is about half that of total intracellular resistivity and thus will be a significant determinant of the actual value of action potential conduction velocity. The dielectrophoresis experiments demonstrated the importance of including divalent cations (Ca(2+) and Mg(2+)) in the suspension medium, as their omission reduced cell integrity by lowering membrane resistivity and increasing cytoplasm resistivity. Accurate measurement of R(c) is essential to develop quantitative computational models that determine the key factors contributing to the development of cardiac arrhythmias.

  19. Dielectrophoresis-Based Double-Emulsion Droplet Centering for Concentric Laser Target Foam Shells

    NASA Astrophysics Data System (ADS)

    Bei, Zongmin

    Cryogenic laser targets used for inertial confinement fusion experiments are prepared from hollow, low-density polymer foam shells. For effective implosion, these foam shells must meet very rigid requirements on their dimensions. They must be concentric within ≤ 5% of the average shell thickness and the inner surface root-mean-square (RMS) roughness must be on the scale of microns. In this dissertation, a voltage-controlled scheme for centering double-emulsion droplets is developed based on dielectrophoresis (DEP). This technique has potential application in a scalable microfluidic assembly-line process for the formation of highly concentric foam shells for laser targets. The DEP centering effect, utilizing a uniform AC electric field, originates from the interactions between the induced dipoles of the inner droplet and the surrounding liquid . Double-emulsion droplets can be centered only when the dielectric constant of the outer shell is higher than that of the suspension medium. The dielectric constant of the inner droplet has no effect on the centering stability. The AC frequency of the applied electric field must be sufficiently high (˜20 MHz) to overcome electrostatic shielding due to the electrical conductivity (>10-3 S/m) of the liquid forming the outer shell. To minimize gravity and buoyancy, the densities of the liquids must be closely matched to ˜0.1%. Preliminary demonstration of the centering effect was performed with a thin ITO glass plate to support the droplets midway between the two parallel electrodes. Fairly good centering results for 3˜6 mm diameter droplets were obtained within ˜60 s using an electric field of magnitude >10 4 V/m in liquids of viscosity ˜10 centipoise. The physical support, however, caused a systematic ˜10% vertical offset between the two centers. The droplets also exhibited some distortion on the lower side adjacent to the glass plate. To reduce these offset and distortion problems, double-emulsion droplets were

  20. Cell patterning via diffraction-induced optoelectronic dielectrophoresis force on an organic photoconductive chip.

    PubMed

    Yang, Shih-Mo; Tseng, Sheng-Yang; Chen, Hung-Po; Hsu, Long; Liu, Cheng-Hsien

    2013-10-07

    A laser diffraction-induced dielectrophoresis (DEP) phenomenon for the patterning and manipulation of individual HepG2 cells and polystyrene beads via positive/negative DEP forces is reported in this paper. The optoelectronic substrate was fabricated using an organic photoconductive material, TiOPc, via a spin-coating process on an indium tin oxide glass surface. A piece of square aperture array grid grating was utilized to transform the collimating He-Ne laser beam into the multi-spot diffraction pattern which forms the virtual electrodes as the TiOPc-coating surface was illuminated by the multi-spot diffraction light pattern. HepG2 cells were trapped at the spot centers and polystyrene beads were trapped within the dim region of the illuminated image. The simulation results of light-induced electric field and a Fresnel diffraction image illustrated the distribution of trapped microparticles. The HepG2 morphology change, adhesion, and growth during a 5-day culture period demonstrated the cell viability through our manipulation. The power density inducing DEP phenomena, the characteristics of the thin TiOPc coating layer, the operating ac voltage/frequency, the sandwiched medium, the temperature rise due to the ac electric fields and the illuminating patterns are discussed in this paper. This concept of utilizing laser diffraction images to generate virtual electrodes on our TiOPc-based optoelectronic DEP chip extends the applications of optoelectronic dielectrophoretic manipulation.

  1. Contact properties and surface reaction kinetics of single ZnO nanowire devices fabricated by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Pau, J. L.; García Núñez, C.; García Marín, A.; Guerrero, C.; Rodríguez, P.; Borromeo, S.; Piqueras, J.

    2014-03-01

    This work describes the development of ZnO nanowire (NW) devices for ultraviolet detection and cost-effective gas sensing. A dielectrophoresis (DEP) flow cell fabricated for the integration of NWs on different substrates is presented. The system includes the possibility to set characteristic parameters such as alternating current (AC) frequency, amplitude or flow speed in order to control NW trapping on specific sites defined by micro-gapped electrodes. The electrical characteristics of the rectifying metal/NW contact fabricated by DEP are investigated in darkness and under direct illumination of the metal-NW interface through the ZnO NW. A significant downshift of the turn-on voltage is observed in the current-voltage characteristics during the illumination with photon energies higher than the ZnO bandgap. The reduction is attributed to a barrier height lowering induced by interface charge emission. The effects of AC bias on the thermal drift of the DC average current in NW devices are also discussed. Finally, the reaction kinetics of ethanol and water vapors on the NW surface are compared through the analysis of the DC current under direct exposure to gas flows. Device responses to more complex compound mixtures such as coffee or mint are also monitored over time, showing different performance in both cases.

  2. Dielectric model for Chinese hamster ovary cells obtained by dielectrophoresis cytometry

    PubMed Central

    Salimi, E.; Braasch, K.; Butler, M.; Thomson, D. J.

    2016-01-01

    We present a dielectric model and its parameters for Chinese hamster ovary (CHO) cells based on a double-shell structure which includes the cell membrane, cytoplasm, nuclear envelope, and nucleoplasm. Employing a dielectrophoresis (DEP) based technique and a microfluidic system, the DEP response of many single CHO cells is measured and the spectrum of the Clausius-Mossotti factor is obtained. The dielectric parameters of the model are then extracted by curve-fitting to the measured spectral data. Using this approach over the 0.6–10 MHz frequency range, we report the values for CHO cells' membrane permittivity, membrane thickness, cytoplasm conductivity, nuclear envelope permittivity, and nucleoplasm conductivity. The size of the cell and its nuclei are obtained using optical techniques. PMID:26858823

  3. Formation of multilayer aggregates of mammalian cells by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Sebastian, Anil; Buckle, Anne-Marie; Markx, Gerard H.

    2006-09-01

    The formation of aggregates of mammalian cells at interdigitated oppositely castellated electrodes by positive dielectrophoresis was investigated. It is shown that, by using a constant small flow of fresh sorbitol iso-osmotic buffer through the chamber to remove ions leaking from the cells, a high positive DEP force can be maintained throughout the formation of the aggregates. Flow-rate dependent optima were found in the aggregate height as a function of the electrode size. It is shown that at low flow rates the creation of aggregates of mammalian cells with heights over 150 µm is feasible using relatively low voltages (20 Vpk-pk, 1 MHz). The formation of layered aggregates of two specialized cell types—stromal cells and Jurkat T lymphocytes—is demonstrated. The work confirms that dielectrophoresis can be reliably used for the formation of aggregates with three-dimensional architectures, which could be used as artificial microniches for the study of interactions between cells.

  4. Wirelessly powered microfluidic dielectrophoresis devices using printable RF circuits.

    PubMed

    Qiao, Wen; Cho, Gyoujin; Lo, Yu-Hwa

    2011-03-21

    We report the first microfluidic device integrated with a printed RF circuit so the device can be wirelessly powered by a commercially available RFID reader. For conventional dielectrophoresis devices, electrical wires are needed to connect the electric components on the microchip to external equipment such as power supplies, amplifiers, function generators, etc. Such a procedure is unfamiliar to most clinicians and pathologists who are used to working with a microscope for examination of samples on microscope slides. The wirelessly powered device reported here eliminates the entire need for wire attachments and external instruments so the operators can use the device in essentially the same manner as they do with microscope slides. The integrated circuit can be fabricated on a flexible plastic substrate at very low cost using a roll-to-roll printing method. Electrical power at 13.56 MHz transmitted by a radio-frequency identification (RFID) reader is inductively coupled to the printed RFIC and converted into 10 V DC (direct current) output, which provides sufficient power to drive a microfluidic device to manipulate biological particles such as beads and proteins via the DC dielectrophoresis (DC-DEP) effect. To our best knowledge, this is the first wirelessly powered microfluidic dielectrophoresis device. Although the work is preliminary, the device concept, the architecture, and the core technology are expected to stimulate many efforts in the future and transform the technology to a wide range of clinical and point-of-care applications.

  5. Label-free Isolation and Enrichment of Cells Through Contactless Dielectrophoresis

    PubMed Central

    Elvington, Elizabeth S.; Salmanzadeh, Alireza; Stremler, Mark A.; Davalos, Rafael V.

    2013-01-01

    Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process. cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles. Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing

  6. Label-free isolation and enrichment of cells through contactless dielectrophoresis.

    PubMed

    Elvington, Elizabeth S; Salmanzadeh, Alireza; Stremler, Mark A; Davalos, Rafael V

    2013-09-03

    Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom environment. Recently, a contact-free approach called contactless dielectrophoresis (cDEP) has been developed. This method utilizes the classic principle of DEP while avoiding direct contact between electrodes and sample by patterning fluidic electrodes and a sample channel from a single polydimethylsiloxane (PDMS) substrate, and has application as a rapid microfluidic strategy designed to sort and enrich microparticles. Unique to this method is that the electric field is generated via fluidic electrode channels containing a highly conductive fluid, which are separated from the sample channel by a thin insulating barrier. Because metal electrodes do not directly contact the sample, electrolysis, electrode delamination, and sample contamination are avoided. Additionally, this enables an inexpensive and simple fabrication process. cDEP is thus well-suited for manipulating sensitive biological particles. The dielectrophoretic force acting upon the particles depends not only upon spatial gradients of the electric field generated by customizable design of the device geometry, but the intrinsic biophysical properties of the cell. As such, cDEP is a label-free technique that avoids depending upon surface-expressed molecular biomarkers that may be variably expressed within a population, while still allowing characterization, enrichment, and sorting of bioparticles. Here, we demonstrate the basics of fabrication and experimentation using cDEP. We explain the simple preparation of a cDEP chip using soft lithography techniques. We discuss the experimental procedure for characterizing

  7. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  8. Quantitative Biomechanics of Healthy and Diseased Human Red Blood Cells using Dielectrophoresis in a Microfluidic System.

    PubMed

    Du, E; Dao, Ming; Suresh, Subra

    2014-12-01

    We present an experimental method to quantitatively characterize the mechanical properties of a large number of biological cells by introducing controlled deformation through dielectrophoresis in a microfluidic device. We demonstrate the capability of this technique by determining the force versus deformation characteristics of healthy human red blood cells (RBCs) and RBCs infected in vitro with Plasmodium falciparum malaria parasites. These experiments clearly distinguish uninfected and healthy RBCs from infected ones, and the mechanical signatures extracted from these tests are in agreement with data from other independent methods. The method developed here thus provides a potentially helpful tool to characterize quickly and effectively the isolated biomechanical response of cells in a large population, for probing the pathological states of cells, disease diagnostics, and drug efficacy assays.

  9. Novel multijunction thermal converter in planar technique for AC current, voltage, power and optical radiation measurement

    NASA Astrophysics Data System (ADS)

    Klonz, M.; Weimann, T.

    1990-05-01

    A new planar thin film design of multijunction thermocouples on a silicon chip containing a window with a SiO2-membrane for low heat conductance underneath of the thermocouples is described. It is used as the sensor for the temperature difference in a multijunction thermal converter for ac-dc transfer of electrical quantities like voltage, current and power via Joule heat in a thin film resistor. By coating the heater with an optically absorbing layer it is used as a highly sensitive radiometer transferring absorbed energy to Joule heat in the resistor. The design can easily be optimized for all different frequency applications. It offers the possibility of the mass production of transfer standards at highest level of accuracy.

  10. Spontaneous Self-Organization Enables Dielectrophoresis of Small Nanoparticles and Formation of Photoconductive Microbridges

    SciTech Connect

    Jung, Seung-Ho; Chen, Chen; Cha, Sang-Ho; Yeom, Bongjun; Bahng, Joong Hwan; Srivastava, Sudhanshu; Zhu, Jian; Yang, Ming; Liu, Shaoqin; Kotov, Nicholas A.

    2011-07-20

    Detailed understanding of the mechanism of dielectrophoresis (DEP) and the drastic improvement of its efficiency for small size-quantized nanoparticles (NPs) open the door for the convergence of microscale and nanoscale technologies. It is hindered, however, by the severe reduction of DEP force in particles with volumes below a few hundred cubic nanometers. We report here DEP assembly of size-quantized CdTe nanoparticles (NPs) with a diameter of 4.2 nm under AC voltage of 4–10 V. Calculations of the nominal DEP force for these NPs indicate that it is several orders of magnitude smaller than the force of the Brownian motion destroying the assemblies even for the maximum applied AC voltage. Despite this, very efficient formation of NP bridges between electrodes separated by a gap of 2 μm was observed even for AC voltages of 6 V and highly diluted NP dispersions. The resolution of this conundrum was found in the intrinsic ability of CdTe NPs to self-assemble. The species being assembled by DEP are substantially bigger than the individual NPs. DEP assembly should be treated as a process taking place for NP chains with a length of ~140 nm. The self-assembled chains increase the nominal volume where the polarization of the particles takes place, while retaining the size-quantized nature of the material. The produced NP bridges were found to be photoactive, producing photocurrent upon illumination. DEP bridges of quantum confined NPs can be used in fast parallel manufacturing of novel MEMS components, sensors, and optical and optoelectronic devices. Purposeful engineering of self-assembling properties of NPs makes possible further facilitation of the DEP and increase of complexity of the produced nano- and microscale structures.

  11. Resonant dielectrophoresis and electrohydrodynamics for high-sensitivity impedance detection of whole-cell bacteria.

    PubMed

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2015-08-07

    We present the co-integration of CMOS-compatible Al/Al2O3 interdigitated microelectrodes (IDEs) with an electrokinetic-driven macroelectrode for sensitive detection of whole-cell bacteria in a microfluidic channel. Two frequency ranges applied to the macroelectrode were identified to notably increase the bacterial coverage of the impedimetric sensor per unit time. Around 10 kHz, the bacterial cells were directed towards the IDE center thanks to AC electroosmosis (AC-EO) and the sensor capacitance linearly increased, achieving a limit of detection (LoD) of 3.5 × 10(5) CFU mL(-1) after an incubation time of 20 min with Staphylococcus epidermidis. At 63 MHz precisely, a resonance effect due to the device was found to dramatically increase the trapping of S. epidermidis on the sensor periphery, due to the combined actions of short-range contactless dielectrophoresis (cDEP) and long-range Joule heating electrothermal (J-ET) flow. Thanks to a flow-based method, the bacterial cells were redirected towards the sensor center and an LoD of 10(5) CFU mL(-1) was achieved within 20 min of incubation, which is almost two orders of magnitude better than the impedimetric sensor alone. Analytical models and 2D simulations using the Maxwell stress tensor (MST) provide a comprehensive analysis of the experimental results, especially about the spectral balance between cDEP, AC-EO and J-ET accounting for the 33-nm thick insulating layer atop the electrodes. Electrode CMOS compatibility confers portability, miniaturization and affordability capabilities for building point-of-care (PoC) diagnostic tests in a lab-on-a-chip (LoC).

  12. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis

    PubMed Central

    Tai, Yi-Hsin; Chang, Dao-Ming; Pan, Ming-Yang; Huang, Ding-Wei; Wei, Pei-Kuen

    2016-01-01

    This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO) substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP) effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli) bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system. PMID:26927128

  13. Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments

    PubMed Central

    Gascoyne, Peter R. C.; Vykoukal, Jody V.

    2009-01-01

    As the molecular origins of disease are better understood, the need for affordable, rapid, and automated technologies that enable microscale molecular diagnostics has become apparent. Widespread use of microsystems that perform sample preparation and molecular analysis could ensure that the benefits of new biomedical discoveries are realized by a maximum number of people, even those in environments lacking any infrastructure. While progress has been made in developing miniaturized diagnostic systems, samples are generally processed off-device using labor-intensive and time-consuming traditional sample preparation methods. We present the concept of an integrated programmable general-purpose sample analysis processor (GSAP) architecture where raw samples are routed to separation and analysis functional blocks contained within a single device. Several dielectrophoresis-based methods that could serve as the foundation for building GSAP functional blocks are reviewed including methods for cell and particle sorting, cell focusing, cell ac impedance analysis, cell lysis, and the manipulation of molecules and reagent droplets. PMID:19684877

  14. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis.

    PubMed

    Tai, Yi-Hsin; Chang, Dao-Ming; Pan, Ming-Yang; Huang, Ding-Wei; Wei, Pei-Kuen

    2016-02-27

    This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO) substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP) effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli) bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system.

  15. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.

    PubMed

    Sridharan, Sriram; Zhu, Junjie; Hu, Guoqing; Xuan, Xiangchun

    2011-09-01

    Insulator-based dielectrophoresis (iDEP) is an emerging technology that has been successfully used to manipulate a variety of particles in microfluidic devices. However, due to the locally amplified electric field around the in-channel insulator, Joule heating often becomes an unavoidable issue that may disturb the electroosmotic flow and affect the particle motion. This work presents the first experimental study of Joule heating effects on electroosmotic flow in a typical iDEP device, e.g., a constriction microchannel, under DC-biased AC voltages. A numerical model is also developed to simulate the observed flow pattern by solving the coupled electric, energy, and fluid equations in a simplified two-dimensional geometry. It is observed that depending on the magnitude of the DC voltage, a pair of counter-rotating fluid circulations can occur at either the downstream end alone or each end of the channel constriction. Moreover, the pair at the downstream end appears larger in size than that at the upstream end due to DC electroosmotic flow. These fluid circulations, which are reasonably simulated by the numerical model, form as a result of the action of the electric field on Joule heating-induced fluid inhomogeneities in the constriction region.

  16. Electrodeless dielectrophoresis of single- and double-stranded DNA.

    PubMed Central

    Chou, Chia-Fu; Tegenfeldt, Jonas O; Bakajin, Olgica; Chan, Shirley S; Cox, Edward C; Darnton, Nicholas; Duke, Thomas; Austin, Robert H

    2002-01-01

    Dielectrophoretic trapping of molecules is typically carried out using metal electrodes to provide high field gradients. In this paper we demonstrate dielectrophoretic trapping using insulating constrictions at far lower frequencies than are feasible with metallic trapping structures because of water electrolysis. We demonstrate that electrodeless dielectrophoresis (EDEP) can be used for concentration and patterning of both single-strand and double-strand DNA. A possible mechanism for DNA polarization in ionic solution is discussed based on the frequency, viscosity, and field dependence of the observed trapping force. PMID:12324434

  17. Reconfigurable microfluidic nanoparticle trapping using dielectrophoresis for chemical detection

    NASA Astrophysics Data System (ADS)

    Salemmilani, Reza; Piorek, Brian; Moskovits, Martin; Meinhart, Carl

    2016-11-01

    We report a microfluidic particle manipulation platform based on dielectrophoresis (DEP) to capture and release nanoscale particles cyclically via reconfigurable traps. DEP is routinely used in microfluidic devices for capturing and trapping cells and particles of various sizes, however the trapping of small nanoparticles by DEP is challenging due to the inverse relationship of the DEP force with particle size. The architecture we describe uses electrically insulating silica beads of micron scale in conjunction with DEP electrodes configured to manipulate nanoscale particles for microfluidic applications such as filtration and chemical detection. Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States.

  18. A real-time multiple-cell tracking platform for dielectrophoresis (DEP)-based cellular analysis

    NASA Astrophysics Data System (ADS)

    Prasad, Brinda; Du, Shan; Badawy, Wael; Kaler, Karan V. I. S.

    2005-04-01

    There is an increasing demand from biosciences to develop new and efficient techniques to assist in the preparation and analysis of biological samples such as cells in suspension. A dielectrophoresis (DEP)-based characterization and measurement technique on biological cells opens up a broader perspective for early diagnosis of diseases. An efficient real-time multiple-cell tracking platform coupled with DEP to capture and quantify the dynamics of cell motion and obtain cell viability information is presented. The procedure for tracking a single DEP-levitated Canola plant protoplast, using the motion-based segmentation algorithm hierarchical adaptive merge split mesh-based technique (HAMSM) for cell identification, has been enhanced for identifying and tracking multiple cells. The tracking technique relies on the deformation of mesh topology that is generated according to the movement of biological cells in a sequence of images that allows the simultaneous extraction of the biological cell from the image and the associated motion characteristics. Preliminary tests were conducted with yeast cells and then applied to a cancerous cell line subjected to DEP fields. Characteristics, such as cell count, velocity and size, were individually extracted from the tracked results of the cell sample. Tests were limited to eight yeast cells and two cancer cells. A performance analysis to assess tracking accuracy, computational effort and processing time was also conducted. The tracking technique employed on model intact cells in DEP fields proved to be accurate, reliable and robust.

  19. Dielectrophoresis force spectroscopy for colloidal nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. Daniel; Huang, Hao

    2016-09-01

    Dielectrophoresis (DEP) is the motion of colloidal particles in an inhomogeneous electric field. Accurate determination of dielectrophoresis (DEP) force is important for lab-on-a-chip applications. However current DEP force spectroscopy methods are not suitable for accurately measuring the DEP force for sub-micron particles. A new and facile method is developed to measure the DEP force as a function of the frequency of the electric field for nanoparticles by an ensemble analysis approach. Using the principle of Boltzmann distribution of the concentration of non-interacting particles in a DEP potential field, the new method determines the DEP potential field from the measured time-averaged concentration distribution of fluorescently labeled nanoparticle in the DEP field by confocal fluorescence microscopy. Frequency dependent DEP force is determined by the negative gradient of the DEP potential created by the electric field across gold-film electrodes in a microfluidic setting. This approach is capable of measuring forces at the level of one femto Newton for particles with diameters in the range of 63 nm to 410 nm.

  20. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform.

    PubMed

    Martinez-Duarte, Rodrigo; Gorkin, Robert A; Abi-Samra, Kameel; Madou, Marc J

    2010-04-21

    We introduce the integration of a novel dielectrophoresis (DEP)-assisted filter with a compact disk (CD)-based centrifugal platform. Carbon-electrode dielectrophoresis (carbon-DEP) refers to the use of carbon electrodes to induce DEP. In this work, 3D carbon electrodes are fabricated using the C-MEMS technique and are used to implement a DEP-enabled active filter to trap particles of interest. Compared to traditional planar metal electrodes, 3D carbon electrodes allow for superior filtering efficiency. The system includes mounting modular 3D carbon-DEP chips on an electrically interfaced rotating disk. This allows simple centrifugal pumping to replace the large footprint syringe pump approaches commonly used in DEP systems. The advantages of the CD setup include not only a reduced footprint, but also complexity and cost reduction by eliminating expensive precision pumps and fluidic interconnects. To demonstrate the viability of this system we quantified the filter efficiency in the DEP trapping of yeast cells from a mix of latex and yeast cells. Results demonstrate selective filtering at flow rates up to 35 microl min(-1). The impact of electrode height, DEP chip misalignment and particle sedimentation on filter efficiency and the advantages this system represents are analyzed. The ultimate goal is to obtain an automated platform for bioparticle sorting with application in different fields such as point-of-care diagnostics and cell-based therapies.

  1. Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture

    PubMed Central

    Huang, Chao; Santana, Steven M.; Liu, He; Bander, Neil H.; Hawkins, Benjamin G.; Kirby, Brian J.

    2014-01-01

    The capture of circulating tumor cells (CTCs) from cancer patient blood enables early clinical assessment as well as genetic and pharmacological evaluation of cancer and metastasis. Although there have been many microfluidic immunocapture and electrokinetic techniques developed for isolating rare cancer cells, these techniques are often limited by a capture performance tradeoff between high efficiency and high purity. We present the characterization of shear-dependent cancer cell capture in a novel hybrid dielectrophoresis (DEP)-immunocapture system consisting of interdigitated electrodes fabricated in a Hele-Shaw flow cell that was functionalized with a monoclonal antibody, J591, which is highly specific to prostate-specific membrane antigen (PSMA)-expressing prostate cancer cells. We measured the positive and negative DEP response of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency, and showed that DEP can control capture performance by promoting or preventing cell interactions with immunocapture surfaces, depending on the sign and magnitude of the applied DEP force, as well as on the local shear stress experienced by cells flowing in the device. This work demonstrates that DEP and immunocapture techniques can work synergistically to improve cell capture performance, and it will aid in the design of future hybrid DEP-immunocapture systems for high-efficiency CTC capture with enhanced purity. PMID:23925921

  2. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE PAGES

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  3. Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays

    PubMed Central

    2015-01-01

    We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection of analyte molecules in a 5 μL droplet using concentrations as low as 1 pM within a few minutes, which is more than 1000 times faster than purely diffusion-based binding. The nanohole-based optofluidic platform demonstrated here is straightforward to construct, applicable to both charged and neutral molecules, and performs a novel function that cannot be accomplished using conventional surface plasmon resonance sensors. PMID:24646075

  4. Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities

    PubMed Central

    Siebman, Coralie; Velev, Orlin D.; Slaveykova, Vera I.

    2017-01-01

    The capability of alternating current (AC) dielectrophoresis (DEP) for on-chip capture and chaining of the three species representative of freshwater phytoplankton was evaluated. The effects of the AC field intensity, frequency and duration on the chaining efficiency and chain lengths of green alga Chlamydomonas reinhardtii, cyanobacterium Synechocystis sp. and diatom Cyclotella meneghiniana were characterized systematically. C. reinhardtii showed an increase of the chaining efficiency from 100 Hz to 500 kHz at all field intensities; C. meneghiniana presented a decrease of chaining efficiency from 100 Hz to 1 kHz followed by a significant increase from 1 kHz to 500 kHz, while Synechocystis sp. exhibited low chaining tendency at all frequencies and all field intensities. The experimentally-determined DEP response and cell alignment of each microorganism were in agreement with their effective polarizability. Mixtures of cells in equal proportion or 10-times excess of Synechocystis sp. showed important differences in terms of chaining efficiency and length of the chains compared with the results obtained when the cells were alone in suspension. While a constant degree of chaining was observed with the mixture of C. reinhardtii and C. meneghiniana, the presence of Synechocystis sp. in each mixture suppressed the formation of chains for the two other phytoplankton species. All of these results prove the potential of DEP to discriminate different phytoplankton species depending on their effective polarizability and to enable their manipulation, such as specific collection or separation in freshwater. PMID:28067772

  5. Alternating Current-Dielectrophoresis Collection and Chaining of Phytoplankton on Chip: Comparison of Individual Species and Artificial Communities.

    PubMed

    Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I

    2017-01-05

    The capability of alternating current (AC) dielectrophoresis (DEP) for on-chip capture and chaining of the three species representative of freshwater phytoplankton was evaluated. The effects of the AC field intensity, frequency and duration on the chaining efficiency and chain lengths of green alga Chlamydomonas reinhardtii, cyanobacterium Synechocystis sp. and diatom Cyclotella meneghiniana were characterized systematically. C. reinhardtii showed an increase of the chaining efficiency from 100 Hz to 500 kHz at all field intensities; C. meneghiniana presented a decrease of chaining efficiency from 100 Hz to 1 kHz followed by a significant increase from 1 kHz to 500 kHz, while Synechocystis sp. exhibited low chaining tendency at all frequencies and all field intensities. The experimentally-determined DEP response and cell alignment of each microorganism were in agreement with their effective polarizability. Mixtures of cells in equal proportion or 10-times excess of Synechocystis sp. showed important differences in terms of chaining efficiency and length of the chains compared with the results obtained when the cells were alone in suspension. While a constant degree of chaining was observed with the mixture of C. reinhardtii and C. meneghiniana, the presence of Synechocystis sp. in each mixture suppressed the formation of chains for the two other phytoplankton species. All of these results prove the potential of DEP to discriminate different phytoplankton species depending on their effective polarizability and to enable their manipulation, such as specific collection or separation in freshwater.

  6. Couplet alignment and improved electrofusion by dielectrophoresis for a zona-free high-throughput cloned embryo production system.

    PubMed

    Gaynor, P; Wells, D N; Oback, B

    2005-01-01

    Mammalian cloning by somatic nuclear transfer has great potential for developing medical applications such as biopharmaceuticals and generation of tissues for transplantation. For agricultural applications, it allows the rapid dissemination of genetic gain in livestock breeding. The maximisation of that potential requires improvements to overall cloning technology, especially with respect to increasing cloning efficiency and throughput rates in cloned embryo production. A zona-free embryo reconstruction system was developed to increase cloning throughput and ease of operation. Central to this system is a modified electrofusion procedure for nuclear transfer. Cytoplast-donor cell couplets were placed in a custom-designed 'parallel plate' electrode chamber. A 1 MHz sinusoidal AC dielectrophoresis alignment electric field of 6-10 kV m(-1) was applied for 5-10s. The couplets were then fused using 2 x 10 micros rectangular DC-field pulses (150-200 kV m(-1)), followed by application of the AC field (6-10 kV m(-1)) for another 5-10 s. Fusion was performed in hypoosmolar buffer (210 mOsm). Automated alignment of up to 20 couplets at a time has been achieved, resulting in greatly improved fusion throughput rates (2.5-fold increase) and improved fusion yields (1.3-fold increase), compared with commonly followed zona-intact protocols.

  7. Effects of Dielectrophoresis on Growth, Viability and Immuno-reactivity of Listeria monocytogenes

    PubMed Central

    Yang, Liju; Banada, Padmapriya P; Bhunia, Arun K; Bashir, Rashid

    2008-01-01

    Dielectrophoresis (DEP) has been regarded as a useful tool for manipulating biological cells prior to the detection of cells. Since DEP uses high AC electrical fields, it is important to examine whether these electrical fields in any way damage cells or affect their characteristics in subsequent analytical procedures. In this study, we investigated the effects of DEP manipulation on the characteristics of Listeria monocytogenes cells, including the immuno-reactivity to several Listeria-specific antibodies, the cell growth profile in liquid medium, and the cell viability on selective agar plates. It was found that a 1-h DEP treatment increased the cell immuno-reactivity to the commercial Listeria species-specific polyclonal antibodies (from KPL) by ~31.8% and to the C11E9 monoclonal antibodies by ~82.9%, whereas no significant changes were observed with either anti-InlB or anti-ActA antibodies. A 1-h DEP treatment did not cause any change in the growth profile of Listeria in the low conductive growth medium (LCGM); however, prolonged treatments (4 h or greater) caused significant delays in cell growth. The results of plating methods showed that a 4-h DEP treatment (5 MHz, 20 Vpp) reduced the viable cell numbers by 56.8–89.7 %. These results indicated that DEP manipulation may or may not affect the final detection signal in immuno-based detection depending on the type of antigen-antibody reaction involved. However, prolonged DEP treatment for manipulating bacterial cells could produce negative effects on the cell detection by growth-based methods. Careful selection of DEP operation conditions could avoid or minimize negative effects on subsequent cell detection performance. PMID:18416836

  8. A frequency-control particle separation device based on resultant effects of electroosmosis and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Lin, Shiang-Chi; Tung, Yi-Chung; Lin, Chih-Ting

    2016-08-01

    Particle separation plays an important role in microfluidic sample preparation for various biomedical applications. In this paper, we report a particle manipulation and separation scheme using a microfluidic device based on low-volume/low-voltage electrokinetic frequency modulation. Utilizing a circular micro-electrode array, both electroosmosis and dielectrophoresis can be contributed to manipulate particles in the device by controlling the frequency of applied sinusoidal travelling wave signals. Theoretical simulations based on finite-element methods are employed to establish fundamental understanding of the developed scheme. For experimental demonstration, polystyrene beads (6 μm in diameter) and human promyelocytic leukaemia cells (HL-60) are used to validate the frequency-modulation effect. Furthermore, different diameter polystyrene beads (6 μm and 10 μm in diameter) are mixed to show potentials of precise particle separations (˜90% efficiency) by the reported frequency-controlled electrokinetic device. The developed technique can be exploited as an actuation scheme and particle manipulation method for microfluidic sample preparations of low ionic concentration samples.

  9. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis

    PubMed Central

    Salmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; C. Roberts, Paul; Schmelz, Eva M.; Davalos, Rafael V.

    2012-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. PMID:22536308

  10. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-07-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.

  11. Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices.

    PubMed

    Nakano, Asuka; Camacho-Alanis, Fernanda; Ros, Alexandra

    2015-02-07

    Insulator-based dielectrophoresis (iDEP) has been explored as a powerful analytical technique in recent years. Unlike with larger entities such as cells, bacteria or organelles, the mechanism of iDEP transport of proteins remains little explored. In this work, we extended the pool of proteins investigated with iDEP in nanostructured devices with β-galactosidase. Our work indicates that β-galactosidase shows concentration due to negative DEP which we compare to DEP response of immunoglobulin G (IgG) encapsulated in micelles also showing negative DEP. Experimental observations are further compared with numerical simulations to elucidate the influence of electrokinetic transport and the magnitude of DEP mobility. Numerical simulations suggest that the DEP mobility calculated using the classical model underestimates the actual contribution of DEP on the experimentally monitored concentration effect of proteins. Moreover, we observed a unique voltage dependent β-galactosidase concentration which we attribute to an additional factor influencing the protein concentration at the nanoconstrictions, namely ion concentration polarization. Our work aids in understanding factors influencing protein iDEP transport which is required for the future development of protein preconcentration or separation methods based on iDEP.

  12. Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis

    NASA Astrophysics Data System (ADS)

    McGraw, Greg J.; Davalos, Rafael V.; Brazzle, John D.; Hachman, John T.; Hunter, Marion C.; Chames, Jeffery M.; Fiechtner, Gregory J.; Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2005-01-01

    We have successfully demonstrated selective trapping, concentration, and release of various biological organisms and inert beads by insulator-based dielectrophoresis within a polymeric microfluidic device. The microfluidic channels and internal features, in this case arrays of insulating posts, were initially created through standard wet-etch techniques in glass. This glass chip was then transformed into a nickel stamp through the process of electroplating. The resultant nickel stamp was then used as the replication tool to produce the polymeric devices through injection molding. The polymeric devices were made of Zeonor 1060R, a polyolefin copolymer resin selected for its superior chemical resistance and optical properties. These devices were then optically aligned with another polymeric substrate that had been machined to form fluidic vias. These two polymeric substrates were then bonded together through thermal diffusion bonding. The sealed devices were utilized to selectively separate and concentrate a variety of biological pathogen simulants and organisms. These organisms include bacteria and spores that were selectively concentrated and released by simply applying D.C. voltages across the plastic replicates via platinum electrodes in inlet and outlet reservoirs. The dielectrophoretic response of the organisms is observed to be a function of the applied electric field and post size, geometry and spacing. Cells were selectively trapped against a background of labeled polystyrene beads and spores to demonstrate that samples of interest can be separated from a diverse background. We have implemented a methodology to determine the concentration factors obtained in these devices.

  13. Dielectrophoresis in a slanted microchannel for separation of microparticles and bacteria.

    PubMed

    Nam, Seong-Won; Kim, So Hyun; Park, Je-Kyun; Park, Sungsu

    2013-12-01

    Dielectrophoresis (DEP) is an effective method to trap, manipulate and separate various dielectric particles. To generate a DEP force, a spatially nonuniform electrical field has been generated by an array of electrodes, while electrodeless DEP has been accomplished by placing an insulating material between two electrodes. Here, we describe a new DEP method for generating a nonuniform electrical field using a slanted microchannel. The electric field gradient is induced due to a slope in the channel and can be used to move and separate particles. Based on the gradual electric field induced by three dimensional structure of the microchannel, our method enables particles of different sizes to be separated solely by DEP force without flow. The slanted microchannel was easily fabricated by a replica molding technique using a commercial UV-cured photopolymer (NOA 63) and bonded as an insulating layer between two indium-tin-oxide films. By applying the electrical field, polystyrene beads of different sizes (6-45 microm in diameter) were trapped and separated depending on the applied electric strength and frequency. Using this method, the opportunistic pathogen Pseudomonas aeruginosa attached to antibody-conjugated microbeads was successfully separated from Escherichia coli in a slanted microchannel.

  14. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    SciTech Connect

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda

    2006-01-01

    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  15. DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields.

    PubMed

    Gallo-Villanueva, Roberto C; Rodríguez-López, Carlos E; Díaz-de-la-Garza, Rocío I; Reyes-Betanzo, Claudia; Lapizco-Encinas, Blanca H

    2009-12-01

    Electrokinetic techniques offer a great potential for biological particle manipulation. Among these, dielectrophoresis (DEP) has been successfully utilized for the concentration of bioparticles. Traditionally, DEP is performed employing microelectrodes, an approach with attractive characteristics but expensive due to microelectrode fabrication costs. An alternative is insulator-based DEP, a method where non-uniform electric fields are created with arrays of insulating structures. This study presents the concentration of linear DNA particles (pET28b) employing a microchannel, with an array of cylindrical insulating structures and direct current electric fields. Results showed manipulation of DNA particles with a combination of electroosmotic, electrophoretic, and dielectrophoretic forces. Employing suspending media with conductivity of 104 muS/cm and pH of 11.15, under applied fields between 500 and 1500 V/cm, DNA particles were observed to be immobilized due to negative dielectrophoretic trapping. The observation of DNA aggregates that occurred at higher applied fields, and dispersed once the field was removed is also included. Finally, concentration factors varying from 8 to 24 times the feed concentration were measured at 2000 V/cm after concentration time-periods of 20-40 s. The results presented here demonstrate the potential of insulator-based DEP for DNA concentration, and open the possibility for fast DNA manipulation for laboratory and large-scale applications.

  16. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    PubMed

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment.

  17. The effect of solvent on the morphology of ZnO nanostructure assembly by dielectrophoresis and its device applications.

    PubMed

    La Ferrara, Vera; Pacheri Madathil, Aneesh; De Girolamo Del Mauro, Anna; Massera, Ettore; Polichetti, Tiziana; Rametta, Gabriella

    2012-07-01

    Different zinc oxide nanostructured morphologies were grown on photolithographically patterned silicon/silicon dioxide substrates by dielectrophoresis technique using different solvents, such as water and ethanol, obtaining rod-like and net-like nanostructures, respectively. The formation of continuous nanostructures was confirmed by scanning electron microscopic, atomic force microscopic images, and electrical characterizations. The rod-like zinc oxide nanostructures were observed in the 10 μm gap between the fingers in the pattern, whereas net-like nanostructures were formed independently of microgap. A qualitative study about the mechanism for the assembly of zinc oxide continuous nanostructures was presented. Devices were electrically characterized, at room temperature, in controlled environment to measure the conductance behavior in ultraviolet and humidity environment. Devices based on zinc oxide nanostructures grown in ethanol medium show better responses under both ultraviolet and humidity, because of the net-like structure with high surface-to-volume ratio.

  18. In-situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Sweetenham, Claire S.; Woolley, Richard A. J.; Notingher, Ioan

    2016-07-01

    We report the use of dielectrophoresis to fabricate in-situ probes for tip-enhanced Raman spectroscopy (TERS) based on Au nanoparticles. A typical conductive atomic force microscope (AFM) was used to functionalize iridium-coated conductive silicon probes with Au nanoparticles of 10-nm diameter. Suitable TERS probes can be rapidly produced (30 to 120 s) by applying a voltage of 10 Vpp at a frequency of 1 MHz. The technique has the advantage that the Au-based probes are ready for immediate use for TERS measurements, minimizing the risks of tip contamination and damage during handling. Scanning electron microscopy and energy dispersive x-ray spectroscopy were used to confirm the quality of the probes, and used samples of p-ATP monolayers on silver substrates were used to demonstrate experimentally TERS measurements.

  19. Effect of solution conductivity and electrode shape on the deposition of carbon nanotubes from solution using dielectrophoresis.

    PubMed

    Naieni, A Kashefian; Nojeh, A

    2012-12-14

    Dielectrophoresis (DEP) is a popular technique for fabricating carbon nanotube (CNT) devices. The electric current passing through the solution during DEP creates a temperature gradient, which results in electrothermal fluid flow because of the presence of the electric field. CNT solutions prepared with various methods can have different conductivities and the motion of the solution because of the electrothermal phenomenon can affect the DEP deposition differently in each case. We investigated the effect of this movement in solutions with various levels of conductivity through experiments as well as numerical modeling. Our results show that electrothermal motion in the solution can alter the deposition pattern of the nanotubes drastically for high conductivity solutions, while DEP remains the dominant force when a low conductivity (surfactant-free) solution is used. The extent of effectiveness of each force is discussed in the various cases and the fluid movement model is investigated using two- and three-dimensional finite element simulations.

  20. Dielectrophoresis-based particle sensor using nanoelectrode arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Arumugam, Prabhu U. (Inventor)

    2009-01-01

    A method for concentrating or partly separating particles of a selected species from a liquid or fluid containing these particles and flowing in a channel, and for determining if the selected species particle is present in the liquid or fluid. A time varying electrical field E, having a root-mean-square intensity E.sup.2.sub.rms with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array, with a very high magnitude gradient near exposed electrode tips. A dielectrophoresis force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of each of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected species particles to the surface. An electrical property value Z(meas) is measured at the functionalized surface and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface.

  1. Dielectrophoresis of micro/nano particles using curved microelectrodes

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, Khashayar; Tovar-Lopez, Francisco J.; Baratchi, Sara; Zhang, Chen; Kayani, Aminuddin A.; Chrimes, Adam F.; Nahavandi, Saeid; Wlodkowic, Donald; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2011-12-01

    Dielectrophoresis, the induced motion of polarisable particles in non-homogenous electric field, has been proven as a versatile mechanism to transport, immobilise, sort and characterise micro/nano scale particle in microfluidic platforms. The performance of dielectrophoretic (DEP) systems depend on two parameters: the configuration of microelectrodes designed to produce the DEP force and the operating strategies devised to employ this force in such processes. This work summarises the unique features of curved microelectrodes for the DEP manipulation of target particles in microfluidic systems. The curved microelectrodes demonstrate exceptional capabilities including (i) creating strong electric fields over a large portion of their structure, (ii) minimising electro-thermal vortices and undesired disturbances at their tips, (iii) covering the entire width of the microchannel influencing all passing particles, and (iv) providing a large trapping area at their entrance region, as evidenced by extensive numerical and experimental analyses. These microelectrodes have been successfully applied for a variety of engineering and biomedical applications including (i) sorting and trapping model polystyrene particles based on their dimensions, (ii) patterning carbon nanotubes to trap low-conductive particles, (iii) sorting live and dead cells based on their dielectric properties, (iv) real-time analysis of drug-induced cell death, and (v) interfacing tumour cells with environmental scanning electron microscopy to study their morphological properties. The DEP systems based on curved microelectrodes have a great potential to be integrated with the future lab-on-achip systems.

  2. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    PubMed Central

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2013-01-01

    During the last three decades; dielectrophoresis (DEP) has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC) devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development. PMID:23857266

  3. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Hoettges, Kai F.; Dale, Jeremy W.; Hughes, Michael P.

    2007-09-01

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth.

  4. Near Axisymmetric Partial Wetting Using Interface-Localized Liquid Dielectrophoresis.

    PubMed

    Brabcova, Zuzana; McHale, Glen; Wells, Gary George; Brown, Carl V; Newton, Michael Ian; Edwards, Andrew M J

    2016-10-03

    The wetting of solid surfaces can be modified by altering the surface free energy balance between the solid, liquid, and vapour phases. Liquid dielectrophoresis (L-DEP) can produce wetting on normally non-wetting surfaces, without modification of the surface topography or chemistry. L-DEP is a bulk force acting on the dipoles of a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. However, if this force is induced by a non-uniform electric field across a solid-liquid interface, it can be used to enhance and control the wetting of a dielectric liquid. Recently, it was reported theoretically and experimentally that this approach can cause a droplet of oil to spread along parallel interdigitated electrodes thus forming a stripe of liquid. Here we show that by using spiral shaped electrodes actuated with four 90º successive phase shifted signals, a near axisymmetric spreading of droplets can be achieved. Experimental observations show that the induced wetting can achieve film formation, an effect not possible with electrowetting. We show that the spreading is reversible thus enabling a wide range of partial wetting droplet states to be achieved in a controllable manner. Furthermore, we find that the cosine of the contact angle has a quadratic dependence on applied voltage during spreading and deduce a scaling law for the dependence of the strength of the effect on the electrode size. .

  5. Cell pairing using microwell array electrodes based on dielectrophoresis.

    PubMed

    Yoshimura, Yuki; Tomita, Masahiro; Mizutani, Fumio; Yasukawa, Tomoyuki

    2014-07-15

    We report a simple device with an array of 10,000 (100 × 100) microwells for producing vertical pairs of cells in individual microwells with a rapid manipulation based on positive dielectrophoresis (p-DEP). The areas encircled with micropoles which fabricated from an electrical insulating photosensitive polymer were used as microwells. The width (14 μm) and depth (25 μm) of the individual microwells restricted the size to two vertically aligned cells. The DEP device for the manipulation of cells consisted of a microfluidic channel with an upper indium tin oxide (ITO) electrode and a lower microwell array electrode fabricated on an ITO substrate. Mouse myeloma cells stained in green were trapped within 1 s in the microwells by p-DEP by applying an alternating current voltage between the upper ITO and the lower microwell array electrode. The cells were retained inside the wells even after switching off the voltage and washing with a fluidic flow. Other myeloma cells stained in blue were then trapped in the microwells occupied by the cells stained in green to form the vertical cell pairing in the microwells. Cells stained in different colors were paired within only 1 min and a pairing efficiency of over 50% was achieved.

  6. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    PubMed

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  7. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis.

    PubMed

    Pesch, Georg R; Du, Fei; Baune, Michael; Thöming, Jorg

    2017-02-03

    Insulator-based dielectrophoresis (iDEP) is a powerful particle analysis technique based on electric field scattering at material boundaries which can be used, for example, for particle filtration or to achieve chromatographic separation. Typical devices consist of microchannels containing an array of posts but large scale application was also successfully tested. Distribution and magnitude of the generated field gradients and thus the possibility to trap particles depends apart from the applied field strength on the material combination between post and surrounding medium and on the boundary shape. In this study we simulate trajectories of singe particles under the influence of positive DEP that are flowing past one single post due to an external fluid flow. We analyze the influence of key parameters (excitatory field strength, fluid flow velocity, particle size, distance from the post, post size, and cross-sectional geometry) on two benchmark criteria, i.e., a critical initial distance from the post so that trapping still occurs (at fixed particle size) and a critical minimum particle size necessary for trapping (at fixed initial distance). Our approach is fundamental and not based on finding an optimal geometry of insulating structures but rather aims to understand the underlying phenomena of particle trapping. A sensitivity analysis reveals that electric field strength and particle size have the same impact, as have fluid flow velocity and post dimension. Compared to these parameters the geometry of the post's cross-section (i.e. rhomboidal or elliptical with varying width-to-height or aspect ratio) has a rather small influence but can be used to optimize the trapping efficiency at a specific distance. We hence found an ideal aspect ratio for trapping for each base geometry and initial distance to the tip which is independent of the other parameters. As a result we present design criteria which we believe to be a valuable addition to the existing literature.

  8. Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action.

    PubMed

    Yeo, Woon-Hong; Chung, Jae-Hyun; Liu, Yaling; Lee, Kyong-Hoon

    2009-08-06

    One of the critical challenges in the fields of disease diagnostics and environmental monitoring is to concentrate extracellular DNA from a sample mixture rapidly. Unlike genomic DNA in normal cells, extracellular DNA dissolved in a biological sample can potentially offer crucial information about pathogens and toxins. The current concentration methods, however, are not able to directly concentrate extracellular DNA due to aggressive sample preparation steps. This paper presents a concentration mechanism of extracellular DNA onto a nanostructured tip using dielectrophoresis (DEP) in conjunction with capillary action. DNA immersed in a solution is captured onto a nanotip by two sequential actions: (1) attraction of DNA and other bioparticles in the vicinity of a nanotip by DEP and (2) size-specific capture of DNA onto the nanotip by capillary action. To investigate the size-specific capturing mechanism, an analytical model for the capillary action on a nanotip is presented, which is compared to the experiment for capturing polystyrene nanospheres. This analysis predicts the capture of a spherical particle smaller than 0.39 times a nanotip diameter, whereas our experiment shows that polystyrene spheres smaller than 0.84 times a nanotip diameter are captured. This discrepancy can be caused by the increase of the capturing force due to attractive DEP force. In addition, the diameter of the captured spheres can be increased by other experimental conditions including the tip geometry, the multiple particle interaction, and the contact angles. When a nanotip is used for concentrating lambda-DNA, 6.7 pg/mL (210 aM) of DNA is selectively extracted from a sample mixture containing lambda-DNA and Drosophila cells in one minute. The captured DNA is investigated by fluorescence microscopy, scanning electron microscopy (SEM), and X-ray analysis. This nanotip-based DNA concentrating method is a rapid and highly sensitive technique to detect extracellular DNA from a sample mixture.

  9. Dielectrophoresis of a surfactant-laden viscous drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  10. Technique for reduction of mechanical losses in AC superconducting coils due to thermal expansion properties of various FRP bobbins

    NASA Astrophysics Data System (ADS)

    Sekine, N.; Tada, S.; Higuchi, T.; Furumura, Y.; Takao, T.; Yamanaka, A.

    2005-10-01

    We reported about reduction of mechanical losses in AC superconducting coils. The method is the use of FRP bobbins fabricated with special fibers. Since their FRPs have negative thermal expansion coefficient to the fiber direction, the FRP bobbins expand to the circumferential direction during cooling down. In case of the superconducting coils with such FRP bobbins, the winding tensions do not decrease during cooling down. Therefore, the mechanical losses are reduced by the suppression of wire's vibration. Their special FRPs are a Dyneema® fiber reinforced plastic (DFRP), a Dyneema and glass fiber reinforced plastic (DGFRP), and a Zylon® fiber reinforced plastic (ZFRP). These materials have negative thermal expansion coefficient to the fiber direction, however, the amplitudes of thermal expansion are various by the quantity or quality of the fiber. In this paper, the values of thermal expansion were actually measured, and it was discussed about the influence on the mechanical losses. At the experimental results, the mechanical loss was small, so that the thermal strain to the circumferential direction on the coil was large. Moreover, in case of the coils with sufficiently strong winding tensions at coil-operating temperature, the mechanical losses vanished.

  11. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis.

    PubMed

    Islam, Monsur; Natu, Rucha; Larraga-Martinez, Maria Fernanda; Martinez-Duarte, Rodrigo

    2016-05-01

    Here, we report on an enrichment protocol using carbon electrode dielectrophoresis to isolate and purify a targeted cell population from sample volumes up to 4 ml. We aim at trapping, washing, and recovering an enriched cell fraction that will facilitate downstream analysis. We used an increasingly diluted sample of yeast, 10(6)-10(2) cells/ml, to demonstrate the isolation and enrichment of few cells at increasing flow rates. A maximum average enrichment of 154.2 ± 23.7 times was achieved when the sample flow rate was 10 μl/min and yeast cells were suspended in low electrically conductive media that maximizes dielectrophoresis trapping. A COMSOL Multiphysics model allowed for the comparison between experimental and simulation results. Discussion is conducted on the discrepancies between such results and how the model can be further improved.

  12. Dielectrophoresis device and method having nonuniform arrays for manipulating particles

    DOEpatents

    Cummings, Eric B.; Fintschenko, Yolanda; Simmons, Blake A.

    2012-09-04

    Microfluidic devices according to embodiments of the present invention include an inlet port, an outlet port, and a channel or chamber having a non-uniform array of insulating features on one or more surfaces. Electrodes are provided for generation of a spatially non-uniform electric field across the array. A voltage source, which may be an A.C. and/or a D.C. voltage source may be coupled to the electrodes for the generation of the electric field.

  13. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.

    PubMed

    Wang, Lisen; Lu, Jente; Marchenko, Steven A; Monuki, Edwin S; Flanagan, Lisa A; Lee, Abraham P

    2009-03-01

    This paper presents a novel design and separation strategy for lateral flow-through separation of cells/particles in microfluidics by dual frequency coupled dielectrophoresis (DEP) forces enabled by vertical interdigitated electrodes embedded in the channel sidewalls. Unlike field-flow-fractionation-DEP separations in microfluidics, which utilize planar electrodes on the microchannel floor to generate a DEP force to balance the gravitational force and separate objects at different height locations, lateral separation is enabled by sidewall interdigitated electrodes that are used to generate non-uniform electric fields and balanced DEP forces along the width of the microchannel. In the current design, two separate AC electric fields are applied to two sets of independent interdigitated electrode arrays fabricated in the sidewalls of the microchannel to generate differential DEP forces that act on the cells/particles flowing through. Individual particles (cells or beads) will experience DEP forces differently due to the difference in their dielectric properties. The balance of the differential DEP forces from the electrode arrays will position dissimilar particles at distinct equilibrium planes across the width of the channel. When coupled with fluid flow, this results in lateral separation along the width of the microchannel and the separated particles can thus be automatically directed into branched channel outlets leading to different reservoirs for downstream processing. In this paper, we present the design and analysis of lateral separation enabled by dual frequency coupled DEP, and cell/bead and cell/cell separations are demonstrated with this lateral separation strategy. With vertical interdigitated electrodes on the sidewall, the height of the microchannel can be increased without losing the electric field strength in contrast to other multiple frequency DEP devices with planar electrodes. As a result, populations of cells can be separated simultaneously

  14. Dielectrophoresis in particle confinement: Aligned carbon particles in polymer matrix below percolation threshold

    NASA Astrophysics Data System (ADS)

    Knaapila, M.; Høyer, H.; Helgesen, G.

    2014-09-01

    We review preparation and properties of confined, aligned string-like particle assemblies formed by dielectrophoresis under alternating electric fields. Particular attention is placed on carbon particles aligned in the oligomer matrix. In these systems the particle fraction is low, below the isotropic percolation threshold. The matrix is polymerized after alignment, which locks the aligned strings in place. Application examples are discussed including particle separation, conductivity enhancement and piezoresistive sensors.

  15. Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase.

    PubMed

    Tang, Shi-Yang; Yi, Pyshar; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2015-05-01

    Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes.

  16. Review Article—Dielectrophoresis: Status of the theory, technology, and applications

    PubMed Central

    Pethig, Ronald

    2010-01-01

    A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal

  17. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  18. Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Ali, Haider; Park, Cheol Woo

    2016-11-01

    In this study, a numerical model of a microfluidic device with particle tracing and dielectrophoresis field-flow fractionation was employed to perform a complete and continuous blood cell sorting. A low voltage was applied to electrodes to separate the red blood cells, white blood cells, and platelets based on their cell size. Blood cell sorting and counting were performed by evaluating the cell trajectories, displacements, residence times, and recovery rates in the device. A novel numerical technique was used to count the number of separated blood cells by estimating the displacement and residence time of the cells in a microfluidic device. For successful blood cell sorting, the value of cells displacement must be approximately equal to or higher than the corresponding maximum streamwise distance. The study also proposed different outlet designs to improve blood cell separation. The basic outlet design resulted in a higher cells recovery rate than the other outlets design. The recovery rate decreased as the number of inlet cells and flow rates increased because of the high particle-particle interactions and collisions with walls. The particle-particle interactions significantly affect blood cell sorting and must therefore be considered in future work.

  19. Critical current density and ac harmonic voltage generation in YBaCuO thin films by the screening technique

    NASA Astrophysics Data System (ADS)

    Pérez-López, Israel O.; Gamboa, Fidel; Sosa, Víctor

    2010-12-01

    The temperature and field dependence of harmonics in voltage Vn=Vn‧-iVn″ using the screening technique have been measured for YBaCuO superconducting thin films. Using the Sun model we obtained the curves for the temperature-dependent critical current density Jc(T). In addition, we applied the criterion proposed by Acosta et al. to compute Jc(T). Also, we made used of the empirical law Jc∝(1-T/Tc)n as an input in our calculations to reproduce experimental harmonic generation up to the fifth harmonic. We found that most models fit well the fundamental voltage but higher harmonics are poorly reproduced. Such behavior suggests the idea that higher harmonics contain information concerning complex processes like flux creep or thermally assisted flux flow.

  20. Study on sputtered a-Si:H for micro optical diffusion sensor using laser-induced dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Kamata, Makoto; Yamada, Kan; Taguchi, Yoshihiro; Nagasaka, Yuji

    2016-03-01

    In this study, a MEMS sensing device, which is applicable to point-of-care testing (POCT), is developed by integrating an optical manipulation and detection technique. The diffusion coefficient is a parameter, which is sensitive to the size, the construction and the interaction of the sample, thus, the measurement of the diffusion coefficient of the bio-sample, such as proteins, is useful for the clinical diagnosis to detect interactions and conformational changes with high sensitivity. Several diffusion sensing methods have been developed, however, the technique applicable to POCT is not established because of the difficulties due to the requirement of the measurement in a short time and a small sensing device. In this study, in order to realize a high-speed detection (ms ~ s) with small sample volume (~ μl) and small apparatus (tens of cm) without particular preparations, the micro optical diffusion sensor utilizing laser-induced dielectrophoresis (LIDEP), which is a manipulation technique based on optoelectronic tweezers, is developed. The microscale concentration distribution is formed in the microchannel by LIDEP and act as the transient diffraction grating, then, the diffusion phenomenon is optically observed. For these techniques, a photoconductive layer is essential and a hydrogenated amorphous silicon (a-Si:H) deposited by a plasma-enhanced chemical vapor deposition is generally utilized as the layer. In this study, the a-Si:H is deposited using a reactive RF magnetron sputtering method under several conditions, while changing the source gas compositions. The sensing device is fabricated with proposed a-Si:H, and the feasibility study for bio-sample measurement is conducted.

  1. ac bidirectional motor controller

    NASA Technical Reports Server (NTRS)

    Schreiner, K.

    1988-01-01

    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  2. Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique

    NASA Astrophysics Data System (ADS)

    Rani, Ritu; Kumar, Gagan; Batoo, Khalid M.; Singh, M.

    2014-06-01

    Cobalt-zinc nanoferrites with formulae Co ZnFeO, where x = 0.0, 0.1, 0.2 and 0.3, have been synthesized by solution combustion technique. The variation of DC resistivity with temperature shows the semiconducting behavior of all nanoferrites. The dielectric properties such as dielectric constant (') and dielectric loss tangent (tan are investigated as a function of temperature and frequency. Dielectric constant and loss tangent are found to be increasing with an increase in temperature while with an increase in frequency both, ' and tan , are found to be decreasing. The dielectric properties have been explained on the basis of space charge polarization according to Maxwell-Wagner's two-layer model and the hopping of charge between Fe and Fe. Further, a very high value of dielectric constant and a low value of tan are the prime achievements of the present work. The AC electrical conductivity ( is studied as a function of temperature as well as frequency and is observed to be increasing with the increase in temperature and frequency.

  3. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes.

    PubMed

    Şen, Mustafa; Ino, Kosuke; Ramón-Azcón, Javier; Shiku, Hitoshi; Matsue, Tomokazu

    2013-09-21

    We present a chip device with an array of 900 gourd-shaped microwells designed to pair single cells of different types. The device consists of interdigitated array (IDA) electrodes and uses positive dielectrophoresis to trap cells within the microwells. Each side of a microwell is on a different comb of the IDA, so that cells of different types are trapped on opposite sides of the microwells, leading to close cell pairing. Using this device, a large number of cell pairs can be formed easily and rapidly, making it a highly attractive tool for controllable cell pairing in a range of biological applications.

  4. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    SciTech Connect

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-18

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (V{sub pp}) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the V{sub pp} electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  5. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.

    PubMed

    Yang, Shih-Mo; Yu, Tung-Ming; Huang, Hang-Ping; Ku, Meng-Yen; Hsu, Long; Liu, Cheng-Hsien

    2010-06-15

    We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP onchip are designed by using Flash software to approach appropriate dynamic manipulation. This is also the first reported demonstration, to the best of our knowledge, for successfully patterning such delicate cells from human hepatocellular liver carcinoma cell line HepG2 by using any optoelectronic tweezers.

  6. Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood

    NASA Astrophysics Data System (ADS)

    Menachery, Anoop; Kremer, Clemens; Wong, Pui E.; Carlsson, Allan; Neale, Steven L.; Barrett, Michael P.; Cooper, Jonathan M.

    2012-10-01

    Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator.

  7. Concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2010-10-12

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  8. Stable Rotation of Microparticles using a Combination of Dielectrophoresis and Electroosmosis

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Rezanoor, Walid

    2016-11-01

    Electric field induced microparticle rotation has become a powerful technique to evaluate cell membrane dielectric properties and cell morphology. In this study, stable rotations of microparticles are demonstrated in a stationary AC electric field created from a set of coplanar interdigitated microelectrodes. The medium, particle size, and material are carefully chosen so that particle can be controlled by dielectrophoretic force, while a sufficiently high AC electroosmotic flow is produced for continuous particle rotation. Stable rotation up to 218 rpm is observed at 30 Vp-p applied sinusoidal potential in the frequency range of 80 - 1000 Hz. The particle spin rate observed from the experimental study is then validated with a numerical model. The model is formulated around complex charge conservation equation to determine the electric potential distribution in the domain. Stokes equation is employed to solve for AC electroosmotic fluid flow in the domain. Complexity arising from nonlinear potential drop across the electric double layer due to the application of a very large electric potential is also addressed by introducing modified capacitance equation which considers steric effect. This work was supported in part by the U.S. National Science Foundation under Grant No. DMS 1317671.

  9. A simple dye-sensitized solar cell sealing technique using a CO 2 laser beam excited by 60 Hz AC discharges

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Gil; Hong, Ji-Tae; Xu, Guo-Cheng; Kim, Ho-Sung; Lee, Kyoung-Jun; Park, Sung-Joon; Kim, Whi-Young; Kim, Hee-Je

    2010-09-01

    Dye-sensitized solar cells (DSSCs) use two glass substrates (photo electrode and counter electrode) coated with fluorine-doped tin oxide (FTO) to harvest light into the cell and to collect electrons. The space between the photo electrode and the counter electrode are filled with a liquid type electrolyte for electron transfer into the cell. Therefore, an appropriate sealing method is required to prevent the liquid electrolyte leaking out. In this paper, a simple CO 2 laser beam with TEM 00 mode excited by a 60 Hz AC discharge was used to seal two glass substrates coated with FTO for the fabrication of DSSCs. The sealing technique improved the durability and stability of the DSSCs. The optimal conditions for the sealing of the DSSCs are related to the pin-hole diameter, the discharge current and the moving velocity of the target. Especially, the CO 2 laser beam is used as a heat source that is precisely controlled by the pin-hole, which plays an important role in adjusting its spot size. From these results, the maximum laser power was found to be 40 W at 18 Torr and 35 mA. In order to achieve the best sealing quality, the following parameters are required: a pin-hole diameter of 4 mm, input voltage of 10.73 kV, discharge current of 9.31 mA, moving velocity of 1 mm/s and distance from the target surface of 26.5 cm. Scanning electron microscope images show that the sealing quality obtained using the CO 2 laser beam is superior to that obtained using a hot press or soldering iron.

  10. Characterization of microparticle separation utilizing electrokinesis within an electrodeless dielectrophoresis chip.

    PubMed

    Chiou, Chi-Han; Pan, Jia-Cheng; Chien, Liang-Ju; Lin, Yu-Ying; Lin, Jr-Lung

    2013-02-27

    This study demonstrated the feasibility of utilizing electrokinesis in an electrodeless dielectrophoresis chip to separate and concentrate microparticles such as biosamples. Numerical simulations and experimental observations were facilitated to investigate the phenomena of electrokinetics, i.e., electroosmosis, dielectrophoresis, and electrothermosis. Moreover, the proposed operating mode can be used to simultaneously convey microparticles through a microfluidic device by using electroosmotic flow, eliminating the need for an additional micropump. These results not only revealed that the directions of fluids could be controlled with a forward/backward electroosmotic flow but also categorized the optimum separating parameters for various microparticle sizes (0.5, 1.0 and 2.0 μm). Separation of microparticles can be achieved by tuning driving frequencies at a specific electric potential (90 Vpp·cm(-1)). Certainly, the device can be designed as a single automated device that carries out multiple functions such as transportation, separation, and detection for the realization of the envisioned Lab-on-a-Chip idea.

  11. On-chip DNA preconcentration in different media conductivities by electrodeless dielectrophoresis.

    PubMed

    Li, Shunbo; Ye, Ziran; Hui, Yu Sanna; Gao, Yibo; Jiang, Yusheng; Wen, Weijia

    2015-09-01

    Electrodeless dielectrophoresis is the best choice to achieve preconcentration of nanoparticles and biomolecules due to its simple, robust, and easy implementation. We designed a simple chip with microchannels and nano-slits in between and then studied the trapping of DNA in high conductive medium and low conductive medium, corresponding to positive and negative dielectrophoresis (DEP), respectively. It is very important to investigate the trapping in media with different conductivities since one always has to deal with the sample solutions with different conductivities. The trapping process was analyzed by the fluorescent intensity changes. The results showed that DNA could be trapped at the nano-slit in both high and low conductive media in a lower electric field strength (10 V/cm) compared to the existing methods. This is a significant improvement to suppress the Joule heating effect in DEP related experiments. Our work may give insight to researchers for DNA trapping by a simple and low cost device in the Lab-on-a-Chip system.

  12. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

    PubMed

    Ismail, A; Hughes, M P; Mulhall, H J; Oreffo, R O C; Labeed, F H

    2015-02-01

    Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations.

  13. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis

    PubMed Central

    Kim, Unyoung; Shu, Chih-Wen; Dane, Karen Y.; Daugherty, Patrick S.; Wang, Jean Y. J.; Soh, H. T.

    2007-01-01

    An effective, noninvasive means of selecting cells based on their phase within the cell cycle is an important capability for biological research. Current methods of producing synchronous cell populations, however, tend to disrupt the natural physiology of the cell or suffer from low synchronization yields. In this work, we report a microfluidic device that utilizes the dielectrophoresis phenomenon to synchronize cells by exploiting the relationship between the cell's volume and its phase in the cell cycle. The dielectrophoresis activated cell synchronizer (DACSync) device accepts an asynchronous mixture of cells at the inlet, fractionates the cell populations according to the cell-cycle phase (G1/S and G2/M), and elutes them through different outlets. The device is gentle and efficient; it utilizes electric fields that are 1–2 orders of magnitude below those used in electroporation and enriches asynchronous tumor cells in the G1 phase to 96% in one round of sorting, in a continuous flow manner at a throughput of 2 × 105 cells per hour per microchannel. This work illustrates the feasibility of using laminar flow and electrokinetic forces for the efficient, noninvasive separation of living cells. PMID:18093921

  14. Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives

    PubMed Central

    Velugotla, Srinivas; Pells, Steve; Mjoseng, Heidi K.; Duffy, Cairnan R. E.; Smith, Stewart; De Sousa, Paul; Pethig, Ronald

    2012-01-01

    Assessment of the dielectrophoresis (DEP) cross-over frequency (fxo), cell diameter, and derivative membrane capacitance (Cm) values for a group of undifferentiated human embryonic stem cell (hESC) lines (H1, H9, RCM1, RH1), and for a transgenic subclone of H1 (T8) revealed that hESC lines could not be discriminated on their mean fxo and Cm values, the latter of which ranged from 14 to 20 mF/m2. Differentiation of H1 and H9 to a mesenchymal stem cell-like phenotype resulted in similar significant increases in mean Cm values to 41–49 mF/m2 in both lines (p < 0.0001). BMP4-induced differentiation of RCM1 to a trophoblast cell-like phenotype also resulted in a distinct and significant increase in mean Cm value to 28 mF/m2 (p < 0.0001). The progressive transition to a higher membrane capacitance was also evident after each passage of cell culture as H9 cells transitioned to a mesenchymal stem cell-like state induced by growth on a substrate of hyaluronan. These findings confirm the existence of distinctive parameters between undifferentiated and differentiating cells on which future application of dielectrophoresis in the context of hESC manufacturing can be based. PMID:24339846

  15. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.

    PubMed

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina; Sellarès, Jordi

    2015-06-01

    Evaluation and diagnosis of blood alterations is a common request for clinical laboratories, requiring a complex technological approach and dedication of health resources. In this paper, we present a microfluidic device that owing to a novel combination of hydrodynamic and dielectrophoretic techniques can separate plasma from fresh blood in a microfluidic channel and for the first time allows optical real-time monitoring of the components of plasma without pre- or post-processing. The microchannel is based on a set of dead-end branches at each side and is initially filled using capillary forces with a 2-μL droplet of fresh blood. During this process, stagnation zones are generated at the dead-end branches and some red blood cells (RBCs) are trapped there. An electric field is then applied and dielectrophoretic trapping of RBCs is used to prevent more RBCs entering into the channel, which works like a sieve. Besides, an electroosmotic flow is generated to sweep the rest of the RBCs from the central part of the channel. Consequently, an RBC-free zone of plasma is formed in the middle of the channel, allowing real-time monitoring of the platelet behavior. To study the generation of stagnation zones and to ensure RBC trapping in the initial constrictions, two numerical models were solved. The proposed experimental design separates up to 0.1 μL blood plasma from a 2-μL fresh human blood droplet. In this study, a plasma purity of 99 % was achieved after 7 min, according to the measurements taken by image analysis. Graphical Abstract Schematics of a real-time plasma monitoring system based on a Hydrodynamic and direct-current insulator-based dielectrophoresis microfluidic channel.

  16. Theory of dielectrophoresis and aggregation in suspensions of highly polarized particles subjected to high-gradient AC electric fields

    NASA Astrophysics Data System (ADS)

    Jacqmin, David; Khusid, Boris; Acrivos, Andreas

    2001-11-01

    The proposed mathematical model of electro-hydrodynamic phenomena consists of strongly coupled field and flow equations supplemented by constitutive equations for the dielectric polarization and the field-induced contribution to the energy and stresses in a suspension in the presence of a time-varying electric field. The suspension is viewed as an effective Newtonian fluid with a concentration-dependent viscosity. The long-range hydrodynamic interactions of the particles subjected to shear are incorporated through the concentration dependence of the suspension viscosity, the hindrance function in the expression for the particle settling velocity, and the shear-induced diffusion of the particles. For the electric energy and stress, we employed the constitutive equations of our microscopic theory for the case of strong electric energy dissipation. The equation for the total particle flux includes the flux induced by the electric force exerted on a particle due to the gradient of its chemical potential in a spatially non-uniform electric field, the flux generated by the buoyancy force, and the particle shear-diffusion. We consider the specific case of low particle Reynolds numbers which is relevant to our current experiments. We investigated the situation of "heterogeneous aggregation" when the field-induced phase transitions occur in a thin layer adjacent to the electrodes. By comparing our theoretical predictions with the results of experiments on a rotating channel, we demonstrated that the model is capable of predicting a wide range of physical processes in a suspension of highly polarizable particles, in particular, the formation of highly concentrated particle layers on both the high-voltage and the grounded electrodes.

  17. AC electrokinetic manipulation of selenium nanoparticles for potential nanosensor applications

    SciTech Connect

    Mahmoodi, Seyed Reza; Bayati, Marzieh; Hosseinirad, Somayeh; Foroumadi, Alireza; Gilani, Kambiz; Rezayat, Seyed Mahdi

    2013-03-15

    Highlights: ► Se nanoparticles were synthesized using a reverse-microemulsion process. ► AC osmotic fluid flow repulses the particles from electrode edges. ► Dielectrophoretic force attracts the particles to electrode edges. ► Dielectrophoresis electrode showed non-ohmic behavior. ► The device can potentially be used as a nanosensor. - Abstract: We report the AC electrokinetic behavior of selenium (Se) nanoparticles for electrical characterization and possible application as micro/nano devices. selenium Se nanoparticles were successfully synthesized using a reverse-microemulsion process and investigated structurally using X-ray diffraction and transmission electron microscope. Interdigitated castellated ITO and non-castellated platinum electrodes were employed for manipulation of suspended materials in the fluid. Using ITO electrodes at low frequency limits resulted in deposition of Se particles on electrode surface. When Se particles exposed to platinum electrodes in the 10 Hz–1 kHz range and V {sub p−p}> 8, AC osmotic fluid flow repulses the particles from electrode edges. However, in 10 kHz–10 MHz range and V {sub p−p}> 5, dielectrophoretic force attracts the particles to electrode edges. As the Se particle concentration increased, the trapped Se particles were aligned along the electric field line and bridged the electrode gap. The device was characterized and can potentially be useful in making micro/nano electronic devices.

  18. Rapid assessment of early biophysical changes in K562 cells during apoptosis determined using dielectrophoresis

    PubMed Central

    Chin, Sue; Hughes, Michael P; Coley, Helen M; Labeed, Fatima H

    2006-01-01

    Apoptosis, or programmed cell death, is a vital cellular process responsible for causing cells to self-terminate at the end of their useful life. Abrogation of this process is commonly linked to cancer, and rapid detection of apoptosis in vitro is vital to the discovery of new anti-cancer drugs. In this paper, we describe the application of the electrical phenomenon dielectrophoresis for detecting apoptosis at very early stages after drug induction, on the basis of changes in electrophysiological properties. Our studies have revealed that K562 (human myelogenous leukemia) cells show a persistent elevation in the cytoplasmic conductivity occurring as early as 30 minutes following exposure to staurosporine. This method therefore allows a far more rapid detection method than existing biochemical marker methods. PMID:17717973

  19. Efficient dielectrophoretic cell enrichment using a dielectrophoresis-well based system.

    PubMed

    Abdul Razak, Mohd Azhar; Hoettges, Kai F; Fatoyinbo, Henry O; Labeed, Fatima H; Hughes, Michael P

    2013-01-01

    Whilst laboratory-on-chip cell separation systems using dielectrophoresis are increasingly reported in the literature, many systems are afflicted by factors which impede "real world" performance, chief among these being cell loss (in dead spaces, attached to glass and tubing surfaces, or sedimentation from flow), and designs with large channel height-to-width ratios (large channel widths, small channel heights) that make the systems difficult to interface with other microfluidic systems. In this paper, we present a scalable structure based on 3D wells with approximately unity height-to-width ratios (based on tubes with electrodes on the sides), which is capable of enriching yeast cell populations whilst ensuring that up to 94.3% of cells processed through the device can be collected in tubes beyond the output.

  20. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis.

    PubMed

    Mernier, Guillaume; Duqi, Enri; Renaud, Philippe

    2012-11-07

    This paper reports a novel impedance cytometer design, easily integrable with dielectrophoretic focusing using a simple fabrication process with a single metal layer. Patterning of electrodes recessed in lateral channels - so-called "liquid electrodes" - allows the use of large electrodes while keeping a good spatial resolution. This larger area allows measurements at low frequencies, down to 1 kHz. It also decreases the current density, leading to electrodes more robust against electrochemical degradation. The relative change in impedance is simulated and compared to values reported in the literature for traditional designs, showing a smaller sensitivity for the proposed design due to the larger measurement volume. The device is evaluated with specific target applications, such as viability measurement and high-speed cell counting. Numerical simulations indicate that the proposed design reduces the dependence of the measurement on the vertical position of the particle compared to conventional designs, with a variation of only 5%, but is still dependent on its lateral position. This dependence is studied using focusing by dielectrophoresis (DEP) at different lateral positions across the microchannel, showing a larger sensitivity when the particles are close to the measurement electrodes, as confirmed by the numerical simulations. The integration of lateral dielectrophoresis to focus particles in the middle of the channel reduces the variation of the measurements to very small values, with a coefficient of variation of 5.6%, and allows precise particle sizing. Such a design can be very powerful to simplify the fabrication process of impedance cytometers and enables the production of cost-effective, possibly disposable devices.

  1. Comprehensive analysis of human cells motion under an irrotational AC electric field in an electro-microfluidic chip.

    PubMed

    Vaillier, Clarisse; Honegger, Thibault; Kermarrec, Frédérique; Gidrol, Xavier; Peyrade, David

    2014-01-01

    AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics remain unclear over a large frequency spectrum as illustrated by the self-rotation effect observed recently. We here report and analyze human cells behaviors in different conditions of medium conductivity, electric field frequency and magnitude. We also observe the self-rotation of human cells, in the absence of a rotational electric field. Based on an analytical competitive model of electrokinetic forces, we propose an explanation of the cell self-rotation. These experimental results, coupled with our model, lead to the exploitation of the cell behaviors to measure the intrinsic dielectric properties of JURKAT, HEK and PC3 human cell lines.

  2. Comprehensive Analysis of Human Cells Motion under an Irrotational AC Electric Field in an Electro-Microfluidic Chip

    PubMed Central

    Kermarrec, Frédérique; Gidrol, Xavier; Peyrade, David

    2014-01-01

    AC electrokinetics is a versatile tool for contact-less manipulation or characterization of cells and has been widely used for separation based on genotype translation to electrical phenotypes. Cells responses to an AC electric field result in a complex combination of electrokinetic phenomena, mainly dielectrophoresis and electrohydrodynamic forces. Human cells behaviors to AC electrokinetics remain unclear over a large frequency spectrum as illustrated by the self-rotation effect observed recently. We here report and analyze human cells behaviors in different conditions of medium conductivity, electric field frequency and magnitude. We also observe the self-rotation of human cells, in the absence of a rotational electric field. Based on an analytical competitive model of electrokinetic forces, we propose an explanation of the cell self-rotation. These experimental results, coupled with our model, lead to the exploitation of the cell behaviors to measure the intrinsic dielectric properties of JURKAT, HEK and PC3 human cell lines. PMID:24736275

  3. A feasibility study for enrichment of highly-aggressive cancer subpopulations by their biophysical properties via dielectrophoresis enhanced with synergistic fluid flow.

    PubMed

    Douglas, Temple Anne; Cemazar, Jaka; Balani, Nikita; Sweeney, Daniel C; Schmelz, Eva M; Davalos, Rafael V

    2017-03-25

    A common problem with cancer treatment is the development of treatment resistance and tumor recurrence that result from treatments that kill most tumor cells yet leave behind aggressive cells to repopulate. Presented here is a microfluidic device that can be used to isolate tumor subpopulations to optimize treatment selection. Dielectrophoresis (DEP) is a phenomenon where particles are polarized by an electric field and move along the electric field gradient. Different cell subpopulations have different DEP responses depending on their bioelectrical phenotype, which, we hypothesize, correlate with aggressiveness. We have designed a microfluidic device in which a region containing posts locally distorts channel of the electric field created by an AC voltage across a microfluidic channel and which forces cells toward the posts through DEP. This force is balanced with a simultaneous drag force from fluid motion that pulls cells away from the posts. We have shown that by adjusting the drag force, cells with aggressive phenotypes are influenced more by the DEP force and trap on posts while others flow through the chip unaffected. Utilizing single-cell trapping on cell-sized posts by a drag-DEP force balance, we show that separation of very similar cell subpopulations may be achieved, a result that was previously impossible with DEP alone. Separated subpopulations maintain high viability downstream, and remain in a native state, without fluorescent labeling. These cells can then be cultured to help select a therapy that kills aggressive subpopulations equally or better than the bulk of the tumor, mitigating resistance and recurrence. This article is protected by copyright. All rights reserved.

  4. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    PubMed

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-07

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.

  5. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    SciTech Connect

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th-234U, 226Ra-238U, 231Pa-235U, and 227Ac-235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra-238U and 227Ac-235U chronometers and provide information about nuclide migration during uranium processing.

  6. NONLINEAR DIAGNOSTICS USING AC DIPOLES.

    SciTech Connect

    PEGGS,S.

    1999-03-29

    There are three goals in the accurate nonlinear diagnosis of a storage ring. First, the beam must be moved to amplitudes many times the natural beam size. Second, strong and long lasting signals must be generated. Third, the measurement technique should be non-destructive. Conventionally, a single turn kick moves the beam to large amplitudes, and turn-by-turn data are recorded from multiple beam position monitors (BPMs) [1-6]. Unfortunately, tune spread across the beam causes the center of charge beam signal to ''decohere'' on a time scale often less than 100 turns. Filamentation also permanently destroys the beam emittance (in a hadron ring). Thus, the ''strong single turn kick'' technique successfully achieves only one out of the three goals. AC dipole techniques can achieve all three. Adiabatically excited AC dipoles slowly move the beam out to large amplitudes. The coherent signals then recorded last arbitrarily long. The beam maintains its original emittance if the AC dipoles are also turned off adiabatically, ready for further use. The AGS already uses an RF dipole to accelerate polarized proton beams through depolarizing resonances with minimal polarization loss [7]. Similar AC dipoles will be installed in the horizontal and vertical planes of both rings in RHIC [8]. The RHIC AC dipoles will also be used as spin flippers, and to measure linear optical functions [9].

  7. Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments.

    PubMed

    Lei, U; Sun, Pei-Hou; Pethig, Ronald

    2011-12-01

    A modified theory is proposed for extracting cell dielectric properties from the peak frequency measurement of electrorotation (ER) and the crossover frequency measurement of dielectrophoresis (DEP). Current theory in the literature is based on the low frequency (DC) approximations for the equivalent cell permittivity and conductivity, which are valid when the measurements are performed in a medium with conductivity less than 1 mS/m. The present theory extracts the cell properties through optimizing an expression for the medium conductivity in terms of the peak ER, or DEP crossover, frequency according to its definition using full expressions of equivalent cell permittivity and conductivity. Various levels of approximation of the theory are proposed and discussed through a scaling analysis. The present theory can extract both membrane and interior properties from the low and the high peak ER, or DEP crossover, frequencies for any medium conductivity provided the peak ER, or DEP crossover, frequency exists. It can be reduced to the linear theory for the low peak ER and DEP crossover frequencies in the literature when the medium conductivity is less than 10 mS/m. However, we can determine the membrane capacitance and conductance via the slope and intercept, respectively, of the straight line fitting of the ER peak and DEP frequency against medium conductivity data according to the linear theory only when the intercept dominates the experimental uncertainty, which occurs when the medium conductivity is less than 1 mS/m in practice.

  8. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.

    PubMed

    Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs

    2017-03-15

    Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value.

  9. The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Hwang, Bohyun; Kim, Byungkyu

    2016-12-01

    Originally introduced by H. A. Pohl in 1951, dielectrophoretic (DEP) force has been used as a striking tool for biological particle manipulation (or separation) for the last few decades. In particular, dielectrophoresis activated cell sorters (DACSes) have been developed for applications in various biomedical fields. These applications include cell replacement therapy, drug screening and medical diagnostics. Since a DACS does not require a specific bio-marker, it is able to function as a biological particle sorting tool with numerous configurations for various cells [e.g. red blood cells (RBCs), white blood cells (WBCs), circulating tumor cells, leukemia cells, breast cancer cells, bacterial cells, yeast cells and sperm cells]. This article explores current DACS capabilities worldwide, and it also looks at recent developments intended to overcome particular limitations. First, the basic theories are reviewed. Then, representative DACSes based on DEP trapping, traveling wave DEP systems, DEP field-flow fractionation and DEP barriers are introduced, and the strong and weak points of each DACS are discussed. Finally, for the purposes of commercialization, prerequisites regarding throughput, efficiency and recovery rates are discussed in detail through comparisons with commercial cell sorters (e.g. fluorescent activated and magnetic activated cell sorters).

  10. Combined Dielectrophoresis and Impedance Systems for Bacteria Analysis in Microfluidic On-Chip Platforms

    PubMed Central

    Páez-Avilés, Cristina; Juanola-Feliu, Esteve; Punter-Villagrasa, Jaime; del Moral Zamora, Beatriz; Homs-Corbera, Antoni; Colomer-Farrarons, Jordi; Miribel-Català, Pere Lluís; Samitier, Josep

    2016-01-01

    Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments. PMID:27649201

  11. Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness

    PubMed Central

    Leung, Siu Ling; Lu, Yi; Bluestein, Danny; Slepian, Marvin J.

    2015-01-01

    Platelets, essential for hemostasis, are easily activated via biochemical and mechanical stimuli. Cell stiffness is a vital parameter modulating the mechano-transduction of exogenous mechanical stimuli. While methods exist to measure cell stiffness, no ready method exists for measuring platelet stiffness that is both minimally-contacting, imparting minimal exogenous force and non-activating. We developed a minimal-contact methodology capable of trapping and measuring the stiffness of individual platelets utilizing dielectrophoresis (DEP)-mediated electrodeformation. Parametric studies demonstrate a non-uniform electric field in the MHz frequency range (0.2–20 MHz) is required for generating effective DEP forces on platelets, suspended in isotonic buffer with conductivity ~100–200 μS/cm. A nano-Newton DEP force (0.125–4.5 nN) was demonstrated to be essential for platelet electrodeformation, which could be generated with an electric field with strength of 1.5–9 V/μm. Young’s moduli of platelets were calculated using a Maxwell stress tensor model and stress-deformation relationship. Platelet stiffness was determined to be in the range of 3.5 ± 1.4 and 8.5 ± 1.5 kPa for resting and 0.4% paraformaldehydetreated cells, respectively. The developed methodology fills a gap in approaches of measuring individual platelet stiffness, free of inadvertent platelet activation, which will facilitate further studies of mechanisms involved in mechanically-mediated platelet activation. PMID:26202677

  12. Numerical Simulation of Optically-Induced Dielectrophoresis Using a Voltage-Transformation-Ratio Model

    PubMed Central

    Hung, Shih-Hsun; Huang, Sheng-Chieh; Lee, Gwo-Bin

    2013-01-01

    Optically-induced dielectrophoresis (ODEP) has been extensively used for the manipulation and separation of cells, beads and micro-droplets in microfluidic devices. With this approach, non-uniform electric fields induced by light projected on a photoconductive layer can be used to generate attractive or repulsive forces on dielectric materials. Then, moving these light patterns can be used for the manipulation of particles in the microfluidic devices. This study reports on the results from numerical simulation of the ODEP platform using a new model based on a voltage transformation ratio, which takes the effective electrical voltage into consideration. Results showed that the numerical simulation was in reasonably agreement with experimental data for the manipulation of polystyrene beads and emulsion droplets, with a coefficient of variation less than 6.2% (n = 3). The proposed model can be applied to simulations of the ODEP force and may provide a reliable tool for estimating induced dielectrophoretic forces and electric fields, which is crucial for microfluidic applications. PMID:23385411

  13. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  14. Virus Enrichment for Single Virus Infection by Using 3D Insulator Based Dielectrophoresis

    PubMed Central

    Masuda, Taisuke; Maruyama, Hisataka; Honda, Ayae; Arai, Fumihito

    2014-01-01

    We developed an active virus filter (AVF) that enables virus enrichment for single virus infection, by using insulator-based dielectrophoresis (iDEP). A 3D-constricted flow channel design enabled the production of an iDEP force in the microfluidic chip. iDEP using a chip with multiple active virus filters (AVFs) was more accurate and faster than using a chip with a single AVF, and improved the efficiency of virus trapping. We utilized maskless photolithography to achieve the precise 3D gray-scale exposure required for fabrication of constricted flow channel. Influenza virus (A PR/8) was enriched by a negative DEP force when sinusoidal wave was applied to the electrodes within an amplitude range of 20 Vp-p and a frequency of 10 MHz. AVF-mediated virus enrichment can be repeated simply by turning the current ON or OFF. Furthermore, the negative AVF can inhibit virus adhesion onto the glass substrate. We then trapped and transported one of the enriched viruses by using optical tweezers. This microfluidic chip facilitated the effective transport of a single virus from AVFs towards the cell-containing chamber without crossing an electrode. We successfully transported the virus to the cell chamber (v = 10 µm/s) and brought it infected with a selected single H292 cell. PMID:24918921

  15. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis

    PubMed Central

    LaLonde, Alexandra; Romero-Creel, Maria F.; Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.

    2015-01-01

    Isolation and enrichment of low-abundant particles are essential steps in many bio-analytical and clinical applications. In this work, the capability of an insulator-based dielectrophoresis (iDEP) device for the detection and stable capture of low abundant polystyrene particles and yeast cells was evaluated. Binary and tertiary mixtures of particles and cells were tested, where the low-abundant particles had concentration ratios on the order of 1:10 000 000 compared to the other particles present in the mixture. The results demonstrated successful and stable capture and enrichment of rare particles and cells (trapping efficiencies over 99%), where particles remained trapped in a stable manner for up to 4 min. A device with four reservoirs was employed for the separation and enrichment of rare particles, where the particles of interest were first selectively concentrated and then effectively directed to a side port for future collection and analysis. The present study demonstrates that simple iDEP devices have appropriate screening capacity and can be used for handling samples containing rare particles; achieving both enrichment and isolation of low-abundant particles and cells. PMID:26674134

  16. Characterization and separation of Cryptosporidium and Giardia cells using on-chip dielectrophoresis

    PubMed Central

    Narayanan Unni, Harikrishnan; Hartono, Deny; Yue Lanry Yung, Lin; Mah-Lee Ng, Mary; Pueh Lee, Heow; Cheong Khoo, Boo; Lim, Kian-Meng

    2012-01-01

    Dielectrophoresis (DEP) has been shown to have significant potential for the characterization of cells and could become an efficient tool for rapid identification and assessment of microorganisms. The present work is focused on the trapping, characterization, and separation of two species of Cryptosporidium (C. parvum and C. muris) and Giardia lambia (G. lambia) using a microfluidic experimental setup. Cryptosporidium oocysts, which are 2-4 μm in size and nearly spherical in shape, are used for the preliminary stage of prototype development and testing. G. lambia cysts are 8–12 μm in size. In order to facilitate effective trapping, simulations were performed to study the effects of buffer conductivity and applied voltage on the flow and cell transport inside the DEP chip. Microscopic experiments were performed using the fabricated device and the real part of Clausius—Mossotti factor of the cells was estimated from critical voltages for particle trapping at the electrodes under steady fluid flow. The dielectric properties of the cell compartments (cytoplasm and membrane) were calculated based on a single shell model of the cells. The separation of C. muris and G. lambia is achieved successfully at a frequency of 10 MHz and a voltage of 3 Vpp (peak to peak voltage). PMID:22662073

  17. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.

    PubMed

    Das, Debanjan; Biswas, Karabi; Das, Soumen

    2014-06-01

    The present study demonstrates the design, simulation, fabrication and testing of a label-free continuous manipulation and separation micro-device of particles/biological cells suspended on medium based on conventional dielectrophoresis. The current dielectrophoretic device uses three planner electrodes to generate non-uniform electric field and induces both p-DEP and n-DEP force simultaneously depending on the dielectric properties of the particles and thus influencing at least two types of particles at a time. Numerical simulations were performed to predict the distribution of non-uniform electric field, DEP force and particle trajectories. The device is fabricated utilizing the advantage of bonding between PDMS and SU8 polymer. The p-DEP particles move away from the center of the streamline, while the n-DEP particles will follow the central streamline along the channel length. Dielectrophoretic effects were initially tested using polystyrene beads followed by manipulation of HeLa cells. In the experiment, it was observed that polystyrene beads in DI water always response as n-DEP up to 1MHz frequency, whereas HeLa cells in PBS medium response as n-DEP up to 400kHz frequency and then it experiences p-DEP up to 1MHz. Further, the microscopic observations of DEP responses of HeLa cells were verified by performing trapping experiment at static condition.

  18. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Li, Ming; Li, Shunbo; Cao, Wenbin; Li, Weihua; Wen, Weijia; Alici, Gursel

    2012-09-01

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field gradient required for the dielectrophoretic effect. When particles move electrokinetically through the channel, the experienced negative dielectrophoretic forces alternate directions within two adjacent semicircular microchannels, leading to a focused continuous-flow stream along the channel centerline. Both the experimentally observed and numerically simulated results of the focusing performance are reported, which coincide acceptably in proportion to the specified dimensions (i.e. inlet and outlet of the waved channel). How the applied electric field, particle size and medium concentration affect the performance was studied by focusing polystyrene microparticles of varying sizes. As an application in the field of biology, the focusing of yeast cells in the waved mcirochannel was tested. This waved microchannel shows a great potential for microflow cytometry applications and is expected to be widely used before different processing steps in lab-on-a-chip devices with integrated functions.

  19. Arraying single microbeads in microchannels using dielectrophoresis-assisted mechanical traps

    NASA Astrophysics Data System (ADS)

    Tirapu-Azpiroz, Jaione; Temiz, Yuksel; Delamarche, Emmanuel

    2015-11-01

    Manipulating and immobilizing single microbeads in flowing fluids is relevant for biological assays and chemical tests but typically requires expensive laboratory equipment and trapping mechanisms that are not reversible. In this paper, we present a highly efficient and reversible mechanism for trapping microbeads by combining dielectrophoresis (DEP) with mechanical traps. The integration of planar electrodes and mechanical traps in a microchannel enables versatile manipulation of microbeads via DEP for their docking in recessed structures of mechanical traps. By simulating the combined effects of the hydrodynamic drag and DEP forces on microbeads, we explore a configuration of periodic traps where the beads are guided by the electrodes and immobilized in recess areas of the traps. The design of the electrode layout and operating configuration are optimized for the efficient trapping of single microbeads. We demonstrated the predicted guiding and trapping effectiveness of the design as well as the reversibility of the system on 10 μm polystyrene beads. Experimental verification used an array of 96 traps in an area of 420 × 420 μm2, reaching a trapping efficiency of 63% when 7 Vpp is applied to the electrodes under 80 nl min-1 flow rate conditions, and 98% of bead release when the voltage is turned off.

  20. Dielectrophoresis-Assisted Raman Spectroscopy of Intravesicular Analytes on Metallic Pyramids.

    PubMed

    Barik, Avijit; Cherukulappurath, Sudhir; Wittenberg, Nathan J; Johnson, Timothy W; Oh, Sang-Hyun

    2016-02-02

    Chemical analysis of membrane-bound containers such as secretory vesicles, organelles, and exosomes can provide insights into subcellular biology. These containers are loaded with a range of important biomolecules, which further underscores the need for sensitive and selective analysis methods. Here we present a metallic pyramid array for intravesicular analysis by combining site-selective dielectrophoresis (DEP) and Raman spectroscopy. Sharp pyramidal tips act as a gradient force generator to trap nanoparticles or vesicles from the solution, and the tips are illuminated by a monochromatic light source for concurrent spectroscopic detection of trapped analytes. The parameters suitable for DEP trapping were optimized by fluorescence microscopy, and the Raman spectroscopy setup was characterized by a nanoparticle based model system. Finally, vesicles loaded with 4-mercaptopyridine were concentrated at the tips and their Raman spectra were detected in real time. These pyramidal tips can perform large-area array-based trapping and spectroscopic analysis, opening up possibilities to detect molecules inside cells or cell-derived vesicles.

  1. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis.

    PubMed

    Hunt, Thomas P; Issadore, David; Westervelt, R M

    2008-01-01

    We present an integrated circuit/microfluidic chip that traps and moves individual living biological cells and chemical droplets along programmable paths using dielectrophoresis (DEP). Our chip combines the biocompatibility of microfluidics with the programmability and complexity of integrated circuits (ICs). The chip is capable of simultaneously and independently controlling the location of thousands of dielectric objects, such as cells and chemical droplets. The chip consists of an array of 128 x 256 pixels, 11 x 11 microm(2) in size, controlled by built-in SRAM memory; each pixel can be energized by a radio frequency (RF) voltage of up to 5 V(pp). The IC was built in a commercial foundry and the microfluidic chamber was fabricated on its top surface at Harvard. Using this hybrid chip, we have moved yeast and mammalian cells through a microfluidic chamber at speeds up to 30 microm sec(-1). Thousands of cells can be individually trapped and simultaneously positioned in controlled patterns. The chip can trap and move pL droplets of water in oil, split one droplet into two, and mix two droplets into one. Our IC/microfluidic chip provides a versatile platform to trap and move large numbers of cells and fluid droplets individually for lab-on-a-chip applications.

  2. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.

    PubMed

    Fan, Shih-Kang; Hsieh, Tsung-Han; Lin, Di-Yu

    2009-05-07

    A general digital (droplet-based) microfluidic platform based on the study of dielectric droplet manipulation by dielectrophoresis (DEP) and the integration of DEP and electrowetting-on-dielectric (EWOD) is reported. Transporting, splitting, and merging dielectric droplets are achieved by DEP in a parallel-plate device, which expands the fluids of digital microfluidics from merely being conductive and aqueous to being non-conductive. In this work, decane, hexadecane, and silicone oil droplets were successfully transported in a 150 microm-high gap between two parallel plates by applying a DC voltage above threshold voltages. Non-volatile silicone oil droplets with viscosities of 20 and 50 cSt were studied in more detail in parallel-plate geometries with spacings of 75 microm, 150 microm, and 225 microm. The threshold voltages and the required driving voltages to achieve droplet velocities up to 4 mm/s in the different circumstances were measured. By adding a dielectric layer on the driving electrodes of the tested parallel-plate device, a general digital microfluidic platform capable of manipulating both dielectric and conductive droplets was demonstrated. DEP and EWOD, selectively generated by applying different signals on the same dielectric-covered electrodes, were used to drive silicone oil and water droplets, respectively. Concurrent transporting silicone oil and water droplets along an electrode loop, merging water and oil droplets, and transporting and separating the merged water-in-oil droplet were performed.

  3. The reduction techniques of the particle background for the ATHENA X-IFU instrument at L2 orbit: Geant4 and the CryoAC

    NASA Astrophysics Data System (ADS)

    Macculi, Claudio, Piro, L.; Gatti, F.; Lotti, S.; Argan, A.; Laurenza, M.; D'Andrea, M.; Torrioli, G.; Biasotti, M.; Corsini, D.; Orlando, A.; Mineo, T.; D'Ai, A.; Molendi, S.; Gastaldello, F.; Bulgarelli, A.; Fioretti, V.; Jacquey, C.; Laurent, P.

    2015-09-01

    We present the particles background reduction techniques aimed at increasing the X-IFU sensitivity which is reduced by primary protons of both solar and Cosmic Rays origin, and secondary electrons. The adopted solutions involve Monte Carlo simulation by both Geant4 toolkit related to the "expected" background at L2 orbit through the payload mass model and the ray tracing technique to evaluate the soft protons components focussed by the optics to the main detector, and the development of an active Cryogenic AntiCoincidence detector and a passive electron shielding to meet the scientific requirements.

  4. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    NASA Astrophysics Data System (ADS)

    Yang, Chungja

    Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential for highly innovative technological applications. Well-defined shaped and sized nanoparticles enable comparisons between experiments, theory and subsequent new models to explain experimentally observed phenomena. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling), nanocoatings, and electrical circuits. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation, did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and

  5. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  6. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis.

    PubMed

    García Núñez, C; García Marín, A; Nanterne, P; Piqueras, J; Kung, P; Pau, J L

    2013-10-18

    ZnO nanowires (NWs) with different radii (rNW) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (FDEP) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I-V measurements in darkness and under illumination (200 nm < λ < 600 nm). In darkness, the NW resistance increases as rNW decreases due to the reduction of the conduction volume, until saturation is reached for rNW < 65 nm. On the other hand, the NW spectral photoresponse shows high values around 10(8) A W(-1) (measured at 5 V and λ < 370 nm) and follows a linear trend as a function of the NW cross section. In addition, the cut-off wavelength depends on rNW, presenting a clear blue-shift for NWs with a lower radius (rNW < 50 nm). Transient photoresponse studies show that NWs with lower radii have longer rise times and shorter decay times mainly due to surface trapping effects. Regardless of NW size, passivation of the surface using a dielectric capping layer of SiO2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current.

  7. A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential.

    PubMed Central

    Gimsa, J; Wachner, D

    1998-01-01

    Dielectric properties of suspended cells are explored by analysis of the frequency-dependent response to electric fields. Impedance (IMP) registers the electric response, and kinetic phenomena like orientation, translation, deformation, or rotation can also be analyzed. All responses can generally be described by a unified theory. This is demonstrated by an RC model for the structural polarizations of biological cells, allowing intuitive comparison of the IMP, dielectrophoresis (DP), and electrorotation (ER) methods. For derivations, cells of prismatic geometry embedded in elementary cubes formed by the external solution were assumed. All geometrical constituents of the model were described by parallel circuits of a capacitor and a resistor. The IMP of the suspension is given by a meshwork of elementary cubes. Each elementary cube was modeled by two branches describing the current flow through and around the cell. To model DP and ER, the external branch was subdivided to obtain a reference potential. Real and imaginary parts of the potential difference of the cell surface and the reference reflect the frequency behavior of DP and ER. The scheme resembles an unbalanced Wheatstone bridge, in which IMP measures the current-voltage behavior of the feed signal and DP and ER are the measuring signal. Model predictions were consistent with IMP, DP, and ER experiments on human red cells, as well as with the frequency dependence of field-induced hemolysis. The influential radius concept is proposed, which allows easy derivation of simplified equations for the characteristic properties of a spherical single-shell model on the basis of the RC model. PMID:9675212

  8. Determination of electric parameters of cell membranes by a dielectrophoresis method.

    PubMed Central

    Marszalek, P; Zielinsky, J J; Fikus, M; Tsong, T Y

    1991-01-01

    Marszalek, P., J. J. Zielinsky, and M. Fikus (1989. Bioelectrochem. Bioenerg. 22:289-298) have described a novel design for measuring the complete dielectrophoretic spectrum of a single cell. From the analysis of the dielectrophoretic spectrum, the membrane conductivity, sigma membr, and the membrane dielectric permittivity, epsilon membr, of the cell may be determined according to the theory of dielectrophoresis described by Sauer, F. A. (1985. Interactions between Electromagnetic Field and Cells. A. Chiabrera, C. Nicolini, and H.P. Schwan, editors. Plenum Publishing Corp., New York. 181-202). At Fo, the net force experienced by a single shell sphere in a nonuniform periodic field is zero, and the sphere ceases to move in the field. In other words, at Fo, the effective polarizability, chi eff, of the sphere (the polarizability of sphere minus the polarizability of the medium) is equal to zero. For biological cells in high conductivity medium, e.g., the isotonic saline, sigma membr falls below 2 x 10(-6) S m-1, where Fo becomes insensitive to sigma membr, and the method becomes impractical. In a low conductivity medium, 0.3 M sucrose, sigma membr of cells is generally higher and the method may be applied. Assuming a membrane thickness of 9 nm, epsilon membr of Neurospora crassa slime cells was determined to be in the range of 8.3-9.4 epsilon o, and of myeloma Tib9 to be 9.4 epsilon o, epsilon o being the dielectric permittivity of the free space. The values for the slime cells were compared with values obtained by the dielectric spectroscopy method which measures average values for cells in suspension. PMID:1831052

  9. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures.

    PubMed

    Čemažar, Jaka; Douglas, Temple A; Schmelz, Eva M; Davalos, Rafael V

    2016-01-01

    We designed a new microfluidic device that uses pillars on the same order as the diameter of a cell (20 μm) to isolate and enrich rare cell samples from background. These cell-scale microstructures improve viability, trapping efficiency, and throughput while reducing pearl chaining. The area where cells trap on each pillar is small, such that only one or two cells trap while fluid flow carries away excess cells. We employed contactless dielectrophoresis in which a thin PDMS membrane separates the cell suspension from the electrodes, improving cell viability for off-chip collection and analysis. We compared viability and trapping efficiency of a highly aggressive Mouse Ovarian Surface Epithelial (MOSE) cell line in this 20 μm pillar device to measurements in an earlier device with the same layout but pillars of 100 μm diameter. We found that MOSE cells in the new device with 20 μm pillars had higher viability at 350 VRMS, 30 kHz, and 1.2 ml/h (control 77%, untrapped 71%, trapped 81%) than in the previous generation device (untrapped 47%, trapped 42%). The new device can trap up to 6 times more cells under the same conditions. Our new device can sort cells with a high flow rate of 2.2 ml/h and throughput of a few million cells per hour while maintaining a viable population of cells for off-chip analysis. By using the device to separate subpopulations of tumor cells while maintaining their viability at large sample sizes, this technology can be used in developing personalized treatments that target the most aggressive cancerous cells.

  10. Enhanced contactless dielectrophoresis enrichment and isolation platform via cell-scale microstructures

    PubMed Central

    Čemažar, Jaka; Douglas, Temple A.; Schmelz, Eva M.; Davalos, Rafael V.

    2016-01-01

    We designed a new microfluidic device that uses pillars on the same order as the diameter of a cell (20 μm) to isolate and enrich rare cell samples from background. These cell-scale microstructures improve viability, trapping efficiency, and throughput while reducing pearl chaining. The area where cells trap on each pillar is small, such that only one or two cells trap while fluid flow carries away excess cells. We employed contactless dielectrophoresis in which a thin PDMS membrane separates the cell suspension from the electrodes, improving cell viability for off-chip collection and analysis. We compared viability and trapping efficiency of a highly aggressive Mouse Ovarian Surface Epithelial (MOSE) cell line in this 20 μm pillar device to measurements in an earlier device with the same layout but pillars of 100 μm diameter. We found that MOSE cells in the new device with 20 μm pillars had higher viability at 350 VRMS, 30 kHz, and 1.2 ml/h (control 77%, untrapped 71%, trapped 81%) than in the previous generation device (untrapped 47%, trapped 42%). The new device can trap up to 6 times more cells under the same conditions. Our new device can sort cells with a high flow rate of 2.2 ml/h and throughput of a few million cells per hour while maintaining a viable population of cells for off-chip analysis. By using the device to separate subpopulations of tumor cells while maintaining their viability at large sample sizes, this technology can be used in developing personalized treatments that target the most aggressive cancerous cells. PMID:26858821

  11. Dielectrophoresis microjets: a merging of electromagnetics and microfluidics for on-chip technologies

    NASA Astrophysics Data System (ADS)

    Hill, Kyle A.; Collier, Christopher M.; Holzman, Jonathan F.

    2014-05-01

    Digital (droplet-based) microfluidic systems apply electromagnetic characteristics as the fundamental fluid actuation mechanism. These systems are often implemented in two-dimensional architectures, overcoming one-dimensional continuous flow channel practical issues. The fundamental operation for digital microfluidics requires the creation of an electric field distribution to achieve desired fluid actuation. The electric field distribution is typically non-uniform, enabling creation of net dielectrophoresis (DEP) force. The DEP force magnitude is proportional to the difference between microdroplet and surrounding medium complex dielectric constants, and the gradient of the electric field magnitude squared. Force sign/direction can be manipulated to achieve a force towards higher (positive DEP) or lower (negative DEP) electrostatic energy by tailoring the relative difference between microdroplet and surrounding medium complex dielectric constants through careful selection of the devices fabrication materials. The DEP force magnitudes and directions are applied here for well-controlled and high-speed microdroplet actuation. Control and speed characteristics arise from significant differences in the microdroplet/medium conductivity and the use of a micropin architecture with strong electric field gradients. The implementation, referred to here as a DEP microjet, establishes especially strong axial propulsion forces. Single- and double-micropin topologies achieve strong axial propulsion force, but only the double-micropin topology creates transverse converging forces for stable and controlled microdroplet actuation. Electric field distributions for each topology are investigated and linked to axial and transverse forces. Experimental results are presented for both topologies. The double-micropin topology is tested with biological fluids. Microdroplet actuation speeds up to 25 cm/s are achieved—comparable to the fastest speeds to-date.

  12. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device.

    PubMed

    Yan, Sheng; Zhang, Jun; Alici, Gursel; Du, Haiping; Zhu, Yonggang; Li, Weihua

    2014-08-21

    Plasma is a complex substance that contains proteins and circulating nucleic acids and viruses that can be utilised for clinical diagnostics, albeit a precise analysis depends on the plasma being totally free of cells. We proposed the use of a dielectrophoresis (DEP)-active hydrophoretic method to isolate plasma from blood in a high-throughput manner. This microfluidic device consists of anisotropic microstructures embedded on the top of the channel which generate lateral pressure gradients while interdigitised electrodes lay on the bottom of the channel which can push particles or cells into a higher level using a negative DEP force. Large and small particles or cells (3 μm and 10 μm particles, and red blood cells, white blood cells, and platelets) can be focused at the same time in our DEP-active hydrophoretic device at an appropriate flow rate and applied voltage. Based on this principle, all the blood cells were filtrated from whole blood and then the plasma was extracted with a purity of 94.2% and a yield of 16.5% at a flow rate of 10 μL min(-1). This solved the challenging problem caused by the relatively low throughput of the DEP based device. Our DEP-active hydrophoretic device is a flexible and tunable system that can control the lateral positions of particles by modulating the external voltages without redesigning and fabricating a new channel, and because it is easy to operate, it is easily compatible with other microfluidic platforms that are used for further detection.

  13. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    PubMed

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect.

  14. Dielectrophoresis-based integrated Lab-on-Chip for nano and micro-particles manipulation and capacitive detection.

    PubMed

    Miled, Mohamed Amine; Massicotte, Geneviève; Sawan, Mohamad

    2012-04-01

    We present in this paper a new Lab-on-Chip (LoC) architecture for dielectrophoresis-based cell manipulation, detection, and capacitive measurement. The proposed LoC is built around a CMOS full-custom chip and a microfluidic structure. The CMOS chip is used to deliver all parameters required to control the dielectrophoresis (DEP) features such as frequency, phase, and amplitude of signals spread on in-channel electrodes of the LoC. It is integrated to the LoC and experimental results are related to micro and nano particles manipulation and detection in a microfluidic platform. The proposed microsystem includes an on-chip 27-bit frequency divider, a digital phase controller with a 3.6° phase shift resolution and a 2.5 V dynamic range. The sensing module is composed of a 3 × 3 capacitive sensor array with 10 fF per mV sensitivity, and a dynamic range of 1.5 V. The obtained results show an efficient nano and micro-particles (PC05N, PA04N and PS03N) separation based on frequency segregation with low voltages less than 1.7 V and a fully integrated and reconfigurable system.

  15. ACS: ALMA Common Software

    NASA Astrophysics Data System (ADS)

    Chiozzi, Gianluca; Šekoranja, Matej

    2013-02-01

    ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.

  16. Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis.

    PubMed

    Cetin, Barbaros; Li, Dongqing

    2010-09-01

    A novel alternating current-dielectrophoresis microfluidic chip was developed to separate particles and cells continuously by their electric properties. The flow is induced by pressure gradient. A pair of simple, 3-D electrodes was used to achieve a localized nonuniform electric field. Dielectrophoretic force is generated in the transverse direction to the flow by inserting the electrodes along the channel side walls. The localized electric field is important to reduce the Joule heating and any adverse effects of electrical field on biological cells. Latex particles of different sizes and white blood cells (8-12 μm) were manipulated successfully and the separation of 10 μm latex particles and white blood cells based on their different electrical properties was demonstrated.

  17. A High-Voltage Integrated Circuit Engine for a Dielectrophoresis-based Programmable Micro-Fluidic Processor.

    PubMed

    Current, K Wayne; Yuk, Kelvin; McConaghy, Charles; Gascoyne, Peter R C; Schwartz, Jon A; Vykoukal, Jody V; Andrews, Craig

    2005-07-24

    A high-voltage (HV) integrated circuit has been demonstrated to transport droplets on programmable paths across its coated surface. This chip is the engine for a dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip system. This chip creates DEP forces that move and help inject droplets. Electrode excitation voltage and frequency are variable. With the electrodes driven with a 100V peak-to-peak periodic waveform, the maximum high-voltage electrode waveform frequency is about 200Hz. Data communication rate is variable up to 250kHz. This demonstration chip has a 32×32 array of nominally 100V electrode drivers. It is fabricated in a 130V SOI CMOS fabrication technology, dissipates a maximum of 1.87W, and is about 10.4 mm × 8.2 mm.

  18. Bulk electrical properties of single-walled carbon nanotubes immobilized by dielectrophoresis: evidence of metallic or semiconductor behavior.

    PubMed

    Mureau, Natacha; Watts, Paul C P; Tison, Yann; Silva, S Ravi P

    2008-06-01

    We report the electrical characterization of single-walled carbon nanotubes (SWCNTs) trapped between two electrodes by dielectrophoresis (DEP). At high frequency, SWCNTs collected by DEP are expected to be of metallic type. Indeed current-voltage (I-V) measurements for devices made at 10 MHz show high values of conductivity and exhibit metallic behavior with linear and symmetric electrical features attributed to ohmic conduction. At low frequency, SWCNTs attracted by DEP are expected to be of semiconducting nature. Devices made at 10 kHz behave as semiconductors and demonstrate nonlinear and rectifying electrical characteristics with conductivities many orders of magnitude below the sample resulting from high-frequency immobilization of SWCNTs. Conducting atomic force microscopy (C-AFM) and current density calculation results are presented to reinforce results obtained by I-V measurements which clearly show type separation of SWCNTs after DEP experiments.

  19. Microfabricated AC impedance sensor

    DOEpatents

    Krulevitch, Peter; Ackler, Harold D.; Becker, Frederick; Boser, Bernhard E.; Eldredge, Adam B.; Fuller, Christopher K.; Gascoyne, Peter R. C.; Hamilton, Julie K.; Swierkowski, Stefan P.; Wang, Xiao-Bo

    2002-01-01

    A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

  20. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  1. Fabrication of alumina films with laminated structures by ac anodization.

    PubMed

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  2. Fabrication of alumina films with laminated structures by ac anodization

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  3. Electro-worming: The behaviors of Caenorhabditis (C.) elegans in DC and AC electric fields

    NASA Astrophysics Data System (ADS)

    Chuang, Han-Sheng; Raizen, David M.; Dabbish, Nooreen; Bau, Haim H.

    2011-09-01

    The video showcases how C. elegans worms respond to DC and AC electrical stimulations. Gabel et al (2007) demonstrated that in the presence of DC and low frequency AC fields, worms of stage L2 and larger propel themselves towards the cathode. Rezai et al (2010) have demonstrated that this phenomenon, dubbed electrotaxis, can be used to control the motion of worms. In the video, we reproduce Rezai's experimental results. Furthermore, we show, for the first time, that worms can be trapped with high frequency, nonuniform electric fields. We studied the effect of the electric field on the nematode as a function of field intensity and frequency and identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) avoid blue light, indicating that at least some of the nervous system functions remain unimpaired in the presence of the electric field. DEP is useful to dynamically confine nematodes for observations, sort them according to size, and separate dead worms from live ones.

  4. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  5. ACS CCDs daily monitor

    NASA Astrophysics Data System (ADS)

    Sirianni, Marco

    2006-07-01

    This program consists of a set of basic tests to monitor, the read noise, thedevelopment of hot pixels and test for any source of noise in ACS CCDdetectors. The files, biases and dark will be used to create referencefiles for science calibration. This programme will be for the entire lifetime of ACS.For cycle 15 the program will cover 18 months 12.1.06->05.31.08and it has been divied into three different proposal each covering six months.The three poroposal are 11041-11042-11043.

  6. Basic concepts of induced AC voltages on pipelines

    SciTech Connect

    Kirkpatrick, E.L.

    1995-07-01

    The phenomena of induced AC on pipelines sharing common rights-of-way with overhead high-voltage electrical transmission power lines is discussed. Basic concepts and techniques for personnel safety and some pipeline protective measures are reviewed.

  7. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  8. AC/DC converter

    NASA Astrophysics Data System (ADS)

    Jain, Praveen K.

    1992-08-01

    In a system such as a 20 kHz space station primary electrical power distribution system, power conversion from AC to DC is required. Some of the basic requirements for this conversion are high efficiency, light weight and small volume, regulated output voltage, close to unity input power factor, distortionless input current, soft-starting, low electromagnetic interference, and high reliability. An AC-to-DC converter is disclosed which satisfies the main design objectives of such converters for use in space. The converter of the invention comprises an input transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input transformer is for connection to a single phase, high frequency, sinusoidal waveform AC voltage source and provides a matching voltage isolating from the AC source. The resonant network converts this voltage to a sinusoidal, high frequency bidirectional current output, which is received by the current controller to provide the desired output current. The diode rectifier is connected in parallel with the current controller to convert the bidirectional current into a unidirectional current output. The output filter is connected to the rectifier to provide an essentially ripple-free, substantially constant voltage DC output.

  9. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  10. Dipole and multipole models of dielectrophoresis for a non-negligible particle size-simulations and experiments.

    PubMed

    Michálek, Tomáš; Zemánek, Jiří

    2017-03-16

    Mathematical models of dielectrophoresis play an important role in the design of experiments, analysis of results, and even operation of some devices. In this paper, we test the accuracy of existing models in both simulations and laboratory experiments. We test the accuracy of the most common model that involves a point-dipole approximation of the induced field, when the small-particle assumption is broken. In simulations, comparisons against a model based on the Maxwell stress tensor show that even the point-dipole approximation provides good results for a large particle close to the electrodes. In addition, we study a refinement of the model offered by multipole approximations (quadrupole, and octupole). We also show that the voltages on the electrodes influence the error of the model because they affect the positions of the field nulls and the nulls of the higher-order derivatives. Experiments with a parallel electrode array and a polystyrene microbead reveal that the models predict the force with an error that cannot be eliminated even with the most accurate model. Nonetheless, it is acceptable for some purposes such as a model-based control system design. This article is protected by copyright. All rights reserved.

  11. Portable microsystem integrates multifunctional dielectrophoresis manipulations and a surface stress biosensor to detect red blood cells for hemolytic anemia.

    PubMed

    Sang, Shengbo; Feng, Qiliang; Jian, Aoqun; Li, Huiming; Ji, Jianlong; Duan, Qianqian; Zhang, Wendong; Wang, Tao

    2016-09-20

    Hemolytic anemia intensity has been suggested as a vital factor for the growth of certain clinical complications of sickle cell disease. However, there is no effective and rapid diagnostic method. As a powerful platform for bio-particles testing, biosensors integrated with microfluidics offer great potential for a new generation of portable point of care systems. In this paper, we describe a novel portable microsystem consisting of a multifunctional dielectrophoresis manipulations (MDM) device and a surface stress biosensor to separate and detect red blood cells (RBCs) for diagnosis of hemolytic anemia. The peripheral circuit to power the interdigitated electrode array of the MDM device and the surface stress biosensor test platform were integrated into a portable signal system. The MDM includes a preparing region, a focusing region, and a sorting region. Simulation and experimental results show the RBCs trajectories when they are subjected to the positive DEP force, allowing the successful sorting of living/dead RBCs. Separated RBCs are then transported to the biosensor and the capacitance values resulting from the variation of surface stress were measured. The diagnosis of hemolytic anemia can be realized by detecting RBCs and the portable microsystem provides the assessment to the hemolytic anemia patient.

  12. Portable microsystem integrates multifunctional dielectrophoresis manipulations and a surface stress biosensor to detect red blood cells for hemolytic anemia

    PubMed Central

    Sang, Shengbo; Feng, Qiliang; Jian, Aoqun; Li, Huiming; Ji, Jianlong; Duan, Qianqian; Zhang, Wendong; Wang, Tao

    2016-01-01

    Hemolytic anemia intensity has been suggested as a vital factor for the growth of certain clinical complications of sickle cell disease. However, there is no effective and rapid diagnostic method. As a powerful platform for bio-particles testing, biosensors integrated with microfluidics offer great potential for a new generation of portable point of care systems. In this paper, we describe a novel portable microsystem consisting of a multifunctional dielectrophoresis manipulations (MDM) device and a surface stress biosensor to separate and detect red blood cells (RBCs) for diagnosis of hemolytic anemia. The peripheral circuit to power the interdigitated electrode array of the MDM device and the surface stress biosensor test platform were integrated into a portable signal system. The MDM includes a preparing region, a focusing region, and a sorting region. Simulation and experimental results show the RBCs trajectories when they are subjected to the positive DEP force, allowing the successful sorting of living/dead RBCs. Separated RBCs are then transported to the biosensor and the capacitance values resulting from the variation of surface stress were measured. The diagnosis of hemolytic anemia can be realized by detecting RBCs and the portable microsystem provides the assessment to the hemolytic anemia patient. PMID:27647457

  13. Development of flow through dielectrophoresis microfluidic chips for biofuel production: Sorting and detection of microalgae with different lipid contents

    PubMed Central

    Deng, Yu-Luen; Kuo, Mei-Yi; Juang, Yi-Je

    2014-01-01

    In this study, a continuous flow dielectrophoresis (DEP) microfluidic chip was fabricated and utilized to sort out the microalgae (C. vulgaris) with different lipid contents. The proposed separation scheme is to allow that the microalgae with different lipid contents experience different negative or no DEP force at the separation electrode pair under the pressure-driven flow. The microalgae that experience stronger negative DEP will be directed to the side channel while those experience less negative or no DEP force will pass through the separation electrode pair to remain in the main channel. It was found that the higher the lipid content inside the microalgae, the higher the crossover frequency. Separation of the microalgae with 13% and 21% lipid contents, and 24% and 30%–35% lipid contents was achieved at the operating frequency 7 MHz, and 10 MHz, respectively. Moreover, separation can be further verified by measurement of the fluorescence intensity of the neutral lipid inside the sorted algal cells. PMID:25553195

  14. Introducing dielectrophoresis as a new force field for field-flow fractionation.

    PubMed Central

    Huang, Y; Wang, X B; Becker, F F; Gascoyne, P R

    1997-01-01

    We present the principle of cell characterization and separation by dielectrophoretic field-flow fractionation and show preliminary experimental results. The operational device takes the form of a thin chamber in which the bottom wall supports an array of microelectrodes. By applying appropriate AC voltage signals to these electrodes, dielectrophoretic forces are generated to levitate cells suspended in the chamber and to affect their equilibrium heights. A laminar flow profile is established in the chamber so that fluid flows faster with increasing distance from the chamber walls. A cell carried in the flow stream will attain an equilibrium height, and a corresponding velocity, based on the balance of dielectrophoretic, gravitational, and hydrodynamic lift forces it experiences. We describe a theoretical model for this system and show that the cell velocity is a function of the mean fluid velocity, the voltage and frequency of the signals applied to the electrodes, and, most significantly, the cell dielectric properties. The validity of the model is demonstrated with human leukemia (HL-60) cells subjected to a parallel electrode array, and application of the device to separating HL-60 cells from peripheral blood mononuclear cells is shown. PMID:9251828

  15. Continuous separation of multiple size microparticles using alternating current dielectrophoresis in microfluidic device with acupuncture needle electrodes

    NASA Astrophysics Data System (ADS)

    Tao, Ye; Ren, Yukun; Yan, Hui; Jiang, Hongyuan

    2016-03-01

    The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(nDEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the nDEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems.

  16. Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow.

    PubMed

    Zhao, Kai; Peng, Ran; Li, Dongqing

    2016-12-07

    A novel DC-dielectrophoresis (DEP) method employing a pressure-driven flow for the continuous separation of micro/nano-particles is presented in this paper. To generate the DEP force, a small voltage difference is applied to produce a non-uniformity of the electric field across a microchannel via a larger orifice of several hundred microns on one side of the channel wall and a smaller orifice of several hundred nanometers on the opposite channel wall. The particles experience a DEP force when they move with the flow through the vicinity of the small orifice, where the strongest electrical field gradient exists. Experiments were conducted to demonstrate the separation of 1 μm and 3 μm polystyrene particles by size by adjusting the applied electrical potentials. In order to separate smaller nanoparticles, the electrical conductivity of the suspending solution is adjusted so that the polystyrene nanoparticles of a given size experience positive DEP while the polystyrene nanoparticles of another size experience negative DEP. Using this method, the separation of 51 nm and 140 nm nanoparticles and the separation of 140 nm and 500 nm nanoparticles were demonstrated. In comparison with the microfluidic DC-DEP methods reported in the literature which utilize hurdles or obstacles to induce the non-uniformity of an electric field, a pair of asymmetrical orifices on the channel side walls is used in this method to generate a strong electrical field gradient and has advantages such as capability of separating nanoparticles, and locally applied lower electrical voltages to minimize the Joule heating effect.

  17. Large aperture ac interferometer for optical testing.

    PubMed

    Moore, D T; Murray, R; Neves, F B

    1978-12-15

    A 20-cm clear aperture modified Twyman-Green interferometer is described. The system measures phase with an AC technique called phase-lock interferometry while scanning the aperture with a dual galvanometer scanning system. Position information and phase are stored in a minicomputer with disk storage. This information is manipulated with associated software, and the wavefront deformation due to a test component is graphically displayed in perspective and contour on a CRT terminal.

  18. YBCO Coated Conductors with Reduced AC Losses

    DTIC Science & Technology

    2008-01-30

    application such as turbo- generators and gyrotron magnets . The major reason is the enhanced in-field performance at 50-65 K and the proven...transformers, current limiters and the stators of rotating equipment. Low AC-loss in 2G HTS requires wire components with low magnetism , and an YBCO...layer with low transport and low hysteretic losses in an alternating magnetic field. The latter loss type requires a suitable filamentization technique

  19. Method for concentration and separation of biological organisms by ultrafiltration and dielectrophoresis

    DOEpatents

    Simmons, Blake A.; Hill, Vincent R.; Fintschenko, Yolanda; Cummings, Eric B.

    2012-09-04

    Disclosed is a method for monitoring sources of public water supply for a variety of pathogens by using a combination of ultrafiltration techniques together dielectrophoretic separation techniques. Because water-borne pathogens, whether present due to "natural" contamination or intentional introduction, would likely be present in drinking water at low concentrations when samples are collected for monitoring or outbreak investigations, an approach is needed to quickly and efficiently concentrate and separate particles such as viruses, bacteria, and parasites in large volumes of water (e.g., 100 L or more) while simultaneously reducing the sample volume to levels sufficient for detecting low concentrations of microbes (e.g., <10 mL). The technique is also designed to screen the separated microbes based on specific conductivity and size.

  20. AC Losses of Prototype HTS Transmission Cables

    SciTech Connect

    Demko, J.A.; Dresner, L.; Hughey, R.L.; Lue, J.W.; Olsen, S.K.; Sinha, U.; Tolbert, J.C.

    1998-09-13

    Since 1995 Southwire Company and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested nine, l-m long, high temperature superconducting (HTS) transmission cable prototypes. This paper summarizes the AC loss measurements of five of the cables not reported elsewhere, and compares the losses with each other and with theory developed by Dresner. Losses were measured with both a calorimetric and an electrical technique. Because of the broad resistive transition of the HTS tapes, the cables can be operated stably beyond their critical currents. The AC losses were measured in this region as well as below critical currents. Dresner's theory takes into account the broad resistive transition of the HTS tapes and calculates the AC losses both below and above the critical current. The two sets of AC 10SS data agree with each other and with the theory quite welL In particular, at low currents of incomplete penetration, the loss data agree with the theoretical prediction of hysteresis loss based on only the outer two Iayers carrying the total current.

  1. Nonlinear modal interaction in HVDC/AC power systems with dc power modulation

    SciTech Connect

    Ni, Y.X.; Vittal, V.; Kliemann, W.; Fouad, A.A.

    1996-11-01

    In this paper investigation of nonlinear modal interaction using the normal form of vector fields technique is extended to HVDC/AC power systems with dc power modulation. The ac-dc interface equations are solved to form a state space model with second order approximation. Using the normal form technique, the system`s nonlinear dynamic characteristics are obtained. The proposed approach is applied to a 4-generator HVDC/AC test power system, and compare with the time domain solution.

  2. Alternating parity structure in doubly odd /sup 218/Ac

    SciTech Connect

    Debray, M.E.; Davidson, M.; Kreiner, A.J.; Davidson, J.; Falcone, G.; Hojman, D.; Santos, D.

    1989-03-01

    States in doubly odd /sup 218/Ac have been studied using in-beam ..cap alpha..-, ..gamma..-, and e/sup -/-spectroscopy techniques mainly through the /sup 209/Bi(/sup 12/C,3n)= fusion-evaporation reaction. /sup 218/Ac shows a band structure, with interleaved states of alternating parities connected by enhanced B(E1) transitions, which is strikingly similar to the one in its isotone /sup 217/Ra.

  3. AC resistance measuring instrument

    DOEpatents

    Hof, P.J.

    1983-10-04

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

  4. AC Resistance measuring instrument

    DOEpatents

    Hof, Peter J.

    1983-01-01

    An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

  5. AC Optimal Power Flow

    SciTech Connect

    2016-10-04

    In this work, we have implemented and developed the simulation software to implement the mathematical model of an AC Optimal Power Flow (OPF) problem. The objective function is to minimize the total cost of generation subject to constraints of node power balance (both real and reactive) and line power flow limits (MW, MVAr, and MVA). We have currently implemented the polar coordinate version of the problem. In the present work, we have used the optimization solver, Knitro (proprietary and not included in this software) to solve the problem and we have kept option for both the native numerical derivative evaluation (working satisfactorily now) as well as for analytical formulas corresponding to the derivatives being provided to Knitro (currently, in the debugging stage). Since the AC OPF is a highly non-convex optimization problem, we have also kept the option for a multistart solution. All of these can be decided by the user during run-time in an interactive manner. The software has been developed in C++ programming language, running with GCC compiler on a Linux machine. We have tested for satisfactory results against Matpower for the IEEE 14 bus system.

  6. Identification of /sup 233/Ac

    SciTech Connect

    Chu, Y.Y.; Zhou, M.L.

    1983-09-01

    We report in this paper identification of the new isotope /sup 233/Ac. Uranium targets were irradiated with 28 GeV protons; after rapid retrieval of the target and separation of actinium from thorium, /sup 233/Ac was allowed to decay into the known /sup 233/Th daughter. Exhaustive chemical purification was employed to permit the identification of /sup 233/Th via its characteristic ..gamma.. radiations. The half-life derived for /sup 233/Ac from several experiments is 2.3 +- 0.3 min. The production cross section for /sup 233/Ac is 100 ..mu..b.

  7. Digital ac monitor

    DOEpatents

    Hart, George W.; Kern, Jr., Edward C.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer.

  8. Digital ac monitor

    DOEpatents

    Hart, G.W.; Kern, E.C. Jr.

    1987-06-09

    An apparatus and method is provided for monitoring a plurality of analog ac circuits by sampling the voltage and current waveform in each circuit at predetermined intervals, converting the analog current and voltage samples to digital format, storing the digitized current and voltage samples and using the stored digitized current and voltage samples to calculate a variety of electrical parameters; some of which are derived from the stored samples. The non-derived quantities are repeatedly calculated and stored over many separate cycles then averaged. The derived quantities are then calculated at the end of an averaging period. This produces a more accurate reading, especially when averaging over a period in which the power varies over a wide dynamic range. Frequency is measured by timing three cycles of the voltage waveform using the upward zero crossover point as a starting point for a digital timer. 24 figs.

  9. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  10. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  11. A Tapered Aluminium Microelectrode Array for Improvement of Dielectrophoresis-Based Particle Manipulation

    PubMed Central

    Buyong, Muhamad Ramdzan; Larki, Farhad; Faiz, Mohd Syafiq; Hamzah, Azrul Azlan; Yunas, Jumrail; Majlis, Burhanuddin Yeop

    2015-01-01

    In this work, the dielectrophoretic force (FDEP) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The FDEP is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (fxo). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode’s side wall. PMID:25970255

  12. Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles

    NASA Astrophysics Data System (ADS)

    Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.

    2007-01-01

    In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.

  13. Fabrication of alumina films with laminated structures by ac anodization

    PubMed Central

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-01-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials. PMID:27877636

  14. Fast electric dipole transitions in Ra-Ac nuclei

    SciTech Connect

    Ahmad, I.

    1985-01-01

    Lifetime of levels in /sup 225/Ra, /sup 225/Ac, and /sup 227/Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in /sup 225/Ra and /sup 225/Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in /sup 227/Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs.

  15. Liquid meniscus oscillation and drop ejection by ac voltage, pulsed dc voltage, and superimposing dc to ac voltages

    NASA Astrophysics Data System (ADS)

    Tran, Si Bui Quang; Byun, Doyoung; Nguyen, Vu Dat; Kang, Tae Sam

    2009-08-01

    The electrohydrodynamic (EHD) spraying technique has been utilized in applications such as inkjet printing and mass spectrometry technologies. In this paper, the role of electrical potential signals in jetting and on the oscillation of the meniscus is evaluated. The jetting and the meniscus oscillation behavior are experimentally investigated under ac voltage, ac voltage superimposed on dc voltage, and pulsed dc voltage. Based on this in-depth study of the meniscus behavior under various signals, the optimal signal is implemented to an EHD inkjet head for drop-on-demand operation. For applied ac voltage and ac voltage superimposed on dc voltage, the jetting phenomenon is a dynamic process due to sequential opposite sign signals. The jetting occurs at the end of the oscillation cycle, where the meniscus oscillates upward and arrives at its highest position.

  16. AC and Phase Sensing of Nanowires for Biosensing

    PubMed Central

    Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach. PMID:27104577

  17. Layoff Handling Still Lags ACS Standards.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1981

    1981-01-01

    Reviews termination procedures of professional chemists and the compliance of these terminations to the American Chemical Society's (ACS's) Professional Employment Guidelines. Provides the ACS guidelines. (DS)

  18. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  19. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.

    PubMed

    Das, Dhiman; Phan, Dinh-Tuan; Zhao, Yugang; Kang, Yuejun; Chan, Vincent; Yang, Chun

    2017-03-01

    A novel continuous flow microfluidic platform specifically designed for environmental monitoring of O/W emulsions during an aftermath of oil spills is reported herein. Ionized polycyclic aromatic hydrocarbons which are toxic are readily released from crude oil to the surrounding water phase through the smaller oil droplets with enhanced surface area. Hence, a multi-module microfluidic device is fabricated to form ion enrichment zones in the water phase of O/W emulsions for the ease of detection and to separate micron-sized oil droplets from the O/W emulsions. Fluorescein ions in the water phase are used to simulate the presence of these toxic ions in the O/W emulsion. A DC-biased AC electric field is employed in both modules. In the first module, a nanoporous Nafion membrane is used for activating the concentration polarization effect on the fluorescein ions, resulting in the formation of stable ion enrichment zones in the water phase of the emulsion. A 35.6% amplification of the fluorescent signal is achieved in the ion enrichment zone; corresponding to 100% enrichment of the fluorescent dye concentration. In this module, the main inlet is split into two channels by using a Y-junction so that there are two outlets for the oil droplets. The second module located downstream of the first module consists of two oil droplet entrapment zones at two outlets. By switching on the appropriate electrodes, either one of the two oil droplet entrapment zones can be activated and the droplets can be blocked in the corresponding outlet.

  20. AC electrophoretic deposition of organic-inorganic composite coatings.

    PubMed

    Yoshioka, T; Chávez-Valdez, A; Roether, J A; Schubert, D W; Boccaccini, A R

    2013-02-15

    Alternating current electrophoretic deposition (AC-EPD) of polyacrylic acid (PAA)-titanium oxide (TiO(2)) nanoparticle composites on stainless steel electrodes was investigated in basic aqueous solution. AC square wave with duty cycle of 80% was applied at a frequency of 1 kHz. FTIR-ATR spectra showed that both AC and direct current (DC) EPD successfully deposited PAA-TiO(2) composites. The deposition rate using AC-EPD was lower than that obtained in direct current DC-EPD. However, the microstructure and surface morphology of the deposited composite coatings were different depending on the type of electric field applied. AC-EPD applied for not more than 5 min led to smooth films without bubble formation, while DC-EPD for 1 min or more showed deposits with microstructural defects possibly as result of water electrolysis. AC-EPD was thus for the first time demonstrated to be a suitable technique to deposit organic-inorganic composite coatings from aqueous suspensions, showing that applying a square wave and frequency of 1 kHz leads to uniform PAA-TiO(2) composite coatings on conductive materials.

  1. Theoretical analysis on ac susceptibility measurements of superconductor tapes

    NASA Astrophysics Data System (ADS)

    Chen, Du-Xing; Sun, Yue-Ming; Li, Shuo; Fang, Jin

    2017-02-01

    Perpendicular ac susceptibility χ ={χ\\prime}-j{χ\\prime \\prime} of a superconducting long tape defined by magnetic moment and determined inductively by magnetic flux is calculated using Brandt’s technique from a power-law dependence of electric field on sheet current density. The requirements of χ measurements to the experimental setup and procedure are discussed based on the calculation results.

  2. Ac loss calorimeter for three-phase cable

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; McMurry, D.E.; DeBlanc, B.G.

    1996-10-01

    A calorimeter for measuring ac losses in meter-long lengths of HTS superconducting power transmission line cables is described. The calorimeter, which is based on a temperature difference technique, has a precision of 1 mW and measures single, two-phase (coupling), and three-phase losses. The measurements show significant coupling losses between phases.

  3. A resettable in-line particle concentrator using AC electrokinetics for distributed monitoring of microalgae in source waters

    DOE PAGES

    Yuan, Quan; Purdue Univ., West Lafayette, IN; Wu, Jayne; ...

    2016-12-29

    Green algae have been studied as an important and effective biomarker to indicate water quality due to their sensitivity to toxic agents in freshwater sources. But, conventional methods to monitor algal physiology use a chlorophyll fluorometer whose use is hampered by high-cost, large footprint, and limited sensitivity for practical samples containing low algal concentration. In order to overcome these constraints, we developed a multi-level electrode platform for resettable trapping of algae via AC electro-osmosis (ACEO) and negative dielectrophoresis. Preliminary experiments were performed in freshwater with conductivity of 0.02 S/m. Algal trapping was demonstrated at a low voltage of 2 V.more » The concentration effect was experimentally verified by measuring the fluorescence intensity of algae and using hemocytometer counting chambers at the inlet and outlet of the multilevel microchannel lab-on-a-chip. An optimal frequency was found for trapping, which agrees with the frequency dependence of ACEO flow velocity. Through-flow rate and electrode dimensions were optimized as well. Trapping efficiencies within the range of 26% - 65% have been obtained. A maximum trapping rate of 182 cells/s was obtained with a flow rate of 20 l/min. Our lab-on-a-chip shows high potential for improving the limit of detection in algal monitoring and enabling the development of a portable, integrated and automated system for monitoring the quality of source drinking waters.« less

  4. A resettable in-line particle concentrator using AC electrokinetics for distributed monitoring of microalgae in source waters

    SciTech Connect

    Yuan, Quan; Wu, Jayne; Greenbaum, Elias; Evans, Barbara R.

    2016-12-29

    Green algae have been studied as an important and effective biomarker to indicate water quality due to their sensitivity to toxic agents in freshwater sources. But, conventional methods to monitor algal physiology use a chlorophyll fluorometer whose use is hampered by high-cost, large footprint, and limited sensitivity for practical samples containing low algal concentration. In order to overcome these constraints, we developed a multi-level electrode platform for resettable trapping of algae via AC electro-osmosis (ACEO) and negative dielectrophoresis. Preliminary experiments were performed in freshwater with conductivity of 0.02 S/m. Algal trapping was demonstrated at a low voltage of 2 V. The concentration effect was experimentally verified by measuring the fluorescence intensity of algae and using hemocytometer counting chambers at the inlet and outlet of the multilevel microchannel lab-on-a-chip. An optimal frequency was found for trapping, which agrees with the frequency dependence of ACEO flow velocity. Through-flow rate and electrode dimensions were optimized as well. Trapping efficiencies within the range of 26% - 65% have been obtained. A maximum trapping rate of 182 cells/s was obtained with a flow rate of 20 l/min. Our lab-on-a-chip shows high potential for improving the limit of detection in algal monitoring and enabling the development of a portable, integrated and automated system for monitoring the quality of source drinking waters.

  5. The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems.

    PubMed

    Chen, Yu; Sun, Xiaofu; Yan, Chuanyu; Cao, Yuanyuan; Mu, Tiancheng

    2014-10-02

    There are mainly three findings related to the dynamic process of atmospheric water sorption in the ionic liquid (IL) 1-ethyl-3-methlyl-imidazolium acetate ([EMIM][Ac]) and its mixtures with biopolymers (i.e., cellulose, chitin, and chitosan), and CO2 capture in these systems above. The analytical methods mainly include gravimetric hygroscopicity measurement and in situ infrared spectroscopy with the techniques of difference, derivative, deconvoluted attenuated total reflectance and two-dimensional correlation. These three findings are listed as below. (1) Pure [EMIM][Ac] only shows a two-regime pattern, while all the mixtures of [EMIM][Ac] with biopolymers (i.e., cellulose, chitin, and chitosan) present a three-regime tendency for the dynamic process of atmospheric water sorption. Specifically, the IL/chitosan mixture has a clear three-regime mode; the [EMIM][Ac]/chitin mixture has an unclear indiscernible regime 3; and the [EMIM][Ac]/cellulose mixture shows an indiscernible regime 2. (2) [EMIM][Ac] and its mixtures with biopolymers could physically absorb a trace amount of and chemically react with a much larger amount of CO2 from the air. The chemisorption capacity of CO2 in these pure and mixed systems is ordered as chitosan/[EMIM][Ac] mixture > chitin/[EMIM][Ac] mixture > cellulose/[EMIM][Ac] mixture > pure [EMIM][Ac] (ca. 0.09 mass ratio % g/g CO2/IL). (3) The CO2 solubility in [EMIM][Ac] decreases about 50% after being exposed to the atmospheric moist air for some specific time period.

  6. Aragonite coating solutions (ACS) based on artificial seawater

    NASA Astrophysics Data System (ADS)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  7. Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)

    NASA Astrophysics Data System (ADS)

    Fersi, M. Amine; Chaabane, I.; Gargouri, M.

    2016-09-01

    In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.

  8. ACS from development to operations

    NASA Astrophysics Data System (ADS)

    Caproni, Alessandro; Colomer, Pau; Jeram, Bogdan; Sommer, Heiko; Chiozzi, Gianluca; Mañas, Miguel M.

    2016-08-01

    The ALMA Common Software (ACS), provides the infrastructure of the distributed software system of ALMA and other projects. ACS, built on top of CORBA and Data Distribution Service (DDS) middleware, is based on a Component- Container paradigm and hides the complexity of the middleware allowing the developer to focus on domain specific issues. The transition of the ALMA observatory from construction to operations brings with it that ACS effort focuses primarily on scalability, stability and robustness rather than on new features. The transition came together with a shorter release cycle and a more extensive testing. For scalability, the most problematic area has been the CORBA notification service, used to implement the publisher subscriber pattern because of the asynchronous nature of the paradigm: a lot of effort has been spent to improve its stability and recovery from run time errors. The original bulk data mechanism, implemented using the CORBA Audio/Video Streaming Service, showed its limitations and has been replaced with a more performant and scalable DDS implementation. Operational needs showed soon the difference between releases cycles for Online software (i.e. used during observations) and Offline software, which requires much more frequent releases. This paper attempts to describe the impact the transition from construction to operations had on ACS, the solution adopted so far and a look into future evolution.

  9. Simple Equipment for Imaging AC.

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Anayama, Takayuki

    2003-01-01

    Presents an effective way to demonstrate the difference between direct current and alternating current using red and green LEDs. Describes how to make a tool that shows how an AC voltage changes with time using the afterimage effect of the LEDs. (Author/NB)

  10. A Survey of Techniques for Approximate Computing

    DOE PAGES

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less

  11. A Survey of Techniques for Approximate Computing

    SciTech Connect

    Mittal, Sparsh

    2016-03-18

    Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is to provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.

  12. New Resistance Mechanism in Helicoverpa armigera Threatens Transgenic Crops Expressing Bacillus thuringiensis Cry1Ac Toxin

    PubMed Central

    Gunning, Robin V.; Dang, Ho T.; Kemp, Fred C.; Nicholson, Ian C.; Moores, Graham D.

    2005-01-01

    In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed. PMID:15870346

  13. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Gunning, Robin V; Dang, Ho T; Kemp, Fred C; Nicholson, Ian C; Moores, Graham D

    2005-05-01

    In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.

  14. Space charge and charge trapping characteristics of cross-linked polyethylene subjected to ac electric stresses

    NASA Astrophysics Data System (ADS)

    Chong, Y. L.; Chen, G.; Miyake, H.; Matsui, K.; Tanaka, Y.; Takada, T.

    2006-04-01

    This paper reports on the result of space charge evolution in cross-linked polyethylene (XLPE) planar samples approximately 220 µm thick. The space charge measurement technique used in this study is the pulsed electroacoustic method. There are two phases to this experiment. In the first phase, the samples were subjected to dc 30 kVdc mm-1 and ac (sinusoidal) electric stress levels of 30 kVpk mm-1 at frequencies of 1, 10 and 50 Hz ac. In addition, ac space charge under 30 kVrms mm-1 and 60 kVpk mm-1 electric stress at 50 Hz was also investigated. The volts-off results showed that the amount of charge trapped in XLPE sample under dc electric stress is significantly bigger than samples under ac stress even when the applied ac stresses are substantially higher. The second phase of the experiment involves studying the dc space charge evolution in samples that were tested under ac stress during the first phase of the experiment. Ac ageing causes positive charge to become more dominant over negative charge. It was also discovered that ac ageing creates deeper traps, particularly for negative charge. This paper also gives a brief overview of the data processing methods used to analyse space charge under ac electric stress.

  15. A negative dielectrophoresis and gravity-driven flow-based high-throughput and high-efficiency cell-sorting system.

    PubMed

    Lee, Dongkyu; Kim, Dowon; Kim, Youngwoong; Park, Ki-Hyun; Oh, Eun-Jee; Kim, Yonggoo; Kim, Byungkyu

    2014-02-01

    We present a negative dielectrophoresis (n-DEP)-based cell separation system for high-throughput and high-efficiency cell separation. To achieve a high throughput, the proposed system comprises macro-sized channel and cantilever-type electrode (CE) arrays (L × W × H = 150 µm × 500 µm × 50 µm) to generate n-DEP force. For high efficiency, double separation modules, which have macro-sized channels and CE arrays in each separation module, are employed. In addition, flow regulators to precisely control the hydrodynamic force are allocated for each outlet. Because the hydrodynamic force and the n-DEP force acting on the target cell are the main determinants of the separation efficiency, we evaluate the theoretical amount of hydrodynamic force and n-DEP force acting on each target cell. Based on theoretical results, separation conditions are experimentally investigated. Finally, to demonstrate the separation performance, we performed the separation of target cells (live K562) from nontarget cells (dead K562) under conditions of low voltage (7Vp-p with 100 kHz) and a flow rate of 15 µL•min⁻¹, 6 µL•min⁻¹, and 8 µL•min⁻¹ in outlets 1, 2, and 3, respectively. The system can separate target cells with 95% separation efficiency in the case of the ratio of 5:1 (live K562:dead K562).

  16. Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.

    PubMed

    Kimura, Yuji; Gel, Murat; Techaumnat, Boonchai; Oana, Hidehiro; Kotera, Hidetoshi; Washizu, Masao

    2011-09-01

    In this paper, we present a novel electrofusion device that enables massive parallelism, using an electrically insulating sheet having a two-dimensional micro-orifice array. The sheet is sandwiched by a pair of micro-chambers with immersed electrodes, and each chamber is filled with the suspensions of the two types of cells to be fused. Dielectrophoresis, assisted by sedimentation, is used to position the cells in the upper chamber down onto the orifices, then the device is flipped over to position the cells on the other side, so that cell pairs making contact in the orifice are formed. When a pulse voltage is applied to the electrodes, most voltage drop occurs around the orifice and impressed on the cell membrane in the orifice. This makes possible the application of size-independent voltage to fuse two cells in contact at all orifices exclusively in 1:1 manner. In the experiment, cytoplasm of one of the cells is stained with a fluorescence dye, and the transfer of the fluorescence to the other cell is used as the indication of fusion events. The two-dimensional orifice arrangement at the pitch of 50 μm realizes simultaneous fusion of 6 × 10³ cells on a 4 mm diameter chip, and the fusion yield of 78-90% is achieved for various sizes and types of cells.

  17. Measurement of the 225Ac half-life.

    PubMed

    Pommé, S; Marouli, M; Suliman, G; Dikmen, H; Van Ammel, R; Jobbágy, V; Dirican, A; Stroh, H; Paepen, J; Bruchertseifer, F; Apostolidis, C; Morgenstern, A

    2012-11-01

    The (225)Ac half-life was determined by measuring the activity of (225)Ac sources as a function of time, using various detection techniques: α-particle counting with a planar silicon detector at a defined small solid angle and in a nearly-2π geometry, 4πα+β counting with a windowless CsI sandwich spectrometer and with a pressurised proportional counter, gamma-ray spectrometry with a HPGe detector and with a NaI(Tl) well detector. Depending on the technique, the decay was followed for 59-141 d, which is about 6-14 times the (225)Ac half-life. The six measurement results were in good mutual agreement and their mean value is T(1/2)((225)Ac)=9.920 (3)d. This half-life value is more precise and better documented than the currently recommended value of 10.0 d, based on two old measurements lacking uncertainty evaluations.

  18. Investigation on the AC loss characteristics of MgB 2 wires by using a conduction cooling device

    NASA Astrophysics Data System (ADS)

    Jin, H. B.; Li, Z.; Ryu, K.

    2011-11-01

    In this study, we have experimentally investigated the AC loss characteristics of MgB2 wires with matrix of Fe and Cu by using a conduction cooling device. We fabricated the conduction cooling device to cool MgB2 wires down to 4 K. We also developed our unique test method, which is called AC pulse technique, to evaluate their AC loss characteristics within few hundred milliseconds. The test results show that the AC loss of the Fe/MgB2 wire is mainly generated in the ferromagnetic Fe matrix. Its AC loss is ten times larger than that of the Cu/MgB2 wire. In this paper, the evaluation technique of AC loss by using the conduction cooling device is described and the test results are discussed.

  19. ac-resistance-measuring instrument

    SciTech Connect

    Hof, P.J.

    1981-04-22

    An auto-ranging ac resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an ac excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance.

  20. Simultaneous distribution of AC and DC power

    DOEpatents

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  1. The thermoelectric power of Al-0.99 wt.% Fe alloys in the AC magnetic field

    NASA Astrophysics Data System (ADS)

    Lan, Qing; Zhang, Jianfeng; Liu, Xuan; Le, Qichi; Yin, Siqi; Liu, Yiting; Cui, Jianzhong

    2017-04-01

    The melt structure of Al-0.99 wt.% Fe alloys in the AC magnetic field have been studied with thermoelectric power by the four-point probe technique and microstructure with the liquid quenching method. The melt temperature is in the range of 913 K–1013 K. The thermoelectric power increases due to the AC magnetic field and decreases after the AC magnetic field stops, then keeps stable. Some characteristic parameters of thermoelectric power in the recovery process are used to represent the variation of melt structure. The α-Al phase refinement in the AC magnetic field is attributed to the persistent variation of melt structure. The persistent variation of thermoelectric power can be used to characterize the variation of the α-Al phase size. The hardness increases and the diffraction peaks of some planes reduce, which can reflect the uniform and disorder melt structure in the AC magnetic field.

  2. Test plan for performance testing of the Eaton AC-3 electric vehicle

    SciTech Connect

    Crumley, R.L.; Heiselmann, H.W.

    1985-04-01

    An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

  3. Effect of the magnetic material on AC losses in HTS conductors in AC magnetic field carrying AC transport current

    NASA Astrophysics Data System (ADS)

    Wan, Xing-Xing; Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He

    2015-11-01

    This paper presents an investigation on the AC losses in several typical superconducting composite conductors using the H-formulation model. A single superconducting strip with ferromagnetic substrate or cores and a stack of coated conductors with ferromagnetic substrates are studied. We consider all the coated conductors carrying AC transport currents and simultaneously exposed to perpendicular AC magnetic fields. The influences of the amplitude, frequency, phase difference and ferromagnetic materials on the AC losses are investigated. The results show that the magnetization losses of single strip and stacked strips have similar characteristics. The ferromagnetic substrate can increase the magnetization loss at low magnetic field, and decrease the loss at high magnetic field. The ferromagnetic substrate can obviously increase the transport loss in stacked strips. The trends of total AC losses of single strip and stacked strips are similar when they are carrying current or exposed to a perpendicular magnetic field. The effect of the frequency on the total AC losses of single strip is related to the amplitude of magnetic field. The AC losses decrease with increasing frequency in low magnetic field region while increase in high magnetic field region. As the phase difference changes, there is a periodic variation for the AC losses. Moreover, when the strip is under only the transport current and magnetic field, the ferromagnetic cores will increase the AC losses for large transport current or field.

  4. ac electroosmosis in rectangular microchannels.

    PubMed

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-22

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Huckel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.

  5. ACS PSF Variations with Temperatures

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash C.; Lallo, Matt; Makidon, Russ

    2007-09-01

    We have used the HST ACS/WFC observations of a Galactic bulge field taken over a continuous interval of 7 days (Prop 9750) to investigate the possible dependence of the ACS focus with the external temperatures. This dataset allows us to investigate possible focus variations over timescales of a few hours to a few days. The engineering data related to the external temperatures for this duration show that the maximum temperature change occurred over the first 1.5 days. Among all the different temperatures recorded, the truss diametric differential and the truss axial temperatures are the only two temperatures which have the same timescale of variation as the PSFwidth variations. The PSF-widths also strongly correlate with these two temperatures during this time interval. We empirically fit the PSF-width variations with these 2 temperature sensor values. This suggests that the focus has a similar dependence, and we recommend that this finding be followed up with the determination of actual focus values to check if the focus values indeed have the same correlation. If so, the temperature data can be useful in estimating the focus values, which can then be used to predict the PSFs to a first order.

  6. ac electroosmosis in rectangular microchannels

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Accoto, Dino; Dario, Paolo

    2005-11-01

    Motivated by the growing interest in ac electroosmosis as a reliable no moving parts strategy to control fluid motion in microfluidic devices for biomedical applications, such as lab-on-a-chip, we study transient and steady-state electrokinetic phenomena (electroosmosis and streaming currents) in infinitely extended rectangular charged microchannels. With the aid of Fourier series and Laplace transforms we provide a general formal solution of the problem, which is used to study the time-dependent response to sudden ac applied voltage differences in case of finite electric double layer. The Debye-Hückel approximation has been adopted to allow for an algebraic solution of the Poisson-Boltzmann problem in Fourier space. We obtain the expressions of flow velocity profiles, flow rates, streaming currents, as well as expressions of the complex hydraulic and electrokinetic conductances. We analyze in detail the dependence of the electrokinetic conductance on the extension of linear dimensions relative to the Debye length, with an eye on finite electric double layer effects.

  7. RHIC spin flipper AC dipole controller

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  8. Measurements of AC Losses and Current Distribution in Superconducting Cables

    SciTech Connect

    Nguyen, Doan A; Ashworth, Stephen P; Duckworth, Robert C; Carter, Bill; Fleshler, Steven

    2011-01-01

    This paper presents our new experimental facility and techniques to measure ac loss and current distribution between the layers for High Temperature Superconducting (HTS) cables. The facility is powered with a 45 kVA three-phase power supply which can provide three-phase currents up to 5 kA per phase via high current transformers. The system is suitable for measurements at any frequency between 20 and 500 Hz to better understand the ac loss mechanisms in HTS cables. In this paper, we will report techniques and results for ac loss measurements carried out on several HTS cables with and without an HTS shielding layer. For cables without a shielding layer, care must be taken to control the effect of the magnetic fields from return currents on loss measurements. The waveform of the axial magnetic field was also measured by a small pick-up coil placed inside a two-layer cable. The temporal current distribution between the layers can be calculated from the waveform of the axial field.

  9. Dynamic Environmental Qualification Techniques

    DTIC Science & Technology

    1979-11-01

    ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Report No.682 DYNAMIC ENVIRONMENTAL QUALIFICATION TECHNIQUES II¥ ,n . r-,, q - .j, i ~Papers present d at...better the knowledge of sources of excitation, transmission paths, dynamic system behaviour , the better the understanding and establishment of appropriate...featuring resonance dwell have poor similarity to the dynamic equipment behaviour in the A/C. As a specific example, a vibration test with a

  10. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications.

  11. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    NASA Astrophysics Data System (ADS)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  12. Calorimetric method of ac loss measurement in a rotating magnetic field.

    PubMed

    Ghoshal, P K; Coombs, T A; Campbell, A M

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-T(c) superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  13. Calorimetric method of ac loss measurement in a rotating magnetic field

    SciTech Connect

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  14. Calorimetric method of ac loss measurement in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.

    2010-07-01

    A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  15. Multiplexed sensing based on Brownian relaxation of magnetic nanoparticles using a compact AC susceptometer

    NASA Astrophysics Data System (ADS)

    Park, Kyoungchul; Harrah, Tim; Goldberg, Edward B.; Guertin, Robert P.; Sonkusale, Sameer

    2011-02-01

    A novel multiplexed sensing scheme based on the measurement of the magnetic susceptibility of the affinity captured target molecules on magnetic nanoparticles in liquid suspension is proposed. The AC magnetic susceptibility provides a measurement of Brownian relaxation behavior of biomolecules bound to magnetic nanoparticles (MNPs) that is related to its hydrodynamic size. A room temperature, compact AC susceptometer is designed and developed to measure complex AC magnetic susceptibility of such magnetic nanoparticles. The AC susceptometer exhibits high sensitivity in magnetic fields as low as 10 µT for 1 mg ml-1 concentration and 5 µl volume, and is fully software programmable. The capability of biological sensing using the proposed scheme has been demonstrated in proof of principle using the binding of biotinylated horseradish peroxidase (HRP) to streptavidin-coated MNPs. The proposed technique and instrument are readily compatible with lab-on-chip applications for point-of-care medical applications.

  16. Phase-Sensitive Detection of Spin Pumping via the ac Inverse Spin Hall Effect

    NASA Astrophysics Data System (ADS)

    Weiler, Mathias; Shaw, Justin M.; Nembach, Hans T.; Silva, Thomas J.

    2014-10-01

    We use a phase-sensitive, quantitative technique to separate inductive and ac inverse spin Hall effect (ISHE) voltages observed in Ni81Fe19/normal metal multilayers under the condition of ferromagnetic resonance. For Ni81Fe19/Pt thin film bilayers and at microwave frequencies from 7 to 20 GHz, we observe an ac ISHE magnitude that is much larger than that expected from the dc spin Hall angle ΘSHPt=0.1. Furthermore, at these frequencies, we find an unexpected, ≈110° phase of the ac ISHE signal relative to the in-plane component of the resonant magnetization precession. We attribute our findings to a dominant intrinsic ac ISHE in Pt.

  17. Screening of mutant strain Streptomyces mediolani sp. AC37 for (-)-8-O-methyltetrangomycin production enhancement.

    PubMed

    Jiménez, Jakeline Trejos; Sturdíková, Maria; Brezová, Vlasta; Svajdlenka, Emil; Novotová, Marta

    2012-12-01

    Streptomyces mediolani sp. AC37 was isolated from the root system of higher plant Taxus baccata and produced metabolite identified as (-)-8-O-methyltetrangomycin according to LC/MS/MS analysis. In our screening program for improvements of bioactive secondary metabolites from plant associate streptomycetes, mutation was used as a tool for the induction of genetic variations for selection of higher (-)-8-O-methyltetrangomycin producers of isolates. S. mediolani sp. AC37 was treated with UV irradiation and chemical mutagenic treatment (N-nitroso-N-methyl-urea). The radical scavenging and antioxidant capacity of (-)-8-O-methyltetrangomycin and extracts isolated from mutants were tested using EPR spin trapping technique and ABTS(·+) assay. Comparison of electron microscopic images of Streptomyces sp. AC37 and mutant strains of Streptomyces sp. AC37 revealed substantial differences in morphology and ultrastructure.

  18. Three phase AC motor controller

    DOEpatents

    Vuckovich, Michael; Wright, Maynard K.; Burkett, John P.

    1984-03-20

    A motor controller for a three phase AC motor (10) which is adapted to operate bidirectionally from signals received either from a computer (30) or a manual control (32). The controller is comprised of digital logic circuit means which implement a forward and reverse command signal channel (27, 29) for the application of power through the forward and reverse power switching relays (16, 18, 20, 22). The digital logic elements are cross coupled to prevent activation of both channels simultaneously and each includes a plugging circuit (65, 67) for stopping the motor upon the removal of control signal applied to one of the two channels (27, 29) for a direction of rotation desired. Each plugging circuit (65, 67) includes a one-shot pulse signal generator (88, 102) which outputs a single pulse signal of predetermined pulsewidth which is adapted to inhibit further operation of the application of power in the channel which is being activated and to apply a reversal command signal to the other channel which provides a reversed phase application of power to the motor for a period defined by the pulse-width output of the one-shot signal generator to plug the motor (10) which will then be inoperative until another rotational command signal is applied to either of the two channels.

  19. Memory effect in ac plasma displays

    NASA Astrophysics Data System (ADS)

    Szlenk, K.; Obuchowicz, E.

    1993-10-01

    The bistable or `memory' mode of operation of an ac plasma display panel is presented. The difference between dc and ac plasma panel operation from the point of view of memory function is discussed. The graphic ac plasma display with thin film Cr-Cu-Cr electrodes was developed in OBREP and its basic parameters are described. It consists of 36 X 59 picture elements, its outer dimensions are: 76 X 52 mm2 and the screen size is: 49 X 30 mm2. The different dielectric glass materials were applied as dielectric layers and the influence of the properties of these materials on display parameters and memory function was investigated.

  20. Superconductor coil geometry and ac losses

    NASA Technical Reports Server (NTRS)

    Pierce, T. V., Jr.; Zapata, R. N.

    1976-01-01

    An empirical relation is presented which allows simple computation of volume-averaged winding fields from central fields for coils of small rectangular cross sections. This relation suggests that, in certain applications, ac-loss minimization can be accomplished by use of low winding densities, provided that hysteresis losses are independent of winding density. The ac-loss measurements on coils wound of twisted multifilamentary composite superconductors show no significant dependence on ac losses on winding density, thus permitting the use of winding density as an independent design parameter in loss minimization.

  1. Exenatide: AC 2993, AC002993, AC2993A, exendin 4, LY2148568.

    PubMed

    2004-01-01

    Exenatide [AC002993, AC2993A, AC 2993, LY2148568, exendin 4], a glucagon-like peptide-1 (GLP-1) agonist, is a synthetic exendin 4 compound under development with Amylin Pharmaceuticals for the treatment of type 2 diabetes. Both exendin 4 and its analogue, exendin 3, are 39-amino acid peptides isolated from Heloderma horridum lizard venom that have different amino acids at positions 2 and 3, respectively. Exendins are able to stimulate insulin secretion in response to rising blood glucose levels, and modulate gastric emptying to slow the entry of ingested sugars into the bloodstream. Amylin Pharmaceuticals acquired exclusive patent rights for the two exendin compounds (exendin 3 and exendin 4) from the originator, Dr John Eng (Bronx, NY, US). On 20 September 2002, Amylin and Eli Lilly signed a collaborative agreement for the development and commercialisation of exenatide for type 2 diabetes. Under the terms of the agreement, Eli Lilly has paid Amylin a licensing fee of 80 million US dollars and bought Amylin's stock worth 30 million US dollars at 18.69 US dollars a share. After the initial payment, Eli Lilly will pay Amylin up to 85 US dollars million upon reaching certain milestones and also make an additional payment of up to 130 million US dollars upon global commercialisation of exenatide. Both companies will share the US development and commercialisation costs, while Eli Lilly will pick up up to 80% of development costs and all commercialisation costs outside the US. Amylin and Eli Lilly will equally share profit from sales in the US, while Eli Lilly will get 80% of the profit outside the US and Amylin will get the rest. This agreement has also enabled Amylin to train its sales force to co-promote Lilly's human growth hormone Humatrope. Alkermes will receive research and development funding and milestone payments, and also a combination of royalty payments and manufacturing fees based on product sales. Alkermes undertakes the responsibility for the development

  2. Active AC/DC control for wideband piezoelectric energy harvesting

    NASA Astrophysics Data System (ADS)

    Morel, A.; Grézaud, R.; Pillonnet, G.; Gasnier, P.; Despesse, G.; Badel, A.

    2016-11-01

    This paper proposes a simple interface circuit enabling resonant frequency tuning of highly coupled piezoelectric harvesters. This work relies on an active AC/DC architecture that introduces a tunable short-circuit sequence in order to control the phase between the piezoelectric current and voltage, allowing the emulation of a capacitive load. It is notably shown that this short-circuit time increases the harvested power when the piezoelectric operates outside of resonance. Measurements on a piezoelectric harvester exhibiting a large global coupling coefficient (k2 = 15.3%) have been realized and have proven the efficiency and potential of this technique.

  3. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  4. High School Teachers Win ACS Prizes

    NASA Astrophysics Data System (ADS)

    Editorial Staff, Jce

    2009-07-01

    William E. Snyder is the 2009 winner of the ACS Division of Chemical Education Central Region Award for Excellence in High School Teaching; Sally Mitchell is the winner of the 2009 James Bryant Conant Award in High School Chemistry Teaching.

  5. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  6. Three-phase-to-two-phase direct AC-AC converter with three leg structure

    NASA Astrophysics Data System (ADS)

    Kwak, S.-S.

    2014-05-01

    A three-phase-to-two-phase ac-ac converter is, along with a modulation strategy based on the space vector scheme, introduced to directly drive two-phase output ac systems with high input power quality. The converter is capable of synthesising two sinusoidal output voltages with variable output frequency and arbitrary magnitude in quadrature phase-shift as well as sinusoidal input currents.

  7. Phase protection system for ac power lines

    NASA Technical Reports Server (NTRS)

    Wong, W. J. (Inventor)

    1974-01-01

    The system described provides protection for phase sensitive loads from being or remaining connected to ac power lines whenever a phase reversal occurs. It comprises a solid state phase detection circuit, a dc power relay circuit, an ac-to-dc converter for energizing the relay circuit, and a bistable four terminal transducer coupled between the phase detection circuit and the power relay circuit, for controlling both circuits.

  8. AC Josephson effect applications in microwave systems

    NASA Astrophysics Data System (ADS)

    Larkin, Serguey Y.

    1996-12-01

    analysis allow to get the picture of temperature distribution along the plasma cord diameter in accordance with dynamics of thermonuclear process development. Modem raclioastronomic research gives scientists the unique information on the world tructure. It is also necessary to analyze Space microwave radiation providing exclusive sensitivity of the equipment. In both cases equipment is required to be superwide band, to have high sensitivity and ability to operate at more than 300 GHz frequencies. Today all these requirements are met by the devices using the ac Josephson effect. The Josephson junctions are used as an active transforming element in such devices. At the end of 20 century the sphere of their utilization embraces medicine, communications, radiophysics, space exploration, ecology, military use, etc. The State Research Center "Fonon" ( SRC "Fonon") of the State Committee on Science and Technology of Ukraine was founded in 1991. The main aim of its creation was to concentrate the scientific and financial efforts for development and production of unique devices based on the results of fundamental study in physics of high T superconductivity. First of all we were interested in technological research on the obtaining of low impedance Josephson junctions out of the High T thin films. Using such junctions in combination with our original techniques developed in our Center we have succeed in creating the following new generation equipment: industrial set-up of the frequency meter in the range of 60 ... 600 GHz; experimental set-up of the spectrum analyzer operating in the range of 50 250 GHz; experimental model of radiometric receiver in 180...260 GHz range. All the above devices are based on the using ac Josephson effect for the receiving and processing mm- and submm- microwave signals.

  9. Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles.

    PubMed

    Konat Zorzi, Giovanni; Contreras-Ruiz, Laura; Párraga, Jenny Evelin; López-García, Antonio; Romero Bello, Rafael; Diebold, Yolanda; Seijo, Begoña; Sánchez, Alejandro

    2011-10-03

    Decreased production of the mucin MUC5AC in the eye is related to several pathological conditions, including dry eye syndrome. A specific strategy for increasing the ocular levels of MUC5AC is not yet available. Using a plasmid specially designed to encode human MUC5AC, we evaluated the ability of hybrid cationized gelatin nanoparticles (NPs) containing polyanions (chondroitin sulfate or dextran sulfate) to transfect ocular epithelial cells. NPs were developed using the ionic gelation technique and characterized by a small size (<200 nm), positive zeta potential (+20/+30 mV), and high plasmid association efficiency (>95%). MUC5AC mRNA and protein were detected in conjunctival cells after in vitro transfection of the NPs. The in vivo administration of the NPs resulted in significantly higher MUC5AC expression in the conjunctiva compared to untreated control and naked plasmid. These results provide a proof-of-concept that these NPs are effective vehicles for gene therapy and candidates for restoring the MUC5AC concentration in the ocular surface.

  10. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  11. 21 CFR 886.1630 - AC-powered photostimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered photostimulator. 886.1630 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1630 AC-powered photostimulator. (a) Identification. An AC-powered photostimulator is an AC-powered device intended to provide light stimulus...

  12. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

  13. 21 CFR 886.1850 - AC-powered slitlamp biomicroscope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered slitlamp biomicroscope. 886.1850... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1850 AC-powered slitlamp biomicroscope. (a) Identification. An AC-powered slitlamp biomicroscope is an AC-powered device that is...

  14. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

  15. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  16. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  17. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  18. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  19. 21 CFR 886.4440 - AC-powered magnet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and...

  20. 21 CFR 888.1240 - AC-powered dynamometer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered dynamometer. 888.1240 Section 888.1240...) MEDICAL DEVICES ORTHOPEDIC DEVICES Diagnostic Devices § 888.1240 AC-powered dynamometer. (a) Identification. An AC-powered dynamometer is an AC-powered device intended for medical purposes to...

  1. AC Electrokinetics of Physiological Fluids for Biomedical Applications.

    PubMed

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C; Wong, Pak Kin

    2015-12-01

    Alternating current (AC) electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration, and separation, makes it possible to develop integrated systems for clinical diagnostics in nontraditional health care settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics-based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented.

  2. AC Electrokinetics of Physiological Fluids for Biomedical Applications

    PubMed Central

    Lu, Yi; Liu, Tingting; Lamanda, Ariana C.; Sin, Mandy L Y; Gau, Vincent; Liao, Joseph C.; Wong, Pak Kin

    2016-01-01

    AC electrokinetics is a collection of processes for manipulating bulk fluid mass and embedded objects with AC electric fields. The ability of AC electrokinetics to implement the major microfluidic operations, such as pumping, mixing, concentration and separation, makes it possible to develop integrated systems for clinical diagnostics in non-traditional healthcare settings. The high conductivity of physiological fluids presents new challenges and opportunities for AC electrokinetics based diagnostic systems. In this review, AC electrokinetic phenomena in conductive physiological fluids are described followed by a review of the basic microfluidic operations and the recent biomedical applications of AC electrokinetics. The future prospects of AC electrokinetics for clinical diagnostics are presented. PMID:25487557

  3. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  4. 78 FR 49318 - Availability of Draft Advisory Circular (AC) 90-106A and AC 20-167A

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Federal Aviation Administration Availability of Draft Advisory Circular (AC) 90-106A and AC 20- 167A...: This notice announces the availability of draft Advisory Circular (AC) 90-106A, Enhanced Flight Vision Systems and draft AC 20- 167A, Airworthiness Approval of Enhanced Vision System, Synthetic Vision...

  5. A.c. conductivity and dielectric properties of LiNi 3/5Cu 2/5VO 4 ceramics

    NASA Astrophysics Data System (ADS)

    Ram, Moti

    2010-03-01

    The LiNi 3/5Cu 2/5VO 4 was synthesized using solution-based chemical method whose dielectric and a.c. conductivity properties were investigated using complex impedance spectroscopy (CIS) technique. Variation of dielectric constant ( εr) as a function of frequency at different temperatures indicates low frequency dispersion. A.c conductivity analysis indicates that electrical conduction in the material is a thermally activated process. Frequency dependence of a.c. conductivity at different temperatures obeys Jonscher's universal law: σ ac= σ dc+ A( ω) n.

  6. Excitation and photo-ionization of ultra-cold potassium atoms in the AC-driven magneto optical trap (AC-MOT)

    NASA Astrophysics Data System (ADS)

    Agomuo, John; Murray, Andrew; Harvey, Matthew

    2014-03-01

    The operation of a new cold atom trap (the AC-MOT) and its application in photoionization experiments is described. Ionization of cold K atoms in the AC-MOT is discussed, the ionization proceeding in a stepwise fashion using a combination of infra-red radiation with that from a blue diode laser. A significant limitation of magneto optical trapping (MOT) techniques has been the requirement to eliminate the magnetic fields prior to the interaction occurring. To address this, the AC-MOT was invented in Manchester. This is a pulsed trap, so that the magnetic fields are completely eliminated prior to the electron interaction. Low energy electrons can then be extracted from laser photoionization. In this work, the potassium is cooled to ~0.25mK. Photoionization proceeds by a stepwise route, atoms excited by the trapping laser at ~766nm being ionized by radiation at ~448nm. Both fluorescence from the atoms and the ion yield are used to determine details of the interaction. These techniques are being studied since it then is possible to create cold electron bunches of high coherence. A detailed description of the AC-MOT, its operation and application will be presented. A new cold electron source being built in Manchester will also be discussed. I wish to acknowledge the financial support from Tertiary Education Trust Fund Nigeria and Nigerian Defence Academy Kaduna.

  7. Design and synthesis of 225Ac radioimmunopharmaceuticals.

    PubMed

    McDevitt, Michael R; Ma, Dangshe; Simon, Jim; Frank, R Keith; Scheinberg, David A

    2002-12-01

    The alpha-particle-emitting radionuclides 213Bi, 211At, 224Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213Bi and 211At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224Ra chloride selectively seeks bone. 225Ac possesses favorable physical properties for radioimmunotherapy (10d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93+/-8% radiochemically pure (n=26). The second step yielded 225Ac-DOTA-IgG constructs that were 95+/-5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  8. From Beamline to Scanner with 225Ac

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna

    2016-09-01

    Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (< 1 mCi) quantities for in-house chemistry and imaging research that aims to improve and assess 225Ac radiopharmaceutical targeting. This presentation provides an overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.

  9. Reliable 100 kbps low-voltage ac powerline communications

    NASA Astrophysics Data System (ADS)

    Ladas, Chris; Propp, Michael

    1995-12-01

    Achieving reliable, 100 kbps powerline communications on the low voltage, AC powerlines has been realized by combining new techniques in spread spectrum technology with a robust, powerline specific protocol. This approach enables reliable, high speed data networking on the electrically hostile, low voltage powerline. Applications for the new technology include utility DA/DSM (distribution automation/demand side management), intraoffice LANs, powerline based telephony, and industrial data networking applications. This technological advancement was made possible through statistical modeling of the low voltage powerline, and developing unique spread spectrum and protocol techniques specific to the resulting powerline environment. The technology has been implemented as a highly integrated, CMOS chip set, allowing straightforward integration into OEM systems and products.

  10. Numerical simulation of ac plasma arc thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Han-Ming; Carey, G. F.; Oakes, M. E.

    1994-05-01

    A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequnecy range of 10-10(exp 2) Hz which includes most industry ac arc frequencies.

  11. Numerical Simulation of AC Plasma Arc Thermodynamics

    NASA Astrophysics Data System (ADS)

    Wu, Han-Ming; Carey, G. F.; Oakes, M. E.

    1994-05-01

    A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-102 Hz which includes most industry ac arc frequencies.

  12. Scattering effects of Space Station structure on Assembly/Contingency Subsystem (ACS) antenna performance

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Lu, Ba P.; Johnson, Larry A.; Fournet, Jon S.; Panneton, Robert J.; Eggers, Donald S.; Arndt, G. D.

    1992-01-01

    ACS antenna patterns were computed using the Geometrical Theory of Diffraction (GTD) modeling technique in which the multipath interference from the Space Station structures was included. The accuracy of the numerical results obtained is verified by comparing them against a series of RF anechoic chamber measurements. Less than 1 dB degradation is expected if a +/- 15 deg cone is used to protect the ACS high gain antenna boresight pattern; a +/- 20 deg cone is required if no more than 0.5 dB gain degradation is desired.

  13. Mechanism of electrohydrodynamic printing based on ac voltage without a nozzle electrode

    NASA Astrophysics Data System (ADS)

    Nguyen, Vu Dat; Byun, Doyoung

    2009-04-01

    The electrohydrodynamic (EHD) spraying technique has been applied to inkjet printing technology for fabrication of printed electronics. The conventional EHD inkjet device is based on dc voltage and requires two electrodes: a nozzle electrode and an extractor electrode. This study notes several drawbacks of the dc-based EHD printing device such as electrical breakdown and demonstrates stable jetting by using the extractor electrode alone without the nozzle electrode and ac voltage. The continuous ejection of droplets can be obtained only by ac voltage, showing consistent ejection at every peak of electrical signal. The suggested EHD inkjet device prevents electrical breakdown.

  14. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    SciTech Connect

    Rupich, Martin, Dr.; Duckworth, Robert, Dr.

    2009-10-01

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2G template strips.

  15. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  16. Organic magnetoresistance under resonant ac drive

    NASA Astrophysics Data System (ADS)

    Roundy, R. C.; Raikh, M. E.

    2013-09-01

    Motivated by a recent experiment, we develop a theory of organic magnetoresistance (OMAR) in the presence of a resonant ac drive. To this end, we perform a thorough analysis of the dynamics of ac-driven electron-hole polaron pair in magnetic field, which is a sum of external and random hyperfine fields. Resonant ac drive affects the OMAR by modifying the singlet content of the eigenmodes. This, in turn, leads to the change of recombination rate, and ultimately, to the change of the spin-blocking that controls the current. Our analysis demonstrates that, upon increasing the drive amplitude, the blocking eigenmodes of the triplet type acquire a singlet admixture and become unblocking. Most surprisingly, the opposite process goes in parallel: new blocking modes emerge from nonblocking precursors as the drive increases. These emergent blocking modes are similar to subradiant modes in the Dicke effect. A nontrivial evolution of eigenmodes translates into a nontrivial behavior of OMAR with the amplitude of the ac drive: it is initially linear, then passes through a maximum, drops, and finally saturates.

  17. A dry-cooled AC quantum voltmeter

    NASA Astrophysics Data System (ADS)

    Schubert, M.; Starkloff, M.; Peiselt, K.; Anders, S.; Knipper, R.; Lee, J.; Behr, R.; Palafox, L.; Böck, A. C.; Schaidhammer, L.; Fleischmann, P. M.; Meyer, H.-G.

    2016-10-01

    The paper describes a dry-cooled AC quantum voltmeter system operated up to kilohertz frequencies and 7 V rms. A 10 V programmable Josephson voltage standard (PJVS) array was installed on a pulse tube cooler (PTC) driven with a 4 kW air-cooled compressor. The operating margins at 70 GHz frequencies were investigated in detail and found to exceed 1 mA Shapiro step width. A key factor for the successful chip operation was the low on-chip power consumption of 65 mW in total. A thermal interface between PJVS chip and PTC cold stage was used to avoid a significant chip overheating. By installing the cryocooled PJVS array into an AC quantum voltmeter setup, several calibration measurements of dc standards and calibrator ac voltages up to 2 kHz frequencies were carried out to demonstrate the full functionality. The results are discussed and compared to systems with standard liquid helium cooling. For dc voltages, a direct comparison measurement between the dry-cooled AC quantum voltmeter and a liquid-helium based 10 V PJVS shows an agreement better than 1 part in 1010.

  18. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  19. Power Electronic Transformer based Three-Phase PWM AC Drives

    NASA Astrophysics Data System (ADS)

    Basu, Kaushik

    A Transformer is used to provide galvanic isolation and to connect systems at different voltage levels. It is one of the largest and most expensive component in most of the high voltage and high power systems. Its size is inversely proportional to the operating frequency. The central idea behind a power electronic transformer (PET) also known as solid state transformer is to reduce the size of the transformer by increasing the frequency. Power electronic converters are used to change the frequency of operation. Steady reduction in the cost of the semiconductor switches and the advent of advanced magnetic materials with very low loss density and high saturation flux density implies economic viability and feasibility of a design with high power density. Application of PET is in generation of power from renewable energy sources, especially wind and solar. Other important application include grid tied inverters, UPS e.t.c. In this thesis non-resonant, single stage, bi-directional PET is considered. The main objective of this converter is to generate adjustable speed and magnitude pulse width modulated (PWM) ac waveforms from an ac or dc grid with a high frequency ac link. The windings of a high frequency transformer contains leakage inductance. Any switching transition of the power electronic converter connecting the inductive load and the transformer requires commutation of leakage energy. Commutation by passive means results in power loss, decrease in the frequency of operation, distortion in the output voltage waveform, reduction in reliability and power density. In this work a source based partially loss-less commutation of leakage energy has been proposed. This technique also results in partial soft-switching. A series of converters with novel PWM strategies have been proposed to minimize the frequency of leakage inductance commutation. These PETs achieve most of the important features of modern PWM ac drives including 1) Input power factor correction, 2) Common

  20. 48 CFR Appendixes A-C to Chapter 7 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false A Appendixes A-C to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes A-C to Chapter 7...

  1. 48 CFR Appendixes A-C to Chapter 7 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false A Appendixes A-C to Chapter 7 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT Appendixes A-C to Chapter 7...

  2. AC impedance spectroscopy studies on solid-state sintered zinc aluminum oxide (ZnAl2O4) ceramics

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Rao, T. Subba

    2012-07-01

    In the present investigation Zinc Aluminum Oxide (ZnAl2O4) is prepared by solid-state reaction technique. Dielectric constant (ɛ'), dielectric loss(tan δ), ac conductivity (σac) as a function of temperature are studied by varying frequencies from 100 Hz to 1MHz using an impedance analyzer. The dielectric constant and dielectric loss increases gradually with an increase of temperature, but it decreases with increase of frequency. The ac conductivity (σac) also increases with increases of frequency. The transition peaks for ZnAl2O4 are observed at 490°C, 510°C, 520°C for the frequencies 1 KHz, 10 KHz and 100 KHz. No transition peaks are found for the frequency 100 Hz and 1 MHz because of high conductive loss.

  3. AC losses in a HTS coil carrying DC current in AC external magnetic field

    NASA Astrophysics Data System (ADS)

    Ogawa, J.; Zushi, Y.; Fukushima, M.; Tsukamoto, O.; Suzuki, E.; Hirakawa, M.; Kikukawa, K.

    2003-10-01

    We electrically measured AC losses in a Bi2223/Ag-sheathed pancake coil excited by a DC current in AC external magnetic field. Losses in the coil contain two kinds of loss components that are the magnetization losses and dynamic resistance losses. In the measurement, current leads to supply a current to the coil were specially arranged to suppress electromagnetic coupling between the coil current and the AC external magnetic field. A double pick-up coils method was used to suppress a large inductive voltage component contained in voltage signal for measuring the magnetization losses. It was observed that the magnetization losses were dependent on the coil current and that a peak of a curve of the loss factor vs. amplitude of the AC external magnetic field shifted to lower amplitude of the AC magnetic field as the coil current increased. This result suggests the full penetration magnetic field of the coil tape decreases as the coil current increases. The dynamic resistance losses were measured by measuring a DC voltage appearing between the coil terminals. It was observed that the DC voltage appearing in the coil subject to the AC external magnetic field was much larger than that in the coil subject to DC magnetic field.

  4. Evaluation of modern IGBT-modules for hard-switched AC/DC/AC converters

    SciTech Connect

    Blaabjerg, F.; Pedersen, J.K.; Jaeger, U.

    1995-12-31

    The development of IGBT devices is still producing faster devices with lower losses. The applications become more advanced like a complete hard-switched AC/DC/AC converter with almost clean input current and regenerating capabilities. This paper will first focus on a detailed characterization and comparison of eight different IGBT-modules representing state-of-the-art for both PT and NPT technologies. The voltage level of the devices is 1,200V and 1,600V/1,700V. The characterization is done on an advanced measurement system which is briefly described. The characterization is based on static and dynamic tests for both IGBT and the diodes in the IGBT-modules at a junction temperature at 125 C. The comparison is first done directly based on conduction losses and switching losses, and later the measurements are used in a loss model for a complete AC/DC/AC converter application. In the AC/DC/AC converter the power losses are modelled, and different operating conditions are compared like different voltage levels in the DC-link. It is concluded dependent on operation conditions different devices will be preferable, but the high voltage devices have the highest losses even at a high operating voltage.

  5. Combined Operation of AC and DC Distribution System with Distributed Generation Units

    NASA Astrophysics Data System (ADS)

    Noroozian, Reza; Abedi, Mehrdad; Gharehpetian, Gevorg

    2010-07-01

    This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.

  6. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  7. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  8. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  9. 7 CFR 1737.31 - Area Coverage Survey (ACS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Area Coverage Survey (ACS). 1737.31 Section 1737.31... Studies-Area Coverage Survey and Loan Design § 1737.31 Area Coverage Survey (ACS). (a) The Area Coverage Survey (ACS) is a market forecast of service requirements of subscribers in a proposed service area....

  10. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered patient lift. 880.5500 Section 880.5500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an...

  11. Methods for Addressing Missing Data with Applications from ACS Exams

    ERIC Educational Resources Information Center

    Brandriet, Alexandra; Holme, Thomas

    2015-01-01

    As part of the ACS Examinations Institute (ACS-EI) national norming process, student performance data sets are collected from professors at colleges and universities from around the United States. Because the data sets are collected on a volunteer basis, the ACS-EI often receives data sets with only students' total scores and without the students'…

  12. Input-current shaped ac to dc converters

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The problem of achieving near unity power factor while supplying power to a dc load from a single phase ac source of power is examined. Power processors for this application must perform three functions: input current shaping, energy storage, and output voltage regulation. The methods available for performing each of these three functions are reviewed. Input current shaping methods are either active or passive, with the active methods divided into buck-like and boost-like techniques. In addition to large reactances, energy storage methods include resonant filters, active filters, and active storage schemes. Fast voltage regulation can be achieved by post regulation or by supplementing the current shaping topology with an extra switch. Some indications of which methods are best suited for particular applications concludes the discussion.

  13. AC plasma anemometer—characteristics and design

    NASA Astrophysics Data System (ADS)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2015-08-01

    The characteristics and design of a high-bandwidth flow sensor that uses an AC glow discharge (plasma) as the sensing element is presented. The plasma forms in the air gap between two protruding low profile electrodes attached to a probe body. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean and fluctuating velocity components. The anemometer circuitry includes resistance and capacitance elements that simulate a dielectric-barrier to maintain a diffuse plasma, and a constant-current feedback control that maintains operation within the desired glow discharge regime over an extended range of air velocities. Mean velocity calibrations are demonstrated over a range from 0 to 140 m s-1. Over this velocity range, the mean output voltage varied linearly with air velocity, providing a constant static sensitivity. The effect of the electrode gap and input AC carrier frequency on the anemometer static sensitivity and dynamic response are investigated. Experiments are performed to compare measurements obtained with a plasma sensor operating at two AC carrier frequencies against that of a constant-temperature hot-wire. All three sensors were calibrated against the same known velocity reference. An uncertainty based on the standard deviation of the velocity calibration fit was applied to the mean and fluctuating velocity measurements of the three sensors. The motivation is not to replace hot-wires as a general measurement tool, but rather as an alternative to hot-wires in harsh environments or at high Mach numbers where they either have difficulty in surviving or lack the necessary frequency response.

  14. THE ACS NEARBY GALAXY SURVEY TREASURY

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; De Jong, Roelof S. E-mail: ben@astro.washington.edu E-mail: stephanie@astro.washington.edu E-mail: fabio@astro.washington.edu E-mail: aseth@cfa.harvard.edu

    2009-07-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  15. Graphs for Isotopes of 89-Ac (Actinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides a graphic representation of nucleon separation energies and residual interaction parameters for isotopes of the chemical element 89-Ac (Actinium, atomic number Z = 89).

  16. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Rosema, Keith; Skillman, Evan D.; Cole, Andrew; Girardi, Léo; Gogarten, Stephanie M.; Karachentsev, Igor D.; Olsen, Knut; Weisz, Daniel; Christensen, Charlotte; Freeman, Ken; Gilbert, Karoline; Gallart, Carme; Harris, Jason; Hodge, Paul; de Jong, Roelof S.; Karachentseva, Valentina; Mateo, Mario; Stetson, Peter B.; Tavarez, Maritza; Zaritsky, Dennis; Governato, Fabio; Quinn, Thomas

    2009-07-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ~104 in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m F475W = 28.0 mag, m F606W = 27.3 mag, and m F814W = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  17. Level structure and reflection asymmetric shape in sup 223 Ac

    SciTech Connect

    Sheline, R.K.; Liang, C.F.; Paris, P. )

    1990-07-20

    Mass separated sources of {sup 227}Pa (separated as PaF{sub 4}{sup +} ions) were used to study the level structure of {sup 223}Ac following alpha decay. The levels in {sup 223}Ac are interpreted as K = 5/2{sup {plus minus}} parity doublet bands which occur naturally in reflection asymmetric models and the multiphonon octupole model. The anomalous structure of the K = 3/2{sup {minus}} band is explained in terms of Coriolis coupling. The low lying parity doublet bands in {sup 223}Ac, {sup 225}Ac, and {sup 227}Ac are compared and contrasted.

  18. Channel model for AC electric arc

    NASA Astrophysics Data System (ADS)

    Larsen, H. L.

    1993-06-01

    This report contains the results from calculations of free-burning AC electric arcs in argon. In order to calculate the arc current and arc voltage, the external electric circuit must be taken into consideration. The external circuit is modeled by an equivalent circuit consisting of an ideal AC voltage source, a loss resistance, and an inductance. The qualitative behavior of the current-voltage characteristic is in agreement with observed characteristics, but experimental data are necessary in order to check whether the calculated power loss is reasonable. Non-symmetry was modeled by introducing different anode and cathode falls in the two half periods. An attempt at taking into account different cathode current densities in the two half periods, depending on whether the electrode or silicon melt is cathode, did not give satisfactory results. Thermionic emission was assumed in both half periods, but this may not be the right mechanism when the silicon melt is cathode. The time delay of the AC arc compared to the DC case is modeled by a time constant. It was shown that this preset time constant must be in agreement with the mean 'mechanical' relaxation time in the arc in order to fulfill the energy balance. By updating the time constant until this is achieved, the time constant is eliminated as a parameter that must be chosen a priori.

  19. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.

    2010-01-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D<4Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of 104 in luminosity and star formation rate. The survey data consists of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, supplemented with archival data and new Wide Field Planetary Camera (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. We will discuss the many ways in which this data set is being used to reconstruct the star formation history of galaxies within the local volume.

  20. Total AC losses in twisted and untwisted multifilamentary Bi-2223 superconducting tapes carrying AC transport current in AC longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Jin, Feng; Jiang, Zhenan; Shirai, Shunsuke; ten Haken, Bennie; Rabbers, Jan-Jaap; Ayai, Naoki; Hayashi, Kazuhiko

    2003-03-01

    In some electrical apparatuses, superconducting tapes are exposed to the longitudinal magnetic field. In this work, AC losses were measured in twisted and untwisted Bi-2223 tapes carrying AC transport current in the AC longitudinal magnetic field. In twisted tapes, the transport, magnetization and total losses depend on the relative direction of the longitudinal magnetic field to the direction of the transport current, while the field direction does not influence the AC loss characteristics in untwisted tapes. In the Z-twisted tapes, the total AC loss is larger in the longitudinal magnetic field that is anti-parallel to the transport current than in the longitudinal magnetic field of another direction. Numerical analysis shows that this field direction dependence of the total AC loss results from the change in the current distribution. In the longitudinal magnetic field that is anti-parallel to the transport current, the total AC loss in the Z-twisted tape is more than that in the untwisted tape. This dependence on the field direction is reversed in S-twisted tapes. It is to be noted that the twist increases the total AC loss in a longitudinal magnetic field of a certain direction, while it reduces the AC loss in the transverse magnetic field.

  1. AC CONDUCTION PHENOMENON OF Li2O-WO3-B2O3 GLASSES DOPED WITH V2O5

    NASA Astrophysics Data System (ADS)

    Rao, Linganaboina Srinivasa; Veeraiah, Nalluri; Rao, Tumu Venkatappa

    2013-04-01

    The glass composition 40Li2O-5WO3-(55-x)B2O3: xV2O5 for x = 0.2, 0.4, 0.6 and 0.8 is chosen for the present study. The glass samples were synthesized by conventional melt-quenching technique. The dielectric properties such as constant (ɛ‧), loss (tan δ) and ac conductivity (σac) are carried out as a function of temperature (30-270°C) and frequency (102-105 Hz). The glass sample (at x = 0.6) exhibited highest ac conductivity (σac) and spreading factor (β) among all the samples. All glasses exhibited mixed conduction (both electronic and ionic) at high temperatures. The frequency exponent s denotes the ac conduction mechanism is associated with both QMT model (at low temperatures) and CBH model (at high temperatures).

  2. AC loss measurements of twisted and untwisted BSCCO multifilamentary tapes

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Amemiya, Naoyuki; Nishioka, Takamasa; Oh, Sang-Soo

    2005-01-01

    AC losses in twisted and untwisted BSCCO multifilamentary superconducting tapes with Ag matrix developed in DAPAS program were measured by an electrical method. Magnetization and transport losses were measured by a pick-up coil and by a voltage taps. Total AC loss during simultaneous application of AC transport current and an AC transverse magnetic field was given by the sum of the magnetization and transport losses measured during this simultaneous application. The magnetization loss without transport current of untwisted and twisted tapes was measured first to evaluate the effect of twisting to decouple filaments. Then, the total AC loss of the twisted tape was measured in transverse magnetic fields with various amplitudes and orientations, while the amplitude of the transport current was fixed. The measured total AC loss in a parallel transverse magnetic field was compared with some theoretical models to study the detailed characteristics of the measured total AC loss of the sample.

  3. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  4. The Hubble Legacy Archive ACS grism data

    NASA Astrophysics Data System (ADS)

    Kümmel, M.; Rosati, P.; Fosbury, R.; Haase, J.; Hook, R. N.; Kuntschner, H.; Lombardi, M.; Micol, A.; Nilsson, K. K.; Stoehr, F.; Walsh, J. R.

    2011-06-01

    A public release of slitless spectra, obtained with ACS/WFC and the G800L grism, is presented. Spectra were automatically extracted in a uniform way from 153 archival fields (or "associations") distributed across the two Galactic caps, covering all observations to 2008. The ACS G800L grism provides a wavelength range of 0.55-1.00 μm, with a dispersion of 40 Å/pixel and a resolution of ~80 Å for point-like sources. The ACS G800L images and matched direct images were reduced with an automatic pipeline that handles all steps from archive retrieval, alignment and astrometric calibration, direct image combination, catalogue generation, spectral extraction and collection of metadata. The large number of extracted spectra (73,581) demanded automatic methods for quality control and an automated classification algorithm was trained on the visual inspection of several thousand spectra. The final sample of quality controlled spectra includes 47 919 datasets (65% of the total number of extracted spectra) for 32 149 unique objects, with a median iAB-band magnitude of 23.7, reaching 26.5 AB for the faintest objects. Each released dataset contains science-ready 1D and 2D spectra, as well as multi-band image cutouts of corresponding sources and a useful preview page summarising the direct and slitless data, astrometric and photometric parameters. This release is part of the continuing effort to enhance the content of the Hubble Legacy Archive (HLA) with highly processed data products which significantly facilitate the scientific exploitation of the Hubble data. In order to characterize the slitless spectra, emission-line flux and equivalent width sensitivity of the ACS data were compared with public ground-based spectra in the GOODS-South field. An example list of emission line galaxies with two or more identified lines is also included, covering the redshift range 0.2 - 4.6. Almost all redshift determinations outside of the GOODS fields are new. The scope of science projects

  5. Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious

    SciTech Connect

    Fang Minggang; Nie, Yingchao; Theilmann, David A.

    2009-06-20

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 is a core gene and its function in the virus life cycle is unknown. To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac109 deletion virus (vAc{sup 109KO}). Fluorescence and light microscopy showed that transfection of vAc{sup 109KO} results in a single-cell infection phenotype. Viral DNA replication is unaffected and the development of occlusion bodies in vAc{sup 109KO}-transfected cells evidenced progression to the very late phases of viral infection. Western blot and confocal immunofluorescence analysis showed that AC109 is expressed in the cytoplasm and nucleus throughout infection. In addition, AC109 is a structural protein as it was detected in both budded virus (BV) and occlusion derived virus in both the envelope and nucleocapsid fractions. Titration assays by qPCR and TCID{sub 50} showed that vAc{sup 109KO} produced BV but the virions are non-infectious. The vAc{sup 109KO} BV were indistinguishable from the BV of repaired and wild type control viruses as determined by negative staining and electron microscopy.

  6. AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: Non-Equilibrium Green's Function Simulation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Sasaoka, Kenji; Watanabe, Satoshi

    2012-04-01

    We theoretically investigate the emittance and dynamic dissipation of a nanoscale interconnect consisting of a metallic single-walled carbon nanotube using the non-equilibrium Green's function technique for AC electronic transport. We show that the emittance and dynamic dissipation depend strongly on the contact conditions of the interconnect and that the power consumption can be reduced by adjusting the contact conditions. We propose an appropriate condition of contact that yields a high power factor and low apparent power.

  7. New measurement of exotic decay of 225Ac by 14C emission

    NASA Astrophysics Data System (ADS)

    Guglielmetti, A.; Bonetti, R.; Ardisson, G.; Barci, V.; Giles, T.; Hussonnois, M.; Le Du, J. F.; Le Naour, C.; Mikheev, V. L.; Pasinetti, A. L.; Ravn, H. L.; Tretyakova, S. P.; Trubert, D.

    The branching ratio of 225Ac decay by emission of 14C was remeasured under improved experimental conditions by using a radioactive source produced at the ISOLDE mass-separator at CERN and a nuclear track detector technique. The result, B = λ14C/λα = (4.5+/-1.4)10-12, is consistent with the anomalously high value obtained in the 1993 experiment, thus confirming the importance of nuclear-structure effects in this exotic decay.

  8. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-06-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  9. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation.

    PubMed

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-12-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  10. Theoretical and experimental study of meniscus behavior under AC electric field for Electrohydrodynamic (EHD) jetting

    NASA Astrophysics Data System (ADS)

    Tran, Si Bui Quang; Byun, Doyoung

    2009-11-01

    The electrohydrodynamic (EHD) spraying technique has been utilized in applications such as inkjet printing and mass spectrometry technologies. In this paper, the role of electrical potential signals in jetting and on the oscillation of the meniscus is evaluated. The jetting and meniscus oscillation behavior are experimentally investigated under ac voltage, ac voltage superimposed on dc voltage, and pulsed dc voltage. Furthermore, the analytical simulation about the oscillation of an anchored edge hemispherical meniscus located on a conductive flat plate under a uniform ac electric field is presented. The mutual interaction between the electric field and the hydrodynamics is iteratively solved. As a result, the simulation can calculate the meniscus shapes, contours of voltage outside the meniscus and the velocity profile of liquid inside the meniscus during the period of the oscillation according to the applied frequency. Based on the present theory, one can predict the oscillation mode with a certain applied frequency. The present theory can also be applied to investigate the oscillation of a free conductive drop in a uniform ac electric field.

  11. Comparative study of evaporation using DC and AC filament electron guns

    NASA Astrophysics Data System (ADS)

    Lahiri, Sutanwi; Sahu, G. K.; Baruah, S.; Jana, B.; Dixit, A. R.; Bhardwaj, R. L.; Das, R. C.; Kalra, R.; Kaushik, V.; Majumder, A.; Mohapatra, S.; Dikshit, B.; Mishra, K. K.; Bhatia, M. S.; Bapat, A. V.; Mago, V. K.; Thakur, K. B.; Das, A. K.; Gantayet, L. M.

    2012-11-01

    Electron beam assisted physical vapour deposition (EB-PVD) and purification of metal by repeated melting using electron guns is a well-established technique in industrial metallurgy. Strip electron gun is considered a cost effective alternative to multiple pencil guns for handling of large size substrates. In the electron guns, the thermionic emission of the electrons from a filament is achieved by using AC or DC filament heating. A study of their relative merits and demerits was conducted for the both types of electron guns. Due to finite length of the filament, the magnetic field generated around the filament by heating current drops down towards ends. The DC filament heating results in electron beam with a comet shape having high power density hot spot at one end with low power density tails. With AC filament heating, electron beam oscillates with the frequency as that of heating current. The study of vapour flux distribution using DC gun revealed that highly directional vapour evolution takes place from a smaller hot spot whereas with AC gun vapour evolution occurs from an oscillatory 2D-evaporating source. The vapour deposit on substrate indicated that evaporation using DC gun caused splashing and granular deposit due to volumetric melting and evaporation from the ingot. This is contrary to the AC filament heating wherein quiet evaporation was observed due to surface melting and evaporation. The experimental results are critically reviewed to decide the configuration of electron guns for large-scale evaporation.

  12. Orbital Constraints for Fomalhaut b from ACS and STIS Astrometry

    NASA Astrophysics Data System (ADS)

    Graham, James R.; Fitzgerald, M. P.; Kalas, P.; Clampin, M.

    2013-01-01

    High contrast imaging observations with the Hubble Space Telescope in 2004 and 2006 using the Advanced Camera for Surveys (ACS) show that the nearby star Fomalhaut is accompanied by a faint companion orbiting within the star’s dusty debris belt. Initial measurements show that motion of the companion—Fomalhaut b—is approximately parallel to the inner edge of the belt. We have now observed Fomalhaut b at two additional epochs (2010 & 2012) with the Space Telescope Imaging Spectrograph (STIS). We have combined the measurements from these two instruments to yield reliable differential astrometry of Fomalhaut b relative to its parent star with typical uncertainties of 20-40 milli-arcseconds (one-axis rms); astrometry of Fomalhaut itself relative to the stellar background confirms that any uncorrected systematic errors between the ACS and STIS reference frames are smaller than the statistical measurement errors. These data provide significant constraints on the orbital motion of Fomalhaut b, even though the current eight-year observation span corresponds to only 11% of the Keplerian period at a projected separation of 100 AU. The direction of Fomalhaut b is now clear—the motion not tangential to the inner edge of the scattered-light belt. The observed kinematics also imply that Fomalhaut b must be on an elliptical orbit that will cross the belt in projection. Because of the limited time span and astrometric precision, further conclusions require adoption some assumptions regarding the orientation of the orbit in space. Moreover, the problem of inferring the orbital elements is not amenable to conventional chi-squared minimization techniques as the chi-squared hypersurface has many local minima. Consequently, we have developed an adaptive Markov-Chain Monte Carlo method to estimate the Keplerian orbital elements and their posterior probability distributions. We report on this analysis and the implications for the nature and origin of Fomalhaut b.

  13. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne; Williams, B.; Gogarten, S.; Weisz, D.; Skillman, E.; Seth, A.; ANGST Team

    2007-12-01

    The ACS Nearby Galaxy Survey Treasury program (ANGST) is a program to measure photometry for millions of stars in a volume limited sample of 70 nearby galaxies. With this data set, we are deriving spatially resolved star formation histories for both dwarfs and spirals in the local volume. I will highlight initial results from the survey, including ancient star formation histories for massive spirals, halos around dwarf galaxies, spatially-resolved star formation histories in dwarfs and spirals, and the detection of variable stars. I will also discuss the ANGST involved with switching to WFPC2. This program is funded by NASA grant HST GO-10915, administered by STScI.

  14. Nonlinear studies of AC electrokinetic micropumps

    NASA Astrophysics Data System (ADS)

    Bruus, Henrik; Olesen, Laurits H.; Ajdari, Armand

    2006-03-01

    Recent experiments have demonstrated that AC electrokinetic micropumps permit integrable, local, and fast pumping (velocities ˜ mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects indeed affect the pump performance in a way that we can rationalize by physical arguments.

  15. Inverse ac Josephson effect at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Golightly, W. J.; Sutton, E. C.

    1989-04-01

    Using the Werthamer (1966) theory of superconducting tunnel junctions, it is shown that zero-crossing ac Josephson steps can occur at frequencies much higher than those expected previously, as long as the voltage waveform is nearly sinusoidal. Limits on the amount of permitted rounding of the Riedel (1964) peak were derived from analytical calculations, and numerical frequency-domain and time-domain computations for realistic junctions were carried out, yielding support for these limits. It is shown that previous arguments that zero-crossing steps could never be observed above the value of half the gap voltage are incorrect, due to the neglect of the Riedel peak.

  16. Ac irreversibility line of bismuth-based high temperature superconductors

    SciTech Connect

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  17. Electrothermally driven flows in ac electrowetting.

    PubMed

    García-Sánchez, Pablo; Ramos, Antonio; Mugele, Frieder

    2010-01-01

    Mixing within sessile drops can be enhanced by generating internal flow patterns using ac electrowetting. While for low ac frequencies, the flow patterns have been attributed to oscillations of the drop surface, we provide here the driving mechanism of the hitherto unexplained high-frequency flows. We show that: (1) the electric field in the liquid bulk becomes important, leading to energy dissipation due to Joule heating and a temperature increase of several degrees Celsius, and (2) the fluid flow at these frequencies is generated by electrothermal effect, i.e., gradients in temperature give rise to gradients in conductivity and permittivity, the electric field acting on these inhomogeneities induces an electrical body force that generates the flow. We solved numerically the equations for the electric, temperature and flow fields. The temperature is obtained from a convection-diffusion equation where Joule heating is introduced as a source term. From the solution of the electric field and the temperature, we compute the electrical force that acts as a body force in Stokes equations. Our numerical results agree with previous experimental observations.

  18. Cascading failures in ac electricity grids.

    PubMed

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q≈1.6. Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  19. Cascading failures in ac electricity grids

    NASA Astrophysics Data System (ADS)

    Rohden, Martin; Jung, Daniel; Tamrakar, Samyak; Kettemann, Stefan

    2016-09-01

    Sudden failure of a single transmission element in a power grid can induce a domino effect of cascading failures, which can lead to the isolation of a large number of consumers or even to the failure of the entire grid. Here we present results of the simulation of cascading failures in power grids, using an alternating current (AC) model. We first apply this model to a regular square grid topology. For a random placement of consumers and generators on the grid, the probability to find more than a certain number of unsupplied consumers decays as a power law and obeys a scaling law with respect to system size. Varying the transmitted power threshold above which a transmission line fails does not seem to change the power-law exponent q ≈1.6 . Furthermore, we study the influence of the placement of generators and consumers on the number of affected consumers and demonstrate that large clusters of generators and consumers are especially vulnerable to cascading failures. As a real-world topology, we consider the German high-voltage transmission grid. Applying the dynamic AC model and considering a random placement of consumers, we find that the probability to disconnect more than a certain number of consumers depends strongly on the threshold. For large thresholds the decay is clearly exponential, while for small ones the decay is slow, indicating a power-law decay.

  20. Amorphous force transducers in ac applications

    NASA Astrophysics Data System (ADS)

    Meydan, T.; Overshott, K. J.

    1982-11-01

    The high stress sensitivity and high yield stress properties of amorphous ribbon materials make them suitable for magnetic sensors and tranducer applications. Recently the authors have shown that ac systems eliminate the offset voltage and drift problems of the previously published dc systems. Further investigations proved that these transducers could be operated with a linear characteristic up to 1000 g in multiwrap toroidal configurations. The cause of the transducing behavior of the materials was proved to be variation of permeability with stress. It was previously suggested that the optimum operating frequency of the ac transducers is dependent on the physical configuration of the core. Further investigations have shown that the optimum operating frequency is linearly dependent on the amplitude of the input signal to the transducer. Double-core systems have been previously described in the literature where one core acts as a dummy core and the force is applied to the active core. The disadvantage of the double-core system is that aging of the active core changes the performance of the transducer by as much as 10%. A new system will be presented which uses an accurate analog memory to reduce the ageing effect to a fraction of one percent.

  1. AC impedance analysis of polypyrrole thin films

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Martin, Charles R.

    1987-01-01

    The AC impedance spectra of thin polypyrrole films were obtained at open circuit potentials from -0.4 to 0.4 V vs SCE. Two limiting cases are discussed for which simplified equivalent circuits are applicable. At very positive potentials, the predominantly nonfaradaic AC impedance of polypyrrole is very similar to that observed previously for finite porous metallic films. Modeling of the data with the appropriate equivalent circuit permits effective pore diameter and pore number densities of the oxidized film to be estimated. At potentials from -0.4 to -0.3 V, the polypyrrole film is essentially nonelectronically conductive and diffusion of polymer oxidized sites with their associated counterions can be assumed to be linear from the film/substrate electrode interface. The equivalent circuit for the polypyrrole film at these potentials is that previously described for metal oxide, lithium intercalation thin films. Using this model, counterion diffusion coefficients are determined for both semi-infinite and finite diffusion domains. In addition, the limiting low frequency resistance and capacitance of the polypyrrole thin fims was determined and compared to that obtained previously for thicker films of the polymer. The origin of the observed potential dependence of these low frequency circuit components is discussed.

  2. Transport AC Losses in Striated YBCO Coated Conductors (Postprint)

    DTIC Science & Technology

    2012-02-01

    AFRL-RZ-WP-TP-2012-0124 TRANSPORT AC LOSSES IN STRIATED YBCO COATED CONDUCTORS (POSTPRINT) G.A. Levin and P.N. Barnes Mechanical Energy...TRANSPORT AC LOSSES IN STRIATED YBCO COATED CONDUCTORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...2006. 14. ABSTRACT DC current-voltage characteristics and transport ac losses of striated and non-striated Y1Ba2Cu3O7-δ ( YBCO ) coated conductors

  3. Study of AC electrical conduction mechanisms in an epoxy polymer

    NASA Astrophysics Data System (ADS)

    Jilani, Wissal; Mzabi, Nissaf; Gallot-Lavallée, Olivier; Fourati, Najla; Zerrouki, Chouki; Zerrouki, Rachida; Guermazi, Hajer

    2015-11-01

    The AC conductivity of an epoxy resin was investigated in the frequency range 10^{-1} - 106 Hz at temperatures ranging from -100 to 120 °C. The frequency dependence of σ_{ac} was described by the law: σ_{ac}=ω \\varepsilon0\\varepsilon^''_{HN}+Aωs. The study of temperature variation of the exponent (s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the small polaron tunneling mechanism (SPTM) at low temperature (-100 -60 °C) and the correlated barrier hopping (CHB) model at high temperature (80-120 °C).

  4. Conformational restriction through C alpha i <--> C alpha i cyclization: Ac12c, the largest cycloaliphatic C alpha,alpha- disubstituted glycine known.

    PubMed

    Saviano, M; Iacovino, R; Menchise, V; Benedetti, E; Bonora, G M; Gatos, M; Graci, L; Formaggio, F; Crisma, M; Toniolo, C

    2000-02-01

    Two complete series of N-protected, monodispersed oligopeptide esters to the pentamer level from 1-aminocyclododecane-1-carboxylic acid (Ac(12)c), an alpha-amino acid conformationally constrained through C(alpha)(i) <--> C(alpha)(i) cyclization, and either L-Ala or Aib residues, along with the N-protected Ac(12)c homopeptide alkylamide series from monomer to trimer, have been synthesized by solution methods and fully characterized. The solution-preferred conformations of these peptides have been assessed by Fourier transform ir absorption and (1)H-nmr techniques. Moreover, the molecular structures of one derivative (Z-Ac(12)c-OH) and three peptides [the tripeptide ester Z-L-Ala-Ac(12)c-L-Ala-OMe, the tripeptide alkylamide Z-(Ac(12)c)(3)-NHiPr, and the tetrapeptide ester Z-(Aib)(2)-Ac(12)c-Aib-OtBu (Aib, alpha-aminoisobutyric acid)] have been determined in the crystal state by x-ray diffraction. The results obtained point to the conclusion that beta-bends and 3(10)-helices are preferentially adopted by peptides based on Ac(12)c, the largest cycloaliphatic C-disubstituted glycine known. A comparison with the structural tendencies extracted from published works on peptides from Aib, the prototype of C-disubstituted glycines, and the other extensively studied members of the class of 1-aminocycloalkane-1-carboxylic acids (Ac(n) c, with n = 3-9), is made and the implications for the use of the Ac(12)c residue in the Ac(n) c scan approach of conformationally restricted analogues of bioactive peptides are briefly discussed.

  5. Nanomaterial-assisted PCR based on thermal generation from magnetic nanoparticles under high-frequency AC magnetic fields

    NASA Astrophysics Data System (ADS)

    Higashi, Toshiaki; Minegishi, Hiroaki; Echigo, Akinobu; Nagaoka, Yutaka; Fukuda, Takahiro; Usami, Ron; Maekawa, Toru; Hanajiri, Tatsuro

    2015-08-01

    Here the authors present a nanomaterial-assisted PCR technique based on the use of thermal generation from magnetic nanoparticles (MNPs) under AC magnetic fields. In this approach, MNPs work as internal nano thermal generators to realize PCR thermal cycling. In order to suppress the non-specific absorption of DNA synthetic enzymes, MNPs are decorated with bovine serum albumin (BSA), forming BSA/MNP complexes. Under high-frequency AC magnetic fields, these complexes work as internal nano thermal generators, thereby producing the typical temperature required for PCR thermal cycling, and perform all the reaction processes of PCR amplification in the place of conventional PCR thermal cyclers.

  6. The effect of heat treatment and test parameters on the aqueous stress corrosion cracking of D6AC steel

    NASA Technical Reports Server (NTRS)

    Gilbreath, W. P.; Adamson, M. J.

    1974-01-01

    The crack growth behavior of D6AC steel as a function of stress intensity, stress and corrosion history and test technique, under sustained load in natural seawater, 3.3 percent NaCl solution, distilled water, and high humidity air was investigated. Reported investigations of D6AC were considered with emphasis on thermal treatment, specimen configuration, fracture toughness, crack-growth rates, initiation period, threshold, and the extension of corrosion fatigue data to sustained load conditions. Stress history effects were found to be most important in that they controlled incubation period, initial crack growth rates, and apparent threshold.

  7. Verification of low frequency ac-dc transfer differences of thermal converters using sampling with sine-wave fit

    NASA Astrophysics Data System (ADS)

    Funck, Torsten; Spiegel, Thomas

    2015-09-01

    Thermal converters show significant ac-dc transfer differences at low frequencies due to nonlinearities of the heat transport mechanism and of the thermal-to-electric conversion. It is assumed that the ac-dc transfer differences at low frequencies are proportional to the input power. We have proved this assumption by an independent method with sampling techniques. A novel approach based on sine-wave fitting is used to calculate the RMS value of the sampled signal from the samples. It makes use of the low noise in a metrological environment. Expanded uncertainties in the order of 1.2 μV/V have been achieved.

  8. Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N.

    PubMed

    de Maagd, R A; Bakker, P L; Masson, L; Adang, M J; Sangadala, S; Stiekema, W; Bosch, D

    1999-01-01

    Three types of binding assays were used to study the binding of Bacillus thuringiensis delta-endotoxin Cry1Ac to brush border membrane vesicle (BBMV) membranes and a purified putative receptor of the target insect Manduca sexta. Using hybrid proteins consisting of Cry1Ac and the related Cry1C protein, it was shown that domain III of Cry1Ac is involved in specificity of binding as observed by all three techniques. In ligand blotting experiments using SDS-PAGE-separated BBMV proteins as well as the purified putative receptor aminopeptidase N (APN), the presence of domain III of Cry1Ac in a hybrid with Cry1C was necessary and sufficient for specific binding to APN. Using the surface plasmon resonance (SPR) technique with immobilized APN, it was shown that the presence of domain III of Cry1Ac in a hybrid is sufficient for binding to one of the two previously identified Cry1Ac binding sites, whereas the second site requires the full Cry1Ac toxin for binding. In addition, the role of domain III in the very specific inhibition of Cry1Ac binding by the amino sugar N-acetylgalactosamine (GalNac) was determined. Both in ligand blotting and in surface plasmon resonance experiments, as well as in binding assays using intact BBMVs, it was shown that the presence of domain III of Cry1Ac in a toxin molecule is sufficient for the inhibition of binding by GalNAc. These and other results strongly suggest that domain III of delta-endotoxins play a role in insect specificity through their involvement in specific binding to insect gut epithelial receptors.

  9. Sterile technique

    MedlinePlus

    ... technique. In: Perry AG, Potter PA, eds. Clinical Nursing Skills and Techniques . 8th ed. Philadelphia, PA: Elsevier Mosby; 2014:chap 8. Read More Stress urinary incontinence Urge incontinence Urinary incontinence Patient Instructions ...

  10. Modulation techniques

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1982-01-01

    Bandwidth efficient digital modulation techniques, proposed for use on and/or applied to satellite channels, are reviewed. In a survey of recent works on digital modulation techniques, the performance of several schemes operating in various environments are compared. Topics covered include: (1) quadrature phase shift keying; (2) offset - QPSK and MSK; (3) combined modulation and coding; and (4) spectrally efficient modulation techniques.

  11. Uncovering the Catalytic Direction of Chondroitin AC Exolyase

    PubMed Central

    Yin, Feng-Xin; Wang, Feng-Shan; Sheng, Ju-Zheng

    2016-01-01

    Glycosaminoglycans (GAGs) are polysaccharides that play vital functional roles in numerous biological processes, and compounds belonging to this class have been implicated in a wide variety of diseases. Chondroitin AC lyase (ChnAC) (EC 4.2.2.5) catalyzes the degradation of various GAGs, including chondroitin sulfate and hyaluronic acid, to give the corresponding disaccharides containing an Δ4-unsaturated uronic acid at their non-reducing terminus. ChnAC has been isolated from various bacteria and utilized as an enzymatic tool for study and evaluating the sequencing of GAGs. Despite its substrate specificity and the fact that its crystal structure has been determined to a high resolution, the direction in which ChnAC catalyzes the cleavage of oligosaccharides remain unclear. Herein, we have determined the structural cues of substrate depolymerization and the cleavage direction of ChnAC using model substrates and recombinant ChnAC protein. Several structurally defined oligosaccharides were synthesized using a chemoenzymatic approach and subsequently cleaved using ChnAC. The degradation products resulting from this process were determined by mass spectrometry. The results revealed that ChnAC cleaved the β1,4-glycosidic linkages between glucuronic acid and glucosamine units when these bonds were located on the reducing end of the oligosaccharide. In contrast, the presence of a GlcNAc-α-1,4-GlcA unit at the reducing end of the oligosaccharide prevented ChnAC from cleaving the GalNAc-β1,4-GlcA moiety located in the middle or at the non-reducing end of the chain. These interesting results therefore provide direct proof that ChnAC cleaves oligosaccharide substrates from their reducing end toward their non-reducing end. This conclusion will therefore enhance our collective understanding of the mode of action of ChnAC. PMID:26742844

  12. Magnetic AC susceptibility study of the cobalt segregation process in melt-spun Cu-Co alloys

    NASA Astrophysics Data System (ADS)

    López, A.; Lázaro, F. J.; von Helmolt, R.; García-Palacios, J. L.; Wecker, J.; Cerva, H.

    1998-08-01

    Temperature and frequency-dependent AC susceptibility has been used to characterize Cu 90Co 10 melt-spun ribbons, about 15 μm thick, in order to see to what extent this technique yields information about the segregation of cobalt in this alloy. The interpretation of the results includes, as a prerequisite, a transmission electron microscopy (TEM) characterization and makes use of previous field-dependent magnetization data on the same samples. Due to their different dynamical magnetic properties, the large intergrain precipitates, the small intragrain aggregates and the remaining Cu-Co solid solution, previously detected in these alloys, are independently observed by AC susceptibility as ferromagnetic, superparamagnetic and spin-glass species. Contrary to other, mostly local, microstructural characterization techniques of use with nanostructured materials, the AC susceptibility yields information about the whole sample. Furthermore, unlike the measurement of the temperature-dependent magnetization which is the magnetic technique mostly used until now, the results are basically independent of the thermal history. The correlation between microstructure and magnetic properties is illustrated by a scheme which includes magnetization, AC susceptibility and TEM data.

  13. Head-to-Head Comparison of Transcranial Random Noise Stimulation, Transcranial AC Stimulation, and Transcranial DC Stimulation for Tinnitus

    PubMed Central

    Vanneste, Sven; Fregni, Felipe; De Ridder, Dirk

    2013-01-01

    Tinnitus is the perception of a sound in the absence of an external sound stimulus. This phantom sound has been related to plastic changes and hyperactivity in the auditory cortex. Different neuromodulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS) have been used in an attempt to modify local and distant neuroplasticity as to reduce tinnitus symptoms. Recently, two techniques of pulsed electrical stimulation using weak electrical currents – transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) – have also shown significant neuromodulatory effects. In the present study we conducted the first head-to-head comparison of three different transcranial electrical stimulation (tES) techniques, namely tDCS, tACS, and tRNS in 111 tinnitus patients by placing the electrodes overlying the auditory cortex bilaterally. The results demonstrated that tRNS induced the larger transient suppressive effect on the tinnitus loudness and the tinnitus related distress as compared to tDCS and tACS. Both tDCS and tACS induced small and non-significant effects on tinnitus symptoms, supporting the superior effects of tRNS as a method for tinnitus suppression. PMID:24391599

  14. AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene.

    PubMed

    McCarthy, Christina B; Theilmann, David A

    2008-05-25

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac143 (odv-e18) is a late gene that encodes for a predicted 9.6 kDa structural protein that locates to the occlusion derived viral envelope and viral induced intranuclear microvesicles [Braunagel, S.C., He, H., Ramamurthy, P., and Summers, M.D. (1996). Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222, 100-114.]. In this study we demonstrate that ac143 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To examine the role of ac143 in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac143 knockout (KO) virus (AcBAC(ac142)(REP-ac143KO)). Fluorescence and light microscopy showed that infection by AcBAC(ac142)(REP-ac143KO) is limited to a single cell and titration assays confirmed that AcBAC(ac142)(REP-ac143KO) was unable to produce budded virus (BV). Progression to very late phases of the viral infection was evidenced by the development of occlusion bodies in the nuclei of transfected cells. This correlated with the fact that viral DNA replication was unaffected in AcBAC(ac142)(REP-ac143KO) transfected cells. The entire ac143 promoter, which includes three late promoter motifs, is contained within the ac142 open reading frame. Different deletion mutants of this region showed that the integrity of the ac142-ac143 core gene cluster was required for the bacmids to display wild-type patterns of viral replication, BV production and RNA transcription.

  15. AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene

    SciTech Connect

    McCarthy, Christina B.; Theilmann, David A.

    2008-05-25

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac143 (odv-e18) is a late gene that encodes for a predicted 9.6 kDa structural protein that locates to the occlusion derived viral envelope and viral induced intranuclear microvesicles [Braunagel, S.C., He, H., Ramamurthy, P., and Summers, M.D. (1996). Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222, 100-114.]. In this study we demonstrate that ac143 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To examine the role of ac143 in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac143 knockout (KO) virus (AcBAC{sup ac142REP-ac143KO}). Fluorescence and light microscopy showed that infection by AcBAC{sup ac142REP-ac143KO} is limited to a single cell and titration assays confirmed that AcBAC{sup ac142REP-ac143KO} was unable to produce budded virus (BV). Progression to very late phases of the viral infection was evidenced by the development of occlusion bodies in the nuclei of transfected cells. This correlated with the fact that viral DNA replication was unaffected in AcBAC{sup ac142REP-ac143KO} transfected cells. The entire ac143 promoter, which includes three late promoter motifs, is contained within the ac142 open reading frame. Different deletion mutants of this region showed that the integrity of the ac142-ac143 core gene cluster was required for the bacmids to display wild-type patterns of viral replication, BV production and RNA transcription.

  16. Dismantling techniques

    SciTech Connect

    Wiese, E.

    1998-03-13

    Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

  17. Laser Raman and ac impedance spectroscopic studies of PVA: NH 4NO 3 polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Hema, M.; Selvasekarapandian, S.; Hirankumar, G.; Sakunthala, A.; Arunkumar, D.; Nithya, H.

    2010-01-01

    Ion conducting polymer electrolyte PVA:NH 4NO 3 has been prepared by solution casting technique and characterized using XRD, Raman and ac impedance spectroscopic analyses. The amorphous nature of the polymer films has been confirmed by XRD and Raman spectroscopy. An insight into the deconvoluted Raman peaks of υ1 vibration of NO 3- anion for the polymer electrolyte reveals the dominancy of ion aggregates at higher NH 4NO 3 concentration. From the ac impedance studies, the highest ion conductivity at 303 K has been found to be 7.5 × 10 -3 S cm -1 for 80PVA:20NH 4NO 3. The conductivity of the polymer electrolytes has been found to depend on the degree of dissociation of the salt in the host polymer matrix. The combination of the above-mentioned analyses has proven worth while and in fact necessary in order to achieve better understanding of these complex systems.

  18. Low frequency noise of anisotropic magnetoresistors in DC and AC-excited metal detectors

    NASA Astrophysics Data System (ADS)

    Vyhnanek, J.; Janosek, M.; Ripka, P.

    2013-06-01

    Magnetoresistors can replace induction sensors in applications like non-destructive testing and metal detection, where high spatial resolution or low frequency response is required. Using an AC excitation field the magnetic response of eddy currents is detected. Although giant magnetoresistive (GMR) sensors have higher measuring range and sensitivity compared to anisotropic magnetoresistors (AMR), they show also higher hysteresis and noise especially at low frequencies. Therefore AMR sensors are chosen to be evaluated in low noise measurements with combined processing of DC and AC excitation field with respect to the arrangement of processing electronics. Circuit with a commercial AMR sensor HMC1001 and AD8429 preamplifier using flipping technique exhibited 1-Hz noise as low as 125 pT/. Without flipping, the 1-Hz noise increased to 246 pT/.

  19. Demonstration of an ac Josephson junction laser

    NASA Astrophysics Data System (ADS)

    Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R. N.; Akhmerov, A. R.; Kouwenhoven, L. P.

    2017-03-01

    Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

  20. Public Understanding of Chemistry, ACS National Meeting

    NASA Astrophysics Data System (ADS)

    Gettys, Nancy S.

    2000-06-01

    Three public events for area school-aged children were held on Saturday, March 25, 2000, prior to the opening of the 219th National Meeting of the American Chemical Society. All took place at the Moscone Convention Center in downtown San Francisco. The photographs tell the story: the programs were successful and a good time was had by all. Readers may be encouraged to try these ideas in their own area. If so, the local organizers of Carver Kidvention have additional information at www.scvacs.org/Carver/index.html or contact Howard Peters (Santa Clara Valley Section, ACS), peters4pa@aol.com. Additional photos of the Kidvention event may also be seen as supplemental material.

  1. Dielectric relaxation in AC powder electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah

    2017-01-01

    The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.

  2. Advanced ac powertrain for electric vehicles

    SciTech Connect

    Slicker, J.M.; Kalns, L.

    1985-01-01

    The design of an ac propulsion system for an electric vehicle includes a three-phase induction motor, transistorized PWM inverter/battery charger, microprocessor-based controller, and two-speed automatic transaxle. This system was built and installed in a Mercury Lynx test bed vehicle as part of a Department of Energy propulsion system development program. An integral part of the inverter is a 4-kw battery charger which utilizes one of the bridge transistors. The overall inverter strategy for this configuration is discussed. The function of the microprocessor-based controller is described. Typical test results of the total vehicle and each of its major components are given, including system efficiencies and test track performance results.

  3. Fuzzy efficiency optimization of AC induction motors

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff

    1993-01-01

    This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.

  4. Boston ACS Meeting, Chemical Education Program

    NASA Astrophysics Data System (ADS)

    Wildeman, Thomas R.; Torre, Frank; Smist, Julianne

    1998-11-01

    For those of us who had not been to Boston since the last ACS meeting it was surprising to see how vibrant the city was. The shops, restaurants, parks, and other attractions throughout the large inner city area made the meeting most enjoyable. Again, our banquet cruise of the harbor was blessed with excellent weather. The ship went out far enough so that we landlocked people could feel the waves. The entire program had a celebratory tone-two sessions marking the 70th birthday of Glenn Crosby, a memorial symposium celebrating the teaching innovations of Hubert Alyea, and the 75th anniversary of the Journal of Chemical Education (>p 1360). Content issues in upper division chemistry courses as well as general chemistry took up a large portion of the program. Some of the symposia are discussed in this article.

  5. Cabling of Thin MgB2 Strands for High-Current Conductors with Reduced AC Losses

    NASA Astrophysics Data System (ADS)

    Schlachter, S. I.; Braun, U.; Drechsler, A.; Goldacker, W.; Holúbek, T.; Kling, A.; Schmidt, C.

    2010-04-01

    Since the discovery of superconductivity in MgB2 many efforts have been undertaken to improve the current carrying capacity of mono- or multifilament MgB2 conductors. However, even though MgB2 conductors can be produced in geometries which easily allow twisting or cabling, the reduction of ac losses has often played a minor role, even though many technical superconductor applications like transformers, rotating machinery, and ramped magnets require conductors with low AC losses. In this paper we present short cables together with measured AC-losses applying a simple cabling technique. Coupling losses of the cables with strands having a single component stainless steel (SS) sheath are negligible. The lower apparent measured losses of cables with Nb/Cu/SS sheaths may be explained by magnetic shielding of the Nb layer and by a systematic problem of the magnetization method for samples containing diamagnetic and ferromagnetic components.

  6. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2012-10-01

    This is a continuation of Program 12386 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks were newly added in Cycle 19 to study CTE tails in different subarray readout modes.

  7. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Ogaz, Sara

    2013-10-01

    This is a continuation of Program 13156 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks were added in Cycle 19 to study CTE tails in different subarray readout modes.

  8. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Lian Lim, Pey

    2010-09-01

    INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.In Cycle 18, this monitoring program has been reduced {compared to 11881} considering that there is also an external CTE monitoring program. High Resolution Camera {HRC} is not available for observations. First Pixel Response {FPR} exposures are removed because they only provide serial CTE for WFC, which is not that useful. Pseudo-bias exposures are removed because they are not used. Signal levels 300, 700, 1000, 30000, and 45000.electrons are removed to reduce total orbits. Number of exposures per setting are reduced to 1 only. Amps BC are removed since amp dependence is not an issue for EPER.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains 9 dark frames for each of the following exposure times: 33 s, 100 s, and 339 s. These short darks and the 1000 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness.This is a continuation of Program 12327 and is to be executed once a cycle.

  9. ACS Internal CTE Monitor and Short Darks

    NASA Astrophysics Data System (ADS)

    Lian Lim, Pey

    2011-10-01

    This is a continuation of Program 12386 and is to be executed once a cycle for internal CTE and short darks, respectively.INTERNAL CTE MONITOR:The charge transfer efficiency {CTE} of the ACS CCD detectors will decline as damage due to on-orbit radiation exposure accumulates. This degradation will be monitored once a cycle to determine the useful lifetime of the CCDs. All the data for this program is acquired using internal targets {lamps} only, so all of the exposures should be taken during Earth occultation time {but not during SAA passages}. This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing {program 8948}, so that results from each epoch can be directly compared. Extended Pixel Edge Response {EPER} data will be obtained over a range of signal levels for the Wide Field Channel {WFC}. The signal levels are 125, 500, 1620, 5000, 10000, and 60000 electrons at gain 2.Since Cycle 18, this monitoring program was reduced {compared to 11881} considering that there is also an external CTE monitoring program.SHORT DARKS:To improve the pixel-based CTE model at signals below 10 DN, short dark frames are needed to obtain a statistically useful sample of clean, warm pixel trails. This program obtains a set of dark frames for each of the following exposure times: 66 s {60 s for some subarrays} and 339 s. These short darks and the 1040 s darks obtained from the CCD Daily Monitor will sample warm and hot pixels over logarithmically increasing brightness. Subarray short darks are newly added in Cycle 19 to study CTE tails in different subarray readout modes.

  10. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    NASA Technical Reports Server (NTRS)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  11. Correlation between AC and DC transport properties of Mn substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2016-12-01

    The CoFe2-xMnxO4 compound is prepared by following the sol gel technique. The structural analysis through XRD and Rietveld has been confirmed for the single cubic phase having F d 3 ¯ m space group for CoFe2-xMnxO4 and also verified it through Raman spectroscopy measurements. The tetrahedral site observed to be red shifted with increase in Mn concentration in cobalt ferrite. All the XRD patterns have been analyzed by employing the Rietveld refinement technique. The particle size was found to be in the range of 30-40 nm. The electrical properties of polycrystalline CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.2, spinel ferrite was investigated by impedance spectroscopy. The influence of doping, frequency and temperature on the electrical transport properties of the CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.20 were investigated. The magnitude of Z' and Z″ decreases with increase in temperature. Only one semicircle is observed in each Cole Cole plot which reveals that ac conductivity is dominated by grains. The grain resistance and grain boundary resistance both were found to decrease as a function of temperature. Temperature variation of DC electrical conductivity follows the Arrhenius relationship. A detailed analysis of electrical parameters provides assistance in connecting information regarding the conduction mechanism as well as determination of both dielectric and magnetic transition temperatures in the substituted cobalt ferrite. Detailed analysis of ac impedance and DC resistivity measurement reveals that, the magnetic ordering temperature in the Mn substituted cobalt ferrite does not respond to the frequency of ac electrical signal; however, it responds to the DC resistivity. The correlation between ac impedance and DC resistivity has been established.

  12. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  13. 24 CFR Appendixes A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false A Appendixes A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendixes A-C to Subtitle A...

  14. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  15. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  16. 24 CFR Appendices A-C to Subtitle A - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false A Appendices A-C to Subtitle A Housing and Urban Development Office of the Secretary, Department of Housing and Urban Development Appendices A-C to Subtitle A...

  17. 21 CFR 880.5500 - AC-powered patient lift.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or...

  18. Undergraduate Chemistry Education: Report of an ACS Presidential Symposium

    ERIC Educational Resources Information Center

    Polik, William F.

    2006-01-01

    The American Chemical Society (ACS) Presidential Symposium, Envisioning Undergraduate Chemistry Education in 2015 was organized by the ACS Committee on Professional Training (CPT), in response to the challenge to envision the chemistry enterprise in 2015. The need for more diverse role models at all levels is emphasized, including high school…

  19. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRETREATMENT REGULATIONS FOR EXISTING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  20. 34 CFR Appendices A-C to Part 682 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 4 2014-07-01 2014-07-01 false A Appendices A-C to Part 682 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION (CONTINUED) FEDERAL FAMILY EDUCATION LOAN (FFEL) PROGRAM Appendices A-C to Part 682...

  1. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    ERIC Educational Resources Information Center

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  2. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  3. ACS Committee on Professional Training 1986 Annual Report.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1987

    1987-01-01

    Presents data on the number of bachelor's, master's, and Ph.D. degrees in chemistry from institutions whose programs are approved by the American Chemical Society (ACS). Reviews the programs and activities endorsed by the ACS Board of Directors in April, 1986. (ML)

  4. 40 CFR Appendixes A-C to Part 403 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true A Appendixes A-C to Part 403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW SOURCES OF POLLUTION Appendixes A-C to Part 403...

  5. Solid-state ac-to-dc converter

    NASA Technical Reports Server (NTRS)

    Monroe, C. M.

    1970-01-01

    Converter uses solid-state ac-to-dc rectification circuitry, filter circuitry, a tuned transformer, ac chopper circuitry, and an automatic current-control network. It has a dc power source which operates from 5 to 100 percent load at a 72 to 94 input to output efficiency.

  6. Electrostatic coalescence system with independent AC and DC hydrophilic electrodes

    DOEpatents

    Hovarongkura, A. David; Henry, Jr., Joseph D.

    1981-01-01

    An improved electrostatic coalescence system is provided in which independent AC and DC hydrophilic electrodes are employed to provide more complete dehydration of an oil emulsion. The AC field is produced between an AC electrode array and the water-oil interface wherein the AC electrode array is positioned parallel to the interface which acts as a grounded electrode. The emulsion is introduced into the AC field in an evenly distributed manner at the interface. The AC field promotes drop-drop and drop-interface coalescence of the water phase in the entering emulsion. The continuous oil phase passes upward through the perforated AC electrode array and enters a strong DC field produced between closely spaced DC electrodes in which small dispersed droplets of water entrained in the continuous phase are removed primarily by collection at hydrophilic DC electrodes. Large droplets of water collected by the electrodes migrate downward through the AC electrode array to the interface. All phase separation mechanisms are utilized to accomplish more complete phase separation.

  7. Precursors of Short GRBs Registered by SPI-ACS/INTEGRAL

    NASA Astrophysics Data System (ADS)

    Minaev, P.; Pozanenko, A.

    2016-10-01

    We have searched for precursors in light curves of short gamma-ray bursts registered by SPI-ACS/INTEGRAL in 2002-2014. The portion of short bursts with precursor activity will be less than 0.4% from all short bursts registered by SPI-ACS.

  8. Distribution of Unlinked Receptor Sites for Transposed Ac Elements from the Bz-M2(ac) Allele in Maize

    PubMed Central

    Dooner, H. K.; Belachew, A.; Burgess, D.; Harding, S.; Ralston, M.; Ralston, E.

    1994-01-01

    We have shown before that the Ac element from the maize bz-m2(Ac) allele, located in the short arm of chromosome 9 (9S), transposes preferentially to sites that are linked to the bz donor locus. Yet, about half of the Ac transpositions recovered from bz-m2(Ac) are in receptor sites not linked to the donor locus. In this study, we have analyzed the distribution of those unlinked receptor sites. Thirty-seven transposed Ac (trAc) elements that recombined independently of the bz locus were mapped using a set of wx reciprocal translocations. We found that the distribution of unlinked receptor sites for trAs was not random. Ten trAcs mapped to 9L, i.e., Ac had transposed to sites physically, if not genetically, linked to the donor site. Among chromosomes other than 9, the Ac element of bz-m2(Ac) appeared to have transposed preferentially to certain chromosomes, such as 5 and 7, but infrequently to others, such as 1, the longest chromosome in the maize genome. The seven trAc elements in chromosome 5 were mapped relative to markers in 5S and 5L and localized to both arms of 5. We also investigated the transposition of Ac to the homolog of the donor chromosome. We found that Ac rarely transposes from bz-m2(Ac) to the homologous chromosome 9. The clustering of Ac receptor sites around the donor locus has been taken to mean that a physical association between the donor site and nearby receptor sites occurs during transposition. The preferential occurrence of 9L among chromosomes harboring unlinked receptor sites would be expected according to this model, since sites in 9L would tend to be physically closer to 9S than sites in other chromosomes. The nonrandom pattern seen among the remaining chromosomes could reflect an underlying nuclear architecture, i.e., an ordering of the chromosomes in the interphase nucleus, as suggested from previous cytological observations. PMID:8138163

  9. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane

    PubMed Central

    Zhou, Dinggang; Guo, Jinlong; Xu, Liping; Gao, Shiwu; Lin, Qingliang; Wu, Qibin; Wu, Luguang; Que, Youxiong

    2014-01-01

    To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane. PMID:24810230

  10. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    PubMed

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed.

  11. Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems

    NASA Astrophysics Data System (ADS)

    Abbas, Qamar; Babuchowska, Paulina; Frąckowiak, Elżbieta; Béguin, François

    2016-09-01

    A high energy hybrid AC/AC electrochemical capacitor has been realized in aqueous Li2SO4+KI electrolyte mixture. Owing to the redox processes associated with the 2I-/I2 system, the positive electrode operates in narrow potential range and displays high capacity. During prolonged potentiostatic floating at 1.6 V, the hybrid cell demonstrates remarkably stable capacitance and resistance. Analyses by temperature programmed desorption after floating at 1.6 V proved that oxidation of the positive AC electrode is prevented by the use of Li2SO4+KI, which enables the maximum potential of this electrode to be shifted below the water oxidation potential. When charged at 0.2 A g-1 up to U = 1.6 V, the hybrid cell displays a high capacitance of 75 F g-1 (300 F g-1 per mass of one electrode) compared to 47 F g-1 (188 F g-1 per mass of one electrode) for a symmetric cell in Li2SO4. At 0.2 A g-1 up to 1.6 V, the hybrid capacitor in Li2SO4+KI displays an energy density of 26 Wh kg-1 which approaches the energy density of 30.9 Wh kg-1 measured when the same carbon is implemented in a capacitor using TEABF4/ACN electrolyte and charged up to 2.5 V.

  12. HVDC-AC system interaction from AC harmonics. Volume 1. Harmonic impedance calculations. Final report

    SciTech Connect

    Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R

    1982-09-01

    Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.

  13. An Ac transposon system based on maize chromosome 4S for isolating long-distance-transposed Ac tags in the maize genome.

    PubMed

    Wang, Fei; Li, Zhaoying; Fan, Jun; Li, Pengfei; Hu, Wei; Wang, Gang; Xu, Zhengkai; Song, Rentao

    2010-12-01

    Transposon tagging is an important tool for gene isolation and functional studies. In maize, several transposon-tagging systems have been developed, mostly using Activator/Dissociation (Ac/Ds) and Mutator systems. Here, we establish another Ac-based transposon system with the donor Ac tightly linked with sugary1 (su1) on maize chromosome 4S. Newly transposed Ac (tr-Acs) were detected based on a negative dosage effect, and long-distance-transposed Ac events were identified and isolated from the donor Ac by a simple backcross scheme. In this study, we identified 208 independent long-distance-transposed Ac lines. Thirty-one flanking sequences of these tr-Acs were isolated and localized in the maize genome. As found in previous studies, the tr-Acs preferentially inserted into genic sequences. The distribution of tr-Acs is not random. In our study, the tr-Acs preferentially transposed into chromosomes 1, 2, 9 and 10. We discuss the preferential distribution of tr-Acs from Ac systems. Our system is complementary to two other Ac-based regional-mutagenesis systems in maize, and the combined use of these systems will achieve an even and high-density distribution of Ac elements throughout the maize genome for functional-genomics studies.

  14. AC-electric field dependent electroformation of giant lipid vesicles.

    PubMed

    Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi

    2010-08-01

    Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces.

  15. The A to Z of A/C plasmids.

    PubMed

    Harmer, Christopher J; Hall, Ruth M

    2015-07-01

    Plasmids belonging to incompatibility groups A and C (now A/C) were among the earliest to be associated with antibiotic resistance in Gram-negative bacteria. A/C plasmids are large, conjugative plasmids with a broad host range. The prevalence of A/C plasmids in collections of clinical isolates has revealed their importance in the dissemination of extended-spectrum β-lactamases and carbapenemases. They also mobilize SGI1-type resistance islands. Revived interest in the family has yielded many complete A/C plasmid sequences, revealing that RA1, designated A/C1, is different from the remainder, designated A/C2. There are two distinct A/C2 lineages. Backbones of 128-130 kb include over 120 genes or ORFs encoding proteins of at least 100 amino acids, but very few have been characterized. Genes potentially required for replication, stability and transfer have been identified, but only the replication system of RA1 and the regulation of transfer have been studied. There is enormous variety in the antibiotic resistance genes carried by A/C2 plasmids but they are usually clustered in larger regions at various locations in the backbone. The ARI-A and ARI-B resistance islands are always at a specific location but have variable content. ARI-A is only found in type 1 A/C2 plasmids, which disseminate blaCMY-2 and blaNDM-1 genes, whereas ARI-B, carrying the sul2 gene, is found in both type 1 and type 2. This review summarizes current knowledge of A/C plasmids, and highlights areas of research to be considered in the future.

  16. Ac-Induced Instability at the Xanthophyllic Locus of Tomato

    PubMed Central

    Peterson, P. W.; Yoder, J. I.

    1993-01-01

    To detect genomic instability caused by Ac elements in transgenic tomatoes, we used the incompletely dominant mutation Xanthophyllic-1 (Xa-1) as a whole plant marker gene. Xa-1 is located on chromosome 10 and in the heterozygote state causes leaves to be yellow. Transgenic Ac-containing tomato plants which differed in the location and number of their Ac elements were crossed to Xa-1 tester lines and F(1) progeny were scored for aberrant somatic sectoring. Of 800 test and control F(1) progeny screened, only four plants had aberrantly high levels of somatic sectors. Three of the plants had twin sectors consisting of green tissue adjacent to white tissue, and the other had twin sectors comprised of green tissue adjacent to tissue more yellow than the heterozygote background. Sectoring was inherited and the two sectoring phenotypes mapped to opposite homologs of chromosome 10; the green/yellow sectoring phenotype mapped in coupling to Xa-1 while the green/white sectoring phenotype mapped in repulsion. The two sectoring phenotypes cosegregated with different single, non-rearranged Acs, and loss of these Acs from the genome corresponded to the loss of sectoring. Sectoring was still observed after transposition of the Ac to a new site which indicated that sectoring was not limited to a single locus. In both sectored lines, meiotic recombination of the sectoring Ac to the opposite homolog caused the phenotype to switch between the green/yellow and the green/white phenotypes. Thus the two different sectoring phenotypes arose from the same Ac-induced mechanism; the phenotype depended on which chromosome 10 homolog the Ac was on. We believe that the twin sectors resulted from chromosome breakage mediated by a single intact, transposition-competent Ac element. PMID:8394266

  17. ac susceptibility study of a magnetite magnetic fluid

    NASA Astrophysics Data System (ADS)

    Ayala-Valenzuela, O. E.; Matutes-Aquino, J. A.; Galindo, J. T. Elizalde; Botez, C. E.

    2009-04-01

    Magnetite nanometric powder was synthesized from metal salts using a coprecipitation technique. The powders were used to produce magnetic fluid via a peptization method, with hydrocarbon Isopar M as liquid carrier and oleic acid as surfactant. The complex magnetic susceptibility χ =χ'+iχ″ was measured as a function of temperature T in steps of 2.5 K from 3 to 298 K for frequencies ranging from f =10 to 10 000 Hz. The magnetic fluid real and imaginary components of the ac susceptibility show a prominent maximum at temperatures that increase with the measuring frequency, which is attributed to a spin-glass-like behavior. The peak temperature Tp1 of χ″ depends on f following the Vogel-Fulcher law f =f0 exp[E /kB(Tp1-T0)], where f0 and E are positive constants and T0 is a parameter related to particle interactions. There is another kind of peak temperature, Tp2, in the loss factor tan δ =χ″/χ' which is related to a magnetic aftereffect. The peak temperature Tp2 is far less than Tp1 and shows an Arrhenius-type dependence on f.

  18. Fabrication of dielectrophoretic microfluidic chips using a facile screen-printing technique for microparticle trapping

    NASA Astrophysics Data System (ADS)

    Wee, Wei Hong; Li, Zedong; Hu, Jie; Adib Kadri, Nahrizul; Xu, Feng; Li, Fei; Pingguan-Murphy, Belinda

    2015-10-01

    Trapping of microparticles finds wide applications in numerous fields. Microfluidic chips based on a dielectrophoresis (DEP) technique hold several advantages for trapping microparticles, such as fast result processing, a small amount of sample required, high spatial resolution, and high accuracy of target selection. There is an unmet need to develop DEP microfluidic chips on different substrates for different applications in a low cost, facile, and rapid way. This study develops a new facile method based on a screen-printing technique for fabrication of electrodes of DEP chips on three types of substrates (i.e. polymethyl-methacrylate (PMMA), poly(ethylene terephthalate) and A4 paper). The fabricated PMMA-based DEP microfluidic chip was selected as an example and successfully used to trap and align polystyrene microparticles in a suspension and cardiac fibroblasts in a cell culture solution. The developed electrode fabrication method is compatible with different kinds of DEP substrates, which could expand the future application field of DEP microfluidic chips, including new forms of point-of care diagnostics and trapping circulating tumor cells.

  19. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    PubMed Central

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-01-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture. PMID:27609546

  20. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-09-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.

  1. Phylogenetic ecology of the freshwater Actinobacteria acI lineage.

    PubMed

    Newton, Ryan J; Jones, Stuart E; Helmus, Matthew R; McMahon, Katherine D

    2007-11-01

    The acI lineage of freshwater Actinobacteria is a cosmopolitan and often numerically dominant member of lake bacterial communities. We conducted a survey of acI 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions from 18 Wisconsin lakes and used standard nonphylogenetic and phylogenetic statistical approaches to investigate the factors that determine acI community composition at the local scale (within lakes) and at the regional scale (across lakes). Phylogenetic reconstruction of 434 acI 16S rRNA genes revealed a well-defined and highly resolved phylogeny. Eleven previously unrecognized monophyletic clades, each with > or =97.9% within-clade 16S rRNA gene sequence identity, were identified. Clade community similarity positively correlated with lake environmental similarity but not with geographic distance, implying that the lakes represent a single biotic region containing environmental filters for communities that have similar compositions. Phylogenetically disparate clades within the acI lineage were most abundant at the regional scale, and local communities were comprised of more closely related clades. Lake pH was a strong predictor of the community composition, but only when lakes with a pH below 6 were included in the data set. In the remaining lakes (pH above 6) biogeographic patterns in the landscape were instead a predictor of the observed acI community structure. The nonrandom distribution of the newly defined acI clades suggests potential ecophysiological differences between the clades, with acI clades AI, BII, and BIII preferring acidic lakes and acI clades AII, AVI, and BI preferring more alkaline lakes.

  2. Trapping polar molecules in an ac trap

    SciTech Connect

    Bethlem, Hendrick L.; Veldhoven, Jacqueline van; Schnell, Melanie; Meijer, Gerard

    2006-12-15

    Polar molecules in high-field seeking states cannot be trapped in static traps as Maxwell's equations do not allow a maximum of the electric field in free space. It is possible to generate an electric field that has a saddle point by superposing an inhomogeneous electric field to an homogeneous electric field. In such a field, molecules are focused along one direction, while being defocused along the other. By reversing the direction of the inhomogeneous electric field the focusing and defocusing directions are reversed. When the fields are being switched back and forth at the appropriate rate, this leads to a net focusing force in all directions. We describe possible electrode geometries for creating the desired fields and discuss their merits. Trapping of {sup 15}ND{sub 3} ammonia molecules in a cylindrically symmetric ac trap is demonstrated. We present measurements of the spatial distribution of the trapped cloud as a function of the settings of the trap and compare these to both a simple model assuming a linear force and to full three-dimensional simulations of the experiment. With the optimal settings, molecules within a phase-space volume of 270 mm{sup 3} (m/s){sup 3} remain trapped. This corresponds to a trap depth of about 5 mK and a trap volume of about 20 mm{sup 3}.

  3. Installation considerations for IGBT AC drives

    SciTech Connect

    Skibinski, G.L.

    1997-06-01

    In the last four years, Adjustable Speed ac Drive (ASD) manufacturers have migrated from Bipolar Junction Transistor (BJT) semiconductors to Insulated Gate Bipolar Transistors (IGBTs) as the preferred Output switching device. The advantage of IGBTs over BJTs is that device rise and fall time switching capability is 5 - 10 times faster, resulting in lower device switching loss and a more efficient drive. However, for a similar motor cable length as the BJT drive, the faster output voltage risetime of the IGBT drive may increase the dielectric voltage stress on the motor and cable due to a phenomenon called reflected wave. Faster output dv/dt transitions of IGBT drives also increase the possibility for phenomenon such as increased Common Mode (CM) electrical noise, Electromagnetic Interference (EMI) problems and increased capacitive cable charging current problems. Also, recent experience suggests any Pulse Width Modulated (PWM) drive with a steep fronted output voltage wave form may increase motor shaft voltage and lead to a bearing current phenomenon known as fluting. This paper provides a basic understanding of these issues, as well as solutions, to insure a successful drive system installation.

  4. Comprehensive review of high power factor ac-dc boost converters for PFC applications

    NASA Astrophysics Data System (ADS)

    De Castro Pereira, Dênis; Da Silva, Márcio Renato; Mateus Silva, Elder; Lessa Tofoli, Fernando

    2015-08-01

    High power factor rectifiers have been consolidated as an effective solution to improve power quality indices in terms of input power factor correction, reduction in the total harmonic distortion of the input current and also regulated dc voltages. Within this context, this subject has motivated the introduction of numerous converter topologies based on classic dc-dc structures associated with novel control techniques, thus leading to the manufacturing of dedicated integrated circuits that allow high input power factor by adding a front-end stage to switch-mode converters. In particular, boost converters in continuous current mode (CCM) are widely employed since they allow obtaining minimised electromagnetic interference levels. This work is concerned with a literature review involving relevant ac-dc single-phase boost-based topologies with high input power factor. The evolution of aspects regarding the conventional boost converter is shown in terms of improved characteristics inherent to other ac-dc boost converters. Additionally, the work intends to be a fast and concise reference to single-phase ac-dc boost converters operating in CCM for engineers, researchers and experts in the field of power electronics by properly analysing and comparing the aforementioned rectifiers.

  5. Combined AC-STEM and FIB-SEM Characterization of Shale

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Heath, J. E.; Kotula, P.; Yoon, H.; Gardner, P.

    2013-12-01

    We examine shale samples with state-of-the-art aberration corrected scanning transmission electron microscopy (AC-STEM) and focused ion beam-scanning electron (FIB-SEM) microscopy. Three-dimensional reconstruction of pore space incorporates electron tomography using the AC-TEM and serial sectioning by FIB-SEM. Chemical analysis by X-ray energy dispersive microscopy reveals composition of pore-lining phases at ~ 1 nm resolution. Our methods reveal the left tail of the pore size distribution that FIB-SEM techniques typically do not capture (pore sizes < 7 nm). Water in pores of this size will deviate from those of bulk water, which can influence non-Darcy flow and mechanical response. The impact of these small pores on fluid and coupled tracer transport is examined by computation fluid dynamics using 3D pore reconstructions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications.

  7. Optimal design of AC filter circuits in HVDC converter stations

    SciTech Connect

    Saied, M.M.; Khader, S.A.

    1995-12-31

    This paper investigates the reactive power as well as the harmonic conditions on both the valve and the AC-network sides of a HVDC converter station. The effect of the AC filter circuits is accurately modeled. The program is then augmented by adding an optimization routine. It can identify the optimal filter configuration, yielding the minimum current distortion factor at the AC network terminals for a prespecified fundamental reactive power to be provided by the filter. Several parameter studies were also conducted to illustrate the effect of accidental or intentional deletion of one of the filter branches.

  8. ACS (Alma Common Software) operating a set of robotic telescopes

    NASA Astrophysics Data System (ADS)

    Westhues, C.; Ramolla, M.; Lemke, R.; Haas, M.; Drass, H.; Chini, R.

    2014-07-01

    We use the ALMA Common Software (ACS) to establish a unified middleware for robotic observations with the 40cm Optical, 80cm Infrared and 1.5m Hexapod telescopes located at OCA (Observatorio Cerro Armazones) and the ESO 1-m located at La Silla. ACS permits to hide from the observer the technical specifications, like mount-type or camera-model. Furthermore ACS provides a uniform interface to the different telescopes, allowing us to run the same planning program for each telescope. Observations are carried out for long-term monitoring campaigns to study the variability of stars and AGN. We present here the specific implementation to the different telescopes.

  9. Cyclotron production of Ac-225 for targeted alpha therapy.

    PubMed

    Apostolidis, C; Molinet, R; McGinley, J; Abbas, K; Möllenbeck, J; Morgenstern, A

    2005-03-01

    The feasibility of producing Ac-225 by proton irradiation of Ra-226 in a cyclotron through the reaction Ra-226(p,2n)Ac-225 has been experimentally demonstrated for the first time. Proton energies were varied from 8.8 to 24.8 MeV and cross-sections were determined by radiochemical analysis of reaction yields. Maximum yields were reached at incident proton energies of 16.8 MeV. Radiochemical separation of Ac-225 from the irradiated target yielded a product suitable for targeted alpha therapy of cancer.

  10. AC electric field induced dipole-based on-chip 3D cell rotation.

    PubMed

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  11. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  12. Differential Roles of AC2 and AC4 of Cassava Geminiviruses in Mediating Synergism and Suppression of Posttranscriptional Gene Silencing

    PubMed Central

    Vanitharani, Ramachandran; Chellappan, Padmanabhan; Pita, Justin S.; Fauquet, Claude M.

    2004-01-01

    Posttranscriptional gene silencing (PTGS) in plants is a natural defense mechanism against virus infection. In mixed infections, virus synergism is proposed to result from suppression of the host defense mechanism by the viruses. Synergistic severe mosaic disease caused by simultaneous infection with isolates of the Cameroon strain of African cassava mosaic virus (ACMV-[CM]) and East African cassava mosaic Cameroon virus (EACMCV) in cassava and tobacco is characterized by a dramatic increase in symptom severity and a severalfold increase in viral-DNA accumulation by both viruses compared to that in singly infected plants. Here, we report that synergism between ACMV-[CM] and EACMCV is a two-way process, as the presence of the DNA-A component of ACMV-[CM] or EACMCV in trans enhanced the accumulation of viral DNA of EACMCV and ACMV-[CM], respectively, in tobacco BY-2 protoplasts. Furthermore, transient expression of ACMV-[CM] AC4 driven by the Cauliflower mosaic virus 35S promoter (p35S-AC4) enhanced EACMCV DNA accumulation by ∼8-fold in protoplasts, while p35S-AC2 of EACMCV enhanced ACMV-[CM] DNA accumulation, also by ∼8-fold. An Agrobacterium-based leaf infiltration assay determined that ACMV-[CM] AC4 and EACMCV AC2, the putative synergistic genes, were able to suppress PTGS induced by green fluorescent protein (GFP) and eliminated the short interfering RNAs associated with PTGS, with a correlated increase in GFP mRNA accumulation. In addition, we have identified AC4 of Sri Lankan cassava mosaic virus and AC2 of Indian cassava mosaic virus as suppressors of PTGS, indicating that geminiviruses evolved differently in regard to interaction with the host. The specific and different roles played by these AC2 and AC4 proteins of cassava geminiviruses in regulating anti-PTGS activity and their relation to synergism are discussed. PMID:15308741

  13. FPGA-based genetic algorithm implementation for AC chopper fed induction motor

    NASA Astrophysics Data System (ADS)

    Mahendran, S.; Gnanambal, I.; Maheswari, A.

    2016-12-01

    Genetic algorithm (GA)-based harmonic elimination technique is proposed for designing AC chopper. GA is used to calculate optimal firing angles to eliminate lower order harmonics in output voltage. Total harmonic distortion of output voltage is taken for the fitness function used in the GA. Thus, the ratings of the load are not mandatory to be known for calculating the switching angles using proposed technique. For the performance assessment of GA, Newton-Raphson (NR) method is applied in this present work. Simulation results show that the proposed technique is better in terms of less computational complexity and quick convergence. Simulation results were verified by field programmable gate array controller-based prototype. Simulation study and experimental investigations show that the proposed GA method is superior to the conventional methods.

  14. Potentiostatic and ac impedance studies of the hydrogen electrodes used in Ni/H2 batteries

    NASA Technical Reports Server (NTRS)

    Le Helloco, Jean-Guy; Bojkov, Hristo; Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.

    1992-01-01

    In a study of electrode activity for hydrogen evolution and hydrogen ionization, knowledge of the detailed kinetics and of the surface coverage by adsorbed hydrogen is essential. In the Ni/H2 battery, the hydrogen electrode is subjected to high hydrogen pressure; elucidation of the variation of kinetic parameters with hydrogen pressure is therefore of interest. Potentiostatic and ac impedance spectroscopic techniques were used in the present study. The equivalent circuit of the reaction, the kinetic parameters, and their pressure dependence have been determined.

  15. Passivity-based control of AC drives: theory for the user and application examples

    NASA Astrophysics Data System (ADS)

    Ortega, Romeo; Espinosa-Pérez, Gerardo; Astolfi, Alessandro

    2013-04-01

    Passivity-based control is a methodology to design (possibly nonlinear) controllers for nonlinear physical systems modifying its total energy function and damping characteristics. In this article, the basic principles of this technique, and some of the recent results of application for high performance AC drives, are briefly reviewed. Since the target audience of this article is the drives community, the material is presented emphasising its immediate practical applicability, with minimal mathematical details. However, it is underscored that in all applications, a rigorous stability analysis for the full nonlinear dynamics has been reported in the literature.

  16. Recent Advances in AC-DC Transfer Measurements Using Thin-Film Thermal Converters

    SciTech Connect

    WUNSCH,THOMAS F.; KINARD,JOSEPH R.; MANGINELL,RONALD P.; LIPE,THOMAS E.; SOLOMON JR.,OTIS M.; JUNGLING,KENNETH C.

    2000-12-08

    New standards for ac current and voltage measurements, thin-film multifunction thermal converters (MJTCS), have been fabricated using thin-film and micro-electro-mechanical systems (MEMS) technology. Improved sensitivity and accuracy over single-junction thermoelements and targeted performance will allow new measurement approaches in traditionally troublesome areas such as the low frequency and high current regimes. A review is presented of new microfabrication techniques and packaging methods that have resulted from a collaborative effort at Sandia National Laboratories and the National Institute of Standards and Technology (MHZ).

  17. HST Imagery of the Kepler Field-of-view Acquired with the WFPC2 and with the ACS

    NASA Astrophysics Data System (ADS)

    Verner, Ekaterina; Bruhweiler, F.; Kondo, Y.; Borucki, W. J.; Koch, D.; Batalha, N.; Kepler Team

    2010-01-01

    Hubble Space Telescope (HST) imagery of four fields in the large Kepler Field-of-View (FOV) acquired with the WFPC2 and four reference star fields on the Galactic Equator with the ACS have been obtained and analyzed. The detected stars in the 18th to 26th magnitude range and the faint galaxies represent background objects to targets for the Kepler FOV. The WFPC2 dataset using the F606W filter consisted of dithered images. This dithering technique included a "multidrizzle” algorithm to enhance signal-to-noise and resolution in the four WFPC2 fields. As comparison fields, the HST/ACS data were acquired in the F606W and the F812W filters with total exposure time of 14340 sec. In the reduced WFPC and ACS images, we used SEXTRACTOR to identify stars and their positions in the sky, then the PYRAF and STSDAS/photometry packages to measure star magnitudes. We have created catalogs of the observed stars as well as generated V-I versus V color diagrams for the ACS observed fields. This information reveals stellar statistics as well as photometrical properties for individual stars and binary systems. The analysis of these WFPC2 and ACS images are essential to ascertain the level of photometric uncertainty in Kepler photometry used to search for transits of earth-like planets. The WFPC2 imagery for KEPLER FOV data show noticeable contributions from faint background galaxies not seen in the ACS dataset obtained at the Galactic Equator. This work has been supported through a Guest Observer program grant, GO-10166, from the Space Telescope Science Institute.

  18. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  19. An AC electroosmotic micropump for circular chromatographic applications.

    PubMed

    Debesset, S; Hayden, C J; Dalton, C; Eijkel, J C T; Manz, A

    2004-08-01

    Flow rates of up to 50 microm s(-1) have been successfully achieved in a closed-loop channel using an AC electroosmotic pump. The AC electroosmotic pump is made of an interdigitated array of unequal width electrodes located at the bottom of a channel, with an AC voltage applied between the small and the large electrodes. The flow rate was found to increase linearly with the applied voltage and to decrease linearly with the applied frequency. The pump is expected to be suitable for circular chromatography for the following reasons: the driving forces are distributed over the channel length and the pumping direction is set by the direction of the interdigitated electrodes. Pumping in a closed-loop channel can be achieved by arranging the electrode pattern in a circle. In addition the inherent working principle of AC electroosmotic pumping enables the independent optimisation of the channel height or the flow velocity.

  20. A hybrid electromechanical solid state switch for ac power control

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Bidirectional thyristor coupled to a series of actuator driven electromechanical contacts generates hybrid electromechanical solid state switch for ac power control. Device is useful in power control applications where zero crossover switching is required.

  1. Evolution of AC conductivity of wet illitic clay during drying

    NASA Astrophysics Data System (ADS)

    Csáki, Š.; Štubňa, I.; Trnovcová, V.; Ondruška, J.; Vozár, L.; Dobroň, P.

    2017-02-01

    The evolution of the AC electrical conductivity during drying as well as the relationship between sample volume and moisture of green illite samples were investigated. The samples were prepared from illitic clay (80 mass % illite, 4 mass % montmorillonite, 12 mass % quartz and 4 mass % of orthoclase) and distilled water with initial moisture content 36 mass % and were freely dried in air. Conductivity was measured by the volt-ampere method with AC power supply of 5 V in the frequency range from 50 Hz to 10 kHz. The AC conductivity steeply increased with increasing moisture, up to 15 mass %. At higher values of the moisture, the AC conductivity was high and almost constant. The volume of samples increased with increasing moisture when the moisture was higher than 8 mass %. Below this value, the dimensions of samples do not significantly change. The dependence of the relative volume change on moisture is presented in a form of the Bigot’s curve.

  2. Dc to ac converter operates efficiently at low input voltages

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Self-oscillating dc to ac converter with transistor switching to produce a square wave output is used for low and high voltage power sources. The converter has a high efficiency throughout a wide range of loads.

  3. ACS Algorithm in Discrete Ordinates for Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Walters, William; Haghighat, Alireza

    2016-02-01

    The Adaptive Collision Source (ACS) method can solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. This is similar to, and essentially an extension of, the first collision source method. Previously, the ACS methodology has been implemented into the TITAN discrete ordinates code, and has shown speedups of 2-4 on a simple test problem, with very little loss of accuracy (within a provided adaptive tolerance). This work examines the use of the ACS method for a more realistic problem: pressure vessel dosimetry with the VENUS-2 MOX-fuelled reactor dosimetry benchmark. The ACS method proved to be able to obtain accurate results while being approximately twice as efficient as using a constant quadrature in a standard source iteration scheme.

  4. Effect of AC Electrostatic Precipitator on Removal Diesel Exhaust Particles

    NASA Astrophysics Data System (ADS)

    Kawakami, Hitomi; Zukeran, Akinori; Yasumoto, Koji; Kubojima, Masaki; Ehara, Yoshiyasu; Yamamoto, Toshiaki

    Collection of low resistive particulate matter (PM) generated from automobile and marine diesel engines or diesel generators have been known to be difficult by the conventional electrostatic precipitators (ESP). The collection efficiency for two types ESPs such as conventional DC energized ESP (DC ESP) and rectangular-AC-waveform energized ESP (AC ESP) were investigated. The low resistive PMs agglomerate like a pearl-chain on the collection plate in DC ESP, so that these are detached from the collection plate by electrostatic repulsion force and wind force. The pearl-chain particles are changed the shape, which is such a spherical, by AC ESP. Therefore, the particle re-entrainment is suppressed by AC ESP.

  5. ISTTOK upgrade towards AC and remote operation

    NASA Astrophysics Data System (ADS)

    Fernandes, H.; Silva, C.; Carvalho, B.; Sousa, J.; Valcárcel, D.; Neto, A.; Fortunato, J.; Carvalho, I.; Varandas, C. A. F.

    2006-12-01

    ISTTOK has performed one of the earliest experiments of AC tokamak operation showing that long discharges could be produced merely with inductive current drive. However, due to the design of the machine, the data acquisition system and the power supplies, a limit of 250 ms (six times the nominal forward shot duration) is currently imposed. In this paper the relevant constrains to attain current operation up to the limit of the stable toroidal magnetic field (3s) are discussed and the work being carried out to achieve this goal is presented. The conditions that shall be accomplished are: (i) removing the power deposited on the limiters; (ii) density control through gas puffing and monitoring the recycling from the walls; (iii) assessment of the free magnetic flux available on the iron core (Wmax=0.2 Vs); (iv) reformulation of the data acquisition system towards an event driven philosophy maintaining the actual distributed architecture but allowing a real-time control; (v) active control of the equilibrium magnetic fields implementing a digital plasma position estimator and actuator through new power supplies for the poloidal magnetic fields. As a new high level software was needed to implement all this features, the ISTTOK data acquisition system and control has been totally redesigned in JAVA/SQL database technology and time stamps events were adopted to catalogue the data. This software has been design keeping in mind the needs for remote participation and operation of the machine. Therefore, a cooperative environment has been implemented where several persons can be connected together to the platform, programming their own devices and exchanging knowledge or opinions through an embedded chat.

  6. Decomposition techniques

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  7. Antifriction coatings based on a-C for biomedicine applications

    NASA Astrophysics Data System (ADS)

    Yurjev, Y. N.; Kiseleva, D. V.; Zaitcev, D. A.; Sidelev, D. V.; Korneva, O. S.

    2016-01-01

    This article reports on the investigation of mechanical properties of carbon films deposited by dual magnetron sputtering system with closed and mirror magnetic field. There is shown that a-C films with predominantly sp2-phase have relatively high hardness (up to 20 GPa) and low friction index (∼0.01). The influence of magnetic field on friction index is determined. The analysis of experimental data shows the obtained a-C samples can be used for biomedicine applications.

  8. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    SciTech Connect

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  9. Accelerator Production of 225Ac For Alpha-Immunotherapy

    NASA Astrophysics Data System (ADS)

    Weidner, J. W.; Nortier, F. M.; Bach, H. T.; John, K. D.; Couture, A.; Ullmann, J. L.; Fassbender, M. E.; Goff, G. S.; Taylor, W.; Valdez, F.; Wolfsberg, L. E.; Cisneros, M.; Dry, D.; Gallegos, M.; Gritzo, R.; Bitteker, L. J.; Wender, S.; Baty, R. S.

    2011-06-01

    225Ac has tremendous potential for the treatment of metastatic cancer due to the four alpha-particles emitted during its decay to stable 209Bi. Additionally, it is one of the few alpha-emitters being considered for clinical trials. The anticipated 225Ac demand for these trials is expected to far exceed the annual worldwide supply of approximately 1,000 mCi/yr. Consequently, the DOE Office of Science has funded investigations into accelerator-based production of 225Ac. Existing 232Th(p,x)225Ac cross section data indicate that up to 480 mCi/day of 225Ac could be created by bombarding a thick target of natural thorium with 100 MeV protons at the Los Alamos Isotope Production Facility. To verify these predictions, experiments are underway at the Los Alamos Neutron Science Center to measure the 232Th(p,x)225Ac production cross sections for protons in the energy range 40-200 MeV, and at 800 MeV. For 800 MeV protons, preliminary results indicate that the 225Ac production cross section is 12.4±0.6 mb and the 225Ra production cross section is 3.2±0.2 mb. Moreover, preliminary results suggest that the 227Ac production cross section is 16±1 mb. Experiments to measure these same cross sections at proton energies below 200 MeV are planned for the last half of calendar year 2010.

  10. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  11. Development of an AC Module System: Final Technical Report

    SciTech Connect

    Suparna Kadam; Miles Russell

    2012-06-15

    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more

  12. AC-Induced Bias Potential Effect on Corrosion of Steels

    DTIC Science & Technology

    2009-02-05

    AC-Induced Bias Potential Effect on Corrosion of Steels J.E. Jackson, A.N. Lasseigne, D.L. Olson, and B. Mishra Feb. 5, 2009 G2MT Generation 2...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Generation 2 Materials Technology LLC,10281 Foxfire St,Firestone,CO,80504 8...Pokhodnaya, 1991). AC Self-biasing (from RF) Model 3 Voltage waveforms at generator (Va) and target (Vb) in sinusoidally-excited rf discharge

  13. Search for {beta}-delayed fission of {sup 228}Ac

    SciTech Connect

    Xu Yanbing; Ding Huajie; Yuan Shuanggui; Yang Weifan; Niu Yanning; Li Yingjun; Xiao Yonghou; Zhang Shengdong; Lu Xiting

    2006-10-15

    Radium was radiochemically separated from natural thorium. Thin {sup 228}Ra{yields}{beta}{sup -228}Ac sources were prepared and exposed to mica fission track detectors, and measured by an HPGe {gamma}-ray detector. The {beta}-delayed fission events of {sup 228}Ac were observed and its {beta}-delayed fission probability was found to be (5{+-}2)x10{sup -12}.

  14. Accelerator Production of {sup 225}Ac For Alpha-Immunotherapy

    SciTech Connect

    Weidner, J. W.; Nortier, F. M.; Bach, H. T.; John, K. D.; Couture, A.; Ullmann, J. L.; Fassbender, M. E.; Goff, G. S.; Taylor, W.; Valdez, F.; Wolfsberg, L. E.; Cisneros, M.; Dry, D.; Gallegos, M.; Gritzo, R.; Bitteker, L. J.; Wender, S.; Baty, R. S.

    2011-06-01

    {sup 225}Ac has tremendous potential for the treatment of metastatic cancer due to the four alpha-particles emitted during its decay to stable {sup 209}Bi. Additionally, it is one of the few alpha-emitters being considered for clinical trials. The anticipated {sup 225}Ac demand for these trials is expected to far exceed the annual worldwide supply of approximately 1,000 mCi/yr. Consequently, the DOE Office of Science has funded investigations into accelerator-based production of {sup 225}Ac. Existing {sup 232}Th(p,x){sup 225}Ac cross section data indicate that up to 480 mCi/day of {sup 225}Ac could be created by bombarding a thick target of natural thorium with 100 MeV protons at the Los Alamos Isotope Production Facility. To verify these predictions, experiments are underway at the Los Alamos Neutron Science Center to measure the {sup 232}Th(p,x){sup 225}Ac production cross sections for protons in the energy range 40-200 MeV, and at 800 MeV. For 800 MeV protons, preliminary results indicate that the {sup 225}Ac production cross section is 12.4{+-}0.6 mb and the {sup 225}Ra production cross section is 3.2{+-}0.2 mb. Moreover, preliminary results suggest that the {sup 227}Ac production cross section is 16{+-}1 mb. Experiments to measure these same cross sections at proton energies below 200 MeV are planned for the last half of calendar year 2010.

  15. Nearly Unity Power-Factor of the Modular Three-Phase AC to DC Converter with Minimized DC Bus Capacitor

    NASA Astrophysics Data System (ADS)

    Chunkag, Viboon; Kamnarn, Uthen

    The analysis and design of nearly unity power-factor and fast dynamic response of the modular three-phase ac to dc converter using three single-phase isolated SEPIC rectifier modules with minimized dc bus capacitor is discussed, based on power balance control technique. The averaged small-signal technique is used to obtain the inductor current compensator, thus resulting in the output impedance and audio susceptibility become zero, that is, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The proposed system significantly improves the dynamic response of the converter to load steps with minimized dc bus capacitor for Distributed Power System (DPS). A 600W prototype modular three-phase ac to dc converter comprising three 200W single-phase SEPIC rectifier modules with the proposed control scheme has been designed and implemented. The proposed system is confirmed by experimental implementation.

  16. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  17. Update on bedside ultrasound (US) diagnosis of acute cholecystitis (AC).

    PubMed

    Zenobii, Maria Francesca; Accogli, Esterita; Domanico, Andrea; Arienti, Vincenzo

    2016-03-01

    Acute cholecystitis (AC) represents a principal cause of morbidity worldwide and is one of the most frequent reasons for hospitalization due to gastroenteric tract diseases. AC should be suspected in presence of clinical signs and of gallstones on an imaging study. Upper abdominal US represents the first diagnostic imaging step in the case of suspected AC. Computed tomography (CT) with intravenous contrast (IV) or magnetic resonance imaging (MRI) with gadolinium contrast and technetium hepatobiliary iminodiacetic acid (Tc-HIDA) can be employed to exclude complications. US examination should be performed with right subcostal oblique, with longitudinal and intercostal scans. Normal gallbladder US findings and AC major and minor US signs are described. Polyps, sludge and gallbladder wall thickening represent the more frequent pitfalls and they must be differentiated from stones, duodenal artifacts and many other non-inflammatory conditions that cause wall thickening, respectively. By means of bedside ultrasound, the finding of gallstones in combination with acute pain, when the clinician presses the gallbladder with the US probe (the sonographic Murphy's sign), has a 92.2 % positive predictive value for AC. In our preliminary experience, bedside US-performed by echoscopy (ES) and/or point-of-care US (POCUS) demonstrated good reliability in detecting signs of AC, and was always integrated with physical examination and performed by a skilled operator.

  18. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  19. Prompt and Delayed Spectroscopy of Ac isotopes around N = 126

    NASA Astrophysics Data System (ADS)

    Hota, S. S.; Lane, G. J.; Reed, M. W.; Mitchell, A. J.; Stuchbery, A. E.; Kibedi, T.; Akber, A. A.; Eriksen, T. E.; Gerathy, M. S.; Palalani, N.; Palazzo, T. R.

    2015-10-01

    Nuclei above Z = 82 and around N = 126 are well described by the spherical shell model, with the attractive proton-neutron residual interactions and particle-octupole vibration coupling resulting in energy-favored, isomeric states occurring along the yrast line. Nuclei up to Z = 88 are mostly well known, but information on Ac (Z = 89) isotopes is limited. We report on high-spin, gamma-ray spectroscopy measurements of 214 , 215 , 216 , 217Ac performed at the Australian National University using the CAESAR array and fusion-evaporation reactions between 12C and 14,15N beams delivered by the 14UD accelerator incident on 204Pb and 209Bi targets. States up to 29/2+ isomers were known previously in 215,217Ac, while only one gamma-ray has been assigned to each of 214,216Ac. New level schemes have now been constructed for 214,216Ac and those for 215,217Ac have been significantly extended. The results will be presented in detail together with semi-empirical shell model calculations that support the proposed level schemes.

  20. Spin density wave (SDW) transition in Ru doped BaFeAs2 investigated by AC steady state calorimetry

    NASA Astrophysics Data System (ADS)

    Vinod, K.; Sharma, Shilpam; Sundar, C. S.; Bharathi, A.

    2015-06-01

    Heat capacity measurements were done on sub-micron sized BaFe2-xRuxAs2 single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe2-xRuxAs2 during cooling and warming cycles, indicating first order nature of the SDW transition.

  1. Spin density wave (SDW) transition in Ru doped BaFeAs{sub 2} investigated by AC steady state calorimetry

    SciTech Connect

    Vinod, K. Sharma, Shilpam; Sundar, C. S.; Bharathi, A.

    2015-06-24

    Heat capacity measurements were done on sub-micron sized BaFe{sub 2−x}Ru{sub x}As{sub 2} single crystals using thin film membrane based the AC steady state calorimetry technique. Noticeable thermal hysteresis is observed in the heat capacity of the BaFe{sub 2−x}Ru{sub x}As{sub 2} during cooling and warming cycles, indicating first order nature of the SDW transition.

  2. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered medical examination light. 880.6320... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered medical examination light is an AC-powered device intended for medical purposes that is used to illuminate...

  3. 21 CFR 880.6320 - AC-powered medical examination light.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false AC-powered medical examination light. 880.6320... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered medical examination light is an AC-powered device intended for medical purposes that is used to illuminate...

  4. Optical Properties of AC60 Materials

    NASA Astrophysics Data System (ADS)

    Martin, Michael C.

    1996-03-01

    The alkali intercalated fullerene system A_1C_60 (A=K, Rb, or Cs) undergoes a number of structural and electronic phase transitions. At elevated temperatures the structure is fcc, but when cooled below ~ 100 ^circC the structure becomes dependent on the sample's thermal treatment. Infrared and Raman spectroscopic investigations into the various resultant phases will be presented.^1,2 Upon slow cooling, the C_60 molecules form linear conducting polymers^3 which break the icosahedral symmetry of the pure fullerene and thus activate many previously silent vibrational modes. This phase is unexpectedly found to be stable in air.^4 At much lower temperatures (30-60K) a magnetic transition has been observed; we will present IR data obtained in this thermal region showing indications of a gap-like feature. If the samples are cooled very rapidly from high temperatures, an insulating phase is formed where even more symmetry breaking occurs. We argue that a dimerization of C_60, Rb_2(C_60)_2, is the likely structure in accord with the vibrational spectra,^2 and recent x-ray results. Both lower-symmetry phases of AC_60 can also be used to help identify the IR- and Raman-silent modes of unperturbed C_60. Work done at the State University of New York at Stony Brook in collaboration with Daniel Koller, Peter W. Stephens, Laszlo Mihaly (State University of New York at Stony Brook), C. Kendziora and A. Rosenberg (Naval Research Laboratory). Supported by NSF Grant DMR9202528. ^1Michael C. Martin, Daniel Koller, Xiaoqun Du, Peter W. Stephens and Laszlo Mihaly, Phys. Rev. B 49, 10 818 (1994). ^2Michael C. Martin, Daniel Koller, A. Rosenberg, C. Kendziora, and L. Mihaly, Phys. Rev. B 51, 3210 (1995). ^3P.W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Jánossy, S. Pekker, G. Oszlányi and L. Forro, Nature (London) 370, 636 (1994). ^4Daniel Koller, Michael C. Martin, Peter W. Stephens, Laszlo Mihaly, Sandor Pekker, Andras Jánossy, Olivier Chauvet and Laszlo Forro, Appl. Phys. Lett. 66

  5. Development of scribing process of coated conductors for reduction of AC losses

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Yoshizumi, M.; Izumi, T.; Shiohara, Y.; Iwakuma, M.; Ibi, A.; Miyata, S.; Yamada, Y.

    2008-09-01

    Coated conductors (CCs) are prospective for electric power applications intended for not only better cost performance but also high critical current density ( Jc) under magnetic fields comparing with Bi 2Sr 2Ca 2Cu 3O y (BSCCO) tapes. Furthermore, they also have a possibility to reduce AC losses by various methods of post-treatments since the CCs are of a laminated structure with the insulating buffer layers. Multifilamentation by narrowing the tape width is quite effective to reduce the AC losses and therefore this approach is valid for the standard process to fabricate practical CCs with an appropriate architecture. In this study, we developed a tape scribing technique applying a technique of YAG laser with/without chemical etching to control the filament width in YBa 2Cu 3O y (YBCO) CCs for the multifilament. The AC loss was reducible to one-twentieth by 20-multifilament structure in a short sample test, and to one-third by 3-multifilament structure in the coil using 28 m long tapes in total. The authors measured the resistance between the filaments at 60-300 K after post-treatment to investigate the effective bridged materials, which is essential for decoupling of the filaments. We improved the resistance value between the filaments at liquid nitrogen temperature up to the order of 10 Ω/cm using the YAG laser with high-temperature oxygen anneals. Furthermore, the resistance over 10 6 Ω/cm was evident by the combination of laser scribing and chemical etching, which is much higher than the requirements of all the applications.

  6. Solution Techniques in Finite Element Analysis.

    DTIC Science & Technology

    1983-05-01

    CR 83.027 NAVAL CIVIL ENGINEERING LABORATORY Port Hueneme, California Sponsored by NAVAL FACILITIES ENGINEERING COMMAND ___ SOLUTION TECHNIQUES IN...CATALOG NUMBER CR 83.027 A bA/Z3 SZ *4 TITLE fori SoobIt, S TYPE F REP RT II PERIOD COVERED SOLUTION TECHNIQUES IN FINITE ELEMENT Not 192in Jna98 ANALYSIS...elements; nonlinear algebraic equations; numierical solution methods 20 ABSTRACT (Contlinue mI e.se mde It nc..Ac.. Wd ordonhifI, by block .- abe,) ,A

  7. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-06-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2 x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters ( τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  8. Vibration energy harvesting with polyphase AC transducers

    NASA Astrophysics Data System (ADS)

    McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko

    2016-04-01

    Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.

  9. A travelling wave dielectrophoretic pump for blood delivery.

    PubMed

    Lei, U; Huang, C W; Chen, James; Yang, C Y; Lo, Y J; Wo, Andrew; Chen, C F; Fung, T W

    2009-05-21

    The travelling wave dielectrophoretic pump studied here is essentially a rectangular straight micro-channel with an electrode array on part of its wall, and operated under an ac voltage with phase shift at neighbouring electrodes. The travelling wave dielectrophoretic force drives the cells, which drag the plasma, and after some sophisticated interaction between conventional dielectrophoresis, travelling wave dielectrophoresis and fluid mechanics, the whole blood is delivered. The pump was fabricated using MEMS techniques and studied in details for different parameters. It is found that the pumping velocity is maximized at an intermediate frequency around 20-30 MHz (varies with phase shift), and at an intermediate channel height at about 40 microm. The quasi-static average cell velocity can reach 15 microm s(-1) for a pump with 1 mm length and 16 electrodes (total array length 465 microm) operated at 5 V and 20 MHz with 90 degrees phase shift.

  10. Apple MdACS6 Regulates Ethylene Biosynthesis During Fruit Development Involving Ethylene-Responsive Factor.

    PubMed

    Li, Tong; Tan, Dongmei; Liu, Zhi; Jiang, Zhongyu; Wei, Yun; Zhang, Lichao; Li, Xinyue; Yuan, Hui; Wang, Aide

    2015-10-01

    Ethylene biosynthesis in plants involves different 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes. The regulation of each ACS gene during fruit development is unclear. Here, we characterized another apple (Malus×domestica) ACS gene, MdACS6. The transcript of MdACS6 was observed not only in fruits but also in other tissues. During fruit development, MdACS6 was initiated at a much earlier stage, whereas MdACS3a and MdACS1 began to be expressed at 35 d before harvest and immediateley after harvest, respectively. Moreover, the enzyme activity of MdACS6 was significantly lower than that of MdACS3a and MdACS1, accounting for the low ethylene biosynthesis in young fruits. Overexpression of MdACS6 (MdACS6-OE) by transient assay in apple showed enhanced ethylene production, and MdACS3a was induced in MdACS6-OE fruits but not in control fruits. In MdACS6 apple fruits silenced by the virus-induced gene silencing (VIGS) system (MdACS6-AN), neither ethylene production nor MdACS3a transcript was detectable. In order to explore the mechanism through which MdACS3a was induced in MdACS6-OE fruits, we investigated the expression of apple ethylene-responsive factor (ERF) genes. The results showed that the expression of MdERF2 was induced in MdACS6-OE fruits and inhibited in MdACS6-AN fruits. Yeast one-hybrid assay showed that MdERF2 protein could bind to the promoter of MdACS3a. Moreover, down-regulation of MdERF2 in apple flesh callus led to a decrease of MdACS3a expression, demonstrating the regulation of MdERF2 on MdACS3a. The mechanism through which MdACS6 regulates the action of MdACS3a was discussed.

  11. Aseptic technique.

    PubMed

    Bykowski, Tomasz; Stevenson, Brian

    2008-11-01

    This chapter describes common laboratory procedures that can reduce the risk of culture contaminations (sepsis), collectively referred as "aseptic technique." Two major strategies of aseptic work are described: using a Bunsen burner and a laminar flow hood. Both methods are presented in the form of general protocols applicable to a variety of laboratory tasks such as pipetting and dispensing aliquots, preparing growth media, and inoculating, passaging, and spreading microorganisms on petri dishes.

  12. Electrochemical Techniques

    SciTech Connect

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  13. Modelling ac ripple currents in HTS coated conductors

    NASA Astrophysics Data System (ADS)

    Xu, Zhihan; Grilli, Francesco

    2015-10-01

    Dc transmission using high temperature superconducting (HTS) coated conductors (CCs) offers a promising solution to the globally growing demand for effective, reliable and economic transmission of green energy up to the gigawatt level over very long distances. The credible estimation of the losses and thereby the heat dissipation involved, where ac ripples (introduced in rectification/ac-dc conversion) are viewed as a potential source of notable contribution, is highly essential for the rational design of practical HTS dc transmission cables and corresponding cryogenic systems to fulfil this demand. Here we report a targeted modelling study into the ac losses in a HTS CC subject to dc and ac ripple currents simultaneously, by solving Maxwell’s equations using the finite element method (FEM) in the commercial software package COMSOL. It is observed that the instantaneous loss exhibits only one peak per cycle in the HTS CC subject to sinusoidal ripples, given that the amplitude of the ac ripples is smaller than approximately 20% of that of the dc current. This is a distinct contrast to the usual observation of two peaks per cycle in a HTS CC subject to ac currents only. The unique mechanism is also revealed, which is directly associated with the finding that, around any local minima of the applied ac ripples, the critical state of -J c is never reached at the edges of the HTS CC, as it should be according to the Bean model. When running further into the longer term, it is discovered that the ac ripple loss of the HTS CC in full-wave rectification decays monotonically, at a speed which is found to be insensitive to the frequency of the applied ripples within our targeted situations, to a relatively low level of approximately 1.38 × 10-4 W m-1 in around 1.7 s. Comparison between this level and other typical loss contributions in a HTS dc cable implies that ac ripple currents in HTS CCs should only be considered as a minor source of dissipation in superconducting dc

  14. ac electroosmotic pumping induced by noncontact external electrodes.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-09-21

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.

  15. AC Zeeman potentials for atom chip-based ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth

    2015-05-01

    We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.

  16. AC propulsion system for an electric vehicle, phase 2

    NASA Technical Reports Server (NTRS)

    Slicker, J. M.

    1983-01-01

    A second-generation prototype ac propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the Contractor's site. The system consisted of a Phase 2, 18.7 kw rated ac induction traction motor, a 192-volt, battery powered, pulse-width-modulated, transistorized inverter packaged for under rear seat installation, a 2-axis, 2-speed, automatically-shifted mechanical transaxle and a microprocessor-based powertrain/vehicle controller. A diagnostics computer to assist tuning and fault finding was fabricated. Dc-to-mechanical-system efficiency varied from 78% to 82% as axle speed/torque ranged from 159 rpm/788 nm to 65 rpm/328 nm. Track test efficiency results suggest that the ac system will be equal or superior to dc systems when driving urban cycles. Additional short-term work is being performed under a third contract phase (AC-3) to raise transaxle efficiency to predicted levels, and to improve starting and shifting characteristics. However, the long-term challenge to the system's viability remains inverter cost. A final report on the Phase 2 system, describing Phase 3 modifications, will be issued at the conclusion of AC-3.

  17. ACS and STEMI treatment: gender-related issues.

    PubMed

    Chieffo, Alaide; Buchanan, Gill Louise; Mauri, Fina; Mehilli, Julinda; Vaquerizo, Beatriz; Moynagh, Anouska; Mehran, Roxana; Morice, Marie-Claude

    2012-08-01

    Cardiovascular disease is the leading cause of death amongst women, with acute coronary syndromes (ACS) representing a significant proportion. It has been reported that in women presenting with ACS there is underdiagnosis and consequent undertreatment leading to an increase in hospital and long-term mortality. Several factors have to be taken into account, including lack of awareness both at patient and at physician level. Women are generally not aware of the cardiovascular risk and symptoms, often atypical, and therefore wait longer to seek medical attention. In addition, physicians often underestimate the risk of ACS in women leading to a further delay in accurate diagnosis and timely appropriate treatment, including cardiac catheterisation and primary percutaneous coronary intervention, with consequent delayed revascularisation times. It has been acknowledged by the European Society of Cardiology that gender disparities do exist, with a Class I, Level of Evidence B recommendation that both genders should be treated in the same way when presenting with ACS. However, there is still a lack of awareness and the mission of Women in Innovation, in association with Stent for Life, is to change the perception of women with ACS and to achieve prompt diagnosis and treatment.

  18. Ramp technique for dc partial discharge testing

    NASA Astrophysics Data System (ADS)

    Bever, R. S.

    1985-02-01

    The partial discharge (PD) data presently obtained by means of a stepwise ramp technique, for the cases of high voltage (HV) components and such resin-packaged HV devices as the Space Telescope's Faint Object Camera, is acquired separately on part-way ramps to rated voltage and on the intermediate voltage plateaus. For test specimens intended for dc service, this ramp method yields more data on insulation integrity than quiescent dc measurements, especially in the case of specimens of high resistivity which causes the discharge frequency to be deceptively low at constant dc voltage. During upward ramping the voltage distribution is capacitive, and the PD behavior resembles that of an ac test. Many more pulses are obtained in the voids without the heat otherwise generated by the application of 60-Hz ac. PD histograms are presented for various materials, with and without intentional defects.

  19. Superconducting shielded core reactor with reduced AC losses

    DOEpatents

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  20. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Nagendra, K.; Babu, G. Satish; Reddy, C. Narayana; Gowda, Veeranna

    2011-07-01

    Glasses in the system xLi2SO4-20Li2O-(80-x) [80P2O5-20V2O5] (5⩾x⩾20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li2SO4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aωs where `s' is the power law exponent. The ac conductivity found to increase with increase of Li2SO4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  1. Electron Temperature Measurement by Floating Probe Method Using AC Voltage

    NASA Astrophysics Data System (ADS)

    Satoshi, Nodomi; Shuichi, Sato; Mikio, Ohuchi

    2016-11-01

    This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.

  2. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  3. Cell volume increase in murine MC3T3-E1 pre-osteoblasts attaching onto biocompatible tantalum observed by magnetic AC mode atomic force microscopy.

    PubMed

    Andersen, L Klembt; Contera, S Antoranz; Justesen, J; Duch, M; Hansen, O; Chevallier, J; Foss, M; Pedersen, F S; Besenbacher, F

    2005-12-02

    Magnetic AC mode (MACmode) atomic force microscopy (AFM) was used to study murine (mouse) MC3T3-E1 preosteoblastic cells attached to biocompatible tantalum substrates. Cell volumes of attached cells derived from AFM images were compared to volumes of detached cells in suspension measured by the Coulter sizing technique. An increase of approximately 50% in cell volume was observed when the cells attached to planar tantalum substrates and developed a flattened structure including lamellipodia. We address thoroughly the issues general to the AFM determination of absolute cell volumes, and compare our magnetic AC mode AFM measurements to hitherto reported cell volume determinations by contact mode AFM.

  4. Introducing high performance distributed logging service for ACS

    NASA Astrophysics Data System (ADS)

    Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca

    2010-07-01

    The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.

  5. Modeling and Correcting the Time-Dependent ACS PSF

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason; Massey, Richard; Albert, Justin; Taylor, James E.; Koekemoer, Anton M.; Leauthaud, Alexie

    2006-01-01

    The ability to accurately measure the shapes of faint objects in images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST) depends upon detailed knowledge of the Point Spread Function (PSF). We show that thermal fluctuations cause the PSF of the ACS Wide Field Camera (WFC) to vary over time. We describe a modified version of the TinyTim PSF modeling software to create artificial grids of stars across the ACS field of view at a range of telescope focus values. These models closely resemble the stars in real ACS images. Using 10 bright stars in a real image, we have been able to measure HST s apparent focus at the time of the exposure. TinyTim can then be used to model the PSF at any position on the ACS field of view. This obviates the need for images of dense stellar fields at different focus values, or interpolation between the few observed stars. We show that residual differences between our TinyTim models and real data are likely due to the effects of Charge Transfer Efficiency (CTE) degradation. Furthermore, we discuss stochastic noise that is added to the shape of point sources when distortion is removed, and we present MultiDrizzle parameters that are optimal for weak lensing science. Specifically, we find that reducing the MultiDrizzle output pixel scale and choosing a Gaussian kernel significantly stabilizes the resulting PSF after image combination, while still eliminating cosmic rays/bad pixels, and correcting the large geometric distortion in the ACS. We discuss future plans, which include more detailed study of the effects of CTE degradation on object shapes and releasing our TinyTim models to the astronomical community.

  6. System and method for determining stator winding resistance in an AC motor using motor drives

    DOEpatents

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  7. UPS with input commutation between ac and dc sources of power

    SciTech Connect

    Severinsky, A.J.

    1993-08-31

    An uninterruptible power supply is described, said power supply comprising: AC input terminal means for receiving a first AC voltage from an AC power source; DC input terminal means for receiving a first DC voltage from a DC power source; AC output terminal means for connecting to a load; converter means for converting said first AC voltage to a second DC voltage across electrical charge storage means coupled to said converter means, said second DC voltage being larger than the maximum peak voltage of said first AC voltage and said first DC voltage; switching means coupled to said AC power source and said DC power source for selectively connecting said AC power source or said DC power source to said converter means; inverter means coupled to said electrical charge storage means for receiving said second DC voltage and inverting said second DC voltage to a second AC voltage, said second AC voltage being coupled to said AC output terminal means; and control means coupled to said switching means for controlling the operation of said switching means, said control means operating said switching means to connect said AC power source to said converter means only when said first AC voltage is within a predetermined range and operating to connect said DC power source to said converter means when said first AC voltage is outside of said range.

  8. Encapsulation of α-Particle–Emitting 225Ac3+ Ions Within Carbon Nanotubes

    PubMed Central

    Matson, Michael L.; Villa, Carlos H.; Ananta, Jeyarama S.; Law, Justin J.; Scheinberg, David A.; Wilson, Lon J.

    2016-01-01

    225Ac3+ is a generator of α-particle–emitting radionuclides with 4 net α-particle decays that can be used therapeutically. Targeting 225Ac3+ by use of ligands conjugated to traditional bifunctional chelates limits the amount of 225Ac3+ that can be delivered. Ultrashort, single-walled carbon nanotubes (US-tubes), previously demonstrated as sequestering agents of trivalent lanthanide ions and small molecules, also successfully incorporate 225Ac3+. Methods Aqueous loading of both 225Ac3+ ions and Gd3+ ions via bath sonication was used to construct 225Ac@gadonanotubes (225Ac@GNTs). The 225Ac@GNTs were subsequently challenged with heat, time, and human serum. Results US-tubes internally loaded with both 225Ac3+ ions and Gd3+ ions show 2 distinct populations of 225Ac3+ ions: one rapidly lost in human serum and one that remains bound to the US-tubes despite additional challenge with heat, time, and serum. The presence of the latter population depended on cosequestration of Gd3+ and 225Ac3+ ions. Conclusion US-tubes successfully sequester 225Ac3+ ions in the presence of Gd3+ ions and retain them after a human serum challenge, rendering 225Ac@GNTs candidates for radioimmunotherapy for delivery of 225Ac3+ ions at higher concentrations than is currently possible for traditional ligand carriers. PMID:25931476

  9. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  10. ac Magnetization transport and power absorption in nonitinerant spin chains.

    PubMed

    Trauzettel, Björn; Simon, Pascal; Loss, Daniel

    2008-07-04

    We investigate the ac transport of magnetization in nonitinerant quantum systems such as spin chains described by the XXZ Hamiltonian. Using linear response theory, we calculate the ac magnetization current and the power absorption of such magnetic systems. Remarkably, the difference in the exchange interaction of the spin chain itself and the bulk magnets (i.e., the magnetization reservoirs), to which the spin chain is coupled, strongly influences the absorbed power of the system. This feature can be used in future spintronic devices to control power dissipation. Our analysis allows us to make quantitative predictions about the power absorption, and we show that magnetic systems are superior to their electronic counterparts.

  11. Study of AC/RF properties of SRF ingot niobium

    SciTech Connect

    Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao

    2013-09-01

    In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.

  12. Microfluidic pumping optimization in microgrooved channels with ac electrothermal actuations

    NASA Astrophysics Data System (ADS)

    Du, E.; Manoochehri, Souran

    2010-01-01

    An optimization methodology is developed and applied to an ac electrothermal pump design with patterned microgrooved features. The microgrooved configuration can overcome the restrictions of the conventional planar configuration on pumping performance by diminishing fast backward flows and suppressing prolonged streamlines. At all frequency excitations (0.2-1000 MHz) and ion concentration conditions (5×10-3-0.1 M), the optimum microgrooved configuration generates much faster flow rate than planar configuration. This happens without additional increases in the maximum temperature values. The effects of elevated temperature on ac ET flow behavior is investigated and analyzed.

  13. Trapping of Rb Atoms by ac Electric Fields

    SciTech Connect

    Schlunk, Sophie; Marian, Adela; Geng, Peter; Meijer, Gerard; Schoellkopf, Wieland; Mosk, Allard P.

    2007-06-01

    We demonstrate trapping of an ultracold gas of neutral atoms in a macroscopic ac electric trap. Three-dimensional confinement is obtained by switching between two saddle-point configurations of the electric field. Stable trapping is observed in a narrow range of switching frequencies around 60 Hz. The dynamic confinement of the atoms is directly visualized at different phases of the ac switching cycle. We observe about 10{sup 5} Rb atoms in the 1 mm{sup 3} large and several microkelvins deep trap with a lifetime of approximately 5 s.

  14. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    SciTech Connect

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  15. Obtaining DC and AC isothermal electrical characteristics for RF MOSFET

    NASA Astrophysics Data System (ADS)

    Sahoo, A. K.; Fregonese, S.; Scheer, P.; Celi, D.; Juge, A.; Zimmer, T.

    2015-04-01

    In this paper we demonstrate a new and simple approach to obtain isothermal electrical characteristics of metal oxide field effect transistor (MOSFET) from conventional non-isothermal measurements. DC and continuous wave (CW) S-parameter measurements are performed at different chuck temperatures (Tchuck). Knowing the thermal resistance (RTH) of the device the variation of DC and AC characteristic due to self-heating can be de-embedded and all the isothermal DC data and AC data above isothermal frequency can be determined. The method is validated by comparing the results with pulsed DC and pulsed RF measurements and found to be in good agreements.

  16. Introducing AC inductive reactance with a power tool

    NASA Astrophysics Data System (ADS)

    Bryant, Wesley; Baker, Blane

    2016-09-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance is smaller than expected, they are asked to explain these observations using previously studied principles of magnetic induction. Exercises also introduce the notion of inductive reactance and impedance in AC circuits and, ultimately, determine self-inductance of the motor windings within the power tool.

  17. Pulse doubling in zigzag-connected autotransformer-based 12-pulse ac-dc converter for power quality improvement

    NASA Astrophysics Data System (ADS)

    Abdollahi, Rohollah

    2012-12-01

    This paper presents a pulse doubling technique in a 12-pulse ac-dc converter which supplies direct torque controlled motor drives (DTCIMDs) in order to have better power quality conditions at the point of common coupling. The proposed technique increases the number of rectification pulses without significant changes in the installations and yields in harmonic reduction in both ac and dc sides. The 12-pulse rectified output voltage is accomplished via two paralleled six-pulse acdc converters each of them consisting of three-phase diode bridge rectifiers. An autotransformer is designed to supply the rectifiers. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. Independent operation of paralleled diode-bridge rectifiers, i.e. dc-ripple re-injection methodology, requires a Zero Sequence Blocking Transformer (ZSBT). Finally, a tapped interphase reactor is connected at the output of ZSBT to double the pulse numbers of output voltage up to 24 pulses. The aforementioned structure improves power quality criteria at ac mains and makes them consistent with the IEEE-519 standard requirements for varying loads. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse, 12-pulse, and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 5% for the proposed topology at various loads.

  18. Calorimetric AC loss measurement of MgB2 superconducting tape in an alternating transport current and direct magnetic field

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2012-11-01

    Applications of MgB2 superconductors in electrical engineering have been widely reported, and various studies have been made to define their alternating current (AC) losses. However, studies on the transport losses with an applied transverse DC magnetic field have not been conducted, even though this is one of the favored conditions in applications of practical MgB2 tapes. Methods and techniques used to characterize and measure these losses have so far been grouped into ‘electrical’ and ‘calorimetric’ approaches with external conditions set to resemble the application conditions. In this paper, we present a new approach to mounting the sample and employ the calorimetric method to accurately determine the losses in the concurrent application of AC transport current and DC magnetic fields that are likely to be experienced in practical devices such as generators and motors. This technique provides great simplification compared to the pickup coil and lock-in amplifier methods and is applied to a long length (˜10 cm) superconducting tape. The AC loss data at 20 and 30 K will be presented in an applied transport current of 50 Hz under external DC magnetic fields. The results are found to be higher than the theoretical predictions because of the metallic fraction of the tape that contributes quite significantly to the total losses. The data, however, will allow minimization of losses in practical MgB2 coils and will be used in the verification of numerical coil models.

  19. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  20. A novel design and process for improving the efficiency and reliability of an AC direct LED chip

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Il; Lim, Chan M.; Lee, Wan-Ho; Choi, Jin-Young; Lee, Seung-Hwan; Kim, Gi-Bum; Park, Young-Soo

    2015-03-01

    We have developed a low-cost alternating current (AC) direct light-emitting diode (LED) chip in which bridge rectifiers are implemented within a multi-cell array. The chip was designed and fabricated to form a ladder type electrical circuit of integrated multi-cells for direct operation with high voltage AC power source. Through a new isolation process technique, the luminous flux in the multi-chip LEDs increased by 5%, which is ascribed to the increase of active area in the chip. In this paper, we report on the effects of a cell array design on the luminous efficiency, and a new process to improve the device performance. The 2 W device exhibited a typical luminous efficiency of 85 lm/W at a color temperature of 3000 K and color rendering index (CRI) 80. Furthermore, an advanced design to overcome the optical and electrical degradation by the high reverse voltage applied to a bridge rectifier are also discussed.

  1. Preparation of a new adsorbent from activated carbon and carbon nanofiber (AC/CNF) for manufacturing organic-vacbpour respirator cartridge

    PubMed Central

    2013-01-01

    In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight. PMID:23369424

  2. Perceptions of breath alcohol concentration (BrAC) levels among a sample of bar patrons with BrAC values of 0.08% or higher.

    PubMed

    Martin, Ryan J; Chaney, Beth H; Cremeens-Matthews, Jennifer; Vail-Smith, Karen

    2016-09-01

    Breath alcohol concentration (BrAC) is a commonly used measure of alcohol intoxication. Because of the potential negative consequences of excessive alcohol consumption, it is important to examine how accurately intoxicated individuals can estimate their BrAC values, especially individuals over the legal BrAC driving threshold (i.e., 0.08%). To better understand perceptions of BrAC values among intoxicated individuals, this field study examined actual BrAC values and BrAC range estimates (0.08% and above, 0.02-0.07%, less than 0.02%) among a sample of bar patrons (N = 454) with BrAC levels at 0.08% or higher. Bivariate and multivariate analyses were conducted to examine the relationship between actual BrAC values and perceived BrAC levels. We also examined whether the following demographic and drinking variables were associated with underestimating BrAC in this sample: gender, age, race, college student status, plans to get home, and hazardous drinking. Results indicated that the majority (60.4%) of participants underestimated their BrAC (i.e., less than 0.08%) and lower BrAC values correlated with underestimating BrAC ranges (p < .001, 95% CI[0.2, 0.6]). Further, females (p = .001, 95% CI[1.3, 3.3]) and participants under 21 (p = .039, 95% CI = 1.0, 2.6) were significantly more likely to estimate their BrAC to be less than 0.08%, which is concerning given that young (less than 21) intoxicated females are a group at high risk for sexual assault on college campuses. (PsycINFO Database Record

  3. BOLD signal effects of transcranial alternating current stimulation (tACS) in the alpha range: A concurrent tACS-fMRI study.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2016-10-15

    Many studies have proven transcranial alternating current stimulation (tACS) to manipulate brain activity. Until now it is not known, however, how these manipulations in brain activity are represented in brain metabolism or how spatially specific these changes are. Alpha-tACS has been shown to enhance the amplitude of the individual alpha frequency (IAF) and a negative correlation between alpha amplitude and occipital BOLD signal was reported in numerous EEG/fMRI experiments. Thus, alpha-tACS was chosen to test the effects of tACS on the BOLD signal. A reduction thereof was expected during alpha-tACS which shows the spatial extent of tACS effects beyond modeling studies. Three groups of subjects were measured in an MRI scanner, receiving tACS at either their IAF (N=11), 1Hz (control; N=12) or sham (i.e., no stimulation - a second control; N=11) while responding to a visual vigilance task. Stimulation was administered in an interleaved pattern of tACS-on runs and tACS-free baseline periods. The BOLD signal was analyzed in response to tACS-onset during resting state and in response to seldom target stimuli. Alpha-tACS at 1.0mA reduced the task-related BOLD response to visual targets in the occipital cortex as compared to tACS-free baseline periods. The deactivation was strongest in an area where the BOLD signal was shown to correlate negatively with alpha amplitude. A direct effect of tACS on resting state BOLD signal levels could not be shown. Our findings suggest that tACS-related changes in BOLD activity occur only as a modulation of an existing BOLD response.

  4. Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce(3+) Persistent Phosphor Potentially Applicable in AC-LED.

    PubMed

    Lin, Hang; Xu, Ju; Huang, Qingming; Wang, Bo; Chen, Hui; Lin, Zebin; Wang, Yuansheng

    2015-10-07

    The state-of-the-art alternating-current light-emitting diode (AC-LED) technique suffers from adverse lighting flicker during each AC cycle. Aiming to compensate the dimming time of AC-LED, herein, we report a novel Mg3Y2(Ge1-xSix)3O12:Ce(3+) inverse-garnet persistent phosphor whose afterglow is efficiently activated by blue light with persistent luminescence in millisecond range. It is experimentally demonstrated that Si doping tailors the host bandgap, so that both the electron charging and detrapping in the persistent luminescence process are optimized. To explore the origin of the millisecond afterglow, we performed a series of thermoluminescence analyses, revealing three types of continuously distributed traps in the host. Finally, an AC-LED prototype device was fabricated, which exhibits the warm white emission with a reduced percent flicker of 71.7%. These results demonstrate that the newly developed persistent phosphor might be a promising candidate applicable in low flickering AC-LED which has advantages of cheaper price, longer lifetime, and higher energy utilization efficiency.

  5. Container-component model and XML in ALMA ACS

    NASA Astrophysics Data System (ADS)

    Sommer, Heiko; Chiozzi, Gianluca; Zagar, Klemen; Voelter, Markus

    2004-09-01

    ALMA software, from high-level data flow applications down to instrument control, is built using the ACS framework. To meet the challenges of developing distributed software in distributed teams, ACS offers a container/component model that integrates the use of XML transfer objects. ACS containers are built on top of CORBA and are available for C++, Java, and Python, so that ALMA software can be written as components in any of these languages. The containers perform technical aspects of the software system, while components can focus on the implementation of functional requirements. Like Web services, components can use XML to exchange structured data by value. For Java components, the container seamlessly integrates the use of XML binding classes, which are Java classes that encapsulate access to XML data through type-safe methods. Binding classes are generated from XML schemas, allowing the Java compiler to enforce compliance of application code with the XML schemas. This presentation will explain the capabilities of the ACS container/component model, and how it relates to other middleware technologies that are popular in industry.

  6. An overview of the ALMA Common Software (ACS) .

    NASA Astrophysics Data System (ADS)

    Di Marcantonio, P.; Cirami, R.; Caproni, A.; Chiozzi, G.; Jeram, B.; Sommer, H.; Harrington, S.; Zagar, K.; Plesko, M.; Sekoranja, M.

    The ALMA Common Software (ACS) is an application framework designed to provide a common and homogeneous software architecture and infrastructure, spanning the end to end needs of an Astronomical observatory, from the Telescope Control system to high-level data flow management. ACS offers, at the lower level, several basic services needed for object-oriented distributed computing like transparent remote object invocation, object deployment and location, distributed error, alarm handling, logging and events. On top of this it provides an application architecture based on the Component/Container paradigm that fosters sharing and reusing of software components. Although developed for the ALMA project, ACS is now used by several other projects worldwide, among which the Italian Sardinia Radio Telescope (SRT). Besides, there is an active community that shares ideas, concepts and actual software components. Major drivers for this diffusion were the choice of adopting the LGPL public license and the adoption of CORBA, a free but reliable and widely used middleware software. In this paper we present an overview of the main features of ACS, emphasizing in particular the role of INAF-OAT in this project.

  7. Safety Tips: The ACS Chemical Health and Safety Referral Service.

    ERIC Educational Resources Information Center

    Gallagher, Barbara

    1984-01-01

    Describes an American Chemical Society (ACS) service which helps individuals not familiar with the resources of safety information. The service, which provides referrals to literature, films, educational courses, or organizations that can provide answers, exists to help in complying with legislation and dealing with all aspects of chemical health…

  8. Simple circuit monitors "third wire" in ac lines

    NASA Technical Reports Server (NTRS)

    Kojima, T. T.; Stuck, D. E.

    1980-01-01

    Device detects interruption of ground connection in three-wire electrical equipment and shuts off ac power to prevent shock hazard. Silicon-controlled rectifiers detect floating ground, and deenergize optoelectric relays thereby breaking power connections. Circuit could be incorporated into hand tools, appliances, and other electrical equipment.

  9. 78 FR 39345 - ACS Wireless, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... current assets including cash, accounts receivable, material, supplies, prepayment and other current assets (``Current Assets''), and (ii) $74.2 million of property and plant and equipment (``PP&E'').\\5\\ Applicant states that many of the assets categorized as Current Assets will remain with ACS Wireless...

  10. 23. AC GENERATOR, ALLISCHALMERS SN #1246797, MFG. MILWAUKEE, KW 1600 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AC GENERATOR, ALLIS-CHALMERS SN #1246797, MFG. MILWAUKEE, KW 1600 PF 80 C/O VOLTS 2300 AMPS 503 CY 60 PH 3 RMP 164 EXC VOLTS 125 AMPS MAN 300 - Columbia Canal & Power Plant, Waterfront of Broad River, Columbia, Richland County, SC

  11. Recommended ACS Syllabus for Introductory Courses in Polymer Chemistry.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1982-01-01

    Provides syllabus for courses in introductory polymer chemistry (including major topics and recommended time allotments) and currently available textbooks and audio courses which may be used with the syllabus. Syllabus topics are congruent with those used in American Chemical Society (ACS) standardized examination in polymer chemistry. (Author/JN)

  12. AC-coupled front-end for biopotential measurements.

    PubMed

    Spinelli, Enrique Mario; Pallàs-Areny, Ramon; Mayosky, Miguel Angel

    2003-03-01

    AC coupling is essential in biopotential measurements. Electrode offset potentials can be several orders of magnitude larger than the amplitudes of the biological signals of interest, thus limiting the admissible gain of a dc-coupled front end to prevent amplifier saturation. A high-gain input stage needs ac input coupling. This can be achieved by series capacitors, but in order to provide a bias path, grounded resistors are usually included, which degrade the common mode rejection ratio (CMRR). This paper proposes a novel balanced input ac-coupling network that provides a bias path without any connection to ground, thus resulting in a high CMRR. The circuit being passive, it does not limit the differential dc input voltage. Furthermore, differential signals are ac coupled, whereas common-mode voltages are dc coupled, thus allowing the closed-loop control of the dc common mode voltage by means of a driven-right-leg circuit. This makes the circuit compatible with common-mode dc shifting strategies intended for single-supply biopotential amplifiers. The proposed circuit allows the implementation of high-gain biopotential amplifiers with a reduced number of parts, thus resulting in low power consumption. An electrocardiogram amplifier built according to the proposed design achieves a CMRR of 123 dB at 50 Hz.

  13. Superconducting phase in UGe2 by AC calorimetry

    NASA Astrophysics Data System (ADS)

    Taufour, Valentin; Aoki, Dai; Knebel, Georg; Flouquet, Jacques

    2012-12-01

    We report on the detection of the superconducting transition Tsc in the superconducting ferromagnet UGe2 by AC calorimetry under pressure. Our results confirm the small value of the specific heat jump. We suggest that this observation is intrinsic in origin and does not arises from a distribution of Tsc due to pressure gradient or sample defects.

  14. DESIGN OF AN AC-DIPOLE FOR USE IN RHIC.

    SciTech Connect

    PARKER,B.; BAI,M.; JAIN,A.; MCINTYRE,G.; METH,M.; PEGGS,S.; ROSER,T.; SANDERS,R.; TRBOJEVIC,D.

    1999-03-29

    We present two options for implementing a pair of AC-dipoles in RHIC for spin flipping, measuring linear optical functions and nonlinear diagnostics. AC-dipoles are magnets that can be adiabatically excited and de-excited with a continuous sine-wave in order to coherently move circulating beam out to large betatron amplitudes without incurring emittance blow up [1]. The AGS already uses a similar device for getting polarized proton beams through depolarizing resonances [2]. By placing the magnets in the IP4 common beam region, two AC-dipoles are sufficient to excite both horizontal and vertical motion in both RHIC rings. While we initially investigated an iron-dominated magnet design using available steel tape cores; we now favor a new air coil plus ferrite design featuring mechanical frequency tuning, in order to best match available resources to demanding frequency sweeping requirements. Both magnet designs are presented here along with model magnet test results. The challenge is to make AC-dipoles available for year 2000 RHIC running.

  15. Watts Up? Pro AC Power Meter for Automated Energy Recording

    PubMed Central

    Hirst, Jason M.; Miller, Jonathan R.; Kaplan, Brent A.; Reed, Derek D.

    2013-01-01

    The purpose of the present paper is to review the Watts up? Pro AC power meter. Evaluations of the meter's reliability for measuring energy consumption by consumer electronics yielded acceptable levels of reliability. Implications and limitations for the use of this product in behavior analytic research and practice are discussed.

  16. Introducing AC Inductive Reactance with a Power Tool

    ERIC Educational Resources Information Center

    Bryant, Wesley; Baker, Blane

    2016-01-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…

  17. Regenerating /sup 227/Ac from highly contaminated preparations

    SciTech Connect

    Volynskii, L.D.; Garbuzov, V.M.; Tsirlin, V.A.

    1988-05-01

    Studies have been made on the conditions for coprecipitation of actinium with calcium, barium, and iron fluorides, as well as on the conditions for the selective separation of actinium and iron on a cation-exchange material by the use of hydrochloric acid in acetone. Several ways of regenerating /sup 337/Ac from highly contaminated preparations are proposed.

  18. Cantilever's behavior in the AC mode of an AFM

    SciTech Connect

    Nunes, V.B.; Zanette, S.I.; Caride, A.O.; Prioli, R.; Rivas, A.M.F

    2003-03-15

    In this paper, a model with a small number of parameters is used to simulate the motion of a cantilever in the AC mode of an atomic force microscope (AFM). The results elucidate the transition dependence-from noncontact to tapping operating mode-on the height of the contamination layer and on the stiffness of the sample.

  19. 14. VIEW OF AIR COMPRESSOR. 1500 kw Westinghouse AC generator ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF AIR COMPRESSOR. 1500 kw Westinghouse AC generator steam-turbine unit; beyond is air compressor of Chicago Pneumatic Tool Company, 1920, engineered by Earl E. Know Company, Erie, Pennsylvania. - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA

  20. Equivalent Circuits For AC-Impedance Analysis Of Corrosion

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.