Science.gov

Sample records for ac discharge plasma

  1. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  2. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma

    NASA Astrophysics Data System (ADS)

    Itarashiki, Tomomasa; Hayashi, Nobuya; Yonesu, Akira

    2016-01-01

    Microwave plasma sterilization has recently been attracting attention for medical applications. However, it is difficult to perform low-temperature sterilization in short time periods. Increasing the output power shortens the time required for sterilization but causes the temperature to increase. To overcome this issue, we have developed a hybrid plasma system that combines a microwave torch plasma and a high-voltage mesh plasma, which allows radicals to be produced at low temperatures. Using this system, successful sterilization was shown to be possible in a period of 45 min at a temperature of 41 °C.

  3. Production Of Multi-magnetron Plasma By Using Polyphase Ac Glow Discharge In An Improved Multi-pole Magnetic Field

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazunori; Motoki, Kentaro; Miyamoto, Masahiro; Uetani, Yasuhiro

    1998-10-01

    Effects of an improved multi-pole magnetic field on a plasma production generated by a polyphase ac glow discharge with multiple electrodes have been investigated. Conventional configuration of the multi-pole magnetic filed has been modified to suppress plasma losses at both ends of the chamber due to ExB drift motion. The modified multi-pole magnetic field has enabled us to produce a multiple magnetron-plasma at a considerably low pressure less than mTorr. The low temperature plasma has been widely used as the fine processing technology of a dry etching and as the thin film formation technology of a sputtering coating. Large-scale plasmas which can be generated at a low gas-pressure have been desired for more wider dry etching and greater sputter coating. The purpose of this study is to develop a large-scale and low-cost plasma generator by using a polyphase ac power source with the low frequency. In this session, we will present the experimental result as to a multiple magnetron-plasma generated in the modified twenty-four poles magnetic field by using the twenty-four-phase ac power source with the commercial electric power frequency of 60Hz. The ac power is supplied to twenty-four electrodes which are fixed to the water-cooled chamber-wall through sheet insulators so that the electrodes can be cooled indirectly.

  4. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  5. Oxidative coupling of methane with ac and dc corona discharges

    SciTech Connect

    Liu, C.; Marafee, A.; Hill, B.; Xu, G.; Mallinson, R.; Lobban, L.

    1996-10-01

    The oxidative coupling of methane (OCM) is being actively studied for the production of higher hydrocarbons from natural gas. The present study concentrated on the oxidative conversion of methane in an atmospheric pressure, nonthermal plasma formed by ac or dc corona discharges. Methyl radicals are formed by reaction with negatively-charged oxygen species created in the corona discharge. The selectivity to products ethane and ethylene is affected by electrode polarity, frequency, and oxygen partial pressure in the feed. Higher C{sub 2} yields were obtained with the ac corona. All the ac corona discharges are initiated at room temperature (i.e., no oven or other heat source is used), and the temperature increases to 300--500 C due to the exothermic reactions and the discharge itself. The largest C{sub 2} yield is 21% with 43.3% methane conversion and 48.3% C{sub 2} selectivity at a flowrate of 100 cm{sup 3}/min when the ac corona is at 30 Hz, 5 kV (rms) input power was used. The methane conversion may be improved to more than 50% by increasing the residence time, but the C{sub 2} selectivity decreases. A reaction mechanism including the oxidative dehydrogenation (OXD) of ethane to ethylene is presented to explain the observed phenomena. The results suggest that ac and/or dc gas discharge techniques have significant promise for improving the economics of OCM processes.

  6. Development of ac corona discharge modes at atmospheric pressure

    SciTech Connect

    El-Koramy, Reda Ahmed; Yehia, Ashraf; Omer, Mohamed

    2011-02-15

    Corona discharges in gases exist under several distinctive forms. In this paper, a survey study has been made of ac corona discharge modes generated in some different gases fed in a wire-duct reactor with a constant rate of flowing at atmospheric pressure. The properties of different corona modes are analyzed under some condition transitions from Trichel pulses to a steady glow. In the course of the presented experimental work, numerous apparent contradictions with earlier observations necessitated further study and are given to provide more information on the physical mechanisms of the ac corona discharges. Furthermore, we have gained insight into some new technologies and applications of the environmentally friendly corona and plasma discharges.

  7. Modeling electronegative plasma discharge

    SciTech Connect

    Lichtenberg, A.J.; Lieberman, M.A.

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  8. AC plasma anemometer—characteristics and design

    NASA Astrophysics Data System (ADS)

    Marshall, Curtis; Matlis, Eric; Corke, Thomas; Gogineni, Sivaram

    2015-08-01

    The characteristics and design of a high-bandwidth flow sensor that uses an AC glow discharge (plasma) as the sensing element is presented. The plasma forms in the air gap between two protruding low profile electrodes attached to a probe body. The output from the anemometer is an amplitude modulated version of the AC voltage input that contains information about the mean and fluctuating velocity components. The anemometer circuitry includes resistance and capacitance elements that simulate a dielectric-barrier to maintain a diffuse plasma, and a constant-current feedback control that maintains operation within the desired glow discharge regime over an extended range of air velocities. Mean velocity calibrations are demonstrated over a range from 0 to 140 m s-1. Over this velocity range, the mean output voltage varied linearly with air velocity, providing a constant static sensitivity. The effect of the electrode gap and input AC carrier frequency on the anemometer static sensitivity and dynamic response are investigated. Experiments are performed to compare measurements obtained with a plasma sensor operating at two AC carrier frequencies against that of a constant-temperature hot-wire. All three sensors were calibrated against the same known velocity reference. An uncertainty based on the standard deviation of the velocity calibration fit was applied to the mean and fluctuating velocity measurements of the three sensors. The motivation is not to replace hot-wires as a general measurement tool, but rather as an alternative to hot-wires in harsh environments or at high Mach numbers where they either have difficulty in surviving or lack the necessary frequency response.

  9. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  10. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  11. Theory of beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1982-01-01

    The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.

  12. Contrasting Behaviours of AC and DC Excited Plasmas in Contact with Liquid

    NASA Astrophysics Data System (ADS)

    Liu, Jingjing; Hu, Xiao

    2013-08-01

    A comparative study of the needle-to-liquid plasma in the continuous mode with DC and AC excitations is detailed in this paper. All plasmas studied here are shown to be glow discharges. This study is based on measurements of several key parameters, including electrical energy, optical emission intensities of active species, rotational and vibrational temperatures, and temperatures of the needle and liquid electrodes. AC plasmas can produce 1.2~5 times higher excited state active species than DC plasmas under the same dissipated power. AC excited liquid plasmas have the highest energy utilization efficiency among the three systems (AC excited plasmas, DC excited plasmas with water anode and DC excited plasmas with water cathode); most of the energy is used to produce useful species rather than to heat the electrodes and plasmas.

  13. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  14. An analytical model for floating probes in AC plasma and its application to double probes for high density, high power RF discharges

    NASA Astrophysics Data System (ADS)

    Caneses, Juan Francisco; Blackwell, Boyd; Plasma Research Laboratory Team

    2013-10-01

    In this work we provide an analytical model that allows one to quantitatively assess the RF compensation performance and suitability of the double probe technique for use in RF generated plasma. The model is based in the theory of the self-bias effect as described in Braithwaite's work, which we extend to include the time resolved behavior of floating probes. We provide experimental verification for this model and show that the theory of transient RF self-bias probes and harmonic current detection probes are limiting cases of this extended model. Furthermore, the model shows that the RF compensation is solely dependent on the sheath impedance, the probe's stray capacitance to ground and RF frequency. In addition, we use these results to implement a double probe system for use in high density helicon plasma where heat loads could potentially damage the intricate components in an RF compensating circuit. Finally we use this model to (1) recommend ways to extend the operational regime of double probes where the plasma conditions would render them unsuitable and to (2) comment on the use of this model to aid design of RF compensated Langmuir probes.

  15. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  16. Plasma in a Pulsed Discharge Environment

    NASA Technical Reports Server (NTRS)

    Remy, J.; Bienier, L.; Salama, F.

    2005-01-01

    The plasma generated in a pulsed slit discharge nozzle is used to form molecular ions in an astrophysically relevant environment. The plasma has been characterized as a glow discharge in the abnormal regime. Laboratory studies help understand the formation processes of polycyclic aromatic hydrocarbon (PAH) ions that are thought to be the source of the ubiquitous unidentified infrared bands.

  17. Plasma quiescence in a reflex discharge

    SciTech Connect

    Jerde, L.; Friedman, S.; Carr, W.; Seidl, M.

    1980-02-01

    A thermionic cathode reflex discharge and the plasma it produces are studied. It is found that extremely quiescent plasmas can be produced when the electron-loss rate due to classical diffusion is equal to the ion-loss rate. Particle and power balances for the quiescent plasma are obtained, and the average electron energy loss per ion produced is determined.

  18. Characteristics of ac capillary discharge produced in electrically conductive water solution

    NASA Astrophysics Data System (ADS)

    DeBaerdemaeker, F.; Simek, M.; Schmidt, J.; Leys, C.

    2007-05-01

    Basic electrical, optical and calorimetric characteristics of an ac (50 Hz) driven capillary discharge produced in a water solution were studied for initial water solution conductivity in the range 50-1000 µS cm-1. Typical current and voltage waveforms and emission intensities produced by several electronically excited species were recorded with high time resolution. The evolution of the electrical current, power and capillary resistance was inspected during positive ac half-cycle for various operational regimes. A fast relaxation of the discharge following a breakdown event was observed. Optical measurements indicate that radiative species are mostly generated during the first few hundreds of nanoseconds of plasma generation and that the average duration of plasma emission induced by a discharge pulse is of the order of a few microseconds. Results of calorimetric measurements are in good agreement with average electrical measurements and support the assumption that the discharge is a constant source of heat delivered to the liquid. Assuming that only a fraction of the heat released inside the capillary can be transported by conduction through the capillary wall and via its orifices, the processes of bubble formation, expulsion and re-filling the capillary with 'fresh' water must play a key role in maintaining a thermal balance during long-time steady-state operation of the device. Furthermore, a simplified numerical model and a first order energy deposition calculation prove the plausibility of the bubble breakdown mechanism.

  19. Sound Attenuation by Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Stepaniuk, Vadim; Sheverev, Valery; Otugen, Volkan; Raman, Ganesh; Soukhomlinov, Vladimir

    2003-11-01

    Interaction of sound waves with glow discharge plasma was studied experimentally, as a continuation of the work reported earlier [1]. The main thrust of this investigation was to determine the effectiveness of using glow discharge plasma as a sound barrier in aerospace applications. The present study focused on the determination of the angular dependence of the attenuation of sound passing through a glow discharge. Experiments were conducted in an anechoic chamber where the intensity of a single frequency acoustic wave reflected from a plasma sheet was measured at various angles of incidence. The experiments established the strong influence of the incident angle on the reflected sound intensity, which agrees well with the theoretical estimates. 1 Stepaniuk, V., Tarau, C., Otugen, V., Sheverev V., Soukhomlinov V., Raman G., Sound Attenuation by Glow Discharge Plasma, AIAA Paper 2003-0371.

  20. Electron Temperature Modification in Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2011-10-01

    In gas discharge plasma with a Maxwellian electron energy distribution function (EEDF), the ionization balance results in the electron temperature Te being solely a function of the product of gas pressure p and plasma characteristic size d, Te = Te(pd), independently on plasma density and electron heating mechanism. This common feature of gas discharge plasma takes place in self-sustained discharges where ionization is locally coupled with electron heating, usually in a uniform heating electric field. At such condition, there is no room for electron temperature change at fixed pd. Variety of non-equilibrium phenomena observed in self-organized dc and rf discharge structures, and in relaxation process therein suggests the way to EEDF and Te modification. At such conditions, the electron heating can be separated (in space or/and in time) from the ionization. Few examples of such discharge structures in well know stationary dc and rf discharges and in plasma transient processes, leading to considerable mean electron energy reduction, will be considered in the presentation together with abbreviated review of existing methods and experimental results on EEDF control in laboratory plasmas. This work was supported in part by the DOE OFES (Contract No DE-SC0001939).

  1. Mixing Layer Excitation by Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ely, Richard; Little, Jesse

    2012-11-01

    The response of a mixing layer with velocity ratio 0.28 to perturbations near the high-speed side (U2=11 m/s, ReL = 0.26 × 106) of its origin from dielectric barrier discharge plasma actuators is studied experimentally. Both alternating current (ac) and nanosecond (ns) pulse driven plasma are investigated in an effort to clarify the mechanisms associated with each technique as well as the more general physics associated with flow control via momentum-based versus thermal actuation. Ac-DBD plasma actuators, which function through electrohydrodynamic effects, are found to generate an increase in mixing layer momentum thickness that is strongly dependent on forcing frequency. Results are qualitatively similar to previous archival literature on the topic employing oscillating flaps. Ns-DBD plasma, which is believed to function through thermal effects, has no measureable influence on the mixing layer profile at similar forcing conditions. In the context of previous archival literature, these results suggest different physical mechanisms govern active control via ac- and ns-DBD plasma actuation and more generally, momentum versus thermal perturbations. Further investigation of these phenomena will be provided through variation of the boundary/mixing layer properties and forcing parameters in the context of spatially and temporally resolved experimental data. Supported by: AFOSR and Raytheon Missile Systems.

  2. Tunable microwave pulse generation using discharge plasmas

    NASA Astrophysics Data System (ADS)

    Biggs, David R.; Cappelli, Mark A.

    2016-09-01

    The response of a microwave resonant cavity with a plasma discharge tube inside is (continuously or intermittently) filled with a plasma and studied both numerically and experimentally. The resonance frequency of the cavity-plasma system is sensitive to plasma densities from 1016 to 1020 m-3 corresponding to resonant frequencies of 12.3-18.3 GHz. The system is first characterized for its quasi-steady state response using a low frequency plasma discharge at 70 kHz and 125 V RMS. A plasma discharge is then driven with a high voltage pulse of 4 kV and a CW input microwave signal is converted to a pulsed output signal. The microwave pulse delay and pulse width are varied by selecting the input microwave frequency. The microwave input power is set to +20 dBm. The delay of the microwave pulse is also used as a diagnostic tool for measuring the variation of plasma density in time and, with numerical fitting, the discharge plasma recombination coefficient and diffusion timescales are estimated.

  3. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, Devendra; McGlynn, Sean P.

    1992-01-01

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  4. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  5. Biological and Agricultural Studies on Application of Discharge Plasma and Electromagnetic Fields 2.Sterilization by Electrical Discharges and Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki

    The use of electrical discharges and plasmas for sterilization is reviewed. Plasmas generated by a silent discharge, a pulse discharge, and a radio frequency discharge under atmospheric pressure have been used for sterilization. Furthermore, a microwave plasma, a radio frequency plasma, and a low temperature plasma with hydrogen peroxide under low pressure conditions have been also used for sterilization. Sterilization results from injury caused by the discharge current, and from the reaction of species affected by the discharge. A silent discharge with air or oxygen is most effective for the sterilization. Nitrogen discharge also has a significant effect, however, argon discharge does not have a significant effect.

  6. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  7. Characterization of plasma in magnetic multidipole discharges

    NASA Astrophysics Data System (ADS)

    Guimaraesferreira, Julio

    1988-09-01

    A characterization of the discharge of the quiescent plasma machine of INPE, and an identification of the most relevant processes in the definition of its plasma properties, were achieved. Measurements of plasma potential, the floating potential, the temperature of the electrons, and the density of the plasma, for pressures ranging from 10(-3) to 10(-1) Pa and for discharge potentials for 45 V to 120 V were accomplished. These measurements were made with a Langmuir spherical probe with 1mm in diameter. In the whole range of operation the presence of two populations of electrons with distinct temperatures in the energy range from 1 to 10 eV was observed, although for pressures approaching 10(-1) Pa the plasma tended to a single population of electrons with temperature of 1eV. The difference between plasma and floating potentials was observed to become smaller as the pressure raised, and the potential difference between plasma and anode reached a value around 2 V when pressure raised above 10(-2) Pa. The plasma density increases approximately linearly with pressure, for values below 10(-2) Pa, but above 10(-1) Pa its increase with pressure is quite reduced. A study on the collision processes in the plasma volume and on loss processes to surfaces allowed to interpret qualitatively the observed plasma behavior and to estimate, by means of simple expressions, some of the plasma parameters. The loss areas for ions and primary electrons were estimated from experimental results. A simple quantitative model which allows the calculation of plasma density in the whole range of operation, reproduced the correct order of magnitude of experimental values. However, an additional work, both theoretical and experimental, is required to obtain better agreement between experimental and theoretical values.

  8. Plasma instabilities in electronegative inductive discharges

    NASA Astrophysics Data System (ADS)

    Marakhtanov, Alexei Mikhail

    Plasma instabilities have been observed in low-pressure inductive discharges, in the transition between low density capacitive mode and high density inductive mode of the discharge when attaching gases such as SF6 and Ar/SF 6 mixtures are used. Oscillations of charged particles, plasma potential and light emitted from the plasma with the frequencies from a few hertz to tens of kilohertz are seen for gas pressures between 1 and 100 mTorr and the discharge power in the range of 75--1200 W. The region of instability increases as the plasma becomes more electronegative and the frequency of plasma oscillations increases as the power, pressure, and gas flow rate increase. The instability frequencies may also depend on the settings of a matching network. A volume-averaged (global) model of the instability has been developed, for a discharge containing time varying densities of electrons, positive ions, and negative ions, and time invariant excited states and neutral densities. The particle and energy balance equations are integrated to produce the dynamical behavior. As pressure or power is varied to cross a threshold, the instability goes through a series of oscillatory states to large scale relaxation oscillations between higher and lower density states. The model qualitatively agrees with experimental observations, and also shows a significant influence of the matching network. A stability analysis of an electronegative discharge has been performed, using a Hurwitz criterion, for a system of linearized particle and power balance differential equations. Capacitive coupling plays a crucial role in the instability process. A variable electrostatic (Faraday) shield has been used to control the capacitive coupling from the excitation coil to the plasma. The plasma instability disappears when the shielded area exceeds 65% of the total area of the coil. The global model of instability gives a slightly higher value of 85% for instability suppression with the same discharge

  9. Pulse-discharge plasmas for plasma-accelerator applications

    SciTech Connect

    Clayton, C. E.; Joshi, C.; Lopes, N. C.

    2012-12-21

    For particle-beam-driven plasma wakefield accelerators, a long and fully-ionized plasma is desirable. We describe an experiment at UCLA to develop a prototype of such plasma using a pulsed-current discharge. Scaling of the plasma density with glass-tube diameter and with discharge-circuit parameters is currently underway. We have found that 4 Torr of Argon can be fully ionized to a density of about 1.3 Multiplication-Sign 10{sup 17} cm{sup -3} when the current density in the 1 inch diameter, 1.2 meter-long tube is around 2 kA/cm{sup 2}, at least at one point along the discharge. The homogeneity of the plasma density in the longitudinal direction is crucial to prevent slippage of the driven plasma structures with the particles. Equally important are the transverse gradients since any dipole asymmetry in the transverse direction can lead to 'steering' of the particle beam. The longitudinal and transverse gradients may be a function of time into the discharge, the shape of the electrodes, the tube size, and the fractional ionization for a given fill pressure. These issues are currently under investigation.

  10. Research and Development of Large Area Color AC Plasma Displays

    NASA Astrophysics Data System (ADS)

    Shinoda, Tsutae

    1998-10-01

    Plasma display is essentially a gas discharge device using discharges in small cavities about 0. 1 m. The color plasma displays utilize the visible light from phosphors excited by the ultra-violet by discharge in contrast to monochrome plasma displays utilizing visible light directly from gas discharges. At the early stage of the color plasma display development, the degradation of the phosphors and unstable operating voltage prevented to realize a practical color plasma display. The introduction of the three-electrode surface-discharge technology opened the way to solve the problems. Two key technologies of a simple panel structure with a stripe rib and phosphor alignment and a full color image driving method with an address-and-display-period-separated sub-field method have realized practically available full color plasma displays. A full color plasma display has been firstly developed in 1992 with a 21-in.-diagonal PDP and then a 42-in.-diagonal PDP in 1995 Currently a 50-in.-diagonal color plasma display has been developed. The large area color plasma displays have already been put into the market and are creating new markets, such as a wall hanging TV and multimedia displays for advertisement, information, etc. This paper will show the history of the surface-discharge color plasma display technologies and current status of the color plasma display.

  11. Plasma antennas driven by 5–20 kHz AC power supply

    SciTech Connect

    Zhao, Jiansen Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  12. Self-organized pattern formation of an atmospheric-pressure, ac glow discharge with an electrolyte electrode

    NASA Astrophysics Data System (ADS)

    Zheng, Peichao; Wang, Xiaomeng; Wang, Jinmei; Yu, Bin; Liu, Hongdi; Zhang, Bin; Yang, Rui

    2015-02-01

    An atmospheric-pressure plasma sustained by an ac power supply was generated using electrolyte solution as one of the electrodes. By altering the power supply, ring-like patterns, double-ring patterns and plasma-spot patterns were observed at the electrolyte-electrode surface. Synchronous current-voltage characteristics and time-resolved images were measured. Important factors for the self-organized patterns, including the electrode gap, power, frequency and electrolyte concentration, were explored. The optical spectrum characteristics of the device were investigated. The pH of the solution after discharge was also explored and the results show that the pH of the solution is evidently reduced after the discharge, implying that acidic components are produced in the solution. This study provides an alternative discharge method for producing patterns on a water surface.

  13. 3-D Simulation of Sustain Discharge with Auxiliary Pulse in an AC-PDP

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshikuni; Ishii, Keiji; Motoyama, Yasushi; Murakami, Yukio; Tachibana, Kunihide

    2004-09-01

    In order to improve the discharge characteristics of a surface discharge type alternating current plasma display panel (AC-PDP) with addressing and sustaining electrodes, voltage control of the addressing electrode of the cell by applying auxiliary pulses has been widely investigated. As the detailed mechanisms are not well understood, we used 3-D multi-fluid computer simulation to examine the mechanism for improving the efficiency of generating excited particles for emission of vacuum ultraviolet (VUV) rays. As a result, it was pointed out that the discharge volume was increased due to the influence of the high address voltage, and the electrons which spread in the cell space have sufficient energy to excite Xe atoms. When the voltage of the auxiliary pulse was high, the generation efficiency of Xe was improved about 40% compared with the case when the voltage was low, because the quantity of Xe^* generated increased sharply even though the power consumption increased. This result is the same as that already reported(Y. Shintani et al., J. Phys. D, Appl. Phys. 36, 2928(2003).), and so accurately reflects the actual phenomenon.

  14. An analytical theory of corona discharge plasmas

    SciTech Connect

    Uhm, H.S.; Lee, W.M.

    1997-09-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100{percent} energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R{sub c}p, plasma is generated for a high-voltage pulse satisfying u{gt}u{sub c}, where u{sub c} is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R{sub c} is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude.

  15. Plasma etching in a multipolar discharge

    NASA Astrophysics Data System (ADS)

    Wicker, T. E.; Mantei, T. D.

    1985-03-01

    Etching of silicon and SiO2 has been investigated in a dc plasma discharge confined by a multipolar surface magnetic field layer. The reactive plasma is produced by primary ionizing electrons drawn from heated tungsten filaments and confined by permanent magnets. Electrical probe measurements show that a uniform high-density plasma (1010-1011 cm-3) is sustained in SF6-O2 at very low pressure (0.2-2.0×10-3 Torr). Substrates are biased independently of plasma production by a low-frequency alternating voltage (0-400 V) applied to the substrate through a blocking capacitor. Anisotropic profiles are etched into Si in SF6-20% O2 with etch rates in excess of 1 μm/min at 2×10-3 Torr. The etch rate increases with increasing primary electron current (up to 3 A) and energy (up to 60 eV), gas pressure (up to 2.0×10-3 Torr), substrate bias voltage, and the addition of up to 20% O2. For higher ionizing electron energies (>60 eV) and higher gas pressure (>2.0×10-3 Torr), etching is partially blocked by residue formation. The etch anisotropy depends mainly on substrate bias, increasing for higher values of bias voltage. The Si:SiO2 etch selectivity is typically 10-20, becoming large with decreasing substrate bias and plasma ion density.

  16. Spectral signature of the beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Hallinan, T. J.; Deehr, C. S.; Hoch, E.; Viereck, R.; Bernstein, W.; Konradi, A.

    1988-01-01

    The effect of the beam current on the spectrum of a beam plasma discharge (BPD) in N2 at 50, 100, or 400 microtorr is investigated experimentally in the 2.6-m chamber described by Bernstein et al. (1983). The results are presented graphically and discussed in detail. An increase in the ratio of first positive N2 emissions to first negative N2(+) emissions at BPD onset is shown to disappear at currents above the BPD threshold and is attributed to a large population of suprathermal electrons.

  17. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  18. Self-energized plasma compressor. [for compressing plasma discharged from coaxial plasma generator

    NASA Technical Reports Server (NTRS)

    Shriver, E. L.; Igenbergs, E. B. (Inventor)

    1974-01-01

    The self-energized plasma compressor is described which compresses plasma discharged from a coaxial plasma generator. The device includes a helically shaped coil which is coaxially aligned with the center axis of the coaxial plasma generator. The plasma generator creates a current through the helical coil which, in turn, generates a time varying magnetic field that creates a force which acts radially upon the plasma. The coaxial plasma generator and helical coil move the plasma under high pressure and temperature to the narrow end of the coil. Positioned adjacent to the narrow end of the coil are beads which are engaged by the plasma to be accelerated to hypervelocities for simulating meteoroids.

  19. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality.

    PubMed

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  20. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-04-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.

  1. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  2. Diagnostics of AC excited Atmospheric Pressure Plasma Jet with He for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hori, Masaru; Takeda, Keigo; Kumakura, Takumi; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Nakai, Yoshihiro

    2014-10-01

    Atmospheric pressure plasma jets (APPJ) are frequently used for biomedical applications. Reactive species generated by the APPJ play important roles for treatments of biomedical samples. Therefore, high density APPJ sources are required to realize the high performance. Our group has developed AC excited Ar APPJ with electron density as high as 1015 cm-3, and realized the selective killing of cancer cells and the inactivate spores of Penicillium digitatum. Recently, a new spot-size AC excited APPJ with He gas have been developed. In this study, the He APPJ was characterized by using spectroscopy. The plasma was discharged at a He flow rate of 5 slm and a discharge voltage of AC 9 kV. Gas temperature and electron density of the APPJ were measured by optical emission spectroscopy. From theoretical fitting of 2nd positive system of N2 emission (380.4 nm) and Stark broadening of Balmer β line of H atom (486.1 nm), the gas temperature and the electron density was estimated to be 299 K and 3.4. × 1015 cm-3. The AC excited He APPJ has a potential to realize high density with room temperature and become a very powerful tool for biomedical applications.

  3. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  4. Modelling the ITER glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Kogut, D.; Douai, D.; Hagelaar, G.; Pitts, R. A.

    2015-08-01

    The ITER glow discharge cleaning (GDC) system (Maruyama et al., 2012) is aimed to prepare in-vessel component surfaces prior to the machine start-up. In order to assess glow discharge uniformity and wall coverage, thus conditioning efficiency of the system, a new 2D multi-fluid model has been developed (Hagelaar, 2012). In this work the model is compared with published experimental data on GDC wall ion fluxes in JET and RFX (Douai et al., 2013; Canton et al., 2013). The simulations of H2-GDC in ITER for the case of 1 or 2 anodes indicate a good level of homogeneity of plasma parameters in the negative glow and of the wall ion flux in the common pressure domain for GDC: 0.1-0.5 Pa. Although the model geometry does not allow simulation of all seven ITER anodes operating simultaneously, the results can be extrapolated to the full system with an average ion current density of 0.21 A/m2, which is comparable to JET (0.10 A/m2).

  5. Influence of Wall Conditioning on ADITYA Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Tanna, R. L.; Jadeja, K. A.; Bhatt, S. B.; Bawankar, P. S.; Gupta, C. N.; Joisa, Y. S.; Atrey, P. K.; Manchanda, R.; Ramaiya, Nilam; Ghosh, J.; Raju, D.; Chattopadhyay, P. K.; Jha, R.; the Aditya Team

    2012-11-01

    ADITYA (R0 = 75 cm, a = 25 cm), an ohmically heated circular limiter tokamak is regularly being operated to carry out several experiments related to controlled thermonuclear fusion research. In recent operational campaign, various experiments have been carried out to enhance the discharge performance as well as improve the plasma parameters. A comparative plasma discharges study with SiC and Graphite limiter was carried out to increase the plasma heating and reduce runaways. Excellent plasma heating has been observed in many discharges using Graphite limiter. Good repeatability of low hard X-rays, high temperature discharges was obtained. The control of plasma impurities and hydrogen recycling is very much essential for high performance discharges. The wall conditioning in ADITYA tokamak is carried out by hydrogen glow discharge cleaning (GDC), Pulse discharge cleaning and electron cyclotron resonance (ECR) discharge cleaning techniques with and without lithium wall coating. GDC assisted Lithiumization was found to be the most effective technique for substantial reduction in Ha and low Z (CIII & O-I) impurities. The partial pressure of mass number 18 (H2O) and 28 (N2/C2H4/CO) were regularly monitored before plasma discharge operation. Furthermore, experiment on optimization of pulse gas feed was helped in reducing wall loading and recycling. However, hard X-rays suppression with the application of multiple gas puff has been successfully achieved during negative converter operation, which led to the extension of plasma pulse length up to ~ 250 ms. All the supporting facts and operation aspects are reported.

  6. Studying surface glow discharge for application in plasma aerodynamics

    NASA Astrophysics Data System (ADS)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  7. "Super-acceleration" of ions in a stationary plasma discharge

    NASA Astrophysics Data System (ADS)

    Bardakov, Vladimir; Ivanov, Sergey; Kazantsev, Alexander; Strokin, Nikolay; Stupin, Aleksey

    2016-10-01

    We report on the detection of the acceleration effect of the bulk of ions in a stationary plasma E × B discharge to energies exceeding considerably the value equivalent to the discharge voltage. We determined the conditions necessary for the generation of high-energy ions, and ascertained the influence exerted on the value of the ion energies by pressure (flow rate) and the kind of plasma-producing gas, and by the value of discharge current. The possible acceleration mechanism is suggested.

  8. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2004-03-08

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  9. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  10. Radiation Efficiency of AC-excited Micro Hollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Biborosch, L. D.; Petzenhauser, I.; Popescu, S.; Luca, D.; Frank, K.

    2006-01-01

    This contribution reports on micro hollow cathode discharges (MHCD) generated in a device supplied by rectified but non-filtered low-frequency currents to preserve the cathode function of one micro electrode. The vacuum ultraviolet (VUV) radiation efficiency of such an MHCD was investigated in high-pressure argon in the frequency range from 40 kHz to 140 kHz. Both the currents and voltages of the MHCD device are nonlinear and the power input shows a flat maximum at about 50 kHz. The VUV relative efficiency also displays a more pronounced maximum at this frequency but remains still comparable with those of the dc supplied MHCD. Unfortunately, this VUV efficiency rather refers to the resonant lines of oxygen impurity at about 130.5 nm and not to the argon excimer radiation.

  11. Radiation Efficiency of AC-excited Micro Hollow Cathode Discharges

    SciTech Connect

    Biborosch, L. D.; Popescu, S.; Luca, D.; Petzenhauser, I.; Frank, K.

    2006-01-15

    This contribution reports on micro hollow cathode discharges (MHCD) generated in a device supplied by rectified but non-filtered low-frequency currents to preserve the cathode function of one micro electrode. The vacuum ultraviolet (VUV) radiation efficiency of such an MHCD was investigated in high-pressure argon in the frequency range from 40 kHz to 140 kHz. Both the currents and voltages of the MHCD device are nonlinear and the power input shows a flat maximum at about 50 kHz. The VUV relative efficiency also displays a more pronounced maximum at this frequency but remains still comparable with those of the dc supplied MHCD. Unfortunately, this VUV efficiency rather refers to the resonant lines of oxygen impurity at about 130.5 nm and not to the argon excimer radiation.

  12. Global modeling of micro plasma discharge in deionized water

    NASA Astrophysics Data System (ADS)

    Mujumdar, Soham S.; Curreli, Davide; Kapoor, Shiv G.; Ruzic, David

    2013-09-01

    One of the major applications of plasmas in liquids is the micro electro-discharge machining process (μ-EDM) where the material from one of the electrodes is removed by creating repeated pulsed plasma discharges in the inter-electrode gap filled with a dielectric liquid. One of the most commonly used dielectric for the process is deionized water. A model of a single plasma discharge event in deionized water during the μ-EDM process is presented in this paper. The plasma is modeled using a global modeling approach where the plasma is assumed to be spatially uniform, and equations of mass and energy conservation are solved together in conjunction with the expanding plasma bubble dynamics. The model is simulated for different combinations of the applied electric field and the discharge gap distance to obtain complete temporal characterization of the H2O plasma in terms of the composition of the plasma, temperature of the plasma and the radius of the plasma bubble. The model predicts time-averaged plasma temperature in the range of 12282-29572 K and electron density in the range of 5 . 12 - 30 . 22 ×1024 m-3 for applied electric fields in the range of 10 - 2000 MV/m and discharge gaps in the range of 0.5 - 20 μm.

  13. Energy and matter flows in a plasma focus discharge

    NASA Astrophysics Data System (ADS)

    Vikhrev, V. V.; Suslin, S. V.

    2016-01-01

    The Plasma Focus is a type of z-pinch that is widely used for both basic research and applied tasks, e.g., as materials modification or research on intense plasma flows. Although the basic mechanisms of z-pinch compression are well-known, many of the processes that occur in the plasma focus have received less attention. This article is devoted to the study of plasma jets and some of its consequences in plasma focus discharges.

  14. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Dang, Sai-Chao; Ma, Qiang; Xia, Wei-Dong

    2015-07-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current Cms, air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005 and 11034010).

  15. Beam-plasma instabilities and the beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Boswell, R. W.

    1986-01-01

    Using a new waves on magnetized beams and turbulence (WOMBAT) 0-450 eV electron gun, measurements bearing on the generation of beam-plasma discharge (BPD) are made. The new gun has a narrower divergence angle than the old, and the BPD ignition current is found to be proportional to the cross-sectional area of the plasma. The high-frequency instabilities are identified with the two Trivelpiece-Gould modes, (1959). The upper frequency is identified as a Cerenkov resonance with the upper Trivelpiece-Gould mode, and the lower frequency with a cyclotron resonance with the lower mode, in agreement with theoretical expectations. Convective growth rates are found to be small. A mechanism involving the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves, is suggested for the low-frequency wave control of the onset of the high frequency precursors to the BPD.

  16. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  17. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    SciTech Connect

    Du, Yinchang; Li, Yangfang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  18. Plasma display panel with micro-discharge array

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Wang, You-Qing

    2005-11-01

    A novel discharge device is designed on the basis of the configuration of micro-hollow cathode discharge (MHCD). By using many MHCDs in parallel connection, a micro-discharge array can be constructed. With the micro-discharge array, a high-pressure high-current density glow discharge plasmas can be formed to make a plasma display panel (PDP). An air discharge experiment is finished with the discharge device. The stable direct current glow discharge is formed under the pressure from 20 Torr to 500 Torr. The voltage-current characteristic curve and the discharge photograph are noted. The voltage-current characteristic curve has a positive differential resistance coefficient on the whole discharge range. The estimated current density reaches 70. 1A/cm3, the power density is 3.6 × 104 W/cm3, and the electron density is in the order of 1013 cm-3 at p=200 Torr and I D=10 mA. The experimental results indicate that the designed discharge device is appropriate for PDP.

  19. Conversion of methane to higher hydrocarbons in ac nonequilibrium plasmas

    SciTech Connect

    Thanyachotpaiboon, K.; Chavadej; Caldwell, T.A.; Lobban, L.L.; Mallinson, R.G.

    1998-10-01

    The effects of plasma chemistry on the conversion of methane were studied using a dielectric barrier discharge reactor at ambient temperatures. A dielectric barrier discharge reactor generates a nonequilibrium plasma when a sufficiently high voltage is applied across the reactor`s electrodes. Methane molecules are activated at this temperature and coupled to form C{sub 2} hydrocarbons, higher hydrocarbons, and hydrogen. The study on the effect of voltage, residence time and third bodies on methane conversion and product selectivity shows that methane conversion initially increases with increasing voltage and residence time above the breakdown voltage, and product selectivities are essentially independent of the voltage. Production of hydrogen during the reaction limits olefin production. Methane conversion also increases when helium and ethane are in the feed stream. Helium and ethane both appear to be more easily activated than methane and enhance methane activation and conversion.

  20. Atmospheric-pressure hybrid plasma with combination of ac and microwave

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-12-18

    A hybrid plasma system with combination of ac and microwave at atmospheric pressure was developed. The hybrid plasma is initiated by ac capillary plasma, is stabilized by a flowing channel of working gas through common electrodes, and is expanded by the dissipation of microwave energy, revealing two distinguishable plasma columns of about 1 m in length and a transition point. The capillary in the hybrid plasma system is working as a common electrode for the microwave and ac plasmas. Optical emission spectroscopy is used to characterize and monitor the argon and nitrogen excited species produced in different plasma columns.

  1. Plasma Acceleration from RF Discharge in Dielectric Capillary

    SciTech Connect

    A. Dunaevsky; Y. Raitses; N. J. Fisch

    2005-08-09

    Plasma acceleration from rf discharge in dielectric capillary was demonstrated. Observed plasma flow had ion energies of approximately 100 eV and electron energies of approximately 20 eV. The discharge was powered by a MHz-range rf generator and fed by Ar. Experimental results indicate possible validity of assumptions about formation of a potential difference at the open end of the capillary and presence of hot electron fraction in the capillary discharge. Simplicity and small dimensions of the source are attractive for micro-propulsion applications.

  2. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  3. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  4. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  5. Z-Pinch Discharge in Laser Produced Plasma

    SciTech Connect

    Sterling, E.; Lunney, J. G.

    2010-10-08

    A fast coaxial electrical discharge, with relatively low current, was used to produce a Z-pinch effect in a laser produced aluminum plasma. The ion flux in the laser plasma was monitored with a Langmuir ion probe. The line density in the plasma column was controlled by using an aperture to select the portion of the laser plasma which enters the discharge cell. The Z-pinch dynamics were recorded using time-resolved imaging of the visible self-emission; the plasma was pinched to about one-third of the initial radius. Both the laser and Z-pinch plasmas were diagnosed using time-and space-resolved spectroscopy; substantial heating was observed. The measured behaviour of the pinch was compared with predictions of the slug model.

  6. Rotational CARS Temperature Measurements in Nanosecond Pulse Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Takashima, Keisuke; Adamovich, Igor; Lempert, Walter

    2009-10-01

    Time-resolved and spatially resolved temperatures in repetitively pulsed nanosecond discharges in air and ethylene-air mixtures have been measured by purely rotational Coherent Anti-Stokes Raman Specroscopy (CARS). The experiments have been done in a capacitively coupled plane-to-plane discharge and in an atmospheric pressure near-surface Dielectric Barrier Discharge (DBD), both powered by repetitive nanosecond duration voltage pulses. Gated ICCD camera images demonstrated that the capacitively coupled discharge plasma remains diffuse and stable, with no sign of arc filaments. Comparison of the experimental results with plasma chemical kinetic modeling calculations shows good agreement. The results demonstrate that the rate of heating in the fuel-air plasma is significantly more rapid compared to the one in the air plasma. Kinetic model analysis shows that this occurs due to exothermic reactions of fuel with radical species generated in the plasma, such as O atoms. The present results provide additional insight into kinetics of hydrocarbon fuel oxidation in low-temperature plasmas and into the mechanism of localized heating of air flows by nanosecond DBD discharges.

  7. Long-pulse plasma discharge on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Nakamura, Y.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ohkubo, K.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Kobayashi, M.; Ogawa, H.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Watari, T.; Watanabe, T.; Sakamoto, M.; Ichimura, M.; Takase, Y.; Notake, T.; Takeuchi, N.; Torii, Y.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Y.; Kwak, J. G.; Yoon, J. S.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD experiment Group

    2006-03-01

    A long-pulse plasma discharge of more than 30 min duration was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. The total injected heating energy was 1.3 GJ. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by sweeping the magnetic axis inward and outward. Causes limiting the long pulse plasma discharge are discussed. An ion impurity penetration limited further long-pulse discharge in the 8th experimental campaign (2004).

  8. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  9. Reproducing continuous radio blackout using glow discharge plasma

    SciTech Connect

    Xie, Kai; Li, Xiaoping; Liu, Donglin; Shao, Mingxu; Zhang, Hanlu

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  10. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  11. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  12. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    NASA Astrophysics Data System (ADS)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  13. Electron series resonance plasma discharges: Unmagnetized and magnetized

    NASA Astrophysics Data System (ADS)

    Qiu, Weiguang

    2001-08-01

    This thesis explores high frequency electron series resonance in unmagnetized and magnetized bounded plasmas. Special interest is focused on low temperature plasmas in planar systems as such are useful for material processing and fusion devices. Chapter 1, Chapter 2 and Chapter 3 describe simulation studies of unmagnetized electron series resonance (ESR) sustained discharges with comparisons to theory and experiment. These plasmas have many desirable characteristics. The input resistance is small and the drive voltage and current are in phase. The drive voltage is small (˜Te) and the time average plasma potential is low (˜10Te). A strong kinetic phase space bunching process is shown to provide electrons of sufficient energy for ionization, which allows discharge operation at low neutral pressure and low electron temperatures. At low pressure, the ion flux to the wall has a narrow angular spread about the normal and the ion bombarding energy distribution has a sharp peak at the plasma potential. Scaling laws at fixed pressure nr∝w3RF ,s¯∝w -1RF are shown to hold when RF frequency is varied smoothly ("chirping") demonstrating continuous density control. Research on magnetized electron series resonance (MESR) discharges is described in Chapter 4, Chapter 5 and Chapter 6. The resonant frequency is derived from cold plasma theory and shows two resonant modes. Simulations verify these modes to be the natural oscillatory frequencies of weakly magnetized plasmas in a planar plasma diode. A global model is established for magnetized resonant discharges. The interrelations among the plasma parameters and the drive terms are formulated for both resonant modes. The initiation of a MESR discharge and its steady state properties are discussed and compared to the unmagnetized case. Weak lock-on of MESR frequency to the drive frequency is observed in simulation. Similar V - I characteristics as those in ESR are found both in theory and in simulation. Different from the ESR

  14. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  15. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  16. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  17. Freon destruction in the decaying plasma of nanosecond microwave discharge

    SciTech Connect

    Vikharev, A.L.; Gorbachev, A.M.; Ivanov, O.A.

    1995-12-31

    The problem of freons acting destructively on the Earth ozone layer has been given much discussion recently, and various ways to purify the atmosphere have been suggested. One of such ways described is based on the use of a microwave discharge in the troposphere, which is produced with two short-pulse wave beams by ground-based antennas. Such a discharge produces in the atmosphere the plasma with electron density N{sub e} {approx} 10{sup 10} - 10{sup 12}cm{sup -3}. After the microwave pulse, at the stage of plasma decay, electrons destroy freon molecules selectively due to high rate (kd = 10{sup -7} - 10{sup -9} cm{sup 3}/s) of dissociate attachment. Efficiency of purification (the number of freon molecules destroyed) depends significantly on the velocity of decay of the discharge plasma. The processes of death of electrons, which are not associated with attachment to freons (electron-ion recombination and attachment of electrons to oxygen molecules) lead to lower efficiency of purification. It is very important to achieve slow plasma decay when freon composition is low and air pressure is high, since then the frequency of dissociate electron attachment to freon molecules, is much lower than the frequency of three-body attachment to oxygen. Earlier studies of the microsecond microwave discharge showed that slow recombination decay of plasma in air may be realized at the high level of specific energy contribution. Such decay is explained by the processes of electrons` detachment from the negative oxygen ions when they collide with active particles formed in the discharge. At the same time, in terms of energy saving, promising for the considered purification method is the nanosecond discharge with high values of the reduced electric field, E/N, when the main share of the microwave energy is spared on gas ionization. This presentation contains the results of studying decay of the nanosecond microwave discharge plasma.

  18. Plasma instability in fast spherical discharge induced by a preionization

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-07

    As it was shown earlier, fast discharge (dI/dt ∼ 10{sup 12 }A/s and I{sub max} ≈ 40 kA) in a spherical cavity (Al{sub 2}O{sub 3}, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  19. Dust structurization observed in a dc glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon R.; Kim, Su-Hyun; Merlino, Robert L.

    2010-11-01

    Dusty plasmas, which are inherently open systems which require an ionization source to replenish the plasma absorbed on the grains, tend to exhibit self-organization. Various structures have been observed in dusty plasmas such as dust crystals, voids, and vortices. Due to the presence of drifting ions in dc discharge plasmas, spontaneously excited dust acoustic waves are also a common occurrence. By adjusting the discharge parameters we have observed a new phenomenon in dusty plasmas -- the spontaneous formation of three-dimensional stationary dust density structures. These structures appear as an ordered pattern consisting of alternating regions of high and low dust density arranged in a nested bowl-type configuration The stationary structure evolves from dust density waves that slow down as their wavelength decreases and eventually stop moving when the wavelength reaches some minimum size.

  20. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based

  1. Low pass filter for plasma discharge

    DOEpatents

    Miller, Paul A.

    1994-01-01

    An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.

  2. Experiments on Ion-Ion Plasmas From Discharges

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  3. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect

    Yang, Aijun; Wang, Xiaohua E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe E-mail: mzrong@mail.xjtu.edu.cn; Kong, Michael G.

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  4. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  5. Formation of nanostructures in a plasma focus discharge

    SciTech Connect

    Krauz, V. I.; Khimchenko, L. N.; Myalton, V. V.; Vinogradov, V. P.; Vinogradova, Yu. V.; Gureev, V. M.; Koidan, V. S.; Smirnov, V. P.; Fortov, V. E.

    2013-04-15

    A new method for creating nanostructures in a plasma focus discharge is proposed. It is shown that the material of a micron-size dust target produced at the discharge axis efficiently evaporates and is then involved in the pinching process. After the pinch decays, the plasma expands with the thermal velocity and the evaporated dust material is deposited on the collectors in the form of fractal particles or nanoclusters organized into various structures. Such structures have a well-developed surface, which is important for various technological applications.

  6. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  7. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  8. Influence of annular magnet on discharge characteristics in enhanced glow discharge plasma immersion ion implantation

    SciTech Connect

    Li Liuhe; Wang Zhuo; Lu Qiuyuan; Fu, Ricky K. Y.; Chu, Paul K.; Pang Enjing; Dun Dandan; He Fushun; Li Fen

    2011-01-10

    A permanent annular magnet positioned at the grounded anode alters the discharge characteristics in enhanced glow discharge plasma immersion ion implantation (EGD-PIII). The nonuniform magnetic field increases the electron path length and confines electron motion due to the magnetic mirror effect and electron-neutral collisions thus occur more frequently. The plasma potential and ion density measured by a Langmuir probe corroborate that ionization is improved near the grounded anode. This hybrid magnetic field EGD-PIII method is suitable for implantation of gases with low ionization rates.

  9. N2O Decomposed by Discharge Plasma with Catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Huang, Hao; Xu, Jie; Yang, Qi; Tao, Gongkai

    2015-12-01

    A great deal of attention has been focused on discharge plasma as it can rapidly decompose N2O without additives, which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer. The thermal equilibrium plasma is chosen to combine with catalysts to decompose N2O, and its characteristics are analyzed in the present paper. The results indicate that NO and NO2 were formed besides N2 and O2 during N2O decomposition when N2O was treated merely by discharge plasma. Concentration of NO declined greatly when the discharge plasma was combined with catalysts. Results of Raman spectra analysis on CeO2, Ce0.75Zr0.25O2 and Ce0.5Zr0.5O2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N2O because of the existence of massive oxygen vacancies over the composite oxide catalysts. supported by National Natural Science Foundation of China (No. 50677026) and the Applied Basic Research Program of Wuhan, China (No. 2015060101010068)

  10. Observation and numerical analysis of plasma parameters in a capillary discharge-produced plasma channel waveguide

    SciTech Connect

    Terauchi, Hiromitsu; Bobrova, Nadezhda; Sasorov, Pavel; Kikuchi, Takashi; Sasaki, Toru; Higashiguchi, Takeshi; Yugami, Noboru; Kodama, Ryosuke

    2011-03-01

    We observed the parameters of the discharge-produced plasma in cylindrical capillary. Plasma parameters of the waveguide were investigated by use of both a Normarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 200 A. One-dimensional dissipative magnetohydrodynamic (MHD) code was used to analyze the discharge dynamics in the gas-filled capillary discharge waveguide for high-intensity laser pulses. Simulations were performed for the conditions of the experiment. We compared the temporal behavior of the electron temperature and the radial electron density profiles, measured in the experiment with the results of the numerical simulations. They occurred to be in a good agreement. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  11. Evolution of a vortex in glow discharge plasma

    SciTech Connect

    Soukhomlinov, V.S.; Sheverev, V.A.; Oetuegen, M.V.

    2005-05-01

    The evolution of a vortex in glow discharge plasma is studied analytically. Specifically, the mechanism of local energy deposition into the flow by the plasma is considered and its effect on the structure of an inviscid vortex is analyzed. The vortex is modeled by a set of Euler's equations while the energy transferred by the plasma into the gas is represented by Rayleigh mechanism. In this mechanism, the amount of heat addition is a function of local gas density. The analysis indicates that the plasma can have a considerable effect on the structure of a vortex. The inviscid calculations show that in a uniform discharge, a 1 cm vortex dies out in a fraction of a second.

  12. Carbon dust particles in a beam-plasma discharge

    NASA Astrophysics Data System (ADS)

    Koval, O. A.; Vizgalov, V.; Shalpegin, A. V.

    2016-09-01

    This paper focuses on dynamics of micro-sized carbon dust grains in beam-plasma discharge (BPD) plasmas. It was demonstrated that injected dust particles can be captured and transported along the discharge. Longitudinal average velocity of the particles in the central area of the plasma column was 17 m/sec, and 2 m/sec in the periphery. Dust injection caused a decrease of emission intensity of metastable nitrogen molecular ion. This effect is suggested for a spectroscopy method for particles’ potential measurements. Five-micron radius carbon dust grains obtained potential above 500 V in the experiments on PR-2 installation, proving the feasibility of BPDs for the charging of fine dust particles up to high potential values, unattainable in similar plasma conditions.

  13. Energetic Photons From Transient Plasma Discharges

    SciTech Connect

    Robert, E.; Cachoncinlle, C.; Dozias, S.; Khacef, A.; Majeri, N.; Romero, E.; Point, S.; Viladrosa, R.; Pouvesle, J. M.

    2008-09-23

    An overview of the plasma based sources of energetic photons, ranging from UV to hard X-rays, developed in GREMI is proposed. Each source principle is shortly described and applications of these specially designed sources are documented. The possibility of producing energetic photons over a very broad wavelength domain, together with the versatility of the mode of operations allow for a very large range of applications. The matching of the photon energy, the pulse repetition rate, the short duration, of a few nanosecond, of photon pulses offer for instance unique possibility for fast dynamic study, low Z element spray characterization, X-ray fluorescence of dense targets, lithography issues, and UV VUV radiating plasma optimization.

  14. Mode transition of a Hall thruster discharge plasma

    SciTech Connect

    Hara, Kentaro Sekerak, Michael J. Boyd, Iain D.; Gallimore, Alec D.

    2014-05-28

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  15. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  16. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  17. Characterization of the plasma in magnetic multidipole discharges

    NASA Astrophysics Data System (ADS)

    Ferreira, Julio Guimaraes

    1988-09-01

    A characterization of the discharge of the quiescent plasma machine of INPE, and an identification of the most relevant processes in the definition of its plasma properties, were achieved. Measurements of plasma properties, the floating potential, the temperature of the electrons, and the density of the plasma, for pressures ranging from 10(exp -3) to 10(exp -1)Pa and for discharge potentials for 45V to 120V were accomplished. These measurements were made with a Langmuir spherical probe with 1mm in diameter. In the whole range of operation, the presence of two populations of electrons with distinct temperatures in the energy range from 1 to 10eV was observed, although for pressures approaching 10(exp -1)Pa the plasma tended to a single population of electrons with temperature of 1eV. The difference between plasma and floating potentials was observed to become smaller as the pressure raised, and the potential difference between plasma and anode reached a value around 2V when pressure rose above 10(exp -2)Pa. The plasma density increases approximately linearly with pressure, for values below 10(exp -2)Paa, but above 10(exp -1)Pa its increase with pressure is quite reduced. A study on the collision processes in the plasma volume and on loss processes to surfaces allowed to interpret qualitatively the observed plasma behavior and to estimate, by means of simple expressions, some of the plasma parameters. The loss area for ions and primary electrons were estimated from experimental results. A simple quantitative model which allows the calculation of plasma density in the whole range of operation, reproduced the correct order of magnitude of experimental values. However, an additional work, both theoretical and experimental, is required to obtain better agreement between experimental and theoretical values.

  18. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  19. Instability of plasma plume of micro-hollow cathode discharge

    SciTech Connect

    Levko, D.; Bliokh, Y. P.; Gurovich, V. Tz.; Krasik, Ya. E.

    2015-11-15

    The micro-hollow cathode gas discharge driven by thermionic emission is studied using the two-dimensional particle-in-cell Monte Carlo collisions simulation. The electron current is extracted from the plasma plume penetrating into the keeper–anode space through a small keeper orifice from the cathode-keeper space. The results of simulations and a simplified analytical model showed that the plasma density and extracted current can exhibit deep modulation in the range of frequencies of tens of MHz. This modulation appears when the space-charge limited current between the plume boundary and the anode exceeds the plasma thermal electron current through the orifice.

  20. Dusty Plasma in He-Ar Glow Discharge

    SciTech Connect

    Maiorov, S. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for He-Ar mixture. It is shown that under the conventional conditions of the experiments with dusty structures in plasma, the choice of light and heavy gases for the mixture suppresses electron heating in electric field and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths and gas pressures.

  1. ICRF Heated Long-Pulse Plasma Discharges in LHD

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Seki, T.; Mutoh, T.; Saito, K.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Watanabe, T.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Notake, T.; Torii, Y.; Okada, H.; Ichimura, M.; Higaki, H.; Takase, Y.; Kasahara, H.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Yanping; Yoon, J. S.; Kwak, J. G.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD Experimental Group

    2006-01-01

    A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8× 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 GJ, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.

  2. Instability of plasma plume of micro-hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Levko, D.; Bliokh, Y. P.; Gurovich, V. Tz.; Krasik, Ya. E.

    2015-11-01

    The micro-hollow cathode gas discharge driven by thermionic emission is studied using the two-dimensional particle-in-cell Monte Carlo collisions simulation. The electron current is extracted from the plasma plume penetrating into the keeper-anode space through a small keeper orifice from the cathode-keeper space. The results of simulations and a simplified analytical model showed that the plasma density and extracted current can exhibit deep modulation in the range of frequencies of tens of MHz. This modulation appears when the space-charge limited current between the plume boundary and the anode exceeds the plasma thermal electron current through the orifice.

  3. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  4. Improving thrust by pulse-induced breakdown enhancement in AC surface dielectric barrier discharge actuators for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2016-07-01

    The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.

  5. PlasmaPIC: A tool for modeling low-temperature plasma discharges

    NASA Astrophysics Data System (ADS)

    Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian

    2015-09-01

    PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  6. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  7. Influence of Relative Humidity on AC Corona Discharge from Algae Attached on the Silicone Rubber

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Hara, Yoshiaki; Kokufu, Morihide; Higashiyama, Yoshio

    To make clear the influence of algae growth at the surface of a polymer insulator in a practical transmission line, the characteristics of ac corona discharge from an aggregate algae particle were investigated. The aggregate algae particle was made of Protococcus viridis. Corona onset voltage from an aggregate algae particle was decreased as relative humidity increased. Under the condition of relatively higher relative humidity, luminous channel of corona discharge became more strongly and the number of corona pulses in the current waveform was increased. For an aggregate algae particle contaminated with sea salt including MgCl2, corona onset voltage decreased drastically at relative humidity above 40%. This property would result from deliquescence of MgCl2. Corona discharge was strongly affected by existence of MgCl2 in an aggregate algae particle. Surface resistance of algae attached to the surface of the silicone rubber sheet decreased in fourth figures for relative humidity from 20 to 90%. Therefore, the existence of algae on the polymer insulator inevitably affects the electric property and the surface property of the polymer insulator.

  8. Doppler spectroscopy on plasma discharges produced in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Runpal; Biewer, Theodore; Klepper, Chris; Martin, Elijah; Rapp, Juergen

    2015-11-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear machine that produces pulsed plasma discharges, and is intended to study plasma-material interactions in conditions similar to those found in future fusion reactors. A high-resolution McPherson Czerny-Turner visible range spectrometer has been installed to study the behavior of ions in the plasma. Together with a Princeton Instruments EMCCD camera and an external trigger box, this system provides excellent spectral and temporal resolution for viewing the emission spectra of the discharges. Around 100 lines of sight have been established for use by this and other diagnostics in the lab. Initial data from recent experiments validate the utility of this setup. Analysis of spectral lines in helium and deuterium plasmas yields valuable information regarding the temperature and density of plasma ions at various locations in the machine as the various RF heating sources are implemented. Differentiating the thermal width of lines from other sources of broadening is an ongoing process. In addition to He I lines, data indicates the presence of the He II line at 468.5 nm, which corresponds to emission from singly ionized atoms at higher temperatures.

  9. Hollow cathode and thruster discharge chamber plasma measurements

    NASA Technical Reports Server (NTRS)

    Jameson, Kristina K.; Goebel, Dan M.; Watkins, Ron M.

    2005-01-01

    Due to the successful performance of the NSTAR ion thruster in Deep Space 1 mission, coupled with the recently completed 30,352 hour extended life test (ELT) of the NSTAR flight spare thruster, ion thrusters have become a viable option for future NASA missions. In this paper, detailed measurements of the plasma parameters internal and external to the cathode will presented for the NSTAR cathode up to 13.1A of discharge current and for the NEXIS cathode up to 30A of discharge current.

  10. Structural properties of complex plasmas in a homogeneous dc discharge.

    PubMed

    Mitic, S; Klumov, B A; Konopka, U; Thoma, M H; Morfill, G E

    2008-09-19

    We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles. A scanning laser sheet and a camera were used to determine the particle position in 3D. The observed cylindrical-shaped particle cloud showed an ordered structure with a distinct outer particle shell. The observations are in agreement with performed molecular dynamics simulations.

  11. Plasma production by means of discharge in a spherical cavity

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.; Koshelev, K. N.

    2010-05-15

    The work is devoted to the study of plasma, appearing as a result of cumulation of shock wave with form close to spherical. The shock wave was obtained by triggering of fast discharge (dI/dt about 10{sup 12} A/s) on inner surface of cavity, made from insulator. Spherical cavity with radius 4.5 mm was filled with Ar at 80 Pa. Inductive storage with semiconductive opening switch was used as a current driver. Spherical plasma with diameter about 1 mm, emitting in vacuum ultraviolet (vuv), was detected by means of pinhole measurements with time gated microchannel plate camera, starting about 50 ns from the beginning of the discharge. vuv spectra have shown the presence spectral lines of ArV-ArVIII ions, which gives the estimation of electron temperature as 30 eV. The plasma ball reveals no instabilities, keeps its characteristics and emits vuv radiation during 300 ns. After 600 ns from the beginning of the discharge plasma emits a flux of electrons with energies about 1 keV with temporal structure about 100 ns.

  12. Manufacturing of Dielectric Barrier Discharge Plasma Actuator for Degradation Resistance

    NASA Astrophysics Data System (ADS)

    Houser, Nicole M.

    The performance and broader application of dielectric barrier discharge (DBD) plasma actuators are restricted by the manufacturing methods currently employed. In the current work, two methodologies are proposed to build robust plasma actuators for active flow control; a protective silicone oil (PDMS) treatment for hand-cut and laid tape-based actuators and a microfabrication technique for glass-based devices. The microfabrication process, through which thin film electrodes are precisely deposited onto plasma-resistant glass substrates, is presented in detail. The resulting glass-based devices are characterized with respect to electrical properties and output for various operating conditions. The longevity of microfabricated devices is compared against silicone-treated and untreated hand-made devices of comparable geometries over 60 hours of continuous operation. Both tungsten and copper electrodes are considered for microfabricated devices. Human health effects are also considered in an electromagnetic field study of the area surrounding a live plasma actuator for various operating conditions.

  13. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  14. MHD Simulation of the Inverse Pinch Plasma Discharge

    SciTech Connect

    Esaulov, A; Bauer, B; Lindemuth, I; Makhin, V; Presura, R; Ryutov, D

    2004-07-01

    A wall confined plasma in an inverse pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as the simple geometry to study wall-confined plasma. An experiment is planned to study the inverse pinch configuration using the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two dimensional MHD simulations show Rayleigh-Taylor and Richtmyer-Meshkov -like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.

  15. Numerical description of discharge characteristics of the plasma needle

    SciTech Connect

    Brok, W.J.M.; Bowden, M.D.; Dijk, J. van; Mullen, J.J.A.M. van der; Kroesen, G.M.W.

    2005-07-01

    The plasma needle is a small atmospheric, nonthermal, radio-frequency discharge, generated at the tip of a needle, which can be used for localized disinfection of biological tissues. Although several experiments have characterized various qualities of the plasma needle, discharge characteristics and electrical properties are still not well known. In order to provide initial estimates on electrical properties and quantities such as particle densities, we employed a two-dimensional, time-dependent fluid model to describe the plasma needle. In this model the balance equation is solved in the drift-diffusion approach for various species and the electron energy, as well as Poisson's equation. We found that the plasma production occurs in the sheath region and results in a steady flux of reactive species outwards. Even at small (<0.1%) admixtures of N{sub 2} to the He background, N{sub 2}{sup +} is the dominant ion. The electron density is typically 10{sup 11} cm{sup -3} and the dissipated power is in the order of 10 mW. These results are consistent with the experimental data available and can give direction to the practical development of the plasma needle.

  16. Scaling of the beam plasma discharge for low magnetic fields

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1986-01-01

    A theoretical analysis of the scaling law and the value of the threshold current for beam plasma discharge (BPD) is presented, based on the requirement for an absolute instability near the plasma frequency. It is shown that both the scaling law as well as the numerical values of Ic are consistent with the experimental data, in the low pressure regimes and for weak magnetic field experiments if the dominant particle loss mechanism is due to Bohm diffusion. The implications of the findings to electron injection in space are discussed.

  17. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  18. Relatively high plasma density in low pressure inductive discharges

    SciTech Connect

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2015-09-15

    Electron energy probability functions (EEPFs) were measured in a low pressure argon inductive discharge. As radio frequency (RF) power increases, discharge mode is changed from E-mode (capacitively coupled) to H-mode (inductively coupled) and the EEPFs evolve from a bi-Maxwellian distribution to a Maxwellian distribution. It is found that the plasma densities at low RF powers (<30 W) are much higher than the density predicted from the slope of the densities at high powers. Because high portion of high energy electrons of the bi-Maxwellian distribution lowers the collisional energy loss and low electron temperature of low energy electrons reduces particle loss rate at low powers. Therefore, the energy loss of plasma decreases and electron densities become higher at low powers.

  19. Discharge plasmas as EUV Sources for Future Micro Lithography

    NASA Astrophysics Data System (ADS)

    Kruecken, Thomas

    2007-08-01

    Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on xenon or tin gas discharges. After having investigated the limits of a hollow cathode triggered xenon pinch discharge Philips Extreme UV favors a laser triggered tin vacuum spark discharge. Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. In the xenon discharges the optical depths allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundancies of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS. Due to very steep gradients (up to a couple orders of magnitude per mm) the plasma of tin vacuum spark discharges is very complicated. Therefore we shall describe here only some technological aspects of our tin EUV lamp: The electrode system consists of two rotating which are pulled through baths of molten tin such that a tin film remains on their surfaces. With a laser pulse some tin is ablated from one of the wheels and travels rapidly through vacuum towards the other rotating wheel. When the tin plasma reaches the other electrodes it ignites and the high current phase starts, i.e. the capacitor bank is unloaded, the plasma is pinched and EUV is radiated. Besides the good spectral properties of tin this concept has some other advantages: Erosion of electrodes is no severe problem as the tin film is

  20. 2D Thermoluminescence imaging of dielectric surface long term charge memory of plasma surface interaction in DBD discharges

    NASA Astrophysics Data System (ADS)

    Ambrico, Paolo F.; Ambrico, Marianna; Schiavulli, Luigi; De Benedictis, Santolo

    2014-07-01

    The charge trapping effect due to the exposure of alumina surfaces to plasma has been studied in a volume dielectric barrier discharge (DBD) in Ar and He noble gases. The long lasting charge trapping of alumina dielectric plates, used as barriers in DBDs, is evidenced by an ex situ thermoluminescence (TL) experiment performed with a standard and a custom two-dimensional (2D)-TL apparatus. The spatial density of trapped surface charges is found to be strongly correlated to the plasma morphology, and the surface spatial memory lasted for several minutes to hours after plasma exposure. In the case of Ar, the plasma channel impact signature on the surface shows a higher equivalent radiation dose with respect to the surface plasma wave and the post-discharge species signature. As a consequence, for the development of discharges, inside the dielectric surface the availability of lower energy trapped electrons is larger in the first region of plasma impact. The reported spatial memory increases the likelihood of the occurrence of plasma filaments in the same position in different runs. In He plasmas, the dielectric barrier shows an almost uniform distribution of trapped charges, meaning that there is no preferred region for the development of the discharge. In all cases a slight asymmetry was shown in the direction of the gas flow. This can be interpreted as being due to the long-living species moving in the direction of the gas flow, corresponding with the TL side experiment on the sample exposed to the plasma afterglow. The maximum values and the integral of the 2D-TL images showed a linear relation with the total charge per ac cycle, corresponding with findings for the TL glow curve. In conclusion, 2D-TL images allow the retrieval of information regarding the plasma surface interaction such as the plasma morphology, trap sites and their activation temperature.

  1. Effects of discharge voltage waveform on the discharge characteristics in a helium atmospheric plasma jet

    SciTech Connect

    Uchida, Giichiro Takenaka, Kosuke; Setsuhara, Yuichi

    2015-04-21

    We present here an analysis of the discharge characteristics of a He plasma jet operating under three different types of applied voltage waveform: (a) a μs-pulse voltage waveform with a slow voltage rise time, (b) ns-pulse, and (c) rectangular voltage waveforms with fast voltage rise time. Optical emission measurements show that the application of a voltage with a fast voltage rise time induces rapid discharge growth and, consequently, produces an abundance of energetic electrons, which in turn leads to high optical emission from the O atoms. We also estimate the optical emission efficiency of the O atom (η{sub o}), which corresponds roughly to the production efficiency of the reactive O species. η{sub o} increases with increasing applied voltage, and the highest value of η{sub o} is obtained in the shortest pulse discharge, which was ignited by a ns-pulse voltage waveform with a fast voltage rise time and short pulse width.

  2. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    PubMed

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value. PMID:27295438

  3. Kinetic analysis of acid orange 7 degradation by pulsed discharge plasma combined with activated carbon and the synergistic mechanism exploration.

    PubMed

    Guo, He; Wang, Huijuan; Wu, Qiangshun; Zhou, Guangshun; Yi, Chengwu

    2016-09-01

    The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.

  4. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  5. Electron acceleration in a beam-plasma discharge

    SciTech Connect

    Kochmarev, L.IU.; Liakhov, S.B.; Maiorov, A.D.; Managadze, G.G.; Chmil, A.I.

    1985-05-01

    The results of recent laboratory experiments on the distribution function of electrons, which are scattered from a beam-plasma discharge, are reported. The experimental conditions approximated those during the Gruziya-60-Spurt active rocket-borne experiment to measure the injection of electron beams into space near the earth. The beam plasma-discharge was ignited in a vacuum chamber by means of a pulsed electron beam. The energy of the beam was 2.1 keV, and the current was 150-300 mA. The pressure range corresponding to the plasma discharge was 0.0001-0.001 torr. Electron distribution was measured using an analyzer which was moved along the chamber axis at a distance L = 75-210 cm from the injector. The experimental results support one possible explanation for the anomalously high sonde potential observed in the Gruziya-60-Spurt experiment: spontaneous changes of the interaction regime shortly after the beginning of the injection pulse. 12 references.

  6. Study of organic pollutants oxidation by atmospheric plasma discharge

    NASA Astrophysics Data System (ADS)

    Gumuchian, Diane; Cavadias, Simeon; Duten, Xavier; Tatoulian, Michael; da Costa, Patrick; Ognier, Stephanie

    2013-09-01

    Ozonation is one of the usual steps in water treatment processes. However, some organic molecules (acetic acid) cannot be decomposed during ozonation. In that context, we are developing an Advanced Oxidation Process based on the use of a needle plate discharge at atmospheric pressure. The process is a reactor with a plasma discharge between a high voltage electrode and the solution in controlled atmosphere. Characterizations of the plasma obtained in different atmospheres were carried out (Optical Emission Spectroscopy, iCCD camera observations, etc). The efficiency of the process was evaluated by the percentage of degradation of the model-pollutant, measured by liquid chromatography analysis. Treatments in nitrogen lead to the formation of NOx species that decrease the efficiency of the process. Indeed, NOx lead to the consumption of actives species created. Treatments in argon are the most efficient. Two hypotheses are considered: (i) metastable argon participates to the degradation of acetic acid or to the formation of radicals (ii) discharges in argon lead to the formation of many streamers of low energy that increase the interface plasma/solution.

  7. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  8. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  9. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  10. Polymerization of phenol by using discharged plasma under hydrothermal state

    NASA Astrophysics Data System (ADS)

    Mitsugi, M.; Yoshida, A.; Watanabe, H.; Kiyan, T.; Takade, M.; Miyaji, K.; Namihira, T.; Kuwahara, Y.; Akiyama, H.; Hara, M.; Sasaki, M.; Goto, M.

    2010-03-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  11. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    NASA Astrophysics Data System (ADS)

    Gupta, Susanta K. Sen

    2015-12-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma-liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining.

  12. Fast discharge in a plasma gun with hemispherical insulator

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.; Sidelnikov, Yu. V.; Koshelev, K. N.

    2009-05-15

    A method of creation of hot dense plasma is proposed. It is based on cumulation of a shockwave, which originates on a hemispherical surface of insulator of plasma gun. The results of first experiments are presented. The shock wave is driven by fast electrical discharge (dI/dt>10{sup 12} A/s). The inductive storage with semiconductor opening switch is used as a current driver. Time resolved pin-hole images and vacuum ultraviolet (vuv) spectra are studied. Shockwaves from hemispherical insulator with 4 mm radius create plasma with a form of column about 1 mm diameter and 3-4 mm length. vuv spectra contain the lines of Ar ions that corresponds to the electron temperature about 20 eV. Possible practical application is discussed.

  13. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  14. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  15. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  16. Velocimetry of cathode particles in a magnetoplasmadynamic thruster discharge plasma.

    PubMed

    Walker, J; Langendorf, S; Walker, M; Polzin, K; Kimberlin, A

    2015-07-01

    With high-speed imaging, it is possible to directly observe the time-evolution of the macroscopic behavior of the discharge plasma in a magnetoplasmadynamic thruster (MPDT). By utilizing direct high-speed imaging capable of capturing many images over the course of a single discharge, the velocity of the cathode erosion particles can be measured, opening the possibility of a novel, noninvasive technique for discharge plasma flow field velocimetry. In this work, an 8 kA argon MPDT discharge is imaged at 26 173 fps utilizing a 0.9 neutral density filter. The camera is aligned with thruster centerline 4 m downstream of the thruster exit plane. By tracking visible particles appearing in the multiple images, the particle motion in the radial and azimuthal directions is directly imaged. Through the use of traditional techniques in digital particle image velocimetry, the cathode particles emanating from the discharge are measured to have a mean radial velocity of 44.6 ± 6.0 m/s with a 95% confidence interval and a statistically insignificant azimuthal velocity. The setup and analysis employed permits measurement of the particle velocity in orthogonal direction to the image sensor plane using a single camera. By combining a background removal subtraction technique and knowledge of the optical focal plane, the estimated mean axial velocity of the particles is 1.59 km/s. This investigation ends with a discussion of important factors to consider for future MPDT high-speed imaging particle velocimetry, such as frame-rate, image size, spatial resolution, optics, and data handling selections.

  17. Dielectric barrier discharge plasma induced degradation of aqueous atrazine.

    PubMed

    Feng, Jingwei; Jiang, Lin; Zhu, Dan; Su, Kuizu; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2016-05-01

    Degradation of herbicide atrazine in aqueous solution was investigated using a plate type dielectric barrier discharge (DBD) plasma reactor. DBD plasma was generated at the gas-liquid interface of the formed water film. At discharge time of 14 min, atrazine was degradated effectively with a degradation rate of 99 % at the discharge power of 200 W. The experimental data fitted well with first-order kinetics and the energy efficiency for 90 % degradation of atrazine (G value) was calculated, obtaining a rate constant of 0.35 min(-1) and a G value of 1.27 × 10(-10) mol J(-1) (98.76 mg kW(-1) h(-1)) at a discharge power of 200 W, respectively. The addition of Fe(2+) increased the rate constant and G value dramatically, and a significant decrease of the rate constant and G value was observed with the addition of radical scavengers (tert-butyl alcohol, isopropyl alcohol, or Na2CO3). The generated aqueous O3 and H2O2 were determined, which promoted the degradation of herbicide atrazine. Dechlorination was observed and the experimentally detected Cl(-) was 1.52 mg L(-1) at a discharge time of 14 min. The degradation intermediates of atrazine were detected by means of liquid chromatography-mass spectrometry; dechlorination, hydroxylation, dealkylation, and alkyl oxidation processes were involved in the degradation pathways of atrazine. PMID:26832879

  18. ROS/RNS Production in Water Using Various Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2015-09-01

    A pulsed discharge, a DC corona discharge and an atmospheric pressure plasma jet are generated above water, the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) is sparged into water, and then reactive oxygen species and reactive nitrogen species in the water are investigated. H2O2, NO3- and a trace of NO2- are produced in the water after the plasma exposure. H2O2 concentration decreases when NO3- concentration increases, so that this is likely that OH radical to produce H2O2 by OH + OH -->H2O2 is consumed in the NO3- production by NO2 + OH --> HNO3 --> NO3-+ H+ (in water). Since no species is detected in water by the sparging of the PB-DBD off-gas containing more than 1000 ppm of O3, O3 does not contribute to produce H2O2 in water. Further, only NO3- is produced by the sparging of the off-gas containing N2O5 and HNO3. This leads that H2O2 and NO2- can be produced by short-lifetime species in plasma. In this work, the highest generation efficiency of H2O2 and NO2- are respectively 3,820 μg/Wh and 830 μg/Wh by the pulsed-plasma exposure, and that of NO3- is 2,530 μg/Wh by the off-gas sparging of the PB-DBD.

  19. Effects of ionic liquid electrode on pulse discharge plasmas in the wide range of gas pressures

    SciTech Connect

    Chen Qiang; Hatakeyama, Rikizo; Kaneko, Toshiro

    2010-11-15

    Gas-liquid interfacial pulse discharge plasmas are generated in the wide range of gas pressures, where an ionic liquid is used as the liquid electrode. By analyzing the characteristics of discharge voltage and current, the discharge mechanisms at low and high pressures are found to be dominated by secondary electron emission and first Townsend ionization, respectively. Therefore, the discharge properties at low and high pressures are mainly determined by the cathode material and the discharge gas type, respectively. Furthermore, the plasma properties are investigated by a double Langmuir probe. The density of the positive pulse plasma is found to be much smaller than that of the negative pulse plasma, although the discharge voltage and current of the negative and positive pulse plasmas are of the same order of magnitude. The positive pulse discharge plasma is considered to quickly diffuse onto the chamber wall from the radially central region due to its high plasma potential compared with that in the peripheral region.

  20. Analysis on electromagnetic characteristics and military application of non-magnetized discharge plasma

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Jiachun; Miao, Lei; Li, Zhigang

    2015-11-01

    Firstly, the dispersion equation of a plane electromagnetic wave in homogeneous and non-magnetized discharge plasma was established. According to the different frequency of electromagnetic wave and plasma parameters, the characteristics were discussed when the plasma interacted with electromagnetic waves. Then the gas discharge approach was put forward according to characteristics of plasma generated by different methods and their advantages and disadvantages. The possibility of using non-magnetized discharge plasma for the military purpose was analyzed. In the end, the principle and characteristics of the application of the non-magnetized discharge plasma were studied in the fields of stealth and protection against strong electromagnetic pulse.

  1. Plasma Parameter of a Capillary Discharge-Produced Plasma Channel to Guide an Ultrashort Laser Pulse

    SciTech Connect

    Higashiguchi, Takeshi; Terauchi, Hiromitsu; Bai, Jin-xiang; Yugami, Noboru

    2009-01-22

    We have observed the optical guiding of a 100-fs laser pulse with the laser intensity in the range of 10{sup 16} W/cm{sup 2} using a 1.5-cm long capillary discharge-produced plasma channel for compact electron acceleration applications. The optical pulse propagation using the plasma channel is achieved with the electron densities of 10{sup 17}-10{sup 18} cm{sup -3} and the electron temperatures of 0.5-4 eV at a discharge time delay of around 150 ns and a discharge current of 500 A with a pulse duration of 100-150 ns. An energy spectrum of the accelerated electrons from a laser-plasma acceleration scheme showed a peak at 1.3 MeV with a maximum energy tail of 1.6 MeV.

  2. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  3. Electron beam control rf discharges for plasma processing

    SciTech Connect

    Kushner, M.J.; Ruzic, D.N.; Yang, J.

    1995-12-31

    Reactive Ion Etching (RIE) discharges for microelectronics fabrication suffer from the inability to separately control plasma density and ion power flux to the wafer. Inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) reactors have been developed to provide some degree of independent control. This is accomplished by arranging for ionization to be provided dominantly by the applied electromagnetic instead of the rf bias to the substrate. Both ICP and ECR reactors, though, optimally operate at low gas pressures, and are not typically used for intermediate to high pressure etching and deposition systems. To address the higher pressure range, a hybrid electron beam/RIE discharge system (EB-RIE) has been developed. In the EB-RIE system, a planar electron beam (1--3 kV) is injected into the plasma chamber above and parallel to the wafer. An rf bias is separately applied to the substrate. A 2-dimensional model of the EB-RIE reactor has been developed to investigate the scaling of the device and analyze previous experimental measurements. Results from the model are discussed for Ar and Ar/SiH{sub 4} gas mixtures in which the beam energy, gas pressure and positioning of the beam are varied.

  4. Demonstration of Separation Control Using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  5. Demonstration of Separation Delay with Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2004-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modern low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2 percent) and high (2.5 percent) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  6. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  7. Development of AC-driven liquid electrode plasma for sensitive detection of metals

    NASA Astrophysics Data System (ADS)

    Van Khoai, Do; Miyahara, Hidekazu; Yamamoto, Tamotsu; Trong Tue, Phan; Okino, Akitoshi; Takamura, Yuzuru

    2016-02-01

    A novel liquid electrode plasma (LEP) driven by AC, which is used as an excitation source for elemental analysis, has been developed for the first time. The conditions such as chip layout and flow rate were found to produce the plasma in the channel. The mechanism of AC LEP generation was determined. AC LEP could be sustained in the resin channel with no severe damage on the channel. The emission spectra of electrolyte, lead and cadmium solution were obtained and compared with those generated by DC LEP. AC LEP was developed for the quantitative determination of lead and cadmium with limits of detection of 75.0 µg/L (ppb) and 4.5 µg/L (ppb), respectively. The novel plasma source is promising for on-chip combination and integration because it could be maintained at low flow rates on a resin-based platform.

  8. Multi-scale dynamics in externally excited glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Deka, Utpal; Rao, Ashok; Nurujjaman, Md

    2015-12-01

    Time series analysis of fluctuations excited due to external perturbation in a dc glow discharge plasma system is presented. Analysis shows that the observed data is non-Gaussian in nature and has purely deterministic behavior. The oscillations are bi-periodic in nature without any occurrence of chaos with increasing discharge voltage. Two dominant frequencies 100 KHz and 200 KHz with background noise are observed. The Hurst coefficient is also evaluated for the data sets and is seen to be greater than 0.5 for all the cases. The observed bi-periodic oscillations have their origin due to some nonlinearities in the system. The observed frequencies are found to be due to ionization instability and ion acoustic instability.

  9. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah N.; Foster, John E.; Garcia, Maria C.

    2015-10-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L-1). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date.

  10. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    NASA Astrophysics Data System (ADS)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  11. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path.

  12. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path. PMID:26117883

  13. Radial Distributions of Dusty Plasma Parameters in a Glow Discharge

    SciTech Connect

    Fedoseev, A. V.; Sukhinin, G. I.

    2011-11-29

    A self-consistent model for radial distributions of dusty plasma parameters in a DC glow discharge based on the non-local Boltzmann equation for EEDF, the drift-diffusion equation for ions, and the Poisson equation for self-consistent electric field is presented. The results show that for the case of high dust particles density when the recombination of electrons and ions exceeds the ionization near the tube axis, radial electron and ion fluxes change their direction toward the center of the tube, and the radial electric field is reversed.

  14. Mathematical models of plasma discharge control in a tokamak

    NASA Astrophysics Data System (ADS)

    Andreev, V. F.; Dnestrovskij, Yu. N.; Kostomarov, D. P.; Popov, A. M.

    A model for program description of discharge development in a tokomak is considered and the problem of optimal control of poloidal fields and total current in plasma is determined. A comparison of the formulated problem solution methods is performed. A quasi-optimal control model is proposed, allowing one to take account of real power supplies. Analysis of the control task stability and correctness is conducted. The numerical code for optimal control task solution is developed and the method is described. Different operation modes of the T-15 device are calculated using the developed code.

  15. Role of Plasma Discharge in Division of Prostatic Tissue

    NASA Astrophysics Data System (ADS)

    Ward, Arlen; Almgren, Carl; Yu, Zeng-Qi; Sartor, Joe; Collins, George

    2009-10-01

    During the treatment of benign prostatic hyperplasia electrical energy is used to separate prostatic tissue and remove it as a urinary obstruction. This surgical procedure is often performed in a saline environment, and current paths change as the tissue and fluid are heated. This study shows that a plasma discharge at the electrode is necessary to provide the current densities necessary to vaporize portions of the prostatic tissue in order to facilitate removal. This behavior is predicted in finite element simulations, and verified with color schlieren imaging and ex vivo bovine prostate tests.

  16. Ion flux onto conducting and isolated surfaces in the beam-plasma discharge: Computer simulation

    SciTech Connect

    Klykov, I. L.; Shustin, E. G.; Tarakanov, V. P.

    2010-12-15

    A physical model which allows the use of the program code KARAT for simulating the quasisteady state of the beam-plasma discharge with plasma regeneration from a neutral gas is developed. The results of simulation of the modes of discharge at different potentials at the discharge collector are reported. The results obtained for isolated and grounded ion collectors are compared.

  17. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  18. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  19. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  20. Instability of dusty particle system in gas-discharge plasma

    SciTech Connect

    Filinov, V.S.; Petrov, O.F.; Fortov, V.E.; Molotkov, V.I.

    2005-10-31

    An effective anisotropic potential is proposed for the interaction between dust particles in a gas-discharge plasma. In addition to the Coulomb repulsion this potential takes into account attraction due to the spatial positive plasma charge originating from focusing of the ionic fluxes by dusty particles. The time evolution of the dust particle kinetic and potential energies from random initial configurations have been investigated by the Brownian dynamics method. Results of our simulation showed that the attraction between dusty particles can be the main physical reason of formation and decay of classical bound dust particle pairs and many particle complexes with low potential energy, while the kinetic energy (temperature) of unbound dust particles and particle oscillating in bound complexes may increase on three order as observed in experiments.

  1. Performance of capillary discharge guided laser plasma wakefieldaccelerator

    SciTech Connect

    Nakamura, Kei; Esarey, Eric; Geddes, Cameron G.R.; Gonsalves,Anthony J.; Leemans, Wim P.; Panasenko, Dmitriy; Schroeder, Carl B.; Toth, Csaba; Hooker, S.M.

    2007-06-25

    A GeV-class laser-driven plasma-based wakefield acceleratorhas been realized at the Lawrence Berkeley National Laboratory (LBNL).The device consists of the 40TW high repetition rate Ti:sapphire LOASISlaser system at LBNL and a gas-filled capillary discharge waveguidedeveloped at Oxford University. The operation of the capillary dischargeguided laser plasma wakefield accelerator with a capillaryof 225 mu mdiameter and 33 mm in length was analyzed in detail. The input intensitydependence suggests that excessive self-injection causes increased beamloading leading to broadband lower energy electron beam generation. Thetrigger versus laser arrival timing dependence suggests that the plasmachannel parameters can be tuned to reduce beam divergence.

  2. Continuous gas discharge plasma with 200 K electron temperature

    SciTech Connect

    Dickson, Shannon; Robertson, Scott

    2010-03-15

    A very cold and collisional hot-filament discharge plasma is created in a vacuum chamber with an inner wall cooled by liquid nitrogen. The inner chamber (16.5 cm diameterx30 cm) has two negatively biased tungsten filaments for plasma generation and a Langmuir probe on axis for diagnostic measurements. With the wall at 140 K, 0.5-16 mA filament emission, and 1.6 mTorr carbon monoxide as the working gas, probe data give electron temperatures of 17-28 meV (197-325 K) with corresponding densities of 10{sup 8}-10{sup 9} cm{sup -3}. With He, Ar, H{sub 2}, and N{sub 2} at 140 K, the electron temperatures are >500 K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a larger cross section for electron excitation of rotational modes as a consequence of its dipole moment.

  3. Anomalous electron mobility in a coaxial Hall discharge plasma.

    PubMed

    Meezan, N B; Hargus, W A; Cappelli, M A

    2001-02-01

    A comprehensive analysis of measurements supporting the presence of anomalous cross-field electron mobility in Hall plasma accelerators is presented. Nonintrusive laser-induced fluorescence measurements of neutral xenon and ionized xenon velocities, and various electrostatic probe diagnostic measurements are used to locally determine the effective electron Hall parameter inside the accelerator channel. These values are then compared to the classical (collision-driven) Hall parameters expected for a quiescent magnetized plasma. The results indicate that in the vicinity of the anode, where there are fewer plasma instabilities, the electron-transport mechanism is likely elastic collisions with the background neutral xenon. However, we find that in the vicinity of the discharge channel exit, where the magnetic field is the strongest and where there are intense fluctuations in the plasma properties, the inferred Hall parameter departs from the classical value, and is close to the Bohm value of (omega(ce)tau)(eff) approximately 16. These results are used to support a simple model for the Hall parameter that is based on the scalar addition of the electron collision frequencies (elastic collision induced plus fluctuation induced), as proposed by Boeuf and Garrigues [J. Appl. Phys. 84, 3541 (1998)]. The results also draw attention to the possible role of fluctuations in enhancing electron transport in regions where the electrons are highly magnetized.

  4. Three dimensional dynamic study of a metal halide thallium iodine discharge plasma powered by a sinusoidal and square signal

    NASA Astrophysics Data System (ADS)

    Bechir Ben Hamida, Mohamed; Charrada, Kamel

    2016-01-01

    The purpose of this paper is to study the dynamic of a metal halide thallium iodine discharge lamp fed by a sinusoidal and square power supply. For this, a chemical model under Local Thermodynamic Equilibrium conditions has been developed to compute the plasma composition and transport coefficients such as thermal conductivity, viscosity and electric conductivity. This is then coupled with a three-dimensional time-dependent code that solves the system of the mass, energy and momentum equations, as well as the Laplace equation for the plasma using Comsol Multiphysics with Matlab. After validation with the experimental results, this model was applied to analyze the influence of the key parameters on the discharge behavior such as frequency for an AC arc current and the atomic ratio for square arc-current wave form on the convective process.

  5. Action of plasma jets of a low-current spark discharge on microorganisms ( Escherichia coli)

    NASA Astrophysics Data System (ADS)

    Baldanov, B. B.; Semenov, A. P.; Ranzhurov, Ts. V.; Nikolaev, E. O.; Gomboeva, S. V.

    2015-11-01

    High efficiency of bactericide action of cold argon plasma generated by plasma jets of a weak-current spark discharge under atmospheric pressure is demonstrated. It is found that an increase in the time of treatment with plasma jets from a low-current spark discharge makes it possible to effectively inactivate microorganisms over a much larger area.

  6. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  7. Laser Thomson Scattering Diagnostics of Pulsed Filamentary Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Bolouki, Nima

    2012-10-01

    Laser Thomson scattering (LTS) has been applied to measure spatiotemporal evolution of electron density and electron temperature in a pulsed filamentary discharge. The light source of LTS is the second harmonics Nd:YAG laser with a energy of 8 mJ. Also a triple grating spectrometer (TGS) having high rejection rate for stray light is used to measure LTS spectra. In our experimental conditions, non-thermal and non-equilibrium micro-plasmas are generated at round atmospheric pressure. Moreover, the electrode set in this experiment is consisted of a needle electrode and a hemispherical electrode with an inter-electrode gap of 0.5 mm. The total electric charge that flows through the discharge channel vary from 20 nC to 850 nC by changing capacitance in electrical circuit. We could show that the total charge variation leads to increase in electron density from 10^22 m-3 to 10^23 m-3. However, the electron temperature remains almost constant at the main discharge. In order to investigate the streamer phase, we changed the gap up to 16mm, and then performed the LTS method to measure the electron density and electron temperature.

  8. VUV Spectroscopy of High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Kurunczi, P.; Becker, K.

    1999-10-01

    Hollow cathode discharges with hole sizes in the range of about 100 micro- meters (microhollow cathode discharges, MHCDs) are simple, compact, and con- venient sources of high-pressure (up to atmospheric pressure) discharge plasmas. Among other things, MHCDs can be used as efficient excimer light sources or sources of other vacuum ultraviolet radiation such as rare gas ion emissions, e.g. the NeII emissions at 46 nm or the HeII emission at 30.4 nm. We have started a comprehensive series of spectroscopic studies of vacuum ultraviolet emissions from MHCDs operated in Ne, He, and N2. These studies are aimed at obtaining a rudimentary understanding of the electron, ion, and neutral temperatures in MHCDs under various operating conditions. Specifically, in Ne we want to quantify the conditions under which NeII emissions are favored vs. the conditions under which Ne2 excimer emissions are favored. Our experimental set-up uses a calibrated VUV monochromator/detection system with the MHCD mounted directly on the entrance slit of the monochromator. *Work supported by the NSF.

  9. Reasonable structure for the discharge type plasma source. [In Pulsed Plasma Thruster

    SciTech Connect

    An, S.M.

    1987-01-01

    Experiments conducted with a magnetoplasma thruster in which plasma production and acceleration were treated separately indicate that different plasma source geometries have the most direct effect on energy conversion efficiency. An analysis of cup and tube type constraining structures shows the cup type to incur the greatest losses. It is noted that a parallel rail-type open structure such as that employed by the Chinese MDT-2A thruster leads to substantial discharge process dispersion. It is emphasized that the type and performance characteristics of a plasma source have a critical influence on thruster behavior. 5 references.

  10. Determination of the HO2 radical in dielectric barrier discharge plasmas using near-infrared cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Wei; Xu, Yong; Yang, Xue-Feng; Zhu, Ai-Min; Zhao, Guo-Li; Wang, Wei-Guo

    2008-02-01

    The hydroperoxyl radical (HO2) plays an important role in combustion systems, atmospheric chemistry and the removal of air pollutants by non-thermal plasmas. This work reports the determination of the hydroperoxyl radical in dielectric barrier discharge plasmas via near-infrared continuous wave cavity ring-down spectroscopy. HO2 radicals were observed in discharges of HCHO/O2/H2O/N2 mixtures around 6625.7 cm-1 in the first H-OO stretching overtone, (2, 0, 0)-(0, 0, 0), of its ground electronic state \\tilde{X}\\,^{2}A^{\\prime \\prime} . At certain discharge conditions (ac frequency of 5 kHz, peak-to-peak voltage of 6.5 kV, 1900 ppm HCHO, 20% O2, 3.5% H2O in N2, Ptotal = 30 Torr), HO2 radical concentration was determined to be 1.0 × 1013 molecules cm-3. The temporary evolution of HO2 concentration was obtained using the 'time window' method. The effects of oxygen concentration, water concentration, the discharge voltage and discharge gas pressure on the concentration of HO2 radicals have been investigated. The detection limit of our setup for the HO2 radical is ~1 × 1011 molecules cm-3.

  11. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Díaz A., Laura V.; Pacheco S., Joel O.; Pacheco P., Marquidia; Monroy G., Fabiola; Emeterio H., Miguel; Ramos F., Fidel

    2006-12-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  12. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  13. Long range temporal correlation in the chaotic oscillations of a dc glow discharge plasma

    SciTech Connect

    Lahiri, S.; Roychowdhury, D.

    2012-08-15

    Long range temporal correlations in the fluctuations of the plasma floating potentials (measured using a Langmuir probe) are investigated in a dc glow discharge plasma. Keeping the neutral pressure constant, the discharge voltage was varied and at the formation of the plasma, quasi periodic oscillations were excited and on further increase of the discharge voltage they became chaotic (irregular) beyond a threshold voltage. We compared the Lyapunov exponent with the Hurst exponent obtained from R/S statistics which showed an opposite behaviour at the transition point. These results are perhaps new since we have not come across such comparative analysis for chaotic oscillations in a glow discharge plasma before.

  14. Study on the effect of target on plasma parameters of magnetron sputtering discharge plasma

    SciTech Connect

    Saikia, P.; Kakati, B.; Saikia, B. K.

    2013-10-15

    In this study, the effect of magnetron target on different plasma parameters of Argon/Hydrogen (Ar - H{sub 2}) direct current (DC) magnetron discharge is examined. Here, Copper (Cu) and Chromium (Cr) are used as magnetron targets. The value of plasma parameters such as electron temperature (kT{sub e}), electron density (N{sub e}), ion density (N{sub i}), degree of ionization of Ar, and degree of dissociation of H{sub 2} for both the target are studied as a function of input power and hydrogen content in the discharge. The plasma parameters are determined by using Langmuir probe and Optical emission spectroscopy. On the basis of the different reactions in the gas phase, the variation of plasma parameters and sputtering rate are explained. The obtained results show that electron and ion density decline with gradual addition of Hydrogen in the discharge and increase with rising input power. It brings significant changes on the degree of ionization of Ar and dissociation of H{sub 2}. The enhanced value of electron density (N{sub e}), ion density (N{sub i}), degree of Ionization of Ar, and degree of dissociation of H{sub 2} for Cr compared to Cu target is explained on the basis of it's higher Ion Induced Secondary Electron Emission Coefficient (ISEE) value.

  15. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Boris M.

    2009-06-01

    The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

  16. Production of Titan's aerosols analogues by radio frequency plasma discharge

    NASA Astrophysics Data System (ADS)

    Szopa, C.; Cernogora, G.; Boufendi, L.; Cavarroc, M.; Quirico, E.; Bernard, J. M.; Coll, P.; Jolly, A.

    Titan s organic aerosols play a significant role in the physico-chemical mechanisms of the Titan s atmosphere and heat transfer to the Titan s surface They also contribute to the physico-chemical properties of the Titan s surface and more particularly to its reflectance as they can have accumulated at the surface fro a long period However the amount of direct data dealing with the Titan s aerosols is quite low and the data recovered by the Cassini and Huygens probes remain difficult to interpret without any reference data This is the reason why we developed a laboratory experiment which simulates the Titan s atmosphere chemistry and produces analogues of Titan s aerosols with the aim to study the properties of the Titan s aerosols and their way of formation In this experiment the Titan s chemistry is simulated by a low pressure Radio Frequency plasma discharge in a N2-CH4 gas mixture In this device aerosols are produced in the gas phase without interaction with the reactor walls The aim of this paper is to present recent results obtained with this experiment Chemical composition physical properties morphology of the produced particles will be presented as well as their dependence on the plasma conditions Moreover the properties of the plasma characterized by optical and eletrcial diagnostics will also be presented A correlation of the solids particles properties and the plasma characteristics will be attempted We will finally attempt to correlate these laboratory results with the known properties of the Titan s aerosols in order to try to bring

  17. Production Of Titan'S Aerosols Analogues By Radio Frequency Plasma Discharge

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Cernogora, G.; Quirico, E.; Bernard, J.; Coll, P.

    2006-09-01

    Titan's organic aerosols play a significant role in the physico-chemical mechanisms of the Titan's atmosphere and heat transfer to the Titan's surface. They also contribute to the physico-chemical properties of the Titan's surface, and more particularly to its reflectance, as they can have accumulated at the surface fro a long period. However, the amount of direct data dealing with the Titan's aerosols is quite low, and the data recovered by the Cassini and Huygens probes remain difficult to interpret without any reference data. This is the reason why we developed a laboratory experiment which simulates the Titan's atmosphere chemistry and produces analogues of Titan's aerosols, with the aim to study the properties of the Titan's aerosols and their way of formation.. In this experiment, the Titan's chemistry is simulated by a low pressure Radio Frequency plasma discharge in a N2-CH4 gas mixture. In this device, aerosols are produced in the gas phase without interaction with the reactor walls. The aim of this paper is to present recent results obtained with this experiment. Chemical composition, physical properties, morphology of the produced particles will be presented, as well as their dependence on the plasma conditions. Moreover, the properties of the plasma characterized by optical and eletrcial diagnostics will also be presented. A correlation of the solids particles properties and the plasma characteristics will be attempted. We will finally attempt to correlate these laboratory results with the known properties of the Titan's aerosols in order to try to bring additional information on the Titan's aerosols properties and their way of formation.

  18. Equilibrium and Stability of Partial Toroidal Plasma Discharges

    SciTech Connect

    Oz, E.; Myers, C. E.; Yamada, M.; Ji, H.; Kulsrud, R.; Xie, J.

    2011-01-04

    The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).

  19. Ammonia production in nitrogen seeded plasma discharges in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rohde, V.; Oberkofler, M.

    2015-08-01

    In present tokamaks nitrogen seeding is used to reduce the power load onto the divertor tiles. Some fraction of the seeded nitrogen reacts with hydrogen to form ammonia. The behaviour of ammonia in ASDEX Upgrade is studied by mass spectrometry. Injection without plasma shows strong absorption at the inner walls of the vessel and isotope exchange reactions. During nitrogen seeding in H-mode discharges the onset of a saturation of the nitrogen retention is observed. The residual gas consists of strongly deuterated methane and ammonia with almost equal amounts of deuterium and protium. This confirms the role of surface reactions in the ammonia formation. The results are consistent with findings in previous investigations. A numerical decomposition of mass spectra is under development and will be needed for quantitative evaluation of the results obtained.

  20. Large Scale Modelling of Glow Discharges or Non - Plasmas

    NASA Astrophysics Data System (ADS)

    Shankar, Sadasivan

    The Electron Velocity Distribution Function (EVDF) in the cathode fall of a DC helium glow discharge was evaluated from a numerical solution of the Boltzmann Transport Equation(BTE). The numerical technique was based on a Petrov-Galerkin technique and a unique combination of streamline upwinding with self -consistent feedback-based shock-capturing. EVDF for the cathode fall was solved at 1 Torr, as a function of position x, axial velocity v_{rm x}, radial velocity v_{rm r}, and time t. The electron-neutral collisions consisted of elastic, excitation, and ionization processes. The algorithm was optimized and vectorized to speed execution by more than a factor of 10 on CRAY-XMP. Efficient storage schemes were used to save the memory allocation required by the algorithm. The analysis of the solution of BTE was done in terms of the 8-moments that were evaluated. Higher moments were found necessary to study the momentum and energy fluxes. The time and length scales were estimated and used as a basis for the characterization of DC glow discharges. Based on an exhaustive study of Knudsen numbers, it was observed that the electrons in the cathode fall were in the transition or Boltzmann regime. The shortest relaxation time was the momentum relaxation and the longest times were the ionization and energy relaxation times. The other times in the processes were that for plasma reaction, diffusion, convection, transit, entropy relaxation, and that for mean free flight between the collisions. Different models were classified based on the moments, time scales, and length scales in their applicability to glow discharges. These consisted of BTE with different number af phase and configuration dimensions, Bhatnagar-Gross-Krook equation, moment equations (e.g. Drift-Diffusion, Drift-Diffusion-Inertia), and spherical harmonic expansions.

  1. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  2. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  3. Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor

    NASA Astrophysics Data System (ADS)

    Hassouni, K.; Grotjohn, T. A.; Gicquel, A.

    1999-07-01

    A self-consistent two-dimensional model of the electromagnetic field and the plasma in a hydrogen discharge system has been developed and tested in comparison to experimental measurements. The reactor studied is a 25 cm diameter resonant cavity structure operating at 2.45 GHz with a silica belljar of 10 cm diameter and 17 cm height contained within the microwave cavity. The inside of the belljar where the discharge occurs contains a substrate holder of 5 cm diameter that is used to hold substrates for diamond deposition. The electromagnetic field model solves for the microwave fields using a finite difference time-domain solution of Maxwell's equations. The plasma model is a three energy mode (gas, molecular vibration, and electron) and nine species (H2, H, H(n=2), H(n=3), H+, H2+, H3+, H-, electron) model which accounts for non-Boltzmann electron distribution function and has 35 reactions. Simulated characteristics of the reactor in two dimensions include gas temperature, electron temperature, electron density, atomic hydrogen molar fraction, microwave power absorption, and microwave fields. Comparisons of the model are made with close agreement to several experimental measurements including coherent anti-Stokes Raman Spectroscopy measurement of H2 temperature versus position above the substrate, Doppler broadening optical emission spectroscopy (OES) measurements of H temperature versus pressure, actinometry measurements of the relative H atom concentration, Hα OES intensity measurements versus position, and microwave electric field measurements. The parameter range studied includes pressures of 2500-11 000 Pa, microwave powers of 300-2000 W, and three vertical positions of the substrate holder.

  4. Two-dimensional, three-fluid modeling of capillary plasma discharges in electrothermal mass accelerators

    NASA Astrophysics Data System (ADS)

    Esmond, M. J.; Winfrey, A. L.

    2016-06-01

    Electrothermal (ET) plasma launchers have a wide array of applications as mass acceleration devices. An ET plasma launcher utilizes an ET plasma discharge to accelerate a projectile. ET plasma discharges are arc-driven capillary discharges that ablate liner materials and form partially ionized plasmas. ET plasma discharges are generated by driving current pulses through a capillary source. Current pulses typically have peak currents on the order of tens of kA with pulse lengths on the order of hundreds of μs. These types of plasma discharges have been explored for their application to military ballistics, electric thrusters, and nuclear fusion power. ET plasma discharges have been studied using 0D, 1D, and semi-2D fluid models. In this work, a three-fluid, fully two-dimensional model of ET plasma discharges is presented. First approximations used in the newly developed model and code are discussed and simulation results are compared with experiment. Simulation results indicate the development of back flow inside ET plasma discharges due to collisional drag forces between individual plasma species. This back flow is observed for simulations of ET plasma discharges receiving current pulses with peak currents of 10, 20, 30, and 40 kA. Simulation results also reveal the development of fluid perturbations near the breech of the plasma source. These perturbations cause variations in the plasma electrical conductivity and ultimately cause changes in the local ablation rate of the source liner. At higher current pulses, these perturbations are more localized in the region of the source closest to the breech. This effect causes a decrease in the ablated mass in this region relative to the region of the source experiencing the highest ablation.

  5. Plasma dynamics in a discharge produced by a pulsed dual frequency inductively coupled plasma source

    SciTech Connect

    Mishra, Anurag; Lee, Sehan; Yeom, Geun Y.

    2014-11-01

    Using a Langmuir probe, time resolved measurements of plasma parameters were carried out in a discharge produced by a pulsed dual frequency inductively coupled plasma source. The discharge was sustained in an argon gas environment at a pressure of 10 mTorr. The low frequency (P{sub 2} {sub MHz}) was pulsed at 1 kHz and a duty ratio of 50%, while high frequency (P{sub 13.56} {sub MHz}) was maintained in the CW mode. All measurements were carried out at the center of the discharge and 20 mm above the substrate. The results show that, at a particular condition (P{sub 2} {sub MHz} = 200 W and P{sub 13.56} {sub MHz }= 600 W), plasma density increases with time and stabilizes at up to ∼200 μs after the initiation of P{sub 2} {sub MHz} pulse at a plasma density of (2 × 10{sup 17} m{sup −3}) for the remaining duration of pulse “on.” This stabilization time for plasma density increases with increasing P{sub 2} {sub MHz} and becomes ∼300 μs when P{sub 2} {sub MHz} is 600 W; however, the growth rate of plasma density is almost independent of P{sub 2} {sub MHz}. Interestingly, the plasma density sharply increases as the pulse is switched off and reaches a peak value in ∼10 μs, then decreases for the remaining pulse “off-time.” This phenomenon is thought to be due to the sheath modulation during the transition from “pulse on” to “pulse off” and partly due to RF noise during the transition period. The magnitude of peak plasma density in off time increases with increasing P{sub 2} {sub MHz}. The plasma potential and electron temperature decrease as the pulse develops and shows similar behavior to that of the plasma density when the pulse is switched off.

  6. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen

    2013-10-01

    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  7. Decomposition of toluene in a gliding arc discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Du, Chang Ming; Yan, Jian Hua; Cheron, Bruno

    2007-11-01

    The decomposition of toluene in a gliding arc discharge (glidarc) was performed and studied. Experimental results indicate that the glidarc technology can effectively decompose toluene molecules and has bright prospects of being applied as an alternative tool to decompose volatile organic compounds. It is found that a change in the electrode material had an insignificant effect on the toluene removal efficiency. The toluene removal efficiency increases with increasing inlet gas temperature. The water vapor present in the gas mixture has a favorable effect on the toluene decomposition in the plasma. The energy efficiency is 29.46 g (kWh-1) at a relative humidity of 50% and a specific energy input of 0.26 kWh m-3, which is higher than other types of non-thermal plasmas. Too much or too little oxygen content does not favor toluene decomposition. The major gas phase products detected by FT-IR from the decomposition of toluene with air participation were CO, CO2, H2O and NO2. Some brown depositions were found on the surface of the electrodes, which were polar oxygenous and nitrogenous compounds determined by the GC-MS analysis, such as benzaldehyde, benzoic acid, quinine and nitrophenol from the reaction of toluene with radicals. A possible mechanism for toluene destruction via glidarc technology is proposed and summarized.

  8. Effect of radio frequency discharge power on dusty plasma parameters

    SciTech Connect

    Sheridan, T. E.

    2009-08-01

    The parameters of a two-dimensional dusty plasma consisting of six, 9 mum diameter particles trapped inside a radio frequency (rf) plasma sheath have been measured as a function of rf power in a 13.5 mtorr (1.8 Pa) argon discharge. The center-of-mass and breathing frequencies are found by projecting the cluster's Brownian motion onto the associated normal mode. The center-of-mass frequency (i.e., radial confinement) is insensitive to rf power. The Debye shielding parameter kappa, as found from the breathing frequency, increases from approx =0.5 to 2 as the square root of rf power. The Debye length decreases from approx =2.7 to 0.7 mm as the inverse of the square root of rf power. The average particle charge qapprox =-17 000e is effectively independent of rf power. These results are consistent with an electron temperature that is independent of rf power and an ion density that is directly proportional to rf power, where the Debye length is determined by the ion density in combination with the electron temperature.

  9. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  10. Airflow influence on the discharge performance of dielectric barrier discharge plasma actuators

    SciTech Connect

    Kriegseis, J.; Tropea, C.; Grundmann, S.

    2012-07-15

    In the present work, the effect of the airflow on the performance of dielectric barrier discharge plasma-actuators is investigated experimentally. In order to analyze the actuator's performance, luminosity measurements have been carried out simultaneously with the recording of the relevant electrical parameters. A performance drop of about 10% is observed for the entire measured parameter range at a flow speed of M = 0.145 (U{sub {infinity}}=50 m/s). This insight is of particular importance, since the plasma-actuator control authority is already significantly reduced at this modest speed level. The results at higher Mach numbers (0.4

  11. Investigation of microscale dielectric barrier discharge plasma devices

    NASA Astrophysics Data System (ADS)

    Zito, Justin C.

    This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power

  12. One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust

    NASA Astrophysics Data System (ADS)

    Yoon, Jae-San; Han, Jae-Hung

    2014-10-01

    Dielectric barrier discharge (DBD) plasma actuators with an asymmetric electrode configuration can generate a wall-bounded jet without mechanical moving parts, which require considerable modifications of existing aeronautical objects and which incur high maintenance costs. Despite this potential, one factor preventing the wider application of such actuators is the lack of a reliable actuator model. It is difficult to develop such a model because calculating the ion-electric field and fluid interaction consume a high amount calculation effort during the numerical analysis. Thus, the authors proposed a semi-empirical model which predicted the thrust of plasma actuators with a simple equation. It gave a numeric thrust value, and we implemented the value on a computational fluid dynamics (CFD) solver to describe the two-dimensional flow field induced by the actuator. However, the model had a narrow validation range, depending on the empirical formula, and it did not fully consider environment variables. This study presents an improved model by replacing the empirical formulae in the previous model with physical equations that take into account physical phenomena and environmental variables. During this process, additional operation parameters, such as pressure, temperature and ac waveforms, are newly taken to predict the thrust performance of the actuators with a wider range of existing parameters, the thickness of the dielectric barrier, the exposed electrode, the dielectric constant, the ac frequency and the voltage amplitude. Thrust prediction curves from the model are compared to those of earlier experimental results, showing that the average error is less than 5% for more than one hundred instances of data. As in the earlier work, the predicted thrust value is implemented on a CFD solver, and two-dimensional wall-jet velocity profiles induced by the actuator are compared to the previous experimental results.

  13. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.

    PubMed

    Malik, Muhammad Arif; Kolb, Juergen F; Sun, Yaohong; Schoenbach, Karl H

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC(50) in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges.

  14. A plasma needle for generating homogeneous discharge in atmospheric pressure air

    SciTech Connect

    Li Xuechen; Yuan Ning; Jia Pengying; Chen Junying

    2010-09-15

    Homogeneous discharge in air is often considered to be the ultimate low-temperature atmospheric pressure plasmas for industrial applications. In this paper, we present a method whereby stable homogeneous discharge in open air can be generated by a simple plasma needle. The discharge mechanism is discussed based on the spatially resolved light emission waveforms from the plasma. Optical emission spectroscopy is used to determine electron energy and rotational temperature, and results indicate that both electron energy and rotational temperature increase with increasing the applied voltage. The results are analyzed qualitatively based on the discharge mechanism.

  15. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    NASA Astrophysics Data System (ADS)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-01

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N2) and electronegative gases (O2 and SF6) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N2 discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  16. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  17. Study on AC-DC Electrical Conductivities in Warm Dense Matter Generated by Pulsed-power Discharge with Isochoric Vessel

    NASA Astrophysics Data System (ADS)

    Sasaki, Toru; Ohuchi, Takumi; Takahashi, Takuya; Kawaguchi, Yoshinari; Saito, Hirotaka; Miki, Yasutoshi; Takahashi, Kazumasa; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2016-03-01

    To observe AC and DC electrical conductivity in warm dense matter (WDM), we have demonstrated to apply the spectroscopic ellipsometry for a pulsed-power discharge with isochoric vessel. At 10 μs from the beginning of discharge, the generated parameters by using pulsed-power discharge with isochoric vessel are 0.1 ρ s (ρ s: solid density) of density and 4000 K of temperature, respectively. The DC electrical conductivity for above parameters is estimated to be 104 S/m. In order to measure the AC electrical conductivity, we have developed a four-detector spectroscopic ellipsometer with a multichannel spectrometer. The multichannel spectrometer, in which consists of a 16-channel photodiode array, a two-stages voltage adder, and a flat diffraction grating, has 10 MHz of the frequency response with covered visible spectrum. For applying the four-detector spectroscopic ellipsometer, we observe the each observation signal evolves the polarized behavior compared to the ratio as I 1/I 2.

  18. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  19. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  20. Research of Making Large Volume Atmospheric Pressure Plasma by Parallel MCS Discharge

    NASA Astrophysics Data System (ADS)

    Nagano, Kazumi; Kon, Akira; Yamazaki, Yuki; Maeyama, Mitsuaki

    We research parallel microhollow cathode sustained (MCS) discharge plasma that is generated by parallel operations of the Microhollow cathode discharge (MHCD) plasma to produce a large volume atmospheric pressure plasma. We propose the cylindrical parallel MCS discharge plasma expecting electron supply by MHCD plasma and electron trapping effects of logarithm potential. Several MHCD electrodes are placed on cylindrical surface of 19 mm in radius and a thin wire is placed at a cylinder center axis. MHCD electrodes are supplied repetitive pulse voltage and the central wire anode is supplied DC voltage. So far, 8 parallel MCS discharge plasmas could be generated at 50 kPa. In this paper, the relationship between axial distance of MHCD electrodes and number of parallel discharge electrodes, and the condition to increase power supplied to MCS discharge were studied. Axial distance of MHCD electrodes were arranged to 6 mm and 16 parallel cylindrical MCS discharge in atmospheric pressure was generated. Power supplied to MCS discharge could be increased without decreasing number of parallel discharge electrodes by reducing current limiting resistor and shortening MHCD pulse width.

  1. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu A.

    2015-10-01

    Microwave discharges (MD) are widely used as a source of non-equilibrium low pressure plasma for different applications. This paper reviews the methods of microwave plasma generation at pressures from 10-2 approximately to 30 kPa with centimeter-millimeter wavelength microwaves on the basis of scientific publications since 1950 up to the present. The review consists of 16 sections. A general look at MDs and their application is given in the introduction, together with a description of a typical block-schema of the microwave plasma generator, classification of MD, and attractive features of MD. Sections 2-12 describe the different methods of microwave plasma generators on the basis of cavity and waveguide discharges, surface and slow wave discharges, discharges with distributed energy input, initiated and surface discharges, discharges in wave beams, discharges with stochastically jumping phases of microwaves, discharges in an external magnetic field and discharges with a combination of microwave field and dc and RF fields. These methods provide the possibility of producing nonequilibriun high density plasma in small and large chambers for many applications. Plasma chemical activity of nonequilibrium microwave plasma is analyzed in section 13. A short consideration of the history and status of the problem is given. The main areas of microwave plasma application are briefly described in section 14. Non-uniformity is the inherent property of the majority of electrical discharges and MDs are no exception. Peculiarities of physical-chemical processes in strongly non-uniform MDs are demonstrated placing high emphasis on the influence of small noble gas additions to the main plasma gas (section 15). The review is illustrated by 80 figures. The list of references contains 350 scientific publications.

  2. Biological surface modification of titanium surfaces using glow discharge plasma.

    PubMed

    Huang, Haw-Ming; Hsieh, Sung-Chih; Teng, Nai-Chia; Feng, Sheng-Wei; Ou, Ken-Liang; Chang, Wei-Jen

    2011-06-01

    To improve the biological activity of titanium, by using of glow discharge plasma (GDP), albumin-grafted titanium disk have been implemented and carefully studied. Titanium disks were pre-treated with GDP in an environment filled with argon and allylamine gas. Glutaraldehyde was used as a cross-linking agent for albumin grafting. Then, the surface of the albumin-grafted titanium was examined using scanning electron microscopy and X-ray photoelectron spectroscopy. In addition, the static water contact angles of the albumin-grafted titanium disks were measured using goniometry. To observe the effects of albumin adsorption on cell behavior, MG-63 osteoblast-like cells were cultured on the surface-modified titanium disks. Blood coagulation resistance of the modified titanium was monitored and compared to the control titanium disks. The results demonstrated that MG-63 osteoblast-like cells cultured on the albumin-grafted titanium disks expressed better-differentiated morphology compare to cells grown on the control disks. Furthermore, albumin-grafting treatment significantly improved the surface wettability of the titanium disks and resulted in a significantly negative effect on thrombus formation. Based on these results, it was believed that the GDP can potentially improve the biofunctionality of titanium surfaces. PMID:21286829

  3. On the streamer propagation in methane plasma discharges

    SciTech Connect

    Ferrara, Carlo; Preda, Marco; Cavallotti, Carlo

    2012-12-01

    The initial stages of formation and propagation of a streamer in methane at atmospheric pressure were studied using a 2-dimensional axial symmetric hydrodynamic model. The model is based on the drift diffusion approximation and exploits electron transport parameters determined using an external Boltzmann equation solver. The resulting system of equations was solved using the finite element methods and integrated in time with an Euler backward algorithm. An approach useful to alleviate the numerical difficulties determined by the steep gradients that appear on the streamer front was developed. It is based on a proper choice of the adaptation algorithm of the integration time step. Three phases in the streamer development could be identified, in agreement with analytical and numerical models reported in the literature: ionization avalanche, streamer, and shielded plasma. The properties of the three phases have been characterized analyzing the evolution in time of the most important variables characterizing the system (ion and electron densities, potential, and electric field). Finally, the influence of some operative parameters, such as inter-electrodic gap, seed electron density, and applied potential, has been investigated in order to determine how it affects the evolution of the micro-discharge, and in particular, the transition from ionization avalanche to streamer.

  4. FLUIDS, PLASMAS AND ELECTRIC DISCHARGES: A cold plasma plume with a highly conductive liquid electrode

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Liang; Chen, Shi-Hua; Chen, Wen-Xing; Yang, Si-Ze

    2008-12-01

    A cold dielectric barrier discharge (DBD) plasma plume with one highly conductive liquid electrode has been developed to treat thermally sensitive materials, and its preliminary discharging characteristics have been studied. The averaged electron temperature and density is estimated to be 0.6eV and 1011/cm3, respectively. The length of plasma plume can reach 5 cm with helium gas (He), and the conductivity of the outer electrode affects the plume length obviously. This plasma plume could be touched by bare hand without causing any burning or painful sensation, which may provide potential application for safe aseptic skin care. Moreover, the oxidative particles (e.g., OH, O*, O3) in the downstream oxygen (O2) gas of the plume have been applied to treat the landfill leachate. The results show that the activated O2 gas can degrade the landfill leachate effectively, and the chemical oxygen demand (COD), conductivity, biochemical oxygen demand (BOD), and suspended solid (SS) can be decreased by 52%, 57%, 76% and 92%, respectively.

  5. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  6. Is the negative glow plasma of a direct current glow discharge negatively charged?

    SciTech Connect

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-02-15

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  7. Plasma Cathodes as Electron Sources for Large Volume, High-Pressure Glow Discharges

    NASA Astrophysics Data System (ADS)

    Stark, Robert H.; Schoenbach, Karl H.

    1998-10-01

    A method to suppress the glow-to-arc transition in high pressure glow discharges is the use of a plasma cathode consisting of microhollow cathode discharges (MHCD) [1]. In our experiment a microhollow cathode discharge with a 100 micrometer diameter cathode hole and identical anode hole was used to provide electrons for a large volume main discharge, sustained between the hollow anode of the MHCD and a third electrode. Current and voltage characteristics, and the visual appearance of the main discharge and MHCD were studied in argon and air by using the micro plasma cathode as electron source. We are able to get stable dc operation in argon up to 1 atm and in air up to 600 torr. The main discharge is ignited when the current in the plasma cathode (MHCD), which is on the order of mA, reaches a threshold value. This threshold current increases with reduced applied voltage across the main gap. Above this transition the current in the main discharge is on the same order as the MHCD current and can be controlled by the MHCD current. Experiments with two MHCDs in parallel have indicated that large area high pressure stable glow discharges can be generated by using arrays of MHCDs as electron sources. [1] K. H. Schoenbach et al, Plasma Sources Sci. Techn. 6, 468 (1997). This work was solely funded by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI program.

  8. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  9. Two-dimensional particle simulation of a sustained discharge in an alternating current plasma display panel

    NASA Astrophysics Data System (ADS)

    Ikeda, Y.; Suzuki, K.; Fukumoto, H.; Verboncoeur, J. P.; Christenson, P. J.; Birdsall, C. K.; Shibata, M.; Ishigaki, M.

    2000-12-01

    A plasma discharge due to a sustaining pulse of an alternating current plasma display panel was analyzed using a two-dimensional particle-in-cell code, and basic characteristics of the plasma discharge were calculated. The characteristics of the plasma discharge due to a sustaining pulse are as follows. (i) A large amount of space charge remained after drawing the discharge current. This excess space charge did not contribute to wall charge formation or ultraviolet radiation. (ii) The electron energy distribution function was evaluated and could be well fitted by the Druyvesteyn distribution in the high-energy region. The Druyvesteyn distribution was a consequence of the cross section for electron-Ne elastic scattering. (iii) The calculated ultraviolet radiation efficiency η of the plasma discharge due to a sustaining pulse was between 5.51% and 30.7%. Examination of the sensitivity of the efficiency to the electron temperature showed that reducing the electron temperature was a key to improving the efficiency. (iv) A detailed understanding of the conditions for a stable plasma discharge, memory margin, firing voltage, and electrode voltage of the sustaining pulse were obtained from the voltage transfer curve. The voltage transfer curve could be used to optimize the discharge cell design.

  10. Attenuation of single-tone ultrasound by an atmospheric glow discharge plasma barrier

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2010-09-15

    Propagation of 143 kHz ultrasound through an atmospheric pressure glow discharge in air was studied experimentally. The plasma was a continuous dc discharge formed by a multipin electrode system. Distributions of the gas temperature were also obtained in and around the plasma using laser-induced Rayleigh scattering technique. Results show significant attenuation of the ultrasound by the glow discharge plasma barrier (up to -24 dB). The results indicate that sound attenuation does not depend on the thickness of the plasma and attenuation is caused primarily by reflection of the sound waves from the plasma due to the sharp gas temperatures gradients that form at the plasma boundary. These gradients can be as high as 80 K/mm.

  11. Comparative characteristics of electron energy spectrum in PIG and arc type discharge plasmas

    NASA Technical Reports Server (NTRS)

    Romanyuk, L. I.; Suavilnyy, N. Y.

    1978-01-01

    The electron distribution functions relative to the velocity component directed along the magnetic field are compared for PIG and arc type discharges. The identity of these functions for the plasma region pierced by the primary electron beam and their difference in the peripheral part of the discharge are shown. It is concluded that the electron distribution function in the PIG type discharge is formed during one transit of the primary electron through the discharge gap. The mechanisms of electron energy spectrum formation in both the axis region and the peripheral region of the discharge are discussed.

  12. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  13. How does a probe inserted into the discharge influence the plasma structure?

    NASA Astrophysics Data System (ADS)

    Yordanov, D.; Lishev, St.; Shivarova, A.

    2016-05-01

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by the results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.

  14. Alternating current-generated plasma discharges for the controlled direct current charging of ferroelectrets

    NASA Astrophysics Data System (ADS)

    Cury Basso, Heitor; Monteiro, José Roberto B. de A.; Baladelli Mazulquim, Daniel; Teixeira de Paula, Geyverson; Gonçalves Neto, Luiz; Gerhard, Reimund

    2013-09-01

    The standard charging process for polymer ferroelectrets, e.g., from polypropylene foams or layered film systems involves the application of high DC fields either to metal electrodes or via a corona discharge. In this often-used process, the DC field triggers the internal breakdown and limits the final charge densities inside the ferroelectret cavities and, thus, the final polarization. Here, an AC + DC charging procedure is proposed and demonstrated in which a high-voltage high-frequency (HV-HF) wave train is applied together with a DC poling voltage. Thus, the internal dielectric-barrier discharges in the ferroelectret cavities are induced by the HV-HF wave train, while the final charge and polarization level is controlled separately through the applied DC voltage. In the new process, the frequency and the amplitude of the HV-HF wave train must be kept within critical boundaries that are closely related to the characteristics of the respective ferroelectrets. The charging method has been tested and investigated on a fluoropolymer-film system with a single well-defined cylindrical cavity. It is found that the internal electrical polarization of the cavity can be easily controlled and increases linearly with the applied DC voltage up to the breakdown voltage of the cavity. In the standard charging method, however, the DC voltage would have to be chosen above the respective breakdown voltage. With the new method, control of the HV-HF wave-train duration prevents a plasma-induced deterioration of the polymer surfaces inside the cavities. It is observed that the frequency of the HV-HF wave train during ferroelectret charging and the temperature applied during poling of ferroelectrics serve an analogous purpose. The analogy and the similarities between the proposed ferroelectret charging method and the poling of ferroelectric materials or dipole electrets at elevated temperatures with subsequent cooling under field are discussed.

  15. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR

  16. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  17. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  18. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  19. Interplay of discharge and gas flow in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Yang, JingLong; He, Feng; Cao, Zexian

    2011-05-01

    Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three different discharge modes [N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 106, 013308 (2009); N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 108, 033302 (2010)] has been investigated by simultaneous photographing of both plasma plumes and gas flows in the ambient, with the former being visualized by using an optical schlieren system. Gas flow gains a forward momentum from discharge except for the case of overflow jets at smaller applied voltages. Larger applied voltage implies an elongated plasma jet only for single-electrode mode; for dielectric barrier discharge jet the plume length maximizes at a properly applied voltage. These findings can help understand the underlying processes, and are useful particularly for the economic operation of tiny helium plasma jets and jet arrays.

  20. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  1. Experiments of discharge guiding using strongly and weakly ionized plasma channels for laser-triggered lightning

    NASA Astrophysics Data System (ADS)

    Shimada, Yoshinori; Uchida, Shigeaki; Yamanaka, Chiyoe; Ogata, Akihisa; Yamanaka, Tatsuhiko; Kawasaki, Zen-ichiro; Fujiwara, Etsuo; Ishikubo, Yuji; Kawabata, Kinya

    2000-01-01

    Generation of a long laser-plasma channel capable of triggering and guiding an electrical discharge is a crucial issue for laser-triggering protection system. We make a long plasma channel to increase the probability of triggered lightning by laser. To produce a long laser plasma channel, we propose da new technique called hybrid plasma channel method which combines weakly and strongly ionized plasma channels to maximize laser-energy efficiency of discharge guiding. We investigate the characteristics of the hybrid plasma channels to maximize laser-energy efficiency of discharge guiding. We investigate the characteristics of the hybrid plasma channel method through several laboratory experiments. The weakly ionized channel was generated by UV laser pulses in air. As the number density of electrons in weakly ionized channel is proportional to 1.1 power of laser intensity, nitrogen and oxygen molecules can not attributed to the source of ionized plasma. It is suggested that dissociation process of impurities in air whose density is 1011 - 1012 cm-3 plays an important role in plasma formation and leader triggering effect. The 50 percent flashover voltage using the hybrid plasma channel method is lower than that without the weakly ionized plasma channel. It was also found that higher repetition rate of the plasma generation on lowers the V50 furthermore.

  2. [Investigation on the Spectral Characteristics of a Plasma Jet in Atmospheric Argon Glow Discharge].

    PubMed

    Li, Xue-chen; Zhang, Chun-yan; Li, Ji-yuan; Bao, Wen-ting

    2015-12-01

    Plasma jet is a kind of important plasma source at atmospheric pressure. In recent years, it becomes an important hot topic in the field of low temperature plasma. In this paper, using a tungsten needle and a tungsten wire mesh, a direct-current excited jet is developed to operate in argon at atmospheric pressure. In the atmospheric pressure argon, the plasma jet can produce a stable plasma plume. By using the method of emission spectroscopy, the parameters of the plasma plume are investigated. The discharge emits dazzling white light from the area between the tungsten needle electrode and the wire mesh electrode. A plasma plume with a flame shape appears outside the tungsten wire mesh electrode. For a constant value of voltage (U = 13.5 kV), the length of the plasma plume increases with the gas flow rate. For a constant value of the gas flow rate(10 L · min⁻¹), the length of the plasma plume increases with the voltage. The voltage is inversely proportional to the current under the constant gas flow rate. In other words, the voltage decreases with the discharge current, which indicates that a glow discharge is formed in the plasma jet. Optical emission spectrum in 300 to 800 nm is collected from the direct-current excited plasma jet. By Boltzmann plot method, the excited electron temperature of the plasma plume is investigated as a function of the applied voltage or the gas flow rate. Results show that the excited electron temperature increases with decreasing applied voltage under the constant gas flow. Moreover, it increases with decreasing the gas flow under the constant voltage. Based on the discharge theory, these experimental phenomena are explained qualitatively. These results are of great importance to the development of atmospheric pressure uniform discharge plasma source and its application in industrial field. PMID:26964199

  3. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  4. Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.

  5. Low temperature plasma RF capacitive discharge in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Fayrushin, I.; Kashapov, N.

    2016-01-01

    The paper describes Low temperature plasma RF capacitive discharge in helium at atmospheric pressure. The circuit has been done, to obtain output currentabout 90mA,and the maximum power was 100W, The frequency of the discharging was f = 40MHz.Twolamps (DУ-50) were used in power supply. Helium consumption was about 1.5l/m.

  6. Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-10-01

    Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.

  7. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2016-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  8. Formation of Large-Volume High-Pressure Plasma in Triode-Configuration Discharge Devices

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Wang, Youqing

    2006-03-01

    A ``plane cathode micro-hollow anode discharge (PCHAD)'' is studied in comparison with micro-hollow cathode discharge (MHCD). A new triode-configuration discharge device is also designed for large-volume, high-pressure glow discharges plasma without glow-to-arc transitions, as well as with an anode metal needle, and a cathode of PCHAD. It has a ``needle-hole" sustained glow discharge. Its discharge circuit employs only one power supply circuit with a variable resistor. The discharge experiments have been carried out in the air. The electrical properties and the photo-images in PCHAD, multi-PCHAD and ``needle-hole" sustained discharge have been investigated. The electrical and the optical measurements show that this triode-configuration discharge device can operate stably at high-pressure, in parallel without individual ballasting resistance. And the electron density of the plasma is estimated to be up to 1012cm-3. Compared with the two-supply circuit system, this electrode configuration is very simple with lower cost in generating large-volume plasma at high pressures.

  9. Sporicidal properties from surface micro-discharge plasma under different plasma conditions at different humidities

    NASA Astrophysics Data System (ADS)

    Jeon, J.; Klaempfl, T. G.; Zimmermann, J. L.; Morfill, G. E.; Shimizu, T.

    2014-10-01

    In the current study, bacterial endospores of Geobacillus stearothermophilus are exposed to the surface micro-discharge plasma for 5 min and the humidity and power consumption are varied. At the low humidity of 5.5 ± 0.5 g m-3, almost no sporicidal effect (<0.5 log) is observed. At the high humidity of 17.9 ± 0.6 g m-3, the spore reduction increases monotonically up to 3.5 log with increasing power consumption. At a humidity of 10.4 ± 0.6 g m-3, the spores are inactivated in a limited range of power consumption with a maximum reduction of ˜2.5 log. The survival curves show a single-slope decrease of the spores. The contribution of heat and UV to the sporicidal effect as well as the inactivation of spores by the short-lived species from the plasma are ruled out. The concentration of ozone, one indicator for the long-lived species, is measured and no correlation with the sporicidal effect is found. In conclusion, water-related reactive species, e.g. hydrogen peroxide, appear to be responsible for the sporicidal effect under the investigated conditions. Furthermore, condensation of water at high humidity enables the plasma-activated water containing both long-lived and short-lived reactive species to contribute to the sporicidal effect.

  10. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    SciTech Connect

    Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  11. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    SciTech Connect

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-12-31

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n{sub e} = 10{sup 18} m{sup -3}. Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10{sup 17} m{sup -3} and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  12. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  13. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    PubMed

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  14. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  15. A search for Saturn electrostatic discharges in the Voyager plasma wave data

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1983-01-01

    A search of Voyager spacecraft plasma wave data for evidence of Saturn electrostatic discharges, whose detection was suggested to be likely on the basis of radio astronomy observations, has yielded no evidence of this phenomenon. The statistical significance of this null result is analyzed, and its ramifications are commented upon. The explanations entertained for the lack of plasma wave observations of electrostatic discharges include the possibility that many events are of much shorter duration than previously reported, or that there may be a nonlinear distortion in the radio astronomy receiver employed which may have artificially broadened the spectrum of the discharges.

  16. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Liu, Q.; Wang, Z. D.

    2016-05-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform.

  17. Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge

    SciTech Connect

    Zhang Quanzhi; Jiang Wei; Wang Younian; Hou Lujing

    2011-01-01

    Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled radio-frequency (CCRF) discharges, was discovered theoretically by Heil et al. [J. Phys. D: Appl. Phys. 41, 165202 (2008)] and was confirmed by experiments and theory/numerical simulations later on for electropositive argon discharges. In this work simulations based on particle-in-cell/Monte Carlo collision are performed to study the EAE on electronegative oxygen plasmas in geometrically symmetric CCRF discharges. Dual frequency discharges operating at 13.56 and 27.12 MHz are simulated for different pressures and the results are compared with those of electropositive argon discharges at the same conditions. It is found that in general the EAE on oxygen discharges has similar behavior as on argon discharge: The self-bias voltage {eta} increases monotonically and almost linearly with the increase in the phase angle {theta} between the two driving voltages in the range 0<{theta}<90 deg. , and the maximum ion energy varies by a factor of 3 by adjusting {theta}. However, the ion flux varies with {theta} by {+-}12% for low pressure and by {+-}15% for higher pressure, due primarily to an enhanced plasma series resonance, which then leads to dramatic changes in plasma density, power absorption and consequently the electronegativity. This may place a limitation for achieving separate control of ion energy and flux for electronegative plasma via the EAE.

  18. Mechanism of Synthesis of Ultra-Long Single Wall Carbon Nanotubes in Arc Discharge Plasma

    SciTech Connect

    Keidar, Michael

    2013-06-23

    In this project fundamental issues related to synthesis of single wall carbon nanotubes (SWNTs), which is relationship between plasma parameters and SWNT characteristics were investigated. Given that among plasma-based techniques arc discharge stands out as very advantageous in several ways (fewer defects, high flexibility, longer lifetime) this techniques warrants attention from the plasma physics and plasma technology standpoint. Both experimental and theoretical investigations of the plasma and SWNTs synthesis were conducted. Experimental efforts focused on plasma diagnostics, measurements of nanostructures parameters, and nanoparticle characterization. Theoretical efforts focused to focus on multi-dimensional modeling of the arc discharge and single wall nanotube synthesis in arc plasmas. It was demonstrated in experiment and theoretically that controlling plasma parameters can affect nanostucture synthesis altering SWNT properties (length and diameter) and leading to synthesis of new structures such as a few-layer graphene. Among clearly identified parameters affecting synthesis are magnetic and electric fields. Knowledge of the plasma parameters and discharge characteristics is crucial for ability to control synthesis process by virtue of both magnetic and electric fields. New graduate course on plasma engineering was introduced into curriculum. 3 undergraduate students were attracted to the project and 3 graduate students (two are female) were involved in the project. Undergraduate student from Historically Black University was attracted and participated in the project during Summer 2010.

  19. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  20. Properties of dust-plasma structures formed in a glow discharge above the lower wall of the discharge chamber

    NASA Astrophysics Data System (ADS)

    Dzlieva, E. S.; Ermolenko, M. A.; Karasev, V. Yu.

    2012-07-01

    The properties are studied of dusty plasma structures formed in a glow discharge in a dust trap above the lower wall of the side branch of the discharge tube, near the turn of the discharge channel. The dust structure is three-dimensional with a characteristic size of up to 3 cm and contains about 30000 dust grains. Depending on the experimental conditions, dust-acoustic, dissipative, and charge-gradient instabilities can develop in such a structure. When using highly polydisperse dust grains of arbitrary shape, the effect of selection of dust grains by the plasma with respect to their mean size and shape was discovered. This effect was studied quantitatively in two gases by using the method of gathering and extraction of the dust grains levitating in the trap. The morphology of the dust structures was determined from the pair correlation functions of the horizontal cross sections containing long-range order peaks and elements of a hexagonal lattice. Stratification of a uniform structure accompanied by convective rotation caused by the grain charge gradient was observed. Applications of the dusty plasma created in this type of device are discussed.

  1. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor

    NASA Astrophysics Data System (ADS)

    Van Laer, Koen; Bogaerts, Annemie

    2016-02-01

    A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.

  2. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    SciTech Connect

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-03-20

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity.

  3. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    SciTech Connect

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-15

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N{sub 2}) and electronegative gases (O{sub 2} and SF{sub 6}) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by the positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N{sub 2} discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.

  4. Silane thermometry in radio-frequency discharge plasma by coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1986-03-01

    The rotational temperature of silane molecules in a flowing gas as well as in a radio-frequency discharge plasma of silane has been determined by the analysis of its coherent anti-Stokes Raman spectra. The ν1 Q-band coherent anti-Stokes Raman spectra of silane have been measured under different conditions such as discharge off, discharge on, and electrode heating, and fitted to theoretically calculated curves for various rotational temperatures using a nonlinear least-squares method. The results have shown that discharge power as well as electrode heating increase the rotational temperature of SiH4.

  5. Bacterial Inactivation of Wound Infection in a Human Skin Model by Liquid-Phase Discharge Plasma

    PubMed Central

    Kim, Paul Y.; Kim, Yoon-Sun; Koo, Il Gyo; Jung, Jae Chul; Kim, Gon Jun; Choi, Myeong Yeol; Yu, Zengqi; Collins, George J.

    2011-01-01

    Background We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid. Principal Findings We observed statistically significant 3.83-log10 (p<0.001) and 1.59-log10 (p<0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed. Conclusions These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds. PMID:21897870

  6. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    SciTech Connect

    Algwari, Q. Th.; O'Connell, D.

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  7. Two-Dimensional Plasma Density Distributions in Low-Pressure Gas Discharges

    SciTech Connect

    Berlin, E.V.; Dvinin, S.A.; Mikheev, V.V.; Omarov, M.O.; Sviridkina, V. S.

    2004-12-15

    The plasma density distribution in a two-dimensional nonuniform positive column of a low-pressure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used to analyze the processes occurring in low-pressure plasmochemical reactors.

  8. Axial distribution of a VHF H2 plasma produced by a narrow gap discharge

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Chen; Chen, Chia-Fu; Lien, Cheng-Yang; Chiu, Kuo-Feng; Shi, Jen-Bin; Tsai, Yu-Jer; Lien, Ting-Kuei; Ogiwara, Kohei; Uchino, Kiichiro; Kawai, Yoshinobu

    2016-01-01

    A capacitively coupled VHF H2 plasma was produced with a conventional parallel plate electrode of 400 × 300 mm2. Axial distributions of the plasma parameters were examined using a movable Langmuir probe. The electron density had a hill-like profile near the center while the electron temperature around the discharge electrode was higher than that near the center. It was found that the axial distribution of the plasma potential was considerably different from that based on ohmic heating. The measured sheath potentials around the discharge electrode were lower than the theoretical potentials. A simulation using a hybrid model was performed and compared the results with the experimental results.

  9. Temporal evolution of electron density and temperature in capillary discharge plasmas

    SciTech Connect

    Oh, Seong Y.; Kang, Hoonsoo; Uhm, Han S.; Lee, In W.; Suk, Hyyong

    2010-05-15

    Time-resolved spectroscopic measurements of a capillary discharge plasma of helium gas were carried out to obtain detailed information about dynamics of the discharge plasma column, where the fast plasma dynamics is determined by the electron density and temperature. Our measurements show that the electron density of the capillary plasma column increases sharply after gas breakdown and reaches its peak of the order of 10{sup 18} cm{sup -3} within less than 100 ns, and then it decreases as time goes by. The result indicates that a peak electron density of 2.3x10{sup 18} cm{sup -3} occurs about 65 ns after formation of the discharge current, which is ideal for laser wakefield acceleration experiments reported by Karsch et al. [New J. Phys. 9, 415 (2007)].

  10. A Low-Voltage Heated-Cathode Discharge Device for Nonlocal Control of Plasma Properties

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Schweigert, I.; Kaganovich, I.; Mustafaev, A. S.; Adams, S. F.; Koepke, M. E.

    2012-10-01

    In this research a low-voltage gas discharge device with heated cathode has been used for demonstration of controlling plasma properties by means of regulation of nonlocal energetic electrons. The discharge is formed between a heated cathode and an anode. A special molybdenum diaphragm, the control electrode, is placed between cathode and anode. Experiments and modeling of the device suggest the presence of two dramatically different modes, which are dependent on the diaphragm voltage. The transition between modes leads to a significant variation in plasma properties. It is experimentally shown that increasing the gas pressure (which leads to transition from plasma with nonlocal electron energy distribution (EDF) to plasma with local EDF) will eventually terminate this effect and for higher pressure there is only one mode in the discharge. Modeling for different radii of the diaphragm opening allows demonstrate modification of the effect.

  11. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  12. Radial profile of the electron energy distribution function in RF capacitive gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Popov, Tsv; Puac, N.; Skoro, N.; Spasic, K.; Malovic, G.; Dias, F. M.; Petrovic, Z. Lj

    2016-03-01

    This paper reports experimental results on low-pressure argon capacitive RF discharge (parallel-plate capacitively-coupled plasma - CCP) under different conditions, namely, gas pressure in the range 3 -r- 30 Pa and RF power in the range 10 - 100 W. The IV characteristics measured were processed by two different second-derivative probe techniques for determination of the plasma parameters and the electron energy distribution function. The radial profiles of the main plasma parameters are presented.

  13. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-01

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  14. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    SciTech Connect

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-13

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  15. Plasma characteristics of a high power helicon discharge

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; Euripides, P.; Slough, J.; Winglee, R.; Giersch, L.; Carscadden, J.; Schnackenberg, T.; Isley, S.

    2006-08-01

    A new high power helicon (HPH) plasma system has been designed to provide input powers of several tens of kilowatts to produce a large area (0.5 m2) of uniform high-density, of at least 5 × 1017 m-3, plasma downstream from the helicon coil. Axial and radial plasma characteristics show that the plasma is to a lesser extent created in and near the helicon coil and then is accelerated into the axial and equatorial regions. The bulk acceleration of the plasma is believed to be due to a coupling of the bulk of the electrons to the helicon field, which in turn transfers energy to the ions via ambipolar diffusion. The plasma beta is near unity a few centimetres away from the HPH system and Bdot measurements show ΔB perturbations in the order of the vacuum magnetic field magnitude. In the equatorial region, a magnetic separatrix is seen to develop roughly at the mid-point between the helicon and chamber wall. The magnetic perturbation develops on the time scale of the plasma flow speed and upon the plasma reaching the chamber wall decays to the vacuum magnetic field configuration within 200 µs.

  16. Numerical simulation of plasma-induced electrolysis utilizing dc glow discharge

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Shirai, Naoki; Uchida, Satoshi; Shirafuji, Tatsuru

    2014-10-01

    In this work, we carried out one-dimensional numerical simulation of plasma-induced electrolysis, which consists of atmospheric pressure dc glow discharge and electrolyte solution connected in series. Grounded metal electrode is placed at the bottom of NaCl solution with 1 mm depth while powered electrode is placed at 1 mm above the solution surface. The gap is filled with helium. Continuity equations of charged species both in gas and in liquid were simultaneously calculated with Poisson's equation. Current continuity is considered at plasma-liquid interface. That is, hydrated electrons equivalent to electron flux from plasma, or H2O+ ions equivalent to positive ion flux from plasma are supplied in the liquid at plasma-liquid interface. The calculated gas-phase discharge structure is essentially the same as that between two metal electrodes. In front of the metal electrode in liquid, the electric double layer (EDL) with thickness of approximately 10 nm was formed to maintain the electrode reaction. However, the EDL was not formed at the liquid surface in contact with dc glow discharge, because charges are forcibly supplied from plasma to liquid. In other words, plasma-induced electrolysis is controlled at plasma-liquid interface by plasma. This work was partly supported by KAKENHI (Nos. 21110003 and 21110007).

  17. Measurement of ion density in an atmospheric pressure argon with pin-to-plate dielectric barrier discharge by resonance of plasma radiation

    SciTech Connect

    Qi, Bing Pan, Lizhu; Zhou, Qiujiao; Huang, Jianjun; Liu, Ying

    2014-12-15

    The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{sup 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.

  18. Plasma Treatment of Industrial Landfill Leachate by Atmospheric Pressure Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Zhao, Di; Wang, Dacheng; Yan, Gui; Ma, Hong; Xiong, Xiaojing; Luo, Jinjing; Zhang, Xianhui; Liu, Dongping; Yang, Size

    2011-10-01

    An dielectric barrier discharge (DBD) system in atmospheric pressure utilized for the treatment of industrial landfill leachate is reported. The discharge parameters, such as the operating frequency, gas flow rate, and treating duration, were found to affect significantly the removal of ammonia nitrogen (AN) in industrial landfill leachate. An increase in treating duration leads to an obvious increase in the removal efficiency of AN (up to 83%) and the leachate color changed from deep grey-black to transparent. Thus the dielectric barrier discharges in atmospheric pressure could degrade the landfill leachate effectively. Typical waveforms of both applied voltage and discharge current were also presented for analyzing the discharge processes under different discharge parameters. Optical emission spectra measurements indicate that oxidation species generated in oxygen DBD plasma play a crucial role in removing AN, oxidizing organic and inorganic substances and decolorizing the landfill leachate.

  19. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  20. Time dependent atomic processes in discharge produced low Z plasma

    NASA Astrophysics Data System (ADS)

    Yuyama, M.; Sasaki, T.; Horioka, K.; Kawamura, T.

    2008-05-01

    The z-pinch simulation have been performed with magneto-hydro dynamics and atomic population kinetics codes. A factor associated with transient atomic processes was proposed. The atomic transient degrees of dopant lithium in hydrogen plasma were calculated with initial plasma densities of 1.0 × 1016 ~ 5.0 × 1017cm-3. The higher initial plasma density is, the lower is the transient degree generally. It is also found that the transient properties of the atomic processes are sensitive to ionization energy and electron temperature.

  1. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  2. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  3. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    NASA Astrophysics Data System (ADS)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6-2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5-2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1-1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150-170 eV, while for neon discharges with the deuterium puffing it reached 330-880 eV (with accuracy of  ±20%).

  4. Collisional-radiative modelling of an Ar helicon plasma discharge

    NASA Astrophysics Data System (ADS)

    Loch, Stuart

    2005-10-01

    We report on recent modelling results of emission observed from a helicon plasma, comparing theoretical and observed line intensities and line ratios of Ar, Ar^+ and Ar^2+. Our Helicon plasma is from the ASTRAL device at Auburn University, with spectral measurements from 275 nm through to 1015 nm. We concentrate on the Ar^+ ion stage, and present the results of a collisional-radiative model using various qualities of atomic data. In particular, we compare the modelling results using Plane-Wave Born, Distorted-Wave and R-matrix electron impact excitation data with those observed from the plasma. As part of the modelling work, we investigate the potential use of various lines as plasma diagnostic tools.

  5. Application of filter method for detection of secondary electron emission in the auto-oscillating mode of beam plasma discharge

    NASA Astrophysics Data System (ADS)

    Balovnev, A. V.; Vizgalov, I. V.; Salahutdinov, G. H.

    2016-01-01

    In this paper we studied the non-self mode of the auto-oscillation secondary- emission discharge (ASED) in a longitudinal magnetic field with autonomous electron gun to ignite the primary beam-plasma discharge (PPD).

  6. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection.

  7. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  8. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  9. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  10. A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet

    SciTech Connect

    Shi Jianjun; Zhong Fangchun; Zhang Jing; Liu, D. W.; Kong, M. G.

    2008-01-15

    An experimental observation of fast-moving plasma bullets produced in an atmospheric dielectric-barrier discharge jet is reported in this paper. Nanosecond imaging suggests that the atmospheric discharge jet consists of a plasma bullet train traveling at a hypersonic speed from 7.0 km/s to 43.1 km/s. Yet on a millisecond scale, the bullet train appears as a plasma jet of several centimeters long. The plasma bullets are produced through several possible mechanisms, the most likely of which is related to the ionization wave. Time and space resolved optical emission spectroscopy show that reactive plasma species can be delivered to different spatial sites with varying quantities.

  11. [Experimental study on closed plasma discharging under low pressure and spectroscopic diagnosis].

    PubMed

    Lin, Min; Xu, Hao-jun; Su, Chen; Liang, Hua

    2014-06-01

    Closed plasma can overcome difficulties of maintaining plasma and excessive energy consumption in open environment. For plasma stealth technology, a closed plasma generator was designed. Using microsecond pulse generator and argon as working gas, discharge experiments were carried out under low pressure environment. The emission spectrum of Ar at different position in discharge chamber was measured. By using collisional-radiative modal (CRM), the distribution of plasma parameters was studied. At a given electron temperature and density with specified discharge parameters, corresponding population distribution could be obtained by CRM. By comparing the line ratio of argon 2p levels acquired from CRM with the line ratio from spectrum measured, the plasma parameters were confirmed after obtaining the minimum difference value. Using the line ratio of argon 2p9 to 2p1 from CRM while the range of electron density was 1-5 eV, the calculating error was analyzed. The results reveal that, the electron density of the closed plasma reaches a magnitude of 10(11) cm(-3) and shows a gradient distribution with small variational amplitude, and the distribution is beneficial to the application of plasma stealth.

  12. [Experimental study on closed plasma discharging under low pressure and spectroscopic diagnosis].

    PubMed

    Lin, Min; Xu, Hao-jun; Su, Chen; Liang, Hua

    2014-06-01

    Closed plasma can overcome difficulties of maintaining plasma and excessive energy consumption in open environment. For plasma stealth technology, a closed plasma generator was designed. Using microsecond pulse generator and argon as working gas, discharge experiments were carried out under low pressure environment. The emission spectrum of Ar at different position in discharge chamber was measured. By using collisional-radiative modal (CRM), the distribution of plasma parameters was studied. At a given electron temperature and density with specified discharge parameters, corresponding population distribution could be obtained by CRM. By comparing the line ratio of argon 2p levels acquired from CRM with the line ratio from spectrum measured, the plasma parameters were confirmed after obtaining the minimum difference value. Using the line ratio of argon 2p9 to 2p1 from CRM while the range of electron density was 1-5 eV, the calculating error was analyzed. The results reveal that, the electron density of the closed plasma reaches a magnitude of 10(11) cm(-3) and shows a gradient distribution with small variational amplitude, and the distribution is beneficial to the application of plasma stealth. PMID:25358170

  13. Transient Flowfield Characteristics of Polycarbonate Plasma Discharge from Pulse-powered Electrothermal Gun Operation

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungjin

    2008-12-01

    An electrothermal gun is the device that produces high-temperature and high-velocity plasma vapor using high current pulsed power and has a potential to be an efficient method for producing a variety of nanomaterials. Pulsed plasma discharge from the electrothermal gun into the open air has been investigated numerically, and the time-dependent inviscid gas dynamics equations are solved for the two-dimensional computational domain including electrothermal gun and the open-air space using flux-corrected transport (FCT) scheme. The modeling of the Joule heating and the mass ablation from the bore wall are incorporated in the computation. The computational results yield the details of the plasma discharge behavior inside and outside the capillary bore including choked condition at the bore exit and complex shock structure of external plasma discharge. The flow structure of freely expanding plasma discharge in the open air is essentially the highly underexpanded supersonic jet featuring Mach disk, barrel shock, contact surface, and spherical blast wave. Compared to the experiments, the numerical simulation agrees well with the experimental data such as the capillary mass ablation and shock structure of the plasma jet.

  14. Plasma kinetics of ethanol conversion in a glow discharge

    NASA Astrophysics Data System (ADS)

    Levko, D. S.; Tsymbalyuk, A. N.; Shchedrin, A. I.

    2012-11-01

    The mechanism of ethanol conversion in a nonequilibrium glow discharge has been studied. It is shown that molecular hydrogen is produced in reactions between ethanol molecules and hydrogen atoms in the initial stage and in reactions involving active H, CH2OH, CH3CHOH, and formaldehyde in the final stage. Comparison with experimental data shows that the kinetic mechanism used in these calculations correctly predicts the concentrations of the main components of the gas mixture.

  15. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  16. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Kylián, O.; Rauscher, H.; Hasiwa, M.; Gilliland, D.

    2009-11-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  17. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  18. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  19. Enhanced magnetic ionization in hydrogen reflex discharge plasma source

    SciTech Connect

    Toader, E.I.; Covlea, V.N.

    2005-03-01

    The effect of enhanced magnetic ionization on the external and internal parameters of a high-density, low pressure reflex plasma source operating in hydrogen is studied. The Langmuir probe method and Druyvesteyn procedure coupled with suitable software are used to measure the internal parameters. The bulk plasma region is free of an electric field and presents a high degree of uniformity. The electron energy distribution function is bi-Maxwellian with a dip/shoulder structure around 5.5 eV, independent of external parameters and radial position. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the electron density n{sub e} is as high as 10{sup 18} m{sup -3}, and the electron temperature T{sub e} is as low as a few tens of an electron volt, for dissipated energy of tens of Watts. The bulk plasma density scales with the dissipated power.

  20. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  1. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  2. Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes

    NASA Astrophysics Data System (ADS)

    Mataras, Dimitrios

    2001-10-01

    In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.

  3. Investigation of complexity dynamics of inverse and normal homoclinic bifurcation in a glow discharge plasma

    SciTech Connect

    Saha, Debajyoti Kumar Shaw, Pankaj; Janaki, M. S.; Sekar Iyengar, A. N.; Ghosh, Sabuj; Mitra, Vramori Michael Wharton, Alpha

    2014-03-15

    Order-chaos-order was observed in the relaxation oscillations of a glow discharge plasma with variation in the discharge voltage. The first transition exhibits an inverse homoclinic bifurcation followed by a homoclinic bifurcation in the second transition. For the two regimes of observations, a detailed analysis of correlation dimension, Lyapunov exponent, and Renyi entropy was carried out to explore the complex dynamics of the system.

  4. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  5. Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure

    SciTech Connect

    Tang Jie; Li Shibo; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-06-18

    A stable nonthermal laminar atmospheric-pressure plasma source equipped with dielectric-barrier discharge was developed to realize more efficient plasma generation, with the total energy consumption reduced to nearly 25% of the original. Temperature and emission spectra monitoring indicates that this plasma is uniform in the lateral direction of the jet core region. It is also found that this plasma contains not only abundant excited argon atoms but also sufficient excited N{sub 2} and OH. This is mainly resulted from the escape of abundant electrons from the exit, due to the sharp decrease of sustaining voltage and the coupling between ions and electrons.

  6. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-01

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  7. Discharge Plasma Assisted Adsorbents for Exhaust Treatment: A Comparative Analysis on Enhancing NOx Removal

    NASA Astrophysics Data System (ADS)

    Rajanikanth, B. S.; Dipanwita, Sinha; Emmanuel, P.

    2008-06-01

    An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.

  8. Apparatus and method for electrical insulation in plasma discharge systems

    DOEpatents

    Rhodes, Mark A.; Fochs, Scott N.

    2003-08-12

    An apparatus and method to contain plasma at optimal fill capacity of a metallic container is disclosed. The invention includes the utilization of anodized layers forming the internal surfaces of the container volume. Bias resistors are calibrated to provide constant current at variable voltage conditions. By choosing the appropriate values of the bias resistors, the voltages of the metallic container relative to the voltage of an anode are adjusted to achieve optimal plasma fill while minimizing the chance of reaching the breakdown voltage of the anodized layer.

  9. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied

  10. Plasma discharge and time-dependence of its effect to bacteria.

    PubMed

    Justan, I; Cernohorska, L; Dvorak, Z; Slavicek, P

    2014-07-01

    Several types of plasma discharge have been proven to have a capacity for sterilization. Our goal is to introduce new nonthermal plasma pencil. We used it to sterilize different microbial populations with differing ages. We used a plasma discharge of the following characteristics: radio frequency barrier discharger at atmospheric pressure with a working frequency of 13.56 MHz, and the working gas used was argon. We performed 110 tests with the following microbial populations: Pseudomonas aeruginosa, Staphylococcus aureus, Proteus species, and Klebsiella pneumoniae. All populations were inoculated on the previous day and also on the day of our experiment. We made our evaluations the following day and also after 5 days, with all our microbial populations. Eradication of microbial populations is dependent on the plasma discharge exposure time in all cases. With regard to freshly inoculated microbes, we were able to sterilize agar with intensive exposure lasting for 10 s of colonies Pseudomonas, Proteus, and Klebsiella. The most resistant microbe seems to be S. aureus, which survives 5 s of coherent exposure in half of the cases. Using the lightest plasma discharge exposure, we achieved a maximum of 10(4)-10(5) CFU/mL (colony-forming unit - CFU). Regarding older microbial populations inoculated the day before the experiment, we can only decrease population growth to 10(5) CFU/mL approximately, but never completely sterilize. The plasma discharge with our characteristics could be used for the sterilization of the aforementioned superficially growing microbes, but does not sufficiently affect deeper layers and thus seems to be a limitation for eradication of the already erupted colonies.

  11. Plasma discharge and time-dependence of its effect to bacteria.

    PubMed

    Justan, I; Cernohorska, L; Dvorak, Z; Slavicek, P

    2014-07-01

    Several types of plasma discharge have been proven to have a capacity for sterilization. Our goal is to introduce new nonthermal plasma pencil. We used it to sterilize different microbial populations with differing ages. We used a plasma discharge of the following characteristics: radio frequency barrier discharger at atmospheric pressure with a working frequency of 13.56 MHz, and the working gas used was argon. We performed 110 tests with the following microbial populations: Pseudomonas aeruginosa, Staphylococcus aureus, Proteus species, and Klebsiella pneumoniae. All populations were inoculated on the previous day and also on the day of our experiment. We made our evaluations the following day and also after 5 days, with all our microbial populations. Eradication of microbial populations is dependent on the plasma discharge exposure time in all cases. With regard to freshly inoculated microbes, we were able to sterilize agar with intensive exposure lasting for 10 s of colonies Pseudomonas, Proteus, and Klebsiella. The most resistant microbe seems to be S. aureus, which survives 5 s of coherent exposure in half of the cases. Using the lightest plasma discharge exposure, we achieved a maximum of 10(4)-10(5) CFU/mL (colony-forming unit - CFU). Regarding older microbial populations inoculated the day before the experiment, we can only decrease population growth to 10(5) CFU/mL approximately, but never completely sterilize. The plasma discharge with our characteristics could be used for the sterilization of the aforementioned superficially growing microbes, but does not sufficiently affect deeper layers and thus seems to be a limitation for eradication of the already erupted colonies. PMID:24464536

  12. Formation of single pinched plasma point in the cathode plasma jet of a multipicosecond laser-triggered vacuum discharge.

    PubMed

    Moorti, A; Naik, P A; Gupta, P D; Bhat, R K

    2008-09-01

    Characteristics of cathode plasma jet pinching and x-ray emission from a multipicosecond laser-triggered vacuum discharge are presented. Discharge was created in between a planar Al cathode and a conical point-tip Ti anode (separation: 2-15 mm, circuit inductance of approximately 0.53 microH, peak discharge current of approximately 3 kA, and rise time of approximately 400 ns). For anode-cathode separation of approximately 13.5 mm, only a single pinched plasma point was formed in the cathode plasma jet at a distance of approximately 9.5 mm from the cathode. Quantitative analysis of the x-ray signals recorded using a pin diode with different filters and viewing different regions of the discharge, shows soft ( approximately keV photon energy) x-ray emission from the plasma point with a flux of approximately (3-5)x10(10) photons/sr, and multi-keV x-ray emission from the Ti anode with Kalpha ( approximately 4.51 keV) photon flux of approximately 10(10) photons/sr. PMID:19044407

  13. Laser-induced optogalvanic signal oscillations in miniature neon glow discharge plasma.

    PubMed

    Saini, V K

    2013-06-20

    Laser-induced optogalvanic (OG) signal oscillations detected in miniature neon glow discharge plasma are investigated using a discharge equivalent-circuit model. The damped oscillations in OG signal are generated when a pulsed dye laser is tuned to a specific neon transition (1s5→2p2) at 588.2 nm under the discharge conditions where dynamic resistance changes its sign. Penning ionization via quasi-resonant energy transfer collisions between neon gas atoms in metastable state and sputtered electrode atoms in ground state is discussed to explain the negative differential resistance properties of discharge plasma that are attributed to oscillations in the OG signal. The experimentally observed results are simulated by analyzing the behavior of an equivalent discharge-OG circuit. Good agreement between theoretically calculated and experimental results is observed. It is found that discharge plasma is more sensitive and less stable in close vicinity to dynamic resistance sign inversion, which can be useful for weak-optical-transition OG detection.

  14. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Bayoda, K. D.; Benard, N.; Moreau, E.

    2015-08-01

    Plasma actuators used for active flow control are widely studied because they could replace mechanical actuators. Industrial applications of these plasma actuators sometimes require a large surface plasma sheet in view of increasing the interaction region between the discharge and the incoming flow. Instead of using a typical two-electrode nanosecond pulsed dielectric barrier discharge for which the interaction region is limited to about 20 mm, this study proposes to characterize a nanosecond sliding discharge based on a three-electrode geometry in order to increase the extension length up to the electrode gap. This sliding discharge is compared to the typical nanosecond dielectric barrier discharge by means of electrical, optical, and mechanical diagnostics. Electrical characterization reveals that the deposited energy can be widely increased. Time-resolved Intensified Charge Coupled Device (iCCD) images of the discharge development over the dielectric surface highlight that the intensity and the propagation velocity of streamers are strongly affected by the DC voltage applied at the third electrode. Finally, qualitative and quantitative characterizations of the pressure wave due to the surrounding gas heating are proposed by means of Schlieren visualizations and high frequency pressure measurements, respectively.

  15. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  16. Direct measurement of electron density and temperature distributions in a micro-discharge plasma for a plasma display panel

    NASA Astrophysics Data System (ADS)

    Noguchi, Yasuyuki; Matsuoka, Akira; Uchino, Kiichiro; Muraoka, Katsunori

    2002-01-01

    Spatial distributions of electron density (ne) and electron temperature (Te) of a micro-discharge plasma for an alternating current plasma display panel cell were directly measured using the laser Thomson scattering method. The use of a triple-grating spectrometer was very successful in suppressing the strong stray laser light and allowed us to perform measurements at 0.1 mm above the surface of the electrode substrate. Values of ne and Te were (0.2-3)×1019m-3 and (1.6-3.4) eV, respectively, depending on the time from the beginning of the pulsed discharge and the observation position. The structure of the micro-discharge is discussed in terms of the obtained distributions of ne and Te.

  17. Two-dimensional calculations of a continuous optical discharge in atmospheric air flow (optical plasma generator)

    NASA Astrophysics Data System (ADS)

    Raizer, Iu. P.; Silant'ev, A. Iu.; Surzhikov, S. T.

    1987-06-01

    Two-dimensional gasdynamic processes in a continuous optical discharge in subsonic flow of atmospheric air are simulated numerically with allowance for distortions of the light channel due to laser beam refraction in the generated plasma, radiative energy losses, and radiant heat transfer. It is found that instabilities and vortex structures are formed in the hot jet behind the energy release region; flow in this region is nonstationary but periodic. These effects are not observed in the main part of the discharge, which is quite stable. Depending on flow velocity, diffraction in the plasma may lead to both defocusing and focusing of the beam.

  18. Atmospheric-pressure argon/oxygen plasma-discharge source with a stepped electrode

    SciTech Connect

    Lim, Jin-Pyo; Uhm, Han S.; Li Shouzhe

    2007-01-29

    The nonequilibrium glow discharge in argon mixed with oxygen at atmospheric pressure was generated in a parallel plate reactor with a stepped electrode powered by a 13.56 MHz radio-frequency power supplier. The stepped-electrode reactor consists of a narrow and wide gap structure. A strong electric field occurred at the narrow gap region preionizes Ar/O{sub 2} gas and assists to generate a large volumetric plasma in the wide gap region. Therefore, the stepped-electrode reactor makes it easy to operate Ar/O{sub 2} glow discharge, providing a stable, uniform, and broad plasma jet at atmospheric pressure.

  19. Note: Arc discharge plasma source with plane segmented LaB6 cathode.

    PubMed

    Akhmetov, T D; Davydenko, V I; Ivanov, A A; Kreter, A; Mishagin, V V; Savkin, V Ya; Shulzhenko, G I; Unterberg, B

    2016-05-01

    A plane cathode composed of close-packed hexagonal LaB6 (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil. PMID:27250481

  20. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  1. Large Crystals on Cu Film Surfaces Irradiated by a Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Katsumata, Teruo; Konno, Masaki; Murakami, Hiroyuki

    1998-08-01

    Large studded crystals grown rapidly with spiral grooves on Cu film surfaces were observed using a scanning electron microscope after irradiation of a glow discharge plasma. Adsorption on and penetration into the Cu film of ions and neutral gases produced in the glow discharge plasma were confirmed by qualitative analysis using a scanning Auger spectrometer. The mechanism of crystal growth was clarified by considering adsorption and penetration of ions such as N2+, O2+, CO+ and O2-, and by considering the movement of Cu+ ions inside the Cu film, under the influence of local electric fields between positive ions and electrons and between positive and negative ions.

  2. A study of the glow discharge plasma jet of the novel Hamburger-electrode

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Ma, Chuanlong; Yang, Xiao; Cui, Weisheng; Chen, Xiuyang

    2016-08-01

    To generate atmospheric pressure glow discharge plasma jets (APGDPJs), a novel Hamburger-electrode was proposed. Through the study on electric field distributions, flow field distributions, and characteristics of the discharge and jet, we found that adopting the mode of dielectric barrier discharge with non-uniform thickness of dielectric, it was easy to form the strong electric field areas which were conducive to generate discharge and electric field distributions with large electric field intensity in the narrow gap and weak electric field intensity in the wide gap that were not inclined to form a filament discharge. Using the structure of evenly distributed inner electrodes, it was easy to weaken the pressure of strong electric field areas and form flow field distributions which is beneficial for taking out the high density charged particles and generating APGDPJs. Stable APGDPJs in nitrogen with 3.5 mm in diameter and 9 mm in length were formed by using the novel Hamburger-electrode.

  3. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  4. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process

    NASA Astrophysics Data System (ADS)

    Nominé, A.; Martin, J.; Noël, C.; Henrion, G.; Belmonte, T.; Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G.

    2014-02-01

    Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 1015 cm-3) and the electron temperature (typ. 7500 K) while the role of F- anions on the appearance of cathodic micro-discharges is pointed out.

  5. Multi-Modality Pulsed AC Source for Medical Applications of Non-Equilibrium Plasmas

    NASA Astrophysics Data System (ADS)

    Friedrichs, Daniel; Gilbert, James

    2014-10-01

    A burgeoning field has developed around the use of non-equilibrium (``cold'') plasmas for various medical applications, including wound treatment, surface sterilization, non-thermal hemostasis, and selective cell destruction. Proposed devices typically utilize pulsed DC power sources, which have no other therapeutic utility, and may encounter significant regulatory restrictions regarding their safety for use in patient care. Additionally, dedicated capital equipment is difficult for healthcare facilities to justify. In this work, we have demonstrated for the first time the generation of non-equilibrium plasma using pulsed AC output from a specially-designed electrosurgical generator. The ability to power novel non-equilibrium plasma devices from a piece of equipment already ubiquitous in operating theatres should significantly reduce the barriers to adoption of plasma devices. We demonstrate the ability of a prototype device, coupled to this source, to reduce bacterial growth in vitro. Such a system could allow a single surgical instrument to provide both non-thermal sterilization and thermal tissue dissection.

  6. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    SciTech Connect

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-07-15

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  7. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  8. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  9. Streptococci biofilm decontamination on teeth by low-temperature air plasma of dc corona discharges

    NASA Astrophysics Data System (ADS)

    Kovalóvá, Z.; Zahoran, M.; Zahoranová, A.; Machala, Z.

    2014-06-01

    Non-thermal plasmas of atmospheric pressure air direct current corona discharges were investigated for potential applications in dental medicine. The objective of this ex vivo study was to apply cold plasmas for the decontamination of Streptococci biofilm grown on extracted human teeth, and to estimate their antimicrobial efficiency and the plasma's impact on the enamel and dentine of the treated tooth surfaces. The results show that both positive streamer and negative Trichel pulse coronas can reduce bacterial population in the biofilm by up to 3 logs in a 10 min exposure time. This bactericidal effect can be reached faster (within 5 min) by electrostatic spraying of water through the discharge onto the treated tooth surface. Examination of the tooth surface after plasma exposure by infrared spectroscopy and scanning electron microscopy did not show any significant alteration in the tooth material composition or the tooth surface structures.

  10. Computational studies for plasma filamentation by magnetic field in atmospheric microwave discharge

    SciTech Connect

    Takahashi, Masayuki; Ohnishi, Naofumi

    2014-12-01

    Plasma filamentation is induced by an external magnetic field in an atmospheric discharge using intense microwaves. A discrete structure is obtained at low ambient pressure if a strong magnetic field of more than 1 T is applied, due to the suppression of electron diffusion, whereas a diffusive pattern is generated with no external field. Applying a magnetic field can slow the discharge front propagation due to magnetic confinement of the electron transport. If the resonance conditions are satisfied for electron cyclotron resonance and its higher harmonics, the propagation speed increases because the heated electrons easily ionize neutral particles. The streamer velocity and the pattern of the microwave plasma are positively controlled by adjusting two parameters—the electron diffusion coefficient and the ionization frequency—through the resonance process and magnetic confinement, and hot, dense filamentary plasma can be concentrated in a compact volume to reduce energy loss in a plasma device like a microwave rocket.

  11. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    PubMed

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.

  12. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    PubMed

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general. PMID:25641832

  13. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  14. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  15. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  16. Indoor air cleaning using a pulsed discharge plasma

    SciTech Connect

    Mizuno, Akira; Kisanuki, Yoshiyuki; Noguchi, Masanobu; Katsura, Shinji; Lee, S.H.; Hong, Y.K.; Shin, S.Y.; Kang, J.H.

    1999-12-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for air pollutants such as tobacco smoke found in indoor environments. The authors investigated the basic characteristics of treating particulate matter and acetaldehyde (CH{sub 3}CHO) in a one-pass test using a pulse generator and a plasma-driven catalyst reactor, both of which are attachable to an air conditioner. Using a circulation test, the decrease in acetaldehyde concentration was measured in a closed vessel where the reactor had been placed. The removal efficiencies of particulate matter and acetaldehyde in the one-pass test (residence time of 10 ms) were 70% and 27%, respectively. In the circulation test, 98% of the suspended particles were collected after 2 min of operation and the acetaldehyde concentration decreased by 70% after 50 mins. It is believed that the TiO{sub 2} catalyst is excited by plasma-induced high-energy particles (electrons, photons, and metastable molecules), resulting in an enhanced pollutant removal. These test results indicate that the combination of plasma with TiO{sub 2} is a potential alternative in treating the pollutants in environmental tobacco smoke.

  17. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    NASA Astrophysics Data System (ADS)

    Ilik, Erkan; Akan, Tamer

    2016-05-01

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N2, N2+, oxygen, and helium intensities for various flow rates.

  18. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  19. Effect of plasma suppression additives on electrodynamic characteristics of the torch discharge burning in the air

    NASA Astrophysics Data System (ADS)

    Vidyaev, D.; Lutsenko, Yu; Boretsky, E.

    2016-06-01

    The paper shows the results of measurements of wave number of electromagnetic wave, which supports burning of high-frequency torch discharge in the mixture of air with water vapor and carbon dioxide. The nonmonotonic dependence of attenuation factor of electromagnetic waves is set on a concentration of water vapor. It is shown that the attenuation degree of electromagnetic field in the plasma with water vapor significantly exceeds the attenuation degree of electromagnetic field in the plasma with carbon dioxide.

  20. Simulation of plasma discharge in liquids: A detailed two-phase fluid approach

    NASA Astrophysics Data System (ADS)

    Charchi Aghdam, Ali; Farouk, Tanvir; Reacting Systems; Advanced Energy Research Laboratory Team

    2015-09-01

    Plasma discharge in liquids has gained great attention recently due to its applications in biomedical engineering, fuel processing, and water treatment and so on. Despite the tremendous interest, a comprehensive understanding of the underlying physics still remains limited. In the current work, an attempt is made to present a mathematical multi-physics model to describe the discharge of plasma in liquids. An in-house modeling platform is developed for simulating plasma formation in multiphase fluids. The model resolves a detailed two-phase fluid including viscous effects, surface tension, gravitational forces and electrical body force. All the governing equations are solved for gas and liquid phases. Electric field and charged species equations along with the plasma reaction kinetics are solved to get the charge distribution in the different phases as well as at the gas-liquid interface to obtain the electric body force acting at the interface. By coupling the above sub-models, a comprehensive multi-physics model for plasma discharge in liquids is constructed which is able to capture several physical aspects of the phenomena especially the role of the bubble, its motion and distortion on plasma characteristics.

  1. Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle

    SciTech Connect

    Huang Jun; Chen Wei; Li Hui; Wang Xingquan; Lv Guohua; Wang Pengye; Khohsa, M. Latif; Guo Ming; Feng Kecheng; Yang Size

    2011-03-01

    An inactivation mechanism study on A549 cancer cells by means of a dielectric barrier discharge plasma needle is presented. The neutral red uptake assay provides a quantitative estimation of cell viability after plasma treatment. Experimental results show that the efficiency of argon plasma for the inactivation process is very dependent on power and treatment time. A 27 W power and 120 s treatment time along with 900 standard cubic centimeter per minute Ar flow and a nozzle-to-sample separation of 3 mm are the best parameters of the process. According to the argon emission spectra of the plasma jet and the optical microscope images of the A549 cells after plasma treatment, it is concluded that the reactive species (for example, OH and O) in the argon plasma play a major role in the cell deactivation.

  2. Investigations of UV radiation from superimposed microwave-silent discharge plasmas

    SciTech Connect

    Stalder, K.R.; Goren, Y.; Lally, P.; Pallakoff, O.E.

    1996-12-31

    The authors are examining the feasibility of improving the efficiency with which short wavelength ultraviolet (UV) radiation is generated from microwave and related discharges.The ultimate goal is to develop high-efficiency UV light sources that can be used in a variety of high-technology applications, including water purification, semiconductor fabrication, polymercuring and other industrial processes. The authors have designed, built and tested a hybrid discharge system combining aspects of two distinctly different discharges, each of which has been well-documented as reasonably efficient sources of UV radiation. The experimental prototype is based on combining a diffuse microwave discharge with a dielectric barrier (silent) discharge. Microwave discharges have been shown to be reasonably efficient generators of UV light, but their efficiency is limited by the amount of microwave power that can be deposited in the plasma. Silent discharges, which contain many high-current microarcs in high pressure gases have also been shown to be efficient sources of UV radiation when excimer-forming gases are used. The authors believe that microwave fields superimposed on a silent discharge may increase the effective radiating volume of the microarcs, thereby enhancing the efficiency.

  3. Thrust Stand Measurements of the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Emsellem, Gregory D.

    2011-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. This type of pulsed thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Dis- charge Inductive Plasma Accelerator (MAD-IPA), shown in Fig. 1, is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta-pinch coil is high. The use of a conical theta-pinch coil also serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [1, 2]. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma

  4. Optimization of hollow cathode discharge electrode for damage free remote plasma removal process for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Cho, Tae S.; Han, Qing; Yang, Dongqing; Park, Soonam; Lubomirsky, Dima; Venkataraman, Shankar

    2016-05-01

    Cone-shaped hollow cathode electrode configuration for a damage free remote plasma removal process has been optimized for given pressures based on Paschen characteristic curves, voltage-current characteristics and time-resolved discharge observations as well as oxide film removal performances. Remote plasmas have been generated in two types of cone-shaped electrodes with mixtures of He, NF3, and NH3 for pressure range of 1-30 Torr. Paschen characteristic curves and voltage-current (V-I) characteristics define an operating pressure for low breakdown voltage and the hollow cathode effect to minimize the particles. Sinusoidal voltage waveform and asymmetry electrode configuration alternate the glow discharge and hollow cathode discharge modes in a cycle. The current and infrared emission intensity from the glow discharge increases together for both cone-shaped electrodes with increasing pressure, whereas the hollow cathode discharge plasma emits strong infrared only when pD condition is satisfied. For the wide cone electrode configuration, high voltage operation at higher pressure results in particle contamination on the processed wafer by high energy ion bombardment. Operating at optimum pressure for a given electrode configuration shows faster oxide etch rate with better uniformity over a whole 300 mm wafer.

  5. Removal Dynamics of Nitric Oxide (NO) Pollutant Gas by Pulse-Discharged Plasma Technique

    PubMed Central

    Zhang, Lianshui; Wang, Xiaojun; Lai, Weidong; Cheng, Xueliang; Zhao, Kuifang

    2014-01-01

    Nonthermal plasma technique has drawn extensive attentions for removal of air pollutants such as NOx and SO2. The NO removal mechanism in pulse discharged plasma is discussed in this paper. Emission spectra diagnosis indicates that the higher the discharge voltage is, the more the NO are removed and transformed into O, N, N2, NO2, and so forth. Plasma electron temperature Te is ranged from 6400 K at 2.4 kV discharge voltage to 9500 K at 4.8 kV. After establishing a zero-dimensional chemical reaction kinetic model, the major reaction paths are clarified as the electron collision dissociation of NO into N and O during discharge and followed by single substitution of N on NO to form N2 during and after discharge, compared with the small fraction of NO2 formed by oxidizing NO. The reaction directions can be adjusted by N2 additive, and the optimal N2/NO mixing ratio is 2 : 1. Such a ratio not only compensates the disadvantage of electron competitive consumption by the mixed N2, but also heightens the total NO removal extent through accelerating the NO oxidization process. PMID:24737985

  6. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  7. Influence of discharge and jet flow coupling on atmospheric pressure plasma homogeneity

    NASA Astrophysics Data System (ADS)

    Nizard, H.; Gaudy, T.; Toutant, A.; Iacono, J.; Descamps, P.; Leempoel, P.; Massines, F.

    2015-10-01

    The effect of flow dynamics on the discharge mode is studied in order to design a technical solution for thin film coating on large surfaces. The configuration consists in two atmospheric pressure helium plasma jets impacting a surface and confined in a tube. This system operates in open air. It has been studied by short exposure time pictures, current and voltage measurements, optical emission spectroscopy, schlieren flow visualization and computational fluid dynamics. Two discharge regimes directly connected to the gas flow dynamic have been pointed out. One is localized from the point electrodes to the surface; the other one entirely fills the confinement tube. A correlation between air intake inside the confinement tube and the discharge mode has been highlighted. Indeed, the discharge only develops in helium and the air intake confines the helium jets in volumes smaller than the confinement tube. The air intake is determined by the gas flow rate and the distance from the tube bottom to the substrate surface, parameters which have been linked to the change from laminar to turbulent flow. Finally, the understanding of flow dynamics and discharge plasma coupling allowed the design of a technical solution favoring plasma homogeneity for large surface treatment.

  8. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    NASA Astrophysics Data System (ADS)

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to Hα at 656.3 nm implied an electron density and gas temperature of 2 × 1014 cm-3 and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and Hα intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e- → O + H + e-.

  9. Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald E.; Houser, Nicole M.; Lavoie, Philippe

    2014-01-01

    It is a known phenomenon that some dielectric materials used to construct plasma actuators degrade during operation. However, the rate at which this process occurs, to what extent, as well as a method to monitor is yet to be established. In this experimental study, it is shown that electrical measurements can be used to monitor changes in the material of the plasma actuators. The procedure we introduce for monitoring the actuators follows from the work of Kriegseis, Grundmann, and Tropea [Kriegseis et al., J. Appl. Phys. 110, 013305 (2011)], who used Lissajous figures to measure actuator power consumption and capacitance. In the present study, we quantify changes in both the power consumption and capacitance of the actuators over long operating durations. It is shown that the increase in the effective capacitance of the actuator is related to degradation (thinning) of the dielectric layer, which is accompanied by an increase in actuator power consumption. For actuators constructed from layers of Kapton® polyimide tape, these changes are self-limiting. Although the polyimide film degrades relatively quickly, the underlying adhesive layer appears to remain intact. Over time, the effective capacitance was found to increase by up to 36%, 25%, and 11% for actuators constructed with 2, 3, and 4 layers of Kapton tape, respectively. A method is presented to prevent erosion of the Kapton dielectric layer using a coating of Polydimethylsiloxane oil. It is shown the application of this treatment can delay the onset of degradation of the Kapton dielectric material.

  10. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow

    SciTech Connect

    Wang Jian; Li Yinghong; Xing Fei

    2009-10-01

    Wedge oblique shock wave control by arc discharge plasma in supersonic airflow was investigated theoretically, experimentally, and numerically in this paper. Using thermal choking model, the change in oblique shock wave was deduced, which refer that the start point of shock wave shifts upstream, the shock wave angle decreases, and its intensity weakens. Then the theoretical results were validated experimentally in a Mach 2.2 wind tunnel. On the test conditions of arc discharge power of approx1 kW and arc plasma temperature of approx3000 K, schlieren photography and gas pressure measurements indicated that the start point of shock wave shifted upstream of approx4 mm, the shock wave angle decreased 8.6%, and its intensity weakened 8.8%. The deduced theoretical results match the test results qualitatively, so thermal mechanism and thermal choking model are rational to explain the problem of oblique shock wave control by arc discharge plasma. Finally, numerical simulation was developed. Based on thermal mechanism, the arc discharge plasma was simplified as a thermal source term that added to the Navier-Stokes equations. The simulation results of the change in oblique shock wave were consistent with the test results, so the thermal mechanism indeed dominates the oblique shock wave control process.

  11. Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma

    SciTech Connect

    Watanabe, Masato; Yamada, Junzaburo; Zhu Qiushi; Hotta, Eiki

    2009-01-21

    A laser triggerd discharge produced Sn plasma light source has been developed. Experimental parameters such as electrode separation and laser irradiation power are varied to optimize EUV emission power. It is clear that the maximum EUV radiation was occurred in the position where the pinch was observed.

  12. Recombination time of an RF discharge plasma in the presence of water molecules

    SciTech Connect

    Protasevich, E.T.

    1986-05-01

    The authors show that the introduction of water vapor into an electrodeless rf discharge noticeably reduces the excitation temperature and substantially increases the recombination time of the plasma. An attempt is made to explain the physical processes associated with these phenomena.

  13. Inactivation of Spoilage Bacteria in Package by Dielectric Barrier Discharge Atmospheric Cold Plasma - Treatment Time Effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to investigate the effect of treatment time of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) on inactivation of spoilage bacteria, Pseudomonas fluorescens and Macrococcus caseolyticus. P. fluorescens and M. caseolyticus were isolated from spoiled chicken carcasses ...

  14. Analysis Of Phase Transitions In Quasi-Two-Dimensional Dusty Systems In RF-Discharge Plasma

    SciTech Connect

    Adamovich, X. G.; Vaulina, O. S.; Khrustalev, Yu. V.; Nekhaevsky, Yu. Yu.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    In this work, we investigate the phase transitions in quasi-two-dimensional systems of dusty plasma in RF discharge. The quasi-2D systems are considered, where the areas with different phase states (dusty liquid and dusty crystal) coexist. The parameters of these areas of dusty subsystem are estimated, the obtained results are analysed and compared with theoretical predictions.

  15. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  16. Probe measurements of the PDX divertor plasma in ohmic and neutral beam heated discharges

    NASA Astrophysics Data System (ADS)

    Owens, D. K.; Kaye, S. M.; Fonck, R. J.; Schmidt, G. L.

    1984-05-01

    A graphite-shielded probe was recently installed in the divertor region of PDX to continuously monitor local electron temperature, electron density (from the ion saturation current), and plasma floating potential throughout divertor discharges. In ohmically heated deuterium plasmas, the electron temperature near the separatrix was 6 to 12 eV; these values confirm the low Te inferred from the density dependence of Balmer line emission from the divertor plasmas. During neutral beam heating, PDX divertor discharges were characterized by a sharp transition at which time the main chamber plasma density increased rapidly, the divertor H α emission dropped, and the global energy confinement increased abruptly. At later times, edge relaxation oscillations, characterized by spikes in the H α emission, occurred and were accompanied by a clamp in the density rise and lower confinement time. Limited scans of the temperature and density measured by the divertor probe indicated that these parameters changed with discharge conditions primarily near the separatrix. With the onset of neutral beam injection the temperature and density rose by a factor of 1.5 and 2-4 respectively. Transient drops in Te to values as low as 2 eV and concomitant rises in ne were sometimes observed near the time of the transition into the high confinement mode. Later in the discharge, the values returned to their pre-H-mode level. TV camera observations of the divertor probe revealed a "shadow" along the field lines indicating a well-defined flow in the vicinity of the separatrix.

  17. PREFACE: 12th International Conference on Gas Discharge Plasmas and Their Applications

    NASA Astrophysics Data System (ADS)

    Koval, N.; Landl, N.; Bogdan, A.; Yudin, A.

    2015-11-01

    The 12th International Conference ''Gas Discharge Plasmas and Their Applications'' (GDP 2015) was held in Tomsk, Russia, on September 6-11, 2015. GDP 2015 represents a continuation of the conferences on physics of gas discharge held in Russia since 1984 and seminars and conferences on the technological applications of low temperature plasmas traditionally organized in Tomsk. The six-day Conference brought together the specialists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussions on the topics that are of interest to the Conference participants. The selected papers of the Conference cover a wide range of technical areas and modern aspects of the physical processes in the generators of low-temperature plasma, the low and high-pressure discharges, the pulsed plasma sources, the surface modification, and other gas-discharge technologies. The Conference was hosted by Institute of High Current Electronics SB RAS, Tomsk Polytechnic University, Tomsk Scientific Center, and Tomsk State University of Architecture and Building.

  18. Search for neutron flux generation in a plasma discharge electrolytic cell

    NASA Astrophysics Data System (ADS)

    Faccini, R.; Pilloni, A.; Polosa, A. D.; Angelone, M.; Castagna, E.; Lecci, S.; Pietropaolo, A.; Pillon, M.; Sansovini, M.; Sarto, F.; Violante, V.; Bedogni, R.; Esposito, A.

    2014-06-01

    Following some recent unexpected hints of neutron production in high-voltage atmospheric discharges, we present a measurement of the neutron flux in plasma discharges in electrolytic cells. We use two different types of neutron detectors, polyallyl diglycol carbonate (PADC, aka CR-39) tracers and indium disks. At 95 % C.L. we provide an upper limit of 1.5 neutrons cm s for the thermal neutron flux at cm from the center of the cell. Allowing for a higher energy neutron component, the largest allowed flux is 64 neutrons cm s. This upper limit is two orders of magnitude smaller than the signal previously claimed in an electrolytic cell plasma discharge experiment. Furthermore the behavior of the CR-39 is discussed to point out possible sources of spurious signals.

  19. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  20. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    NASA Astrophysics Data System (ADS)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6–2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5–2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1–1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150–170 eV, while for neon discharges with the deuterium puffing it reached 330–880 eV (with accuracy of  ±20%).

  1. Coagulation of dust grains in the plasma of an RF discharge in argon

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  2. Genetic effects of an air discharge plasma on Staphylococcus aureus at the gene transcription level

    NASA Astrophysics Data System (ADS)

    Xu, Zimu; Wei, Jun; Shen, Jie; Liu, Yuan; Ma, Ronghua; Zhang, Zelong; Qian, Shulou; Ma, Jie; Lan, Yan; Zhang, Hao; Zhao, Ying; Xia, Weidong; Sun, Qiang; Cheng, Cheng; Chu, Paul K.

    2015-05-01

    The dynamics of gene expression regulation (at transcription level) in Staphylococcus aureus after different doses of atmospheric-pressure room-temperature air plasma treatments are investigated by monitoring the quantitative real-time polymerase chain reaction. The plasma treatment influences the transcription of genes which are associated with several important bio-molecular processes related to the environmental stress resistance of the bacteria, including oxidative stress response, biofilm formation, antibiotics resistance, and DNA damage protection/repair. The reactive species generated by the plasma discharge in the gas phase and/or induced in the liquid phase may account for these gene expression changes.

  3. Optical Actionometry Of Cathode Material Sputtered Into Plasma Phase Of Glow Discharges

    NASA Astrophysics Data System (ADS)

    Wroński, Zdzisław

    2006-01-01

    Cathode sputtering by glow discharge plasma is the effective solid etching. The emission of optical lines by plasma is a complex process depending on gas used. The peculiar processes such fast ion-sputte-red atom interaction and Penning excitation have been found to contribute much to the emission of optical lines of sputtered species. The optical actionometry of sputtered atoms is not suggested to be a useful method because of a lack of proper cross sections of the above peculiar processes. At present the computer simulation of both etching and characteristics of sputtered atoms in the plasma phase seems to be the preferential method..

  4. Electrostatic wave observation during a space simulation beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Walker, D. N.; Szuszczewicz, E. P.

    1985-01-01

    ELF waves which were observed during beam-plasma discharge in the large vacuum chamber at Johnson Space Center are studied. Phase delays as a function of radius (obtained from cross-correlation measurements of density fluctuations) along with measurements of frequency and plasma potential, density, and temperature have been compared to a zero-order slab model of nonlocal azimuthal drift wave propagation. The inferred wave phase velocity in the plasma frame after Doppler correction is found to be near one half the electron diamagnetic drift velocity. Although the measurements presented do not uniquely define a propagation mode, a model of azimuthal drift wave propagation is found to be consistent with observations.

  5. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma

    SciTech Connect

    Cen Jianyong; Yuan Ping; Qu Haiyan; Zhang Tinglong

    2011-11-15

    According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first return strokes of different lightning.

  6. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly. PMID:27400531

  7. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    NASA Astrophysics Data System (ADS)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  8. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  9. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  10. Discharge ignition behavior of the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Hamley, John A.

    1995-01-01

    Ignition testing of hollow cathode assemblies being developed for the Space Station plasma contactor system has been initiated to validate reliable multiple restart capability. An ignition approach was implemented that was derived from an earlier arcjet program that successfully demonstrated over 11,600 ignitions. For this, a test profile was developed to allow accelerated cyclic testing at expected operating conditions. To date, one hollow cathode assembly has been used to demonstrate multiple ignitions. A prototype hollow cathode assembly has achieved 3,615 successful ignitions at a nominal anode voltage of 18.0 V. During the ignition testing several parameters were investigated, of which the heater power and pre-heat time were the only parameters found to significantly impact ignition rate.

  11. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Rybalchenko, Oksana; Astafiev, Alexander; Orlova, Olga; Kudryavtsev, Anatoly; Kapustina, Valentina

    2016-08-01

    The morphology of bacterial cells and biofilms subjected to a low frequency (˜105 Hz) ac (˜10-1 A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affected with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.

  12. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  13. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    PubMed Central

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  14. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Jo, Jin Oh; Mok, Young Sun; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Hyun, Jin Won

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  15. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper. PMID:26233368

  16. Characteristics of argon plasma waveguide produced by alumina capillary discharge for short wavelength laser application

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru; Bobrova, Nadezhda; Sasorov, Pavel; Sakai, Shohei; Sentoku, Yasuhiko; Kodama, Ryosuke

    2012-05-01

    We have reported the argon (Ar) plasma waveguide produced in an alumina (Al{sub 2}O{sub 3}) capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 10{sup 16} W/cm{sup 2}. The electron density in the plasma waveguide was measured to be 1x10{sup 18} cm{sup -3}, in agreement with one-dimensional magnetrohydrodynamic (MHD) simulations. The MHD code was also used to evaluate the degree of ionization of argon (Ar) in the preformed plasma waveguide. The maximum ion charge state of Ar{sup 3+} in capillary discharge was measured and obtained in the MHD simulations. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell simulations under initial ion charge state of Ar{sup 3+} in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  17. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    SciTech Connect

    Ahmed, Shahid; Mammosser, John D.

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  18. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    NASA Astrophysics Data System (ADS)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  19. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    PubMed

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  20. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Lu, Na; Li, Jie; Wu, Yan; Masayuki, Sato

    2012-02-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II.

  1. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma.

    PubMed

    Khamsen, Natthaporn; Onwimol, Damrongvudhi; Teerakawanich, Nithiphat; Dechanupaprittha, Sanchai; Kanokbannakorn, Weerawoot; Hongesombut, Komsan; Srisonphan, Siwapon

    2016-08-01

    We designed a system to produce atmospheric hybrid cold-discharge plasma (HCP) based on microcorona discharge on a single dielectric barrier and applied it to inactivate microorganisms that commonly attach the rice seed husk. The cold-plasma treatment modified the surface of the rice seeds, resulting in accelerated germination and enhanced water imbibition. The treatment can operate under air-based ambient conditions without the need for a vacuum. The cold-plasma treatment completely inactivated pathogenic fungi and other microorganisms, enhancing the germination percentage and seedling quality. The final germination percentage of the treated rice seeds was ∼98%, whereas that of the nontreated seeds was ∼90%. Microcorona discharge on a single dielectric barrier provides a nonaggressive cold plasma that can be applied to organic materials without causing thermal and electrical damage. The hybrid nonthermal plasma is cost effective and consumes relatively little power, making it suitable for the surface sterilization and disinfection of organic and biological materials with large-scale compatibility. PMID:27404121

  2. Rice (Oryza sativa L.) Seed Sterilization and Germination Enhancement via Atmospheric Hybrid Nonthermal Discharge Plasma.

    PubMed

    Khamsen, Natthaporn; Onwimol, Damrongvudhi; Teerakawanich, Nithiphat; Dechanupaprittha, Sanchai; Kanokbannakorn, Weerawoot; Hongesombut, Komsan; Srisonphan, Siwapon

    2016-08-01

    We designed a system to produce atmospheric hybrid cold-discharge plasma (HCP) based on microcorona discharge on a single dielectric barrier and applied it to inactivate microorganisms that commonly attach the rice seed husk. The cold-plasma treatment modified the surface of the rice seeds, resulting in accelerated germination and enhanced water imbibition. The treatment can operate under air-based ambient conditions without the need for a vacuum. The cold-plasma treatment completely inactivated pathogenic fungi and other microorganisms, enhancing the germination percentage and seedling quality. The final germination percentage of the treated rice seeds was ∼98%, whereas that of the nontreated seeds was ∼90%. Microcorona discharge on a single dielectric barrier provides a nonaggressive cold plasma that can be applied to organic materials without causing thermal and electrical damage. The hybrid nonthermal plasma is cost effective and consumes relatively little power, making it suitable for the surface sterilization and disinfection of organic and biological materials with large-scale compatibility.

  3. Design of a Hollow-Anode Discharge Source for Generation of Supersonic Plasma Jets

    NASA Astrophysics Data System (ADS)

    Kang, In Je; Cho, Soon Gook; Bae, Min Keun; Joo, Sung Kiu; Kim, Jin Woo; Kim, Hyung Jin; Chung, Kyu Sun; CenterEdge Plasma Sciences Team

    2013-10-01

    A hollow-anode discharge source was developed to produce supersonic plasma jets for various astrophysics applications. It not only provides the high density of the high-energy electrons in the hollow node region due to beam-like properties of the electron stream and focusing of the concave cathode, but also is able to easily control generating power according to applied input power. We have simulated the geometry of a plasma source by considering uniform density discharge model at a simple cylindrical structure, and have estimated the plasma parameters, such as electron temperature (Te) and plasma density (ne), with source geometry, applied power and pressure. Te is determined from particle balance by equating the total surface particle loss to the total volume ionization, while ne at the central region of source is calculated from energy balance by equating the total power absorbed to the total power lost. To perform supersonic plasma flow, the nozzle of a hollow-anode discharge source has been simulated by computing the flow using the one dimensional equations for the isentropic flow of ideal gas, and the Rankine-Hugoniot relation of normal shock waves for ideal gases.

  4. Generation of dusty plasmas in supercritical carbon dioxide using surface dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2015-11-01

    Dusty plasmas are a class of plasmas that not only have repercussions for many branches of plasma science and technology, but also thermodynamics and statistical mechanics. However, in ground-based experiments, gravity influences the dynamics and formation of plasma crystals, and the realization of zero-gravity dusty plasmas in space is very costly and time-consuming. To overcome some of these limitations, we propose dusty plasmas in supercritical fluids as a means for realizing ground-based experiments under pseudo-microgravity conditions, to study the formation and self-organization of plasma crystals. Dusty plasmas were realized by using surface dielectric barrier discharges (DBDs) generated in supercritical carbon dioxide (\\text{scC}{{\\text{O}}2} ), and the motion of fine particles above the electrode surface was studied by high-speed imaging. The plasmas deposited charge on the particles, and the particles formed a self-organized structure above the surface DBD reactor. The particle charge estimated from the analysis of particle motion was on the order of  -104 to -105 e C, and the estimation of the Coulomb coupling parameter of the charged particles with a value of 102 to 104 confirmed the formation of strongly coupled plasmas.

  5. PLASMA TREATMENT OF BULK Nb SURFACE IN THE Ar/Cl2 DISCHARGE

    SciTech Connect

    Marija Raskovic; H. Phillips; Anne-Marie Valente

    2008-02-12

    The preparation of the cavity walls has been one of the major challenges in the superconducting radio-frequency (SRF) accelerator technology. Therefore, constant research and development effort is devoted to develop surface preparation processes that will improve roughness and lower the level of impurities, like hydrogen or oxygen, embedded in bulk Nb, having in the same time reasonable etching rates. Plasma based surface modification provides an excellent opportunity to achieve these goals. We present Ar/Cl2 discharge treatment of bulk Nb where we achieved etching rates comparable to the rates obtained with the electropolishing method without introducing impurities in Nb. The current experiments were performed on disk shaped Nb samples, exposed to plasma produced in a microwave discharge system. Surface composition and topology measurements were carried out before and after plasma treatment. Upon determining optimal experimental conditions on disk shaped samples, we will apply the same procedure on the single cell cavities, pursuing improvement of their RF performance.

  6. Ignition of beam plasma discharge in the electron beam experiment in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  7. Microcathode Sustained Discharges for the generation of DC, non-thermal plasmas at high gas pressure

    NASA Astrophysics Data System (ADS)

    Pitchford, Leanne

    2007-10-01

    It is now well known that non-thermal DC plasmas can be generated and maintained in high pressure gases in small - hundreds of micron-sized - geometries. One such configuration, a MicroHollow Cathode Discharge (MHCD), orginally investigated by Schoenbach and colleagues (KH Schoenbach, et al, Plasma Sources Sci. Technol. 6, 468 (1997)), consists of a metal/dielectric/metal sandwich through through which a central hole is pierced. The diameter of the hole and the thickness of the sandwich are each some 100's of microns. Larger volume plasmas can be generated by placing a third, positively biased electrode some distance (1 cm) away, in which case the MHCD can act as a plasma cathode. This configuration is called a MicroCathode Sustained Discharge or MCSD (RH Stark and KH Schoenbach J. Appl. Phys. 85 2075 (1999)). This talk will focus on the properties of the MCSD - its initiation and its electrical properties - and on the properties of the plasma generated in the MCSD volume. Experimental and numerical results for discharges in rare gases and in rare gas/oxygen mixtures at pressures up to atmospheric will be used to illustrate that the plasma generated in the MCSD is similar to a positive column plasma, with a low electric field and low to moderate gas temperature. The plasma conditions in the MCSD are suitable for the generation of large densities of radical species, such as oxygen molecules in the singlet delta metastable state (G. Bauville, et al, Appl. Phys. Lett. 90, 031501 (2007)).

  8. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  9. Influence of dust-particle concentration on gas-discharge plasma.

    PubMed

    Sukhinin, G I; Fedoseev, A V

    2010-01-01

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N(d) on gas discharge and dust particles parameters was investigated. It is shown that the increase of N(d) leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10(2)-10(8) cm(-3), discharge current density 10(-1)-10(1) mA/cm(2), and dust particles radius 1, 2, and 5 microm. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  10. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma.

    PubMed

    Li, Yingying; Kojtari, Arben; Friedman, Gary; Brooks, Ari D; Fridman, Alex; Ji, Hai-Feng

    2014-02-13

    L-Valine solutions in water and phosphate buffer were treated with nonthermal plasma generated by using a dielectric barrier discharge (DBD) device and the products generated after plasma treatments were characterized by (1)H NMR and GC-MS. Our results demonstrate that L-valine is decomposed to acetone, formic acid, acetic acid, threo-methylaspartic acid, erythro-methlyaspartic acid, and pyruvic acid after direct exposure to DBD plasma. The concentrations of these compounds are time-dependent with plasma treatment. The mechanisms of L-valine under the DBD plasma are also proposed in this study. Acetone, pyruvic acid, and organic radicals (•)CHO, CH3COCH2OO(•) (acetonylperoxy), and CH3COC(OH)2OO(•) (1,1-dihydroxypropan-2-one peroxy) may be the determining chemicals in DNA damage.

  11. Dynamic Properties of Helium Atmospheric Dielectric-Barrier-Discharge Plasma Jet.

    PubMed

    Uchida, Giichiro; Takenaka, Kosuke; Miyazaki, Atsushi; Kawabata, Kazufumi; Setsuhara, Yuichi

    2015-03-01

    We present here experiments on helium atmospheric dielectric-barrier discharge jet in open air. A long stable plasma plume is realized at high applied voltage and high gas flow rate. Optical emission measurements show that the plasma plume consists of two part: a plume head with high energy electrons and a tail part with low energy electrons. The plasma plume propagates away from the quartz-tube outlet with about 30-80 km/sec along the helium gas flow channel. The propagation velocity of plasma plume is in the time scale of electron drift velocity, and the electric field plays an important role as a driving force of the plasma plume propagation. PMID:26413660

  12. Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge

    SciTech Connect

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas; Aldén, Marcus; Li, Zhongshan E-mail: alpers@ma.tum.de; Moseev, Dmitry; Kusano, Yukihiro; Salewski, Mirko; Alpers, Andreas E-mail: alpers@ma.tum.de; Gritzmann, Peter; Schwenk, Martin

    2015-01-26

    A non-thermal gliding arc discharge was generated at atmospheric pressure in an air flow. The dynamics of the plasma column and tracer particles were recorded using two synchronized high-speed cameras. Whereas the data analysis for such systems has previously been performed in 2D (analyzing the single camera image), we provide here a 3D data analysis that includes 3D reconstructions of the plasma column and 3D particle tracking velocimetry based on discrete tomography methods. The 3D analysis, in particular, the determination of the 3D slip velocity between the plasma column and the gas flow, gives more realistic insight into the convection cooling process. Additionally, with the determination of the 3D slip velocity and the 3D length of the plasma column, we give more accurate estimates for the drag force, the electric field strength, the power per unit length, and the radius of the conducting zone of the plasma column.

  13. Note: Characterization of the plasma parameters of a capillary discharge-produced plasma channel waveguide to guide an intense laser pulse

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru; Hikida, Masafumi; Terauchi, Hiromitsu; Bai Jinxiang; Kikuchi, Takashi; Tao Yezheng

    2010-04-15

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Nomarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 400 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  14. Rapid Formation of Distributed Plasma Discharges using X-Band Microwaves

    NASA Astrophysics Data System (ADS)

    Xiang, Xun

    Observations of rapidly formed (<300 ns) distributed plasma discharges using high power X-band microwaves are presented. A cylindrical stainless steel chamber (15.2 cm long, 14.6 cm diameter) enclosed with polycarbonate windows (0.953 cm) was used to observe microwave breakdown in argon and neon gas mixtures from 50 to 250 torr. The chamber was illuminated by the output of a 16.2 kW, 800 ns pulse-width, 9.382 GHz magnetron with a 43 repetitive rate through an X-band waveguide pressed against the first polycarbonate window. Fast (50 ns) time-scale optical images of the plasma revealed the plasma formation and decay processes, as well as the plasma patterns for different plasma formation conditions. CST simulations were conducted to compare the electric field distribution inside the discharge chamber with the plasma patterns in the images. VUV (Vacuum Ultra-Violet) radiation was supported as the mechanism to enhance the plasma expansion and assist the formation of the plasma side lobes. Reflection Measurements showed 63% reflected power once plasma was formed, and a small amount of argon in neon shortened the breakdown time, verifying that the Penning effect lowers the breakdown threshold. Mixer measurements were taken, combined with a 1-D 6-region microwave plasma model to estimate the maximum effective plasma density as 2.2x1012 cm-3 with a corresponding maximum effective electron temperature of 2.5 eV in pure neon plasma at 100 torr under a Maxwellian distribution assumption. Optical emission spectroscopy (OES) assisted by the SPECAIR model determined the gas temperature in the microwave plasma as 350 +/- 50 K. OES line ratio measurements provided plasma parameters including time-evolved metastable and resonance densities, effective electron temperatures, electron densities for plasmas formed at 100 torr in pure neon and Ne/Ar (99:1) mixture gases. The comparison of time-evolved neon metastable and resonance densities in pure neon and Ne/Ar (99:1) mixture plasmas

  15. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  16. Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface

    NASA Astrophysics Data System (ADS)

    Liu, Wenzheng; Li, Chuanhui

    2014-01-01

    A new contact glow discharge electrode on the surface of water was designed and employed in this study. Because of the strong field strength in the small air gap formed by the electrode and the water surface, glow discharge plasmas were generated and used to treat waste water. The electric field distribution of the designed electrode model was simulated by MAXWELL 3D® simulation software, and the discharge parameters were measured. Through a series of experiments, we investigated the impact of optimal designs, such as the dielectric of the electrode, immersion depths, and curvature radii of the electrode on the generation characteristics of plasmas. In addition, we designed an equipotential multi-electrode configuration to treat a Methyl Violet solution and observe the discoloration effect. The experimental and simulation results indicate that the designed electrodes can realize glow discharge with a relative low voltage, and the generated plasmas covered a large area and were in stable state. The efficiency of water treatment is improved and optimized with the designed electrodes.

  17. Generation of atmospheric micro gap radio-frequency discharge plasma under controlled temperature conditions

    NASA Astrophysics Data System (ADS)

    Araya, Takumi; Shibata, Takashi; Kikuchi, Hiroki; Mukaigawa, Seiji; Takaki, Koichi

    2015-09-01

    In dielectric barrier discharge, determining the temperature of a dielectric barrier is difficult owing to a rise in the temperature of a barrier and an electrode because heat generated in a discharge space exhibits a complex local distribution involving gas flow and heat transfer structures. In this study, we examined the effect of dielectric barrier temperature on plasma characteristics and a two-dimensional spatial distribution of the discharge in a radio-frequency atmospheric-pressure plasma. The temperature of the dielectric barrier was kept between 10 °C and 50 °C by circulating hot or cold water in a flow channel in a lower grounded electrode using a cooling water circulating device. Breakdown voltage tended to decrease with an increase in the temperature of the barrier. Depending on an increase in the applied voltage, the discharge aspect was observed to shift to the discharge having two regions, i.e., the bright and dark regions. The area of the bright region increased with an increase in the applied voltage and dielectric barrier temperature. In addition, the current density of the bright region was very high compared with that of the dark region, and therefore, the bright and dark regions were in the glow and Townsend-like modes, respectively. This work was supported by JSPS KAKENHI Grant Numbers 26390094, 24540530.

  18. Thrust Stand Measurements Using Alternative Propellants in the Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    Storable propellants (for example water, ammonia, and hydrazine) are attractive for deep space propulsion due to their naturally high density at ambient interplanetary conditions, which obviates the need for a cryogenic/venting system. Water in particular is attractive due to its ease of handling and availability both terrestrially and extra-terrestrially. While many storable propellants are reactive and corrosive, a propulsion scheme where the propellant is insulated from vulnerable (e.g. metallic) sections of the assembly would be well-suited to process these otherwise incompatible propellants. Pulsed inductive plasma thrusters meet this criterion because they can be operated without direct propellant-electrode interaction. During operation of these devices, electrical energy is capacitively stored and then discharged through an inductive coil creating a time-varying current in the coil that interacts with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, many pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil before the main current pulse via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and a static magnetic field from a set of permanent magnets arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the theta

  19. Nitric Oxide Studies in Low Temperature Plasmas Generated with a Nanosecond Pulse Sphere Gap Electrical Discharge

    NASA Astrophysics Data System (ADS)

    Burnette, David Dean

    This dissertation presents studies of NO kinetics in a plasma afterglow using various nanosecond pulse discharges across a sphere gap. The discharge platform is developed to produce a diffuse plasma volume large enough to allow for laser diagnostics in a plasma that is rich in vibrationally-excited molecules. This plasma is characterized by current and voltage traces as well as ICCD and NO PLIF images that are used to monitor the plasma dimensions and uniformity. Temperature and vibrational loading measurements are performed via coherent anti-Stokes Raman spectroscopy (CARS). Absolute NO concentrations are obtained by laser-induce fluorescence (LIF) measurements, and N and O densities are found using two photon absorption laser-induced fluorescence (TALIF). For all dry air conditions studied, the NO behavior is characterized by a rapid rate of formation consistent with an enhanced Zeldovich process involving electronically-excited nitrogen species that are generated within the plasma. After several microseconds, the NO evolution is entirely controlled by the reverse Zeldovich process. These results show that under the chosen range of conditions and even in extreme instances of vibrational loading, there is no formation channel beyond ~2 musec. Both the NO formation and consumption mechanisms are strongly affected by the addition of fuel species, producing much greater NO concentrations in the afterglow.

  20. Transmission characteristics of microwave in a glow-discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  1. Measurement and Processing of Fast Pulsed Discharge Current in Plasma Focus Machines

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Rawat, R. S.; Lee, P.; Verma, R.; Talebitaher, A.; Hassan, S. M.; Abdou, A. E.; Ismail, Mohamed; Mohamed, Amgad; Torreblanca, H.; Al Hawat, Sh.; Akel, M.; Chong, P. L.; Roy, F.; Singh, A.; Wong, D.; Devi, K.

    2012-04-01

    The fast pulsed electric discharge current drives all physical processes in the plasma focus device; in turn all physical processes in the focus affect the current waveform. Thus the discharge current waveform is the most important indicator of plasma focus performance. This underlies the importance of properly measuring, processing and interpreting the discharge current waveform. This paper reports the measurement of fast pulsed discharge current by the Rogowski coil, in two different modes: the current transformer, "I" mode, and current derivative, "Idot" mode. The processing and interpretation of recorded current waveform to obtain useful information about the physical processes in the plasma focus device are discussed. The current transformer with a large number of turns and a sub-1 Ohm terminator has good high frequency response, necessary for the sharp current dip region when dI/ dt exceeds 2 × 1011 A/s. However the signal is "noisy" in the current dip region. Several methods to extract the current dip from the noise are discussed and examples of how low pass filters affect the signals are shown. The dI/ dt coil, the Rogowski coil in "Idot" mode, with a few turns terminated by 50-Ohm is also described. Integrating the 1 GSa/s digital waveform does remove the high frequency noise components, yet the extracted waveform shows sharp angular features indicative of the retention of short-time features. This makes the dI/ dt coil superior to the current transformer. A 7-turn coil is tested against the Lee Model code and found to be suitable to measure the plasma focus discharge current.

  2. Discharge Physics and Chemistry in Atmospheric Pressure RF Glow-like Plasmas

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Selwyn, G. S.; Henins, Ivars; Jeong, J. Y.

    1998-11-01

    Steady-state, homogeneous discharges at atmospheric pressure have been produced using radio frequency (RF) electric fields. The discharges operate in a capacitively coupled configuration with several gas mixture, such as pure helium, helium with oxygen, and a mixture of helium, oxygen and carbon tetrafluoride. At the fundamental frequency of the RF electric field, the I-V characteristic of the discharge closely resembles a low pressure DC glow discharge. With increasing RF power, the discharge becomes unstable and a transition to an arc occurs. A 1-D, 2 moment fluid model using 'local field approximation' has been developed to study the discharge physics. Good agreement was obtained between the experimental results and code outputs. The code predicts that the pure helium discharge produces 0.2-2x10^11 cm-3 electrons, with an average energy of 2 -3 eV in a volume of 16 cm^3 for input powers between 50 W and 400 W. In addition, the code predicts the bifurcation of the plasma solution akin to a transition to an arc observed in the experiments. Introduction of a small fraction of oxygen, up to 3 percent, improves the stability of the discharge and also generates a large flux of reactive species. With an input power of 300 watts and O2 fraction of 1concentration of ozone is 1-10x10^15 cm-3 and the second molecular oxygen metastable state (O2 b^1Σ ^+_g) is 0.5-2x10^12 cm-3, as measured both inside and outside of the discharge region using optical emission and absorption spectroscopy. In addition, the presence of the long-lived first molecular oxygen metastable state (O2 a^1Δ _g) was also observed and its concentration is expected to be comparable to that of ozone. From these measurements, the concentration of atomic oxygen was estimated to be 0.5-5x10^15 cm-3 inside the discharge volume. The abundant concentration of these reactive species helps to explain the observed etch rate of Kapton^TM polyimide film of 0.5 μ m/min inside the discharge region over areas of about

  3. Experimental investigation of photoresist etching by kHz AC atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zheng, Yashuang; Wu, Chen; Jia, Shenli

    2016-11-01

    In this study, the mechanism of the photoresist (PR) etching by means of a kHz AC atmospheric pressure plasma jet (APPJ) is investigated. The scanning electron (SEM) and the polarizing microscope are used to perform the surface analysis, and the mechanical profilometry is applied to diagnose the etch rate. The results show that granulated structure with numerous microparticles appears at the substrate surface after APPJ treatment, and the etch rate in the etch center is the fastest and gradually slows down to the edge of etch region. In addition, the pin-ring electrode APPJ has the highest etch rate at but easy to damage the Si wafer, the double-ring APPJ is the most stable but requires long time to achieve the ideal etch result, and the etch rate and the etch result of the multi-electrode APPJ fall in between. Ar APPJ had much higher PR etch rate and more irregular etch trace than He APPJ. It is speculated that Ar APPJ is more energetic and effective in transferring reactive species to the PR surface. It is also observed that the effective etch area initially increases and then decreases as plasma jet outlet to the PR surface distance increases.

  4. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ren, Jingyu; Wang, Tiecheng; Qu, Guangzhou; Liang, Dongli; Hu, Shibin

    2015-12-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. supported by China's Postdoctoral Science Foundation (No. 2014M562460), the Initiative Funding Programs for Doctoral Research of Northwest A&F University (No. 2013BSJJ121), and National Natural Science Foundation of China (No. 21107085)

  5. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  6. Multidimensional hydrodynamic plasma-wall model for collisional plasma discharges with and without magnetic-field effects

    SciTech Connect

    Kumar, Haribalan; Roy, Subrata

    2005-09-15

    A numerical model for two-species plasma involving electrons and ions at pressure of 0.1 torr is presented here. The plasma-wall problem is modeled using one- and two-dimensional hydrodynamic equations coupled with Poisson equation. The model utilizes a finite-element algorithm to overcome the stiffness of the resulting plasma-wall equations. The one-dimensional result gives insight into the discharge characteristics including net charge density, electric field, and temporal space-charge sheath evolution. In two dimensions, the plasma formation over a flat plate is investigated for three different cases. The numerical algorithm is first benchmarked with published literature for plasma formed between symmetric electrodes in nitrogen gas. The characteristics of plasma are then analyzed for an infinitesimally thin electrode under dc and rf potentials in the presence of applied magnetic field using argon as a working gas. The magnetic field distorts the streamwise distribution because of a large y-momentum VxB coupling. Finally, the shape effects of the insulator-conductor edge for an electrode with finite thickness have been compared using a 90 degree sign shoulder and a 45 deg. chamfer. The 90 deg. chamfer displays a stronger body force created due to plasma in the downward and forward directions.

  7. Coherent Anti-Stokes Raman Spectroscopy of Radio-Frequency Discharge Plasmas of Silane and Disilane

    NASA Astrophysics Data System (ADS)

    Hata, Nobuhiro; Matsuda, Akihisa; Tanaka, Kazunobu

    1986-01-01

    Coherent anti-Stokes Raman spectroscopy has been employed for the diagnosis of rf discharges of silane (SiH4) and disilane (Si2H6). The signal intensities from silane and disilane have been measured as a function of time after switching on the rf power supplied to SiH4 and Si2H6 gas in a closed reaction chamber. From this measurement, the loss rates of silane and disilane have been determined directly as functions of the rf-power density and gas pressure for the first time. The rate of formation of SiH4 in disilane discharge plasmas has also been determined.

  8. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    SciTech Connect

    Bo, Zheng; Qian, Jiajing; Duan, Liangping; Qiu, Kunzan Yan, Jianhua; Cen, Kefa; Han, Zhao Jun; Ostrikov, Kostya

    2015-05-15

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application.

  9. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    SciTech Connect

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminants are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.

  10. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 -, and NO3 - are detected after plasma exposure and only NO3 - after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 - production and long-lifetime species in NO3 - production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 -, and the off-gas sparging of the PB-DBD for the production of NO3 -.

  11. Mechanism behind self-sustained oscillations in direct current glow discharges and dusty plasmas

    SciTech Connect

    Cho, Sung Nae

    2013-04-15

    An alternative explanation to the mechanism behind self-sustained oscillations of ions in direct current (DC) glow discharges is provided. Such description is distinguished from the one provided by the fluid models, where oscillations are attributed to the positive feedback mechanism associated with photoionization of particles and photoemission of electrons from the cathode. Here, oscillations arise as consequence of interaction between an ion and the surface charges induced by it at the bounding electrodes. Such mechanism provides an elegant explanation to why self-sustained oscillations occur only in the negative resistance region of the voltage-current characteristic curve in the DC glow discharges. Furthermore, this alternative description provides an elegant explanation to the formation of plasma fireballs in the laboratory plasma. It has been found that oscillation frequencies increase with ion's surface charge density, but at the rate which is significantly slower than it does with the electric field. The presented mechanism also describes self-sustained oscillations of ions in dusty plasmas, which demonstrates that self-sustained oscillations in dusty plasmas and DC glow discharges involve common physical processes.

  12. A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction

    NASA Astrophysics Data System (ADS)

    Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka

    2013-02-01

    The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  13. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  14. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  15. Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage

    PubMed Central

    Li, Xuechen; Li, Yaru; Zhang, Panpan; Jia, Pengying; Dong, Lifang

    2016-01-01

    One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction. PMID:27759080

  16. Synthesis of Superfine Ethanol-Soluble CoO Nanoparticles via Discharge Plasma in Liquid

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Kaneko, Toshiro; Hatakeyama, Rikizo

    2012-09-01

    Superfine cobaltous oxide nanoparticles (CoONPs) of ˜2.5 nm diameter were synthesized at high rate via discharge plasma operated in an aqueous solution of Co(II) acetate. Two potential routes are proposed for the CoONP formation: one is the plasma-induced electrolysis of the aqueous solution of Co(II) acetate, and the other is the oxidization of neutral Co, which is formed by the plasma-induced reduction of Co(II). In addition, the resultant CoONPs are soluble in ethanol but insoluble in water, which is attributed to the surface conjugation of functional groups of CH3. produced by the plasma-induced electrolysis of an aqueous solution of Co(II) acetate.

  17. Properties of a capillary discharge-produced argon plasma waveguide for shorter wavelength source application

    SciTech Connect

    Sakai, Shohei; Miyazawa, Jun; Higashiguchi, Takeshi; Yugami, Noboru; Bobrova, Nadezhda; Sasorov, Pavel; Sentoku, Yasuhiko; Kodama, Ryosuke

    2011-10-15

    We report the operation of a discharge-produced argon (Ar) plasma waveguide in an alumina (Al{sub 2}O{sub 3}) capillary to guide a 10{sup 16}-W/cm{sup 2} ultrashort laser pulse for shorter wavelength light sources at high repetition rate operation. The electron density in the plasma channel was measured to be 1 x 10{sup 18} cm{sup -3}. Modeling with a one-dimensional magnetrohydrodynamic code was used to evaluate the degree of ionization of Ar in the preformed plasma channel. The observed spectrum of the laser pulse after propagation in the argon plasma waveguide was not modified and was well reproduced by a particle in cell simulation.

  18. Surface cleaning of metals in air with a one atmosphere uniform glow discharge plasma

    SciTech Connect

    Roth, J.R.; Ku, Y.

    1995-12-31

    The authors report the use of active species generated in a one atmosphere uniform glow discharge plasma reactor with a parallel-plate configuration to clean the surface of as-received metal samples from the machine shop floor. The experimental arrangement used to expose the 7 by 10 cm metal samples is shown. The lower parallel-plate electrode is a flat copper plate 22 by 22 cm, covered by a 5mm thick pyrex sheet. The upper electrode is formed by the bare metal sample plate, with the side to be cleaned facing the plasma. To assure plasma uniformity between the electrodes, it was helpful to direct a flow of air on the edges of the plasma volume. The cleanliness of the metal samples was determined with the standard sessile water drop test.

  19. Three dimensional complex plasma structures in a combined radio frequency and direct current discharge

    NASA Astrophysics Data System (ADS)

    Mitic, S.; Klumov, B. A.; Khrapak, S. A.; Morfill, G. E.

    2013-04-01

    We report on the first detailed analysis of large three dimensional (3D) complex plasma structures in experiments performed in pure rf and combined rf+dc discharge modes. Inductively coupled plasma is generated by an rf coil wrapped around the vertically positioned cylindrical glass tube at a pressure of 0.3 mbar. In addition, dc plasma can be generated by applying voltage to the electrodes at the ends of the tube far from the rf coil. The injected monodisperse particles are levitated in the plasma below the coil. A scanning laser sheet and a high resolution camera are used to determine the 3D positions of about 105 particles. The observed bowl-shaped particle clouds reveal coexistence of various structures, including well-distinguished solid-like, less ordered liquid-like, and pronounced string-like phases. New criteria to identify string-like structures are proposed.

  20. Detection of hydroxyl radicals during regeneration of granular activated carbon in dielectric barrier discharge plasma system

    NASA Astrophysics Data System (ADS)

    Tang, Shoufeng; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    To understand the reactions taking place in the dielectric barrier discharge (DBD) plasma system of activated carbon regeneration, the determination of active species is necessary. A method based on High Performance Liquid Chromatography with radical trapping by salicylic acid, has been developed to measure hydroxyl radical (•OH) in the DBD plasma reactor. The effects of applied voltage, treatment time, and gas flow rate and atmosphere were investigated. Experimental results indicated that increasing voltage, treatment time and air flow rate could enhance the formation of •OH. Oxygen atmosphere and a suitable GAC water content were contributed to •OH generation. The results give an insight into plasma chemical processes, and can be helpful to optimize the design and application for the plasma system.

  1. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    SciTech Connect

    Wang, Yongjie; Dong, Lifang Liu, Weibo; He, Yafeng; Li, Yonghui

    2014-07-15

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.

  2. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Judée, F.; Merbahi, N.; Wattieaux, G.; Yousfi, M.

    2016-09-01

    The aim is the comparison of different plasma parameters of single and double dielectric barrier discharge plasma jet configurations (S-DBD and D-DBD) which are potentially usable in biomedical applications. Both configurations are studied in terms of electric field distribution, electrical discharge characteristics, plasma parameters (estimated by optical emission spectroscopy analysis), and hydrodynamics of the plasma jet for electrical parameters of power supplies corresponding to an applied voltage of 10 kV, pulse duration of 1 μs, frequency of 9.69 kHz, and Ar flow of 2 l/min. We observed that the D-DBD configuration requires half the electrical power one needs to provide in the S-DBD case to generate a plasma jet with similar characteristics: excitation temperature around 4700 K, electron density around 2.5 × 1014 cm-3, gas temperature of about 320 K, a relatively high atomic oxygen concentration reaching up to 1000 ppm, the presence of reactive oxygen and nitrogen species (nitric oxide, hydroxyl radical, and atomic oxygen), and an irradiance in the UV-C range of about 20 μW cm-2. Moreover, it has been observed that D-DBD plasma jet is more sensitive to short pulse durations, probably due to the charge accumulation over the dielectric barrier around the internal electrode. This results in a significantly longer plasma length in the D-DBD configuration than in the S-DBD one up to a critical flow rate (2.25 l/min) before the occurrence of turbulence in the D-DBD case. Conversely, ionization wave velocities are significantly higher in the S-DBD setup (3.35 × 105 m/s against 1.02 × 105 m/s for D-DBD), probably due to the higher electrostatic field close to the high voltage electrode in the S-DBD plasma jet.

  3. Uniform surface growth of copper oxide nanowires in radiofrequency plasma discharge and limiting factors

    SciTech Connect

    Filipič, Gregor; Mozetič, Miran; Cvelbar, Uroš; Baranov, Oleg; Ostrikov, Kostya

    2014-11-15

    The uniform growth of copper oxide nanowires on the top of copper plate has been investigated during the exposure to radiofrequency plasma discharge in respect to plasma properties and its localization. The copper samples of 10 mm radius and 1 mm in thickness were exposed to argon-oxygen plasma created at discharge power of 150 W. After 10 min, almost uniform growth of nanowires was achieved over large surface. There were significant distortions in nanowire length and shape near the edges. Based on the experimental results, we developed a theoretical model, which took into account a balance in heat released at the flow of the current to the nanowire and rejected from the nanowire. This model established a dependence of the maximal length of the nanowire at dependence on the plasma parameters, where the limiting factor for nanowire growth and distortions in distribution are ballistic effects of ions and their local fluxes. In contrast, the plasma heating by potential interactions of species has very little influence on the length and smaller deviations in flux are allowed for uniformity of growth.

  4. Plasma decay in high-voltage nanosecond discharges in oxygen-containing mixtures

    NASA Astrophysics Data System (ADS)

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2016-01-01

    Plasma decay in high-voltage nanosecond discharges in CO2: O2 and Ar: O2 mixtures at room gas temperature and a pressure of 10 Torr is studied experimentally and theoretically. The time dependence of the electron density during plasma decay is measured using microwave interferometry. The time evolution of the charged particle density, ion composition, and electron temperature is simulated numerically. It is shown that, under the given conditions, the discharge plasma is dominated for the most time by O 2 + ions and plasma decay is determined by dissociative and three-body electron-ion recombination. As in the previous studies performed for air and oxygen plasmas, agreement between measurements and calculations is achieved only under the assumption that the rate of three-body recombination of molecular ions is much greater than that for atomic ions. The values of the rate constant of three-body recombination of electrons with O2 + ions in a wide range of electron temperatures (500-5500 K), as well as for thermal (300 K) electrons, are obtained by processing the experimental results.

  5. Pulsed Discharge Plasma over a Water Surface Induces Decoloration of Dyes

    NASA Astrophysics Data System (ADS)

    Wahyudiono; Machmudah, Siti; Goto, Motonobu

    2013-06-01

    It was well known that plasma can be defined as a partially ionized gas composed of ions, electrons and neutral species. Recently, plasma-water interaction has attracted growing interest as it may provide experimental chemists with a quite unique reaction medium. In this work, decoloration of dyes in water as a reaction media and the effects of various parameters with pulsed high-voltage discharge plasma are studied. Such as plasma applied under hydrothermal conditions generates high-energy electrons, ions, and radicals, which in turn may generate new reaction fields, leading to effective organic compounds oxidation for both homogeneous and heterogeneous reactions. Here, we utilize pulse discharge plasma over water surface to study the decoloration of Orange G, Orange II, Congo Red, and Naphthol Blue Black. They were directly fed as starting materials without additives. The experiments were conducted under argon atmospheric at 313 K using a batch type reactor. The products were directly analyzed by UV-Vis (ultra violet-visible) spectrophotometer V-550. The decoloration rate increased with increasing peak pulse voltage and pulse numbers, presumably due to the increased electric field energy. Based on these results, the present system may be promising.

  6. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    SciTech Connect

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-11-15

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  7. Surface modification by nonthermal plasma induced by using magnetic-field-assisted gliding arc discharge

    NASA Astrophysics Data System (ADS)

    Feng, Zongbao; Saeki, Noboru; Kuroki, Tomoyuki; Tahara, Mitsuru; Okubo, Masaaki

    2012-07-01

    The authors report on the introduction of a magnetic field to gliding arc discharge (GD) in order to enhance surface modification by nonthermal plasma at atmospheric-pressure. The GD is induced between two wire electrodes by using a pulse high-voltage power supply with peak-to-peak voltage of 5 kV. When a magnetic field of 0.25 T is applied, the GD enlarged and a 19-cm-long stretch of plasma is excited. The surface treatment of polyethylene terephthalate and polytetrafluoroethylene films is performed. The adhesion improved by up to ˜30 times due to the enhanced chemical activity in the films.

  8. Studies of spatial uniformity of glow discharge cleaning plasmas on the RFX-mod device

    NASA Astrophysics Data System (ADS)

    Canton, A.; Dal Bello, S.; Agostini, M.; Carraro, L.; Cavazzana, R.; Fiameni, S.; Grando, L.; Rais, B.; Spolaore, M.; Zuin, M.

    2013-07-01

    In RFX-mod different types of Glow Discharge Cleaning (GDC) plasmas are used as wall treatment procedures. An extensive set of diagnostics allowed a characterization of these cold and weakly ionized plasmas in the different operative conditions that are available. A strong toroidal non-uniformity of ion current at the edge, that gives the measure of the effectiveness of the physical sputtering, was measured by different diagnostics. The non-uniformity was mitigated by decreasing the gas pressure but it could not be avoided.

  9. Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Kochetov, I. V.

    2016-10-01

    A new version of optical actinometry (OA) is used to determine the concentrations of water molecules and their fragments in hollow cathode discharge plasma in moist inert gases. Use is made of two actinometer particles, namely, the atoms Xe and Ar, for concurrent measurements of the concentrations of the H2O molecule and its fragments O, H, and OH. A self-consistent method is suggested for the determination of particle concentrations with due regard for the quenching of the emitting states. The temporal behavior of particles during discharge glow is studied. Noted are fast variations (lasting from a few to a few tens of s) in the concentrations of all the particles, followed by their stabilization (within a few to a few tens of mins). The scheme of the processes responsible for the observed dynamics of the plasma composition is discussed.

  10. Extended dielectric relaxation scheme for fluid transport simulations of high density plasma discharges

    NASA Astrophysics Data System (ADS)

    Kwon, Deuk-Chul; Song, Mi-Young; Yoon, Jung-Sik

    2014-10-01

    It is well known that the dielectric relaxation scheme (DRS) can efficiently overcome the limitation on the simulation time step for fluid transport simulations of high density plasma discharges. By imitating a realistic and physical shielding process of electric field perturbation, the DRS overcomes the dielectric limitation on time step. However, the electric field was obtained with assuming the drift-diffusion approximation. Although the drift-diffusion expressions are good approximations for both the electrons and ions at high pressure, the inertial term cannot be neglected in the ion momentum equation for low pressure. Therefore, in this work, we developed the extended DRS by introducing an effective electric field. To compare the extended DRS with the previous method, two-dimensional fluid simulations for inductively coupled plasma discharges were performed. This work was supported by the Industrial Strategic Technology Development Program (10041637, Development of Dry Etch System for 10 nm class SADP Process) funded by the Ministry of Knowledge Economy (MKE, Korea).

  11. Surface characteristics and printing properties of PET fabric treated by atmospheric dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Rashed, U. M.; Ahmed, H.; Al-Halwagy, A.; Garamoon, A. A.

    2009-01-01

    PET (Poly ethylene terephthalate) fabric was treated using dielectric barrier discharge (DBD) as a type of low temperature plasma under atmospheric pressure for 1 to 15min and different powers ranging between 0.3 to 5W. Effects of DBD treatment on the surface of a test PET fabric are examined, reported and discussed. The surface analysis and characterization were performed using X-ray diffraction (XRD), Fourier transition infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) before and following the DBD processing. SEM analysis shows significant surface morphology changes in plasma treated polyester fabric surface, while FTIR analysis indicates that the reactivity of the surface was increased. The discharge parameters used are correlated with the changes in the surface characteristics found after DBD processing of various durations, in atmospheric air environment.

  12. Numerical study of capacitive coupled HBr/Cl2 plasma discharge for dry etch applications

    NASA Astrophysics Data System (ADS)

    Gul, Banat; Ahmad, Iftikhar; Zia, Gulfam; Aman-ur-Rehman

    2016-09-01

    HBr/Cl2 plasma discharge is investigated to study the etchant chemistry of this discharge by using the self-consistent fluid model. A comprehensive set of gas phase reactions (83 reactions) including primary processes such as excitation, dissociation, and ionization are considered in the model along with 24 species. Our findings illustrate that the densities of neutral species (i.e., Br, HCl, Cl, H, and H2) produced in the reactor are higher than charged species (i.e., Cl2+, Cl-, HBr+, and Cl+). Density profile of neutral and charged species followed bell shaped and double humped distributions, respectively. Increasing Cl2 fraction in the feedback gases (HBr/Cl2 from 90/10 to 10/90) promoted the production of Cl, Cl+, and Cl2+ in the plasma, indicating that chemical etching pathway may be preferred at high Cl-environment. These findings pave the way towards controlling/optimizing the Si-etching process.

  13. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    SciTech Connect

    Nikolic, M.; Samolov, A.; Popovic, S.; Vuskovic, L.; Godunov, A.; Cuckov, F.

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowing microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.

  14. Plasma Treatment of Polyethylene Powder Particles in Hollow Cathode Glow Discharge

    NASA Astrophysics Data System (ADS)

    Wolter, Matthias; Quitzau, Meike; Bornholdt, Sven; Kersten, Holger

    2008-09-01

    Polyethylen (PE) is widely used in the production of foils, insulators, packaging materials, plastic bottles etc. Untreated PE is hydrophobic due to its unpolar surface. Therefore, it is hard to print or glue PE and the surface has to be modified before converting. In the present experiments a hollow cathode glow discharge is used as plasma source which is mounted in a spiral conveyor in order to ensure a combines transport of PE powder particles. With this set-up a homogeneous surface treatment of the powder is possible while passing the glow discharge. The plasma treatment causes a remarkable enhancement of the hydrophilicity of the PE powder which can be verified by contact angle measurements and X-ray photoelectron spectroscopy.

  15. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Rauscher, H.; Gilliland, D.; Brétagnol, F.; Rossi, F.

    2008-05-01

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper.

  16. Degradation of methyl tert-butyl ether (MTBE) in water by glow discharge plasma.

    PubMed

    Tong, Shaoping; Ni, Yanyan; Shen, Chensi; Wen, Yuezhong; Jiang, Xuanzhen

    2011-01-01

    This study evaluated the ability of the glow discharge plasma (GDP) technique to degrade methyl tert-butyl ether (MTBE) in an aqueous solution. The results showed that a large amount of hydrogen peroxide and highly active *OH free radicals were produced during the treatment. Various experimental parameters including discharge current, initial MTBE concentration and initial pH played significant roles on MTBE degradation. In addition, Fe2+ had a catalytic effect on the degradation of MTBE, which is potentially attributable to the reaction between Fe3+ and the hydrated electron. It was also confirmed that GDP was comparable to electrocatalytic oxidation and high-density plasma and more efficient than photocatalytic degradation techniques. These results suggest that GDP may become a competitive MTBE wastewater treatment technology. PMID:22049704

  17. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  18. Plasma Treatment of Polyethylene Powder Particles in Hollow Cathode Glow Discharge

    SciTech Connect

    Wolter, Matthias; Quitzau, Meike; Bornholdt, Sven; Kersten, Holger

    2008-09-07

    Polyethylen (PE) is widely used in the production of foils, insulators, packaging materials, plastic bottles etc. Untreated PE is hydrophobic due to its unpolar surface. Therefore, it is hard to print or glue PE and the surface has to be modified before converting.In the present experiments a hollow cathode glow discharge is used as plasma source which is mounted in a spiral conveyor in order to ensure a combines transport of PE powder particles. With this set-up a homogeneous surface treatment of the powder is possible while passing the glow discharge. The plasma treatment causes a remarkable enhancement of the hydrophilicity of the PE powder which can be verified by contact angle measurements and X-ray photoelectron spectroscopy.

  19. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  20. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor

    NASA Astrophysics Data System (ADS)

    Fukuhara, D.; Namba, S.; Kozue, K.; Yamasaki, T.; Takiyama, K.

    2013-02-01

    Microhollow cathode discharge (MHCD) plasmas were generated in gas mixtures containing water vapor at pressures of up to 100 kPa of He or 20 kPa of air. The cathode diameter was 1.0 mm with a length of 2.0 mm. The electrical characteristics showed an abnormal glow mode. Spectroscopic measurements were carried out to examine the plasma and radicals. An analysis of the spectral profile of Hα at 656.3 nm enabled a derivation of the electron densities, namely 2×1014 cm-3 (at 10 kPa) and 6×1014 cm-3 (at 4 kPa) for the helium and air atmospheres, respectively, in the negative glow region. By comparing the observed OH radical spectra with those calculated by the simulation code LIFBASE, the gas temperature was deduced to be 900 K for 4 kPa of He at a discharge current of 50 mA.

  1. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    PubMed

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  2. Manipulation of a grid-generated mixing with an active honeycomb dielectric barrier plasma discharge

    NASA Astrophysics Data System (ADS)

    Benard, N.; Mizuno, A.; Moreau, E.

    2015-12-01

    This study defines and characterizes an active system for turbulent and scalar mixing enhancement. This system is made of an active grid composed of 121 holes where the gas flows. A high voltage is applied between printed electrodes and embedded ground electrodes in order to produce a non-thermal surface discharge at the hole exits. The goal is to modify the flow downstream of the active grid. First, electrical and optical characterizations of the actuator are proposed. Second, it is shown that the discharge strongly modifies the flow distribution of the multi-jet exhaust, and the flow change depends on the high voltage applied to the active plasma grid. A minimization of the potential core by 40% is reported when discharge frequency corresponds to jet column mode instability.

  3. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    PubMed

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation. PMID:24985821

  4. The role of gas composition in plasma-dust structures in RF discharge

    SciTech Connect

    Maiorov, S. A.; Golyatina, R. I.

    2015-03-15

    The influence of a mixture of light and heavy gases, i.e., helium and argon, on plasma-dust structures in the radiofrequency discharge has been studied. The dust chains in the sheath of the radiofrequency discharge, the average distance between the dust particles and their chains, have been analyzed. A significant effect of small amounts of argon on the correlation characteristics of dust particles has been observed. The results of numerical simulation of ion and electron drift in the mixture of helium and argon are presented. It is shown that even 1% of argon admixture to helium produces such an effect that argon ions become the main components of the discharge, as they drift with lightweight helium forming a strongly anisotropic velocity distribution function.

  5. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge

    NASA Astrophysics Data System (ADS)

    Claverie, A.; Deroy, J.; Boustie, M.; Avrillaud, G.; Chuvatin, A.; Mazanchenko, E.; Demol, G.; Dramane, B.

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  6. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  7. The evidence of cathodic micro-discharges during plasma electrolytic oxidation process

    SciTech Connect

    Nominé, A.; Martin, J.; Noël, C.; Henrion, G.; Belmonte, T.; Bardin, I. V.; Kovalev, V. L.; Rakoch, A. G.

    2014-02-24

    Plasma electrolytic oxidation (PEO) processing of EV31 magnesium alloy has been carried out in fluoride containing electrolyte under bipolar pulse current regime. Unusual PEO cathodic micro-discharges have been observed and investigated. It is shown that the cathodic micro-discharges exhibit a collective intermittent behavior, which is discussed in terms of charge accumulations at the layer/electrolyte and layer/metal interfaces. Optical emission spectroscopy is used to determine the electron density (typ. 10{sup 15} cm{sup −3}) and the electron temperature (typ. 7500 K) while the role of F{sup −} anions on the appearance of cathodic micro-discharges is pointed out.

  8. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    SciTech Connect

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S.

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  9. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    PubMed

    Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A

    2013-01-01

    Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance

  10. Hardening of the surface plasma jet high-frequency induction discharge of low pressure

    NASA Astrophysics Data System (ADS)

    Kashapov, N. F.; Sharifullin, S. N.

    2015-06-01

    The work presents results of research on the hardening surfaces of the products and increase their roughness class of plasma jet of high-frequency induction discharge of low pressure. It is shown that such processing allows to clear at the same time a surface of all types of pollution, to remove a defective layer after its machining, to receive a uniform microstructure, to raise a roughness class on 2 - 3 units.

  11. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  12. A compact, low cost Marx bank for generating capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Dyson, A. E.; Thornton, C.; Hooker, S. M.

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈1018 cm-3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm × 25 cm × 5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  13. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Ricard, A.; Hecq, M.

    2006-01-01

    High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20 {mu}s at 2 and 10 mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5 {mu}s pulse, for an average power of 300 W, the deposition rate is {approx}70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ionization rate, as determined by absorption measurements, diminishes as the pulses are shortened. Nevertheless, the ionization rate is in the range of 50% for 5 {mu}s pulses while it lies below 10% in the case of a classical continuous magnetron discharge.

  14. Atom-sensitive textiles as visual indicators for plasma post-discharges

    NASA Astrophysics Data System (ADS)

    Canal, Cristina; Villeger, Sandrine; Cousty, Sarah; Rouffet, Benoit; Sarrette, Jean-Philippe; Erra, Pilar; Ricard, André

    2008-07-01

    The efficiency of surface treatments by plasma and post-discharge plasma processes is greatly dependent on the density of active species, such as neutral atoms in post-discharges. Therefore, many diagnostics exist to detect the presence and measure the concentrations of these species, but they often require expensive instrumentation and highly qualified personnel. These conditions are not often met when the process is industrially used and it becomes important to imagine simple indicators allowing to validate that the correct operating conditions are reached. In the present paper, we present the first results on the investigation of an inexpensive and easy to use visual indicator able to quantify the atomic species density in nitrogen post-discharge plasma processes. It is based on the differential recombination coefficients of N-atoms on metallic/textile fibres which are intrinsically bonded together in a fabric matrix which serves as support for a thermochromic ink. The specific heating of the metallic fibres by N-atom recombination heats the whole of the fabric, leading to a visible colour change of the thermochromic ink, and therefore, of the indicator. Through modelling, it was possible to estimate that the inclusion of copper fibres to a pure cotton matrix leads to a 60% increase of the global N-atom recombination coefficient of the fabric, sufficient enough to provide a clearly visible colour change.

  15. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  16. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space I spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  17. Atomic H and N emissions from High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Kurunczi, P.; Becker, K.

    2000-06-01

    Hollow cathode discharge plasmas in geometries where the aperture in the hollow cathode has a diameter of 0.1 mm or less (microhollow cathode discharges, MHCDs) are efficient sources of ultraviolet (UV) and vacuum ultraviolet (VUV) excimer radiation when operated at high pressures (up to atmospheric pressure). We observed intense, monochromatic H Lyman-alpha and Lyman-beta line emissions at 121.6 nm and 102.5 nm, respectively, from MHCD plasmas in high-pressure Ne with small admixtures (up to 3 Torr) of H2. The underlying processes for the emissions were identified as very efficient near-resonant energy transfer processes between Ne excimers formed in the high pressure discharge plasma and H2 leading to the dissociation of H2 and the formation of H(n=2) and H(n=3) atoms. We have now extended these studies to Ne/N2 mixtures and observed intense, monochromatic atomic N emissions at 113.4 nm and 120.0 nm. Possible mechanisms for the emission of these N lines may involve energy transfer processes between Ne excimers and metastable N2(A) molecules. Further details will be presented at the Conference.

  18. Discharge Physics and Chemistry in Atmospheric Pressure RF Glow-like Plasmas

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Selwyn, G. S.; Henins, Ivars; Jeong, J. Y.

    1998-10-01

    Steady-state, homogeneous discharges at atmospheric pressure have been produced using radio frequency (RF) electric fields. The discharges operate in a capacitively coupled configuration with several gas mixture, such as pure helium, helium with oxygen, and a mixture of helium, oxygen and carbon tetrafluoride. At the fundamental frequency of the RF electric field, the I-V characteristic of the discharge closely resembles a low pressure DC glow discharge. With increasing RF power, the discharge becomes unstable and a transition to an arc occurs. A 1-D, 2 moment fluid model using 'local field approximation' has been developed to study the discharge physics. Good agreement was obtained between the experimental results and code outputs. The code predicts that the pure helium discharge produces 0.2-2x10^11 cm-3 electrons, with an average energy of 2 -3 eV in a volume of 16 cm^3 for input powers between 50 W and 400 W. Introduction of a small fraction of oxygen, up to 3 percent, improves the stability of the discharge and also generates a large flux of reactive species. With an input power of 300 watts and O2 fraction of 1absolute concentration of ozone is 1-10x10^15 cm-3 and the second molecular oxygen metastable state (O2 b^1Σ ^+_g) is 0.5-2x10^12 cm-3, as measured both inside and outside of the discharge region using optical emission and absorption spectroscopy. In addition, the presence of the long-lived first molecular oxygen metastable state (O2 a^1Δ _g) was also observed and its concentration is expected to be comparable to that of ozone. From these measurements, the concentration of atomic oxygen was estimated to be 0.5-5x10^15 cm-3 inside the discharge volume. The abundant concentration of these reactive species helps to explain the observed etch rate of Kapton^TM polyimide film of 0.5 μ m/min inside the discharge region over areas of about 100 cm^2 and of 5 μ m/min for material exposed to the plasma effluent over areas of 1 cm^2.

  19. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program. PMID:26421625

  20. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers.

    PubMed

    Xin, Lu; Sun, Yabing; Feng, Jingwei; Wang, Jian; He, Dong

    2016-02-01

    The degradation of triclosan (TCS) in aqueous solution by dielectric barrier discharge (DBD) plasma with activated carbon fibers (ACFs) was investigated. In this study, ACFs and DBD plasma coexisted in a planar DBD plasma reactor, which could synchronously achieve degradation of TCS, modification and in situ regeneration of ACFs, enhancing the effect of recycling of ACFs. The properties of ACFs before and after modification by DBD plasma were characterized by BET and XPS. Various processing parameters affecting the synergetic degradation of TCS were also investigated. The results exhibited excellent synergetic effects in DBD plasma-ACFs system on TCS degradation. The degradation efficiency of 120 mL TCS with initial concentration of 10 mg L(-1) could reach 93% with 1 mm thick ACFs in 18 min at input power of 80 W, compared with 85% by single DBD plasma. Meanwhile, the removal rate of total organic carbon increased from 12% at pH 6.26-24% at pH 3.50. ACFs could ameliorate the degradation efficiency for planar DBD plasma when treating TCS solution at high flow rates or at low initial concentrations. A possible degradation pathway of TCS was investigated according to the detected intermediates, which were identified by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) combined with theoretical calculation of Gaussian 09 program.

  1. Influence of plasma decay on emission of 147-nm ultraviolet light from discharge cells in the plasma display panel

    SciTech Connect

    Uhm, Han S.; Yoo, Naleum; Choi, Eun H.

    2007-04-15

    The time profile of 147-nm light emission from a cell discharge of the plasma display panel is investigated in terms of the xenon mole fraction {chi} and the gas pressure p, including the important influences of the diffusion loss of the plasma and the three-body collisions of excited xenon atoms in the resonance state. The light emission profile dY/dt in time is analytically expressed in terms of the gas pressure and xenon mole fraction. The theoretical analysis indicates that the emission intensity increases from zero, reaches its peak, and then decreases, as time goes by. The peak emission intensity (dY/dt){sub p} and the corresponding emission time t{sub p} are obtained analytically in terms of the gas pressure p and xenon mole fraction {chi}. The total emission Y of 147-nm light during each discharge in the cells is proportional to the plasma decay time {tau}. The experimental data are remarkably consistent with the theoretical predictions.

  2. Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine During Beam Extraction

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.

  3. Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air

    SciTech Connect

    Cho, J. H.; Koo, I. G.; Choi, M. Y.; Lee, W. M.

    2008-03-10

    This study is aimed at demonstrating plasma-chemical ozone production based on low temperature atmospheric pressure glow discharge through nanoporous dielectric barriers. The 20 kHz ac driven discharge is formed in air or oxygen gas flowing in the axial direction of the cylindrical plasma reactor containing four parallel aluminum rods covered with nanoporous alumina films. The discharge utilizing nanoporous dielectric barrier is more uniform and more energy efficient in ozone generation than the discharge through smooth-surface dielectric barriers.

  4. Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization

    NASA Astrophysics Data System (ADS)

    Gans, T.; Osiac, M.; O'Connell, D.; Kadetov, V. A.; Czarnetzki, U.; Schwarz-Selinger, T.; Halfmann, H.; Awakowicz, P.

    2005-05-01

    Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.

  5. Observation of plasma jets in a table top plasma focus discharge

    SciTech Connect

    Pavez, Cristian; Soto, Leopoldo; Pedreros, José; Tarifeño-Saldivia, Ariel

    2015-04-15

    In the last years, medium size Z-pinch experiments operating at tens of kJ are being used to create supersonic plasma jets. Those experiments are produced with wire arrays and radial foils, and they are conducted in generators based on water-filled transmission lines. Also plasma jets have been observed in small X-pinch experiments operating at 1 kJ. In this work, observations of plasma jets produced in a table top plasma focus device by means of optical and digital interferometry are shown. The device was operated at only ∼70 J, achieving 50 kA in 150 ns. The plasma jets were observed after the pinch, in the region close and on the anode, along the axis. The electron density measured from the jets is in the range 10{sup 24}–10{sup 25 }m{sup −3}. From two consecutive plasma images separated 18 ns, the axial jet velocity was measured in the order of 4 × 10{sup 4 }m/s.

  6. Acoustic wave propagation in uniform glow discharge plasma at an arbitrary angle between the electric field and wave vectors

    SciTech Connect

    Soukhomlinov, Vladimir; Gerasimov, Nikolay; Sheverev, Valery A.

    2008-08-15

    This paper extends the recently reported one-dimensional model for sound propagation in glow discharge plasma to arbitrary mutual orientation of the plasma electric field and acoustic wave vectors. The results demonstrate that an acoustic wave in plasma may amplify, attenuate, or remain unchanged depending on the angle between these vectors and on the power input into the discharge. Quantitative evaluations indicate that for glow discharge plasma of a self-sustained discharge in air at the electric current densities of the order of 100 mA cm{sup -2}, a gain of as much as 1 m{sup -1} at 0 deg. angle between the vectors changes to similar strength attenuation for the 90 deg. angle.

  7. Selective surface modification and patterning by a micro-plasma discharge

    SciTech Connect

    Chai Jinan; Li Baoming; Kwok, Daniel Y.

    2005-01-17

    We demonstrate a selective surface patterning method by a micro-plasma discharge. In this method, argon plasma is ignited through a hole of copper clad polyimide microstructure electrodes. We described here experiments in which an octadecanethiol [CH{sub 3}(CH{sub 2}){sub 17}SH] self-assembled monolayer (SAM) on a gold film is exposed to a microdischarge, followed by immersion of the sample in 16-mercaptohexadecanoic acid solution. The octadecanethiol SAM is desorbed upon Ar plasma exposure, allowing the formation of a second SAM on the damaged region. The spatial resolution in the present experiments is limited by the dimension of microstructure electrodes. The patterned samples are viewed by using optical microscope and scanning electron microscopy. The advantage of this approach is that it is noncontact and eliminates the need of photolithography.

  8. Linearly tapered discharge capillary waveguides as a medium for a laser plasma wakefield accelerator

    SciTech Connect

    Abuazoum, S.; Wiggins, S. M.; Ersfeld, B.; Hart, K.; Vieux, G.; Yang, X.; Welsh, G. H.; Issac, R. C.; Reijnders, M. P.; Jones, D. R.; Jaroszynski, D. A.

    2012-01-02

    Gas-filled capillary discharge waveguides are commonly used as media for plasma wakefield accelerators. We show that effective waveguides can be manufactured using a femtosecond laser micromachining technique to produce a linearly tapered plasma density, which enables the energy of the accelerator to be enhanced significantly. A laser guiding efficiency in excess of 82% at sub-relativistic intensities has been demonstrated in a 40 mm long capillary with a diameter tapering from 320 {mu}m to 270 {mu}m, which gives rise to an on-axis, time-averaged plasma density that varies from 1.0 x 10{sup 18} cm{sup -3} to 1.6 x 10{sup 18} cm{sup -3}.

  9. A volume averaged global model for inductively coupled HBr/Ar plasma discharge

    NASA Astrophysics Data System (ADS)

    Chung, Sang-Young; Kwon, Deuk-Chul; Choi, Heechol; Song, Mi-Young

    2015-09-01

    A global model for inductively coupled HBr/Ar plasma was developed. The model was based on a self-consistent global model had been developed by Kwon et al., and a set of chemical reactions in the HBr/Ar plasma was compiled by surveying theoretical, experimental and evaluative researches. In this model vibrational excitations of bi-atomic molecules and electronic excitations of hydrogen atom were taken into account. Neutralizations by collisions between positive and negative ions were considered with Hakman's approximate formula achieved by fitting of theoretical result. For some reactions that were not supplied from literatures the reaction parameters of Cl2 and HCl were adopted as them Br2 and HBr, respectively. For validation calculation results using this model were compared with experimental results from literatures for various plasma discharge parameters and it showed overall good agreement.

  10. A Black-box Modelling Engine for Discharge Produced Plasma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Zakharov, V. S.; Zhang, Q.

    2006-01-01

    A Blackbox Modelling Engine (BME), is an instrument based on the adaptation of the RMHD code Z*, integrated into a specific computation environment to provide a turn key simulation instrument and to enable routine plasma modelling without specialist knowledge in numerical computation. Two different operating modes are provided: Detailed Physics mode & Fast Numerics mode. In the Detailed Physics mode, non-stationary, non-equilibrium radiation physics have been introduced to allow the modelling of transient plasmas in experimental geometry. In the Fast Numerics mode, the system architecture and the radiation transport is simplified to significantly accelerate the computation rate. The Fast Numerics mode allows the BME to be used realistically in parametric scanning to explore complex physical set up, before using the Detailed Physics mode. As an example of the results from the BME modelling, the EUV source plasma dynamics in the pulsed capillary discharge are presented.

  11. Plasma parameters of pulsed-dc discharges in methane used to deposit diamondlike carbon films

    SciTech Connect

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Andujar, J. L.

    2009-08-01

    Here we approximate the plasma kinetics responsible for diamondlike carbon (DLC) depositions that result from pulsed-dc discharges. The DLC films were deposited at room temperature by plasma-enhanced chemical vapor deposition (PECVD) in a methane (CH{sub 4}) atmosphere at 10 Pa. We compared the plasma characteristics of asymmetric bipolar pulsed-dc discharges at 100 kHz to those produced by a radio frequency (rf) source. The electrical discharges were monitored by a computer-controlled Langmuir probe operating in time-resolved mode. The acquisition system provided the intensity-voltage (I-V) characteristics with a time resolution of 1 mus. This facilitated the discussion of the variation in plasma parameters within a pulse cycle as a function of the pulse waveform and the peak voltage. The electron distribution was clearly divided into high- and low-energy Maxwellian populations of electrons (a bi-Maxwellian population) at the beginning of the negative voltage region of the pulse. We ascribe this to intense stochastic heating due to the rapid advancing of the sheath edge. The hot population had an electron temperature T{sub e}{sup hot} of over 10 eV and an initial low density n{sub e}{sup hot} which decreased to zero. Cold electrons of temperature T{sub e}{sup cold}approx1 eV represented the majority of each discharge. The density of cold electrons n{sub e}{sup cold} showed a monotonic increase over time within the negative pulse, peaking at almost 7x10{sup 10} cm{sup -3}, corresponding to the cooling of the hot electrons. The plasma potential V{sub p} of approx30 V underwent a smooth increase during the pulse and fell at the end of the negative region. Different rates of CH{sub 4} conversion were calculated from the DLC deposition rate. These were explained in terms of the specific activation energy E{sub a} and the conversion factor x{sub dep} associated with the plasma processes. The work deepens our understanding of the advantages of using pulsed power supplies

  12. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    NASA Astrophysics Data System (ADS)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  13. Shock Formation by Plasma Filaments of Microwave Discharge under Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-03-01

    A one-dimensional compressible fluid calculation was coupled with a finite- difference time-domain code and a particle-in-cell code with collision to reproduce propagation of electromagnetic wave, ionization process of plasma, and shock wave formation in atmospheric microwave discharge. Plasma filaments are driven toward the microwave source at 1 atm, and the distance between each filament is one-fifth of the wavelength of the incident microwave. The strong shock wave is generated due to the high plasma density at the atmospheric pressure. A simple analysis of the microwave propagation into the plasma shows that cut-off density of the microwave becomes smaller with the pressure decrease in a collisional plasma. At the lower pressure, the smaller density plasma is obtained with a diffusive pattern because of the smaller cut-off density and the larger diffusion effect. In contrast with the 1-atm case, the weak shock wave is generated at a rarefied condition, which lowers performance of microwave thruster.

  14. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  15. Surface-dependent inactivation of model microorganisms with shielded sliding plasma discharges and applied air flow.

    PubMed

    Edelblute, Chelsea M; Malik, Muhammad A; Heller, Loree C

    2015-06-01

    Cold atmospheric plasma inactivates bacteria through reactive species produced from the applied gas. The use of cold plasma clinically has gained recent interest, as the need for alternative or supplementary strategies are necessary for preventing multi-drug resistant infections. The purpose of this study was to evaluate the antibacterial efficacy of a novel shielded sliding discharge based cold plasma reactor operated by nanosecond voltage pulses in atmospheric air on both biotic and inanimate surfaces. Bacterial inactivation was determined by direct quantification of colony forming units. The plasma activated air (afterglow) was bactericidal against Escherichia coli and Staphylococcus epidermidis seeded on culture media, laminate, and linoleum vinyl. In general, E. coli was more susceptible to plasma exposure. A bacterial reduction was observed with the application of air alone on a laminate surface. Whole-cell real-time PCR revealed a decrease in the presence of E. coli genomic DNA on exposed samples. These findings suggest that plasma-induced bacterial inactivation is surface-dependent.

  16. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  17. Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma.

    PubMed

    Bergmann, K; Schriever, G; Rosier, O; Müller, M; Neff, W; Lebert, R

    1999-09-01

    An extreme-ultraviolet (EUV) radiation source near the 13-nm wavelength generated in a small (1.1 J) pinch plasma is presented. The ignition of the plasma occurs in a pseudosparklike electrode geometry, which allows for omitting a switch between the storage capacity and the electrode system and for low inductive coupling of the electrically stored energy to the plasma. Thus energies of only a few joules are sufficient to create current pulses in the range of several kiloamperes, which lead to a compression and a heating of the plasmas to electron densities of more than 10(17) cm(-3) and temperatures of several tens of electron volts, which is necessary for emission in the EUV range. As an example, the emission spectrum of an oxygen plasma in the 11-18-nm range is presented. Transitions of beryllium- and lithium-like oxygen ions can be identified. Current waveform and time-resolved measurements of the EUV emission are discussed. In initial experiments a repetitive operation at nearly 0.2 kHz could be demonstrated. Additionally, the broadband emission of a xenon plasma generated in a 2.2-J discharge is presented.

  18. Stable plasma start-up in the KSTAR device under various discharge conditions

    NASA Astrophysics Data System (ADS)

    Kim, Jayhyun; Yoon, S. W.; Jeon, Y. M.; Leuer, J. A.; Eidietis, N. W.; Mueller, D.; Park, S.; Nam, Y. U.; Chung, J.; Lee, K. D.; Hahn, S. H.; Bae, Y. S.; Kim, W. C.; Oh, Y. K.; Yang, H. L.; Park, K. R.; Na, H. K.; KSTAR Team

    2011-08-01

    A time series of static nonlinear ferromagnetic calculations was performed to mimic the time-dependent modelling of plasma start-up by assessing the effects of the ferromagnetic Incoloy 908 used in the superconducting coil jackets of the Korea Superconducting Tokamak Advanced Research (KSTAR) device. Time-series calculations of a two-dimensional axisymmetric circuit model with nonlinear ferromagnetic effects enabled us to find appropriate waveforms for the KSTAR poloidal field coil currents that satisfied various start-up requirements, such as the formation and sustainment of field nulls, a sufficient amount of magnetic flux for further plasma current ramp-up, sufficiently large Et ·Bt/Bbottom > 1 kV m-1 contours for successful breakdown, plasma current toroidal equilibria, etc. In addition to the aforementioned requirements, the results introduced in this report also provided the positional stability of the plasma current channel against radial as well as vertical perturbations by compensating the field deformation originating from the ferromagnetic effects. With the improved positional stability, robust plasma start-up was achieved during the 2010 KSTAR campaign under various discharge conditions such as the recovery process from plasma disruptions.

  19. Simulation of electrical discharge in a 3.6 Joule miniature plasma focus device using SIMULINK

    NASA Astrophysics Data System (ADS)

    Jafari, Hossein; Habibi, Morteza

    2014-08-01

    A novel technique has been developed and studied in this paper to simulate the electrical discharge circuit of a 3.6 J miniature plasma focus device (PFD) and investigate the effect of inductance variation on voltage spike and current dip. The technique is based on a correlation between the electrical discharge circuit and plasma dynamics in a very small PFD that operates at the energy of 3.6 J. The simulation inputs include the charging voltage, capacitor bank capacitance, current limiter resistance, by-pass resistance as well as the time-dependent inductance and resistance of the plasma sheath which are calculated by assuming the plasma dynamics as transit times in going from one phase to the next. The variations of the most important elements in the circuit (i.e. the constant and breakdown inductances) and their effects on the current dip are studied in PFDs with low and high constant inductance. The model demonstrated for achieving a good pinch in the PFD, although the total inductance of the system should be low; however there is always an optimum inductance which causes an appropriate pinch. Furthermore, the electrical power produced by the pulsed power supply, the mechanical energy as well as the magnetic energy which are transferred into the plasma tube were obtained from simulation. The graph of electrical power demonstrated a high instantaneous increment in the power transferred into the plasma as one of the greatest advantages of the pulsed power supply. The simulation was performed using software tools within the MATLAB/SIMULINK simulation environment.

  20. A 100-kW three-phase ac plasma furnace for spheroidization of aluminum silicate particles

    SciTech Connect

    Gold, D.; Bonet, C.; Chauvin, G.; Geinaert, G.; Mathieu, A.C.; Millet, J.

    1981-06-01

    A 100-kW three-phase ac plasma furnace with sheathed copper electrodes (sheathing gas: air) is presented. It is used for spheroidizing ''chamotte'' (refractory-fired clay) particles having a smooth, pore-free surface. A simple, one-dimensional numerical model for the heat transfer to the particles explains the maximum processing rate and the detrimental influence of an inhomogeneous particle size distribution.

  1. Electron, Atomic, and Radiation Kinetics in Plasma Discharge Lighting: Advanced Models and Observations

    NASA Astrophysics Data System (ADS)

    Giuliani, John L.

    2006-10-01

    Non-LTE discharges used in lighting sources provide an excellent testbed for understanding the interplay between plasma, atomic, and radiation physics. Standard models for the Hg fluorescent bulb include non-equilibrium kinetics for the species, but employ both a 0-D Boltzmann equation for the electron distribution function (EDF) and Holstein's probability-of-escape for radiation transport. These assumptions overlook some of the more interesting, and challenging, aspects of plasma lighting. The radial ambipolar potential requires the inclusion of the spatial gradient term in the inhomogeneous electron Boltzmann equation. The resulting EDF is found to depend on both electron energy and radial position [1]. Advanced radiation transport techniques account for non-local photo-pumping, line overlap within the Hg resonance lines, and partial frequency redistribution [2]. The results of our completely coupled model match the observed spatial distribution of Hg excited states and the line-of-sight intensity [3]. Due to environmental initiatives there is also recent interest in non-Hg discharges for high intensity lighting. One example is an RF electrodeless Mo-O-Ar plasma discharge bulb which operates by recycling the emitting Mo with an O catalyst. Based on atomic physics calculations for Mo [4], the kinetic pathways leading to visible emission can be identified [5] and explain the measured lighting efficiency of ˜40 lumens/watt of supplied power.[1] J. Appl. Phys., 94, p.62, 2003. [2] Plasma Sources Sci. Tech., 14, p.236, 2005. [3] J. Phys. D., 38, p.4180, 2005. [4] New J. Physics, 6, p.145, 2004. [5] J. Appl. Phys., 95, p.5284, 2004.

  2. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  3. Computational study of plasma sustainability in radio frequency micro-discharges

    SciTech Connect

    Zhang, Y.; Jiang, W.; Zhang, Q. Z.; Bogaerts, A.

    2014-05-21

    We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure.

  4. Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer

    2007-07-15

    Cost effective and a very simple dielectric barrier discharge plasma processing apparatus for thin film deposition and mass spectroscopic analysis of organic gas mixture has been described. The interesting features of the apparatus are the construction of the dielectric electrodes made of aluminum oxide or alumina (Al{sub 2}O{sub 3}) and glass and the generation of high ignition voltage from the spark plug transformer taken from car. Metal capacitor is introduced in between ground and oscilloscope to measure the executing power during the discharge and the average electron density in the plasma region. The organic polymer films have been deposited on Si (100) substrate using several organic gas compositions. The experimental setup provides a unique drainage system from the reaction chamber controlled by a membrane pump to suck out and remove the poisonous gases or residuals (cyanogens, H-CN, CH{sub x}NH{sub 2}, etc.) which have been produced during the discharge of CH{sub 4}/N{sub 2} mixture.

  5. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  6. Plasma decay in the afterglow of a high-voltage nanosecond discharge in air

    SciTech Connect

    Aleksandrov, N. L.; Anokhin, E. M.; Kindysheva, S. V.; Kirpichnikov, A. A.; Kosarev, I. N.; Nudnova, M. M.; Starikovskaya, S. M.; Starikovskii, A. Yu.

    2012-02-15

    The decay of air plasma produced by a high-voltage nanosecond discharge at room temperature and gas pressures in the range of 1-10 Torr was studied experimentally and theoretically. The time dependence of the electron density was measured with a microwave interferometer. The initial electron density was about 10{sup 12} cm{sup -3}. The discharge homogeneity was monitored using optical methods. The dynamics of the charged particle densities in the discharge afterglow was simulated by numerically solving the balance equations for electron and ions and the equation for the electron temperature. It was shown that, under these experimental conditions, plasma electrons are mainly lost due to dissociative and three-body recombination with ions. Agreement between the measured and calculated electron densities was achieved only when the rate constant of the three-body electron-ion recombination was increased by one order of magnitude and the temperature dependence of this rate constant was modified. This indicates that the mechanism for three-body recombination of molecular ions differs from that of the well-studied mechanism of atomic ion recombination.

  7. Plasma Filaments in Dielectric Barrier Discharges Penetrating into High Aspect Ratio Cracks for Sterilization

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    The ability of surface-hugging-plasmas, as produced in dielectric barrier discharges (DBDs), to penetrate into crevices, turn corners and navigate geometrical obstructions, is important in plasma-wound healing and sterilization. In this talk, we discuss results from a computational investigation of the plasma filaments produced in an air DBD and impinging on and penetrating into deep, high aspect ratio cracks in the bottom dielectric. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential, concurrent with radiation transport. A Monte Carlo simulation is used to obtain ion energy distributions (IEDs) to surfaces. Cracks are 1 mm deep and 3 μm to 250 μm wide (aspect ratios of 333 to 4). We found that when impinging onto the cracked dielectric, the plasma filament conformally spreads over the surface. The conductive plasma transfers the applied potential to the opening of the crack. The width of the crack, w, then determines the penetration of the plasma. If w is large compared to the filament, the penetration is surface hugging. If w is commensurate with the filament, the plasma fills the crack. If the Debye length is about w or larger, there is not significant penetration. For the conditions investigated, penetration occurred for w > 5-6 μm. IEDs onto the surfaces of the trenches produce transient pulses of ions with energies >150 eV.

  8. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    SciTech Connect

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  9. Experimental investigation on the effect of plasma jet in the triggered discharge process of a gas switch

    NASA Astrophysics Data System (ADS)

    Tie, W.; Liu, S.; Liu, X.; Zhang, Q.

    2016-08-01

    The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 106 cm/s. The electron temperature decreased from 2.0 eV to 1.3 eV, and the electron density increased from 3.1 × 1015/cm3 to 6.3 × 1015/cm3 at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.

  10. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    SciTech Connect

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  11. Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights.

    PubMed

    Scholtz, V; Julák, J; Kríha, V; Mosinger, J; Kopecká, S

    2007-01-01

    The second part of our paper presents the results of experiments with the decontamination of surfaces by low-temperature plasma generated by corona discharge in air at atmospheric pressure. A simple device is described and the effects of the corona discharge on model microorganisms, viz. the yeast Candida albicans, Gram-negative bacteria Escherichia coli, Enterobacter aerogenes, Neisseria sicca, Stenotrophomonas maltophilia, Gram-positive bacteria Deinococcus radiodurans, Enterococcus faecium, Staphylococcus epidermidis, Streptococcus sanguinis, and vegetative and spore forms of Geobacillus stearothermophilus are discussed. A similar microbicidal effect after about one-minute exposure was observed in all vegetative forms of the microorganisms. Measurement in growth inhibition zones on a semisolid medium was used to determine the dependence of the microbicidal effect on exposure time and the distance between electrodes. Counting of colonies served to assess the microbicidal effect of the discharge on contaminated inert surfaces observable after more than 1 min exposure. Geobacillus stearothermophilus spores were found to have several times lower susceptibility to the action of the discharge and the microbicidal effect was observed only after an 8 min exposure. Reaction with the iodide reagent did not unambiguously demonstrate the difference between ozone and singlet oxygen as presumed active components of the corona. The area distribution of reactive oxygen species was determined; it was found to differ from the Wartburg law depending on exposure time. Qualitative evidence was obtained on the penetration of the reactive oxygen species into the semisolid medium. PMID:18225640

  12. Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Huijuan; Guo, He; Liu, Yongjie; Yi, Chengwu

    2015-10-01

    In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment. supported by National Natural Science Foundation of China (No. 21207052), China Postdoctoral Science Foundation (No. 20110491353) and Jiangsu Planned Projects for Postdoctoral Research Funds, China (No. 1102116C)

  13. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    NASA Astrophysics Data System (ADS)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  14. Emission spectroscopy of anharmonic vibrational series for micro-hollow cathode discharge plasmas

    NASA Astrophysics Data System (ADS)

    Lozano F., A.; Juárez, A. M.

    2013-09-01

    The field of micro plasmas is currently very active, due to the useful properties and potential applications of micro-hollow cathode discharges.Our group is currently developing these discharge characterization techniques and, as a first obvious starting point, we are performing emission spectroscopy in normal discharges. The focus of this particular contribution is to present a study of vibrational eigenvalues of Morse potential for diatomic molecules. We performed the experimental measurements of these eigenvalues using a high resolution optical monochromator and a parallel plate nitrogen discharge in the glow regime. In particular we determined using this simple arrangement the ro-vibration transitions in N2, between the electronic states C3Πu -B1Πg . Moreover, we evaluated theoretically the anharmonic eigenvalues of these transitions using Wigner function for a Morse potential. Based on experimental measurements and making use of the calculated Franck-Condon factors it is possible to extract energy potential parameters of these energy states directly from measured transitions. In particular we have calculated the internuclear separation between the excited states associated with the vibrational transitions observed. This work was funded by the grant DGAPA-PAPIIT IT100613.

  15. Kinetic mechanism of plasma recombination in methane, ethane and propane after high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2016-08-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in pure methane, ethane and propane are presented for room temperature and pressures from 2 to 20 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 5  ×  1010 and 3  ×  1012 cm‑3 and the effective recombination coefficients were obtained. Measured effective recombination coefficients increased with gas pressure and were much higher than the recombination coefficients for simple molecular hydrocarbon ions. The properties of plasma in the discharge afterglow were numerically simulated by solving the balance equations for charged particles and electron temperature. Calculations showed that electrons had time to thermalize prior to the recombination. The measured data were interpreted under the assumption that cluster hydrocarbon ions are formed during the plasma decay that is controlled by the dissociative electron recombination with these ions at electron room temperature. Based on the analysis of the experimental data, the rates of three-body formation of cluster ions and recombination coefficients for these ions were estimated.

  16. Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2015-11-01

    Hazardous pollutants in dredged sediment pose great threats to ecological environment and human health. A novel approach, named pulsed discharge plasma (PDP), was employed for the degradation of p-nitrophenol (PNP) in dredged sediment. Experimental results showed that 92.9% of PNP in sediment was smoothly removed in 60 min, and the degradation process fitted the first-order kinetic model. Roles of some active species in PNP degradation in sediment were studied by various gas plasmas, OH radical scavenger, hydrated electron scavenger and O2(·-) scavenger; and the results presented that O3, OH radical, eaq(-) and O2(·-) all played significant roles in PNP removal, and eaq(-) and O2(·-) mainly participated in other oxidising active species formation. FTIR analysis showed that PNP molecular structure was destroyed after PDP treatment. The main degradation intermediates were identified as hydroquinone, benzoquinone, phenol, acetic acid, NO2(-) and NO3(-). PNP degradation pathway in dredged sediment was proposed. It is expected to contribute to an alternative for sediment remediation by pulse discharge plasma. PMID:26207876

  17. Dependence of current rise time on laser-triggered discharge plasma

    NASA Astrophysics Data System (ADS)

    Lim, Soowon; Kamohara, Takashi; Hosseini, S. Hamid R.; Katsuki, Sunao

    2016-07-01

    A powerful, stable extreme ultraviolet (EUV) source is the most important component for EUV lithography and EUV mask inspection. Here, we investigate the characteristics of laser-triggered discharge plasma at three different current rise times, fast, middle and slow. A height-adjustable coaxial birdcage was used to change circuit inductance. The rise time was varied between 30 ns-55 ns with peak current of 10 kA. The time-integrated EUV (at 13.5 nm in 2% bandwidth) intensity for the fast rise time was found to be 55% stronger than that of the slow rise time despite its lower energy. A high-speed Mach-Zehnder interferogram and visible imaging of the pinch plasma were employed to discuss plasma compression processes qualitatively and quantitatively. Also discharge produced debris was investigated using a silicon-crystal witness plate. The fast rise current was found to have advantages such as lower debris, higher EUV intensity, and possibility of suppressing instability in comparison with the slow rise time. As expected, total debris amounts lessened proportionally to the primary charged energy, as found from a comparison of fast and slow rise currents.

  18. Numerical modeling of the electrical breakdown and discharge properties of laser-generated plasma channels

    SciTech Connect

    Petrova, Tz. B.; Ladouceur, H. D.; Baronavski, A. P.

    2007-12-15

    An extensive nonequilibrium steady-state kinetics model incorporating collisional and radiative processes is developed to study the electrical breakdown and discharge maintenance of laser-induced atmospheric plasma channels formed in externally applied electric fields. The model is based upon a self-consistent numerical solution of the Boltzmann equation for the electron energy distribution function coupled with the electron energy balance equation and the population balance equations for electrons and air species. Using the electron energy distribution function, the ionization and electron attachment rates as a function of the reduced applied electric field at different degrees of ionization are calculated. We find that the ionization rate as a function of applied electric field in a laser-induced plasma channel is orders of magnitude larger than that obtained for a natural atmospheric air discharge. Therefore, the electrical breakdown of these plasma channels may occur at significantly lower applied electric fields. The present model predicts a breakdown electric field of 10 kV/cm, while the experimentally determined breakdown field strength is {approx}5.7 kV/cm [A. P. Baronavski et al., NRL Memorandum Report No. NRL/MR/6110-02-8642, 2002 (unpublished)], a reduction of about a factor of 5 from the natural Paschen electrical breakdown field of {approx}30 kV/cm.

  19. Field demonstration and commercialization of silent discharge plasma hazardous air pollutant control technology

    SciTech Connect

    Rosocha, L.A.; Coogan, J.J.; Korzekwa, R.A.; Secker, D.A.; Reimers, R.F.; Herrmann, P.G.; Chase, P.J.; Gross, M.P. |; Jones, M.R.

    1996-07-01

    Silent electrical discharge plasma (dielectric barrier) reactors can decompose gas-phase pollutants by free-radical attack or electron-induced fragmentation. The radicals or electrons are produced by the large average volume nonthermal plasmas generated in the reactor. In the past decade, the barrier configuration has attracted attention for destroying toxic chemical agents for the military, removing harmful greenhouse gases, and treating other environmentally- hazardous chemical compounds. At the Los Alamos National Laboratory, we have been studying the silent discharge plasma (SDP) for processing gaseous-based hazardous chemicals for approximately five years. The key objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more easily managed. The main applications have been for treating off-gases from thermal treatment units, and for abating hazardous air-pollutant emissions (e.g., industrial air emissions, vapors extracted from contaminated soil or groundwater). In this paper, we will summarize the basic principles of SDP processing, discuss illustrative applications of the technology, and present results from small-scale field tests that are relevant to our commercialization effort.

  20. Kinetic mechanism of plasma recombination in methane, ethane and propane after high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2016-08-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in pure methane, ethane and propane are presented for room temperature and pressures from 2 to 20 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 5  ×  1010 and 3  ×  1012 cm-3 and the effective recombination coefficients were obtained. Measured effective recombination coefficients increased with gas pressure and were much higher than the recombination coefficients for simple molecular hydrocarbon ions. The properties of plasma in the discharge afterglow were numerically simulated by solving the balance equations for charged particles and electron temperature. Calculations showed that electrons had time to thermalize prior to the recombination. The measured data were interpreted under the assumption that cluster hydrocarbon ions are formed during the plasma decay that is controlled by the dissociative electron recombination with these ions at electron room temperature. Based on the analysis of the experimental data, the rates of three-body formation of cluster ions and recombination coefficients for these ions were estimated.

  1. Evaluation of pathogen inactivation on sliced cheese induced by encapsulated atmospheric pressure dielectric barrier discharge plasma.

    PubMed

    Yong, Hae In; Kim, Hyun-Joo; Park, Sanghoo; Alahakoon, Amali U; Kim, Kijung; Choe, Wonho; Jo, Cheorun

    2015-04-01

    Pathogen inactivation induced by atmospheric pressure dielectric barrier discharge (DBD) (250 W, 15 kHz, air discharge) produced in a rectangular plastic container and the effect of post-treatment storage time on inactivation were evaluated using agar plates and cheese slices. When agar plates were treated with plasma, populations of Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes showed 3.57, 6.69, and 6.53 decimal reductions at 60 s, 45 s, and 7 min, respectively. When the pathogens tested were inoculated on cheese slices, 2.67, 3.10, and 1.65 decimal reductions were achieved at the same respective treatment times. The post-treatment storage duration following plasma treatment potently affected further reduction in pathogen populations. Therefore, the newly developed encapsulated DBD-plasma system for use in a container can be applied to improve the safety of sliced cheese, and increasing post-treatment storage time can greatly enhance the system's pathogen-inactivation efficiency.

  2. Dependence of current rise time on laser-triggered discharge plasma

    NASA Astrophysics Data System (ADS)

    Lim, Soowon; Kamohara, Takashi; Hosseini, S. Hamid R.; Katsuki, Sunao

    2016-07-01

    A powerful, stable extreme ultraviolet (EUV) source is the most important component for EUV lithography and EUV mask inspection. Here, we investigate the characteristics of laser-triggered discharge plasma at three different current rise times, fast, middle and slow. A height-adjustable coaxial birdcage was used to change circuit inductance. The rise time was varied between 30 ns–55 ns with peak current of 10 kA. The time-integrated EUV (at 13.5 nm in 2% bandwidth) intensity for the fast rise time was found to be 55% stronger than that of the slow rise time despite its lower energy. A high-speed Mach–Zehnder interferogram and visible imaging of the pinch plasma were employed to discuss plasma compression processes qualitatively and quantitatively. Also discharge produced debris was investigated using a silicon-crystal witness plate. The fast rise current was found to have advantages such as lower debris, higher EUV intensity, and possibility of suppressing instability in comparison with the slow rise time. As expected, total debris amounts lessened proportionally to the primary charged energy, as found from a comparison of fast and slow rise currents.

  3. Extended plasma channels created by UV laser in air and their application to control electric discharges

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-01

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×1011-1.5×1013 and 3×106-3×1011 W/cm2, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 109-1017 cm-3, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  4. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  5. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  6. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  7. Spatially extended void-free dusty plasmas in a laboratory radio-frequency discharge

    SciTech Connect

    Schmidt, C.; Arp, O.; Piel, A.

    2011-01-15

    Laboratory experiments with thermophoretic levitation of dust are described that aim at the closure of a central dust-free void region. A careful study of the void structure as a function of the discharge and levitation parameters leads to the discovery of an extended parameter region where stable void-free equilibria are found. The void closure is effected by a novel mechanism that involves a self-organized change in the discharge topology, in which the dust cloud becomes surrounded by a toroidal region of plasma production. In this geometry ions are found to stream radially inwards instead of outwards as in clouds with a central void. This change in ion flow is proved by a reversal of the propagation direction of dust-density waves.

  8. Investigation and quantification of nonlinearity using surrogate data in a glow discharge plasma

    SciTech Connect

    Saha, Debajyoti Shaw, Pankaj Kumar; Ghosh, Sabuj; Janaki, M. S.; Sekar Iyengar, A. N.

    2015-02-15

    Detection of nonlinearity has been carried out in periodic and aperiodic floating potential fluctuations of DC glow discharge plasma by generating surrogate data using iterative amplitude adjusted Fourier transform method. We introduce “delay vector variance” analysis (DVV) for the first time, which allows reliable detection of nonlinearity and provides some easy to interpret diagram conveying information about the nature of the experimental floating potential fluctuations (FPF). The method of false nearest neighbourhood is deployed on the FPF's to find a good embedding so as to be acquainted with the precise knowledge of m, which is desirable for carrying out DVV analysis. The emergence of nonlinearity with increase in discharge voltage has been ensured by taking into consideration the total energy present in different band of frequencies excited due to nonlinear processes. Rejection of null hypothesis has been verified by performing the rank test method that confirms the presence of nonlinearity quantitatively.

  9. Interactions between organic photoconductor and plasma discharge within an electrophotographic environment

    SciTech Connect

    Nauka, K.; Chang, Seongsik; Ng, Hou T.

    2009-05-15

    Structural and chemical compositional changes occurring within the surface region of an organic photoconductor electrically charged with Paschen discharge over an extended period of time have been investigated with the help of attenuated total reflectance Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. Experimental conditions were selected to simulate interactions between the photoconductor and the plasma discharge occurring in a typical electrophotographic printing environment. A long time exposure of the photoconductor to energetic charged and neutral species, and UV photons impinging upon the photoconductor caused oxidation of the surface, substantial chemical bond breakage, and the reformation of bonding configurations within the region below the surface. These resulted in the formation of a thin surface region with properties different from those of the original photoconductor. Since this study closely follows a modern electrophotographic process, the obtained conclusions are applicable to any electrophotographic printing engine.

  10. Kinetic temperature of dust particle motion in gas-discharge plasma.

    PubMed

    Norman, G E; Timofeev, A V

    2011-11-01

    A system of equations describing motion of dust particles in gas discharge plasma is formulated. This system is developed for a monolayer of dust particles with an account of dust particle charge fluctuations and features of the discharge near-electrode layer. Molecular dynamics simulation of the dust particles system is performed. A mechanism of dust particle average kinetic energy increase is suggested on the basis of theoretical analysis of the simulation results. It is shown that heating of dust particles' vertical motion is initiated by forced oscillations caused by the dust particles' charge fluctuations. The process of energy transfer from vertical to horizontal motion is based on the phenomenon of the parametric resonance. The combination of parametric and forced resonances explains the abnormally high values of the dust particles' kinetic energy. Estimates of frequency, amplitude, and kinetic energy of dust particles are close to the experimental values.

  11. Formation of Organic Peroxides and Ethers at Post-Discharge Plasma Plume-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Begliarbekov, Milan; Kotowich, Steven; Tarnovsky, Vladimir

    2009-03-01

    A direct current (DC) micro-hollow cathode plasma source operating in a mixed glow-streamer regime was used to generate an atmospheric pressure N2 discharge. The post-discharge plume / afterglow was interfaced with a target liquid-phase solution, and caused a change in the chemistry of the target solution. In the present work we study the interaction of an N2 plume with a mixture of 2-methyl-1-propanol and hexane, which results in the formation of organic peroxides and ethers at the plume-liquid interface. The presence of the peroxide and ether functional groups is established by ^1H-NMR, FTIR, and Raman spectra of the reaction products. Fast Atom Bombardment (FAB) mass spectrometry is also used to further characterize the reaction products.

  12. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  13. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Zheng, Peichao; Liu, Keming; Wang, Jinmei; Dai, Yu; Yu, Bin; Zhou, Xianju; Hao, Honggang; Luo, Yuan

    2012-10-01

    The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the hydrophobic character partly recovers after long-term storage in ambient air.

  14. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 4. Cleaning of Lakes and Marshes by Pulsed Power Produced Streamer Discharges in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Hidenori; Katsuki, Sunao; Namihira, Takao; Ishibashi, Kazuo; Kiyosaki, Noriaki

    Pulsed power has been used to produce non-thermal plasmas in atmospheric pressure gases that generate a high electric field at the tips of streamer discharges, where high energy electrons, free radicals, ultraviolet rays, and ozone are produced. These manifestations of streamer discharges have been used in the treatment of exhaust gases, removal of volatile and toxic compounds such as dioxin, and the sterilization of microorganisms. Here, large volume streamer discharges in water are described. These streamer discharges in liquids are able to produce a high electric field, high energy electrons, ozone, chemically active species, ultraviolet rays, and shock waves, which readily sterilize microorganisms and decompose molecules and materials. An application of this phenomenon to the cleaning of lakes and marshes is also described.

  15. Noise control of a flow around a cylinder using high-frequency dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Belyaev, I. V.; Zaytsev, M. Yu.; Kazansky, P. N.; Kopiev, V. A.; Moralev, I. A.

    2015-03-01

    The effect of high-frequency dielectric barrier discharge plasma actuators on the noise of a flow around a circular cylinder is experimentally studied. It is shown that the plasma actuators are able to reduce the vortex noise of a cylinder within the range of velocities typical for aeroacoustic applications.

  16. The TORE SUPRA Cryogenic System Behaviour During Long Plasma Discharges with a High Injected Energy

    SciTech Connect

    Henry, D.; Hertout, P.; Journeaux, J. Y.; Duchateau, J. L.; Reynaud, P.

    2006-04-27

    After the CIEL project completion including the upgrade of the plasma facing components and the water cooling system, the superconducting Tore Supra Tokamak achieved a world record of injected energy (1.1 GJ), during long duration (6 min) plasma discharges, which was enabled by the upgrade of the transfer system capacities, but also by the steady state toroidal field. The Tore Supra cryogenic refrigerator enables the toroidal field coils to be operated at nominal current along the full daily plasma operation shift. It has capacities of 300 W at 1.8 K, 750 W at 4.5 K and 30 kW at 80 K and was operated with a high reliability for more than 16 years. After a brief recall on the cryogenic refrigeration of the toroidal superconducting magnet, the distribution of the heat loads at the various levels of temperature (in standby mode 150W at 1.8 K and 200W at 4.5 K) is presented. The inventory of the calculated static and variable heat loads deposited within each part of toroidal field coils and thermal shields, is given with the factors of dependence. This analysis identifies and quantifies the major magnetic disturbances like a disruption (about 12 kJ onto the coils and 300 kJ onto the thick casings) which generate additional heat loads for the refrigerator.The measurements associated with the He II saturated bath pumping system, and the supercritical helium loop cooling the thick casings, allow us to verify thereafter the behaviour of the cryo-refrigerator during the long duration discharges, and the compliance with the theoretical model.The conclusions bring results also applicable to the cyoplant of future plant like ITER which will operate with long duration discharges.

  17. Development of Electromagnetically Pulled-Out Gas Plasma (EPOP) Gun for Medium Vacuum and its Fundamental Discharge Characteristics

    NASA Astrophysics Data System (ADS)

    Yanagita, Taichiro; Tanoue, Hideto; Kamiya, Masao; Suda, Yoshiyuki; Takikawa, Hirofumi; Taki, Makoto; Hasegawa, Yushi; Ishikawa, Takeshi

    Electromagnetically pulled-out gas plasma (EPOP) gun was developed, which will be applied to the filtered arc deposition system in order to enhance the nitriding of preparing thin film under medium vacuum. A hot cathode of tungsten (W) filament was employed and DC discharge was generated between the cathode and anode (SUS304). The distance of electrodes was 100 mm. Electromagnetic coils were placed around the cathode, anode and plasma pulled-out duct, separately. Experimental pressure was 0.1 Pa. The following results were obtained. Ignition voltage became lower when the same direction magnetic field was axially applied to the cathode and anode. Minimum voltage for sustaining the discharge became lower when the magnetic filed was applied to the anode. With increasing discharge voltage, the discharge current increased dramatically for the discharge voltage less than 50 V and increased gradually for the voltage more than that. The plasma between the cathode and anode was able to be pulled out to the process chamber by applying magnetic field perpendicular to the discharge axis. The amount of pulled-out plasma increased with increasing the filament current and magnetic flux density for plasma pulling-out.

  18. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  19. Evaluation of magnetic fields due to the ferromagnetic vacuum vessel and their influence on plasma discharge in tokamak devices

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Abe, M.; Tadokoro, T.; Otsuka, M.

    We studied characteristics of the magnetic fields due to a ferromagnetic vacuum vessel (F-VV) experimentally and computationally to clarify whether plasma discharge is possible with the F-VV in tokamak devices. We made three kinds of evaluations using the Hitachi tokamak HT-2. One was a discharge test with error field coil. The second was a numerical analysis of the magnetic field induced by a ferritic first wall. The third was a discharge test with the ferritic first wall. Consequently, we confirmed that a normal plasma discharge could be obtained with a ferritic first wall in the HT-2. The strength of the localized magnetic field induced by the F-VV in the plasma region was smaller in tokamak devices with the size of the JFT-2M and ITER than in the HT-2. Therefore, the F-VV should be applicable to tokamak devices.

  20. Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma.

    PubMed

    Kayes, Michael M; Critzer, Faith J; Kelly-Wintenberg, Kimberly; Roth, J Reece; Montie, Thomas C; Golden, David A

    2007-01-01

    This study was conducted to determine the efficacy of a one atmosphere uniform glow discharge plasma (OAUGDP) for inactivation of foodborne pathogens and to evaluate the influence of growth temperature, pH, and culture age on their inactivation. Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella Enteritidis, Vibrio parahaemolyticus, Yersinia enterocolitica, and Shigella flexneri were evaluated. Three-strain mixtures of each bacterium were inoculated (6-7 log CFU/cm(2)) onto microscope slides containing nonselective agar media adjusted to pH 5 or 7. Samples were exposed to plasma for 0-240 sec immediately, or after incubation for 24 h at 10 degrees C or 35 degrees C. After exposure, the agar was removed from the slides and pummeled in 0.1% peptone water with a stomacher, serially diluted, surface plated onto nonselective media, and incubated at 35 degrees C. Exposure time, pH, incubation temperature, and culture age affected survival of all pathogens exposed to plasma (P < 0.05). The greatest reduction of pathogens generally occurred during the initial exposure time of 30 or 90 sec. Pathogens incubated for 24 h before exposure were more resistant than those exposed immediately after inoculation. Incubation at 35 degrees C before exposure resulted in greater resistance to plasma inactivation than incubation at 10 degrees C. No appreciable differences between gram-positive and gram-negative pathogens were observed, although the spore-forming B. cereus was more resistant to plasma than non-spore-formers. These findings support the potential for plasma treatment of foods or surfaces for pathogen reduction. Increased sensitivity of pathogens to plasma at reduced pH and temperature is encouraging, since these conditions are applicable to many foods during processing, handling, and storage. PMID:17378708